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॥ प सुमा लः ॥

K. S. Shukla
(1918–2007)

द ैद वभू तम णतभ ा ावधेशा ुदा
नैर यगवेषणेन मु नव काशे रतः ।

ो त व कृतीः भूषयदयं ीयानुस ानतः
व लकेसर म हमा- ः कृपाश रः ॥

Kripa Shankara Shukla, having received the treasure of the lumi-
nescence of mathematics bequeathed by [Bibhutibhusana] Datta
through Avadhesha [Narayana Singh], happily dedicating himself
to research, relentlessly worked towards the publication of [mul-
tiple] treatises like a sage. Through his investigations, he embel-
lished the writings of astronomers, and was truly a lion in the
assembly of scholars, shining (śukla) through his fame.



॥ ��समप�ण� ॥

���ाचाय�पदे �ह ल�णपुरे �व�ा�भरामः कृपा-
��ो �ो�तषशा�गूढ�वषया� लोकाय चोपाहर� ।
लेख��� सुधी��या� सुम�नभा� स�ृ� माला�मम�
सौल�ाय बुभ�ुुभृ�ततये द�ो वयं तु�ये ॥

While remaining in city of Lucknow (lakṣmaṇapura) as an Ācārya,
Kripa [Shankar] Shukla was indeed a source of delight for the whole
world (viśvābhirāma), [as] he also presented the subtler aspects
of [Indian] astronomy [in a manner comprehensible] to the entire
mankind (loka). Having collected his articles resembling a bunch
of flowers, which are a source of delight to the men of wisdom
(sudhīpriya), we present them, for the sake of easy accessibility, as
a garland for the gratification of the swarm of bees constituted by
the [community of] knowledge-seekers (bubhutsu).
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Preface

The rich history of the origin and development of science in India and the
voluminous literature produced in this pursuit stand in stark contrast to the
prevalent ignorance and meagre attention paid to this heritage in current
times. Despite the neglect of the discipline of history of science, our under-
standing of India’s scientific heritage—especially that of mathematics and
astronomy—has progressed due to the tireless efforts of several stalwarts such
as Bapudeva Sastri (1821–1900), Shankar Balakrishna Dikshit (1853–1898),
Sudhakara Dvivedi (1855–1910), M. Rangacarya (1861–1916), P. C. Sengupta
(1876–1962), B. B. Datta (1888–1958), A. A. Krishnaswamy Ayyangar (1892–
1953), A. N. Singh (1901–1954), C. T. Rajagopal (1903–1978), T. A. Saraswati
Amma (1918–2000), S. N. Sen (1918–1992), K. S. Shukla (1918–2007) and
K. V. Sarma (1919–2005).
Prof. K. S. Shukla was one of India’s leading historians of science. Com-

bining a flair for mathematics with a strong grasp of Sanskrit, Prof. Shukla
made immense contributions to advancing our understanding of the history
and development of mathematics and astronomy in India. On the occasion
of his birth centenary, we have taken the opportunity to collate and compile
some of Prof. Shukla’s most important papers in the form of the volume in
front of you. Such a volume naturally demands a brief introduction of the
individual who has authored its contents, and in the following sections we set
out to do the same. Subsequently, in the final section of the preface we briefly
discuss the structure of the volume as well as the editorial practices adopted
in compiling it.

Early life

The biographical details pertaining to the early phase of Prof. Shukla’s life
has been succinctly brought out by Prof. R. C. Gupta, an eminent historian
of mathematics himself, and a student of Prof. Shukla on the occasion of the
latter’s 80th birth anniversary:1

1See the paper entitled “Dr. Kripa Shankar Shukla, veteran historian of Hindu astronomy
and mathematics” by Prof. Gupta in Part I of this volume. Subsequent quotes and many
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Kripa Shankar Shukla’s birth took place at Lucknow on July 10,
1918. From the very early years, he was a brilliant student of
Mathematics and Sanskrit. He passed the High School Examina-
tion of U.P. Board in 1934 in First Division with Distinction in
Mathematics and Sanskrit and the Intermediate Examination of
that Board again in First Division with Distinction in Mathemat-
ics. He had his higher education at Allahabad, passing the B.A.
examination in the second division from Allahabad University in
1938. From the same University, he obtained his Master of Arts
degree in Mathematics in the First Division in 1941.

Career and contributions

Just as Prof. Shukla was completing his undergraduate studies, Prof. Bib-
hutibhusan Datta and Prof. Avadhesh Narayan Singh published the second
part of their monumental work “History of Hindu Mathematics” in 1938.
Subsequently, in 1939, Prof. Singh launched a Scheme of Research in Hindu
Mathematics in the Department of Mathematics and Astronomy at Lucknow
University, where he was a Lecturer. After his post-graduation, Prof. Shukla
joined this scheme. Prof. Gupta writes:

Dr. K. S. Shukla joined the Department and the Scheme in 1941 . . .
Dr. Shukla investigated thoroughly the works of Bhāskara I and
studied other relevant primary and secondary material. Under
the supervision of Dr. A. N. Singh, Shukla prepared a thesis on
“Astronomy in the Seventh Century India: Bhāskara I and His
Works” . . . The significance of the thesis lies not only in providing
a genuine additional source for the history of early Indian exact
sciences but also in bringing to light many new historical and
methodological facts.

Over the course of his career at Lucknow University, Prof. Shukla carried for-
ward his investigations into the history of Indian mathematics and astronomy,
publishing a number of critically edited texts (often with English translation
and commentary), as well as research papers, in addition to supervising the re-
search of five doctoral scholars. Prof. Gupta as well as Prof. Ohashi2 (another
student of Prof. Shukla) have given detailed bibliographies of Prof. Shukla’s
publications.
The major source works brought out by Prof. Shukla are listed in Table 1.

He also wrote over 40 important articles and reviews which not only brought
details in this preface regarding Prof. Shukla’s life and work are also borrowed from here.

2See Prof. Ohashi’s “Obituary” in Part I of this volume. Subsequent quotes from
Prof. Ohashi in this preface are also borrowed from this paper.
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Table 1: Source works brought out by Prof. Shukla.

No. Title of the works and their authors Year

1 Sūrya-siddhānta with the commentary of Parameśvara 1957
2 Pāṭīgaṇita of Śrīdharācārya 1959
3 Mahābhāskarīya of Bhāskara I 1960
4 Laghubhāskarīya of Bhāskara I 1963
5 Dhīkoṭida-karaṇa of Śrīpati 1969
6 Bījagaṇitāvataṃsa of Nārāyaṇa Paṇḍita 1970
7 Āryabhaṭīya of Āryabhaṭa 1976
8 Āryabhaṭīya of Āryabhaṭa with the commentary of

Bhāskara I and Someśvara
1976

9 Karaṇaratna of Devācārya 1979
10 Vaṭeśvarasiddhānta and Gola of Vaṭeśvara (2 Vols) 1985–86
11 Laghumānasa of Mañjula 1990
12 Gaṇitapañcaviṃśī (published posthumously) 2017

forth the numerous contributions of Indian mathematicians and astronomers,
but also served to demolish certain wrong conceptions regarding the origin,
technical soundness, and depth of the Indian works. Some of Prof. Shukla’s
most important contributions include (i) his study of Varāhamihira’s Pañca-
siddhāntikā, (ii) bringing to light Jayadeva’s verses on the brilliant cakravāla
method of solving second order indeterminate equations, (iii) clearing miscon-
ceptions among modern scholars regarding the use of the iterated hypotenuse
by Indian astronomers in determining the equation of centre, and (iv) revising
and publishing the third and final part of the “History of Hindu mathematics”
by B. B. Datta and A. N. Singh.3

Scholarship and commitment

In praise of Prof. Shukla’s scholarship, Prof. Gupta notes:

Working wholeheartedly with single minded devotion for more
than half a century, Dr. Shukla’s contribution in the field of history
of ancient and medieval Indian mathematics forms a pioneer work
which will continue to motivate future research and investigations.
He gave new interpretations of many obscure Sanskrit passages
and corrected misinterpretations and other errors committed by
others.

3For a detailed discussion on some of Prof. Shukla’s seminal contributions, see the articles
of Yukio Ohashi (1995) and M. D. Srinivas (2018) in Part I of this volume.
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Extolling Prof. Shukla’s meticulous way of maintaining notes, and his com-
mitment towards his doctoral students, Prof. Ohashi writes:

When we read his notes, we feel as if we are being taught by him
directly. It should also be mentioned that he noted several parallel
statements in other Sanskrit texts in the footnotes of his English
translations. So, his English translations can also be used as a
kind of annotated index of Sanskrit astronomical and mathemati-
cal texts. Only Prof. Shukla could do this . . .

I studied the history of Indian astronomy and mathematics un-
der the guidance of Prof. Shukla from 1983 to 1987 as a research
scholar (Ph. D. student) of Lucknow University . . . Prof. Shukla
already had retired but kindly taught me how to read Sanskrit
astronomical texts, both printed texts and manuscripts. I saw
several people were visiting Lucknow to meet Prof. Shukla.

Tireless efforts to attain perfection

Unlike today, in the India of the 1980s, printing was done using the letterpress,
wherein a worker used to compose the text in a metallic frame of a given
dimension, employing a variety of metallic fonts stored in a huge type case.
Also printing of a volume could not happen all in one go as we do it today.
At most 16 or 32 sheets could be printed at one time, and if there were to
be any slip in proof reading, it could not be corrected again since the frame
would have been dismantled once the pages were printed. Hence the author
had to be all the more careful in proof-reading the text. Reminiscing how
punctiliously and tirelessly Professor Shukla worked to ensure that the books
he edited were error-free, Prof. Ohashi observes:

When I was in Lucknow, the Vaṭeśvara Siddhānta and Gola of
Vaṭeśvara was being printed at a press in Lucknow. Prof. Shukla
visited the press almost every day, supervised its printing work by
himself, and read its proofs very carefully. From this fact, we can
understand why his edition is so reliable. These original sources
are the most important foundation for future research.

Awards and accolades

In recognition of his scholarship and lifelong contributions, Prof. Shukla re-
ceived many awards and was associated with several prestigious institutions.
Some of these have been detailed by Prof. Gupta:
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Dr. Shukla was awarded the Banerji Research Prize of the Luc-
know University. He was associated with the editorial work of
the Journal Gaṇita of the Bhārata Gaṇita Pariṣad (formerly the
Benaras Mathematical Society) for many years. He was elected
Fellow of the National Academy of Sciences, India in 1984, and
the Corresponding Member of the International Academy of His-
tory of Science, Paris, in 1988. He served as a member of several
national and international committees.

The current volume

Prof. Shukla passed away on September 22, 2007. In his memory, on the
occasion of the centenary of his birth, the current volume presents a collection
of his papers highlighting the wide range of his scholarship.

Structure of the volume

This volume consists of six parts. Part I consists of five introductory articles
which give an overview of the life and work of Prof. Shukla. They include
detailed bibliographies of his publications, and reminiscences from his former
students Prof. Yukio Ohashi and Prof. R. C. Gupta. The last two articles
by Prof. Yukio Ohashi and Prof. M. D. Srinivas highlight the important
contributions made by Prof. Shukla to improve our understanding of Indian
mathematics and astronomy. Part II consists of a collection of articles penned
by Prof. Shukla related to various aspects of Indian mathematics. Part III
consists of revised version of articles on Indian mathematics by Bibhutibhu-
san Datta and Avadhesh Narayan Singh, which together constitute the third
unpublished part of their “History of Hindu Mathematics”. As noted earlier,
these articles were revised and updated by Prof. Shukla and published in the
Indian Journal for History of Science between 1980 and 1993. Parts IV and V
consist of a number of articles penned by Prof. Shukla on different aspects of
Indian astronomy. Part VI includes some of Prof. Shukla’s reviews of works
related to Indian mathematics and astronomy authored by various scholars.
This part also includes a few reviews of Prof. Shukla’s publications by other
scholars, and in one instance, his response to a review.

A note on the editorial practices adopted

While preparing this volume, we have emended the original text in a number of
places. These emendations are generally accompanied with an editorial note
prefaced with the abbreviation “ed.”. Occasionally, we have also emended
the text silently for a better reading experience. For instance, typographical
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errors in the English text as well as the Sanskrit verses have been silently
emended. In a few instances, tables and figures which originally occur in be-
tween running text have been given numbers and placed elsewhere in the text,
with the appropriate reference, for better typesetting. Footnotes to mathe-
matical equations have been moved to the adjacent text. In the interests of
standardising the style of the volume, we have (i) redrawn all the figures,
(ii) presented Sanskrit verses in the Devanāgarī script, (iii) largely made uni-
form the different styles of transliterating Sanskrit words and the names of
Sanskrit texts into the roman script, (iv) modified the section numbers in a
few instances, (v) standardised table styles across papers, and (vi) converted
all end-notes to footnotes.

We hope that this volume serves to familiarize the reader with the wide
range of research carried out by Prof. Shukla, and also inspires young scholars
to seriously pursue research in Indian mathematics and astronomy.

�वल��-माग��शर��ष�ी Aditya Kolachana
गतक��ाः ५११९ K Mahesh
क�हग�णः १८७०००० (अ�ा�ननः सदीपाः) K Ramasubramanian
December 13, 2018 IIT Bombay, India
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Mathematicians. He was conferred with the prestigious award of the Mahaṛṣi



Bādarāyaṇa Vyas Samman by the then President of India, in 2008, and the R.C.
Gupta Endowment Lecture Award by the National Academy of Sciences India, in
2010. He is a recipient of several other awards and coveted titles as well. From
2013, he has been serving as an elected council member of the International Union
of History and Philosophy of Science and Technology. He is also a member of
various other national and international bodies.

About the Editorsxxii



Part I

The Oeuvre of
Kripa Shankar Shukla



Reminiscences of Prof. K. S. Shukla ∗

I arrived at Lucknow in 1983. It was my first experience to go abroad. At
that time, Prof. Kripa Shankar Shukla already had retired from the Depart-
ment of Mathematics and Astronomy of Lucknow University, but sometimes
came to the department. In the Department of Mathematics and Astronomy,
Prof. A. N. Singh started a research centre of Hindu mathematics in 1939,
and Prof. Shukla joined this project in 1941. Prof. Shukla took forward the
monumental work History of Hindu Mathematics (Vol. 1, 1935; Vol. 2, 1938)
of B. B. Datta and A. N. Singh, revised the draft of its subsequent parts left
by Datta and Singh, and published them in the Indian Journal of History of
Science (1980–1993).

I studied the history of Indian mathematics and astronomy from 1983 to
1987 as a research scholar under the guidance of Prof. K. S. Shukla, and was
awarded Ph.D. degree (History of Mathematics) in 1992. Prof. Shukla taught
me how to read Sanskrit and Hindi texts on mathematics and astronomy usu-
ally in his house. At that time, I was young, and travelled several places
in India to collect source materials. Photocopy was not so popular in India
at that time, and I took several photographs of manuscripts by my camera.
The most important manuscripts for me were in Lucknow University itself.
There was a collection of Sanskrit manuscripts in the Department of Mathe-
matics and Astronomy. And also Tagore Library (central library of Lucknow
University) had several Sanskrit and Persian manuscripts.
I started to read the Yantra-rāja-adhikāra (Chap. 1 of the Yantra-kiraṇāvalī )

of Padmanābha, of which two manuscripts are preserved in the Department
and Tagore Library. I published it in my paper “Early History of the Astro-
labe in India”, Indian Journal of History of Science, 32(3), 1997, 199–295.
Though I could take pictures of the both, but it was much better to copy
them from the original manuscripts directly. There are some corrections in
manuscripts which cannot be seen clearly by pictures or photocopies. So, I
visited Tagore Library several times to copy the manuscripts, and then visited
Prof. Shukla’s house. At that time, the primary mode of transport to go to
Prof. Shukla’s house was cycle rickshaw. (By the way, the Indian word “rick-
shaw” is originated in a Japanese word “jin-riki-sha”, which means human-
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4 Reminiscences of Prof. K. S. Shukla

powered transport. “Jin” in Japanese means human, “riki” means force or
power, “sha” means car. If it is driven by bicycle, it is called “cycle rickshaw”,
and if it is driven by motor cycle, it is called “auto rickshaw”.)
Some of the manuscripts in the Department are modern manuscripts writ-

ten on foolscap. How did they come into being? There are several Sanskrit
manuscripts written in regional scripts in several places in India. When pho-
tocopy could not be used, it was necessary to copy by hand, and it was con-
venient to read if it was copied in Nāgarī script. So, there are several modern
manuscripts in Nāgarī script on foolscap. Still now, there must be several un-
studied manuscripts in regional scripts or regional languages in local libraries
etc. They are worth studying, but I, an old foreigner, cannot engage myself
anymore to study them. I hope some young Indian researchers do research on
the regional development of mathematics and astronomy in India!
Lucknow is a beautiful city with several historical sites. It was formerly

“Awadh” ruled by Nawabs. It has a tradition of delicious cuisine. And also,
Bhatkhande Music Institute was situated nearby Lucknow University, and I
could enjoy Indian classical music several times. Mr. Ratan Shukla, a son of
Prof. Shukla, was kind enough to take me to several historical places, and
sometimes we enjoyed taking “biryani”.
When I was in Lucknow, the Vaṭeśvara-siddhānta and Gola of Vaṭeśvara

(2 vols., published by INSA in 1985–1986) was being printed at a press in
Lucknow, and Prof. Shukla visited the press several times. I also helped in
its proof reading. It was printed by traditional letterpress printing, which
has become rare now. So, proof reading was quite hard at that time, but
Prof. Shukla read proof sheets very carefully at the press itself.
In 1985, General Assembly of International Astronomical Union was held

in New Delhi, and I went to New Delhi with Prof. Shukla by train in order
to attend its colloquium on the history of oriental astronomy. It was my only
one experience of travel with Prof. Shukla. The colloquium was held in INSA
(Indian National Science Academy), and we met several specialists of oriental
astronomy from many parts of the world.
In 1987, I returned Japan, and continued to write my Ph.D. thesis. I

submitted it to Lucknow University in 1991, and was awarded Ph.D. degree
in 1992. My life in India was my most exciting period. Now I am nearing the
age of retirement. I was so lucky that I could study in India as a student of
Prof. Shukla.
Though I am writing this paper as his student, I am one of you. We

shall study the history of Indian astronomy and mathematics, and exchange
information. I am old, but I would very much wish to correspond with young
researchers!



Dr. Kripa Shankar Shukla, veteran historian of
Hindu astronomy and mathematics ∗

Kripa Shankar Shukla’s birth took place at Lucknow on July 10, 1918.
From the very early years, he was a brilliant student of Mathematics and
Sanskrit. He passed the High School Examination of U.P. Board in 1934 in
First Division with Distinction in Mathematics and Sanskrit and the Interme-
diate Examination of that Board again in First Division with Distinction in
Mathematics.
He had his higher education at Allahabad, passing the B.A. examination

in the second division from Allahabad University in 1938. From the same
University, he obtained his Master of Arts degree in Mathematics in the First
Division in 1941. During his M.A. studies in Allahabad, Paṇḍit Devi Datta
Shukla (editor of the Hindi monthly Sarasvatī ) greatly helped K. S. Shukla by
arranging the latter’s regular meals in his own house. D. D. Shukla regarded
K. S. Shukla like his own son and taught him the full pūjā-paddhati (ritual
worship) of Śrī Bālā Devī.

Dr. Avadhesh Narain (or Narayan) Singh (1905–1954), a student of Prof.
Ganesh Prasad, was quite enthusiastic about the study of history of mathe-
matics and was associated with Dr. B. B. Datta (1888–1958) in that field. The
History of Hindu Mathematics, Part II, by Datta and Singh, was published
in 1938 from Lahore (then in India). Dr. Singh, although still a Lecturer in
the Department of Mathematics and Astronomy, Lucknow University, was
very sincerely interested in promoting the study of history of Indian mathe-
matics. In 1939 he started a Scheme of Research in Hindu Mathematics in
the Department. Dr. Oudh (i.e., Avadha) Upadhyaya (1894–1941) who had
just returned from France with a D.Sc. (Math.), was appointed in the Scheme
(see P. D. Shukla’s note on Upadhyaya in Proc. Benaras Math. Soc. N.S., III,
95–98).
Dr. K. S. Shukla joined the Department and the Scheme in 1941 and his

whole-hearted devotion in the field of study and research in ancient Indian
astronomy and mathematics proved very fruitful. His very first research paper
on “The Eviction and Deficit of Moon’s Equation of Centre” (1945) showed his
talent. He concentrated more in studying the works of Bhāskara I, a follower
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6 Dr. Shukla, veteran historian of Hindu astronomy and mathematics

(but not a direct pupil) of Āryabhaṭa I (born ad 476). As early as in 1950,
Dr. Shukla studied Bhāskara I’s commentary (ad 629) on the Āryabhaṭīya and
prepared a full Hindi translation of it (see Introduction, p. cxiii, in Shukla’s
1976 edition of the commentary).

Dr. Shukla investigated thoroughly the works of Bhāskara I and studied
other relevant primary and secondary material. Under the supervision of Dr.
A. N. Singh, Shukla prepared a thesis on “Astronomy in the Seventh Century
India: Bhāskara I and His Works”. But Dr. Singh died before the Lucknow
University awarded the D.Litt. degree on the thesis to Dr. Shukla in 1955.
Perhaps by divine plan Singh’s death occurred on July 10 which is the date
of Shukla’s birth in Gregorian Calendar.
Shukla’s doctoral thesis was in four parts: (i) Introduction; (ii) Edition

and Translation of the Mahābhāskarīya; (iii) Edition and Translation of the
Laghubhāskarīya; and (iv) Bhāskara I’s commentary on the Āryabhaṭīya with
English Translation of Āryabhaṭīya. The significance of the thesis lies not only
in providing a genuine additional source for the history of early Indian exact
sciences but also in bringing to light many new historical and methodological
facts. By now most of the material from the thesis has been published in
various forms.

In fact, Dr. Shukla proved to be a worthy successor in carrying on the study
and research in the field of Hindu astronomy and mathematics. With the help
of research assistants like Markandeya Mishra, Dr. Shukla brought out the edi-
tions of several Sanskrit texts which were published under the “Hindu Astro-
nomical and Mathematical Texts Series” (= HAMTS) of the Department of
Mathematics and Astronomy of Lucknow University. Dr. Shukla supervised
the research work of a number of theses. Under his guidance the following
scholars got their doctoral degree.

(i) Usha Asthana, Ācārya Śrīdhara and His Triśatikā (Lucknow University,
1960) (She started her research under A. N. Singh’s guidance).

(ii) Mukut Bihari Lal Agrawal, Contribution of Jaina Ācāryas in the devel-
opment of mathematics and astronomy (in Hindi) (Agra Univ. 1973).

(iii) Paramanand Singh, A Critical Study of the Contributions of Nārāyaṇa
Paṇḍita to Hindu Mathematics (Bihar Univ. 1978).

(iv) Loknath Sharma, A study of Vedāṅga Jyotiṣa (L. N. Mithila Univ. 1984).

(v) Yukio Ohashi, A History of Astronomical Instruments in India (Lucknow
Univ. 1992).

After serving the Lucknow University department with distinction for 38
years, Professor Shukla retired formally under rules on June 30, 1979. But
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he continued his outstanding and creative works actively in his cherished field
for many more years and scholars still continue to get ideas, suggestions, and
encouragement from him. One of the tasks he completed after retirement was
to bring out a revised edition of the manuscript of Part III of Datta and Singh’s
History of Hindu Mathematics. The manuscript was lying with Dr. Shukla
since long (see Gaṇita Bhāratī, Vol. 10, 1988, pp. 8–9) but now he found time
to publish it in the form of a series of eight articles on Geometry, Trigonometry,
Calculus, Magic Squares, Permutations and Combinations, Series, Surds, and
Approximate Values of Surds in the IJHS Vols. 15 (1980), 121–188; 18 (1983),
39–108; 19 (1984), 95–104; 27 (1992), 51–120; 231–249; and 28 (1993), 103–
129; 253–264; 265–275 respectively. It is unfortunate that parts I and II of
HHM were reprinted (Bombay, 1962) without any revision. Anyway, there
is an urgent national need to bring out a consolidated edition of all the three
parts possibly after making them up-to-date, and also to take up the writing
of a national history of mathematics in India as team work.
Working wholeheartedly with single minded devotion for more than half

a century, Dr. Shukla’s contribution in the field of history of ancient and
medieval Indian mathematics forms a pioneer work which will continue to
motivate future research and investigations. He gave new interpretations of
many obscure Sanskrit passages and corrected misinterpretations and other
errors committed by others. He has worked diligently and is proud of India’s
scientific heritage. He has been working silently without caring for publicity.
Yet he is greatly reputed for his in depth research among the scholars, and
the merit of his work is widely recognised as shown by various citations.
Dr. Shukla was awarded the Banerji Research Prize of the Lucknow Uni-

versity. He was associated with the editorial work of the Journal Gaṇita of
the Bhārata Gaṇita Pariṣad (formerly the Benaras Mathematical Society) for
many years. He was elected Fellow of the National Academy of Sciences, In-
dia in 1984, and the Corresponding Member of the International Academy of
History of Science, Paris, in 1988. He served as a member of several national
and international committees.
As a student of the Lucknow University, the writer of the present article

(RCG) attended B.Sc. and M.Sc. courses in the Department of Mathematics
and Astronomy during 1953–1957; and Dr. Shukla taught him the subject
of a paper in M.Sc. Part I. But there was no course available in History of
Mathematics or Hindu Mathematics then (and even now). It is a tragedy
that our educational set up is deficient in this respect. A course in the history
(in wide sense) of any subject should form a part of postgraduate curriculum
to justify the award of “Master’s” title in that subject. It is also hoped that
the glorious tradition of study and research in the field of ancient Indian
Mathematics and Astronomy will be maintained in the concerned Lucknow
University Department.

Dr. Shukla, veteran historian of Hindu astronomy and mathematics
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A preliminary note on Dr. Shukla’s work appeared in “Two Great Schol-
ars”, Gaṇita Bhāratī, 12 (1990), 39–44 and Dr. Yukio Ohashi discussed “Prof.
Shukla’s contribution to the study of history of Hindu astronomy”, in the
same journal, Vol. 17 (1995, 29–44). The present article is a humble tribute
and felicitation on the occasion of the 80th birth-anniversary of respected
Shuklaji. May God grant him best health, happiness and long life.

Dr. K. S. Shukla’s publications

(I) Edited, translated and other books

1. Hindu Gaṇita-Śāstra kā Itihāsa being a Hindi translation of B. B. Datta
and A. N. Singh’s History of Hindu Mathematics Part I (Lahore 1935),
Hindi Samiti, Lucknow, 1956. Reprinted many times.

2. The Sūrya-siddhānta with the commentary of Parameśvara (1431). Edited
with an introduction in English. HAMTS No. 1, Lucknow, 1957.

3. Pāṭīgaṇita of Śrīdharācārya edited with an ancient commentary, introduc-
tion, and English translation. HAMTS No. 2, Lucknow, 1959.

4. Mahābhāskarīya (of Bhāskara I) edited with introduction and translation.
HAMTS No. 3, Lucknow, 1960.

5. Laghubhāskarīya (of Bhāskara I) edited with introduction and translation.
HAMTS No. 4, Lucknow, 1963.

6. Dhīkoṭida-karaṇa (of Śrīpati) edited with introduction and translation. Ak-
hila Bharatiya Sanskrit Parishad, Lucknow, 1969.

7. Bījagaṇitāvataṃsa (of Nārāyaṇa Paṇḍita) edited with introduction. Akhila
Bharatiya Sanskrit Parishad, Lucknow, 1970.

8. Āryabhaṭa, Indian Astronomer and Mathematician (5th century). INSA,
New Delhi, 1976.

9. The Āryabhaṭīya of Āryabhaṭa I edited (in collaboration with K. V. Sarma)
with introduction and translation. INSA, New Delhi, 1976.

10. The Āryabhaṭīya with the commentary of Bhāskara I (629 ad) and Som-
eśvara, edited with introduction and appendices. INSA, New Delhi, 1976.

11. Karaṇa-ratna of Devācārya (689 ad) edited with introduction and transla-
tion, HAMTS No. 5, Lucknow, 1979.
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12. Late Bina Chatterjee’s edition and translation of Lalla’s Śiṣyadhīvṛddhida
Tantra completed and edited. Two volumes, INSA, New Delhi, 1981 (Chat-
terjee’s edition contains the commentary of Mallikārjuna Sūri in Vol. 1 and
17 appendices after the translation in Vol. 2).

13. Vaṭeśvara Siddhānta and Gola edited with introduction and translation.
Part I (text) and Part II (translation), INSA, New Delhi, 1985–1986.

14. History of Astronomy in India edited by S. N. Sen and K. S. Shukla, INSA,
New Delhi, 1985 (also issued as IJHS Vol. 20).

15. History of Oriental Astronomy edited by G. Swarup, A. K. Bag and K. S.
Shukla, Cambridge Univ. Press, Cambridge, 1987 (The book constitutes
Proceedings of IAU Colloquium No. 91, New Delhi, 1985).

16. A Critical Study of Laghumānasa of Mañjula (with edition and translation
of the text). INSA, New Delhi, 1990. (It was issued as supplement to IJHS,
Vol. 25).

17. A Text book on Algebra (for B.A. and B.Sc.) by K. S. Shukla and R. P.
Agarwal, Kanpur, 1959.†

18. A Text book on Trigonometry (for B.A. and B.Sc.) by K. S. Shukla and
R. S. Verma, Allahabad, 1951.

19. Avakalan Gaṇita (in Hindi) by M. D. Upadhyay, revised by K. S. Shukla,
Hindi Sansthan, Lucknow, 1980.

(II) Research papers and other articles

1. “The evection and the deficit of the equation of the centre of the Moon in
Hindu Astronomy”. Proc. Benaras Math. Soc. (N. S.), 7(2) (1945), 9–28.

2. “On Śrīdhara’s rational solution of Nx2 + 1 = y2 ”. Gaṇita, I(2) (1950),
1–12.

3. “Chronology of Hindu Achievements in Astronomy”. Proc. National Inst.
Sci. India, 18(4) (July-August 1952), 336–337 (Summary of a 1950 sympo-
sium paper).

4. “The Pāṭīgaṇita of Śrīdharācārya” (in Hindi). Jñānaśikhā (Lucknow), 2(1)
(October 1951), 21–38.

5. “Ācārya Jayadeva, the mathematician”. Gaṇita, 5(1) (1954), 1–20.
† Information about text-books (serial No. 17, 18, 19) has been provided by Shri Ratan
Shukla (son of KSS).

Dr. Shukla, veteran historian of Hindu astronomy and mathematics
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6. “On the three stanzas from the Pañca-siddhāntikā of Varāhamihira”. Gaṇ-
ita, 5(2) (1954), 129–136.

7. “A note on the Rājamṛgāṅka of Bhoja published by the Adyar Library”.
Ibid., 149–151.

8. “Indian Geometry” (in Hindi). Svatantra-Bhārata (Lucknow), dated 24
November 1957, pp. 1 and 11.

9. “Hindu methods of finding factors or divisors of number”. Gaṇita, 17(2)
(1966), 109–117.

10. “Ācārya Āryabhaṭa’s Ārdharātrika-Tantra” (in Hindi). C. B. Gupta Abhi-
nandana Grantha, New Delhi, 1966, 483–494.

11. “Āryabhaṭa I’s astronomy with midnight day reckoning”. Gaṇita, 18(1)
(1967), 83–105.

12. “Early Hindu methods in spherical astronomy”. Ganita, 19(2) (1968), 49–
72.

13. “Astronomy in ancient and medieval India”. IJHS, 4 (1969), 99–106. (cf.
no. 15 below).

14. “Hindu mathematics in the seventh century ad as found in Bhāskara I’s
commentary on the Āryabhaṭīya”. Gaṇita, 22(1) (1971), 115–130; 22(2)
(1971), 61–78; 23(1) (1972), 57–79; and 23(2), 41–50.

15. “Ancient and medieval Hindu astronomy” (in Hindi). Jyotish-Kalp (Luc-
know), 3(6) (March 1972), 32–37. (cf. no. 13).

16. “Characteristic features of the six Indian seasons as described by astro-
nomer Vaṭeśvara”. Jyotish-Kalp, 3(11) (August 1972) 65–74.

17. “Hindu astronomer Vaṭeśvara and his works”. Ganita, 23(2) (1972), 65–74.

18. “Use of hypotenuse in the computation of the equation of the centre under
the epicyclic theory in the school of Āryabhaṭa”. IJHS, 8 (1973), 43–57.

19. “The Pañca-siddhāntikā of Varāhamihira (I)”. Gaṇita, 24(1) (1973), 59–73;
also same in IJHS, 8 (1974), 62–76. (cf. no. 22 below)

20. “Āryabhaṭa”. In Cultural Leaders of India: Scientists (edited by V. Ragha-
van), Ministry of Information and Broadcasting, Delhi, 1976, reprinted
1981, pp. 83–99.

21. “Astronomy in India before Āryabhaṭa”. Paper read at the Symposium on
Hindu Astronomy, Lucknow, 1976, 11 pages (cyclostyled).
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22. “The Pañca-siddhāntikā of Varāhamihira (II)”. Gaṇita, 28 (1977), 99–116.
(cf. no. 19).

23. “Glimpses from the Āryabhaṭa-siddhānta”. IJHS, 12 (1977), 181–186.

24. “Series with fractional number of terms”. Bhāratī Bhānam (K. V. Sarma
Felicitation Volume) = Vishveshvaranand Indolog. Jour., 18 (1980), 475–
481.

25. “Astronomy in ancient India”. In Bhāratīya Saṃskriti, Bharatīya Saṃskriti
Saṃsad, Calcutta, 1982, pp. 440–453.

26. “A note on R. P. Mercier’s review of Karaṇaratna of Devācārya”. Gaṇita
Bhāratī, 6 (1984), 25–28.

27. “Phases of the Moon, rising and setting of planets and stars and their
conjunctions”. IJHS, 20 (1985), 212–251.

28. “Main characteristics and achievements of ancient Indian astronomy in
historical perspective”. In History of Oriental Astronomy (edited by G.
Swarup et al.), Cambridge 1987, 7–22.

29. “The Yuga of the Yavana-jātaka: David Pingree’s text and translation
reviewed”. IJHS. 24 (1989), 211–223.

30. “Vedic Mathematics: The illusive title of Swamiji’s book”. Mathematical
Education 5(3) (1989), 129–133. (cf. next item)

31. “Vedic Mathematics: The deceptive title of Swamiji’s book”. Pages 31–39
in Issues in Vedic Mathematics (edited by H. C. Khare), Delhi, 1991.

32. “Graphic methods and astronomical instruments” being translation (with
notes) of Chapter XIV of the Pañcasiddhāntikā of Varāhamihira. Pages
261–281 in K. V. Sarma’s edition of Pañcasiddhāntikā with Translation of
T. S. Kuppanna Sastry, Madras 1993.

(III) Book reviews

1. Review of the Pañcasiddhāntikā of Varāhamihira (ed. by O. Neugebauer
and D. Pingree, Two Parts, Copenhagen), 1970–1971. Journal of the Amer-
ican Oriental Society 93(3) (1973), p. 386.

2. Review of Census of Exact Sciences in Sanskrit Series A, Vol. 3, (by D. Pin-
gree, Philadelphia, 1976) IJHS, 13, (1978), 72–73.

3. Review of Candracchāyāgaṇitam of Nīlakaṇṭha Somayājī, (edited by K. V.
Sarma, Hoshiarpur, 1976) IJHS, 13, (1978), p. 73.

Dr. Shukla, veteran historian of Hindu astronomy and mathematics



12 Dr. Shukla, veteran historian of Hindu astronomy and mathematics

4. Review of Siddhānta-darpaṇam of Nīlakaṇṭha Somayājī, (edited by K. V.
Sarma, Hoshiarpur, 1976), IJHS, 13 (1978), p. 73–74.

5. Review of Rāśigolasphuṭanītiḥ of Acyuta Piṣāraṭi, (in Hindi) ed. by K. V.
Sarma, Hoshiarpur, 1977, IJHS, p. 74.

6. Review of A. K. Bag, Mathematics in Ancient and Medieval India (Varan-
asi, 1979), Gaṇita Bhāratī, 3 (1981), 107–108.

7. Review of R. C. Pandeya (editor), Grahalāghavaṃ Karaṇam (Parts 1 and
2, Jammu, 1976 and 1977), Ibid., 108–109.

8. Review of Census of Exact Sciences in Sanskrit Series A, Vol. 4, (by D. Pin-
gree, Philadelphia, 1981). Jour. Hist. Astron. Vol. 13 (1982), 225–226.
Also IJHS, 18 (1983), 221–222.

9. Review of ‘Prāchīn Bhārat Mein Vijñān’ (in Hindi) (by S. L. Dhani, Panch-
kula, 1982). IJHS, 19 (1984), 86–87.

10. Review of Rahman, A. et al., Science and Technology in Medieval India -
A Bibliography of Source Materials in Sanskrit, Arabic and Persian (INSA,
New Delhi, 1982). IJHS, 19 (1984), 412–413.



Obituary: Kripa Shankar Shukla (1918–2007) ∗

1 Reminiscence

Professor Kripa Shankar Shukla was born on July 10, 1918 at Lucknow. He
obtained M.A. degree from Allahabad University in 1941. After obtaining
M.A. degree, he joined Lucknow University as a lecturer of mathematics. He
was awarded D.Litt. degree for his work “Astronomy in the seventh century in
India: Bhāskara I and his works” by Lucknow University in 1955. He retired
from Lucknow University as a Professor of Mathematics in 1979.
Systematic study of the history of Indian astronomy and mathematics was

carried on by Sankar Balakrishna Dikshit (1853–1898), Sudhakara Dvivedin
(1860–1922) etc. around the end of the 19th century, and also by Prabodh
Chandra Sengupta (1876–1962), Bibhutibhusan Datta (1888–1958), Avadhesh
Narayan Singh (1901–1954) etc. around the first half of the 20th Century. The
monumental work History of Hindu Mathematics (Vol. 1, 1935; Vol. 2, 1938)
of Datta and Singh is well known. Prof. Shukla succeeded this work, revised
the draft of its subsequent parts left by Datta and Singh, and published them
in the Indian Journal of History of Science (1980–1993).
A. N. Singh was appointed to be a full time lecturer in mathematics at Luc-

know University in 1928, and, after the publication of the History of Hindu
Mathematics, started a project to study original sources of Indian astronomy
and mathematics in the Department of Mathematics and Astronomy, Luc-
know University in 1939. A. N. Singh collected several manuscripts etc. of
the original sources, which are preserved in the Department now. Prof. Shukla
joined this project in 1941, and succeeded it. His D.Litt. dissertation is one of
its results. Prof. Shukla published several critical editions of original sources
from the Department (and also from Indian National Science Academy etc.
later). Some of them are accompanied by lucid English translation with de-
tailed mathematical notes. Prof. Shukla sometimes collaborated with K. V.
Sarma (1919–2005), who made a great contribution to the study of the history
of Kerala astronomy.
I remember that Prof. Shukla did his best to make his mathematical notes

easy to understand. When we read his notes, we feel as if we are being taught
by him directly. It should also be mentioned that he noted several parallel
* Yukio Ohashi, Indian Journal of History of Science, Vol. 43, No. 3 (2008), pp. 475–485.
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statements in other Sanskrit texts in the footnotes of his English translations.
So, his English translations can also be used as a kind of annotated index of
Sanskrit astronomical and mathematical texts. Only Prof. Shukla could do
this.
When I was in Lucknow, the Vaṭeśvara Siddhānta and Gola of Vaṭeśvara

was being printed at a press in Lucknow. Prof. Shukla visited the press almost
every day, supervised its printing work by himself, and read its proofs very
carefully. From this fact, we can understand why his edition is so reliable.
These original sources are the most important foundation for future research.

I studied the history of Indian astronomy and mathematics under the guid-
ance of Prof. Shukla from 1983 to 1987 as a research scholar (Ph. D. student)
of Lucknow University. It was my first experience to live abroad, and was
the most exciting period during my life. Prof. Shukla already had retired but
kindly taught me how to read Sanskrit astronomical texts, both printed texts
and manuscripts. I saw several people were visiting Lucknow to meet Prof.
Shukla. Prof. Shukla did not create so called “school”. It means that his works
are open to everybody. Even if you have not met him, you can become his
student by studying his works.
Prof. Shukla passed away on September 22, 2007, but we have to continue to

study Indian astronomy and mathematics further. We should read his works
again and again, and try to develop the study.
In the course of compiling the following list, I received valuable information

and/or warmhearted encouragement from Dr. A. K. Bag, Dr. S. M. R. Ansari,
Dr. Takao Hayashi, Dr. Sunil Datta, Mr. Ratan Shukla (son of Prof. K. S.
Shukla), and several other people. I am grateful to all of them.

2 List of K. S. Shukla’s works

Publication of original sources

The Sūrya-siddhānta with the commentary of Parameśvara, (Hindu Astro-
nomical and Mathematical Texts Series No. 1), Department of Mathematics
and Astronomy, Lucknow University, Lucknow, 1957. [Note: The Sūrya-
siddhānta is very popular in India, but most of its printed editions are based
on Raṅganātha’s version (1603 ad). Prof. Shukla’s edition is the first pub-
lication of its earlier version commented by Parameśvara (1432 ad). The
readings of some other early versions are also shown in its footnotes. In this
publication, only Sanskrit text is given without English translation, but a
detailed introduction is given.]

The Pāṭī-gaṇita of Śrīdharācārya, (Hindu Astronomical and Mathematical
Texts Series No. 2), Department of Mathematics and Astronomy, Lucknow
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University, Lucknow, 1959. [Note: In this publication, Sanskrit text and
English translation are given.]

Mahā-Bhāskarīya, Bhāskara I and his works, Part II, (Hindu Astronomical
and Mathematical Texts Series No. 3), Department of Mathematics and As-
tronomy, Lucknow University, Lucknow, 1960. [Note: In this publication,
Sanskrit text and English translation are given. In its introduction, it was
announced that the “Bhāskara I and his works” would have been divided into
4 parts. Only parts II and III are published in Lucknow. The proposed Part
IV (Bhāskara I’s commentary on the Āryabhaṭīya of Āryabhaṭa I) was later
published as the “Āryabhaṭīya Critical Edition Series, Part 2” in New Delhi
in 1976 (see below). This (1976) edition’s introduction may be considered to
be the proposed Part I (General introduction).]

Laghu-Bhāskarīya, Bhāskara I and his works, Part III, (Hindu Astronomical
and Mathematical Texts Series No. 4), Department of Mathematics and As-
tronomy, Lucknow University, Lucknow, 1963. [Note: In this publication,
Sanskrit text and English translation are given.]

The Dhīkoṭida-Karaṇa of Śrīpati, (originally published in Ṛtam 1, 1969);
Separately issued: Akhila Bharatiya Sanskrit Parishad, Lucknow, 1969.
[Note: In this publication, Sanskrit text and English translation are given.]

Nārāyaṇa Paṇḍita’s Bījagaṇitāvataṃsa, Part I, (originally published in Ṛtam
1, 1969/70); Separately issued: Akhila Bharatiya Sanskrit Parishad, Luc-
know, 1970. [Note: In this publication, only Sanskrit text is given without
English translation. Part II of this work was not available in its complete
form in the manuscript used, and only its fragment has been appended in
this publication.]

Āryabhaṭīya of Āryabhaṭa, critically edited with translation and notes, in
collaboration with K. V. Sarma, (Āryabhaṭīya Critical Edition Series, Part
1), Indian National Science Academy, New Delhi, 1976. [Note: In this pub-
lication, Sanskrit text and English translation are given. This series was
published on the occasion of the celebration of the 1500th birth anniversary
of Āryabhaṭa on 2nd November, 1976.]

Āryabhaṭīya of Āryabhaṭa, with the commentary of Bhāskara I and Some-
śvara, (Āryabhaṭīya Critical Edition Series, Part 2), Indian National Science
Academy, New Delhi, 1976. [Note: In this publication, only Sanskrit text
is given without English translation, but a detailed introduction is given.
The “Āryabhaṭīya Critical Edition Series” consists of 3 parts. Its Part 3
“Āryabhaṭīya of Aryabhaṭa, with the commentary of Sūryadeva Yajvan” was
edited by K. V. Sarma and published in the same year.]
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The Karaṇa-ratna of Devācārya, (Hindu Astronomical and Mathematical
Texts Series No. 5), Department of Mathematics and Astronomy, Lucknow
University, Lucknow, 1979. [Note: In this publication, Sanskrit text and
English translation are given.]

Vaṭeśvara-siddhānta and Gola of Vaṭeśvara, 2 parts, Indian National Science
Academy, New Delhi, 1985–1986. [Note: Its Part 1 is Sanskrit text, and Part
2 is English translation.]

A Critical Study of the Laghumānasa of Mañjula, Indian Journal of History
of Science, Vol. 25, 1990, Supplement; also separately issued, Indian National
Science Academy, New Delhi, 1990. [Note: In this publication, Sanskrit text
and English translation are given].

Handbook

Āryabhaṭa: Indian Mathematician and Astronomer (5th Century ad). In-
dian National Science Academy, New Delhi, 1976. [Note: This handbook is
a kind of general introduction to the “Āryabhaṭīya Critical Edition Series”
published in the same year. The “Āryabhaṭīya Critical Edition Series, Part
1” itself also has a detailed introduction].

Research papers

“The evection and the deficit of the equation of the centre of the Moon in
Hindu Astronomy”, Proceedings of the Benares Mathematical Society, New
Series 7.2 (1945) 9–28. [Note: The Proceedings of the Benares Mathematical
Society was succeeded by the Gaṇita. See below.]

“On Śrīdhara’s rational solution of Nx2+1 = y2”, Gaṇita, 1.2 (1950), 53–64.
[Note: Regarding this paper, also see his edition of the Pāṭī-gaṇita (1959),
Introduction, p. xxxii, footnote 1. The Gaṇita is a journal published by
Bhārata Gaṇita Pariṣad, Department of Mathematics, Lucknow University.]

“Chronology of Hindu achievements in astronomy”, Proceedings of the Na-
tional Institute of Sciences of India, 18.4 (1952), 336–337. [Note: This is
a paper read at the “Symposium on the History of Sciences in South Asia”
held in Delhi. It can be said that the modern study of the history of Indian
science made great progress since this symposium. The National Institute of
Sciences of India started to publish the Indian Journal of History of Science
in 1966. The National Institute of Sciences of India is the present Indian
National Science Academy.]

“Ācārya Jayadeva, the Mathematician”, Gaṇita, 5.1 (1954), 1–20.
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“On three stanzas from the Pañca-siddhāntikā”, Gaṇita, 5.2 (1954), 129–136.

“A note on the Rāja-mṛgāṅka of Bhoja published by the Adyar Library”,
Gaṇita, 5.2 (1954), 149–151.

“Series with fractional number of terms”, Mathematical and Statistical As-
sociation Magazine, (Lucknow University), 1 (1958), 30–38.

“Hindu methods for finding factors or divisors of a number”, Gaṇita, 17.2
(1966), 109–117.

“Āryabhaṭa I’s astronomy with midnight day-reckoning”, Gaṇita, 18.1 (1967),
83–105.

“Early Hindu methods in spherical astronomy”, Gaṇita, 19.2 (1968), 49–72.

“Astronomy in ancient and medieval India”, Indian Journal of History of
Science, 4.1–2 (1969), 99–106. [Note: This volume is the collection of papers
presented at the “Symposium on the History of Sciences of Ancient and
Medieval India”, held in Delhi, 1968.]

“Hindu Mathematics in the seventh century as found in Bhāskara I’s com-
mentary on the Āryabhaṭīya”, Gaṇita, 22.1 (1971), 115–130; 22.2 (1971),
61–78; 23.1 (1972), 57–59; 23.2 (1972), 41–50.

“Hindu astronomer Vaṭeśvara and his works”, Gaṇita, 23.2 (1972), 65–74.

“Characteristic features of the six Indian seasons as described by astronomer
Vaṭeśvara”, Jyotiṣa-kalpa, 3.4 (1972), 43–47. [I have an off-print of this paper,
and the volume number is mentioned as “Varṣa 3, añka 4”, but the year of
publication is not mentioned there. R. C. Gupta’s list (1998) (see the section
of references below) has this paper, and mentions its volumes and year as
“3.11 (Aug 1972)”. They are inconsistent, but I tentatively use this year of
publication.]

“Use of hypotenuse in the computation of the equation of the centre under
the epicyclic theory in the school of Āryabhaṭa I ???”, Indian Journal of
History of Science, 8 (1973), 43–57. [Note: This is a paper to refute the
assertion of T. S. Kupanna Shastry.]

“The Pañca-siddhāntikā of Varāhamihira (1)”, Gaṇita, 24.1 (1973), 59–73;
and also in the Indian Journal of History of Science, 9.1 (1974), 62–76.
[Note: This is a paper read at the Seminar organised by the Indian National
Science Academy, New Delhi, on the occasion of the 500th Birth Anniversary
of Nicolaus Copernicus on February 19–20, 1973. The paper published in the
Indian Journal of History of Science has a short “Note” at the end which is
not included in the paper in the Gaṇita.]
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“Āryabhaṭa”, in Cultural Leaders of India, Scientists, Publications Division
(Government of India), New Delhi, 1976, pp. 83–99.

“The Pañca-siddhāntikā of Varāhamihira (2)”, Gaṇita, 28 (1977), 99–116.

“Glimpses from the Āryabhaṭa-siddhānta”, Indian Journal of History of Sci-
ence, 12.2 (1977), 181–186. (This issue is the Proceedings of the Symposium
on the 1500th Birth Anniversary of Āryabhaṭa I held in New Delhi, Novem-
ber 2–4, 1976).

“Series with fractional number of terms”, in S. Bhaskaran Nair (ed.): Bhāratī-
bhānam (Light of Indology), Dr. K. V. Sarma Felicitation Volume, Panjab
University Indological Series 26, Vishveshvaranand Vishva Bandhu Institute
of Sanskrit and Indological Studies, Hoshiarpur, 1980, pp. 475–481.

“Astronomy in ancient India”, in Bhāratīya Samskriti, Bhāratīya Samskriti
Samsad, Calcutta, 1982, pp. 440–453. [Note: I have not seen this paper, but
R. C. Gupta’s list (1998) (see the section of references below) mentions this
paper.]

“A note on Raymond P. Mercier’s review of Karaṇaratna of Devācārya”,
Gaṇita Bhāratī, 6 (1984), 25–28.

“Phases of the Moon, rising and setting of planets and stars and their con-
junctions”, in S. N. Sen and K. S. Shukla (eds.): History of Astronomy in
India, (originally published in Indian Journal of History of Science, Vol.
20, 1985), Indian National Science Academy, New Delhi, 1985, pp. 212–251;
Second Revised Edition, 2000, pp. 236–275.

“Main characteristics and achievements of ancient Indian astronomy in his-
torical perspective”, in G. Swarup, A. K. Bag and K. S. Shukla (eds.): His-
tory of Oriental Astronomy, (Proceedings of an International Astronomical
Union Colloquium No. 91, New Delhi, India, 13–16 November 1985), Cam-
bridge University Press, Cambridge, 1987, pp. 9–22.

“The Yuga of the Yavanajātaka, David Pingree’s text and translation re-
viewed”, Indian Journal of History of Science, 24.4 (1989), 211–223.

“Vedic Mathematics—The illusive title of Swamiji’s book”, Mathematical
Education, 5.3 (1989), 129–133. [Note: This is a paper read at the National
Workshop on Vedic Mathematics held at University of Rajasthan, Jaipur,
1988. The same paper was also published as follows.]

“Vedic Mathematics—The deceptive title of Swamiji’s book”, in Issues in
Vedic Mathematics, Proceedings of the National Workshop on Vedic Mathe-
matics, 25–28 March, 1988, at the University of Rajasthan, Jaipur, Maharshi
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Sandipani Rashtriya Veda Vidya Pratishthan, Ujjain, (in association with
Motilal Banarsidass, Delhi), 1991, (reprinted: 1994), pp. 31–39.

“Magic squares in Indian mathematics”, in Interaction between Indian and
Central Asian Science and Technology in Medieval Times, Vol. 1, (Indo-Soviet
Joint Monograph Series), Indian National Science Academy, New Delhi, 1990,
pp. 249–270.

Hindi papers

[Note: The following Hindi papers are listed in R. C. Gupta’s paper (1998)
(see the section of references below). They may be incorporated in the above
list of research papers, but I quote them separately from Gupta’s paper,
because I have not seen them, and it is not possible at present to ascertain
their original Hindi title.]

“The Pātīgaṇita of Śrīdharācārya”, Jñanaśikhā (Lucknow), 2.1 (1951), 21-
38.

“Indian Geometry”, Svatantra-Bhārata (Lucknow), 1957, pp. 1 and 11.

“Ācārya Āryabhaṭa’s Ardharātrika-Tantra”, C. B. Gupta Abhinandana Gran-
tha, New Delhi, 1966, pp. 483–494. [Note: According to the bibliography of
Prof. Shukla’s edition and English translation (1976) of the Āryabhaṭīya,
this is a Hindi version of his English paper “Āryabhaṭa I’s astronomy with
midnight day-reckoning” (1967).]

“Ancient and medieval Hindu astronomy”, Jyotiṣa-kalpa (Lucknow), 3.6,
(1972), 32–37.

Book reviews

O. Neugebauer and D. Pingree, The Pañcasiddhāntikā of Varahamihira, Kop-
enhagen, 1970–1971, in Journal of the American Oriental Society, 93.3 (1973),
386.

David Pingree, Census of the Exact Sciences in Sanskrit, Series A, Vol. 3,
Philadelphia, 1976, in Indian Journal of History of Science, 13.1 (1978),
72–73.

K. V. Sarma (ed.), Cañdracchāyāgaṇitam of Nīlakaṇṭha Somayājī, Hoshiar-
pur, 1976; Siddhāntadarpaṇam of Nīlakaṇṭha Somayājī, Hoshiarpur, 1976;
Rāśigolasphuṭanīti of Acyuta Piṣāraṭi, Hoshiarpur, 1977, in Indian Journal
of History of Science, 13.1 (1978), 73–74.
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A. K. Bag, Mathematics in Ancient and Medieval India, Delhi, 1979, in
Gaṇita Bhāratī, 3.3–4 (1981), 107–108.

R. C. Pandeya, Grahalāghavam Karaṇam, 2 parts, Jammu, 1976–77, in
Gaṇita Bhāratī, 3.3–4 (1981), 108–109.

David Pingree, Census of the Exact Sciences in Sanskrit, Series A, Vol. 4,
Philadelphia, 1981, in Journal of the History of Astronomy, 13.3 (1982), 225–
226; and also Indian Journal of History of Science, 18.2 (1983), 221-222.

S. L. Dhani, Prācīn Bhārat men Vijñan, Panchkula, 1982, in Indian Journal
of History of Science, 19.1 (1984), 86–87.

A. Rahman et al., Science and Technology in Medieval India—A Bibliography
of Source Materials in Sanskrit, Arabic and Persian, New Delhi, 1982, in
Indian Journal of History of Science, 19.4 (1984), 412–413.

B. V. Subbarayappa and K. V. Sarma, Indian Astronomy—A Source-Book,
Bombay, 1985, in Indian Journal of History of Science, 22.3 (1987), 273–275.

Hindi translation of the book of Datta and Singh

[Avadhesa Narayana Simha and Bibhutibhusana Datta] [translated into Hindi
by Kripasamkara Sukla]: Hindu Gaṇita-śāstra kā Itihāsa, Part 1, Hindi
Samiti, Lucknow, 1956; 2nd ed., 1974. [Note: As far as I know, its Part 2
has not been translated into Hindi. The Hindi Samiti is an organisation to
publish academic books in Hindi, and the Hindi translation (1957) of the
Bhāratīya Jyotiṣa of Śaṅkara Bālakṛṣṇa Dīkṣita and the Bhāratīya Jyotiṣa
kā Itihāsa (2nd ed.: 1974) of Gorakha Prasāda were also published by this
organisation.]

Revision of the papers of Datta and Singh

[Bibhutibhusan Datta and Avadhesh Narayan Singh, Revised by Kripa Shan-
kar Shukla]: “Hindu geometry”, Indian Journal of History of Science, 15.2
(1980), 121–188.

[Bibhutibhusan Datta and Avadhesh Narayan Singh, Revised by Kripa Shan-
kar Shukla]: “Hindu trigonometry”, Indian Journal of History of Science,
18.1 (1983), 39–108.

[Bibhutibhusan Datta and Avadhesh Narayan Singh, Revised by Kripa Shan-
kar Shukla]: “Use of calculus in Hindu mathematics”, Indian Journal of
History of Science, 19.2 (1984), 95–104.



2 List of K. S. Shukla’s works 21

[Bibhutibhusan Datta and Avadhesh Narayan Singh, Revised by Kripa Shan-
kar Shukla]: “Magic squares in India”, Indian Journal of History of Science,
27.1 (1992), 51–120.

[Bibhutibhusan Datta and Avadhesh Narayan Singh, Revised by Kripa Shan-
kar Shukla]: “Use of permutations and combinations in India”, Indian Jour-
nal of History of Science, 27.3 (1992), 231–249.

[Bibhutibhusan Datta and Avadhesh Narayan Singh, Revised by Kripa Shan-
kar Shukla]: “Use of series in India”, Indian Journal of History of Science,
28.2 (1993), 103–129.

[Bibhutibhusan Datta and Avadhesh Narayan Singh, Revised by Kripa Shan-
kar Shukla]: “Approximate value of surds in Hindu mathematics”, Indian
Journal of History of Science, 28.3 (1993), 265–275.

Text books

[Note: Several pioneer mathematicians and astronomers were also excellent
educators. Most of the Indian students of mathematics must have used
texts books written by Gorakh Prasad, who was also a historian of Indian
astronomy. Prof. Shukla also wrote two text books.]

[R. S. Verma and K. S. Shukla]: Text-Book on Trigonometry, Pothishala
Private Limited, Allahabad, 1951; Ninth edition: 1980.

[R. P. Agarwal and K. S. Shukla]: Text-Book on Algebra, The City Book
House, Kanpur, 1959; Eighth Revised and Enlarged Edition: 1983.

Editorial works

[S. N. Sen and K. S. Shukla (eds.)]: History of Astronomy in India, (originally
published as Indian Journal of History of Science, Vol. 20, 1985), Indian
National Science Academy, New Delhi, 1985; Second Revised Edition, 2000.
[Note: This book was released to commemorate the IAU Colloquium in 1985
(see the following book.) This book was first released without “Notes and
references, Bibliography, Index and Errata” (pp. 437–526), and this portion
was later sent to subscribers. It seems that a complete issue with “Notes”
etc. was also published. The Second Revised Edition (2000) is published
by INSA. K. S. Shukla’s paper is also included in this book (see the above
section of research papers).]

[G. Swarup, A. K. Bag and K. S. Shukla (eds.)]: History of Oriental As-
tronomy, (Proceedings of an International Astronomical Union Colloquium
No. 91, New Delhi, India, 13–16 November, 1985), Cambridge University
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Press, Cambridge, 1987. [K. S. Shukla’s paper is also included in this book
(see the above section of research papers).]

Contribution to other books

Bina Chatterjee: Śiṣyadhīvṛddhida Tantra of Lalla, Part 2, Indian National
Science Academy, New Delhi, 1981. [Note: The English translation of its
chapter 21 (Astronomical Instruments), which was left untranslated by Chat-
terjee, was supplied by K. S. Shukla.]

T. S. Kuppanna Sastry (posthumously edited by K. V. Sarma): Pañca-
siddhāntikā of Varāhamihira, P.P.S.T. Foundation, Madras, 1993. [Note:
The English translation of its chapter 14 (Graphical Methods and Astro-
nomical Instruments), which was left untranslated by Sastry, was supplied
by K. S. Shukla.]
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Prof. K. S. Shukla’s contribution to the study
of the history of Hindu astronomy ∗

I first visited Lucknow in November 1983 and studied the history of Indian
astronomy under the guidance of Prof. Kripa Shankar Shukla until Septem-
ber 1987. Prof. Shukla’s contribution to the study of the history of Hindu
astronomy is so large and wide that it is beyond my ability to review his work
in extenso, and the following are only some aspects of his work.
Those who want to know brief history and main characteristics of Hindu

astronomy may first be referred to the following paper of Prof. Shukla.

(I) “Astronomy in Ancient and Medieval India”, Indian Journal of History
of Science (IJHS), Vol. 4, 1969, pp. 99–106.

1 Vedic and post-vedic astronomy

Prof. Shukla’s view on the most ancient period of Hindu astronomy is seen in
the following paper.

(II) “Main Characteristics and Achievements of Ancient Indian Astronomy
in Historic Perspective”, in G. Swarup, A. K. Bag and K. S. Shukla
(eds.): History of Oriental Astronomy, Cambridge University Press,
1987, pp. 9–22.

This is a paper presented at the International Astronomical Union Col-
loquium held at New Delhi in November 1985. I also participated in this
colloquium.
In the first part entitled “Vedic Astronomy” of the paper (II), Prof. Shukla

summarises astronomical knowledge found in Vedic Saṃhitās and Brāhmaṇas
and Vedāṅga-jyotiṣa. There are some controversial topics of ancient Hindu
astronomy, and one topic, the origin of the name of the week days, may be
mentioned here. Referring to P. V. Kane’s work (1974),1 Prof. Shukla says
that the names of the week days are of Indian origin. The possibility of

* Yukio Ohashi, Gaṇita-Bhāratī, Vol. 17, Nos. 1–4 (1995), pp. 29–44. This paper was
written as a dedication on the occasion of Platinum Jubilee Year of Dr. Shukla’s birth
(he was born on July 10, 1918).

1Kane, P. V.: History of Dharmaśāstra, Vol. V, part I, second ed., Bhandarkar Oriental
Research Institute, Poona, 1974, pp. 677–685.
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the Indian origin of the names of the week days was as P. V. Kane pointed
out, already suggested by A. Cunningham (1885).2 Usually, however, it is
said that the names of the week days are of Hellenistic origin. If the seven
planets are arranged according to their distance from the earth in Hellenistic
geocentric model as “Saturn, Jupiter, Mars, Sun, Venus, Mercury and Moon”,
and distributed to each hour, which is of Egyptian origin as the lord of the
hour, the planet of the first hour of a day determines the name of the day
of the week. However, Cunningham suggested that if the seven planets are
arranged in reverse order and distributed to each ghaṭī (one sixtieth of a day),
which is of Indian origin, the planet of the first ghaṭī of a day determines
the name of the day of the week. In my opinion, it is difficult to accept
Cunningham’s suggestion because later Hindu astronomical works mention
lords of hours (horā-īśas)3 and not lords of ghaṭīs.
In the second part entitled “Post-vedic Astronomy” of the paper (II), Prof.

Shukla starts from the discussion of the Vasiṣṭhasiddhānta summarised in
the Pañcasiddhāntikā of Varāhamihira, and proceeds to the Pauliśasiddhānta
and the Romakasiddhānta, both summarised in the Pañcasiddhāntikā and
Āryabhaṭa’s works. In this period, motion of planets was studied besides the
sun and moon. As Prof. Shukla has written some specialised papers on these
topics, we shall discuss one by one.

2 The Vasiṣṭhasiddhānta summarised in the
Pañcasiddhāntikā

The name of the sage Vasiṣṭha is mentioned in the Yavana-jātaka (chap. 79,
vs. 3) (ad 269/270) of Sphujidhvaja, and it may be that the Vasiṣṭhasiddhānta
existed at the time of Sphujidhvaja. The Vasiṣṭhasiddhānta was summarised in
the Pañcasiddhāntikā (the 6th century ad) of Varāhamihira. Among five sid-
dhāntas summarised in the Pañcasiddhāntikā, the Paitāmahasiddhānta, which
is the earliest and was written in ad 80, is based on the five-year yuga system
just like the Vedāṅga-jyotiṣa. The Vasiṣṭhasiddhānta is the next oldest sid-
dhānta to the Paitāmahasiddhānta. Varāhamihira only states that the theory
of the shadow at the latter part of chapter II of his Pañcasiddhāntikā is based
on the Vāsiṣṭha-samāsa-siddhānta, and it is not clear whether the luni-solar
theory at the former part of chapter II and the planetary theory at the former
part of chapter XVII are based on the Vasiṣṭhasiddhānta or not.4 In his pa-

2Cunningham, A.: “The Probable Indian Origin of the Names of the Week-days”, The
Indian Antiquary, Vol. XIV, 1885, pp. 1–4. This view was criticised by J. Burgess (The
Indian Antiquary, Vol. XIV, 1885, pp. 322–323.

3See, for example, Āryabhaṭīya (III. 16), Sūryasiddhānta (XII. 79) etc.
4In chapter XVII (chap. XVIII of Thibaut and Dvivedin’s ed.) of the Pañcasiddhāntikā,
a colophon after a verse (XVII. 5) reads, “vāsiṣṭha-siddhānte śukraḥ”, but Varāhamihira
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per (II), Prof. Shukla considers that the luni-solar theory and the planetary
theory are based on the Vasiṣṭhasiddhānta, just like Kuppanna Shastri as well
as Neugebauer and Pingree considered so.
Prof. Shukla explained Vasiṣṭha’s theory for the moon’s motion in the sec-

ond part of the following paper.5

(III) “The Pañcasiddhāntikā of Varāhamihira (2)”, Gaṇita, Vol. 28, 1977,
pp. 99–116.

As regards the Vasiṣṭhasiddhānta, one topic may be mentioned here. The
name of Viṣṇucandra is mentioned in the Brāhmasphuṭasiddhānta (XI. 50) (ad
628) of Brahmagupta as the editor of the Vasiṣṭhasiddhānta. S. B. Dīkshit
(1896) wrote that Viṣṇucandra’s version of the Vasiṣṭhasiddhānta did not exist
at the time of Varahamihira, because he considered that the name Viṣṇucan-
dra is not mentioned in the Pañcasiddhāntikā6. On the contrary, Prof. Shukla
considers that the name of Viṣṇucandra appears in the Pañcasiddhāntikā. He
discusses Viṣṇucandra and Romaka criticised by Pauliśa in the first part of
the following paper.

(IV) “The Pañcasiddhāntikā of Varāhamihira (1)”, Gaṇita, Vol. 24, No. 1,
1973, pp. 59–73: reprinted in IJHS, Vol. 9, 1974, pp. 62–76.

In this paper, Prof. Shukla identifies “Vishnu” in the Pañcasiddhāntikā
(III. 32) with Viṣṇucandra, the editor of the Vasiṣṭhasiddhānta. Prof. Shukla
remarks that occurrence of criticism of Viṣṇucandra, Romaka etc. in the
Pañcasiddhāntikā shows that Brahmagupta’s critical remarks against them
were not totally baseless. This point will have to be investigated further.

3 The Yuga of the Yavana-jātaka

The Yavana-jātaka (ad 269/270) of Sphujidhvaja, edited and translated by
David Pingree,7 is an important text to investigate Greek influence of astron-
omy and astrology into India. The last chapter (chap. 79) of this work deals
himself does not state the source.

5For Vasiṣṭha’s theory for the moon’s motion, the following papers may also be consulted:
Kharegat, M. P. : “On the Interpretation of certain passages in the Pancha Siddhāntikā

of Varāhamihira, an old Hindu Astronomical Work”, The Journal of the Bombay Branch
of the Royal Asiatic Society, Vol. XIX, 1895–97, pp. 109–141; and

Kuppanna Sastri, T. S.: “The Vāsiṣṭha Sun and Moon in Varāhamihira’s Pañca-
siddhāntikā”, Journal of Oriental Research, Madras, Vol. XXV, 1955–56, pp. 19–41.

6Dikshit, Sankar Balakrishna, tr. by R. V. Vaidya: Bharatiya Jyotish Sastra, part II,
Calcutta, 1981. David Pingree also thinks that Viṣṇucandra is later than Varāhamihira,
because Viṣṇucandra used mahāyuga and epicycles, which are absent in Varāhamihira’s
version of the Vasiṣṭhasiddhānta (Neugebauer, O. and D. Pingree: The Pañcasiddhāntikā
of Varāhamihira, part I, Copenhagen 1970, p. 10.)

7Pingree, David: The Yavana-jātaka of Sphujidhvaja, 2 vols., Harvard University, Cam-
bridge, Mass., 1978.
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with mathematical astronomy on the basis of 165-year yuga. In the following
paper, Prof. Shukla corrects some errors of Pingree, and explains the yuga of
the Yavana-jātaka in lucid manner.

(V) “The Yuga of the Yavana-jātaka, David Pingree’s text and translation
reviewed”, IJHS, Vol. 24, 1989, pp. 211–223.

Among several points pointed out by Prof. Shukla, I would like to mention
the number of tithis and civil days in a yuga (165 years). Pingree interpreted
that the Yavana-jātaka (chap. 79, vss. 6–7) states that there are 60265 civil
days in a yuga, and that there are 61230 tithis in a yuga. Prof. Shukla has
shown that these verses actually state that there are 61230 tithis and 60272
civil days in a yuga. Prof. Shukla has given mainly textual evidences to prove
his interpretation, which are quite sound and understandable. We can also
notice that the verses (chap. 79, vss. 8–9) state that the risings of the moon
in a yuga are 58231, and the number of conjunctions of the sun and moon is
2041. The sum of 58231 and 2041, that is 60272, should be the number of
civil days in a yuga. This fact shows that Prof. Shukla’s reading is correct.

4 The Pauliśa and the Romakasiddhānta summarised in
the Pañcasiddhāntikā

Among five siddhāntas summarised in the Pañcasiddhāntikā, the Pauliśa and
the Romakasiddhānta are considered to be more accurate than the Paitāmaha
and the Vasiṣṭhasiddhānta. Main characteristics of the Pauliśa- and the
Romakasiddhānta are described in the paper (II) of Prof. Shukla. Some par-
ticular topics are discussed in his papers (III) and (IV).
In the fourth part of his paper (IV), Prof. Shukla discusses a correction of

the Pauliśa school to the longitude of the moon’s ascending node. He further
points out that the followers of the Pauliśasiddhānta fell in with the follow-
ers of the Āryabhaṭasiddhānta (midnight system), and revised the Pauliśa-
siddhānta, and also adopted the Pūrva-Khaṇḍakhādyaka of Brahmagupta as a
work of their school. In the first part of his paper (IV), Prof. Shukla discusses
Pauliśa’s criticism of Viṣṇucandra and Romaka. In the first part of his paper
(III), Prof. Shukla discusses the epoch of the Romakasiddhānta.

5 The Āryabhaṭīya of Āryabhaṭa I

The Āryabhaṭīya (ad 499) of Āryabhaṭa (b. ad 476) is the earliest Sanskrit
astronomical work whose author and date are definitely known. Prof. Shukla
published a critical edition of the Āryabhaṭīya with English translation and
notes.
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(VI) Āryabhaṭīya of Āryabhaṭa, critically edited with translation and notes,
in collaboration with K. V. Sarma, Indian National Science Academy
(INSA), New Delhi, 1976.

Prof. Shukla also published the text of the Āryabhaṭīya with the commen-
tary of Bhāskara I (ad 629) (extant up to IV. 6) and Someśvara (sometime
between 968 and 1200 ad) (being a summary of Bhāskara I’s commentary,
and published after IV. 6).8

(VII) Āryabhaṭīya of Āryabhaṭa, with the commentary of Bhāskara I and
Someśvara, INSA, New Delhi, 1976.

Before Prof. Shukla’s translation of the Āryabhaṭīya, there existed two pub-
lished complete English translations of the Āryabhaṭīya, one by P. C. Sen-
gupta (1927),9 and the other by W. E. Clark (1930).10 At their time, only
available printed text of the Āryabhaṭīya was H. Kern’s edition (1874) with the
commentary of Parameśvara (the 15th century ad). After that, Nīlakaṇṭha
Somayajin’s commentary (the early 16th century ad) was also published in
the Trivandrum Sanskrit Series (1930–1957).
The significance of Prof. Shukla’s work is that he consulted several com-

mentaries, both published and unpublished, and made critical edition in col-
laboration with K. V. Sarma and translated into English with detailed notes.
Especially, Bhāskara I’s commentary, which was published by Prof. Shukla
for the first time, is important, because it is the earliest extant commentary
on the Āryabhaṭīya, and Bhāskara I was a follower of Āryabhaṭa school and
must have been accessible to several informations handed down to Āryabhaṭa’s
successors. Sarma edited another commentary.11

6 Āryabhaṭa I’s midnight system

There were controversies about Āryabhaṭa since the beginning of the study of
Indian astronomy and mathematics. H. T. Colebrooke12 considered that the

8Bhāu Dājī (1865) once announced to publish the Āryabhaṭīya with the commentary of
Someśvara (Bhāu Dājī: “Brief Notes on the Age and Authenticity of the Works of Ārya-
bhaṭa, Varāhamihira, Brahmagupta, Bhaṭṭotpala, and Bhāskarācārya”, Journal of The
Royal Asiatic Society, 1865, 392–418; p. 405.) It could not see the light of day.

9Sengupta, P. C.: “The Āryabhaṭīyam”, Journal of the Department of Letters, University
of Calcutta, Vol. 16, 1927, art. 6, pp. 1–56.

10Clark, Walter Eugene: The Āryabhaṭīya of Āryabhaṭa, University of Chicago, 1930. In
the preface, he writes that this work was partly based on the work done with him by
Baidyanath Sastri for the degree of M.A.

11K. V. Sarma (ed.): Āryabhaṭīya of Āryabhaṭa with the commentary of Sūryadeva Yajvā,
INSA, New Delhi, 1976.

12Colebrooke, H. T.: Algebra with Arithmetic and Mensuration, from the Sanscrit of
Brahmegupta and Bhāscara, London, 1817, notes G and I.
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Daśagītikā and the Āryāṣṭaśata (both of which form what we call Āryabhaṭīya
of Āryabhaṭa I) are Āryabhaṭa’s genuine work, while J. Bentley13 considered
that the Āryasiddhānta (which we call Mahāsiddhānta of Āryabhaṭa II) is
Āryabhaṭa’s genuine work. Fitz-Edward Hall (1860)14 thought that both
are genuine, and suspected that there were two Āryabhaṭas. Commenting
to Hall’s paper, W. D. Whitney15 wrote that these two Āryabhaṭas were
considered to be one person by Brahmagupta, who criticised Āryabhaṭa’s
inconsistency. Whitney’s view is actually wrong, and Āryabhaṭa II is a later
person whose date is controversial.16 Bhāu Dājī (1865)17 clearly pointed out
that there were two Āryabhaṭas, but made a mistake that the only work
of Āryabhaṭa known to Brahmagupta etc. was the Āryabhaṭīya. He was not
aware of Āryabhaṭa I’s work of midnight system.18 After that, S. B. Dikshit19

and Sudhākara Dvivedin20 rightly suggested that Āryabhaṭa I might have
written two works, that is the Āryabhaṭīya and another work of midnight
system. P. C. Sengupta (1930)21 wrote a paper on Āryabhaṭa’s lost work of
midnight system, and investigated its astronomical constants etc.
Āryabhaṭa’s work of midnight system is not extant, but there remain some

information in the works of later authors, such as the Khaṇdakhādyaka of
Brahmagupta. The Mahābhāskarīya of Bhāskara I gave further informations
about Āryabhaṭa I’s midnight system.22

Prof. Shukla made further progress of the study of Āryabhaṭa’s midnight
system. In the following paper, Prof. Shukla described several aspects of
Āryabhaṭa I’s midnight system, and published a fragment of the Yantrādhyāya
(chapter on astronomical instruments) of the Āryabhaṭasiddhānta (Āryabhaṭa
I’s lost work of midnight system), found in Rāmakṛṣṇa Ārādhya’s commentary
(ad 1472) on the Sūryasiddhānta.

13Bentley, John: A Historical View of the Hindu Astronomy, Calcutta, 1823, part II, section
III.

14Hall, Fitz-Edward: “On the Āryasiddhānta”, Journal of the American Oriental Society,
Vol. 6, 1866, pp. 556–559.

15Committee of Publication (= W. D. Whitney): “Additional Note on Āryabhaṭṭa and his
Writings”, Journal of the American Society, Vol. 6, 1866, pp. 560–564.

16J. Bentley and Bhāu Dājī thought it is the 14th century ad, S. B. Dikshit thought the
10th century, D. Pingree thinks between ca. 950 and 1100, and R. Billard thinks the 16th
century.

17Bhāu Dājī, op. cit.
18The Āryabhaṭīya is based on sunrise system (audayika), where a civil day is reckoned from
sunrise. In the midnight system (ārdharātrika), a civil day is reckoned from midnight.

19Dikshit, tr. by Vaidya, op. cit., part II, pp. 58–59.
20Dvivedin, Sudhākara (ed.): Brāhma-sphuṭa-siddhānta, ed. with the commentary written
by Dvivedin, Benares, 1902; commentary on (XI. 13).

21Sengupta, P. C.: “Āryabhaṭa’s Lost Work”, Bulletin of the Calcutta Mathematical Society,
Vol. 22, 1930, pp. 115–120.

22Sengupta, P. C. (tr. into English): Khaṇḍakhādyaka, Calcutta, 1934. Introduction, pp. x–
xx.
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(VIII) “Āryabhaṭa I’s astronomy with midnight day-reckoning”, Gaṇita, Vol.
18, No. 1, 1967, pp. 83–105.

This fragment, published for the first time, is a very important source ma-
terial of the development of astronomical instruments in India. Prof. Shukla’s
edition of the fragment is based on a manuscript (deposited in Lucknow Uni-
versity, Acc. no. 45749) of Rāmakṛṣṇa Ārādhya’s commentary on the Sūrya-
siddhānta, which is a transcription from a manuscript (no. 2803) of the Gov-
ernment Oriental Library, Mysore.
In the following paper, Prof. Shukla described some informations about the

Āryabhaṭasiddhānta mentioned in Mallikārjuna Sūri’s commentary (ad 1178)
on the Sūryasiddhānta and Tamma Yajvā’s commentary (ad 1599) on the
Sūryasiddhānta.

(IX) “Glimpses from the Āryabhaṭasiddhānta”, IJHS, Vol. 12, 1977, pp. 181–
186.

It is very important to study these early commentaries on the Sūryasiddhānta,
none of which has been published.
As regards the chronological order of the two works of Āryabhaṭa I, Prof.

Shukla says in his paper (VIII) that they were written in the following order:
(i) Āryabhaṭasiddhānta, and (ii) Āryabhaṭīya.

7 The Sūryasiddhānta summarised in the
Pañcasiddhāntikā

According to Varāhamihira, the Sūryasiddhānta is the most accurate among
the five siddhāntas summarised in his Pañcasiddhāntikā. This old Sūrya-
siddhānta is different from the modern Sūryasiddhānta which is extant now.
Differences between these two Sūryasiddhāntas are discussed by Prof. Shukla
in the Introduction of the following book.

(X) The Sūryasiddhānta with the commentary of Parameśvara, (Hindu As-
tronomical and Mathematical Text Series No. 1), Lucknow, 1957.

In this book (p. 27), Prof. Shukla wrote that the works of Āryabhaṭa I and
Lāṭadeva were based on the Sūryasiddhānta, and rejected P. C. Sengupta’s
view that the old Sūryasiddhānta was made up-to-date by Varāhamihira by
replacing the old constants in it by new ones from Āryabhaṭa I’s midnight
system. In his papers (VIII) and (IV) also, Prof. Shukla wrote that Āryabhaṭa
I’s midnight astronomy was based on the old Sūryasiddhānta. It seems that
Prof. Shukla modified his view later, and wrote in the Introduction of his
book (VI) (p. lxiii) that the Āryabhaṭasiddhānta is based on the earlier Sūrya-
siddhānta, which is now lost, and that the Sūryasiddhānta summarised in
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the Pañcasiddhāntikā is a new version revised by Lāṭadeva in the light of
the Āryabhaṭasiddhānta. In his paper (II) also, Prof. Shukla wrote that the
Sūryasiddhānta summarised by Varāhamihira was simply a redaction of the
larger work of Āryabhaṭa.
Prof. Shukla corrected some errors in Thibaut and Dvivedin’s edition of the

Pañcasiddhāntikā in the following paper.

(XI) “On three stanzas from the Pañcasiddhāntikā”, Gaṇita, Vol. 5, No. 2,
1954, pp. 129–136.

In this paper, Prof. Shukla presented the corrected reading of the Pañca-
siddhāntikā (XVII. 12)23 and (IX. 15–16),24 and made clear that the astro-
nomical constants in the old Sūryasiddhānta recorded in them are harmonious
with those ascribed to Āryabhaṭa I’s midnight system recorded by Bhāskara I.

In the third part of his paper (IV), Prof. Shukla discussed a correction for
Mercury and Venus in the old Sūryasiddhānta. It may be noted that Prof.
Shukla utilised the Sumati-Mahātantra of Sumati of Nepal.

8 The Pañcasiddhāntikā of Varāhamihira

As we have seen in connection of each siddhānta summarised in the Pañca-
siddhāntikā, Prof. Shukla has written three papers on the Pañcasiddhāntikā,
viz. papers (XI), (IV), and (III).

In the third part of his paper (III), Prof. Shukla discussed the 30 days of the
Parsi calendar mentioned in the Pañcasiddhāntikā (I. 23–25). He compared
them with the corresponding names given by Vaṭeśvara (ad 904), and verified
them. It may be noted that the result is different from readings of Thibaut
and Dvivedin, M. P. Kharegat, and Neugebauer and Pingree.
In the second part of his paper (IV), Prof. Shukla discussed the declination

table of Varāhamihira.

9 Bhāskara I

Bhāskara I (the 7th century ad), who is a contemporary of Brahmagupta,
is a different person from Bhāskara II (the 12th century ad) who wrote
the Siddhānta-śiromaṇi etc. H. T. Colebrooke was aware of the existence
of Bhāskara I cited by Pṛthūdaka Svāmin, but he could not find any work
written by him.25 B. Datta secured the works of Bhāskara I, and wrote a

23This is (XVI. 23) in Neugebauer and Pingree’s edition.
24M. P. Khareghat also proposed similar correction. (See Khareghat, op. cit., pp. 132–134.)
25Colebrooke, op. cit., note H.
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paper on him (1930).26 However, Datta misunderstood that Bhāskara I is a
direct disciple of Āryabhaṭa I, and that he lived in the first half of the 6th
century ad. T. S. Kuppanna Sastri pointed out that Bhāskara I is not a direct
disciple of Āryabhaṭa I, but he could not ascertain Bhāskara I’s date exactly.27

Prof. Shukla has shown that Bhāskara I actually lived in the 7th century ad,
because Bhāskara I wrote his commentary on the Āryabhaṭīya in 629 ad, and
accordingly not a direct disciple of Āryabhaṭa I. (See his book (VII), Introduc-
tion, pp. xix-xxv). Prof. Shukla also pointed out that Bhāskara I belonged to
Aśmaka country lying between the rivers Godāvari and Narmadā, but lived
in Valabhī in Saurāṣṭra (in modern Gujarat). (Ibid., pp. xxv-xxx.)
Bhāskara I wrote three works. One is a commentary on the Āryabhaṭīya.

Other two are the Mahābhāskarīya and the Laghubhāskarīya, and Prof. Shukla
published them with English translation.

(XII) Mahābhāskarīya, Lucknow, 1960.

(XIII) Laghubhāskarīya, Lucknow, 1963.

There are other editions of the Mahābhāskarīya28 and Laghūbhāskarīya,29

but there is no other English translation.
Prof. Shukla discussed spherical astronomy of Bhāskara I and his contem-

porary Brahmagupta in the following paper.

(XIV) “Early Hindu Methods in Spherical Astronomy”, Gaṇita, Vol. 19, No. 2,
1968, pp. 49–72.

He also discussed mathematics of Bhāskara I in the following papers.

(XV) “Hindu Mathematics in the seventh century as found in Bhāskara I’s
commentary on the Āryabhaṭīya”, (1) Gaṇita, Vol. 22, No. 1, 1971,
pp. 115–130; (2) Gaṇita, Vol. 22, No. 2, 1971, pp. 61–78; (3) Gaṇita,
Vol. 23, No. 1, 1972, pp. 57–79; (4) Gaṇita, Vol. 23, No. 2, 1972,
pp. 41–50.

10 Āryabhaṭa School

The Āryabhaṭīya of Āryabhaṭa I laid the foundation of the Āryabhaṭa school,
of which one of the most eminent astronomer is Bhāskara I, whom we have
26Datta, Bibhutibhusan: “The Two Bhāskaras”, The Indian Historical Quarterly, Vol. VI,
1930, pp. 727–736.

27Kuppanna Sastri, T. S.: “Mahābhāskarīya of Bhāskarācārya”, Madras Government Ori-
ental Series No. cxxx. Madras, 1957, Introduction, pp. xiii–xvii.

28Ānandāśrama edition (with Parameśvara’s commentary), Pune, 1945; and Kuppanna Sas-
tri’s edition (with Govindasvāmin’s commentary and Parameśvara’s super-commentary).
op. cit.

29Ānandāśrama edition (with Parameśvara’s commentary), Pune, 1946; and Trivandrum
edition (with Śankaranārāyaṇa’s commentary), Trivandrum, 1949.



32 Prof. Shukla’s contribution to the study of Hindu astronomy

just discussed. The Āryabhaṭa school flourished in South India, particularly
in Kerala, rather than in North India.
T. S. Kuppanna Shastri wrote a paper (1969)30 on the peculiarities of Ārya-

bhaṭa school, but he misunderstood the computation of the equation of cen-
tre in this school. Prof. Shukla criticised Kuppanna Shastri’s paper, and
explained the computation of the equation of centre of Āryabhaṭa school in
the following paper.

(XVI) “Use of Hypotenuse in the Computation of the Equation of the Centre
under the Epicyclic Theory in the School of Āryabhaṭa I ???”, IJHS,
Vol. 8, 1973, pp. 43–57.

In this paper, he quotes from the works of astronomers of Āryabhaṭa school,
viz. Bhāskara I (ad 629), Govinda Svāmī (c. 800–850), Parameśvara (1430),
Nīlakaṇṭha (c. 1500), and Putumana Somayājī (1732).
Prof. Shukla also published the Karaṇaratna (ad 689) of Deva, belonging

to Āryabhaṭa school, for the first time.

(XVII) The Karaṇaratna of Devācārya, Lucknow, 1979.

Deva belonged to South India, probably Kerala. Prof. Shukla points out
that the Karaṇaratna is the earliest preserved work where three bīja correc-
tions, viz. the Śakābda correction, the Kalpa correction, and the Manuyuga
correction, are stated, and also it is probably the first work in the Āryabhaṭa
school to have given a rule for finding the value of the precession. So, this is
a very important work of Hindu astronomy.

11 The Śiṣyadhīvṛddhidatantra of Lalla

The Śiṣyadhīvṛddhidatantra of Lalla (the 8th or 9th century ad)31 is also a text
following Āryabhaṭa. Bina Chatterjee edited its text with the commentary
of Mallikārjuna Sūri (the 12th century ad), and translated into English, but
chapter XXI (chapter of astronomical instruments) was left untranslated by
Chatterjee who passed away in 1978. So, its translation was supplied by Prof.
Shukla, and published as follows:

Bina Chatterjee: Śiṣyadhīvṛddhida Tantra of Lalla, 2 parts, INSA,
New Delhi, 1981.

30Kuppanna Shastri, T. S.: “The School of Āryabhaṭa and the Peculiarities thereof”, IJHS,
Vol. 4, pp. 126–134.

31Bina Chatterjee wrote that the date of Lalla is sometime between the 8th and the 11th
century, (Introduction of her edition and translation, part II, p. xiv.) Prof. Shukla says
that Lalla’s date is sometime between ad 665 (Khaṇḍakhādyaka’s date) and ad 904
(Vaṭeśvarasiddhānta’s date): see Introduction of his book (VI), p. lx.
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Lalla described several instruments, some of which are quite different from
those of early authors, and his description is very important.

12 The Vaṭeśvarasiddhānta of Vaṭeśvara

The Vaṭeśvarasiddhānta (ad 904) of Vaṭeśvara (b. ad 880) is the largest
Sanskrit astronomical work. It is well known that Brahmagupta criticised
Āryabhaṭa I. Vaṭeśvara reversely criticised Brahmagupta, and defended Ārya-
bhaṭa I.
The first three chapters of the Vaṭeśvarasiddhānta were first published by

Ram Swarup Sharma and Mukund Misra in 1962,32 but it was based on a sin-
gle manuscript. Prof. Shukla discovered another manuscript of the Vaṭeśvara-
siddhānta, and reported its contents etc. in the following paper.

(XVIII) “Hindu astronomer Vaṭeśvara and his works”, Gaṇita, Vol. 23, No. 2,
1972, pp. 65–74.

It may be noted that Prof. Shukla identified Vaṭeśvara’s place Ānandapura
with Vadnagar in northern Gujarat.

Prof. Shukla edited the whole text of the Vaṭeśvarasiddhānta based on these
two manuscripts, and the fragment of the Gola found in the newly discovered
manuscript, and translated them into English with detailed commentary.

(XIX) Vaṭeśvarasiddhānta and Gola of Vaṭeśvara, 2 parts, INSA, New Delhi,
1985–1986.

Prof. Shukla’s commentary is so detailed and lucid that it is particularly use-
ful for those who want to understand the theory of Hindu astronomy deeply.
Explaining several topics, Prof. Shukla refers to parallel passages in other
Sanskrit astronomical works extensively, and this book can be used as a stan-
dard reference book of Hindu astronomy. The list of word-numerals, which is
appendix II of part I, is perhaps the most exhaustive list of word-numerals.
David Pingree of Brown University, U.S.A, has written a review of this book

(XIX). (IJHS, Vol. 26, 1991, pp. 115–122.)
It is known that al-Bīrūnī has quoted from the Karaṇasāra, a calendri-

cal work of Vateśvara. The New Catalogus Catalogorum (Vol. 3, p. 176) of
Madras University records a manuscript of the “Karaṇasāra of Vitteśvara” in
the “State Library”, Kota, Rajasthan, but its actual existence has not been
ascertained so far. I was suggested this fact by Prof. Shukla, and visited Kota
once, but could not find the Karaṇasāra during my short stay.
It may be noted that the original idea of the second correction for the

moon, which is stated in the Laghumānasa of Mañjula as we shall see below,
32Vaṭeśvarasiddhānta, Vol. I, Indian Institute of Astronomical and Sanskrit Research, New
Delhi, 1962.
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is attributed to Vaṭeśvara by Yallaya (1482 ad), but it is not found in the
extant Vaṭeśvarasiddhānta. Prof. Shukla suggests that it must have been
mentioned in the Karaṇasāra or some other work of Vaṭeśvara. (See p. LIII,
Introduction of part II of his book (XIX).)

13 The Laghumānasa of Mañjula

The name of Mañjula is sometimes spelt Muñjāla, but, according to Prof.
Shukla, Mañjula is the real name.
H. T. Colebrooke (1816)33 already noticed the notion of the precession of

Mañjula quoted in the Siddhāntaśiromaṇi (Gola, VI. 17–18) of Bhāskara II.
According to Bhāskara II, Mañjula stated that the equinox revolves 199669
times in a kalpa, that is 59′′.9007 per year. Colebrooke has not seen Mañjula’s
own work, but we know that Mañjula himself gives the rate of precession as
1′ per year in his Laghumānasa. Reason of this discrepancy is not known.

The Laghumānasa (ad 932) of Mañjula was noticed by Sudhākara Dvivedin
(1892),34 and N. K. Majumder (1927)35 etc. Dvivedin pointed out that the
second correction for the moon is mentioned there. The second correction,
which is a combination of the deficit of the equation of centre and the evec-
tion, was further discussed by D. Mukhopadhyaya (1930)36 and P. C. Sen-
gupta (1932).37 Later, N. K. Majumder published an edition and English
translation (1940–1951)38 of the Laghumānasa, and Ānandāśrama of Pune
published (1944)39 the text with Parameśvara’s commentary.
Prof. Shukla pointed out in the following paper that the interpretations of

D. Mukhopadhyaya and P. C. Sengupta contain some errors, and discussed
the second correction of Mañjula etc. in detail.

(XX) “The Evection and the Deficit of the Equation of the Centre of the
Moon in Hindu Astronomy”, Proceedings of the Benares Mathematical
Society, New Series, Vol. 7, No. 2, 1945, pp. 9–28.

33Colebrooke, H. T.: “On the Notion of the Hindu Astronomers concerning the Precession
of the Equinoxes and Motion of the Planets”, Asiatic Researches, Vol. XII, 1816, pp. 209–
250; reprinted in his Miscellaneous Essays, Vol. II, 1837.

34Dvivedin, Sudhākara, Gaṇaka-taraṅgiṇī, 1892, section of Muñjāla.
35Majumder, N. K.: “Laghumānasam of Muñjāla”, Journal of the Department of Letters,

University of Calcutta, Vol. 14, 1927, art. 8, pp. 1–5.
36Mukhopadhyaya, Direndranath: “The Evection and the Variation of the Moon in Hindu
Astronomy”, Bulletin of the Calcutta Mathematical Society, Vol. XXII, 1930, pp. 121–132.

37Sengupta, P. C.: “Hindu Luni-solar Astronomy”, Bulletin of the Calcutta Mathematical
Society, Vol. 24, 1932, pp. 1–18; reprinted as appendix I of his English translation of the
Khaṇḍakhādyaka, Calcutta, 1934.

38Majumder, N. K.: Laghumānasam by Muñjalācārya, Calcutta, 1951. He states in its
Introduction that he took up the work in 1940, and published the first instalment in a
journal.

39Laghumānasam, Ānandāśrama Sanskrit Series 123, Pune, 2nd ed., 1952.
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According to this paper, Mañjula’s second correction for the moon’s longi-
tude in terms of minutes can be expressed as follows:

±
(
8
2

15

)
cos(S − U)[G− 11]×

(
8
2

15

)
sin(M − S)

where S, M, U, respectively denote the true longitudes of the sun, the moon,
and the moon’s apogee, and G the Moon’s true daily motion in degrees. For-
merly, D. Mukhopadhyaya took S, M, G as the mean longitudes of the sun
and the moon, and the mean daily motion of the moon respectively, and
P. C. Sengupta and N. K. Majumder (1951) took G as the mean daily mo-
tion of the moon, although they took M as the moon’s longitude corrected
by the first equation. Prof. Shukla says that G should be the true daily mo-
tion of the moon, because Vaṭeśvara (quoted in Yallaya’s commentary on the
Laghumānasa) states the corresponding term to be the true motion. (As we
have discussed, Vaṭeśvara’s statement is not found in the extant Vaṭeśvara-
siddhānta.)

Besides Mañjula, Prof. Shukla explained in his paper (XX) the second cor-
rection for the moon in the Siddhāntaśekhara (1039 ad) of Śrīpati, the Tantra-
Saṃgraha of Nīlakaṇṭha (ca. 1500 ad), and the Siddhāntadarpaṇa of Candra
Śekhara Siṃha (later half of the 19th century). And also, using a figure, Prof.
Shukla explained the rationale of this second correction, which is explained in
Hindu astronomy as the displacement of the Earth from its natural position.
Recently, Prof. Shukla published a new critical edition and English transla-

tion of the Laghumānasa of Mañjula with detailed introduction and notes.

(XXI) “A Critical Study of the Laghumānasa of Mañjula”, IJHS, Vol. 25,
1990, Supplement; and also separately issued, INSA, New Delhi, 1990.

The Laghumānasa is a small but very important work. Prof. Shukla’s notes
with rationale and examples are quite useful to understand the text.

14 The Dhīkoṭida-karaṇa of Śrīpati and the
Rājamṛgāṅka of Bhoja

Śrīpati wrote three astronomical works, the Siddhāntaśekhara, the Dhīkoṭida-
karaṇa (ad 1039), and the Dhruvamānasa-karaṇa (ad 1056).

He also wrote the mathematical work Gaṇitatilaka, and several astrological
works such as the Ratnamāla, the Jātakapaddhati etc. The Siddhāntaśekhara
was published by B. Miśra (1932, 1947),40 and the Dhīkoṭida-karaṇa was

40The Siddhāntaśekhara of Śrīpati, 2 parts, ed. by Babuāji Miśra, Calcutta University,
1932–1947.
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(according to D. Pingree) published by N. K. Majumder (1934),41 but the
Dhruvamānasa-karaṇa has not been published.

Prof. Shukla published a critical edition and English translation of the
Dhīkoṭida-karaṇa with notes and illustrative examples.

(XXII) “The Dhīkoṭida-karaṇa of Śrīpati”, Akhila Bhāratīya Sanskrit Pari-
shad, Lucknow, 1969.

This is a small work which gives the method of calculation of lunar and
solar eclipses. Prof. Shukla has given illustrative examples of the calculation
using Śrīpati’s method for the eclipses in 1968 ad, and showed that the result
is remarkably good.
By the way, it may also be noted that the second correction for the moon

in the Śiddhānta-śekhara has been discussed in Prof. Shukla’s paper (XX).
Another contemporary karaṇa work is the Rājamṛgāṅka (1042 ad) of Bhoja.

Prof. Shukla has written the following comment on the printed text of the
Rājamṛgāṅka.

(XXIII) “A Note on the Rājamṛgāṅka of Bhoja published by the Adyar Li-
brary”, Gaṇita, Vol. 5, No. 2, 1954, pp. 149–151.

In this paper, Prof. Shukla has shown that K. M. K. Sarma’s edition of the
Rājamṛgāṅka published by the Adyar Library, Madras (1940), may not be the
original and full text, but an abridged edition by some later writer.

15 The early versions of the modern Sūryasiddhānta

The modern Sūryasiddhānta (called “Modern” in contrast with the Sūrya-
siddhānta summarised in the Pañcasiddhāntikā of Varāhamihira) is one of the
most popular Sanskrit work of astronomy. There are several extant traditional
commentaries since the 12th century down to recent time, and also, there are
several researches by modern scholars since the end of the 18th century, the
earliest of whom is perhaps Samuel Davis (1790).42 Another early scholar is
John Bentley (1799),43 who analysed the accuracy of the Sūryasiddhānta, and
41Majumder, N. K.: “Dhīkoṭi-karaṇa of Śrīpati”, Calcutta Oriental Journal, Vol. I, 1934,
pp. 286–299. The calculation in the Dhīkoṭi-karaṇa was already explained in
Majumder: “Dhīkoṭi-karaṇam of Śrīpati”, Journal of the Asiatic Society of Bengal, N.S.,
Vol. XVII, 1921, pp. 273–278. I have not seen his paper of 1934, but have seen his paper
of 1921. Differences between his reading and Prof. Shukla’s reading exist in the apparent
diameters of the sun, the moon, and the shadow of the earth. Perhaps Majumder took
the reading “rasāgni” (= 36) (in verse 8–d) for the moon’s diameter in terms of minutes,
while Prof. Shukla takes “karāgni” (= 32).

42Davis, Samuel: “On the Astronomical Computations of the Hindus”, Asiatic Researches,
Vol. 2, 1790, pp. 175–226.

43Bentley, J.: “On the Antiquity of the Sūrya Siddhānta and the Formation of the Astro-
nomical Cycles therein contained”, Asiatic Researches, Vol. 6, 1799, pp. 540–593.
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concluded that it was composed in the eleventh century or so. As regards the
date of the modern Sūryasiddhānta, Prof. Shukla writes in the Introduction
(p. 29) of his book (X) that it is sometime between ad 628 and ad 966, after
ad 628 because it is influenced by Brāhmasphuṭasiddhānta, and before ad 966
because Bhaṭṭotpala wrote a commentary on it, whose fragment is quoted in
a later work.
In the 19th century, the text of the Sūryasiddhānta with Raṅganātha’s

commentary (ad 1603) was published by Fitz Edward Hall and Bāpūdeva
Śāstrī (1854–58),44 and Bāpūdeva Śāstrī translated it into English (1860–
62).45 Ebenezer Burgess also published an English translation of the Sūrya-
siddhānta with the help of W. D. Whitney (1860),46 and this has become one of
the most popular work of Hindu astronomy in English. Burgess’ translation
is also based on Raṅganātha’s commentary. There are some other printed
editions of the Sanskrit text of the Sūryasiddhānta based on Raṅganātha’s
version.

There are several earlier extant commentaries of the Sūryasiddhānta, such
as

(i) Mallikārjuna Sūri (ad 1178)

(ii) Caṇḍeśvara (ad 1185)

(iii) Madanapāla (the 14th century ad)

(iv) Parameśvara (ad 1432)

(v) Yallaya (ad 1472)

(vi) Rāmakṛṣṇa Ārādhya (ad 1472)

(vii) Bhūdhara (ad 1572)

(viii) Tamma Yajvan (ad 1599)

The readings of the text in these early versions are different from Raṅga-
nātha’s version at several places. Prof. Shukla published the Sūryasiddhānta
with Parameśvara’s commentary for the first time (1957) as his book (X). In
the footnotes of this book, Prof. Shukla gives alternative readings of the text
found in the versions of Mallikārjuna Sūri, Yallaya, Rāmakṛṣṇa Ārādhya, and
Raṅganātha also. At present this book is only one printed text of an early
44Published in the Bibliotheca Indica series of the Asiatic Society, Calcutta.
45Bāpūdeva Śāstrī and Lancelot Wilkinson: The Sūrya siddhānta, or an Ancient System

of Hindu Astronomy followed by the Siddhānta Śiromaṇi, Asiatic Society, Calcutta, 1860–
1862.

46Burgess, Ebenezer: “Translation of the Sūryasiddhānta”, Journal of the American Ori-
ental Society, Vol. 6, 1860, pp. 141–498. Reprinted by Calcutta University in 1935.
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version of the Sūryasiddhānta before Raṅganātha. So, this is an indispensable
work to investigate the early form of the modern Sūryasiddhānta.

We also recall that Prof. Shukla published a fragment of the Āryabhaṭa-
siddhānta of Āryabhaṭa I quoted in Rāmakṛṣṇa Ārādhya’s commentary on the
Sūryasiddhānta in his paper (VIII), and also discussed about the informations
about the Āryabhaṭasiddhānta found in Mallikārjuna Sūri and Tamma Yajvā’s
commentaries on the Sūryasiddhānta in his paper (IX).
Early commentaries on the Sūryasiddhānta are mine of informations of

Hindu astronomy, and much more study is necessary.

16 Other works

Papers (I) and (II) may be said to be general papers. Prof. Shukla has written
the following paper also.

(XXIV) “Phases of the Moon, Rising and Setting of Planets and Stars and
their Conjunctions”, in S. N. Sen and K. S. Shukla (eds.): History
of Astronomy in India, INSA, New Delhi, 1985.

This paper is complementary to Arka Somayaji’s “The Yuga System and
the Computation of Mean and True Longitudes” and S. D. Sharma’s “Eclipses,
Parallax and Precession of Equinoxes” in the same book.
Prof. Shukla also made several contributions to the study of Hindu Math-

ematics. He published the Pāṭīgaṇita of Śrīdhara (Lucknow, 1959), and the
Bījagaṇitāvataṃsa of Nārāyaṇa. (Akhila Bharatiya Sanskrit Parishad, Luc-
know, 1970), and also revised B. Datta and A. N. Singh’s papers on Hindu
Geometry, Trigonometry, Calculus, Magic squares, Permutations and com-
binations, Series, Surds, and Approximate values of surds, and published in
IJHS (vols. 15, 18, 19, 27, and 28).

17 Conclusion

We have seen that Prof. Shukla’s works cover almost all periods of Classical
Hindu Astronomy, and are based on several primary sources. Several fun-
damental Sanskrit texts were critically edited and translated with detailed
mathematical and astronomical notes which are lucid and exact. I believe
that all students of the history of Indian astronomy should study the works
of Prof. Shukla carefully.



The seminal contribution of K. S. Shukla to
our understanding of Indian astronomy and
mathematics ∗

Kripa Shankar Shukla1 was born on June 12, 1918 in Lucknow. He com-
pleted his undergraduate and postgraduate studies in mathematics at Allaha-
bad University. In 1941, he joined the research programme on Indian mathe-
matics at the Department of Mathematics, Lucknow University, to work with
Prof. Avadhesh Narayan Singh (1905–1954). Prof. Singh, the renowned collab-
orator of Bibhutibhusan Datta (1888–1958), had joined Lucknow University
in 1928. He initiated a research programme on the study of Indian astronomy
and mathematics at the University in 1939. He managed to collect a number
of manuscripts of important source-works and also attracted many researchers
to work with him.

Shukla’s first paper, published in 1945, presented a comprehensive survey
of the second correction (due to evection) for the Moon in Indian Astronomy.
In 1955, Shukla was awarded the D.Litt. degree from Lucknow University for
his thesis on “Astronomy in the Seventh Century India: Bhāskara I and His
Works”. Dr. Shukla became the worthy successor of Prof. Singh to lead the
research programme on Indian astronomy and mathematics at Lucknow Uni-
versity. Though he retired as Professor of Mathematics in 1979, he continued
to guide researchers and work relentlessly to publish a number of outstanding
articles and books—which included an edition and translation of Vaṭeśvara-
siddhānta (c. 904), the largest known Indian astronomical work with over
1400 verses, brought out by Indian National Science Academy in two volumes
during 1985–86. Prof. Shukla passed away on June 22, 2007.

* M. D. Srinivas, 2018 (To appear in Gaṇita-Bhāratī ).
1For a detailed biography of Prof. K. S. Shukla along with a list of his publications, see:
R. C. Gupta, “Dr. Kripa Shankar Shukla, Veteran Historian of Hindu Astronomy and
Mathematics”, Gaṇita-Bhāratī, 20 (1998), pp. 1–7. Also, Yukio Ohashi, “Kripa Shankar
Shukla (1918–2007)”, Indian Journal of History of Science, 43 (2008), pp. 475–485.
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1 Publications of K. S. Shukla on Indian astronomy and
mathematics2

Prof. Shukla was famous as a great teacher and expositor of astronomy and
mathematics. In the 1950s he wrote popular textbooks on trigonometry and
algebra and also published a Hindi translation of Part I of the History of
Hindu Mathematics by B. B. Datta and A. N. Singh. It was indeed very
unfortunate that there was no course on History of Mathematics or Indian
Mathematics taught at the Lucknow University, notwithstanding the presence
of a great scholar and teacher such as Prof. Shukla on its faculty.3 However,
Prof. Shukla guided several researchers in their work on Indian astronomy
and mathematics. Amongst those who worked with Shukla for their Ph.D.
Degree, are the well known scholars, Parmanand Singh (who worked on the
Gaṇitakaumudī of Nārāyaṇa Paṇḍita), and the Japanese scholar Yukio Ohashi
(who worked on the history of astronomical instruments in India).

Shukla brought out landmark editions of twelve important source-works
of Indian astronomy and mathematics. Some of them were published from
Lucknow University under the Hindu Astronomical and Mathematical Texts
Series. Following is a list of the source-works published by Shukla.

1. Sūryasiddhānta with commentary of Parameśvara, ed. by K. S. Shukla,
Lucknow University, Lucknow 1957.

2. Pāṭīgaṇita of Śrīdharācārya, ed. and tr. with notes by K. S. Shukla,
Lucknow University, Lucknow 1959.

3. Mahābhāskarīya of Bhāskara I, ed. and tr. with notes by K. S. Shukla,
Lucknow University, Lucknow 1960.

4. Laghubhāskarīya of Bhāskara I, ed. and tr. with notes by K. S. Shukla,
Lucknow University, Lucknow 1963.

5. Dhīkoṭidakaraṇa of Śrīpati, ed. and tr. with notes by K. S. Shukla,
Akhila Bharatiya Sanskrit Parishad, Lucknow 1969.

6. Bījagaṇitāvataṃsa of Nārāyaṇa Paṇḍita, ed. by K. S. Shukla, Akhila
Bharatiya Sanskrit Parishad, Lucknow 1970.

7. Āryabhaṭīya of Āryabhaṭa, ed. and tr. with notes by K. S. Shukla and
K. V. Sarma, Indian National Science Academy, New Delhi 1976.

8. Āryabhaṭīya of Āryabhaṭa with the commentary of Bhāskara I, ed. by
K. S. Shukla, Indian National Science Academy, New Delhi 1976.

2For an insightful overview of the publications of Prof. Shukla on Indian astronomy, see:
Yukio Ohashi, “Prof. K. S. Shukla’s Contribution to the Study of Hindu Astronomy”,
Gaṇita-Bhāratī, 17 (1995), pp. 29–44.

3See R. C. Gupta (1998), p. 3.
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9. Karaṇaratna of Devācārya, ed. and tr. with Notes by K. S. Shukla, Luc-
know University, Lucknow 1979.

10. Vaṭeśvarasiddhānta and Gola of Vaṭeśvara, ed. and tr. with notes by
K. S. Shukla, 2 Volumes, Indian National Science Academy, New Delhi
1985–86.

11. Laghumānasa of Mañjula, ed. and tr. with notes by K. S. Shukla, Indian
National Science Academy, New Delhi 1990.

12. Gaṇitapañcaviṃśī, ed. and tr. by K. S. Shukla, Indian Journal of History
of Science, 52.4 (2017), pp. S1–S22.

As may be seen from the above list, most of these editions also include
lucid English translations and detailed mathematical explanatory notes. This
is indeed one of the greatest contributions of Prof. Shukla, since till the 1960s
there had been very few editions of the classical source-works of Indian as-
tronomy which also included a translation as well as explanatory notes. As
regards the source-works of Indian mathematics, there were the well known
translations, along with explanatory notes, authored by Colebrooke4 and Ran-
gacarya5 of the mathematics chapters of Brāhmasphuṭasiddhānta of Brahma-
gupta, the Līlāvatī and Bījagaṇita of Bhāskarācārya and the Gaṇitasāra-
saṅgraha of Mahāvīra. As regards Indian astronomy, while a number of
source-works were published by Sudhākara Dvivedi and other scholars, the
only texts which were translated into English,6 along with explanatory notes,
were the Sūryasiddhānta by Burgess,7 Pañcasiddhāntikā of Varāhamihira by
Thibaut,8 Āryabhaṭīya by Sengupta9 and Clark,10 and the Khaṇḍakhādyaka
of Brahmagupta by Sengupta.11

The scholarly world is highly indebted to Prof. Shukla for having taken great
pains to publish lucid translations, along with detailed mathematical explana-
tory notes, of some of the most important source-works of Indian astronomy,
including works of all the three categories, namely, Siddhānta, Tantra and

4H. T. Colebrooke, Algebra with Arithmetic and Mensuration from the Sanscrit of Brahme-
gupta and Bhāscara, John Murray, London 1817.

5M. Rangacarya, The Gaṇitasārasaṅgraha of Mahāvīrācārya with English Translation and
Notes, Government Press, Madras 1912.

6There were also translations of Sūryasiddhānta, Āryabhaṭīya, Siddhāntaśiromaṇi of
Bhāskara II and Grahalāghava of Gaṇeśa into various Indian languages, some of which
also included explanatory notes.

7E. Burgess, Translation of the Sūryasiddhānta, The American Oriental Society, New
Haven 1860.

8G. Thibaut and Sudhakar Dvivedi, The Pañcasiddhāntikā, Medical Hall Press, Benares
1889.

9P. C. Sengupta, “The Āryabhaṭīyam”, Journal of Department of Letters of Calcutta
University, 16 (1927), pp. 1–56.

10W. E. Clark, The Āryabhaṭīya of Āryabhaṭa, University of Chicago Press, Chicago 1930.
11P. C. Sengupta, The Khaṇḍakhādyaka, University of Calcutta, Calcutta 1934.
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Karaṇa, and covering the entire classical Siddhāntic period from Āryabhaṭa
(c. 499) to Śrīpati (c. 1039). His explanatory notes often include summaries
of important discussions found in various commentaries, and also detailed ref-
erences to similar results or procedures contained in other important texts.
Shukla’s editions and translations have therefore acquired the status of canon-
ical textbooks which can be profitably used by all those interested in a serious
study of Indian astronomical tradition. In collaboration with the renowned
scholar Samarendra Nath Sen (1918–1992), Prof. Shukla has also edited a
pioneering History of Indian Astronomy in 1985, which continues to be the
standard reference work on the subject.12

Prof. Shukla has also written over 40 important research articles, which
have ushered in an entirely new perspective on the historiography of Indian
astronomy and mathematics. We may here make a mention of just a few of
his seminal contributions:

(i) Clear exposition of various aspects of the Vasiṣṭha, Romaka and Pauliśa
Siddhāntas as summarised in Pañcasiddhāntikā of Varāhamihira.

(ii) Correction of the faulty readings and translations of some of the crucial
verses giving the number of civil days and other parameters of a yuga,
as presented in the 1978 edition of Yavanajātaka by David Pingree.

(iii) Discovery of the verses of Āryabhaṭasiddhānta dealing with yantras (in-
struments).

(iv) Correct explanation of the manda-saṃskāra (equation of centre) in In-
dian astronomy, including the computation of the aviśiṣṭa-mandakarṇa
(iterated manda-hypotenuse) and its significance.

(v) Correct explanation of the second lunar correction (incorporating the
evection correction) as presented by Mañjulācārya.

(vi) Discovery of the verses of Acārya Jayadeva on the cakravāla method for
solving quadratic indeterminate equations.

(vii) Detailed exposition of the study of magic squares in Indian mathematics.

(viii) Publication of a revised and updated version of Part III of the ‘History
of Hindu Mathematics’ by B. B. Datta and A. N. Singh.

In what follows, we shall present some highlights of the seminal contribution
of Prof. Shukla in relation to items iv, ii and viii of the above list (in that
order).

12S. N. Sen and K. S. Shukla, (eds.), History of Indian Astronomy, Indian National Science
Academy, New Delhi 1985 (2nd Revised Edition 2000).



2 Explaining the correct formulation of the manda-saṃskāra 43

2 Explaining the correct formulation of the
manda-saṃskāra (equation of centre) in Indian
astronomy

In his landmark translations of Mahābhāskarīya and Laghubhāskarīya, pub-
lished in 1960 and 1963 respectively, Prof. Shukla explained the correct for-
mulation of the manda-saṃskāra or the equation of centre, as expounded by
Bhāskara I (c. 629). This corrected a longstanding misconception, as the
equation of centre in Indian astronomy was totally misconstrued by modern
scholarship for nearly two centuries. In what follows, we shall summarise the
formulation of manda-saṃskāra or the equation of centre, and the computa-
tion of the manda-karṇa or the manda-hypotenuse, as expounded by Bhāskara
in Chapter IV of Mahābhāskarīya, following closely the lucid exposition of
Prof. Shukla. We shall discuss the manda-saṃskāra formulated in terms of
an epicycle model.13

In Figure 1, O is the centre of the earth, P0 the mean planet and U the
mandocca or the manda-apsis. OP0 = R, is the radius of the concentric. P1

is on the epicycle centred at P0, with radius equal to the tabulated epicycle
radius r0,14 such that P0P1 is parallel to OU . P1 is also on the eccentric
circle with O′ as the centre, where O′ is along OU , such that OO′ = r0. The
true radius of the epicycle r is different from the tabulated radius r0. Hence,
P1 is not the manda-sphuṭa or the true manda-corrected planet. Similarly,
OP1 = K0, is only the sakṛt-karṇa or the initial hypotenuse and not the true
hypotenuse.
The manda-sphuṭa or the true manda-corrected planet is at P (along P0P1)

such that P0P = r, which is the true epicycle radius. Correspondingly the
true manda-hypotenuse is given by OP = K. The main feature of this model
is that the true epicycle radius r and the true manda-hypotenuseK are related
by

r =
r0
R
K. (1)

Let θ0 be the longitude of the mean planet P0, θu the longitude of the man-
docca U , and θms the longitude of the manda-sphuṭa or the manda-corrected
13Mahābhāskarīya of Bhāskara I, ed. and tr. with Notes by K. S. Shukla, Lucknow Uni-
versity, Lucknow 1960. The equation of centre for the Sun and the Moon is discussed,
following both the epicycle and eccentric-circle models, on pp. 110–119 and pp. 122–126,
respectively. The equation of centre for the planets is similar and discussed later on
pp. 134–144.

14The values of the manda and śīghra epicycle radii are presented in Chapter VII of Mahāb-
hāskarīya (ibid. pp. 206–7). It is important to note that, except in the case of the Sun and
the Moon, even these tabulated epicycles are not constant, but vary with the anomaly.
Their extreme values are given at the beginning of the odd and even quadrants, and in
between they have a periodic variation. Only in the case of the Sun and the Moon, this
factor does not come into play, and we can treat the tabulated epicycle as a constant.
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Figure 1: Manda-correction and the iterated-manda-hypotenuse.

planet P . Hence, the mean anomaly is given by the angle P0OU = θ0–θu,
and the true anomaly is given by the angle POU = θms–θu, and the angle
P0OP = θ0–θms. From Figure 1, we can easily see that the manda-correction
for the longitude will be

R sin(θms–θ0) = −
( r
K

)
R sin(θ0–θu). (2)

Now, by applying the condition (1), we get the final form of the manda-
correction

R sin(θms–θ0) = −
(r0
R

)
R sin(θ0–θu). (3)

Thus, the manda-correction or the equation of centre (3) involves only the
ratio of the mean epicycle radius r0 and the radius R of the concentric. It
does not involve the initial hypotenuse K0 or even the true hypotenuse K.
The important point to be realised is that the karṇa or hypotenuse does

not appear in the equation of centre in Indian astronomy—unlike in the case
of the śīghra-correction (or the so called equation of conjunction) where the
correction crucially depends on the śīghra-karṇa or the śīghra-hypotenuse—
because the manda-epicycle, in Indian planetary theory, is assumed to be
variable and varies in the same way as karṇa as shown in relation (1). It is for
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this reason that the karṇa gets replaced by just the radius of the concentric
in the equation of centre—not because of any approximation that the radius
does not differ too much from the hypotenuse in the manda-saṃskāra.
While it may not make its appearance in the equation of centre, the manda-

karṇa is still very important. For instance, it gives the true distance in the
case of the Sun and the Moon. Now, in order to determine both r and K,
Bhāskara presents the following iterative process. To start with, the initial
hypotenuse (sakṛt-karṇa), K0, is computed in the usual way in terms of the
mean anomaly (θ0–θu), using the mean epicycle radius r0:

K0 = OP1 =
√
[R sin(θ0–θu)]2 + [R cos(θ0–θu) + r0]2. (4)

Then the next approximation to the epicycle radius, r1, is computed using

r1 =
r0
R
K0. (5)

From r1 the corresponding hypotenuse K1 is computed using

K1 =
√
[R sin(θ0–θu)]2 + [R cos(θ0–θu) + r1]2. (6)

And, from K1, the next approximation r2 is computed using

r2 =
r0
R
K1. (7)

And so on, till there is no appreciable difference between successive results
(aviśeṣa), which means that, for some m

rm+1 =
r0
R
Km ≈ rm. (8)

Then, it can be seen right away that the iterated radius rm and the associated
hypotenuse Km, are such that

rm =
r0
R
Km. (9)

In other words, they very nearly satisfy the relation (1) that characterises the
true epicycle r and the corresponding true hypotenuse K.
In his explanatory notes to the Mahābhāskarīya, Shukla explains how the

above iteration process actually converges to the true radius r and the true
hypotenuse K, satisfying the relation (1). He also identifies the geometrical
location P of the manda-corrected planet in the following manner. In Figure 1,
let O′ be the point on OU such that OO′ = r0. Let the line O′P1 intersect the
concentric at Q. Then, the P the true or manda-corrected planet is located at
the intersection of the lines OQ and P0P1, extended if necessary. Now, draw
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the line QT parallel to P0P1, where T is located on OP0. From the similar
triangles OQT and OPP0, we get

QT

OQ
=
P0P

OP
. (10)

Since, QT = P0P1 = r0, P0P = r, OQ = R, and OP = K, equation (10)
reduces to relation (1) as required.
Later, in another landmark article published in 1973,15 Shukla explains

how the above formulation of the manda-saṃskāra is the one followed almost
universally by all schools of Indian astronomy, except for a few astronomers
such as Pṛthūdakasvāmi (c. 860) and some seventeenth century astronomers
who had not understood the traditional formulation. Shukla first presents
detailed quotations from the astronomers of the school of Āryabhaṭa (such as
Lalla (c. 750), Govindasvāmi (c. 800), Sūryadevayajvā (c. 1200) and the later
Kerala astronomers Parameśvara (c. 1430), Nīlakaṇṭha Somayājī (c. 1500) and
Putumana Somayājī (c. 1600)) to show that all of them clearly hold the view
that:

(i) The manda-hypotenuse does not appear in the equation of centre be-
cause the radius of the epicycle and the hypotenuse vary according to
the relation (1) mentioned above,

(ii) The true epicycle radius and the true hypotenuse may be found by an
iterative process such as the one discussed in Mahābhāskarīya.

Shukla next presents quotations from Brahmagupta (c. 628), Śrīpati (c.
1039), Bhāskara II (c. 1150) and the Ādityapratāpa-siddhānta to show that
they also subscribe to the same formulation of the manda-saṃskāra as outlined
above. He then refers to the view of Caturveda Pṛthūdakasvāmi (c. 860) the
commentator of Brahmagupta, that the hypotenuse is not used in the manda-
correction because the difference between the radius of the concentric and the
hypotenuse is small so that the latter is approximated by the radius itself.16

अतः ा र ा कण म कम ण न कायः इ त।
So, there being little difference in the result, the hypotenuse-pro-
portion should not be used in the manda-saṃskāra.

15K. S. Shukla, “Use of Hypotenuse in the Computation of the Equation of Centre Under the
Epicyclic Theory in the School of Āryabhaṭa???”, Indian Journal of History of Science,
8 (1973), pp. 44–57. The provocative title of the paper is due to the fact that it was
written in response to an erroneous claim made by the renowned scholar T. S. Kuppanna
Shastri (1900–1982) in his article “The School of Āryabhaṭa and the Peculiarities Thereof”
(Indian Journal of History of Science, 4 (1969), pp. 126–134).

16Shukla (1973), p. 52, citing Pṛthūdaka’s commentary on Brāhmasphuṭasiddhānta XXI.29.
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Shukla also discusses the refutation of the above view of Pṛthūdakasvāmi
by Bhāskara II in his Vāsanābhāṣya on Siddhāntaśiromaṇi.17 Shukla then
considers the case of the Sūryasiddhānta and remarks:18

The method prescribed in the Sūryasiddhānta for finding the equa-
tion of the centre is exactly the same as given by the exponents of
the schools of Āryabhaṭa I and Brahmagupta and there is no use
of the hypotenuse-proportion. The author of the Sūryasiddhānta
has not even taken the trouble of finding the manda hypotenuse.
So it may be presumed that the views of the author of the Sūrya-
siddhānta on the omission of the use of the hypotenuse in finding
the equation of the centre were similar to those obtaining in the
schools of Āryabhaṭa and Brahmagupta.

Shukla perhaps forgot to mention in this context the important fact that his
own 1957 edition of the Sūryasiddhānta with the commentary of Parameśvara
has a verse (verse IV.2 of the Chapter IV dealing with lunar eclipse) which
states that the distance of the Sun or the Moon is proportional to the cor-
responding “manda-śravaṇa” or the manda-hypotenuse. And the commenta-
tor Parameśvara glosses manda-śravaṇa as “mandasphuṭasiddhakarṇaḥ”, the
hypotenuse determined by the location of the true manda-corrected planet.
Parameśvara also notes that these distances are used for computing diame-
ters of the Sun and the Moon. Shukla notes that this verse is not found in
other versions of Sūryasiddhānta. All the versions however present an alter-
nate rule for computing the diameters as being inversely proportional to the
sphuṭabhukti or the true velocity.19

In this context, we may also mention that some of the astronomers in North
India in the seventeenth century seem to have failed to comprehend the tra-
ditional formulation of the manda-saṃskāra as expounded by Bhāskara I,
Brahmagupta and others. We can see this for instance in the commentary
Gūḍharthaprakaśaka of Raṅganātha on Sūryasiddhānta which was composed
in the year 1603. While explaining the verse II.39, which merely prescribes
that the radius of the concentric should be the denominator in the expression
for the equation of centre, Raṅganātha seems to be following Pṛthūdakasvāmi
when he argues that:20

म कण ास ेन ा रेण ातु ेना कारा ।
[The hypotenuse is not used in the manda-saṃskāra] because the

17Ibid. pp. 52–3.
18Ibid. p. 54.
19Sūryasiddhānta with commentary of Parameśvara, ed. by K. S. Shukla, Lucknow Univer-
sity, Lucknow 1957, p. 58.

20Sūryasiddhānta with commentary Gūḍharthaprakaśaka of Raṅganātha, ed. By F. E. Hall
and Bāpū Deva Śāstrin, Baptist Mission Press, Calcutta 1859, pp. 77–8.
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manda-hypotenuse is close to the radius [of the concentric] and
it can be accepted to be the equal to the radius with a slight
difference.

Shukla mentions in his 1973 paper that Munīśvara (c. 1646), the son of
Raṅganātha, and his famous rival Kamalākara (c. 1658) also did not follow the
traditional view on mandasaṃskāra. Instead of considering a variable epicycle,
they seem to have advocated the use of just the tabulated epicycle and also
division by the sakṛt-karṇa or the first hypotenuse (K0 of equation (4)).
In conclusion Shukla notes:21

From what has been said above it is clear that the hypotenuse
has not been used in Hindu astronomy in the computation of the
equation of the centre under the epicyclic theory. It is also obvi-
ous that with the single exception of Caturvedācārya Pṛthūdaka
all the Hindu astronomers are unanimous in their views regarding
the cause of omission of the hypotenuse. According to all of them
the manda epicycles stated in the works on Hindu astronomy cor-
respond to the radius of the planet’s mean orbit and are therefore
false.
Since the manda epicycle stated in the Hindu works corresponded
to the radius of the planet’s mean orbit, the true manda epicycle
corresponding to the planet’s true distance (in the case of the Sun
and the Moon) or true-mean distance (in the case of the planets
Mars, etc.) was obtained by the process of iteration. The planet’s
true or true-mean distance (manda-karṇa) was also like wise ob-
tained by the process of iteration.
Direct methods for obtaining the true manda-karṇa or true manda
epicycle were also known to later astronomers. Mādhava (c. 1340–
1425) is said to have given the following formula for the true
manda-karṇa:22

true manda-karṇa (or iterated manda-karṇa) =
R2√

R2 − (bhujāphala)2 ∼
+ koṭiphala

,

∼ or + sign being taken according as the planet is in the half
orbit beginning with the anomalistic sign Capricorn or in that
sign beginning with the anomalistic sign Cancer.

21Shukla (1973), p. 54.
22The reference is to Nīlakaṇṭha’s commentary on Āryabhaṭīya, III.17–21, and Tantrasaṅ-

graha II.44.
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The exact analytical expression of Mādhava for the iterated-manda-karṇa,
mentioned above by Shukla, can be recast in the form

K =
R2√

R2 − [r0 sin(θ0–θu)]2 − r0 cos(θ0–θu)
. (11)

Here, it may be noted the above result (11) can be easily derived23 by using
the similarity of the triangles OQT and OPP0 in Figure 1. We have, OP =

OQ× OP0

OT , which may be recast in the form:

K =
R2

Rv
, (12)

where, OT = Rv is the so called inverse hypotenuse or viparīta-karṇa, which
can easily be shown to be given by

Rv =
√
R2 − [r0 sin(θ0–θu)]2 − r0 cos(θ0–θu). (13)

Using Mādhava’s exact expression for the iterated-manda-karṇa, we can also
obtain the exact equation satisfied by the orbit of a planet which is moving
on a variable epicycle as specified in the manda-saṃskāra. It is seen that the
orbit is no longer an eccentric circle but a general oval figure.

3 How modern scholarship has misconstrued the
equation of centre in Indian astronomy

Shukla’s detailed explanation of the manda-saṃskāra was indeed path-break-
ing since, for nearly two centuries, modern scholarship had totally misinter-
preted this and other aspects of Indian planetary theory. One of the earliest
accounts of Indian planetary theory was the 1790 article of Samuel Davis
(1760–1819), which was largely based on Sūryasiddhānta and its commentary
Gūḍhārthaprakāśaka of Raṅganātha. While discussing the equation of centre
for the Sun and the Moon, Davis remarks that while the hypotenuse is used
in Indian astronomy for computing the retrogressions of planets (through the
equation of conjunction or śīghra-saṃskāra), they do not do so while comput-
ing the equation of centre. He cites the commentator (Raṅganātha, whom

23For a detailed discussion of Mādhava’s exact expression for the iterated manda-
hypotenuse, see: Tantrasaṅgraha of Nīlakaṇṭha Somayājī, ed. and tr., with notes by K.
Ramasubramanian and M. S. Sriram, Hindustan Book Agency, New Delhi 2011, pp. 96–
107, pp. 496–7. Also, Madhyamānayanaprakāraḥ of Mādhava, ed. and tr. with notes
by U. K. V. Sarma, R. Venketeswara Pai and K. Ramasubramanian, Indian Journal of
History of Science, 46.1 (2011), pp. T1–T29.
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we have cited earlier) as attributing this to the small difference between the
hypotenuse and the radius of the concentric:24

It is, however, only in computing the retrogradations and other
particulars respecting the planets Mercury, Venus, Mars, Jupiter,
and Saturn, where circles greatly excentric are to be considered,
that the Hindus find the length of the carṇa, or hypotenuse . . .;
in other cases, as for the anomalistic equations of the sun and the
moon, they are satisfied to take . . ., their difference, as the com-
mentator on the [Sūrya] Siddhānta observes, being inconsiderable.

The next major discussion on Indian planetary theories is found in the
1816 article of Henry Thomas Colebrooke (1765–1837), who had access to
many more source-works of Indian astronomy. Colebrooke first reiterates
what Davis had noted regarding the equation of centre based on his study of
the Sūryasiddhānta. Colebrooke then notes that Brahmagupta and Bhāskara
II held a different view that the reason why the hypotenuse does not ap-
pear in the equation of centre is not due to any approximation being made,
but because the epicycle itself varies with the hypotenuse. However, at the
same time, Colebrooke also mentions that the commentators of Brahmagupta
(Pṛthūdakasvāmi) and Bhāskara (Munīśvara) do not agree with this view:25

The Hindus, who have not any of Ptolemy’s additions to Hip-
parchus, have introduced a different modification of the hypothe-
sis, for they give an oval form to the excentric or the equivalent
epicycle, as well as to the planet’s proper epicycle. That is they
assume that the axis of the epicycle is greater at the end of the
(sama) even quadrants of anomaly . . ., and least at the end of the
(viśama) odd quadrants . . .

A further difference of theory, though not of practice, occurs among
the Hindu astronomers . . . A reference to Mr. Davis essay . . . will
render intelligible what has been already said and what now re-
mains to be explained. It is there observed . . . that for the anoma-
listic motion of the sun and moon they are satisfied to take . . .
the sine of the mean anomaly reduced to its dimensions in the
epicycle in parts of the radius of the concentric, equal to the sine
of the anomalistic equation. The reason is subjoined: ‘The differ-

24S. Davis “On the Astronomical Computations of the Hindus”, Asiatic researches, 2 (1790),
pp. 225–287. The quotation appears on page 251 and refers to a diagram on page facing
249.

25H. T. Colebrooke, “On the notions of the Hindu Astronomers concerning the Precession of
the Equinoxes and the Motions of the Planets”, Asiatic researches, 16 (1816), pp. 209–250.
The quotation appears on pp. 235–238.
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ence as the commentator on the Sūrya Siddhānta observes being
inconsiderable.’
Most of the commentators on the Sūrya Siddhānta assign that
reason; but some of them adopt Brahmegupta’s explanation. This
astronomer maintains that, the operation of finding the carṇa is
rightly omitted . . . His hypothesis as briefly intimated by himself,
and as explained by Bhāscara, supposes the epicycle, which repre-
sents the excentric, to be augmented in proportion which carṇa (or
the distance of the planet’s place from the earth’s centre) bears to
the radius of the concentric; and it is on this account, and not as a
mere approximation that the finding of the carṇa, with subsequent
operation to which it is applicable is dispensed with.
The scholiast of Brahmegupta objects to his author’s doctrine on
this point, that upon the same principle, the process of finding the
carṇa . . . should in like manner be omitted in the proper epicycle
of the five minor planets; and he concludes therefore, that the
omission of that process has no other ground, but the very incon-
siderable difference of the result in the instance of a small epicycle.
For as remarked by another author ([Munīśvara] in the Marīci26

[commentary on Siddhāntaśiromaṇi]), treating on the same sub-
ject, the equation itself and its sine are very small near the line of
the apsides; and at a distance from that line, the carṇa and the
radius approach to equality.

The first English translation, along with detailed explanation, of an Indian
astronomical text appeared nearly fifty years later. The translation of Sūrya-
siddhānta due to Ebenezer Burgess (1805–1870) (as revised by William Dwight
Whitney (1827–1894)) was published in 1860. This again noted that the
equation of centre in Indian astronomy was based on the approximation that
the hypotenuse was nearly equal to the radius. It also claimed that the manda-
corrected planet was not on any epicycle or eccentric, but was always located
on the concentric itself:27

The world wide difference between the spirit of the Hindu astron-
omy and that of the Greek . . . the one is purely scientific, devising

26The reference is to the following statement in Munīśvara’s commentary Marīci (on Sid-
dhāntasiromaṇi, Golādhyāya, Chedyakādhikara, verses 36–37): “तथा च य परमफलास ं
फलं त कण ास ेना ा रं य च कण ब रेण ातोऽ धक ं ून ं वा त
फल ैवा ेना ा र म त भावः।” (Siddhāntaśiromaṇi of Bhāskarācārya, Vāsanābhāṣya and
Marīci by Munīśvara, ed., Dattātreya Viṣṇu Āpaṭe, Volume I, Ānandāśrama Press, Poona
1943, p. 190).

27E. Burgess, Translation of the Sūryasiddhānta, The American Oriental Society, New
Haven 1860, p. 48, pp. 64–5.
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methods for representing and calculating the observed motions
and attempting nothing further; the other is not content without
fabricating a fantastic and absurd theory respecting the superhu-
man powers which occasion the movements with which it is dealing.
The Hindu method has this convenient peculiarity, that it absolves
from all necessity of adapting the disturbing forces to one another,
and making them form one consistent system, capable of geomet-
rical representation and mathematical demonstration; it regards
the planets as actually moving in circular orbits, and the whole ap-
paratus of epicycles . . . as only a device for estimating the amount
of the force and of its resulting motion, exerted at any given point
by the disturbing cause . . .
Now as the dimensions of the epicycle in all cases are small, . . .
may be without any considerable error may be assumed to be
equal to . . .; this assumption is accordingly made and . . . gives the
equation concerned.

Nearly a hundred years later, in 1956, when translations of the Pañca-
siddhāntikā, Āryabhaṭīya and the Khaṇḍakhādyaka had also became available,
the renowned historian of astronomy Otto Neugebauer (1899–1990), presented
an analysis of the “Hindu Planetary Theory”. He noted that:

Ignoring the theory of latitude the model which forms the basis
for the methods followed, e.g., by the Sūryasiddhānta, or in the
Khaṇḍakhādyaka, is an eccentric epicycle. A model of this type
(cf. Figure 2) is determined by the radius r of the epicycle, the
eccentricity e, and the longitude λA of the apogee A′ of the deferent
of radius R.

Neugebauer also discussed the four-step process of combining the manda
and the śīghra-saṃskāras (equations of centre and conjunction) and found
that it was an interesting way of combining these equations—especially when
they were given in the form of tables—which is different from the Ptolemaic
method of interpolation between extreme values. However, as regards the
equation of centre, he repeated what was by then the standard view that it
was an approximation:28

Hindu astronomy, however, operates in the case of the correction
. . . for eccentricity with an approximate formula . . . There is no
reason to treat the effect of the eccentricity with so much less

28O. Neugebauer, “The Transmission of Planetary Theories in Ancient and medieval As-
tronomy”, Scripta Mathematica, 22 (1956), pp. 165–192. The quotations appear on pages
pp. 176–180.
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Figure 2: Eccentric epicycle model of Neugebauer.

accuracy than the effect of the anomaly, except for the fact that
usually e [the eccentricity] is smaller than r [the ratio of the radius
of the śīghra epicycle to that of the concentric]. It may be that
in the course of the historical development of planetary theory
greater emphasis was attached to the phenomena caused by the
anomaly than to those due to the eccentricity, but we know so
little about the history of planetary theories that we hardly have
any choice except to register the facts.

Starting from the late 1950s, David Pingree (1933–2005), another distin-
guished scholar of history of exact sciences and a junior collaborator of Neuge-
bauer (whom he succeeded as Professor of History of mathematics at Brown
University), brought out a number of studies of Indian astrology and astron-
omy. Pingree was a reputed scholar of Sanskrit, Akkadian, Arabic and of
course Greek and Latin. One of Pingree’s main concerns was the transmission
of theories and techniques of exact sciences, especially between Mesopotamia,
Greece and India in ancient times. Hence, even while a large number of source-
works of Indian astronomy—of the classical Siddhāntic period (c. 500–1200)
and of the medieval Kerala School—had become available (including some of
the classic works of Shukla), Pingree, in his studies of Indian planetary theo-
ries, seems to have focussed mainly on ancient texts such as the Paitāmaha-
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siddhānta of Viṣṇudharmottarapurāṇa, Yavanajātaka, Pañcasiddhāntikā and
the Sūryasiddhānta. It is important to keep in mind that, except for the
Sūryasiddhānta (which, in any case, is considered to be a later text), all the
other texts relied upon by Pingree are in the form of brief summaries that too
available only in parts, and the available manuscripts are such that the text
had to be substantially emended at several places.
Amidst the large corpus of writings by Pingree on Indian astronomy, we

shall here focus only on his analysis of the manda-saṃskāra or the equation
of centre and some related issues. In 1971, Pingree wrote a paper “On the
Greek Origin of the Indian Planetary Model Employing a Double Epicycle”.
Here, Pingree claims that the “common Indian model for the motion of the
star planets” was a “double epicycle model”, which “involves two concentric
epicycles” and reaffirms the old view of Burgess and Whitney that the planet
always moved on a concentric or a deferent circle:29

It is my intention here to investigate the Greek background of
the common Indian model for the star planets which involves two
concentric epicycles.
In the Paitāmaha-siddhānta of the Viṣṇudharmottarapurāṇa, which
is our earliest extent exponent of the Indian double epicycle model
(it was probably composed in the first half of the fifty century ad)
the pattern was set for all later texts . . .
These two epicycles must be regarded simply as devices for cal-
culating the amounts of the equations by which the mean planet
on its concentric orbit is displaced to its true position. This in-
terpretation is confirmed by the explanation offered in early texts
of the mechanics of the unequal motions of the planets: demons
stationed at the manda and śighra points on their respective epicy-
cles pull at the planets with chords of wind.30 The computation
of the total effect of these two independent forces upon the mean
planet varies somewhat from one school (pakṣa) of astronomers to
another, or even from astronomer to astronomer within a pakṣa;
but the fundamental concept remains clear: the planet is always
situated on the circumference of a deferent circle concentric with
the centre of the earth while two epicycles (one each for the [case
of] Sun and Moon) revolve about it.

It is not clear whether any geometric model—not to mention a model where
the planets are moving on the concentric—can be inferred at all from the avail-
able Paitāmaha-siddhānta. What is indisputable is that the vast literature on
29D. Pingree, “On the Greek Origin of the Indian Planetary Model Employing a Double
Epicycle”, Journal of History of Astronomy, 2 (1971), pp. 80–85.

30The reference here is to Sūryasiddhānta II.2.



3 How modern scholarship misconstrued the Indian equation of centre 55

Siddhāntic astronomy, starting from the Āryabhaṭīya, clearly talks of the true
manda-corrected planet being located on the epicycle or the eccentric. Pin-
gree however thinks that these planetary models were “seldom . . . used in
computation”:31

Āryabhaṭa . . . correctly describes an eccentric-epicyclic model and
indicates the different directions a planet must travel on an epicy-
cle to produce the differing effects of the equation of the anomaly
and the equation of the centre. Though a number of later Indian
astronomers acquainted with the Āryabhaṭīya or derivative texts
of the Āryapakṣa refer to the eccentric model, it seems seldom to
have been used in computation.

Pingree further claims that his version of the Indian double epicycle model
“fits most closely into the attempts of Peripatetics [a group of Greek philoso-
phers owing allegiance to Aristotle] in the late first and second century to
preserve concentricity while explaining some of the phenomena.”32

Pingree also notes that:33

The Indians had to still take into account the problem of the vary-
ing distances of the Sun and the Moon whose computation is essen-
tial for the prediction of eclipse magnitudes. These distances they
made to vary with the true instantaneous velocity of the luminar-
ies.34 Thereby, of course, as was inevitable, strict concentricity is
lost. This fact, however, does not militate against the theory of
the peripatetic origin of the Indian double-epicycle model.

In some of his later review articles also, Pingree has reiterated his concep-
tion of the Indian planetary model being a double epicycle model with two
concentric epicycles (see Figure 3).35 It continues to be cited in the literature
as “the planetary model of the Indian tradition”.36

Following up on his concentric double-epicycle model, Pingree wrote an
article on ‘concentric with equant’ in 1974, where he makes the even more
fantastic claim that the verses IV. 9–12 and IV. 19–21 of Mahābhāskarīya
give the procedure for computing the motion of a body moving along a circle
31Ibid. p. 81.
32Ibid. p. 83.
33Ibid. p. 84.
34The reference here is to Paitāmaha-siddhānta V.3–4.
35See for instance, D. Pingree, “Mathematical Astronomy in India”, in C. G. Gillespie
(ed.), Dictionary of Scientific Biography, Vol. XV, New York 1978, pp. 533–633. Also,
D. Pingree, “Astronomy in India”, in C. Walker (ed.), Astronomy before Telescope, British
Museum Press, London 1996, pp. 123–42.

36See for instance, T. Knudsen, The Siddhāntasundara of Jñanarāja, Johns Hopkins Uni-
versity Press, Baltimore 2014, pp. 184–5.
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Figure 3: Double epicycle model of Pingree.

but executing uniform motion with respect to a point (equant) displaced from
the centre of the circle:37

One purpose of the present article is to point out that a procedure
for solving a concentric with equant is described in . . . the Ma-
hābhāskarīya . . .; its second purpose is to suggest a pre-Ptolemaic,
Peripataetic origin of the model, and therefore of the equant as
well.

In Mahābhāskarīya IV. 19–21, is found the method of computing
the effect of a concenrtric with equant by means of an eccentric
with varying eccentricity. . . .

In IV. 9–12, Bhāskara gives an equivalent solution employing an
epicycle of varying radius.

It was indeed observed by B. L. van der Waerden and I. V. M. Krishna Rav
in the 1950s (whose work has also been cited by Pingree) that the expression
for the equation of centre used in Indian astronomy is the same as what would
37D. Pingree, “Concentric with Equant”, Archives Internationalles d’histoire des Sciences,
24 (1974), pp. 26–28.
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Figure 4: Concentric with equant.

be obtained in the case of a body moving under the hypothesis of ‘motion along
a concentric with equant’.38

In Figure 4, the planet P is moving on the circle with centre O. U is the
ucca or the apsis and E is the equant point on OU such that OE = r0, the
tabulated epicycle radius. If the planet moves uniformly as seen from the
equant point, then the angle PEU is the mean anomaly θ0 − θu, and the
angle POU is the true anomaly θms − θu, and it can easily be seen that the
equation of centre will have the same form as given by equation (3):

R sin(θms − θ0) = −
(r0
R

)
R sin(θ0 − θu).

However, this equivalence is only with respect to the computation of the
longitudes of the planets and not their geocentric orbits which also involves
the variation of their distance from the centre of the earth. In fact, what
Bhāskara is describing in verses IV. 9–12 and IV. 19–21 of Mahābhāskarīya is
an iterative method to compute the varying manda-karṇa or the hypotenuse
38See B. L. van der Waerden, “Tamil Astronomy”, Centaurus, 4 (1956), pp. 221–234, and
the references cited there. The title of the paper is due to the fact that the investigations
of van der Waerden and Krishna Rav were aimed at understanding the vākyas giving
the longitudes of the Sun and Moon. It so happens that the vākya system of South
India had been wrongly characterised as “Tamil Astronomy” by Neugebauer in 1952
(O. Neugebauer, “Tamil Astronomy: A Study in the History of Astronomy in India”,
Osiris, 10 (1952), pp. 252–276).
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drawn from the centre of the concentric to the planet on either an epicycle (of
variable radius) or an eccentric (of variable eccentricity). That manda-karṇa,
as the commentator Govindasvāmi notes, is grahaghanabhūmadhyāntaram,39

the distance between the planet and the centre of the earth. There is thus no
way that the manda-saṃskāra of Indian Astronomy can be conflated with the
‘concentric with equant’ model of planetary motion—irrespective of whether
such a model was known to the Peripatetics (as Pingree suspects) or not.
Pingree, however, has reiterated his claim that, in Mahābhaskarīya, “the

epicyclic and eccentric models are considered and both are used to solve the
concentric with equant model by iteration” in his review article of 1978.40

Again we find this being echoed in the current literature in statements such
as:41

In the early Indian texts the anomalies of the Sun and Moon are
both modelled with concentric equant (the Earth is at the centre
of the deferent). . . .

Bhāskara explains the equivalence of the concentric equant and an
oscillating eccentric model by computing one from the other.

It is indeed unfortunate that such distorted views—concerning the formu-
lation of manda-saṃskāra and the meaning of manda-karṇa—continue to pre-
vail amongst the scholars studying Indian astronomy, notwithstanding the
fact that these issues have been dealt with very clearly and conclusively in
the books and articles of Prof. Shukla.

4 Correcting the verses giving the yuga parameters in
Pingree’s edition of Yavanajātaka

In 1989, Prof. Shukla wrote a seminal article42 where he examined and cor-
rected the text and translation of about ten verses, which presented the basic

39Mahābhaskarīya with Bhāṣya of Govindasvāmi and Siddhāntadīpikā of Parameśvara,
ed. by T. S. Kuppanna Sastri, Government Oriental Manuscripts Library, Madras 1957,
p. 190.

40D. Pingree (1978), p. 593.
41D. Duke, “Were Planetary Models of India Strongly Influenced by Greek Astronomy?” in
J. M. Steele, ed., The Circulation of Astronomical Knowledge in the Ancient World, Brill,
Leiden 2018, pp. 559–575. The quotations appear on pages pp. 562, 570–1. It may also
be noted that in this and some of his earlier articles Duke has shown that the four-step
process used in Indian planetary models gives a better approximation to the Ptolemaic
model with the equant, than is the case with a simple eccentric-epicycle model.

42K. S. Shukla,“The Yuga of the Yavanajātaka: David Pingree’s Text and Translation
Reviewed”, Indian Journal of History of Science, 34 (1989), pp. 211–223.
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parameters of the yuga, in chapter 79 of the famous critical edition and trans-
lation of Yavanajātaka of Sphujidhvaja published by Prof. Pingree in 1978.43

The publication of Yavanajātaka of Sphujidhvaja, was an important mile-
stone that established Prof. Pingree as a leading scholar of history of astrology
and astronomy in the ancient world. In his preface, Pingree recounts the im-
portance of the work, how hard he had to work for getting the manuscript and
editing and translating it over nearly two decades, and about his confidence
that his “main conclusions are unassailable”:44

Sphujidhvaja first attracted my attention over twenty years ago,
when I read the brief account of the Yavanajātaka given by Ma-
hāmahopādhyāya Haraprasād Śāstri . . . I spent the academic year
1957–58 in India . . . In December of 1957, I travelled to Nepal
to attempt to see the manuscript of the Yavanajātaka, but this
privilege was not granted to me. Fortunately, in the spring of
1958, Mahāmahopādhyāya Pandurang Vaman Kane, with the ut-
most kindness and generosity allowed me to copy a transcript that
he had acquired of ff. 2–19 and ff. 98–103. On the basis of this
fragment I recognised both the Greek origin of the treatise which
had been previously surmised from its title, and the Babylonian
character of its planetary theory.

It was not however until 1961 that a microfilm of the complete
manuscript (lacking, however, f. 102) was obtained through the
good offices of my guru Professor Daniel Ingalls of Harvard Uni-
versity, and the then ambassador to India and Nepal from the
United States, Professor John Kenneth Galbraith. . . . During the
years 1961–67, . . . I transcribed the Kathmandu Manuscript, es-
tablished a text, translated it and wrote the commentary; the
work then was completed essentially a decade ago. In the interim
I have tried to keep the commentary up to date, though I have
not been totally successful in this effort. But whatever falsehoods
or misrepresentations may persist, I am confident that the main
conclusions are unassailable: The greater part of the Yavanajā-
taka was directly transmitted (with some necessary adjustments)
from Roman Egypt to Western India, and this text is one of the
principle sources for the long tradition of horoscopic astrology in
India.

In this context, Pingree also referred to the communication he had received
43D. Pingree, The Yavanajātaka of Sphujidhvaja, Vols. I, II, Harvard University Press,
Cambridge 1978.

44Ibid. Vol. I, pp. v–vi.
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from Prof. Shukla mentioning the citations of Yavanajātaka found in the
Āryabhaṭīya-bhāṣya of Bhāskara I:45

As one further evidence of its influence on India science I quote
from a letter written to me by Professor Kripa Shankar Shukla,
dated Lucknow 26 January 1977. He informs me that in his Ārya-
bhaṭīya-bhāṣya written in 629 (of which important work Professor
Shukla is publishing a long-awaited critical edition this year) Bhās-
kara cites from ‘Sphujidhvajayavaneśvara’ verses 55–57 of Chapter
79 and from ‘Yavaneśvara’ pādas a–b of Verse 89 of Chapter 1.

Pingree reiterated some of these points in his introduction also:46

For an estimate of how much the Brāhmaṇas borrowed from the
Greeks and for an evaluation of how they developed what they bor-
rowed, no text is more pertinent than Sphujidhvaja’s Yavanajātaka
(The Horoscopy of the Greeks). Its importance in the history of
ancient science has led me, despite difficulties, to edit here all that
can be recovered of the work and to accompany the edition with a
translation and commentary. . . . What we have in Yavanajātaka,
then is the clearest evidence that has yet come to light of the direct
transmission of scientific knowledge from the ancient world of the
Mediterranean to the ancient world of India.

Pingree also mentions the difficulty that he had in editing the manuscript
and the method he adopted:47

The difficulty of editing and understanding Sphujidhvaja arises
from the fact that for most of the text we have only one very
incorrectly written manuscript to rely on. The errors of [the main
manuscript] N occur, on the average, at least once in every line.
Often the expanded version of Mīnarāja [Vṛddhayavanajātaka] or
some other testimonium comes to our aid; sometimes a knowledge
of Sanskrit grammar or idiom suggests the right reading, although
Sphujidhvaja was not so exact in his use of Sanskrit as to make this
criterion infallible. So we are forced occasionally simply to guess.
And I am aware that I must have missed guesses that will occur to
others, and that in some cases I will have guessed wrongly. Non
omnia possumus omnes [citation from Aeneid of Virgil, meaning
‘we cannot all do everything’].

45Ibid. Vol. I, p. vi.
46Ibid. Vol. I, p. 3.
47Ibid. Vol I, pp. 22–3.
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Pingree’s edition of Yavanajātaka was highly acclaimed for the detailed
critical apparatus and the enormous amount of historical and other data that
he had put together. However, the work was not critically reviewed for its
contents from a technical point of view. The review by Prof. Shukla was
perhaps the first serious review of the book, especially of the 79th chapter
which dealt with mathematical astronomy—an unusual feature in what is
otherwise a work on Jātaka or horoscopy. Shukla notes in the introduction
that:48

The Yavanajātaka written by Sphujidhvaja Yavaneśvara in the
third century ad was edited and translated into English by Prof.
David Pingree in 1978. The last chapter (ch. 79) of this work is
called Horāvidhi and deals with luni-solar astronomy on the basis
of a period of 165 years called yuga and the synodic motion of the
planets. The text is marred by faulty editing, the incorrect read-
ings being adopted and the correct ones given in the apparatus
criticus, with the result that the translation is incorrect at places
and the meaning really intended by the author is lost.
The object of the present paper is to study this chapter so as to
bring out the meaning really intended by the author.

The verses 3–10 of Chapter 79 of Yavanajātaka present the basic relations
characterising the luni-solar yuga49 of 165 years adopted in the text. Based
on his reading and translation of the text, Pingree arrived at the following set
of relations, which he presented in his review article of 1978:50

165 solar years = 1,980 saura months = 2,041 synodic months
= 58,231 risings of the Moon = 61,230 tithis = 60,265 civil days. (14)

One can already notice a problem with the above relations (14)—though it
was not noticed by Pingree—namely, that the sum of the number of synodic
months (2,041) and the risings of the Moon (58,231) is not equal to the number
of civil days (60,265). One of the consequence of (14), that was noted by
Pingree, is that the length of the solar year turns out to be 6, 5; 14, 32 =

365.2424 civil days, which is very close to the tropical year of Hipparchus
and Ptolemy (6,5;14,42 civil days). Pingree also noted that his edition and
translation of the verses 5, 11–13 and 34 led to values of synodic month,
48K. S. Shukla (1989), p. 211.
49A luni-solar yuga, unlike the yuga in Siddhāntic texts, is a number of years for which an
integral number of sidereal revolutions of the Sun and the Moon are specified along with
the number of civil days. The Vedāṅga-jyotiṣa uses a luni-solar yuga of 5 years. The
planetary theory of Yavanajātaka on the other hand is based on relations characterizing
the synodic motions of planets like in the case of Vasiṣṭha-siddhānta of Pañcasiddhāntikā.

50Pingree (1978), p. 538, equation (III.1).
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sidereal month, solar month, etc., which were not consistent with the above
relations (14) characterising the luni-solar yuga.51

While analysing the verses of Chapter 79, Shukla realised that Pingree had
failed to understand the internal logic of the luni-solar yuga of Sphujidhvaja,
as a result of which he had gone about adopting incorrect readings in place
of correct readings found in the manuscript and given as a part of appara-
tus criticus. Shukla also noticed that Pingree had often misunderstood or
misinterpreted various numerical expressions that occurred in the text.
The crucial errors were in the edition and translation of verses 6, 7. The

first half of the verse 6 dealt with the notion of tithi and its importance. The
second half mentioned the number of ‘them’ (‘teṣām’) in a yuga. Pingree chose
to interpret this as a reference to the number of civil days, and after emending
the readings came up with the interpretation that a yuga consisted of 60,265
civil days. Shukla noticed that the verse should be interpreted as giving
the number of tithis and, using the correct readings that were given in the
apparatus, he edited the verse and the translation leading to the interpretation
that the yuga consisted of 60,230 tithis.
The first half of the verse 7 deals with the fact that a dinarātra (nychthe-

meron, civil day) consists of 30 muhūrtas and it begins with sunrise. The
second half gives their (teṣām) number in a yuga. Now, Pingree chose to
interpret this as referring to the number of tithis in a yuga. He emended
the manuscript readings again to arrive at the interpretation that a yuga had
60,230 tithis. Here, Shukla noticed that the verse should be interpreted as
giving the number of civil days and, using the correct readings that were
given in the apparatus, he edited the verse and the translation leading to the
interpretation that the yuga consisted of 60,272 civil days.
After his analysis of verses 6 and 7, Shukla remarks:52

Pingree is aware of the fact that the second half of vs. 6 should
contain the number of tithis in a yuga and the second half of vs. 7
the number of civil days in a yuga, but his text has landed him in
trouble and he remarks: ‘A more logical order might be achieved
by interchanging 6c–d with 7c–d.’ He also complains about Sphuji-
dhvaja Yavaneśvara’s way of expressing numbers in verse: ‘The
extreme clumsiness with which Sphujidhvaja expresses numbers is
a reflection of the fact that a satisfactory and consistent method of
versifying them had not yet been devised in the late third century.’
But these remarks are uncalled for, as it is all due to the faulty
edited text.

51Ibid. p. 538, Tables III.2, III.3.
52Shukla (1989), p. 216.
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The basic relations that characterise the luni-solar yuga of Sphujidhvaja,
according to Shukla, are

165 solar years = 1,980 saura months = 2,041 synodic months
= 58,231 risings of the moon = 61,230 tithis = 60,272 civil days. (15)

Here, we see that these basic parameters are consistent and the sum of the
number of synodic months and the risings of the Moon is indeed equal to the
number of civil days. Equally important is the fact that the solar year now
turns out to be (365 + 47

165 ) = 365.28485 days, fairly close to the standard
sidereal year used in Siddhāntic astronomy.
In Table 1, we have summarised the corrections made by Shukla to the

reading and/or the translation of verses 5, 6, 7, 11, 12, 13, 19, 28, 29 and
34. Shukla noted that they were all consistent with the basic relations (15)
characterising the luni-solar yuga of Sphujidhvaja. He also restored most of
the faulty emendations done by Pingree by readings based on the apparatus,
and carefully corrected the translation of each of these verses. One of the
important corrections made by Shukla was pertaining to the verses 28–29,
which dealt with time measures. Here, Pingree’s emendation had resulted
in the relation 1 Nāḍikā = 30 Kalās, which is not attested anywhere in the
ancient texts. Shukla restored the reading given in the apparatus to arrive
at the correct relation 1 Nāḍikā = 10 Kalās. Shukla noted that this is the
relation given by Parāśara and Suśruta and close to the relation (1 Nāḍikā =

10 1
20 Kalās) found in the Vedāṅga-jyotiṣa. It also makes the values given in

verses 11–13 (where fractions of a day are specified in terms of Kalās etc.)
consistent with the basic yuga relations (15).
Finally, at the end of his paper, Shukla noted that the basic yuga parameters

given by (15) and the values of solar year, synodic month and sidereal year as
corrected by him are indeed close to the values specified in the Sūryasiddhānta.
Following the corrections to the text and translation of the verses giving the

yuga parameters worked out by Shukla in his pioneering article of 1989, Harry
Falk in 2001 pointed out another major flaw in the edition and translation of
the verse 14 of Chapter 79.53 Falk showed that Pingree had wrongly emended
this verse and its meaning to conclude that the epoch of the work was 23
March 144 ce. From the available manuscript reading in the apparatus, Falk
showed that the epoch should be 21 March 22 ce.
A spectacular breakthrough in the study of Yavanajātaka has occurred since

2011 with the discovery of a new Nepalese paper manuscript of the text by
Prof. Michio Yano. Based on this, and also making use of better copies of

53H. Falk, “The Yuga of Sphujidhvaja and the Era of the Kuśanas”, Silk Road Art and
Archaeology, 7 (2001), pp. 121–136.
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the earlier manuscripts, Bill Mak has published a new critical edition of the
Chapter 79 of Yavanajātaka with translation and notes.54

Bill Mak’s new edition and translation has added fresh evidence in support
of all the corrections—to the text as well as translation of the ten verses, and
the corresponding yuga parameters—carried out by Shukla in his pioneering
study of 1989.55 These were indeed remarkable corrections carried out merely
on the basis of the apparatus supplied by Pingree in his edition. Just to
illustrate this, we shall here present a brief extract from the new edition of
the corrected text of verse 6, along with the translations of Mak (M) and
Pingree (P) and the notes provided by Mak:56

मेण च यवृ ल ः त थ तुम न वधानजीव ।
ष का ा शती सह ं तेष युगे व युता न ष च ॥
M: The tithi, which is to be defined by the gradual waning or wax-
ing of the Moon, is the soul of the principles of the four (systems
of time-) measurement. Know that there are 60,000 plus 1000 plus
200 and 65 (i.e. 61,230) of them (i.e., tithis) in a yuga.
P: The Moon is to be characterized by waning and waxing in order.
The tithi possesses the seed of the principles of the four (systems
of time-) measurement. There are 60,265 (days) in a yuga.

. . . The main problem of Pingree’s reading of this particular verse
lies on the fact that he assumed the teṣām in pāda d to refer to
dina as opposed to tithi, leading to his suggestion that ‘a more
logical order might be achieved by interchanging 6c–d with 7c–
d’. As Shukla pointed out, the verse concerns entirely the num-
ber of tithis in a yuga and the numbers in pādas c, d require no
emendation. Pingree’s fantastic emendation57 of binduyutāni ṣaṭ
to mean 60 leads also to his audacious and subsequently highly
misleading statement—‘If my restoration . . . is correct, this is the
earliest reference known to the decimal place-value system with
a symbol for zero (bindu) in India. The extreme clumsiness with
which Sphujidhvaja expresses numbers is a reflection of the fact

54B. Mak, “The Last Chapter of Sphujidhvaja’s Yavanajātaka Critically Edited With
Notes”, Sources and Commentaries in Exact Sciences, 13 (2013), pp. 59–148.

55The new edition has also reconfirmed the correction of the epoch of the text carried out
by Falk.

56B. Mak, Ibid. pp. 90–92.
57One of Pingree’s claims has been that the Yavanajātaka presents us with the earliest
evidence of use of bhūtasaṅkhyā and the place value system with a symbol for zero. The
dates 149 ce for Yavaneśvara and 269 ce for Sphujidhvaja and some of the emended
parameters in Chapter 79 were arrived at on the basis of this supposition. The new
edition of Mak shows that, none of this is really attested to in the manuscripts and thus
there is no basis for the claim made by Pingree (Mak, ibid., pp. 68–71).
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that a satisfactory and consistent method of versifying them had
not yet been devised in the late third century.’58 This remark is
problematic because elsewhere the author of this chapter had no
problem expressing himself mathematically without the use of zero
or the explicit reference to a place-value system. Thus as Shukla
pointed out, Pingree’s reading 60,265 is completely wrong and the
correct reading is in fact given in his own apparatus. The last line
should thus read 60,000 (ayutāni ṣaṭ) plus 1,000 (sahasram) plus
200 (dviśatī ) plus 6× 5 (ṣaṭ pañcakāgrā). . . .

Another noteworthy point about this verse is the emphasis on the
tithi as the ‘soul’ (jīva) of the four calculations. The importance
of tithi may be summarized by the words of Sastry in the notes to
his new reading of Pañcasiddhānitkā I.4, where tithi was unwar-
rantedly emended to kṛta by Thibaut/Dvivedi and to stvatha by
Neugebauer/Pingree: “. . . [the tithi] is the chief of the five aṅgas,
viz. tithi, vāra, nakṣatra, yoga and karaṇa . . . [it] is most useful
not only for religious but also civil purposes, . . . [it is] the sine qua
non of all astronomical computation”.59 The number of tithis is
first stated here as the basis of some of the remaining calculations.
The use of tithi is not attested in any Greek work extant and the
importance given to it in this work suggests this formulation of the
‘best of the Greeks’ may be the work of the Greek community long
settled in India with great familiarity with the indigenous systems,
rather than a translation of a ‘lost work composed in Alexandria’
with sporadic Indian flavors as Pingree suggested.

On the basis of his critical study of the new manuscript (and fresh copies of
the older ones), Mak has indeed provided incontrovertible evidence to overturn
many of the claims by Pingree in his edition, claims which have had a major
impact on the historiography of astronomy and astrology in India in relation to
developments in Mesopotamia and Greece.60 His new edition of the Chapter
79 also shows that what may be needed is perhaps a new edition of the entire
text. When, thirty years ago, Prof. Shukla presented his review of a section
of Chapter 79 of Pingree’s edition of Yavanajātaka, indeed few would have
imagined that it would lead to a denouement such as this.

58The reference is to D. Pingree, The Yavanajātaka of Sphujidhvaja, Vol. II, Harvard
University Press, Cambridge (1978), pp. 406–7.

59The reference is to Pañcasiddhāntikā of Varāhamihira, ed. and tr. with notes by T. S. Kup-
panna Sastry and K. V. Sarma, PPST Foundation, Madras 1993, p. 5.

60For further details see B. Mak (2013), cited above. Also, B. Mak, “The Date and Na-
ture of Sphujidhvaja’s Yavanajātaka reconsidered in the light of some newly discovered
materials”, History of Science in South Asia, I (2013), pp. 1–20.
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5 Publication of Part III of “History of Hindu
Mathematics: A Source Book” by Datta and Singh

The two parts of the famous “History of Hindu Mathematics A Source Book”
by Bibhutibhusan Datta (1888–1958) and Avadhesh Narayan Singh (1905–
1954) were published in 1935 and 1938. They dealt with Arithmetic and
Algebra, respectively. In their preface to the first part (dated July 1935), the
authors mention that they had prepared a third part also:61

It has been decided to publish the book in three parts. The first
part deals with the history of numerical notation and arithmetic.
The second is devoted to algebra, a science in which the ancient
Hindus made remarkable progress. The third part contains the
history of geometry, trigonometry, calculus and various other top-
ics such as magic squares, theory of series and permutations and
combinations.

Datta had resigned from the Calcutta University in 1929 itself. He returned
to the University in 1931 to deliver his famous lectures on The Science of
Śulba, which got published in a book form in 1932. He finally retired from
the University in 1933 and took Sanyāsa in 1938 (the year in which the second
part of the Datta and Singh book appeared) and became Swami Vidyāraṇya.
He spent much of his later life at Pushkar.
As regards the Part III, R. C. Gupta mentions the following in his biograph-

ical essay of 1980 on Datta:62

Part III (Geometry, Trigonometry, Calculus, etc.) of the History
of Hindu Mathematics by Datta and A. N. Singh (died 1954) has
never been published although more than 40 years have passed
since the appearance of Part II. The information given by the late
Binod Bihari Dutt [brother of Bibhutibhusan Datta] in a personal
communication dated September 11, 1966 . . . that Part II has been
lost, turned out to be wrong. Manuscripts of Part III exist at
Lucknow with Dr. K. S. Shukla . . . and with the writer (R. C. G.)
of the present article who received it from (and due to kindness of)
Dr. S. N. Singh (son of A. N. Singh). It is unfortunate that the
authors (particularly A. N. S.) could not ensure the publication of
Part III . . ., although they lived long enough after the appearance
of Part II to have perhaps done so. It is also unfortunate that when

61Bibhutibhusan Datta and Avadhesh Narayan Singh, History of Hindu Mathematics: A
Source Book, Part I Motilal Banarsi Das, Lahore 1935, p. ix.

62R. C. Gupta, “Bibhutibhusan Datta (1999–1958), Historian of Indian Mathematics”, His-
toria Mathematica, 7 (1980), pp. 126–133.
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Parts I and II were reprinted [in 1962], no attempt was made to
bring the work up to date. Part III is expected to appear shortly,
in a serialised form, in the Indian Journal of History of Science.

On the history of publication of Part III, Sukomal Dutt notes the following
in his 1988 article on Datta:63

Manuscript of Part III of the book was traced by the writer in 1979,
41 years after Part II in a miraculous way. Though strange and
unbelievable it may sound to others, he was guided by the Holy
Spirit, Swami Vidyaranyaji; after a year’s intensive prayer to him.
Only then, Dr. K. S. Shukla retired professor of mathematics of
Lucknow University, kindly took upon hand its publication serially
in the ‘Indian Journal of History of Science’. According to his
statement Swamiji himself handed over the manuscript to him
after death of Dr. A. N. Singh, which should have been before
1958. He did not take any action on it till the writer found him
out and asked for the mss.

In this context, we may draw attention to the fact that Prof. Shukla himself
has referred to his interaction with Bibhutibhusan Datta (Swami Vidyāraṇya)
in 1954. In the preface to his 1976 edition and translation of Āryabhaṭīya,
Shukla acknowledges the valuable suggestions made by Datta in 1954:64

I wish to express my deep sense of gratitude to my teacher, the
late Dr. A. N. Singh, and to the late Dr. Bibhutibhusan Datta,
who, in 1954, had gone through the English translation and notes
and had offered valuable suggestions for their improvement.

Since A. N. Singh also passed away around the same time, in 1954, that
would have been the occasion when Datta had bequeathed the manuscript of
Part III of their work to Shukla. In the same edition of Āryabhaṭīya, Shukla
also refers to the manuscript of Part III, while citing the translation of Datta
and Singh of Verse 12 of Gaṇitapāda.65 Perhaps he had already made up his
plans to publish a revised version of Part III after his retirement in 1979. This
revised version was published in the form of the following eight articles which
appeared in the Indian Journal of History of Science during 1980–1993:
63Sukomal Dutt, “Bibhuti Bhusan Datta (1888–1958) or Swami Vidyaranya”, Gaṇita-

Bhāratī, 10 (1988), pp. 3–15.
64Āryabhaṭīya 1976, p. lxxvii. It may be noted that in the preface to the 1960 edition
of Mahābhāskarīya, Prof. Shukla makes a similar acknowledgement: “I am also under
great obligation to the late Dr. Bibhutibhusan Datta (alias Swami Vidyaranya) who
kindly went through the whole of this work and gave valuable suggestions and advice”
(Mahābhāskarīya 1960, p. ix).

65Āryabhaṭīya 1976, p. 52.
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1. “Hindu Geometry”, Indian Journal of History of Science, 15 (1980),
pp. 121–188.

2. “Hindu Trigonometry”, Indian Journal of History of Science, 18 (1982),
pp. 39–108.

3. “Use of Calculus in Hindu Mathematics”, Indian Journal of History of
Science, 19 (1984), pp. 95–104.

4. “Magic Squares in India”, Indian Journal of History of Science, 27
(1992), pp. 51–120.

5. “Use of Permutations and Combinations in India”, Indian Journal of
History of Science, 27 (1992), pp. 231–249.

6. “Use of Series in India”, Indian Journal of History of Science, 28 (1993),
pp. 103–129.

7. “Surds in Hindu Mathematics”, Indian Journal of History of Science,
28 (1993), pp. 253–264.

8. “Approximate values of Surds in Hindu Mathematics”, Indian Journal
of History of Science, 28 (1993), pp. 265–275.

Prof. K. S. Shukla has thus contributed immensely to our current under-
standing of the concepts, techniques and methodology of the Indian tradition
of astronomy and mathematics, including its historical development. He has
also left us with extremely readable books which can be profitably used by
students who are keen to study this vast subject.



Part II

Studies in Indian Mathematics:
Bhāskara I to Nārāyaṇa Paṇḍita



Hindu mathematics in the seventh century as
found in Bhāskara I’s commentary on the
Āryabhaṭīya (I) ∗

This paper, being the first of the series, is introductory and deals with certain
notable features of Bhāskara I’s mathematics.

1 Introduction

Hindu works exclusively dealing with Pāṭīgaṇita (=arithmetic and mensura-
tion) and Bījagaṇita (=algebra) written before the ninth century ad have
not come down to us. Bhāskara I writing in 629 ad refers to the mathe-
maticians Maskarī, Pūraṇa,1 Mudgala, Patana, and others; and Pṛthūdaka
writing in 860 ad refers to the mathematician Skandasena who was an author
of a work on Pāṭīgaṇita.2 But the writings of these mathematicians have not
survived as they were replaced by the works of the subsequent writers such
as Mahāvīra (850 ad), Śrīdhara (c. 900 ad), Bhāskara II (1150 ad), and oth-
ers. Our knowledge regarding the growth and development of mathematics in
the fifth, sixth, and seventh centuries ad is therefore based on the chapters
dealing with Pāṭīgaṇita and Bījagaṇita occurring in the Āryabhaṭīya (499 ad)
of Āryabhaṭa I and the Brāhmasphuṭasiddhānta (628 ad) of Brahmagupta.
Although these works have thrown ample light on the nature and scope of
arithmetic and algebra in those times, but, being essentially devoted to as-
tronomy, their treatment of arithmetic and algebra is brief and confined to
the statement of the important rules pertaining to those subjects. They do
not go into the details and do not even give examples based on the various
rules stated, as exercises for the student. It has therefore hitherto not been

* K. S. Shukla, Gaṇita, Vol. 22, No. 1 (June 1971), pp. 115–130.
1Maskarī Pūraṇa as one name is mentioned by Ācārya Śrutasāgara Sūri (1525 ad) in his
commentary on the Bodhaprābhṛta (Gāthā 53) and the Bhāvaprābhṛta (Gāthās 84 and
135) of Ācārya Kunda Kunda (c. 450 ad). So it may be that Maskarī Pūraṇa is the
name of one and the same person. I am indebted for this information to the late Swami
Vidyāraṇya (formerly Dr Bibhutibhushan Datta).

2Reference to Skandasena is also made in another mathematical work called Gaṇitāvalī,
where the work of Skandasena is described as “very obscure and very difficult to under-
stand”. A palm-leaf manuscript of the Gaṇitāvalī occurs in the collection of the Royal
Asiatic Society of Bengal.
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possible to have a clear idea of the nature of the mathematical problems set
to the students in those ancient times.
The discovery of the works of Bhāskara I has now enabled us to have some

more light regarding the mathematical knowledge in India in the seventh cen-
tury ad. Bhāskara I, who was a contemporary of Brahmagupta, wrote a
commentary on the Āryabhaṭīya in 629 ad. In this commentary, he has not
only given a detailed and exhaustive exposition of the mathematical rules
stated in the Gaṇita Section of the Āryabhaṭīya but has also supplied illustra-
tive examples with full solutions for each and every rule stated in that Section.
These examples are the earliest on record, excepting those of the Bakhshālī
Manuscript of uncertain date. Of these examples, the most interesting ones
are the hawk and rat problems, the bamboo problems, the lotus problems, and
the crane and fish problems, which are meant to illustrate the application of
the following property of the circle: “If the diameter ABC and the chord LBN
of a circle intersect at right angles, then LB2 = AB × BC”. Bhāskara I has
ascribed these problems to previous writers and they must have occurred in
the works of earlier mathematicians referred to and consulted by him. Similar
examples are found to occur in the writings of Mahāvīra (850 ad), Pṛthūdaka
(860 ad), Bhāskara II (1150 ad), and Nārāyaṇa (1356 ad) also.

Other important examples relate to the theory of the pulverizer, i.e., the
indeterminate equations of the first degree of the types:

(i) M = ax± b = cx± d = . . . ,

(ii) ax± c

b
= y,

where x and y are the unknown variables and M the unknown constant to be
determined, and a, b, c, d, . . . are the known constants given in the examples.
Bhāskara I’s examples constitute a good collection on the subject. In fact, a
better collection is not to be found in any other work on Hindu mathematics.
A number of these examples relate to the various applications of the theory
of the pulverizer to problems in astronomy. In order to facilitate solution
of such astronomical examples, Bhāskara I has appended a number of tables
relating to the various planets or relevant astronomical constants. These, it
may be noted, are the only tables of their kind available to us. Bhāskara I’s
exposition of Āryabhaṭa I’s rules of the pulverizer is very detailed and exhaus-
tive and it won for him a great name as a scholar. Devarāja, who wrote an
independent work entitled “the Crest of the Pulverizer” (Kuṭṭākāra-śiromaṇi)
in a concluding stanza of that work remarks:

In this work I have exhibited the theory of the pulverizer by in-
dications only. For every other matter that has remained from
being included here, one should consult Bhāskara I’s Bhāṣya on
the Āryabhaṭīya, etc.
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The scope of Bhāskara I’s examples, it must be pointed out, is strictly limited
to the rules of the Gaṇita Section of the Āryabhaṭīya and so they give only a
partial view of the mathematical problems set to students in those times.
Besides giving the examples, Bhāskara I has quoted a number of passages

from the then existing works on mathematics. Of these passages, some are
taken from the works which were popular and studied as text-books in his time.
In the case of such passages only the initial few words have been mentioned,
the rest being assumed to be well known to the reader. Some passages have
been cited to point out the approximate character of the rules contained in
them so as to emphasise the superiority of the corresponding rules of the Ārya-
bhaṭīya and some are quoted to find fault with them. A number of passages are
in Prākṛta Gāthās and seem to have been derived from Jaina sources. From
what Bhāskara I has written and from the quotations cited by him it appears
that the mathematical works then in existence were generally of the same
pattern and followed the same sequence of arrangement as the Pāṭīgaṇita or
Triśatikā of Śrīdharācārya or the other later works on mathematics.

In the present series of papers we propose to throw light on certain notable
features of Bhāskara I’s mathematics and discuss the mathematical examples
as well as the mathematical quotations occurring in Bhāskara I’s commentary
on the Āryabhaṭīya.

2 Notable features of Bhāskara I’s mathematics

2.1 Use of numbers and symbolism

Integral and fractional numbers

Bhāskara I freely uses both integral and fractional numbers, and amply il-
lustrates all arithmetical operations on integral as well as fractional numbers.
The following results are known to him:

a±
(
b

c

)
=

(ac± b)

c
,(a

b

)
±
( c
d

)
=

(ad± bc)

bd
,(a

b

)
×
( c
d

)
=
ac

bd
,(a

b

)
÷
( c
d

)
=
ad

bc
,(a

b

)2
=
a2

b2
,(a

b

)3
=
a3

b3
,
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√
a

b
=

√
a√
b
,

3

√
a

b
=

3
√
a

3
√
b
.

He writes integral numbers within square or circular cells, and also some-
times without making use of any cells. Thus, the numbers 4, 6, and 7 are
written in any one of the following ways :

4 6 7 4 6 7 4 6 7 4—6—7

For writing fractional numbers also, no uniformity is maintained. Some-
times they are enclosed within rectangular cells or brackets, sometimes not.
The dividing line is never used. Thus, the number 4 5

6 is written in any one of
the following ways:

4
5
6

4
5
6

4
5
6

4
5
6

 4
5
6

 4
5
6

The enclosures were probably meant to avoid confusion and also to ensure
that the numbers enclosed were not mixed up with the written matter.

Surds

Use is also made by Bhāskara I of surds. He knows that
√
a×

√
b =

√
ab,

a×
√
b =

√
a2b,

√
ab+

√
bc =

√
b(
√
a+

√
c), etc.

He has also quoted rules on surds from earlier works.

Symbol for the minus sign

For the minus sign, Bhāskara I makes use of a little circle (◦) on the right of
the number to be subtracted. For example,

(
1
2

)
−
(
1
6

)
is written as

1 1
2 6◦

In later works, the little circle is generally replaced by a dot.3

3In the Bakhshālī Manuscript, the symbol used for the minus sign is the modern plus sign
(+). In another manuscript acquired from Kashmir, containing an anonymous commen-
tary on the Pāṭīgaṇita of Śrīdhara, the symbols used for the negative sign are both + and
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Negative numbers

Bhāskara I has called a negative number by the term ṛṇa.4 The following
results are known to him:

b− a = −(a− b), a > b,

(−a)− (−b) = −(a− b),

a− (−b) = a+ b,

(−a)− b = −(a+ b).

Symbols of operation

Mathematical operations are sometimes indicated by placing the tachygraphic
abbreviations after the quantities affected. Thus, the operation of addition is
indicated by kṣe (from kṣepa), subtraction by a (from antara), multiplication
by gu (from guṇakāra), and division by hā (from hāra). Similar abbreviations
are found to be used in the Bakhshālī Manuscript also.

Symbols for unknowns

Quantities of unknown value are called yāvattāvat (meaning “as many as”, or
“as much as”), or gulikā. The latter term was used earlier by Āryabhaṭa I, and
is interpreted by Bhāskara I as follows:

By the term gulikā is expressed a thing of unknown value.5

Gulikā and yāvattāvat are used as synonyms. Bhāskara I writes:

These very gulikās of unknown value are called yāvattāvat.6

In arithmetical problems, the unknown or missing quantities have been
denoted by the zero symbol, as in the Bakhshālī Manuscript and other Hindu
works on arithmetic.

×, which are sometimes written to the right and sometimes to the left of the numbers
affected. The use of + above the number affected is found in early Jaina literature. For
example, in the commentary, entitled Dhavalā, on the Ṣaṭkhaṇḍāgama, Vol. 10, p. 151,
the commentator writes −1 as +

1 . The letter ri, the first letter of the word riṇa, is

written in the Brāhmī script as ो. It may be that this letter was originally used to denote
the negative sign. Subsequently, ो changed into +. How the little circle came to be used
for the negative sign is not very clear.

4In the above-mentioned manuscript, acquired from Kashmir, free use is made of negative
numbers. The number −2, for example, is written as +2 or ×2.

5गु लकाश नेा व ातमू व ु भधीयते। Comm. on Ā (=Āryabhaṭīya), ii. 30.
6एत एव गु लका अ व ात माणा याव ाव उ े। Comm. on Ā. ii. 30.
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2.2 Classification of mathematics

First classification

Bhāskara I writes:

This mathematics (gaṇita) is (fundamentally) of two kinds, which
permeate the four (fundamental operations). These two kinds are
increase and decrease. Addition is increase, and subtraction is
decrease. These two varieties permeate the whole of mathematics.
So has been said: ‘Multiplication and involution are the kinds
of addition, and division and evolution, of subtraction. Seeing
that the science (of mathematics) is permeated by increase and
decrease, this science is indeed of two kinds.7

To emphasise the above dictum, he raises the following doubts:

If it is so, how will the operations (of mathematics) be performed?
For, when we multiply 1

4 by 1
5 , we get 1

20 . But multiplication has
been defined (above) as a kind of addition, and here it has turned
out to be a kind of subtraction. Similarly, when we divide 1

20 by
1
4 , we get 1

5 . So here (division) which has been defined as a kind
of subtraction has turned out to be a kind of addition.8

He resolves the doubts as follows:

In both the cases, the doubts are removed as follows: In a square
field with unity as length and breadth, there are twenty rectan-
gular fields. Each one of them has 1

5 for its length, and 1
4 for its

breadth. Their product 1
20 is the area of the (rectangular) field.

So there is no fault (fallacy) if 1
20 divided by 1

4 comes out to be 1
5 .

This is how the above doubts are removed geometrically. In order
to remove them symbolically attempts may be made.9

The last passage is of special significance to historians of Hindu mathematics.
It proves that in the first half of the seventh century (if not earlier) use was
made of two methods of demonstration in mathematics: (i) geometrical, and
(ii) symbolical. In this connection we quote the following lines from Datta
and Singh’s History of Hindu mathematics:10

The method of demonstration has been stated to be ‘always of
two kinds: one geometrical (kṣetragata) and the other symbolical

7See the beginning of the comm. on Ā. ii.
8l.c.
9See the beginning of the commentary on Ā, ii.

10Part II, pp. 3–4.
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(rāśigata)’.11 We do not know who was the first in India to use geo-
metrical methods in demonstrating algebraical rules. Bhāskara II
ascribes it to ‘ancient teachers’.12

Second classification

Bhāskara I informs us that certain scholars classified mathematics under the
two heads, kṣetragaṇita (geometrical mathematics) and rāśigaṇita (symboli-
cal mathematics). “Other teachers say,” writes he, “that mathematics is of
two kinds—symbolical (rāśi) and geometrical (kṣetra).”13 According to this
divisions, says he, proportion and indeterminate analysis of the first degree,
etc., fall under the former, and series, problems on shadow, etc., fall under
the latter. The mathematics of surds (karaṇī-parikrama) formed part of both
of them. For, a surd quantity was both a number and a line (represented by
the hypotenuse of a right-angled triangle).
It may be asked: On what grounds were series classified under geometrical

mathematics? To a student of modern mathematics, who recognises series
as part of algebra, the question is quite relevant. But nowhere in his com-
mentary has Bhāskara I made an attempt to throw light on this point. The
mathematics of series has special reference to the area of a ladder. The word
śreḍhī, which is used to denote a series in Hindu mathematics, means a lad-
der; the word pada or gaccha, which is used to mean the number of terms in
a series, means the steps of a ladder; and the word śreḍhīphala, which is used
for the sum of a series, means the area of a ladder. This clearly shows why
in Hindu mathematics series were called by the name śreḍhī (ladder). The
above explanation is confirmed by the writings of later Hindu mathemati-
cians. For example, the celebrated Śrīdharācārya in his Pāṭīgaṇita, describes
the series-figure as follows:

I shall now describe the method for finding the lengths of the base
(i.e., lower side) and the face (i.e., upper side) of the (ladder-like)
series-figure (corresponding to the first term of the series).

The number of terms, i.e., one, is the altitude of the (correspond-
ing) series-figure; the first term of the series as diminished by half
the common difference of the series is the base; and that (base)
increased by the common difference of the series is the face . . .

Having constructed the series-figure (for altitude unity) in this
manner, one should determine the face for the desired altitude

11BBi (=Bhāskara II’s Bījagaṇita, Benaras Sanskrit Series), p. 125.
12BBi, p. 127.
13See the beginning of the commentary on Ā, ii.
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(i.e., for the desired number of terms of the series) (by the following
rule):

The face (for altitude unity) minus the base (for altitude unity),
multiplied by the desired altitude, and then increased by the base
(for altitude unity), gives the face (for the desired altitude).14

So has also been stated by Nārāyaṇa in his Gaṇitakaumudī.15 Moreover,
some of the problems set by Nārāyaṇa are based on ladder-like figures; and in
the solutions supplied to those problems, Nārāyaṇa has actually drawn such
figures. Pṛthūdaka also in his commentary on the Brāhmasphuṭasiddhānta
makes a similar remark. He writes:

The saṅkalita (i.e., the sum of a series), which has been exhibited
by Ācārya Skandasena on the analogy of a ladder, is meant to
demonstrate it by means of a figure.16

The ladder-like figure representing a series had a smaller base and a larger
top, so it looked like a drinking glass. Śrīdhara has, therefore, compared a
series-figure with a drinking glass. Writes he:

As in the case of an earthen drinking pot (śarāva) the width at
the base is smaller and at the top greater, so also is the case with
a series-figure.17

It is thus clear why in early days series were looked upon as part of geomet-
rical mathematics, not of algebra as in modern mathematics.

2.3 The four bījas of Gaṇita and their nomenclature.

Bhāskara I refers to the four bījas of Gaṇita, and calls them prathama (first),
dvitīya (second), tṛtīya (third), and caturtha (fourth), or yāvattāvat, vargā-
varga, ghanāghana, and viṣama.18 Bīja means “method of analysis”. It is
stated to be of four kinds, because in Hindu Mathematics equations are clas-
sified into four varieties.19 Each class of equations has its own method of
analysis. The yāvattāvat bīja is the “method of solving simple equations”, the
vargāvarga bīja is the “method of solving quadratic equations”, the ghanā-
ghana bīja is the “method of solving cubic equations”, and the viṣama bīja is
the “method of solving equations in more than one unknown”.
14For details see K.S. Shukla, Pāṭīgaṇita, English translation, pp. 66–68.
15GK (=Gaṇitakaumudī ), rule 73–74.
16Quoted by Sudhākara Dvivedi in his comm. on BrSpSi (=Brāhmasphuṭasiddhānta), xii. 2.
17PG (=Pāṭīgaṇita), English translation, p. 66.
18See Bhāskara I’s comm. on Ā, i. 1.
19Cf. B. Datta and A.N. Singh, History of Hindu Mathematics, Part II, p. 6.
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The above nomenclature of the four bījas has not been found in any other
known work on Hindu mathematics. In an anonymous commentary on the
Kuṭṭakādhyāya (a chapter of the Brāhmasphuṭasiddhānta),20 the quartet of
the four bījas is said to consist of (i) the theory of solving simple equations
(ekavarṇa-samīkaraṇa), (ii) the elimination of the middle term (madhyamā-
haraṇa), i.e., the theory of solving quadratic equations, (iii) the theory of
solving equations involving several unknowns (anekavarṇa-samīkaraṇa), and
(iv) the theory of solving equations of the type axy = bx + cy + d (called
bhāvita). This quartet of the four bījas is also mentioned by Bhāskara II.21

2.4 Evidence of the use of symbolic algebra before the time of
Bhāskara I

We have seen above that Bhāskara I in his commentary makes use of the
unknown quantities yāvattāvat and gulikā. The commentary due to its limited
scope does not throw much light on the contemporary algebra, but there are
reasons to believe that symbolic algebra had very much developed by that time.
In this connection we will draw the attention of historians of mathematics to a
very significant term mentioned by Bhāskara I. This is yāvakaraṇa. Bhāskara I
writes : “varga, karaṇī, kṛti, vargaṇā, and yāvakaraṇa are synonyms.”22 We
thus see that, according to Bhāskara I, the word yāvakaraṇa means “squaring”.
The literal meaning of that word is “making yāva”.23 But what is that yāva?
According to V.S. Apte’s Sanskrit-English Dictionary, the word yāva means
(i) food prepared from barley, or (ii) red dye. Etymologically, that word may
mean “to mix” or “to separate” (yu+ghañ). If these are the possible meanings
of the word yāva, how is it that Bhāskara I takes yāvakaraṇa as a synonym
of varga (or squaring)? The word yāvakaraṇa owes for its origin to algebraic
symbolism. In the commentary of Pṛthūdaka on the Brāhmasphuṭasiddhānta,
the equation 10x− 8 = x2 + 1 is written as

yāva 0 yā 10 rū 8̇

yāva 1 yā 0 rū 1

This is the standard Hindu symbolism, and was always used in analysis. It
occurs in all Hindu works on algebra, esp. the commentaries on algebraical
works. In this symbolism, yā is used as an abbreviation of yāvattāvat (the
unknown quantity, i.e., x), and yāva as an abbreviation of yāvattāvadvarga
(the square of the unknown quantity, i.e., x2); rū stands for rūpa (absolute
term). Thus, we see that, according to the algebraic symbolism of the Hindus,
20A micro-film copy of this comm. is in our possession.
21See BBi, ekavarṇa-samīkaraṇa, 1–3 (comm.).
22Comm. on Ā, ii, 3 (i).
23Cf. samakaraṇa, meaning “making equal”, or “equating”, or “equation” (sama=equal,

karaṇa=making).
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yāva stands for yāvattāvadvarga (the square of any quantity whatever). Yāva-
karaṇa, therefore, means “making the square of any quantity”, i.e., “squaring
a quantity”, or simply “squaring”.
The term yāvakaraṇa was evidently coined after the symbolism on which it

is based was developed in India. Bhāskara I mentions that word as one of the
synonyms of varga (squaring), but nowhere in his commentary has he used
that term. It is probable that it was handed down to him by tradition.

2.5 Use of unusual or special terms.

2.5.1 The term udvartanā (meaning “multiplication”)

Bhāskara I writes: “saṃvarga, ghāta, guṇanā, hatiḥ and udvartanā are syn-
onyms”.24 The term saṃvarga is used but rarely, but the term udvartanā is
rather unusual, as it is not found to occur in any other work. It is similar to
the term apavartana (meaning “division”) and is evidently its antonym.
The word abhyāsa is also used in the sense of multiplication.

2.5.2 Terms for the surd

The usual Hindu term for the surd is karaṇī. Bhāskara I, in addition to this
term, has also used the term karaṇi.25 Both these terms are also found to
occur in the gāthās quoted by Bhāskara I. So it seems that both these forms
were used in early times.

It is interesting to note that the term karaṇī, or karaṇi, when operating on
a number (> 1), is generally used in its plural form. That is to say, instead
for writing karaṇī 216, it is written as karaṇyaḥ 216. Still more interesting
is the method of writing the karaṇī of a compound fraction. For example,
Bhāskara I writes √

31
42683983

1953125000

in the following way:

karaṇyaḥ 31, karaṇībhhāgāśca 42683983
1953125000

2.5.3 Terms for “power” and “root”

We have seen above that the terms abhyāsa, saṃvarga, ghāta, guṇanā, hatiḥ,
and udvartanā have been used by Bhāskara I in the sense of multiplication.
More particularly, these terms have been used in the sense of “multiplication
of unequal quantities.” For the multiplication of equal quantities, Bhāskara I
24Comm. on Ā, ii. 3 (i).
25Opening lines of the comm. on Ā, ii. and comm. on Ā, ii, 7 and 10.
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uses a special term, “gata”. “Guṇanā is the multiplication (abhyāsa) of un-
equal quantities, and gata,” says he, “is the multiplication of equal quanti-
ties.”26 The term dvigata, according to him, means “square”; trigata means
“cube”; and so on. The dvigata of 4 is the product of 4 and 4, i.e., 42; the
trigata of 4 is the continued product of 4 and 4 and 4, i.e., 43; and so on.
According to terminology, mn will be expressed by saying “nth gata of m”,
which corresponds to our present day expression “nth power of m”. Following
the same terminology, the roots have been called gatamūla. Thus 4 is the
dvigatamūla of 42, the trigatamūla of 43, and so on. In general, m is the “nth

gatamūla of mn”. This, too, corresponds to the modern expression “nth root
of mn”.
The credit of this scientific terminology is given to Brahmagupta.27 But it

was devised by some earlier Hindu mathematician, as both those terms, gata
and gatamūla, are found to be used in the same sense in a stanza quoted by
Bhāskara I from some anterior work.
The term bhāvitaka (or bhāvita), which Brahmagupta uses in the sense of

“the product of two dissimilar quantities”, does not occur in the commentary.
Brahmagupta writes:

The product of two equal quantities is called varga (square); the
product of three or more equal quantities is called “the gata of
that quantity”; and the product of (two) dissimilar quantities is
called bhāvitaka.28

2.5.4 Other notable terms

The following unusual terms used by Bhāskara I also deserve notice:

1. adhyardhāśrikṣetra (= a right-angled triangle).

2. saṅkalanā (= the sum of natural numbers).29

3. vargasaṅkalanā (= the sum of the series of squares of natural num-
bers).30

4. ghanasaṅkalanā (= the sum of the series of cubes of natural numbers).31

5. saṅkalanā-saṅkalanā (= the sum of the series 1+ (1+ 2)+ (1+ 2+ 3)+

. . . ).32

26अस शयो रा ोर ासं गुणना, गतं स शा ासः। See the opening lines of the commentary on Ā, ii.
27See B. Datta and A.N. Singh, History of Hindu Mathematics, Part II, p. 10.
28BrSpSi, xviii. 42(43).
29The usual term is saṅkalita.
30The usual term is vargasaṅkalita.
31The usual term is ghanasaṅkalita.
32The usual term is saṅkalita-saṅkalita.
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2.6 Weights and measures

The weights and measures, used by Bhāskara I, and their relations may be
stated in the tabular form as follows:

(i) Measures of gold, saffron, etc.:33

5 guñjās = 1 māṣa,
16 māṣās = 1 karṣa,
4 karṣas = 1 pala,

2000 palas = 1 bhāra.

(ii) Measures of grain, etc.:34

4 mānakas = 1 setikā,
4 setikās = 1 kuḍuba,
4 kuḍubas = 1 prastha.

(iii) Money measures:35

1 rūpaka = 20 viṁśopakas

Other measures used by Bhāskara I are the same as stated by Āryabhaṭa I .

2.7 Classification of the pulverizer (kuṭṭākāra).

Bhāskara I is the first to classify mathematical problems based on the inde-
terminate equation of the first degree called pulverizer (kuṭṭākāra) into two
types: (i) residual pulverizer (sāgra-kuṭṭākāra) and (ii) non-residual pulverizer
(niragra-kuṭṭākāra). These types may be illustrated by means of the following
examples:

Residual Pulverizer : Find what is that number which leaves 1 as
remainder when divided by 5, and 2 (as remainder) when divided
by 7.
Non-residual Pulverizer : 8 is multiplied by some number and the
product is increased by 6, and that sum is then divided by 13. If
the division be exact, what is the unknown multiplier and what is
the resulting quotient?

33Cf. PG (= Śrīdhara’s Pāṭīgaṇita), definition, 10; Triś (=Triśatikā), def. 5; Kauṭilya’s
Arthaśāstra, ii. ch. xix; Abhidhānappadīpikā, gāthās 479–80; GK (=Gaṇita-kaumudī,
def. 5; L (=Līlāvatī ), def. 4; Raghunātha-rāja’s comm. on Ā, ii. 2.

34Cf. GT (=Gaṇitatilaka), def. 7; Anuyogadvārasūtra. The latter is quoted by H. R.
Kapāḍiyā in the introduction (p. xxxvii) to his edition of the GT.

35This relation is unusual.
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An astronomical problem based on the indeterminate equation of the first
degree is called planetary pulverizer (graha-kuṭṭākāra). Bhāskara I in his
commentary illustrates numerous types of such problems. Two types, which
deserve particular notice, may be mentioned here. One is called “week-day
pulverizer” (vāra-kuṭṭākāra) and the other is called “time pulverizer” (velā-
kuṭṭākāra). Examples of these types are:

Week-day Pulverizer: The mean (position) of the Sun (for sunrise)
on a Wednesday is stated to be 8 signs, 25 degrees, 36 minutes,
and 10 seconds. Say correctly after how much time (since the
beginning of kaliyuga) will the Sun again assume the same position
(at sunrise) on a Thursday, a Friday, and a Wednesday.

Time Pulverizer: The revolutions, etc., of the Sun’s mean longi-
tude, calculated from an ahargaṇa plus a few nāḍīs elapsed, have
now been destroyed by the wind; 71 minutes are seen by me to
remain intact. Say the ahargaṇa, the Sun’s (mean) longitude, and
the correct value of the nāḍīs (used in the calculation).

2.8 Bhāskara I’s examples illustrating Āryabhaṭa I’s rules

These examples, as mentioned earlier, form one of the most notable features
of Bhāskara I’s mathematics. The set of Bhāskara I’s examples consists of as
many as 132 problems which are the earliest on record excepting those of the
Bakhshālī Manuscript of uncertain date.

Some of the methods employed by Bhāskara I are also worthy of note.
Mention may, for example, be made of his ingenious method for finding the
Sun’s longitude from the residue of the omitted lunar days (avamaśeṣa).36

2.9 Bhāskara I’s tables giving the least integral solutions of the
equation ax− 1 = by corresponding to all sets of values of a and
b that may arise in astronomical problems based on the
pulverizer

These tables are meant to facilitate the solution of the astronomical problems
based on theory of the pulverizer and form a unique feature of Bhāskara I’s
mathematics as tables of this kind are not to be met with in any other known
work on Hindu mathematics.37

We conclude this paper by giving Bhāskara I’s views regarding Āryabhaṭa
I’s mathematics as set forth in the Gaṇita Section of the Āryabhaṭīya.
36Vide infra, Ex. 129.
37Bhāskara I’s examples and tables will be displayed in the second and third papers of the
series to be published in Gaṇita, Vol 22, No. 2 and Gaṇita, Vol 23, No. 1. respectively.
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2.10 Bhāskara I’s views on Āryabhaṭa I’s mathematics and
reference to the detailed works of Professors Maskarī,
Pūraṇa, and Mudgala, etc.

According to Bhāskara I, the mathematics dealt with in the Gaṇita Section of
the Āryabhaṭīya is not the true representative of the mathematical knowledge
in his time. He calls it only “a bit of mathematics”. Writes he:

In the Gaṇita-pāda (= Gaṇita Section) the Ācārya (i.e., Ācārya
Āryabhaṭa I) has dealt with the subject of mathematics (Gaṇita)
by indications only, whereas in the Kālakriyā-pāda and Gola-pāda
he has discussed “reckoning with time” and “spherical astronomy”
in detail. So by the word Gaṇita (used by Ācārya Āryabhaṭa I)
one must understand “a bit of mathematics.” Otherwise, the sub-
ject of mathematics is vast. There are eight vyavahāras (deter-
minations), viz. miśraka (mixtures), śreḍhī (series), kṣetra (plane
figures), khāta (excavations), citi (piles of bricks), krākacika (saw
problems), rāśi, and chāyā (shadow). The miśraka is that which
involves a mixture of several things. The śreḍhī is that which has
a beginning (i.e., the first term), and an increase (i e., common
difference). The kṣetra tells us how to calculate the area of a figure
having several angles. The khāta enables us to know the volumes
of excavations. The citi tells us the measure of a brick pile in
terms of bricks. The krākacika: The krākaca (saw) is a tool which
saws timber; that which relates to the sawing of timber, i.e., that
which tells the measure of the timber sawn, is called krākacika
(vyavahāra). The rāśi tells us the amount of a heap of grain, etc.
The chāyā tells us the time from a shadow of a gnomon, etc. Of
the vyavahāra-gaṇita (practical or commercial mathematics, i.e.,
Pāṭīgaṇita), which is thus of eight varieties, there are four bījas,
viz. first, second, third and fourth, i.e., yāvattāvat (“theory of
simple equations”), vargāvarga (“theory of quadratic equations”),
ghanāghana (“theory of cubic equations”), and viṣama (“theory
of equations with several unknowns”). Rules and examples per-
taining to each one of these have been compiled (in independent
works) by Professors Maskarī, Pūraṇa, Mudgala and others. How
can that be stated by Ācārya (Āryabhaṭa I) in a small work (like
the Āryabhaṭīya)? So we have rightly said “a bit of mathemat-
ics”.38

Reference to the eight vyavahāras and a brief treatment of each of them
under separate heads is also found to occur in the Brāhmasphuṭasiddhānta of
38See Bhāskara I’s comm. on the opening verse of the Āryabhaṭīya.
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his contemporary Brahmagupta. As regards the bījas, Brahmagupta has clas-
sified them in his own way under three heads, viz. Ekavarṇa-samīkaraṇa Bīja
(theory of equations with one unknown), Anekavarṇa-samīkaraṇa Bīja (theory
of equations with several unknown), and Bhāvita Bīja (theory of equations
involving the product of different unknowns). He has included the theory of
quadratic equations in the first, but other mathematicians generally treat that
topic separately.
From the passage quoted above it is evident that in the time of Bhāskara I

and Brahmagupta, both arithmetic and algebra were in a fully developed form
and a number of works written exclusively on these subjects by Professors
Maskarī, Pūraṇa, and Mudgala, etc. were in existence.39

39Passages quoted from the earlier works by Bhāskara I will be displayed in the fourth
paper of the series to be published in Gaṇita, Vol. 23, No. 2.



Hindu mathematics in the seventh century as
found in Bhāskara I’s commentary on the
Āryabhaṭīya (II) ∗

This paper is the second of the series and deals with the mathematical exam-
ples set by Bhāskara I in illustration of the rules given in the Gaṇita Section
of the Āryabhaṭīya.

3 Bhāskara I’s examples

Below are given the examples set by Bhāskara I in illustration of the various
rules of the Āryabhaṭīya. The rule under which the particular example occurs
is given within square brackets after the statement of the example.

3.1 Examples on arithmetic and mensuration

On the squaring of integral numbers

Ex. 1. “Separately tell (me) the squares of (integral numbers) beginning with
1 and ending in 9, and also the square of 25 and of 100 plus 25.”1

[Ā,ii. 3 (i)]

On the squaring of fractional numbers

Ex. 2. “Tell me the squares of 6 plus 1
4 , 1 plus 1

5 , and 2 minus 1
9 .”

[Ā, ii. 3 (i)]

On the cubing of integral numbers2

Ex. 3. “Tell me separately the cubes of integral numbers beginning with 1
and ending 9, and also the cubes of (8× 8)2 and (252)2.”

[Ā, ii. 3 (i)]
* K. S. Shukla, Gaṇita, Vol. 22, No. 2 (December 1971), pp. 61–78.

1Ex. 1 reappears it Yallaya’s commentary on Ā, ii. 3.
2Exs. 3 and 4 reappear in Yallaya’s comm. on Ā, ii. 3.
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On the cubing of fractional numbers

Ex. 4. “If you have clear understanding of cubing a number, say correctly
the cubes of 6, 15, and 8 as respectively diminished by 1

6 ,
1
15 , and

1
8 (i.e.,

the cubes of 6 minus 1
6 , 15 minus 1

15 , and 8 minus 1
8 ).” [Ā, ii. 3 (ii)]

On extracting the square root of integral numbers

Ex. 5. “I want to know, O friend, the square root of the (square) numbers 1,
etc., previously determined, and also of the square number 625.”

[Ā, ii. 4]

On extracting the square root of fractional numbers

Ex. 6. “Calculate, in accordance with the arithmetic of (Ārya)bhaṭa, the
square root of 6 plus 1

4 and of 13 plus 4
9 and state the two results.”

[Ā, ii. 4]

On extracting the cube root of integral numbers

Ex. 7. “Tell me separately the cube roots of the cube numbers 1, etc. Also
quickly calculate the cube root of 1728.”3 [Ā, ii. 5]

Ex. 8. “Correctly state, in accordance with the rules prescribed in the Bhaṭa-
śāstra (i.e., Āryabhaṭīya), the cube root of 8291469824.”4 [Ā, ii. 5]

On extracting the cube root of fractional numbers

Ex. 9. “Correctly calculate in accordance with the arithmetic of Āryabhaṭa,
the fractional (cube) root of 13 plus 103

125 .” [Ā, ii. 5]

On the determination of the area of triangles

Ex. 10. “Tell (me), O friend, the areas of the (three) equilateral triangles
whose sides are 7, 8, and 9 (units) respectively, and also the area of the
isosceles triangle whose base is 6 (units) and the lateral sides each 5
(units).”5 [Ā, ii. 6 (i)]

Ex. 11. “Carefully say the area of the isosceles triangle in which the two
lateral sides are each stated to be 10 (units) and the base is given to be
16 (units).” [Ā, ii. 6 (i)]

3Exs. 7 and 8 reappear in Yallaya’s comm. on Ā, ii. 5.
4See footnote 3.
5Ex. 10 reappears in Yallaya’s comm. on Ā, ii. 6.
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Ex. 12. “O friend, what is the area of the scalene triangle in which one
lateral side is 13 (units), the other (lateral side) 15 (units), and the base
14 (units)?”6 [Ā, ii. 6 (i)]

Ex. 13. “Say what is the area of the scalene triangle in which the base is 51
(units), one lateral side is 37 (units), and the other lateral side is stated
to be 20 (units).” [Ā, ii. 6 (i)]

For finding the area of a triangle, Āryabhaṭa I states the general formula:
Area = 1

2 base × altitude. This formula is not directly applicable to finding
the areas of triangles in which the three sides are given. In order to make use
of that formula it is necessary to find the altitude. In the case of equilateral
and isosceles triangles, in which the altitude bisects the base, the altitude is
easily obtained by the formula:

(altitude)2 = (lateral side)2 −
(
base
2

)2

.

In case of scalene triangles, Bhāskara I makes use of the following result:

If a be base and b and c the lateral sides of a triangle, then

(altitude)2 = b2 − x2 or c2 − (a− x)2,

where x =
1

2

[
a+

(b2 − c2)

a

]
,

and a− x =
1

2

[
a− (b2 − c2)

a

]
.

This rule occurs in the Brāhmasphuṭasiddhānta (xii. 22) also. Brahmagupta
has also given the formula:7

area =
√
(s− a)(s− b)(s− c),

where 2s = a+ b+ c,

but Bhāskara I has not used this, perhaps because it was irrelevant to him.
It must be borne in mind that Bhāskara I aims at illustrating the rules given
by Āryabhaṭa I only.

On the determination of the volume of a triangular pyramid

Ex. 14. “Quickly tell me the more accurate volume and also the measure of
the altitude of the solid of the shape of a trapa in which each edge is 12
(units).” [Ā, ii. 6 (ii)]

6Ex. 12 appears twice in Gaṇitasārasaṅgraha. See GSS, vii. 10 and 53. It occurs also in
the Triśatikā of Śrīdharācārya and the Līlāvatī (p. 154) of Bhāskara II.

7See BrSpSi (=Brāhmasphuṭasiddhānta), xii. 21.



3 Bhāskara I’s examples 91

Ex. 15. “The length of each edge of a trapa is given to be 18 (units). I want
to know, O friend, the altitude and the volume thereof.” [Ā, ii. 6 (ii)]

Āryabhaṭa I’s formula for the volume of a pyramid is

volume = 1

2
(area of base)× (altitude).

Bhāskara I has made little improvement in this result. His contemporary
Brahmagupta has, however, given the correct formula for the volume of a
cone.8

On the determination of the circumference and area of a circle

Ex. 16. “The diameter (of three circles) are accurately determined by me to
be 8, 12, and 6 (units) respectively. Tell me separately the circumference
and area of each of these circles.” [Ā, ii. 7 (i)]

On the volume of a sphere

Ex. 17. “The diameters of (three) spheres are to be known as 2, 5, and 10
(units) respectively. I want to know their volumes briefly.” [Ā, ii. 7 (ii)]

Āryabhaṭa I’s formula for the volume of a sphere is

volume = (area of central circle)
3
2 .

Āryabhaṭa I writes that this is the accurate value for the volume of a sphere.
Bhāskara I too holds the same view. In fact, that value is not only inaccurate
but also wrong. The correct formula was given by Bhāskara II.9

On the determination of the junction-lines10 and the area of a
trapezium

Ex. 18. “(In a trapezium) the base is 14 (units), the face (i.e., the upper side)
is 4 units and the lateral sides each 13 (units). Give out the junction-
lines and the area.”11 [Ā, ii. 8]

Ex. 19. “(In a trapezium) the base, the lateral sides and the face are stated
to be 21 (units), 10 (units) each, and 9 (units) respectively. Give out
the area and the junction–lines.” [Ā, ii. 8]

8See BrSpSi, xii. 44.
9See Līlāvatī (Ānandāśrama Sanskrit Series), p. 201, stanza 201.

10By the junction-lines are meant the segments of the altitude through the intersection of
the diagonals.

11Ex. 18 reappears in the commentaries of Sūryadeva, Yallaya and Raghunātha Rāja on Ā,
ii. 8.



92 Hindu mathematics in the seventh century (II)

Ex. 20. “(In a trapezium) the base is 33 (units), and the other sides are each
stated to be 17 (units). What is the area thereof and what are the
junction-lines?” [Ā, ii. 8]

Ex. 21. “(In a trapezium) having 25 (units) for the face, the base is stated
to be 60 (units); the lateral sides are 13 (units) multiplied by 4 and 3
respectively. (Find the area and the junction-lines).”12

Ex. 22. “(In a trapezium) the altitude is stated to be 12 (units), the base 19
(units) and the face 5 (units). The lateral sides of that are given to be
10 (units) as severally increased by 5 and 3 (units). I want to know the
area and the junction-lines correctly.”13 [Ā, ii. 8]

On the determination of the area of a rectangle, etc.

Ex. 23. “(Of three rectangles) the breadths are 8, 5, and 10 (units); and the
lengths of these are 16, 12, and 14 (units) (respectively). What are the
areas of rectangles?” [Ā, ii. 9]

Ex. 24. “How will the verification be made in the case of all the areas of
triangles, quadrilaterals, and circles which have been determined by the-
oretical calculation?”14 [Ā, ii. 9]

Ex. 25. “(In a trapezium) one face (i.e., side) is seen to be 11 (units), the
opposite (parallel) face is stated to be 9 (units), and the length (=dis-
tance) (between them) is 20 (units). What, O mathematician, is the
area of that figure?”15 [Ā, ii. 9]

On the determination of the area of a figure resembling the
drum-shaped musical instrument Paṇava

Ex. 26. “The two (parallel) faces of (a figure resembling) a Paṇava are each
8 (units), the central width is 2 (units), and the length (between the
faces) is 16 (units). Say what is the area of this figure resembling the
(musical instrument) Paṇava.”16 [Ā, ii. 9]

12Ex. 21 reappears in Yallaya’s comm. on Ā, ii. 8.
13This is an example of a trapezium in which the lateral sides are unequal. In such a
trapezium, the area and the junction-lines are determined if, besides the sides, the altitude
is also known.

14According to Bhāskara I, the first half of Ā, ii. 9 relates to the verification of areas of
rectilinear figures. What is meant is that the given figure should be deformed into a
rectangle and then the area should be obtained by multiplying the length of the rectangle
by its breadth. A rectangle is chosen because its area is well known. In this connection
Bhāskara I has quoted a passage from some unknown mathematical work.

15Exs. 25 and 26 reappear in Raghunātha Rāja’s comm. on Ā, ii. 9.
16See footnote 15.
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The figure contemplated is a double trapezium obtained by placing two
equal trapeziums in juxtaposition in such a way that the smaller of the two
parallel sides of the trapeziums forms the central width of the double trapez-
ium. The formula used by Bhāskara I for the area of this figure is

area =
1

2

(
a+ b

2
+ c

)
× l

where a, b are the lengths of the parallel faces, l the distance between them,
and c the central width.

On the determination of the area of a figure resembling the tusk of
an elephant

Ex. 27. “The width (at the base) is stated to be 5 (units), the belly (i.e.,
inner curved side) is 9 (units), and the back (i.e., outer curved side) is
15 (units). Say, what is the area of this (figure resembling the) tusk of
an elephant.”17 [Ā, ii. 9]

The figure envisaged is a curvilinear triangle, bounded by a straight base
and two curved sides curved in the same direction. The formula used by
Bhāskara I for the area of such a figure is

area =
a

2
× b+ c

2
,

where a is the base and b, c the curved sides.

On the area of a circle

Ex. 28. “Calculate, O friend, according to the Gaṇita (of Āryabhaṭa), the
nearest approximations to the areas of the circles whose diameters are
2, 4, 7, and 8 respectively.” [Ā, ii. 10]

On the determination of the diameter of a circle from the given
circumference

Ex. 29. “Calculate and tell me the diameters of the circles whose peripheries
are 3299 minus 8

25 and 216000 respectively.” [Ā, ii. 10]

On the determination of the local latitude from the midday
shadow of the gnomon

Ex. 30. “When at an equinox the Sun is on the meridian, the shadow of a
gnomom, divided into 12 units, on level ground is seen to be 5, 9, and
3 1
2 (units at three different places). (Find the latitudes of those places).”

17Ex. 27 reappears in Raghunātha Rāja’s comm. on Ā, ii. 9.
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[Ā, ii. 14]

Ex. 31. “The shadow of the gnomon of 15 aṅgulas at midday on an equinox
is (seen to be) 6 plus 1

4 aṅgulas. Give out the Rsines of the latitude and
the co-latitude.” [Ā, ii. 14]

Ex. 32. “Say what is the distance of the Sun, whose rays are (profusely)
spread all round, from the zenith, when the shadow of a gnomon of 30
aṅgulas is observed to be 16 aṅgulas.”18 [Ā, ii. 14]

On the shadow of a gnomon due to a lamp-post

Ex. 33. “Tell (me the length of) the shadow situated at a distance of 80
(aṅgulas) from the foot of the lamp-post of height 72 (aṅgulas); and also
that of another gnomon situated at a distance of 20 (aṅgulas) from a
lamp-post of height 30 (aṅgulas).”19 [Ā, ii. 15]

Ex. 34. “Say what is the distance of the foot of the lamp-post of height 72
(aṅgulas) from the gnomon of 12 (aṅgulas) if the shadow (cast by the
gnomon) is 16 (aṅgulas).”20 [Ā, ii. 15]

Ex. 35. “The shadow of a gnomon, situated at a distance of 50 (aṅgulas)
from the foot of a lamp-post, is 10 (aṅgulas). Say what is the height of
the lamp.”21 [Ā, ii. 15]

Ex. 36. “(The lengths of) the shadows of two equal gnomons (of 12 aṅgulas)
are seen to be 10 and 16 (aṅgulas) respectively; the distance between
the shadow-ends is seen to be 30 (aṅgulas). Give out the upright and
the base for each (gnomon).”22 [Ā, ii. 16]

The “base” means “the height of the lamp-post” and the “upright” means
“the distance of the shadow-end from the foot of the lamp-post”. The two
gnomons are assumed to be in the same line as seen from the lamp-post.

Ex. 37. “(The lengths of) the shadows of two equal gnomons (of 12 aṅgulas)
are stated to be 5 and 7 (aṅgulas) respectively. The distance between
the shadow-ends is observed to be 8 (aṅgulas). Give out the base and
the upright.” [Ā, ii. 16]

18By saying that the rays of the Sun are profusely spread it is stated that it is midday.
19Ex. 33 reappears in the commentaries of Sūryadeva, Yallaya, and Raghunātha Rāja on

Ā, ii. 15.
20Ex. 34 reappears in the commentaries of Yallaya and Raghunātha Rāja on Ā, ii. 15.
21Ex. 35 reappears in the commentary of Raghunātha Rāja on Ā, ii. 16.
22Ex. 36 reappears in the commentaries of Sūryadeva, Yallaya, and Raghunātha Rāja on

Ā, ii. 16.
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On the so called Pythagoras’ theorem

Ex. 38. “Give out the hypotenuses (for three right-angled triangles) where
the bases and the uprights are 3 and 4, 6 and 8, and 12 and 9 (units)
respectively.” [Ā, ii. 17 (i)]

On the following property of the circle: “If the diameter ABC and
the chord LBM of a circle intersect at right angles, then
LB2 = AB ×BC,” AB and BC being called the arrows and LB the
Rsine

Ex. 39. “In a circle of diameter 10 (units), the arrows (i.e., segments of a
diameter) are seen by me to be 2 and 8 (units); in the same circle,
another set of arrows are 9 and 1 (units). Tell (me) the corresponding
Rsines.”23 [Ā, ii. 17 (ii)]

The Hawk-and-Rat problems

Ex. 40. “A hawk is siting at the top of a rampart whose height is 12 cubits.
The hawk sees a rat at a distance of 24 cubits away from the foot of
the rampart; the rat, too, sees the hawk. Thereupon the rat, for fear of
him, hastens to his own dwelling situated at (the foot of) the rampart
but is killed in between by the hawk who came along a hypotenuse (i.e.,
along an oblique path). I want to know the distance traversed by the
rat and also the (horizontal) motion of the hawk (the speeds of the two
being the same).”24 [Ā, ii. 17 (ii)]

Ex. 41. “A hawk is sitting on a pole whose height is 18 (cubits). A rat, who
has gone out of his dwelling (at the foot of the pole) to a distance of
81 (cubits), while returning towards his dwelling, afraid of the hawk, is
killed by the cruel (bird) on the way. Say how far has he gone towards
his hole, and also the (horizontal) motion of the hawk (the speeds of the
rat and the hawk being the same).”25 [Ā, ii. 17 (ii)]

The above two examples (Exs. 40 and 41) have been called the “hawk-and-
rat problems”. Bhāskara I ascribes such problems to previous writers. He
writes: “At this very place they narrate the hawk-and-rat problems.”
23Ex. 39 reappears in the commentaries of Sūryadeva, Yallaya, and Raghunātha Rāja on

Ā, ii. 17.
24Ex. 40 reappears in Raghunātha Rāja’s comm. on Ā, ii. 17. A similar example occurs
in Pṛthūdaka’s comm. on BrSpSi, xii. 41. See H.T. Colebrooke, Algebra with Arithmetic
and Mensuration from the Sanskrit of Brahmegupta and Bhāscara, London (1817), p. 309,
footnote.

25Ex. 41 reappears in Yallaya’s comm. on Ā, ii. 17.
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The Hindu method for solving such problems has been explained by Bhās-
kara I in detail. Following that method, Ex. 41 may be solved as follows:
Draw a circle with centre at O. Let ABOC be the horizontal diameter and

LBM a vertical chord intersecting the diameter at B. Imagine that BL is the
pole and BC the track of the rat. The hawk is sitting at L and the rat is at
C. They see each other. The rat then runs to his hole at B but is killed by
the hawk at O, the distance traversed by the hawk (i.e., LO) and by the rat
(i.e., CO) being the same.

It is given that LB = 18 cubits, and BC = 81 cubits. Since LB2 =

AB ×BC, therefore AB = 4 cubits. Therefore,

BO =
1

2
(BC −AB) = 38

1

2
cubits,

and CO =
1

2
(BC +AB) = 42

1

2
cubits.

Hence, the distance traversed by the rat is 42 1
2 cubits and the horizontal

motion of the hawk is 38 1
2 cubits.

It is interesting to note that Yallaya and Raghunātha Rāja have prescribed
the same method for solving the hawk-and-rat problems as described above.
The peacock-and-serpent problems given by Bhāskara II, Yallaya, and Raghu-
nātha Rāja are similar to the hawk-and-rat problems.

The Bamboo problems

Ex. 42. “A bamboo of height 18 (cubits) is felled by the wind. It falls at
a distance of 6 (cubits) from the root, thus forming a (right-angled)
triangle. Where is the break?”26 [Ā, ii. 17 (ii)]

Ex. 43. “A bamboo of 16 cubits is felled by the wind; it falls at a distance
of 8 cubits from its root. Say where has it been broken by the wind.”

[Ā, ii. 17 (ii)]

In the case of the bamboo problems like Exs. 42 and 43, BC (in the figure
of Ex. 41) is taken to represent the bamboo which breaks at O and reaches
the ground (BL) at L. To find the height of the break, we have to obtain the
length BO. As before BO = 1

2 (BC −AB), where AB = LB2

BC .
Ex. 42 is found to occur in Pṛthūdaka’s commentary on the Brāhmasphuṭa-

siddhānta of Brahmagupta.27 His method of solution is the same as used by

26Ex. 42 reappears in Pṛthūdaka’s comm. on BrSpSi, xii. 41 and in Raghunātha Rāja’s
comm. on Ā, ii. 17.

27See H.T. Colebrooke, l.c., p. 309, footnote.
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Bhāskara I.28 Similar problems are also found to occur in the Gaṇitasāra-
saṅgraha29 of Mahāvīra, the Līlāvatī 30 and the Bījagaṇita31 of Bhāskara II,
and the Gaṇitakaumudī 32 of Nārāyaṇa.

The Lotus problems

Ex. 44. “A full blown lotus of 8 aṅgulas is seen (just) above the water. Being
carried away by the wind it just submerges at a distance of one cubit.
Quickly say the height of the lotus plant and the depth of the water.”33

[Ā, ii. 17 (ii)]

Ex. 45. “A lotus flower of 6 aṅgulas just dips (into the water) when it ad-
vances through a distance of 2 cubits. I want to know the height of the
lotus plant and the depth of the water.”34 [Ā, ii. 17 (ii)]

Consider a circle with centre at O. Let ABOC be its vertical diameter and
LBM a horizontal chord intersecting the vertical diameter at B.
In the case of the lotus problems, the horizontal diameter of the circle

is supposed to denote the mud-level; the chord LBM the water-level; O is
supposed to be the root of the lotus plant, OB the lotus stalk, AB the lotus
flower, and L andM the points where the lotus flower just dips into the water.
Then,

OA (i.e., height of lotus plant) = 1

2
(BC +AB),

where

BC =
LB2

AB
; and OB (i.e., depth of water) = 1

2
(BC −AB).

The Crane-and-Fish Problems

Ex. 46. “There is a reservoir of water of dimensions 6 × 12. At the east-
north corner thereof there is a fish; and at the west-north corner there

28See B. Datta,“On the supposed indebtedness of Brahmagupta to Chiu-chang Suan-shu,”
Bull. Cal. Math. Soc., vol. xxii, p. 41.

29vii. 191 1
2
–192 1

2
.

30See L (Ānandāśrama Sanskrit Series) p. 141.
31See Bījagaṇita, ed. by Sudhakara Dvivedi and Muralidhara Jha, Banaras (1927), p. 57.
32Kṣetra-vyavahāra, Ex. 26.
33Ex. 44 reappears in Pṛthūdaka’s comm. on BrSpSi, xii. 41. (Colebrooke, l.c., p. 309,
footnote), and in the comm. of Yallaya and Raghunātha Rāja on Ā, ii. 17.

34Similar examples occur in the works of Bhāskara II (L, Ex. 155, p. 145; BBi, Ex. 112)
and Nārāyaṇa (GK, Kṣetra-vyavahāra, Ex. 28).
Problems similar to Exs. 44 and 45 are reported to occur in a Chinese work called

Chiu-chang Suan-shu, but the Chinese solution to those problems is quite different from
that of Bhāskara I. The Hindu solution is based on the property of right-angled triangles
which was known in India as early as the Vedic period.
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is a crane. For fear of him (i.e., of the crane) the fish, crossing the
reservoir, hurriedly went towards the south in an oblique direction but
was killed by the crane who came along the sides of the reservoir. Give
out the distances travelled by them (assuming that their speeds are the
same).”35 [Ā, ii. 17 (ii)]

Ex. 47. “There is a reservoir of water of dimensions 12×10. At the east-south
corner there is a crane and at the east-north corner there is a fish. (The
crane walks along the sides of the reservoir and the fish swims obliquely).
Say, on reaching which point of the western side of the reservoir is the
fish killed by the crane.”36 [Ā, ii. 17 (ii)]

Following the method of Bhāskara I, the first of the above two examples
(i.e., Ex. 46) may be solved as follows:

Let LBQP be the reservoir in which BQ = LP = 12, and LB = PQ = 6.
Also suppose that LB is the east side, PQ the west side, LP the north side,
and BQ the south side of reservoir. Initially the fish is at L and the crane at
P . After some time the fish swimming along LO reaches O, a point in BQ. In
the same time the crane, walking along PQ and then along QB, also reaches
O and kills the fish. The speeds of the fish and the crane being the same,
LO = PQ + QO. Let OC (along OQ produced) be equal to OL. Then the
circle drawn with O as centre and OL as radius must pass through C, and we
have

BC = BQ+ PQ = 12 + 6 = 18.

If CB produced intersects the circle at A, then

AB =
LB2

BC
=

36

18
= 2.

Hence, AC = AB + BC = 20 giving OL = 10. Therefore, the distances
traversed by the fish and the crane are each equal to 10.
Proceeding as above, it can be shown that the point required in Ex. 47

divides the western side of the reservoir in the ratio 8 8
11 : 3 3

11 .
An example similar to the above two occurs in the Gaṇitakaumudī of

Nārāyaṇa. See kṣetra-vyavahāra, pp. 38–39, Ex. 29–31.

On the determination of the arrows of the intersecting arcs of the
Moon and the shadow when the portion eclipsed is given

Ex. 48. “When 8 out of 32 of (the diameter of) the Moon are eclipsed by the
shadow of diameter 80, I want to know then what are the arrows of (the

35Ex. 46 reappears in the comm. of Raghunātha Rāja on Ā, ii. 17 (ii). A similar example
occurs in the comm. of Yallaya also.

36Ex. 47 reappears in Raghunātha Rāja’s comm. on Ā, ii. 17 (ii).
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intersecting arcs of) the shadow and the full Moon.”37 [Ā, ii. 18]

On the determination of the middle term and the sum of a series
in A.P.

Ex. 49. “In a series (in A.P.) the first term is seen to be 2; the successive
increase is stated to be 3; and the number of terms is stated to be 5.
Tell (me) the middle term and the sum of the series.”38 [Ā, ii. 19]

Ex. 50. “In a series (in A.P.) in which the first term is 8, the successive
increase is stated to be 5 and the number of terms is seen to be 18. Give
out the middle terms and the sum of the series.” [Ā, ii. 19]

On the determination of the desired term of a series in A.P.

Ex. 51. “(In a series in A.P.) in which the successive increase is 11 and the
first term 7, the number of terms is 25. Quickly say the ultimate and
penultimate terms of that series and also say what is the twentieth
term.”39 [Ā, ii. 19]

On the determination of partial sums of a series in A.P.

Ex. 52. “In the month of Kārtika a certain king daily gives away some money
(in charity) starting with 2 on the first day (of the month) and increasing
that by 3 per day. Fifteen days having passed away, there arrived a
Brāhmana well-versed in the Vedas. The amount for the next ten days
was given to him; that for the (remaining) five days (of the month), to
someone else. Say what do the last two persons get.” [Ā, ii. 19]

Ex. 53. “(In a series in A.P.) in which the first term is 15, the successive
increase is stated to be 18 and the number of terms 30. Quickly calculate
the sum of the ten middle terms (of that series).” [Ā, ii. 19]

On the determination of the sum of a series in A.P. when the first
term, the last term, and the number of terms are given

Ex. 54. “(Of 11 conch-shells which are arranged in the increasing order of
their prices which are in A.P.) the first conch-shell is acquired for 5

37Ex. 48 reappears in Mahāvīra’s Gaṇitasārasaṅgraha. See GSS, vii. 232 1
2
. A similar

example occurs also in the commentary of Sūryadeva on Ā, ii. 18.
38 Exs. 49 and 51 reappear in the commentaries of Sūryadeva, Yallaya, and Raghunātha
Rāja on Ā, ii. 19.

39See footnote 38.
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and the last for 95. Say what is the price of all the 11 conch-shells.”40

[Ā, ii. 19]

Ex. 55. “(In an arithmetic series) the first term is stated to be 1. The last
term is declared by the learned to be 100; the same is also stated to be
the number of terms. What is the sum of all the terms (of that series)?”

[Ā, ii. 19]

On the determination of the number of terms of an arithmetic
series when the first term, the common difference, and the sum of
the series are given

Ex. 56. “In a series (in A.P.) the first term is stated to be 5; the successive
increase is 7 and the sum 95. Say what is the number of terms thereof.”

[Ā, ii. 20]

Ex. 57. “(In an arithmetic series) in which the successive increase and the
first term are 9 and 8 respectively, the sum is stated to be 583. Tell (me)
the number of terms found by you.” [Ā, ii. 20]

On the sum of the series 1 + (1 + 2) + (1 + 2 + 3) + . . .

Ex. 58. “There are (three pyramidal) piles (of balls) having respectively 5, 8,
and 14 layers which are triangular. Tell me the number of units (balls)
(in each of them).”41 [Ā, ii. 21]

In the topmost layer of the pyramidal piles, there is 1 ball; in the second
layer from the top, there are 1 + 2 = 3 balls; in the third layer, there are
1+ 2+ 3 = 6 balls; in the fourth layer, there are 1+ 2+ 3+ 4 = 10 balls; and
so on. Every layer is in the form of a triangle.
The number of balls in the first pile having five layers

= 1 + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + 3 + 4 + 5)

=
5× 6× 7

6
or 35.

Similarly, the number of balls in the other two piles are 120 and 560 respec-
tively.
The series 1 + 2 + 3 + . . . has been called by Āryabhaṭa I by the name

citi or upaciti and the series 1 + (1 + 2) + (1 + 2 + 3) + . . . by the name
citighana. Their sums are also called by the same terms. Bhāskara I calls the
40Ex. 54 reappears in Yallaya’s comm. on Ā, ii. 19.
41Ex. 58 reappears in the commentaries of Sūryadeva, Yallaya, and Raghunātha Rāja on

Ā, ii. 21. Also see GSS, miśraka-vyavahāra, Ex. 331 1
2
.
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sum of the former by the term saṅkalanā and that of the latter by the term
saṅkalanā-saṅkalanā. In the Brāhmasphuṭasiddhānta (xii. 19) and other later
works, they are called a saṅkalita and saṅkalita-saṅkalita respectively.

On the determination of the sum of the series 12 + 22 + 32 + . . . to
any number of terms

Ex. 59. “There are (three pyramidal) piles on square bases having 7, 8, and
17 layers which are also squares. Say the number of units therein (i.e.,
the number of bricks of unit size used in each of them).”42 [Ā, ii. 22]

In the topmost layer there is one brick, in the next there are four, in the
next nine, and so on. The number of bricks used in the three piles are 140,
204, and 1785 respectively.

The sum of the series 12 + 22 + · · · + n2 has been called vargacitighana
by Āryabhaṭa I. Bhāskara I calls it vargasaṅkalanā. It is generally known as
vargasaṅkalita.43

On the determination of the sum of the series 13 + 23 + 33 + · · ·+ n3

Ex. 60. “There are (three pyramidal) piles having 5, 4, and 6 cubodial layers.
They are constructed of cubodial bricks (of unit dimensions) with one
brick in the topmost layer. (Find the number of bricks used in each of
them).”44 [Ā, ii. 22]

There is 13 brick in the topmost layer, 23 bricks in the next layer, 33 bricks
in the next, and so on. The number of bricks in the three piles are 225, 100,
and 441 respectively.
The sum of a series of cubes of natural numbers has been called ghanaciti-

ghana by Āryabhaṭa I. Bhāskara I calls it ghanasaṅkalanā. In later works it
is called ghanasaṅkalita. The same term has been used by Brahmagupta.45

On finding the product of two given numbers by the formula

xy =
1

2
[(x+ y)2 − x2 − y2]

Ex. 61. “What are the products of 5 and 4, of 7 and 9, and of 8 and 10?
Quickly say separately.” [Ā, ii. 23]

42Ex. 59 reappears in Sūryadeva’s comm. on Ā, ii. 22.
43See e.g. BrSpSi, xii. 20.
44Ex. 60 reappears in Yallaya’s comm. on Ā, ii. 22.
45See BrSpSi, xii. 20.
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On the determination of two numbers whose difference and
product are known

Ex. 62. “The product (of two numbers) is clearly seen to be 8; their difference
is 2. (Of other two numbers) the product being 18, the difference is 7.
Tell (me) the numbers multiplied in the two cases.” [Ā, ii. 24]

On interest

Ex. 63. “I do not know the interest on 100, but I do know that the interest
plus interest on interest accruing on 100 in 4 months is 6. Give out the
monthly interest on 100.”46 [Ā, ii. 25]

Ex. 64. “I do not know the monthly interest on 25 (rūpas). But the monthly
interest on 25 (rūpas) lent out at the same rate (of interest) is seen to
amount to 3 (rūpas) minus 1

5 in 5 months. I want to know the monthly
interest on 25 (rūpas) as also the interest for 5 months on the interest
of 25 (rūpas).” [Ā, ii. 25]

Ex. 65. “The monthly interest on 100 (rūpas) is not known, but the interest
on 100 (rūpas) lent out elsewhere (at the same rate of interest) is seen
to amount with interest thereon to 15 (rūpas) in 5 months. I want to
know — what is the interest on 100 (rūpas) as also what is the interest
that accrued in 5 months on 100 (rūpas)?” [Ā, ii. 25]

On the rule of three

Ex. 66. “5 palas of sandalwood are purchased by me for 9 rūpakas. How
much of sandalwood will, then, be purchased for one rūpaka?”47

[Ā, ii. 26–27 (i)]

Ex. 67. “If one bhāra of ginger is sold for 10 plus 1
5 (rūpakas), tell me quickly

the price of 100 plus 1
2 palas of ginger.”48 [Ā, ii. 26–27 (i)]

Ex. 68. “1 1
2 palas of musk are had for 8 plus 1

3 (rūpakas). Let Kṛtavīrya find
out how much of musk will be had for 1 plus 1

5 (rūpakas).”49

[Ā, ii. 26–27 (i)]

Ex. 69. “A serpent of 20 cubits in length enters into a hole, moving forward
at the rate of 1

2 of an aṅgula per muhūrta50 and backward at the rate of
46Ex. 63 reappears in the commentaries on Ā, ii. 25 of Yallaya and Raghunātha Rāja.
47Ex. 66 reappears in Yallaya’s comm. on Ā ii. 26–27 (i).
481 bhāra=2000 palas.
49Ex. 68 reappears in Yallaya’s comm. on Ā, ii. 26–27 (i).
501 muhūrta = 48 minutes.
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1
5 of an aṅgula (per muhūrta): in how many days does he get into the
hole completely?”51 [Ā, ii. 26–27 (i)]

On proportion and partnership

Ex. 70. “(Out of 11 cattle) 8 are tamed and 3 untamed — so are the cattle
described. Out of 1001 cattle, then, how many are tamed and how many
untamed?”52 [Ā, ii. 26–27 (i)]

Ex. 71. “15 merchants collaborate (in a business); the capitals invested by
them are in A.P. with 1 as the first capital and also 1 as the successive
increase. The profit that accrued (on the whole capital) amounts to
1000. Say what should be given to whom.” [Ā, ii. 26–27 (i)]

Ex. 72. “The combined profit of three merchants, whose investments are in
the ratio of 1

2 ,
1
3 , and

1
8 respectively, amounts to 70 minus 1. What is

whose profit (individually)?”53 [Ā, ii. 26–27 (i)]

On the rule of five

Ex. 73. “Given that 100 increases by 5 in a month, say, if you are versed in
(Ārya)bhaṭa’s Gaṇita, by how much will 20 increase in 6 months.”54.

[Ā, ii. 26–27 (i)]

Ex. 74. “100 invested for two months increases by 5; by how much will 25
invested for two months increase?” [Ā, ii. 26–27 (i)]

Ex. 75. “If 4 1
2 rūpakas be the increase (interest) on 100 (rūpakas) for 3 1

2

months, what will be the increase on 50 (rūpakas) for 10 months?”55

[Ā, ii. 26–27 (i)]

Ex. 76. “A sum of 20 plus 1
2 (rūpakas) increases by 1 plus 1

3 rūpakas in
1 plus 1

5 months. (Say) after carefully understanding “the method of
elimination of divisors” from the aphorism of the (Ārya)bhaṭa-tantra,

51Ex. 69 reappears in the commentaries of Yallaya and Raghunātha Rāja on Ā, ii. 26.
Raghunātha Rāja has, however, put the example in a slightly different form. A simi-
lar example is found to occur in the Bakhshālī Manuscript. Cf. G.R. Kaye, Bakhshālī
Manuscript, Arch. Survey of India, New Imperial Series, Vol. XLIII, Parts I and II, 1927,
Ex. 99, p. 51.

52Exs. 70 and 71 reappear in the commentaries of Yallaya and Raghunātha Rāja on Ā, ii.
26.

53Ex. 72 reappears in Yallaya’s comm. on Ā, ii. 26.
54Ex. 73 reappears in the commentaries of Yallaya and Raghunātha Rāja on Ā, ii. 26.
55Ex. 75 reappears in Yallaya’s comm. on Ā, ii. 26.
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what will be the increase of 7 minus 1
4 (rūpakas) in 6 plus 1

10 months.”56

[Ā, ii. 26–27 (i)]

On the rule of seven

Ex. 77. “If 9 kuḍavas of pure parched and flattened rice are obtained daily
for an elephant whose height is 7 (cubits), periphery 30 (cubits), and
length 9 (cubits), say how much of parched and flattened rice will be
obtained for an elephant whose height is 5 (cubits), length 7 (cubits),
and periphery 28 (cubits).”57 [Ā, ii. 26–27 (i)]

Ex. 78. “If 2 and a half kuḍavas of kidney beans (māṣa) are obtained for
an excellent elephant whose height is 4 cubits, length 6 (cubits), and
breadth 5 (cubits), how much should be obtained for an elephant whose
height is 3 (cubits), length 5 (cubits), and breadth 4 1

2 (cubits)?58

[Ā, ii. 26–27 (i)]

On inverse proportion

Ex. 79. “When one pala is equivalent to 5 suvarṇas, a certain quantity of
gold weighs 16 palas, what will the same gold weigh when one pala is
equivalent to 4 suvarṇas?”59 [Ā, ii. 26–27 (i)]

Ex. 80. “8 baskets are seen (to contain the whole grain) when each (bas-
ket) contains 14 prasṛtis60 (of grain); say how many baskets would be
(required) when each (basket) can contain 8 prasṛtis (of grain) (only).”61

[Ā, ii. 26–27 (i)]

On the simplification of fractions

Ex. 81. “ 1
2 ,

1
6 ,

1
12 , and

1
4 being respectively added together (two at a time),

say what is the aggregate.”62 [Ā, ii. 27(ii)]
56 Exs. 76 and 77 reappear in the commentaries of Yallaya and Raghunātha Rāja on Ā, ii.
26.

57See footnote 56.
58After solving this example, Bhāskara I adds: “Similarly, (the rules of Āryabhaṭa I) should
be applied to problems involving nine quantities or more.” This shows that the so called
rules of nine and eleven, etc. were well known in the time of Bhāskara I.

59Ex. 79 reappears in Yallaya’s comm. on Ā, ii. 26.
60Prasṛti is a measure of grain, equivalent to one handful. According to Anuyogadvārasūtra,
2 prasṛtis are equivalent to 1 setikā. See Section 2 (6) of this paper. (ed. in Part I of
this paper.)

61Ex. 80 reappears in Yallaya’s comm. on Ā, ii. 26.
62Ex. 81, in different words, is found to occur in Pṛthūdaka’s comm. on BrSpSi, xii. 8.
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Ex. 82. “What are the sums of 1
2 ,

1
6 and 1

3 , and
1
2 ,

1
6 ,

1
12 ,

1
20 and 1

5?”

[Ā, ii. 27(ii)]

Ex. 83. “Calculate, O mathematician, what the following sums amount to:
1
2 minus 1

6 ;
1
5 minus 1

7 ; and
1
3 minus 1

4 .” [Ā, ii. 27(ii)]

On the method of inversion

Ex. 84. “A number is multiplied by 2; then increased by 1; then divided by
5; then multiplied by 3; then diminished by 2; and then divided by 7:
the result (thus obtained) is 1. Say what is the initial number.”63 [Ā, ii.
28]

Ex. 85. “What is that number which when multiplied by 3, then diminished
by 1, then halved, then increased by 2, then divided by 3 and finally
diminished by 2, yields 1?” [Ā, ii. 28]

3.2 Examples on Algebra

On simultaneous linear equations

Ex. 86. “In a forest there are (four) herds of elephants consisting (severally)
of elephants in rut, elephants not in rut, female elephants, and young
elephants. The sums of the elephants in the four herds excepting one
(herd) at a time are known to be 30, 36, 49, and 50 (respectively). Cor-
rectly state the total number of elephants and also the number in each
herd separately.”64 [Ā, ii. 29]

Ex. 87. “The Sums of the numbers of elephants, horses, goats, asses, camels,
mules, and cows neglecting one of those animals at a time, are respec-
tively 28, and the same number (i.e. 28) successively diminished by 1,
the last number (thus obtained) being further diminished by 1. If you
have read the whole of the (chapter on) Gaṇita composed by Āryabhaṭa
from a teacher, correctly state the total number of the animals and also
the numbers of the different animals separately.”65 [Ā, ii. 29]

63Ex. 84 reappears in the commentaries of Yallaya and Raghunātha Rāja on Ā, ii. 28.
64Ex. 86 reappears in the commentaries of Sūryadeva and Raghunātha Rāja on Ā, ii. 29. It
requires the solution of the simultaneous equations: x2+x3+x4 = 30, x3+x4+x1 = 36,
x4 + x1 + x2 = 49, x1 + x2 + x3 = 50, where x1, x2, x3, and x4 denote the numbers of
animals in the four herds. See B. Datta and A. N. Singh, History of Hindu Mathematics,
Part II, pp. 47 ff.

65If x1, x2, x3, x4, x5, x6, and x7 are the numbers of the various animals and S their sum,
then we have to solve the simultaneous equations: S−x1 = 28, S−x2 = 27, S−x3 = 26,
S − x4 = 25, S − x5 = 24, S − x6 = 23, S − x7 = 21.
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On simple equations

Ex. 88. “(There are two merchants.) With the first merchant are seen by me
7 stout horses bearing auspicious marks and money amounting to 100
(rūpakas) in hand; with the second (merchant) there are 9 horses and
money amounting to 80 (rūpakas). If the two merchants be equally rich
and the price of each horse be the same, tell (me) the price of one horse
and also the equal wealth (with them).”66 [Ā, ii. 30]

Ex. 89. “A certain person has 8 palas of saffron and money amounting to
90 rūpakas; another person possesses 12 palas of saffron and 30 rūpakas;
(and the two persons are equally rich). If the two persons have bought
the saffron at the same rate per pala, I want to know the price of one
pala (of saffron) and also the equal wealth of the two.” [Ā, ii. 30]

Ex. 90. “7 yāvattāvat + 7 rūpaka = 2 yāvattāvat + 12 rūpaka. What is the
value of 1 yāvattāvat?” [Ā, ii. 30]

Ex. 91. “9 gulikā + 7 rūpaka = 3 gulikā + 3 rūpaka. What is the price of 1
gulikā?” [Ā, ii. 30]

Ex. 92. “9 gulikā − 24 rūpaka = 2 gulikā + 18 rūpaka. Say what is the price
of 1 gulikā.” [Ā, ii. 30]

Ex. 93. “One (man) goes from Valabhī at the speed of 1 1
2 yojanas a day;

another (man) comes (along the same route) from Harukaccha at the
speed of 1 1

4 yojanas a day. The distance between the two (places) is
known to be 18 yojanas. Say, O mathematician, after how much time
(since start) they meet each other.”67 [Ā, ii. 31]

Ex. 94. “One man goes from Valabhī to the Ganges at the speed of 1 1
2 yo-

janas a day, and another from Śivabhāgapura at the speed of 2
3 yojanas

a day. The distance between the two (places) has been stated by the
learned to be 24 yojanas. If they travel along the same route, after how
much time will they meet (each other)?”68 [Ā, ii. 31]

66Similar examples occur in Raghunātha Rāja’s comm. on Ā, ii. 30.
67If t denotes the required time in days, then 1 1

2
t+ 1 1

4
t = 18, giving t = 6 6

11
days.

68If t denotes the required time in days, then

1
1

2
t−

2

3
t = 24,

giving t = 28 4
5
days. Exs. 93 and 94 reappear in Raghunāntha Rāja’s comm. on Ā, ii. 31.



Hindu mathematics in the seventh century as
found in Bhāskara I’s commentary on the
Āryabhaṭīya (III) ∗

This paper is the third of the series and deals with the examples set by
Bhāskara I in illustration of Āryabhaṭa I’s rules on the indeterminate anal-
ysis of the first degree, given in the last two stanzas of the Āryabhaṭīya.
Bhāskara I’s tables stating the least integral solutions of the planetary pul-
verizers are also given.

4 Bhāskara I’s Examples (continued)

Below are given the examples set by Bhāskara I in illustration of Āryabhaṭa I’s
rules on the indeterminate analysis of the first degree known as the pulverizer
(kuṭṭaka or kuṭṭākāra).

4.1 Mathematical Examples on the Pulverizer

Ex. 95. “A number leaves 1 as the remainder when divided by 5, and 2 (as
the remainder) when divided by 7. Calculate what is that number.”

Solution. Let the desired number be N . Then N = 5x + 1 = 7y + 2,
whence (7y+1)

5 = x. Solving this, we get x = 3, y = 2 as the least integral
solution. Therefore N = 16.

Ex. 96. “A number yields 5 when divided by 12, and the same number is
again seen by me to yield 7 when divided by 31. What is that number?”1

Ex. 97. “Calculate what is that number which is said to yield 5 as the re-
mainder when divided by 8, 4 when divided by 9, and 1 when divided
by 7.”

Solution. Let the desired number beN . ThenN = 8x+5 = 9y+4 = 7z+1.
We first solve N = 8x + 5 = 9y + 4 or (9y−1)

8 = x. This gives x = 1 + 9t,
y = 1 + 8t as the general solution, so that N = 72t + 13. Now we solve

* K. S. Shukla, Gaṇita, Vol. 23, No. 1 (June 1972), pp. 57–59.
1Answer 317.
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N = 72t+ 13 = 7z + 1 or (72t+12)
7 = z or (2t+5)

7 = z′. This gives t = 1, as the
least integral value of t. Therefore N = 85.

Ex. 98. “Quickly say, O mathematician, what is that number which when
divided by the numbers beginning with 2 and ending in 6 (in each case)
leaves 1 as the remainder, and is exactly divisible by 7.”2

Ex. 99. “8 is multiplied by some number and the product is increased by 6
and that sum is then divided by 13. If the division be exact, what is
the (unknown) multiplier and what is the resulting quotient?”

Solution. Let the multiplier be x and the quotient y. Then we have to
solve the equation (8x+6)

13 = y. Solving this, we get x = 9, y = 6.

Ex. 100. “11 is multiplied by a certain number, the product is diminished
by 3, and the difference (thus obtained) being divided by 23 is (found
to be) exactly divisible. Tell me the quotient and the multiplier.”3

Exs. 95 to 98 are illustrations of the residual pulverizer (sāgra-kuṭṭākāra)
and Exs. 99 and 100 are illustrations of the non-residual pulverizer (niragra-
kuṭṭakāra). Classification of the pulverizer (kuṭṭākāra) into the residual (sāgra)
and non residual (niragra) varieties is probably due to Bhāskara I. Such classi-
fication is not found to occur in the Brāhmasphuṭasiddhānta of Brahmagupta,
who was a contemporary of Bhāskara I. Bhāskara I has shown that Ārya-
bhaṭa I’s rule (Ā, ii. 32–33) is applicable to both the residual and non-residual
pulverizers.
Examples like 95 to 98 are now known as “the Chinese problems of remain-

ders”. One such example occurs in the Chinese arithmetical work, the Sun-Tsū
Suan-ching, written about the last quarter of the first century ad. Sun Tsū,
the author of the work, was able to get only a single solution of his problem.
A general solution of the indeterminate equation of the first degree was not
known in China even in the sixth and seventh centuries.

“By that time, an indeterminate problem was attacked by three
successive Chinese mathematicians of note and they obtained only
three tentative solutions.4 The Chinese indeterminate analysis,
called t’ai-yen-shu or t’ai-yan-ch’iu-i-shu (“great extension method
of finding unity”) was materially developed by the Buddhist priest
I-hsing in 727 ad and later on by Ch’iu Chiu-shao in 1247 ad.5

2Answer 721. This example reappears in the commentaries of Sūryadeva and Raghunātha
Rāja on Ā, ii. 32–33.

3Answer 8, 17.
4Toung Pao, Vol. xiv (1913), p. 203.
5Cf. Yoshio Mikami, “The Development of Mathematics in China and Japan,” Leipzig
(1913), pp. 58, 63 et seq. Also cf. N. K. Majumdar, “On Chinese Indeterminate Analysis,”
Bull. Calcutta Math. Soc., Vol. 5, pp. 9–11.
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Now I-hsing was a Sanskrit scholar. He came to India in 673
ad and learnt, amongst various other things, the ingenious device
of solving astronomical problems with the help of indeterminate
analysis which seems to have been a favourite subject of study
with the learned Hindu scholars of the time. On return to his
native land, I-hsing availed himself of this helpful device in com-
posing a new calendrical system for the Chinese and for so doing
he was once accused of too much Hindu bias by the native Chi-
nese calendar-makers. Professor Mikami has pointed out that the
Chinese interest in indeterminate analysis grew after their contact
with the Hindu culture and he seems to be of further opinion that
it did so, indeed, under the influence of the latter.6 It is, however,
noteworthy that the interest of Chinese in indeterminate analysis
always remained confined amongst the astronomers.7”8

4.2 Astronomical Examples on the pulverizer9

Ex. 101. “The mean (position) of the Sun has been observed by me at sun-
rise to be in the sign Leo in the middle of the navamāṃśa Sagittarius.10

Calculate the ahargaṇa (i.e., the number of days elapsed since the begin-
ning of Kaliyuga when the longitude of the planets was zero) according
to the (Ārya)bhaṭa-śāstra, and also the revolutions performed by the
Sun since the beginning of Kaliyuga.”11

6Cf. Mikami, l.c., p. 58.
7Cf. Mikami, l.c., p. 65.
8Cf. B. Datta, “The Hindu Contributions to Mathematics — Presidential Address at the
Annual Meeting of the Association,” Bull. Math. Association University of Allahabad,
Vol. II, 1928–29, pp. 9–10.

9The early Hindu theory of the planetary pulverizer is fully discussed in the Laghu-
bhāskarīya (pp. 103–114) and the Mahābhāskarīya (pp. 29–46, 219–224) edited by me.

10The navamāṃśa Sagittarius of the sign Leo is the ninth navamāṃśa (=ninth part) of
that sign and extends from 146◦40′ to 150◦ of longitude. The longitude of the middle
point of that navamāṃśa is thus 148◦20′.

11For a solution of this example, see MBh (=Mahābhāskarīya) edited by me, English Trans-
lation, p. 34. This example has also been solved by Govinda-svāmī and Parameśvara in
their commentaries on MBh, i. 56.
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Āryabhaṭīya (IV) ∗

This paper is the fourth and the last of the series and deals with quotations
from the earlier mathematical works occurring in Bhāskara I’s commentary
on the Āryabhaṭīya. Of these quotations, some are taken from such works
as were popularly used in the time of Bhāskara I, some are mentioned to
point out the approximate character of rules contained in them so as to
emphasise the superiority of the corresponding rules given in the Āryabhaṭīya,
and some are quoted to find fault with them. Some of these quotations are
in Prākṛta gāthās and seem to have been taken from Jaina sources. These
quotations show that in the seventh century when Bhāskara I wrote his
commentary on the Āryabhaṭīya there existed works on mathematics which
were written not only in Sanskrit but also in Prākṛta. These works were
probably of the same nature as the Pāṭīgaṇita and the Triśatikā and were
probably written by Maskarī Pūraṇa, Mudgala, and Patana etc. whose names
have been mentioned by Bhāskara I.

5 Passages quoted by Bhāskara I from mathematical
works

5.1 Quotation 1: Proclaiming twofold nature of mathematics

अाह च—
संयोगभेदा गुणना गता न े भागो गतमूलयु ः ।

ा ं समी ोपचय या व ा ददं ा कमेव शा ॥ [Ā, ii. intro]

Multiplication and involution are the kinds of addition, and di-
vision and evolution, of subtraction. Seeing that the science of
mathematics is permeated by increase and decrease, this science
is indeed of two kinds.

This passage seems to have been taken from the introductory verses of a
certain work on Pāṭīgaṇita.

* K. S. Shukla, Ganita, Vol. 23, No. 2 (December 1972), pp. 41–50.
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5.2 Quotation 2: Giving a rule for squaring a number

In the Āryabhaṭīya there is no rule for squaring a number, so Bhāskara I
quotes the following rule:

अ पद च वग कृ ा गुणं तदवे चा पद ।
शेषपदरैाह ा उ ाय ाय वग वधौ ॥1 [Ā, ii. 3 (i)]

Having squared the last digit (on the left) (and then having written
that square underneath the last digit), multiply twice of that last
digit by the remaining digits of the number, and write the products
successively one place ahead (to the right). This is the procedure
(to be adopted) in squaring a number.2

It is interesting to note that Bhāskara I refers to the above rule as lakṣaṇa-
sūtra. In all later works on mathematics a rule has been called karaṇa-sūtra.
Possibly, in the work from which the above passage was taken the rules were
called lakṣaṇa-sūtra.

5.3 Quotation 3: Giving a formula for the simplification of a
fraction of the type a+ b

c

While solving Ex. 2,3 Bhāskara I quotes (under karaṇa) the following formu-
latory sentence which probably formed part of some rule given by an earlier
author:

छेदगुणं स श ।
Multiply (the whole number) by the denominator and add the
numerator.4

1Similar rules occur in Triśatikā (Rule 10, p. 3) and Gaṇitasārasaṅgraha (Rule 31, p. 13).
2To square 34, for example, the following procedure will be adopted:

3 4

Square of the last digit 9
Product of 2 times 3 multiplied
by the next digit 4 written one
place ahead 2 4 (One round of the operation is

over and the rule is repeated)
Square of the last but one digit
i.e., 4, written one place ahead 1 6

Addition gives 1 1 5 6 which is the required number.

In the actual Hindu process of working, the numbers were not allowed to accumulate.
Addition was performed after every step and only one number was allowed to remain on
the writing board.

3Vide supra 3.1.
4That is to say, a+ b

c
is equal to (ac+b)

c
.
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The similarity of this formula with the corresponding formula “chedasaṅ-
guṇaṃ sāṃśam” of Śrīdhara is noteworthy.5

5.4 Quotation 4: Giving a rule for cubing a number

On the cubing of a number also there is no specific rule in the Āryabhaṭīya.
Bhāskara I refers to the following rule:

“अ पद घनं ा” द ा द ल णसू । [Ā, ii. 3 (ii)]
“Obtain the cube of the last digit (on the left) etc.” is the rule (for
the purpose).

Like the rule of squaring, this rule has also been called by the name lakṣaṇa-
sūtra, which seems to suggest that both the rules have been extracted from
the same source. The striking similarity in the phraseology is noteworthy.
The reference of the above rule by indicating its beginning alone proves the
popularity of the work from which it has been taken.

5.5 Quotation 5: On the position of the altitude of an equilateral
triangles as a line of symmetry

करण — सम े े समैवावल क तिर त । [Ā, ii. 6, Ex. 10]
Process. (Applying the rule) “In an equilateral triangle, the posi-
tion of the altitude is that of (the line of) symmetry,” (we have
that, etc.).

5.6 Quotation 6: Giving an approximate rule for the area of a
circle

In order to emphasise the accuracy of Āryabhaṭa I’s rule (Ā, ii. 7), Bhāskara I
quotes the following popular rule and points out that it is only approximate,
not accurate. In fact, he says, there is no other accurate rule.

ासाधकृ त संगुणा ग णत । [Ā, ii. 7 (i)]
The square of the radius multiplied by 3 is the area (of a circle).

5.7 Quotation 7: Giving an approximate rule for the volume of a
sphere

According to Bhāskara I, the rule (Ā, ii. 7) of Āryabhaṭa I gives the accu-
rate value of the volume of a sphere.6 All other rules, he tells us, are only
approximate. Of these approximate rules he quotes the following:

5Cf. Triśatikā, edited by S. Dvivedi, Banaras (1899), Rule 24, p. 10.
6In fact, however, Āryabhaṭa I’s rule stated in Ā, ii. 7 is wrong.
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ासाधघनं भ ा नवगु णतमयोगुड घनग णत । [Ā, ii. 7 (ii)]

The cube of the radius divided by two and multiplied by nine is
the volume of an iron ball.7

It is strange that the accurate formula for the volume of a sphere was not
known in India. This seems to suggest that Greek Geometry was not known
at all in India and that all geometrical results and mensuration formulae were
independently discovered by Hindu mathematicians.

5.8 Quotation 8: On the verification of areas

Bhāskara I is of the opinion that the rule stated in Ā, ii. 9 (i) relates to the
verification of the area of any rectilinear figure by deforming it into a rectangle.
In support of his statement, he cites the following passages:

उ —
करणै ै न ं फलमनुग ायते तु व ेय ।

यकरणं े े ं फलमायते य ा ॥ [Ā, ii. 9 (i)]

So has it been stated too. Having determined the area in ac-
cordance with the prescribed rules, demonstration (verification)
should always be made by (deforming the figure into) a rectangle
because it is the rectangle only of which the area is obvious.

5.9 Quotation 9: Giving an approximate formula for the area of a
plane figure resembling the tusk of an elephant

पृ ोदरसमासाध व ाराधगुणं फल । [Ā, ii. 9 (ii)]

Half the sum of the back and the belly multiplied by half the width
(at the base) is the area (of the figure that resembles the tusk of
an elephant).8

5.10 Quotation 10: One-half of a gāthā giving a rule for finding
the circumference of a circle

व व दहगुणकरणी व पिररअो हो द । [Ā, ii. 10]
( व वगदशगुणकरणी वृ पिरणाहः भव त ॥)
The square root of ten times the square of the diameter is the
circumference of a circle.

7Cf. Gaṇitasārasaṅgraha viii. 28 1
2
(i). Also Cf. Trilokasāra, gāthā 19 (i).

8Vide supra, 3.1, Ex. 27.
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The above gāthā is almost the same as gāthā 185 of the Jaina work, the
Jyotiṣakaraṇḍaka.9 The latter runs as follows:

व व दहगुणकरणी व पिररअो होइ ।

This gāthā is also found to occur in the Trilokasāra10 and the Kṣetrasamāsa,
and has been quoted by Malayagiri in his commentary on the Jīvābhigama
(Sūtra 109).

Bhāskara I has quoted the above gāthā as giving the so called accurate value
of π, viz.

√
10. Bhāskara I has taken pains to demonstrate that this value was

far from being accurate. In this connection he makes use of the rules given in
Quotations 11, 12, 13, and 14. In the end he concludes in derision:

So I bow to
√
10 whose grace is not well conceived.11

5.11 Quotation 11: One gāthā giving a rule for getting the value of
the chord of a circle

अोगा णं व एगाहेण संगुणं कुय ।
चउगु णय तु मूउं सा जीवा स ख ाण ॥ (MS T)
अोगा णं व एगाहेण संगुणं कुय ।
चउगु णयः स तु (मू) उं सा जीवा स ख ाण ॥ (MS I) [Ā, ii. 10]

Probable Sanskrit version:

अवगाहोनं व मवगाहेण स ुणं कुय ।
चतुगु णत तु मूलं सा जीवा सव े ाणा ॥
Multiply the diameter as diminished by the depth (of the chord)
by the depth. The square root of four times the (product) is (the
length of) the chord of any (circular) figure.

In the adjoining figure (ed. see Figure 1), let AB be a chord of the circle
ACB and let CD be the perpendicular diameter intersecting the chord at X.
Then CX (< XD) denotes the depth of the chord.

If R be taken to denote the radius of the circle, then the rule stated above
may be written as

chord =
√
4× depth× (2R− depth).

9Cf. Rājeśvarīdatta Miśra, “Vṛttakṣetra kā gaṇita: Jaina tathā Jainetara ācāryon ke sid-
dhānta,” Jaina-siddhānta-bhāskara (Jaina Antiquary), Part XV, vol. 2, pp. 105 ff.

10Gāthā 96.
11अतोऽ ै अ वचािरतमनोहरायै नभोऽ ु दशकर ै ।



5 Passages quoted by Bhāskara I from mathematical works 115

C

D

A B

X

Figure 1

This formula is also mentioned in the Tatvārthādhigamasūtrabhāṣya of Umā-
svātī.12 Ācārya Yativṛṣbha puts it in the form13

chord =
√
4{R2 − (R− depth)2}.

5.12 Quotation 12: One gāthā giving a rule for the area of a
segment of a circle

इसुपायगुणा जीवा द सकर ण भवे वग णय पद ।
धनुप अ ख े एदं करणं तुदा अ ॥ (MS T)
इषुपायगुणा जीवा दशकर ण भवे वग णय पद ।
धनुव अ ख े एदं करणं तुदा अ ॥14 (MS I) [Ā, ii. 10]

This gāthā states that the area of a segment of a circle

=
√
10

(
1

4

)
(arrow)(bounding chord),

12See B. Datta, The Jaina School of Mathematics, Bull. Cal. Math. Soc., Vol. XXI, 1929.
Umāsvātī, according to the tradition of the Śvetāmbara Jainas, lived about 150 bc. Ac-
cording to the Digambara tradition he is sometimes called Umāsvāmī and is said to have
lived between 135 ad and 219 ad. Satischandra Vidyabhushan thinks that he lived in the
first century ad. See Datta, l.c.

13Cf. Tiloya-paṇṇattī (Triloka-prajñapti), edited by A. N. Upadhye and Hiralal Jain, and
published by Jaina Saṃrakṣaka Saṃgha, Sholapur (1943), Part I, iv. 180.
According to A. N. Upadhye and Hiralal Jain, Ācārya Yativṛṣbha lived sometime be-

tween 473 ad and 609 ad. See Tiloya-paṇṇattī, Part II, edited by Hiralal Jain and
A. N. Upadhye, and published by Jaina Saṃrakṣaka Saṃgha, Sholapur (1951), p. 7.

14The following is the probable Sanskrit version:
इषुपादगुणा जीवा दशकरणी भभवे वगु फल ।
धनुप ेऽ े े एत रणं तु ात ॥
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the arrow being the depth of the chord (explained above).
The occurrence of the above gāthā in Bhāskara I’s commentary shows that

rules for obtaining the area of a segment of a circle were devised in India prior
to the seventh century ad. Datta once remarked:

We do not find amongst the Hindus, as far as is known, any ex-
pression for the area of a segment of a circle before the time of
Śrīdhara (c. 750) though it was known in Greece and China long
before.15

The rule described in the above gāthā is also found to occur in the Gaṇitasāra-
saṅgraha16 of Mahāvīra (850) and in the Laghu-kṣetra-samāsa of Ratneśvara
Sūri (1440 ad).
The rule, Datta rightly observes,17 is incorrect and was probably derived

by analogy from the rule for the area of a circle.

5.13 Quotation 13: One gāthā giving a rule for the the addition of
two surds

अौव अद केण इमूलसमास मो व ।
अ प णाय गु णयं कर णसमासं तुणा अ ॥ (MS T)
अौव अस केण इमूलसमासः समो व ।
अोव णाय गु णयं कर णसमासं तुणा अ ॥18 (MS I) [Ā, ii. 7]

A. N. Singh has given the following translation:19

Reducing them (i.e. the two surds) by some suitable number, add
the square roots of the quotients: the square of the result multi-
plied by the reducer should be known as the sum of the surds.

In other words,

√
α+

√
β =

√√√√c

(√
α

c
+

√
β

c

)2

where α
c and β

c are assumed to be perfect squares. This rule is found to occur
in several later works also.20

15Cf. B. Datta, “The Jaina School of Mathematics.”
16vii. 70 1

2
.

17l.c.
18The following is the probable Sanskrit version:

अपव भी तेन करणीमूलसमासो वग यः ।
अपवतनेन गु णतः कर णसमास ु ात ः ॥

19Cf. A. N. Singh, “On the arithmetic of surds amongst the ancient Hindus,” Mathematica,
Vol. XII, p. 104.

20See, for instance, Brāhmasphuṭasiddhānta, xviii. 38 and Gaṇitasārasaṅgraha, vii. 88 1
2
.
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5.14 Quotation 14: Containing a rule for the length of an arc of a
circle, when the arc is less than a semi-circle

ापादशराधयु तः गुणा दशस ुणा कर ाः । [Ā, ii. 10]
The sum of one-fourth of the chord and one-half of the arrow,
multiplied by itself, and then by 10: the square root of so much
(is the length of the corresponding arc).

That is to say,
arc =

(
chord
4

+
arrow
2

)
×
√
10. (1)

This formula has not been traced in any other Jaina or Hindu work although
other formulae for the arc of a circle are found to occur elsewhere.
In the first century Umāsvāti in his Tatvārthādhigamasūtrabhāṣya gave the

formula
arc =

√
6(arrow)2 + (chord)2. (2)

If in (1) and (2), we put arrow = r and chord = 2r, (r = radius), both (1)
and (2) reduce to

arc (of the semi-circle) = r
√
10.

This shows that both (1) and (2) have been derived from the formula for the
arc of a semi-circle, using π =

√
10. But the methods used in the derivations

are obviously different.
Other formulae for an arc of a segment of a circle are known to occur in

the Gaṇitasārasaṅgraha,21 and in the Mahāsiddhānta22 of Āryabhaṭa II (950).
The formulae given in those works have been derived in the same way as (2)
but with different values of π (viz. π = 3,

√
10, and 22

7 ).
It is noteworthy that the term jīvā, which usually means a half-chord, has

been used in the above quotations in the sense of a chord.

5.15 Quotation 15: On the arrangement of the three quantities in
a problem on the Rule of Three

उ —
अा यो ु स शौ व ेयौ ापनासु राशीना ।
अस शरा शम े ैरा शकसाधनाय बुधैः ॥ [Ā, ii. 26–27 (i)]
So has been stated —
In order to solve a problem involving three quantities, the learned
should note that of the three quantities the two of like denomi-
nation should be set down in the beginning and the end, and the

21vii. 43, 73 1
2
.

22xv. 90, 94, 95.
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third quantity of unlike denomination should be written in the
middle (of those two).

For example in Ex. 66,23 the quantities “9 rūpakas” and “one rūpaka” are
of like denomination (because both of them are rūpakas) and the third quan-
tity “5 palas” is of unlike denomination. These quantities are therefore to be
written as

9 5 1

Similar direction regarding the arrangement (sthāpana) of the three quan-
tities is given by Śrīdhara and others.

5.16 Quotation 16: One gāthā stating how to perform subtraction
when the minuend and the subtrahend are both positive,
both negative, or one positive and the other negative

सो ं भूणारधनं अणं अणदो न यमदो न यमदो सो ं ।
वपर ते साधण एषो झं वा कवगुहोल ॥ (MS T)
सो ं ूणारयणं णं अणदो न यमदो न यमदो सो ।
वपर ते सायण एषो ं वा कं गुहोल ॥24 (MS I) [Ā, ii. 30]

Both the readings are defective. From the context and the nature of the
gāthā it is clear that it deals with the subtraction of positive and negative
quantities. We are sure that the rules given therein are the same as stated in
the following stanzas of the Brāhmasphuṭasiddhānta:

ऊनम धका शो ं धनं धना णमृणाद धकमूना ।
ं तद रं ा णं धनं धनमृणं भव त ॥
वहीनमृणमृणं धनं धनं भव त माकाश ।

शो ं यदा धनमृणा णं धना ा तदा ेप ॥
From the greater should be subtracted the smaller; (the final re-
sult is) positive, if positive from positive, and negative, if negative
from negative. If however, the greater is subtracted from the less,
the difference is reversed (in sign), negative becomes positive and
positive becomes negative. When positive is to be subtracted from
negative or negative from positive, then they must be added to-
gether.25

23Vide Supra, 3.1.
24The probable Sanskrit version is as follows:

शो मृणा णं धनं धनतः न धनतो न ऋणतः शो ।
वपर ते शोधनमेव धनं न कम प गूढम ॥

25B. Datta and A. N. Singh, History of Hindu Mathematics, Part II, pp. 21–22. Also see,
Brāhmasphuṭasiddhānta xviii. 31–32.
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The gāthā mentioned above has been quoted by Bhāskara I in connection
with the solution of the equation

9x− 24 = 2x+ 18.

(Ex. 92). Application of Āryabhaṭa I’s rule (Ā, ii. 30) gives

x =
18− (−24)

9− 2
.

The gāthā is meant to show how −24 is to be subtracted from 18. Using the
rule mentioned therein, one gets

x =
18 + 24

7
= 6.

The above gāthā clearly shows that negative numbers were introduced in
analysis in India and methods were also devised for subtracting greater num-
bers from smaller ones or positive numbers from negative numbers or vice
versa much before the time of Bhāskara I.



On Śrīdhara’s rational solution of Nx2 + 1 = y2 ∗

1 Introduction

Śrīdhara is remembered as one of the greatest Hindu Mathematicians.1 Un-
fortunately there is no definite evidence to show when and where he lived.
Even his works are not all available. His very extensive (ativistṛta) treatise on
algebra, which has been mentioned and quoted by the celebrated astronomer-
mathematician Bhāskara II2 (1150), is known only by name. Probably it is
lost. Of his two works on arithmetic, known to us, the smaller one, known as
Pāṭīgaṇitasāra, was edited by Sudhakara Dvivedi (1899) and published under
the title of Triśatikā.3 An English translation, with notes and introduction,
of the rules occurring in this work has also appeared in the Bibliotheca Math-
ematica4 under the joint authorship of N Ramanujacharia and G. R. Kaye.
The bigger work on arithmetic, known as Śrīdhara’s Pāṭīgaṇita, has not yet
appeared in print. This work has been called Navaśatī and has been quoted by
Makkibhaṭṭa in his commentary on the Siddhāntaśekhara of Śrīpati5 (1039).
An incomplete MS of this work is preserved in the Raghunatha Temple Library
of His Highness the Maharaja of Jammu and Kashmir. It is a copy of an older
MS, is written in modern Kashmīrī script and extends to 157 leaves with 9
lines to a page and about 44 letters to a line. Starting from the very begin-
ning, it runs up to about the middle of the kṣetra-vyavahāra and is furnished
with a commentary. The name of the commentator does not occur anywhere

* K. S. Shukla, Ganita, Vol. 1, No. 2 (1950), pp. 53–64.
1The following stanza, which occurs with the colophon at the end of Śrīdhara’s Pāṭīgaṇita-
sāra in certain manuscripts, gives an idea of the highest position which Śrīdhara occupied
in his time as a mathematician:

उ रतः सुर नलयं द णतो मलयपवतं याव ।
ागपरोद धम े नो गणकः ीधराद ः ॥

Up to the abode of the gods (i.e., the Himālayas) towards the north and up
to the Malaya mountains towards the south and between the eastern and
the western oceans, there is no mathematician (worth the name) except
Śrīdhara.

2Cf. Bhāskara II’s Bījagaṇita, conclusion. Also see madhyamāharaṇa, 1–3 (comm.).
3Triśatikā or Triśatī is another name of Śrīdhara’s Pāṭīgaṇitasāra.
4Vol. XIII (1912–13), p. 203–217.
5Cf. Siddhāntaśekhara, i. 26 (comm.).
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in the MS. A transcript copy of this, in Devanāgarī characters, exists in the
Lucknow University Library.
This MS contains a rule for the rational solution of the equation

Nx2 + 1 = y2,

based on the rational solution of the equation x2 + y2 = z2 and is fundamen-
tally different from those given by Brahmagupta (628), Śrīpati (1039), and
other Hindu mathematicians. The object of the present paper is to explain
and illustrate Śrīdhara’s method of obtaining this rule and to give analogous
rules for the rational solution of certain other equations of a similar nature.

2 Śrīdhara’s lemma

Śrīdhara starts with a lemma stating how to construct a rational rectangle
(or right triangle). It runs:

भुज कृ तिर भ ोने ेन त ल ।
को टिर ा धका कण तुर ायत ते ॥6

The square of the base (bhuja), chosen at pleasure, when divided
and diminished by an arbitrary number and then halved gives the
perpendicular (koṭi), and that increased by the (same) arbitrary
number gives the hypotenuse (karṇa)—all of them of a rectangle.7

That is, if a number b be chosen for the base and ε for the arbitrary number,
then there corresponds a rectangle of base b having the rational numbers

1

2

{
b2

ε
− ε

}
and 1

2

{
b2

ε
− ε

}
+ ε

for its perpendicular and hypotenuse (or diagonal) respectively.
For example, choose 3 for the base and 1 for the arbitrary number. Then

there corresponds a rectangle whose base is 3, perpendicular 1
2

{
32

1 − 1
}

i.e.,
4, and hypotenuse 5. Similarly, choosing 10 for the base and 2 for the arbitrary
number, we obtain a rectangle whose base is 10, perpendicular 1

2

{
102

2 − 2
}

i.e., 24, and hypotenuse 26; and so on.
6Pāṭīgaṇita, kṣetra-vyavahāra.
7This rule occurs elsewhere also. For example, see Brāhmasphuṭasiddhānta xii. 35;
Siddhāntaśekhara, xiii. 41; Gaṇitasārasaṅgraha, vii. 97 1

2
; Līlāvatī, kṣetra-vyavahāra, rule

5. The text of the above passage closely resembles that of the Brāhmasphuṭasiddhānta,
xii. 35.
The rationale of this is as follows: Let b, k, and h be the base, perpendicular, and

hypotenuse of a rectangle. Then
b2 = h2 − k2 = (h− k)(h+ k).

Let h− k = ε. Then k = 1
2

{
b2

ε
− ε

}
and h = 1

2

{
b2

ε
− ε

}
+ ε.
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3 The equation Nx2 + 1 = y2

This equation has been called vargaprakṛti (square-nature) by Hindu mathe-
maticians. The number N is called prakṛti or guṇaka (i.e., the co-efficient or
multiplier of the square); x is called ādyapada (i.e., the first root) or kaniṣṭha-
pada (i.e., the lesser root); y is called anyapada (i.e., the other root) or jyeṣṭha-
pada (i.e., the greater root); and the absolute term 1 is called kṣepa (additive)
or śodhya (subtractive) according as it is positive or negative.

4 Rational solution of Nx2 + 1 = y2

For the rational solution of Nx2 + 1 = y2, Śrīdhara gives the following rule,
making use of the above lemma:8

गुणके वगयोम े त दाधो भुज ुती ।
के च ा थते त व केणाहती तयोः ॥
अ र कृ तः ेपः त ो टः थमं पद ।
ऋजुह रं े ं प ेपेऽ रो तृे ॥ 9

The multiplier (guṇaka) having been expressed as a difference of
two squares (set down their square-roots in the ascending order of
magnitude and) below those square-roots set down any (set of the)
base and hypotenuse stated there (in the lemma) before. Then ob-
tain their cross-products. The square of the difference between
those (cross-products) gives the additive (kṣepa); the perpendicu-
lar of that (above set) denotes the first square-root (corresponding
to that additive) and the difference between their direct (vertical)
products denotes the greater square-root. When these (first and
greater square-roots) are divided by the difference (between the
above cross-products), they correspond to the additive unity.

Let the multiplier N be expressed as the difference A2−B2 (A > B) of two
squares10 and let the base, perpendicular, and hypotenuse determined from
the above lemma be b, k, and h respectively. Then setting down B and A in
the ascending order of magnitude, we have

B A

8In fact, he gives this rule as an application of the above lemma.
9Pāṭīgaṇita, l. c.

10Making use of Śrīdhara’s lemma, N can always be expressed as{
1

2

(
N

c
+ c

)}2

−
{
1

2

(
N

c
− c

)}2

.
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and below them writing down the base b and the hypotenuse h respectively,
we have

B A

b h

Multiplying them across, we obtain

Bh and Ab;

and multiplying them directly, we have

Bb and Ah.

The square of the difference between the cross-products i.e., (Bh ∼ Ab)2,
then, denotes the so called additive (kṣepa); and the perpendicular k and the
difference Ah − Bb of the direct products respectively denote the first and
greater roots corresponding to that additive. These first and greater roots
when divided by the difference (Bh ∼ Ab) of the cross-products give the
corresponding quantities for additive unity.
In other words, Śrīdhara’s rule amounts to saying that if

A2 −B2 = N (1)

and
h2 − b2 = k2 (2)

then
Nk2 + (Bh ∼ Ab)2 = (Ah−Bb)2, 11

whence

N

{
k

Bh ∼ Ab

}2

+ 1 =

{
Ah−Bb

Bh ∼ Ab

}2

.

That is

x =
k

Bh ∼ Ab
, y =

Ah−Bb

Bh ∼ Ab

is the rational solution of
Nx2 + 1 = y2.

11This result is easily obtained by multiplying (1) and (2) side by side and bringing the
resulting product to the requisite form.
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4.1 Illustration

The following example will illustrate the above rule.

Example What is that number whose square-root when multiplied by 55 and
then increased by 1 becomes capable of yielding a square-root?

The resulting equation is

55x2 + 1 = y2.

One solution

We have

82 − 32 = 55,

and 52 − 32 = 42.

Therefore, setting down 3 and 8 and below them 3 and 5 respectively, we
have12

3 8

3 5

The difference between the cross-products is 9, the perpendicular is 4, and
the difference between the direct products is 31. Therefore,

55(4)2 + (9)2 = (31)2,

whence 55

(
4

9

)2

+ 1 =

(
31

9

)2

.

Hence x = 4
9 , y = 31

9 is a rational solution of the above equation. Thus the
required number is 4

9 .

Another solution

Again we have

82 − 32 = 55,

and 102 − 82 = 62.

Therefore, setting down 3 and 8 and below them 8 and 10 respectively, we
have

3 8

8 10

12The Hindu way of writing is 3 8
3 5
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The difference between the cross-products is 34, the perpendicular is 6, and
difference between the direct products is 56. Therefore,

55(6)2 + (34)2 = (56)2,

or 55

(
6

34

)2

+ 1 =

(
56

34

)2

.

Hence x = 3
17 , y = 28

17 is another rational solution of the above equation. This
gives the required number to be 3

17 .

Other solutions

Other rational solutions of the same equation will be obtained by altering the
sides of the rational right triangle for every new solution.

5 Another form of rational solution of Nx2 + 1 = y2

It will be easily seen that when

A2 −B2 = N

and h2 − b2 = k2,

then Nk2 + (Bh
+∼ Ab)2 = (Ah±Bb)2

or N

{
k

Bh
+∼ Ab

}2

+ 1 =

{
Ah±Bb

Bh
+∼ Ab

}2

.

That is, both

x =
k

Bh+Ab

y =
Ah+Bb

Bh+Ab

 and
x =

k

Bh ∼ Ab

y =
Ah−Bb

Bh ∼ Ab


are the rational solutions of Nx2 + 1 = y2.

In the foregoing rule, Śrīdhara gives the solution in the latter form.
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5.1 Other forms

Putting

k =
1

2

{
b2

ε
− ε

}
,

h =
1

2

{
b2

ε
+ ε

}
,

B =
1

2

{
N

c
− c

}
,

and A =
1

2

{
N

c
+ c

}
,

Śrīdhara’s solution may be stated as

x =
2c(b2 − ε2)

N(b− ε)2 ∼ c2(b+ ε)2

y =
N(b− ϵ)2 + c2(b+ ε)2

N(b− ε)2 ∼ c2(b+ ε)2

where b, ε, and c are any numbers.
This may be set in the form

x =
4pq

4p2N ∼ q2

y =
4p2N + q2

4p2N ∼ q2

in which it was discovered in Europe by John Wallis13 (1657).
Further, putting q

2p = r, this may be written as

x =
2r

N ∼ r2

y =
N + r2

N ∼ r2

in which form it was given by Śrīpati14 (1039), Bhāskara II15 (1150), Nārā-
yaṇa16 (1356), Jñānarāja, and Kamalākara17 (1658), and in Europe by W.
Brouncker18 (1657).
13Cf. Oeuvres de Fermat, III, (1896), Lettre ix; John Wallis A Kenelm Digby, p. 417 ff.
Also Cf. Dickson, L. E., History of the Theory of Numbers, II, p. 351.

14Cf. Siddhāntaśekhara, xiv. 33.
15Cf. His Bījagaṇita, vargaprakṛti, rule 6.
16Cf. His Bījagaṇita, I, rule 77 f.
17Cf. His Siddhāntatattvaviveka, xiii. 216.
18Cf. Oeuvres de Fermat, III, (1896), Lettre ix; John Wallis A Kenelm Digby, p. 417 ff.
Also Cf. Dickson, L. E.,History of the Theory of Numbers, II, p. 351.
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6 Rational solution of other equations

Śrīdhara has given simply the rational solution of Nx2 + 1 = y2. But the
method used by him can be easily applied to the determination of the rational
solutions of Nx2 − 1 = y2, 1−Nx2 = y2, or the general forms Nx2 ±C = y2

and C −Nx2 = y2. In what follows, we propose to give the rational solutions
of these equations in accordance with his method.

6.1 Rational solution of Nx2 − 1 = y2

In this case the rule may be stated as follows:
Rule—Express the multiplier (N) as a sum of two squares.19 Set down

the square-roots of those squares and underneath them the base and the per-
pendicular of any rectangle (determined form the lemma). Multiplying them
across and directly, obtain the sum and the difference of the cross-products
and of the direct products. Then corresponding to the square of the sum
(or difference) of the cross-products as the subtractive, the hypotenuse of the
rectangle (chosen above) is the first square-root and the difference (or sum) of
the direct products is the other square-root; and corresponding to the square
of the sum (or difference) of the direct products as the subtractive, the hy-
potenuse of the rectangle is the first square-root and the difference (or sum) of
the cross-products is the other square-root. These first and other square-roots
when divided by the square-roots of the corresponding subtractives give the
first and other square-roots for the subtractive unity.
In other words, if

A2 +B2 = N

and b2 + k2 = h2,

then Nh2 − (Ak
+∼ Bb)2 = (Ab +̃ Bk)2

and Nh2 − (Ab
+∼ Bk)2 = (Ak +̃ Bb)2.

Or,

N

{
h

Ak
+∼ Bb

}2

− 1 =

{
Ab +̃ Bk

Ak
+∼ Bb

}2

and N

{
h

Ab
+∼ Bk

}2

− 1 =

{
Ak +̃ Bb

Ab
+∼ Bk

}2

.

19“When unity is the subtractive the solution of the problem is impossible unless the mul-
tiplier is the sum of two squares.” (Bhāskara II).
“In the case of unity as the subtractive the multiplier must be the sum of two squares.

Otherwise, the solution is impossible.” (Nārāyaṇa).
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That is,

x =
h

Ak +Bb

y =
Ab ∼ Bk

Ak +Bb

 ,
x =

h

Ak ∼ Bb

y =
Ab+Bk

Ak ∼ Bb

 ,
x =

h

Ab+Bk

y =
Ak ∼ Bb

Ab+Bk

 , and
x =

h

Ab ∼ Bk

y =
Ak +Bb

Ab ∼ Bk


are the rational solutions of Nx2 − 1 = y2.

6.1.1 A particular solution

Choosing 1 for the base (b) and also 1 for the arbitrary number (ε) and
applying Śrīdhara’s lemma, we have

b = 1, k = 0, and h = 1.

Substituting these values of b, k, and h in the above rational solutions of
Nx2 − 1 = y2, we obtain

x =
1

B

y =
A

B

 and
x =

1

A

y =
B

A


as the particular rational solutions of Nx2 − 1 = y2.
These particular solutions were mentioned by Bhāskara II20 (1150).

6.2 Rational solution of 1−Nx2 = y2

In this case the rule may be stated as follows:
Rule—Express the multiplier (N) as a difference of two squares. Set down

the square roots of those squares in the descending order of magnitude and
below those square-roots set down the base and hypotenuse of any rectangle
(determined from the lemma), in order. Next obtain the cross-products and
the direct products. The perpendicular of the rectangle (chosen above) divided
by the sum (or difference) of the cross-products, then, denotes the first square-
root and the sum (or difference) of the direct products divided by the sum (or
difference) of the cross-products denotes the other square-root.
In other words, if

A2 −B2 = N

and h2 − b2 = k2,

then (Ah±Bb)2 −Nk2 = (Ab
+∼ Bh)2

or 1−N

{
k

Ah±Bb

}2

=

{
Ab

+∼ Bh

Ah±Bb

}2

.

20Bījagaṇita, cakravāla, 5(ii)–6.
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That is, both

x =
k

Ah+Bb

y =
Ab+Bh

Ah+Bb

 and
x =

k

Ah−Bb

y =
Ab ∼ Bh

Ah−Bb


are the rational solutions of 1−Nx2 = y2.

6.3 Rational solution of Nx2 ± C = y2 and C −Nx2 = y2

These are the general forms of the equations considered above. When N

and C are both non-square integers, Śrīdhara’s method is not applicable to
their solution. When, however, at least N or C is a perfect square, Śrīdhara’s
method may be used to obtain the rational solutions of the above forms. When
C is a perfect square, the above forms easily reduce to the forms discussed
above. It is sufficient, therefore, to consider only the two forms viz.

(i) a2x2 ± C = y2

and (ii) C − a2x2 = y2.

6.3.1 Rational Solution of a2x2 ± C = y2

Rule—Express the additive or subtractive as a difference of two squares. Set
down the square-roots of these squares in the ascending or descending order
of magnitude according as the kṣepa is additive or subtractive and below
them set down the base and the hypotenuse of any rational rectangle in order.
Obtain the cross-products and the direct products. The sum or difference of
the cross-products divided by the product of the square-root of the multiplier
and the perpendicular of the rectangle, then, gives the first square-root and
the sum or difference of the direct products divided by the perpendicular of
the rectangle gives the other square-root.
In other words, if

A2 −B2 = C

and h2 − b2 = k2,

then a2

{
Bh

+∼ Ab

ak

}2

+ C =

{
Bb

+∼ Ah

k

}2

and a2
{
Ah±Bb

ak

}2

− C =

{
b

+∼ h

k

}2

.
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That is
x =

Bh+Ab

ak

y =
Bb+Ah

k

 and
x =

Bh ∼ Ab

ak

y =
Bb ∼ Ah

k


are the rational solutions of a2x2 + C = y2; and

x =
Ah+Bb

ak

y =
Ab+Bh

k

 and
x =

Ah−Bb

ak

y =
Ab ∼ Bh

k


are the rational solutions of a2x2 − C = y2.

Another form

If

A2 −B2 = ±C
and h2 − b2 = k2,

then, as shown above

x =
Ab+Bh

ak

y =
Ah+Bb

k

 and
x =

Ab ∼ Bh

ak

y =
Ah−Bb

k


are the rational solutions of a2x2 ± C = y2.
Choosing

A =
±C + 1

2

B =
±C − 1

2

and putting

k =
1

2

{
b2

ε
− ε

}
h =

1

2

{
b2

ε
+ ε

}
in one of these solutions, say in the first, we have

x =
1

2a

{
±C(b+ ε)

b− ε
− b− ε

b+ ε

}
y =

1

2

{
±C(b+ ε)

b− ε
+
b− ε

b+ ε

}
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or, on setting b−ε
b+ε = λ,

x =
1

2a

{
±C
λ

− λ

}
y =

1

2

{
±C
λ

+ λ

}
 , 21

which is another form of the rational solution of a2x2±C = y. This was given
by Brahmagupta22 (628), Bhāskara II23 (1150), and Nārāyaṇa24 (1356).

6.3.2 Rational solution of C − a2x2 = y2

A rational solution of this equation is possible by the above method if C is
capable of being expressed as a sum of two squares. In that case, we are led
to the following rule for the rational solution of the above equation:

Rule—Express C as a sum of two squares, set down their square-roots
and below them the base and the perpendicular of any rational rectangle.
Obtain their cross-products and direct products. The sum or difference of
the cross-products (or of the direct products) divided by the product of the
square-root of the multiplier and the hypotenuse of the rectangle, then, gives
the first square-root and the sum or difference of the direct products (or of
the cross-products) divided by the hypotenuse of the rectangle gives the other
square-root.
In other words, if

A2 +B2 = C

and b2 + k2 = h2,

then C − a2

{
Ak

+∼ Bb

ah

}2

=

{
b

+∼ Bk

h

}

and C − a2

{
Ab

+∼ Bk

ah

}2

=

{
Ak

+∼ Bb

h

}2

.

21This solution can be easily derived from Śrīdhara’s lemma. For, ±C, (ax)2, and (y)2 may
be algebraically treated as the squares of the base, perpendicular, and hypotenuse of a
rectangle; so that, choosing an arbitrary number λ and making use of Śrīdhara’s lemma
we have

x =
1

2a

{
±C

λ
− λ

}
, y =

1

2

{
±C

λ
− λ

}
.

22Cf. Brāhmasphuṭasiddhānta, xviii. 69.
23Cf. His Bījagaṇita, cakravāla, rule 8.
24Cf. His Bījagaṇita, I, rule 85.
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That is,

x =
Ak +Bb

ah

y =
Ab+Bk

h

 ,
x =

Ak ∼ Bb

ah

y =
Ah ∼ Bk

h

 ,
x =

Ab+Bk

ah

y =
Ak +Bb

h

 , and
x =

Ab ∼ Bk

h

y =
Ak ∼ Bb

h


are the rational solutions of C − a2x2 = y2.

7 Conclusion

The rectangular method discussed above seems to be Śrīdhara’s own contri-
bution to the subject. This method occurs exclusively in Śrīdhara’s Pāṭī-
gaṇita. It is not found in any other Hindu mathematical work so far known
nor has it been included among the various solutions of the equations of the
form Nx2 + 1 = y2 surveyed by L. E. Dickson (1920) in his History of the
Theory of Numbers, Vol. II. It is fundamentally different from the tentative
method stated by Datta and Singh (1938) in their History of Hindu Mathe-
matics, Part II, and from the method given by Śrīpati (1039) and followed
by Bhāskara II (1150), Nārāyaṇa (1356), Jñānarāja (1503), and Kamalākara
(1658).

Śrīdhara’s method is extremely general. It is applicable to the equations
of the forms Nx2 +∼ C = y2 for obtaining their rational solutions. These
solutions, it may be added, are most general. In the above discussion we have
shown that the rational solutions given by Brahmagupta (628), Śrīpati (1039),
Bhāskara II (1150), Nārāyaṇa (1356), Jñānārāja (1503), and Kamalākara
(1658), as also those given by John Wallis and W. Brouncker (1657) are de-
ducible from the rational solutions obtained from Śrīdhara’s method.



Ācārya Jayadeva, the mathematician ∗

1 Introduction

The object of the present paper is to invite attention of historians of science to
an important Hindu algebraist, Ācārya Jayadeva, who lived and wrote in the
early 11th century of the Christian era (or earlier). His name and quotations
from his work on algebra are found to occur in the Sundarī, which is the name
of Śrīmad Udayadivākara’s commentary on the Laghubhāskarīya of Bhāskara I
(629 ad). The Sundarī has not yet seen the light of day but manuscript
copies of that work are preserved in H. H. the Maharajah’s Palace Library,
Trivandrum, and in the Curator’s Office Library, Trivandrum. A transcript
copy of that work has been very recently procured for our use from the former
by the Tagore Library of the Lucknow University. The extracts from Ācārya
Jayadeva’s work, which have been quoted and explained with illustrations by
the commentator, relate to the solution of the indeterminate equation of the
second degree of the type Nx2+1 = y2. These extracts, it may be pointed out,
are of immense historical interest as they include rules giving the well known
cyclic method of finding the integral solution of the above-mentioned equation.
The credit of the first inception of that ingenious method was hitherto given
to the twelfth century mathematician Bhāskara II (1150 ad) who himself not
only did not claim originality for that method but also ascribed it to earlier
writers. The discovery of that method in an anterior work definitely proves
that the cyclic method was invented in India much earlier. Jayadeva may or
may not have been its inventor but quotations from his work in the Sundarī
are the earliest sources of our information regarding that method. Another
noteworthy feature of the references from Ācārya Jayadeva’s composition is
the solution of the equation Nx2 + C = y2, C being positive or negative.
This method, though not superior to that suggested by Brahmagupta (628
ad), Bhāskara II, and Nārāyaṇa (1356 ad), is nevertheless different from the
known methods. Incidentally we have also given Udayadivākara’s method
for the solution of the multiple equations, x + y = a square, x − y = a
square, xy + 1 = a square. This method, though inferior to those given
by Brahmagupta and Nārāyaṇa, deserves attention because of the ingenuity
displayed by the author. It also shows that Udayadivākara knew full well how
* K. S. Shukla, Ganita, Vol. 5, No. 1 (1954), pp. 1–20.

© Hindustan Book Agency 2019 and Springer Nature Singapore Pte Ltd. 2019
Studies in Indian Mathematics and Astronomy,

Sources and Studies in the History of Mathematics and Physical Sciences,
https://doi.org/10.1007/978-981-13-7326-8_11

A. Kolachana et al. (eds.), 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7326-8_11&amp;domain=pdf


134 Ācārya Jayadeva, the mathematician

to tackle and solve the general indeterminate equation of the second degree
of the type ax2 + bx + c = y2. Equations of that type were hitherto found
treated in the Bījagaṇita of Bhāskara II, though some of his examples relating
to such equations prove his indebtedness to ancient authors.1

2 The Sundarī

The transcript of the Sundarī, which is available to us, is written in Devanāgarī
characters on paper in foolscap size. It is scribed in good hand but there are
the usual imperfections and omissions. The manuscript is practically complete
and extends to 252 leaves written on one side only. There are 21 lines to a
page and about 24 letters to a line. The beginning and end of the Sundarī
are as follows:

Beginning

॥ ीः॥
लघुभा र य ।

उदय दवाकर णीतया सु य या ा या समेत ।
न ा सम जगताम धपं मुरािर-
माचायमायभटम भव भ ा ।
य ा रेण गु णा हत मु ं
ल व ृततर ववृ तं वधा े ॥
त तावदाचायः थममेव भा र यं नाम हकम नब नं तपा तदवे पुनः सं ं
चक षु ोपशा ये भगवते भा राय णाममा ोकेनाच े—
भा राय …

Colophon

इ त ो त षकभ ीम दय दवाकर वर चताय लघुभा र य ववृतौ सु य भधा-
नाय म ग तः थमोऽ ायः।

End

एवं पुनः पुनभ वनयानीत े मूलेनैवा ौ राशी ाता म त।

Colophon

इ त लघुभा र य ववृतौ सु य भधानाय न ुव हयोगा ायोऽ मः।
1See Datta, B., and Singh, A. N., History of Hindu Mathematics, Part II, p. 181.
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From the colophons at the ends of the chapters it is clear that the Sundarī is
a commentary on the Laghubhāskarīya and that the name of the commentator
is Bhaṭṭa Udayadivākara. The former conclusion is confirmed by the contents
of the work.
In the commentary there is no reference to the time of birth of the commen-

tator or of writing the commentary. But at one place in the commentary2 the
commentator cites an example where he states the ahargaṇa (i.e., the number
of days elapsed since the beginning of Kaliyuga) for Friday, the 10th lunar
date, Vaiśākha, bright fortnight, Śaka year 995. This epoch corresponds to
Friday, April 19, ad 1073. It is usual to give the ahargaṇa for the current day.
So we infer that the Sundarī was written in the year 1073 of the Christian
era.
As regards the authenticity of the Sundarī there is little doubt. Refer-

ence to that work has been made by Nīlakaṇṭha (1500 ad) who in his com-
mentary on the Āryabhaṭīya3 of Āryabhaṭa I (499 ad) mentions the name
Laghubhāskarīya-vyākhyā Sundarī and quotes two stanzas from that work.
Both of those stanzas are found to occur in the transcript of the Sundarī
available to us. Moreover, five manuscripts of that work which seems to be
derived from different sources are preserved in H. H. the Maharajah’s Palace
Library, Trivandrum4 and two in the Curator’s Office Library, Trivandrum.5

3 Reference to Ācārya Jayadeva

Reference to Ācārya Jayadeva is made in the Sundarī in connection with the
solution of the indeterminate equation of the second degree, viz.

Nx2 + 1 = y2,

which in Hindu mathematics is called by the name varga-prakṛti (square-
nature).
In verse 18 of the eighth chapter of the Laghubhāskarīya there is an astro-

nomical problem whose solution depends upon the solution of the simultane-
ous equations

8x+ 1 = y2 (1)
7y2 + 1 = z2. (2)

As regards the solution of these equations, Udayadivākara tells us that the
value of y should be determined from equation (2) by solving it by the method

2Comm. on ii. 29.
3ii. 17 (ii).
4See Descriptive Catalogue, Vol. IV, MSS. Nos. 942, 943, 944, 945, and 977.
5See Descriptive Catalogue, Vol. V, MSS. Nos. 761 and 762.
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applicable to the varga-prakṛti; and then the value of the unknown quantity x
should be determined from equation (1) by the method of inversion. In order
to give a detailed working of the process, Udayadivākara mentions Ācārya
Jayadeva and his rules. He writes:

In order to demonstrate this (working), we here set forth with
exposition and illustration the rules for the varga-prakṛti, which
were composed by Ācārya Śrī Jayadeva.6

4 Quotations from Ācārya Jayadeva’s work

Quotations from Ācārya Jayadeva’s work comprise 20 stanzas. Below we
translate and explain those stanzas.

4.1 Stanza 1. Origin of the name varga-prakṛti

इ कृ तिर गु णताऽभी ेन युता वशो धते ा वा ।
वग यतः कृ तवग कृ त तोऽ भ हता ॥१॥
As (in an equation of the type Nx2 ± C = y2) the square of
an optional number multiplied by a given number and then the
product increased or decreased by another given number is of the
nature of a square, so (such an equation) is called varga-prakṛti
(square-nature).

This proves the significance of the name varga-prakṛti.

4.2 Stanza 2. Technical terms explained

य ाभी ेन कृ त वह ते त न मूलं ा ।
ेपयुता हता ा मूल े ं भव त त ूल ॥२॥

The number whose square is multiplied by the given number is
called the lesser root; that product having been increased or de-
creased by the interpolator (kṣepa), the square root thereof is
called the greater root.

That is to say, in the equation Nx2 ±C = y2, x is the lesser root and y the
greater root. N is called prakṛti and C the interpolator.
We will see presently that Ācārya Jayadeva calls the lesser and greater roots

by the names first root and last root also.

6त दशनायाचायजयदवे वर चतवग कृ तकरणसू ा ण स ववरणा ा ल े।
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4.3 Stanza 3. Writing down an auxiliary equation

ई तराशेवग चो दतगुणकारता डते च ।
यु े न कृ तः ( कयता) कय यु े न वे त धया ॥३॥
The square of an optionally chosen number having been multiplied
by the given multiplier, think out how much be added to or sub-
tracted from that product that it may become a perfect square.

That is, first choose an arbitrary number α for x. Then find out a number
k, positive or negative, such that Nα2 + k may become a perfect square, say
β2. Then

Nα2 + k = β2

is an auxiliary equation. We will see how this equation is helpful in finding a
solution of

Nx2 + 1 = y2.

4.4 Stanza 4. Bhāvanā

अशेषकरण ा प भावनाकरणं धा ।
त मास वशेषा तु ातु तया प च ॥४॥
The process of bhāvanā, which pervades all mathematical opera-
tions (dealing with the varga-prakṛti), is twofold—samāsa-bhāvanā
and viśeṣa-bhāvanā, or tulya-bhāvanā and atulya-bhāvanā.

The word bhāvanā is a technical term. According to Udayadivākara, bhā-
vanā is multiplication.7 According to B. Datta and A. N. Singh, it means
lemma or composition. At any rate the process called bhāvanākaraṇa is a spe-
cial mathematical operation in which multiplication is inherent. The process
is described in the next two stanzas.

4.4.1 Stanza 5. Samāsa-bhāvanā

व ा ाससमासा थमं थमाह तः कृ तघाता ।
अ पदा ासयुता दतर ूलं ह तः योः ॥५॥
Summing up the cross products (of the first and last roots) is
obtained a (new) first root; multiplying the product of the first
roots by the prakṛti and then increasing that by the product of
the last roots is obtained a (new) last root; and the product of the
interpolators (is the corresponding new interpolator).

7Compare the term bhāvita, which is the name given to an equation of the type xy = c

(involving the product of two unknown quantities).
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That is to say, if

Nα2 + k = β2, (3)
Nα2

1 + k1 = β2
1 , (4)

then
N(αβ1 + α1β)

2 + kk1 = (Nαα1 + ββ1)
2.

Proof

The auxiliary equations (3) and (4) may be written as

Nα2 − β2 = −k,
Nα2

1 − β2
1 = −k1.

Multiplying these equations side by side, we get

N2α2α2
1 + β2β2

1 −N(α2β2
1 + α2

1β
2) = kk1,

which is the same as

N(αβ1 + α1β)
2 + kk1 = (Nαα1 + ββ1)

2.

Actual working explained

Using 4.3 (ed. i.e. Section 4.3) we write down two auxiliary equations, say

Nα2 + k = β2,

Nα2
1 + k1 = β2

1 .

Now we set down the prakṛti and then the lesser roots, the greater roots,
and the interpolators corresponding to the two auxiliary equations one under
the other as follows:

Prakṛti Lesser root Greater root Interpolator
N α β k

α1 β1 k1

Now we find out the cross products of the lesser and greater roots and put
down their sum underneath the lesser root. Thereafter we obtain the products
of the prakṛti and the lesser roots and of the greater roots and put down their
sum underneath the greater root. And then we write down the product of the
interpolators underneath the interpolator. Thus, we get

Prakṛti Lesser root Greater root Interpolator
N α β k

α1 β1 k1
αβ1 + α1β Nαα1 + ββ1 kk1
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In this way we obtain another auxiliary equation, viz.

N(αβ1 + α1β)
2 + kk1 = (Nαα1 + ββ1)

2.

Repeating the above process over and over again, any number of auxiliary
equations can be found out.

Note

The above process is called samāsa-bhāvanā. Also since the operation has
been made on two different auxiliary equations, this may be called atulya-
bhāvanā (or atulya-samāsa-bhāvanā). If everywhere in the above process, α1

be replaced by α, β1 by β, and k1 by k, the above process will be called
tulya-bhāvanā.

The result of tulya-samāsa-bhāvanā may be stated as follows:

If Nα2 + k = β2,

then N(2αβ)2 + k2 = (Nα2 + β2)2.

Thus we see that the tulya-bhāvanā is a particular case of the atulya-bhāvanā.

4.4.2 Stanza 6. Viśeṣa-bhāvanā

व ा ास वशेषादा दममा ाह तः कृ तघाता ।
अ पदा ासेन च वशे षता ूलम ं ा ॥६॥
Taking the difference of the cross products (of the first and the
last roots), we get a (fresh) first root; multiplying the product of
the first roots by the prakṛti and then taking the difference of that
and the product of the last roots, we get a (fresh) last root. (The
corresponding interpolator is the product of the interpolators).

That is to say, if

Nα2 + k = β2,

Nα2
1 + k1 = β2

1 ,

then
N(αβ1 − α1β)

2 + kk1 = (Nαα1 − ββ1)
2.

The proof and working are as in the previous case.
The rules stated in stanzas 5 and 6 are known as Brahmagupta’s lemmas.

They occur for the first time in the Brāhmasphuṭasiddhānta of Brahmagupta.
In Europe they were rediscovered by Euler in 1764 and by Lagrange in 1768.
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4.5 Stanza 7. Rational solution of Nx2 + 1 = y2

ेपकसंवग वग ेद वगमूलेन ।
मूले भा े त ावने च पं भवे ेपः ॥७॥
When (in the above process) the product of the interpolators be-
comes a perfect square, by the square root thereof divide the
(lesser and greater) roots: then they correspond to the interpo-
lator unity and so they continue to be even when the process of
the (tulya)bhāvanā is applied thereafter.

From what has been said above, if

Nα2 + k = β2,

Nα2
1 + k1 = β2

1 ,

then
N(αβ1 + α1β)

2 + kk1 = (Nαα1 + ββ1)
2.

If kk1 = K2, then

N(αβ1 + α1β)
2 +K2 = (Nαα1 + ββ1)

2,

i.e., N

(
αβ1 + α1β

K

)2

+ 1 =

(
Nαα1 + ββ1

K

)2

.

In other words, if

Nα2 + k = β2,

Nα2
1 + k1 = β2

1 ,

and kk1 = K2, then

x =
(αβ1 + α1β)

K
,

y =
(Nαα1 + ββ1)

K

is a solution of Nx2 + 1 = y2. In particular, if

Nα2 + k = β2,

then

x =
2αβ

k
,

y =
(Nα2 + β2)

k
,

is a solution of Nx2 + 1 = y2.
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Illustration

Solve 7x2 + 1 = y2.
Let the auxiliary equation be

7(1)2 + 2 = 32.

Then applying the process of tulya-bhāvanā, we have

Prakṛti Lesser root Greater root Interpolator
7 1 3 2

1 3 2
6 16 4

Thus

7(6)2 + 4 = 162,

or 7(3)2 + 1 = 82.

Hence x = 3, y = 8 is a solution of the given equation. To get another solution,
we treat the equation

7(3)2 + 1 = 82

as the auxiliary equation. Then applying the process of tulya-bhāvanā, we
have

7 3 8 1
3 8 1
48 127 1

Hence x = 48, y = 127 is another solution of the same equation. To obtain
still another solution, we treat the equations

7(3)2 + 1 = 82,

7(48)2 + 1 = 1272,

as auxiliary equations. Then applying samāsa-bhāvanā, we have

7 3 8 1
48 127 1
765 2024 1

Hence x = 765, y = 2024 is another solution of the same equation. Proceeding
like this, we can get any number of solutions.
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4.6 Stanzas 8–15. Integral solution of Nx2 + 1 = y2. The Cakravāla
or the Cyclic Method

े ेपा तरा ेपभ योः ेपा ।
कु ाकारे च कृते कय णुं ेपकं ा ॥८॥
ताव ृ तेः कृ ा हीने ेपकेण संभ े ।

तरावा ः ा द ाक लतोऽपरः ेपः ॥९॥
ेपककु ाकारे क न मूलहते ।

स े पदे ेप(के)ण ल ं क न पद ॥१०॥
ेपककु ागु णता ा न मूलहत ।

पा ा ं ेपं वशो शेषं मह ूल ॥११॥
कुय कु ाकारं पुनरनयोः ेपभ योः पदयोः ।
त े हत ेपे स शगुणेऽ कृ तहीने ॥१२॥

ेपः ेपा े ेपका गुणकारा ।
अ ा स े ा ेपावा ं क न पद ॥१३॥
एत ेपककु कघातादन र ेप ।
ह ा हतं शेषं े ं ते गुणका द ॥१४॥
कुय ाव ाव ष ामेक चतुण पत त ।
इ त च वालकरणेऽवसर ा ा न यो ा न ॥१५॥
Set down the lesser root, the greater root, and the interpolator at
two places. (At one place divide the lesser and greater roots by
the interpolator. Treating the remainder of the lesser root as the
dividend, the remainder of the greater root as the addend, and
the interpolator as the divisor of an indeterminate equation of the
first degree (kuṭṭākāra), solve that equation.) The kuṭṭākāra8 hav-
ing been (thus) determined from those (lesser and greater roots)
divided out by the interpolator and the interpolator, ascertain how
many times the interpolator be added to it so that the square of
that sum being diminished by the prakṛti and then divided by the
interpolator may yield the least value. The least value thus ob-
tained is the new interpolator. The kuṭṭākāra as increased by (the
chosen multiple of) the interpolator when multiplied by the lesser
root, then increased by the greater root, and then divided by the
interpolator, the quotient is the new lesser root. That (new lesser
root) should be multiplied by the kuṭṭākāra as increased by (the
chosen multiple of) the interpolator and from the product should
be subtracted the new interpolator as multiplied by the lesser root;
the remainder (thus obtained) is the new greater root.

From these (new lesser and greater) roots divided out by the

8In the indeterminate equation of the first degree (ax+c)
b

= y, a is called the dividend, b
the divisor, c the addend, and x the kuṭṭākāra.
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(new) interpolator again find out the kuṭṭākāra (as before). In-
crease it by the proper multiple of the interpolator: the square
of that (sum) being diminished by the prakṛti and then divided
by the interpolator, the quotient is the (fresh) interpolator. The
kuṭṭākāra (guṇakāra) increased by the chosen multiple of the inter-
polator being multiplied by the lesser root and increased by the
greater root and then divided by the interpolator, the quotient
is the fresh lesser root. This (fresh lesser root) being multiplied
by the kuṭṭākāra, to which the chosen multiple of the interpolator
has been added, and the product being diminished by the product
of the fresh interpolator and the lesser root, the remainder is the
fresh greater root.

From them again calculate the kuṭṭākāra etc. and continue the
process till the interpolator comes out to be one of the six numbers
±1, ±2, and ±4.

(One of these numbers having been obtained as the interpolator) in
the (above) cyclic process (cakravāla), necessary operations should
be made (to get the integral solution for unit interpolator).

Lemma of the Cyclic Method

The above method is based on the following lemma:

If Nα2 + k = b2,

where a, b, k are integers, k being positive or negative, then

N

(
at+ b

k

)2

+
t2 −N

k
=

[
t

(
at+ b

k

)
− a

(
t2 −N

k

)]2
.

Proof

Treating

Nα2 + k = b2,

and N(1)2 + (t2 −N) = t2,

as auxiliary equations, and applying the process of samāsa-bhāvanā, we have

N a b k

1 t t2 −N

at+ b Na+ bt k(t2 −N)
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Therefore,

N(at+ b)2 + k(t2 −N) = (Na+ bt)2

or N

(
at+ b

k

)2

+
t2 −N

k
=

(
Na+ bt

k

)2

,

which is the same as

N

(
at+ b

k

)2

+
t2 −N

k
=

[
t

(
at+ b

k

)
− a

(
t2 −N

k

)]2
.

The Cyclic Process explained

Suppose that an auxiliary equation is

Na2 + k = b2,

where a, b, and k are integers, k being positive or negative. Then, from the
above lemma,

N

(
at+ b

k

)2

+
t2 −N

k
=

[
t

(
at+ b

k

)
− a

(
t2 −N

k

)]2
. (5)

Now we choose t such that at+b
k is a whole number, and

∣∣∣ (t2−N)
k

∣∣∣ is as small
as possible. Let that value be T . Then let

a1 =
aT + b

k
,

b1 = T

(
aT + b

k

)
− a

(
T 2 −N

k

)
,

k1 =
T 2 −N

k
.

The numbers a1, b1, k1 are all integral.9 The equation (5) then becomes

Na21 + k1 = b21. (6)
9From the form of b1 it is clear that it will be an integer provided a1 and k1 are integers.
But a1 is an integer by assumption. So we have only to show that k1 is an integer. Now
if we eliminate b between

a1 =
aT + b

k
, and b1 =

bT +Na

k
,

we get
k

a
(a1T − b1) = T 2 −N.

Since the right side is integral, therefore the left side is also so. But k and a are prime to
each other. Therefore, a1T − b1 must be perfectly divisible by a. Hence

a1T − b1

a
=

T 2 −N

k
= k1 = an integer.
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Now treating this as the auxiliary equation, and proceeding as above, we
derive from (6) a new equation of the same kind

Na22 + k2 = b22,

where again a2, b2, k2 are whole numbers. Successive repetition of this process
would, according to Ācārya Jayadeva, lead us to an equation in which the
interpolator k is ±1, ±2, ±4, and in which a, b are integers. And by the
process of samāsa-bhāvanā such an equation easily leads us to an equation of
the type

Nα2 + 1 = β2,

where α, β are integers.10 Thus we get x = α, y = β as an integral solution
of Nx2 + 1 = y2.

Illustration

Find an integral solution of 7x2 + 1 = y2.

Let the auxiliary equation be

7(1)2 − 3 = 22.

The process of tulya-bhāvanā does not lead to an integral solution. So we
apply the Cyclic Process.
From the auxiliary equation

lesser root = 1,

greater root = 2,

interpolator = −3.

Therefore solving the equation
(t+ 2)

−3
= a whole number,

we get t = −3λ + 1. Putting λ = 0, we get t = 1 which gives to
∣∣∣ (t2−7)

−3

∣∣∣ the
smallest value 2. Therefore,

new interpolator = 2,

new lesser root = −1,

new greater root = −3.

Since the new interpolator is 2, therefore the cyclic process stops here. Ap-
plying the tulya-bhāvanā, we have
10This fact was known to Brahmagupta. For details see Datta, B., Singh, A. N., History

of Hindu Mathematics, Part II, pp. 157 ff.
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7 -1 -3 2
-1 -3 2
6 16 4

or 3 8 1

Hence one integral solution of the given equation is

x = 3, y = 8.

4.7 Stanzas 16–20. Solution of Nx2 + C = y2, C being positive or
negative

कृतौ ताव ा याव त वग भवे ेपा ।
ताव वगः शो ो यथाकृतयथो योरनयोः ॥१६॥

ेपशोधना व ाह तयोगतोऽ प वगः ा ।
एवं मूलं कुय स ेप कृ तमूलेन ॥१७॥
शोधनमूलगुणेनोना धकता तत शेषा ा ।
कृ त ेपेणा े मूले लघुनी भवेत े ॥१८॥

संयु तगुणमूलहते तरा श तयो योः पे ने ।
ेपकशोधनमूलं वशोधयेद धकतः मशः ॥१९॥

मूले महती ातामतो महीय समायो ।
क टतम तगहन मदं म तमुखे म काकरण ॥२०॥

Add such a number to the prakṛti as makes the sum a perfect
square. Then from the interpolator subtract a square number
which is chosen in such a way that when the prakṛti and the inter-
polator, as obtained after the said addition and subtraction or as
they are stated, are cross multiplied by the additive and the sub-
tractive quantities, the sum of the cross products is again a square
number. Then extract the square root of that (square number).
Then by the product of the square root of the increased prakṛti
and the square root of the subtractive (square number) (severally)
decrease and increase that square root. The two numbers (thus ob-
tained) being divided by the number added to the prakṛti become
the two lesser roots. Set them down at two places and multiply
both of them by the square-root of the increased prakṛti. Then
respectively add the square-root of the number subtracted from
the interpolator to the lesser one and subtract the same from the
greater one. Then they become the two greater roots. A large
number of lesser and greater roots may then be determined.

Thus we have revealed a determination which is as difficult as
setting a fly against the wind.
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Exposition

In order to solve the equation Nx2 + C = y2, choose a number a such that
N + a may become a perfect square. Then choose a number b such that the
sum of the cross products of

N + a c− b2 N c

or
a b2 a b2

i.e., (N + a)b2+(c− b2)a or Nb2+Ca also may become a perfect square. Let

N + a = P 2,

and Nb2 + Ca = Q2.

Then according to the rule the two lesser roots are

(Q− Pb)

a
and (Q+ Pb)

a
;

and the corresponding greater roots are

P (Q− Pb)

a
+ b and P (Q+ Pb)

a
− b.

That is to say, the two solutions of Nx2 + C = y2 are

x =
(Q− Pb)

a

y =
P (Q− Pb)

a
+ b

 ,
x =

(Q+ Pb)

a

y =
P (Q+ Pb)

a
− b

 .

Rationale

Let N + a be equal to P 2. Then

Nx2 + C ≡ (N + a)x2 + (C − b2 − ax2) + b2

≡ (Px)2 + (C − b2 − ax2) + b2. (7)

Therefore, let
Nx2 + C = (Px± b)2. (8)

Then from (7) and (8), we have

(Px± b)2 = (Px)2 + (C − b2 − ax2) + b2

or ax2 ± 2Pbx = (C − b2)

or (ax)2 ± 2Pbax = a(C − b2).
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Adding (Pb)2 to both the sides, we have

(ax± Pb)2 = a(C − b2) + (Pb)2

= a(C − b2) + (N + a)b2

= Nb2 + Ca

= Q2, say.
∴ ax± Pb = Q

or x =
(Q− Pb)

a
or (Q+ Pb)

a
.

Consequently,

y = Px+ b or Px− b respectively

=
P (Q− Pb)

a
+ b or P (Q+ Pb)

a
− b.

Hence the rule.

Alternative rationale

Let

N(1)2 + a = P 2,

N(b)2 + Ca = Q2.

Now treating these as auxiliary equations and applying the process of
samāsa-bhāvanā, we have

N 1 P a

b Q Ca

Q+ Pb Nb+ PQ Ca2

or
(
Q+ Pb

a

) (
Nb+ PQ

a

)
C

Therefore, one solution of Nx2 + C = y2 is

x =
Q+ Pb

a

y =
(Nb+ PQ)

a
i.e., P (Q+ Pb)

a
− b,

Similarly, applying the process of viśeṣa-bhāvanā, we get

x =
(Q− Pb)

a
,

y =
P (Q− Pb)

a
+ b,

as another solution of the same equation.
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Illustration

If you know (the method for solving) the vargaprakṛti, say what
is that number whose square being multiplied by 60 and then
increased by 8 times 20 is again a perfect square.

Here we have to solve the equation

60x2 + 160 = y2.

Obviously, a is 4, so that P = 8. Now b is to be chosen in such a way that
Nb2 + Ca i.e., 60b2 + 640 may be a perfect square. By trial, we get b = 4, so
that Q = 40.
Hence two solutions of the above equation are

x = 2, y = 20; x = 18, y = 140.

To get another solution, we may proceed as follows. Taking

60(18)2 + 160 = 1402

as an auxiliary equation and applying the process of samāsa-bhāvanā, we have

60 18 140 160
18 140 160

5040 39040 25600
or 63

2 244 1

Now taking

60(18)2 + 160 = 1402, and 60

(
63

2

)2

+ 1 = 2442

as auxiliary equations, and applying the process of samāsa-bhāvanā we have

60 18 140 160
63/2 244 1
8802 68180 160

Therefore, x = 8802, y = 68180 is another solution of the same equation.
Similarly, any number of solutions may be written down.
N. B.—The solution x = 18, y = 140 may also be derived from x = 2,

y = 20 in the same way as x = 8802, y = 68180 has been derived from x = 18,
y = 140.
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5 Udayadivākara’s procedure for solving the multiple
equations

x+ y = a perfect square,
x− y = a perfect square,
xy + 1 = a perfect square.

[Udayadivākara works out these equations because their solution is required
in a problem set in the Laghubhāskarīya (viii. 17). His method does not give
the general solution of the problem but it certainly throws light on the tech-
nique employed by early Hindu astronomers in solving algebraical equations.
Udayadivākara’s method under consideration deserves mention here because
it is based on a previous rule of Ācārya Jayadeva.]
To begin with, Udayadivākara assumes that

xy + 1 = (2y + 1)2,

so that he gets
x = 4y + 4.

Thus
x− y = 3y + 4.

Udayadivākara, now assumes that

3y + 4 = (3z + 2)2.

Thus he gets

y = 3z2 + 4z,

making x = 12z2 + 16z + 4.

Therefore,
x+ y = 15z2 + 20z + 4.

To make x+ y a perfect square, Udayadivākara puts

15z2 + 20z + 4 = u2

which, after multiplication and transposition, he writes as

900z2 + 1200z + 400 = 60u2 + 160

or (30z + 20)2 = 60u2 + 160.
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This equation can be written as a pair of equations

60u2 + 160 = λ2, (9)
30z + 20 = λ. (10)

Udayadivākara solves equation (9) in the same way as we have solved it under
Section 4.7 above. He gets the solutions

u = 2, λ = 20

u = 18, λ = 140

u = 8802, λ = 68180.

Making use of the values λ = 140 and λ = 68180, he gets z = 4, and
z = 2272. Likewise he obtains

x = 64, y = 260

x = 15495040, y = 61980164

as two solutions of the proposed multiple equations.

6 Conclusion

The most interesting feature of the stanzas discussed above is the cyclic
method of finding the integral solution of the equation Nx2 + 1 = y2. That
method has been called cakravāla and is the same as given by Bhāskara II11

and Nārāyaṇa12 (1356). As regards the cyclic method, H. Hankel has re-
marked:

It is above all praise; it is certainly the finest thing which was
achieved in the theory of numbers before Lagrange.13

As already mentioned the cyclic method was hitherto found to occur for the
first time in the Bījagaṇita of Bhāskara II, so the credit of that method was
attributed to him. But Bhāskara II ascribed the name cakravāla to previous
writers14 which shows that the cyclic method was not actually devised by
him. The discovery of that method in a work written about a century earlier
confirms his admissions and takes away the credit of that method from him.
But who is to be given the credit of that method? In this connection we must
quote the following stanza which occurs at the end of Bhāskara II’s Bījagaṇita.
11Cf. Bījagaṇita, cakravāla, 1–4.
12Cf. Gaṇitakaumudī, vargaprakṛti, 8–11; Bījagaṇita, I, Rule 79–82.
13Cf. Zur Geschichte der Math. in Altertum und Mittelalter, Leipzig, 1874, pp. 203–204.
14The original text is “च वाल मदं जगुः”. The commentator Kṛṣṇa explains: “अाचाय एत णतं

च वाल म त जगुः” i.e., “the learned professors call this method of calculation the cakravāla”.
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As the works on algebra of Brahmagupta, Śrīdhara, and Pad-
manābha are very extensive, so for the satisfaction of the students
I have taken the essence of those works and compiled this small
work with demonstrations.

This stanza shows that the Bījagaṇita of Bhāskara II was drawn mostly
from the works on algebra of Brahmagupta, Śrīdhara, and Padmanābha. The
cyclic method does not occur in the works of Brahmagupta: it is likely that
the work of Śrīdhara or Padmanābha or both contained that method.15 There
is no doubt that Bhāskara II got that method from some earlier work. If that
was Jayadeva’s work, Bhāskara II must have mentioned his name along with
the other names mentioned by him. But he has not made even a single refer-
ence to Jayadeva. At the same time it cannot be said definitely whether the
algebraical works of Śrīdhara and Padmanābha contained the cyclic method.
In fact, we have absolutely no information about them. It is simply by chance
that we have come across the name of and quotations from Ācārya Jayadeva
who is otherwise unknown to us. Under these circumstances the question
of this invention cannot be decided until we receive some more light in this
direction.

15P. C. Sengupta (1944) expressed the hope
that further researches may show that this achievement is to be ascribed to
Padmanābha, if his work be ever brought to light.

See the Presidential Address delivered by him at the Technical Sciences Section of the
Twelfth All India Oriental Conference held at Banaras, 1944. I fail to understand why
Sri Sengupta has shown special favour to Padmanābha against Śrīdhara whose claims are
equally good if not greater.
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1 Introduction

Series of numbers with fractional number of terms have generally no meaning
and so they are not treated in modern works on algebra. But such series are
found to occur in ancient Indian works on arithmetic, where they have been
assigned a geometrical or symbolical significance. Originally such series were
interpreted with the help of figures resembling a ladder or a drinking glass,
but in course of time an analytical meaning was also given to them. In doing
so the Indian mathematicians were guided by certain problems that arose in
everyday life. In this brief note we shall put forward the Indian stand-point
with reference to arithmetic series having fractional number of terms.

2 Occurrence

Problems on series involving fractional number of terms seem to have attracted
the Hindu mind from very early times. The following three problems are
found to occur in the earliest Hindu treatise on mathematics, the Bakhshali
Manuscript (c. 300 ad):

(1) There are two labourers of whom one earns 10 māṣakas per day and the
other does work which brings him 2 māṣakas increasing by 3 māṣakas
each day. In what time will they have earned an equal amount?

(2) Earnings of one man are in A.P., whose first term is 5 and common
difference 6; those of another, also in A.P., with its first term equal to
10 and common difference equal to 3. When will they have an equal
amount of money?

(3) One man walks 5 yojanas on the first day and 3 yojanas more on each
successive day. Another man walks 7 yojanas each day, and he has
already walked for 5 days. Say, O ! excellent mathematician, when they
will meet.

* K. S. Shukla, in Bhāratī Bhānam (Dr. K. V. Sarma Felicitation Volume), Panjab
University Indological Series - 26, Hoshiarpur (1980), pp. 475–481.
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The following problem, occurring in Pṛthūdakasvāmin’s commentary (860
ad) on the Brāhmasphuṭasiddhānta,1 makes mention of the fractional number
of terms directly:

(1) A king bestowed gold continually to venerable priests during 3 days and
a ninth part, giving one and a half (bhāras), with a daily increase of a
quarter. What are the mean and last terms and the total?

Ācārya Mahāvīra,2 about the middle of the 9th century ad, gave numer-
ous examples on arithmetic series of fractional numbers involving fractional
number of terms. The following are the typical ones:

(1) 2
3 ,

1
6 , and

3
4 are (respectively) the first term, common difference, and

the number of terms (of one series), and 2
5 ,

3
4 , and

2
3 those of another

(series). Say what is the sum (of each of these series).

(2) Find the first term and common difference of the series whose number
of terms are 2

3 ,
3
4 ,

4
5 ,

5
6 ,

6
7 ,

7
8 ,

8
9 ,

9
10 ,

10
11 , and

11
12 , and whose sums are the

squares and cubes of those numbers (respectively).

(3) In a series, whose first term is twice the common difference, the number
of terms is 13

18 , and the sum is 67
216 . Find out the first term and the

common difference.

(4) In relation to one series, the first term is 2
5 , the common difference is

3
4 , and the sum is 7

54 ; again (in relation to another series), the common
difference is 5

8 , the value of the first term is 3
8 , and the sum is 3

40 . In
respect of these two (series), O! friend, give out the number of terms
quickly.

(5) Give out the first term and the common difference (respectively) in
relation to (the two series having) 31

150 as the sum, and having 3
4 (in one

case) as the common difference and 4
5 as the number of terms, and (in

the other case) 1
3 as the first term and 4

5 as the number of terms.

(6) Of two series whose number of terms are 11 minus 2
3 and 9 plus 1

5 ,

respectively, the sum of one is equal to the sum of the other as multiplied
or divided by an integer 1, 2, 3, etc. If the first term and common
difference of those series be mutually interchangeable, say, friend, what
they are.

Ācārya Śrīdhara3 classifies series into two categories, (A) series which ad-
mit of geometrical interpretation, and (B) series which admit of symbolical
interpretation. Under the former he set the following problems:

1Chap. xii, (Banares, 1902).
2See Gaṇitasārasaṅgraha, Chap. 3 (Madras, 1912).
3See his Pāṭīgaṇita, śreḍhī-vyavahāra (Lucknow, 1959).
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(1) What is the sum of 5 terms of the series whose first term is 2 and
common difference 3? And what of one half of a term? (Also) say the
sum of one-fifth of a term of a series whose common difference is 5 and
the first term 2.

(2) In a leather bag full of oil there occurs a fine hole, and the oil leaks
through it. The bag has to be carried to a distance of 3 yojanas. If the
wages for the first yojana be 10 paṇas and for the subsequent yojanas
successively less by 2 paṇas, what are the wages for a krośa? (1 krośa =
1
4 of a yojana).

Under the latter he gives the following problems:

(3) One man gets 3, and the other men get 2 more in succession; say, what
do (the first) 4 1

2 men get.

(4) If a labourer gets 1
2 in the first month and 1

3 more in succession in the
following months, what will he get in (the first) 3 1

2 months?

3 Geometrical interpretation

The geometrical interpretation of an arithmetic series is met with in its fuller
form in the Pāṭīgaṇita4 of Ācārya Śrīdhara, who has compared it with the
shape of a drinking glass. Writes he:

As in the case of an earthen drinking glass the width at the bottom
is the smaller and at the top greater, so also is the case with the
figures of a series.
The areas of the series-figure for the successive units of the altitude
form a series which begins with the given first term and increases
successively by the given common difference.
I now describe the method for finding the base and the face (i.e.,
the top side) of the series-figure (corresponding to the first term).
The number of terms, i.e., one, is the altitude of the series-figure;
the first term of the series as diminished by half the common dif-
ference of the series is the base; and the base as increased by the
common difference of the series is the face. All these should be
shown by means of threads.
Two threads should then be stretched out, one on either side, join-
ing the extremities of the base and the face: these are the lateral
sides of the series-figure.

4See his Pāṭīgaṇita, śreḍhī-vyavahāra (Lucknow, 1959).
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Having constructed the series-figure (for altitude unity) in this
manner, one should determine the face for the desired altitude
(i.e., for the desired number of terms of the series) (by the following
rule):
The face (for altitude unity) minus the base (for altitude unity),
multiplied by the desired altitude, and then increased by the base
(for altitude unity), gives the face (for the desired altitude).

That is to say, if we construct a symmetrical trapezium with

base = a− 1

2
d, face = a+ (n− 1

2
)d, and altitude = n,

and subdivide it in smaller trapeziums by drawing (n− 1) horizontal lines at
equal distances, then the areas of these sub-trapeziums, taken from bottom
to top, will severally correspond to the n terms of the series

a+ (a+ d) + (a+ 2d) + · · ·+ {a+ (n− 1)d};

and the area of the whole trapezium will correspond to the sum of the n terms
of the series.
For, the first trapezium from the bottom will have

base = a− 1

2
d, face = a+

1

2
d, and altitude = 1.

Therefore its area will be equal to a, which is the first term of the series; the
second trapezium from the bottom will have

base = a+
1

2
d, face = a+ d, and altitude = 1.

Therefore its area will be equal to a + d; and so on. The area of the whole
trapezium is equal to n

2 {2a+ (n− 1)d}.
Thus, according to the above interpretation, the series

a+ (a+ d) + (a+ 2d) + . . . to (n+ p/q) terms

stand for the area of the trapezium with

base = a− 1

2
d, face = a+

(
n+

p

q
− 1

2

)
d, and altitude = n+

p

q
.

Since the area of this trapezium is equal to

1

2

(
n+

p

q

){
2a+

(
n+

p

q
− 1

)
d

}
,

the sum of above series is also equal to that.
Hence Śrīdhara enunciates the following general formula for the sum of a

series having integral or fractional number of terms:
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The common difference as multiplied by one half of the number
of terms minus one, being increased by the first term and then
multiplied by the number of terms, gives the sum of the series
(in arithmetical progression). And the area of the (corresponding)
series-figure is equal to the product of one-half of the sum of the
base and the face, and the altitude.

3.1 A paradoxical situation

Now, we draw the attention of the reader to the third part of Śrīdhara’s
Problem One. It relates to finding the sum of one-fifth of a term of the
arithmetic series whose first term is 2 and common difference 5. If we apply
Śrīdhara’s rule, we find that the sum comes out to be 0. This is indeed a very
curious situation, for the sum of a series whose first term, common difference,
and the number of terms are all positive comes out to be 0. The situation
becomes still more curious if we find the sum of one-fifth of a term of the same
series, for then we get a negative sum.
To resolve this difficultly, Śrīdhara says:

When the base of the series-figure comes out to be negative, the
two threads (joining the extremities of the base and face corre-
sponding to the first term) should be stretched crosswise (so that
in this case the series-figure corresponding to the first term will
reduce to two triangles, one lying below the other). In the upper
triangle, the altitude will be equal to the face divided by face mi-
nus base; and that subtracted from one will give the altitude in
the lower triangle.

Thus, in the first case under consideration, the series-figure reduces to two
triangles, the upper one having

base = 1

2
, and altitude = 1

10
,

and the lower having

base = −1

2
, and altitude = 1

10
.

Hence, the

sum of the series = area of the upper triangle+ area of the lower triangle

=
1

40
− 1

40
= 0.

In the second case, the upper triangle of the series-figure has

base = 1

3
, and altitude = 1

15
,
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and the lower triangle has

base = 1

2
, and altitude = 1

10
,

so that the area of the series comes out to be equal to

1

90
− 1

40
, i.e., − 1

72
.

3.2 Note

The idea of interpreting series by means of geometrical figures is very old.
For we learn from Bhāskara I (629 ad) that in his time certain astronomers
regarded the subject of series as forming part of geometry and not of algebra.
He says:

Other mathematicians say that mathematics is of two types, sym-
bolical and geometrical … Proportion and pulverizer (i.e., indeter-
minate analysis of the first degree), etc., are stated to be parts of
symbolical mathematics, and series and shadow, etc., of geometri-
cal mathematics.

Pṛthūdakasvāmin (860 ad) has mentioned the name of an ancient Indian
mathematician Skandasena who explained the sum of an arithmetic series by
means of geometrical figures. Possibly his interpretation was the same as that
of Śrīdhara. It is interesting to note that series-figures attracted the Hindu
mind and appear in Indian works on arithmetic as late as the fourteenth
century ad. Ācārya Nārāyaṇa (1356 ad) has discussed these figures in his
Gaṇitakaumudī in the chapter on plane figures.

4 Symbolical interpretation

According to the symbolical interpretation, the series

a+ (a+ d) + (a+ 2d) + . . . to (n+ p/q) terms

means the sum of n terms together with p/qth part of the (n+1)th term. Thus
the sum of the above series will be equal to

1

2
n{2a+ (n− 1)d}+ p

q
(a+ nd).

Hence Śridhara says:

The common difference as multiplied by the integral part of the
number of terms should be increased by the first term, and the
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result obtained should be kept undestroyed (at one place). The
same result (written in another place) being increased by the first
term, then diminished by the common difference, then multiplied
by one-half of the integral part of the number of terms, and then
added to the undestroyed result as multiplied by the fractional
part of the number of terms, gives the sum of the series.

Śrīdhara has also given rules for finding the first term, common difference,
and the number of terms when the other quantities are known.

5 Non-equivalence of interpretations

It is evident that, unless the series contains an integral number of terms, the
two interpretations are non-equivalent, and would lead to different results. As
to which interpretation is to be followed in a particular problem will depend on
the nature of the problem. For instance, to solve Problem Two of Śrīdhara one
must apply the geometrical interpretation, whereas to solve Problem Four one
must apply the symbolical interpretation. But in Problem One of Śrīdhara
both interpretations are equally good, and it would be difficult to accept
one in preference to the other. Śrīdhara does not explicitly say as to which
interpretation should be applied in such cases. But as he sets that problem
under the geometrical interpretation, it means that he assumes that such
problems are to be interpreted geometrically. Other Indian writers on the
subject also seem to be of the same view.



Hindu methods for finding factors or divisors
of a number ∗

1 Introduction

Factoring or finding divisors of a number does not appear as a subject of treat-
ment in any early work on Hindu arithmetic. There are, however, reasons to
believe that the ordinary method of factoring a number by successive division
by 2, 3, 5, etc. was well known but being much too elementary was not consid-
ered suitable for inclusion in an arithmetical work. Even in Mahāvīrācārya’s
(850 ad) voluminous Gaṇitasārasaṅgraha where we have explicit references
to factorisation no rule has been stated for the purpose. Śrīpati (1039 ad)
is probably the first Hindu writer who has formally dealt with the subject
of factoring a number in his Siddhāntaśekhara. Besides stating the ordinary
method based on successive division, he gives an additional method for factor-
ing a non-square number by expressing it as a difference of two squares. This
latter method was subsequently stated in its complete form by another no-
table Hindu mathematician Nārāyaṇa (1356 ad) who, in his Gaṇitakaumudī,
devoted a full chapter to the subject of factoring and finding all possible di-
visors of a number. It is interesting to note that the method of factoring a
non-square number in its complete form in which it was stated by Nārāyaṇa,
was rediscovered in Europe about two centuries later by the French mathe-
matician Fermat. The object of the present paper is to throw light on the
methods given by Śrīpati and Nārāyaṇa and to invite attention of historians
of mathematics to them.

2 Srīpati’s rule

Śrīpati1 states his rules for factoring a number as follows:

ा ा भा रा शं समे त अा द ाने प के प केन ।
एवं कृय ावदाेजं तु ताव ा है रैभ रा शं भजे ु ॥

* K. S. Shukla, Gaṇita, Vol. 17, No. 2 (1966), pp. 109–117.
1Śrīpati, Siddhāntaśekhara, Part II, edited by Babuaji Misra, Calcutta (1947), ch. xiv, vv.
36–37.
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वग े ूलमेवा हारं नाे चेदास ं पदं म ।
पं यु ा शेषहीने कृ तः ा त ूलं त ु मूलं युताेने ॥

(Rule 1). So long as the dividend (i.e. the number to be factored)
is even, it is to be divided out by 2 again and again; whenever 5
happens to occur in the unit’s place, it should be divided by 5; this
should be done until the dividend is reduced to an odd number
(with unit’s digit different from 5), and then (the prime numbers)
3 etc. should be tried as divisors.
(Rule 2). If the dividend is a perfect square, its square root itself
is a divisor; if not, its nearest square root should be multiplied
by 2, then increased by 1, and then diminished by the residue of
the square root; if the resulting number is a perfect square, find
the square root of this perfect square and also the square root of
the dividend as increased by this perfect square, and take their
sum and difference. (Thus are obtained the two factors of the
dividend).

Rule 1 gives the ordinary method of factoring a number. Rule 2 may be
symbolically expressed as follows:
Let N be a non-square number, equal to a2 + r say. Then if

2a+ 1− r = b2,

we have
N + b2 = a2 + r + (2a+ 1− r) = (a+ 1)2,

so that

N = (a+ 1)2 − b2

= (a+ b+ 1)(a− b+ 1).

3 Nārāyaṇa’s rules

Nārāyaṇa2 states his rules as follows:

असकृ वभजे ा समरा शं यावदे त वैष ।
स ु थम ाने प सु भा े च प भ ा ॥
न समाे भा ः थमः त य द प कं ाने ।
अ े ाः क े स कैकादशादय ेदाः ॥
याव ेद ा ाव हरसाधनं यते ।
भा ाे वग े त ूलं छेदो धा भव त ॥

2Nārāyaṇa, Gaṇitakaumudī, Part II, edited by Padmakara Dvivedi, Benaras (1942), ch. xi,
rules 2–9(i).
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अपद द ु भा ः कये कृ ा युता पदं भा ा ।
पदयाेः संयु त वयुती हाराै पिरक ताै भा ाै ॥
रा ाे ु तयाेः ा कुव त ेदशाेधनं सु धया ।
अपद द राशेः पदमास ं स णं सैक ॥
मूलावशेषहीनं वग े ेपक कृ त स ै ।
वगा न भवे पूव स पदं गु णतं संयु ॥
आ ा ु रवृ ा ताव याव भवै वगः ।
असमानान पूवहताः परे पुरः ा था चा े ॥
तु ान पूव ः परः पृथ तेऽ हर न ाः ।
(Rule 1). If the number is even, divide it by 2 again and again
until it becomes odd; if there is 5 in the unit’s place, divide by 5.
If the number to be divided is neither even, nor there is 5 in the
unit’s place, the prime numbers 3, 7, 11, etc. should by tried as
divisors. One should find out the divisors until it is possible to do
so.

(Rule 2). In case the number to be divided is a perfect square,
its square root is a twice repeated factor. If the number to be
divided is a non-square number, find an optional square number
which added to the dividend gives a perfect square. The sum
and the difference of their square-roots are the divisors of that
(non-square) number, which are to be treated as dividends. The
intelligent should now proceed, as before, to find out the divisors
of those numbers.

(The method of finding the optional square number contemplated
above is as follows): Find out the nearest square root of the non-
square number, multiply that by 2, and then subtract therefrom
the residue of the square root: in case it is a perfect square, it is
to be taken as the number to be added to the dividend to make
it a perfect square. In case the above number is not a perfect
square, it should be further increased by the successive terms of
the arithmetic series whose first term is twice the nearest square
root (of the non-square number) plus 3, and common difference 2,
until it becomes a perfect square.

(Rule 3). In the case of unequal divisors (thus obtained) (proceed
as follows): (Having set down the divisors one after another) mul-
tiply the succeeding divisors by the preceding ones and by the
product of the preceding ones taken two, three, …, all at a time,
and set down the products (thus obtained) ahead of those divisors.

In the case of equal divisors (proceed as follows): (Having set down
the divisors one after another) multiply each of the succeeding
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divisors by (the product of) the preceding ones.
Each of these should be severally multiplied by the other numbers
(i.e. by those due to unequal divisors).
(Thus are obtained all the divisors of the given number).

Rule 2 above may be symbolically expressed as follows:
Let N be a non-square number, equal to a2 + r say. If

2a+ 1− r = b2,

then
N + b2 = a2 + r + (2a+ 1− r) = (a+ 1)2,

so that

N = (a+ 1)2 − b2

= (a+ b+ 1)(a− b+ 1).

If, however,
2a+ 1− r = c

where c is not a perfect square, then we add to c as many terms of the series

(2a+ 3) + (2a+ 5) + (2a+ 7) + . . .

as are necessary to make the resulting sum a perfect square. Let r terms of
the series be added and we have

c+ [(2a+ 3) + (2a+ 5) + · · ·+ (2a+ 2r + 1)] = k2.

Then
N + k2 = (a+ r + 1)2,

so that

N = (a+ r + 1)2 − k2 = (a+ r + k + 1)(a+ r − k + 1).

Rule 3 gives the method for writing down all possible divisors of the given
number N . Let

N = a× a× a× b× c× d.

Then all the divisors of N are:

(1) b, c, d, bc, bd, cd, bcd,

(2) a, a2, a3,

(3) ba, ba2, ba3; ca, ca2, ca3; da, da2, da3;
bca, bca2, bca3; bda, bda2, bda3; cda, cda2, cda3;
bcda, bcda2, bcda3;
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3.1 Examples

Nārāyaṇa3 illustrates the above rules by the following examples:

Ex. 1. Mathematician, quickly tell me the numbers by which the number
2048 is exactly divisible; also those numbers by which the number 3125
is exactly divisible.

We have

2048 = 2× 2× 2× 2× 2× 2× 2× 2× 2× 2× 2,

so that all possible divisors of 2048 are 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
and 2048.
Also

3125 = 5× 5× 5× 5× 5,

so that all possible divisors of 3125 are 5, 25, 125, 625, 3125.

Ex. 2. Tell me if you know the numbers by which 7520 is exactly divisible;
also the numbers by which 10201 is exactly divisible.

We have
7520 = 2× 2× 2× 2× 2× 5× 47.

Therefore all possible divisors of 7520 are

(1) 5, 47, 235

(2) 2, 4, 8, 16, 32

(3) 10, 20, 40, 80, 160; 94, 188, 376, 752, 1504; 470, 940, 1880, 3760, 7520.

Also
10201 = 101× 101.

Therefore the divisors of 10201 are 101 and 10201 only.

Ex. 3. O you, proficient in mathematics, tell me, if you know the subject
of finding divisors, the numbers by which the number 1161 is exactly
divisible.

We have
1161 = 342 + 5

and
2× 34 + 1− 5 = 82,

3Ibid, ch. xi, Exs. 1 to 6.
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therefore
1161 + 82 = 352,

so that
1161 = 352 − 82 = 43× 27 = 3× 3× 3× 43.

Therefore, all possible divisors of 1161 are 3, 9, 27, 43, 129, 387, 1161.

Ex. 4. If you are fully proficient in the subject of finding divisors, quickly tell
me the numbers by which 1001 is exactly divisible.

Because
1001 = 312 + 40,

and
2× 31 + 1 = 63,

and
63− 40 + 65 + 67 + . . .+ 89 = 322,

therefore
1001 + 322 = 452.

Therefore,
1001 = 452 − 322 = 77× 13 = 7× 11× 13.

Therefore, all possible divisors of 1001 are 7, 11, 13, 77, 91, 143, 1001.

Ex. 5. Friend, if you are fully proficient in mathematics, quickly tell me, the
numbers by which 4620 is exactly divisible.

Proceeding as before, we have

4620 = 2× 2× 3× 5× 7× 11.

Therefore, all the divisors of 4620 are

(1) 3, 5, 7, 11, 15, 21, 33, 35, 55, 77, 105, 165, 231, 385, 1155

(2) 2, 4

(3) 6, 10, 14, 22, 30, 42, 66, 70, 110, 154, 210, 330, 462, 770, 2310, 12, 20,
28, 44, 60, 84, 132, 140, 220, 308, 420, 660, 924, 1540, 4620.

Ex. 6. Friend, if you are versed in mathematics, quickly tell me the numbers
by which 3927 is exactly divisible.

Proceeding as before, we have 3972 = 3 × 7 × 11 × 17, so that all possible
divisors of 3927 are 3, 7, 11, 17, 21, 33, 51, 77, 119, 187, 231, 357, 561, 1309,
3927.
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4 Nārāyaṇa’s rule rediscovered by Fermat

Rule 2 of Nārāyaṇa was rediscovered by the French mathematician Fermat
about 1643 ad. In a letter written about that time, Fermat explains his
method as follows:4

An odd number not a square can be expressed as the difference of
two squares in as many ways as it is the product of two factors,
and if the squares are relatively prime the factors are. But if the
squares have a common divisor d, the given number is divisible
by

√
d. Given a number n, for examples 2027651281, to find if it

be prime or composite and the factors in the latter case. Extract
the square root of n. I get r = 45029, with the remainder 40440.
Subtracting the latter from 2r + 1, I get 49619, which is not a
square in view of the ending 19. Hence I add 90061 = 2+2r+1 to
it. Since the sum 139680 is not a square, as seen by the final digits,
I again add to it the same number increased by 2, i.e., 90063, and
I continue until the sum becomes a square. This does not happen
until we reach 1040400, the square of 1020. For by an inspection of
the sums mentioned it is easy to see that the final one is the only
square (by their endings except for 499944). To find the factors of
n, I subtract the first number added, 90061, from the last, 90081.
To half the difference add 2. There results 12. The sum of 12
and the root r is 45041. Adding and subtracting the root 1020
of the final sum 1040400, we get 46061 and 44021, which are the
two numbers nearest to r whose product is n. They are the only
factors since they are primes. Instead of 11 additions, the ordinary
method of factoring would require the division by all the numbers
from 7 to 44021.

It may be added that at the time of writing his letter to Mersenne, December
26, 1638, Fermat had no such method.5 This shows that the method was well
known in India long before Fermat rediscovered it. Although Nārāyaṇa was
the first to state the method in its complete form, the credit of the first
inception of the method is indeed due to Śrīpati.

4Cf. Dickson, L.E., “History of the Theory of Numbers,” Vol. I, p. 357.
5Ibid, p. 357, footnote.
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5 Nārāyaṇa’s alternative rule

Nārāyaṇa6 gives the following as an alternative method for finding the divisors
of a number:

इ ाेनास पदं हारः ा द वगशेषयु तः ॥
हार ता चे ु त तेनाव ं ताे भा ः ।
न व त चे द ं धया पिरक येद ॥
The nearest square root (of the given number) as diminished by an
optional number is the “divisor”. If the optional number squared
plus the residue of the square root is exactly divisible by the ‘di-
visor’ the given number shall be exactly divisible by the same. If
not, one should apply one’s intellect to choose another (appropri-
ate) optional number.

Let N = a2 + r. Then choosing λ as an optional number, we can write

N = a2 − λ2 + λ2 + r

= (a+ λ)(a− λ) + λ2 + r

∴ N

a− λ
= a+ λ+

λ2 + r

a− λ
.

Therefore, if λ2+r is exactly divisible by a−λ, then N is also exactly divisible
by a− λ. Hence the rule.

Ex. 7. Quickly tell me, proficient in mathematics, the numbers by which 120
is exactly divisible, and also those by which 231 is exactly divisible.7

Here 120 = 102 + 20. Choosing λ = 2, we see that a − λ = 8 is an exact
divisor of 120. Thus

120 = 8× 15

so that
120 = 2× 2× 2× 3× 5.

All possible divisors of 120 are therefore

(1) 3, 5, 15

(2) 2, 4, 8

(3) 6, 12, 24; 10, 20, 40; 30, 60, 120.
6Nārāyaṇa, Gaṇitakaumudī, Part II, edited by Padmakara Dvivedi, Benaras (1942), ch. xi,
rule 9(ii)–10.

7Ibid, ch. xi, Ex. 7.
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Again 231 = 152 + 6. Choosing λ = 4, we see that a − λ = 11 is an exact
divisor of 231. Thus

231 = 11× 21

so that
231 = 3× 7× 11.

Hence all possible divisors of 231 are 3, 7, 11, 21, 33, 77, 231.



Magic squares in Indian mathematics ∗

The following is a magic square:

4 9 2

3 5 7

8 1 6

In this the sum of numbers in each row is 15. The sum in each column is 15;
and the numbers in each diagonal also sum up to 15. The above magic square
was known to all ancient people. It is the simplest magic square consisting of
3 × 3 (= 9) cells. The problem of arranging numbers in squares containing
more cells is not easy. Magic squares were used in India about first century
ad as charms and reference to them is found in the earliest tantric literature.
The construction of magic squares requires ingenuity because no definite

method can be given, at least in some cases. For this reason, the subject has
aroused the interest of mathematicians. The Hindu mathematician Nārāyaṇa,
who flourished in the fourteenth century ad has included in his work on arith-
metic, called Gaṇitakaumudī, a chapter on the construction of magic squares
and other allied figures. In this respect the Gaṇitakaumudī is unique as no
other treatise on arithmetic known to us deals with the construction of magic
squares. From Nārāyaṇa’s work we find that methods of construction of all
types of magic squares were known in India.
Methods of constructing magic squares have been given by European and

American mathematicians from the 17th century onwards but the Hindu meth-
ods appear to be the simplest, although some of the methods recently devel-
oped in the west are more general. We propose to give here some simple
methods of constructing magic squares and allied figures mostly from Hindu
sources.

Classification of magic squares

Magic squares, in accordance with their methods of construction, are divided
into three classes:
* K. S. Shukla, in Interaction between Indian and Central Asian Science and Technology
in Medieval Times, Vol. 1, Indo-Soviet Joint Monograph Series, INSA (1990), pp. 249–
270.
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(1) those having an odd number of cells in each row

(2) those having 4n cells in each row, and

(3) those having 4n+ 2 cells in each row.

1 Odd magic squares

The construction of odd magic squares is the easiest. We give below two
methods of constructing such magic squares, These methods have been given
in the Gaṇitakaumudī of Nārāyaṇa.

1.1 First method

This method is illustrated by the following four squares (ed. see Figure 1) in
which we will use the natural numbers 1, 2, 3, etc. in succession.

Rule for filling

Begin with the middle cell of the top row and write 1 in the cell. Then proceed
along the outward drawn diagonal of the cell. (The direction of the diagonal
has been indicated in each figure by arrow-heads). This leads you beyond the
square. Now, if the square were wrapped around a cylinder, you would get
into the lowest cell of the next column. Therefore, write 2 in it. Then proceed
again in the direction of the above outward drawn diagonal and write the
next successive numbers 3, 4, 5, etc. in the cells thus encountered. Thus you
again reach a cell which leads you beyond the square. Again imagine that the
square is wrapped around a cylinder. Thus you reach the first cell of the next
row, write the next number in the cell. Then proceed again in the direction
of the above outward drawn diagonal and continue the above process till all
the cells are filled. Whenever the above process leads you to a cell which is
already occupied by a number, write the next number in the cell below and
proceed in the direction of the diagonal.
It will be easily seen that the above squares may also be filled by proceeding

in the direction of the other outward drawn diagonal of the middle cell of the
top row. Similarly, the above process may also be started with the middle cell
of the bottom row or with the middle cell of the first or last column. Thus an
odd square can be filled up in 8 ways to form a magic square.
The magic squares constructed by the above method are such that the sum

of any two numbers which are equidistant from the centre is equal to twice the
number at the centre. Such squares have been called perfect by W. S. Andrews
(Magic square and cubes, Chicago, 1908).
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4 9 2

3 5 7

8 1 6

11 18 25 2 9

10 12 19 21 3

4 6 13 20 22

23 5 7 14 16

17 24 1 8 15

22 31 40 49 2 11 20

21 23 32 41 43 3 12

13 15 24 33 42 44 4

5 14 16 25 34 36 45

46 6 8 17 26 35 37

38 47 7 9 18 27 29

30 39 49 1 10 19 28

37 48 59 70 81 2 13 24 35

36 38 49 60 71 73 3 14 25

26 28 39 50 61 72 74 4 15

16 27 29 40 51 62 64 75 5

6 17 19 30 41 52 63 65 76

77 7 18 20 31 42 53 55 66

67 78 8 10 21 32 43 54 56

57 68 79 9 11 22 33 44 46

47 58 69 80 1 12 23 34 45

Figure 1: Odd magic squares: First method.
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Note

The four magic squares, which have been shown above (ed. see Figure 1),
have been filled by the natural numbers 1, 2, 3, etc. But that is not necessary.
A n × n magic square with total S may, in general, be filled either by n × n

numbers in arithmetical progression and having n × S for their sum, or else,
by n sets each of n numbers belonging to the same arithmetical progression
and having n×S for their sum. Thus, for example, a 3× 3 magic square with
total 33 may be constructed by the numbers

(a) 7, 8, 9, 10, 11, 12, 13, 14, and 15, or
(b) 2, 4, 6, 9, 11, 13, 16, 18, and 20

taken in succession. The series (a) give the magic square (i); and the series
(b) give the magic square (ii):

(i)

14 7 12

9 11 13

10 15 8

(ii)

18 2 13

6 11 16

9 20 4

1.2 Second method (superposition)

According to this method, a 3 × 3 magic square with total 21, say, is con-
structed as follows:
Take two sets of numbers each containing 3 numbers in arithmetical pro-

gression, say, 1, 5, 9 and 0, 1, 2. Multiply the numbers in the second set
by

given total− sum of the first set
sum of the second set =

21− 15

3
= 2.

Thus we get 0, 2, 4 as the second set.
Now construct two squares having 3×3 cells. In the cells of the middle row

or column of the first square fill the numbers 1, 5, 9 of the first set, in the
remaining cells fill the same numbers in a cyclic order as below. Similarly, in
the second square fill the numbers 0, 2, 4 of the second set. Thus are obtained
the skeleton squares (i) and (ii) below:

(i)

9 1 5

1 5 9

5 9 1

(ii)

4 0 2

0 2 4

2 4 0
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Now fold the paper in such a way that the second square may fall on the first
and then add the numbers which fall on each other. The gives

11 1 9
5 7 9
5 13 3

which is the required magic square with total 21.
This method of superposition was called by Nārāyaṇa chādya-chādaka-vidhi.

The method was rediscovered in Europe by M. de la Hire in the beginning of
the 18th century.

2 4n × 4n magic squares

The simplest squares having 4n cells in a row are 4× 4 magic squares. These
are also constructed by means of numbers forming an arithmetical progression,
or by 4 sets of 4 contiguous numbers belonging to the same arithmetical
progression. We give below three methods for constructing magic squares.

2.1 First method

This method is given by Nārāyaṇa in his Gaṇitakaumudī. We illustrate it by
constructing 4× 4 magic squares with the help of the natural numbers 1, 2, 3
etc. The total in the resulting magic squares will be 34.

Rule

Arrange the above 16 numbers in their order as follows:

1, 2, 3, 4, 5, 6, 7, 8; 9, 10, 11, 12, 13, 14, 15, 16.

Now write the numbers in a square directly and inversely as in (a) below.
In the upper half of the square (a) interchange the numbers in the last two
columns and in the lower half interchange the numbers in the first two columns.
This would give the square (b).

(a)

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

(b)

1 2 4 3

8 7 5 6

10 9 11 12

15 16 14 13
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Now fill the numbers in the first and second row of the square (b) in a 4×4

square by knight’s move as in chess, starting with 1 in the first cell and with 8

either in a contiguous cell or in the last cell. The numbers in the second half
of the square (b) are filled similarly, so that the numbers 25 and 10 occupy
cells opposite to 1 and 8 respectively. Thus we can obtain the following four
magic squares.

1 8 13 12

14 11 2 7

4 5 16 9

15 10 3 6

1 14 4 15

8 11 5 10

13 2 16 3

12 7 9 6

1 12 13 8

14 7 2 11

4 9 16 5

15 6 3 10

1 14 4 15

12 7 9 6

13 2 16 3

8 11 5 10

To obtain another set of four squares, we interchange the numbers in the
second and fourth columns in the upper half of the square (b) and the first
and third columns in the lower half. This gives the square (c).
The numbers in the square (c) are filled, as before, to give another set of 4

magic squares.

(c)

1 3 4 2

8 6 5 7

11 9 10 12

14 16 15 13

The above process may also be started with any one of the following ar-
rangements of the 16 numbers 1, 2, 3 etc.

1, 3, 5, 7, 2, 4, 6, 8, 9, 11, 13, 15, 10, 12, 14, 16,

or
1, 5, 2, 6, 3, 7, 4, 8, 9, 13, 10, 14, 11, 15, 12, 16.

Each of these would give 8 magic squares as above.
The total number of magic squares obtained by Nārāyaṇa’s method is thus

twenty-four.
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2.2 Second method

First fill the numbers

Nil, 1, Nil, 8, Nil, 9, Nil, 2, 6, Nil, 3, Nil, 4, Nil, 7, Nil

in the cells of a 4× 4 square as below:

(S)

1 8

9 2

6 3

4 7

Even Total

If the total is even, say 2n, fill the remaining cells in such a way that in every
diagonal the sum of the alternate numbers is equal to n.

Odd total

If the total is odd, say (2n + 1), fill every blank cell, which is diagonally
alternate to the cell containing 1, 2, 3, 4 by n minus the diagonally alternate
number; and fill the remaining blank cells by (n + 1) minus the diagonally
alternate number.

n− 3 1 n− 6 8

n− 7 9 n− 4 2

6 n− 8 3 n− 1

4 n− 2 7 n− 9

Total 2n

n− 3 1 n− 5 8

n− 6 9 n− 4 2

6 n− 7 3 n− 1

4 n− 2 7 n− 8

Total 2n + 1

The skeleton square (S) may, in general, be constructed by filling 8 cells of a
4× 4 square by any 8 numbers forming an arithmetical progression or by two
set of 4 contiguous numbers belonging to the same arithmetical progression
in accordance with the first method above.

2.3 Third method (superposition)

We illustrate this method by constructing a magic square with total 40.
Take two sets of numbers each containing 4 numbers in arithmetical pro-

gression, say,
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(i) 1, 2, 3, 4; and

(ii) 0, 1, 2, 3.

Multiply the numbers of the second set by

given total− sum of the first set
sum of the second set =

40− 10

6
= 5.

Thus we obtain 0, 5, 10, 15 as second set.
Now fill the numbers of the first set in a square as in (i) and the numbers

of the second set in another square as in (ii):

(i)

2 3 2 3

1 4 1 4

3 2 3 2

4 1 4 1

(ii)

5 0 10 15

10 15 5 0

5 0 10 15

10 15 5 0

Fold the paper in such a way that the square (ii) may cover the square (i)
and add the numbers which fall on each other. This gives the following magic
square.

17 13 2 8

1 9 16 14

18 12 3 7

4 6 19 11

3 (4n + 2)× (4n + 2) magic squares

The construction of (4n+ 2)× (4n+ 2) magic squares is comparatively more
difficult. Nārāyaṇa has suggested two methods which are helpful in construct-
ing such squares. We illustrate one of these methods by constructing a 6× 6

magic square with the help of the natural numbers 1, 2, 3, . . . , 36.

3.1 Nārāyaṇa’s method

Fill the numbers 1, 2, 3, etc. in the direct and inverse order as in the square
(i) below:
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(i)
1 2* 3 4 5* 6

12* 11 10 9 8 7*
13* 14 15 16 17 18*
24* 23 22 21 20 19*
25* 26 27 28 29 30*
36 35* 34 33 32* 31

where the cells marked (*) are known as śliṣṭa.
Interchange the numbers 18 and 19 lying in the last two śliṣṭa cells of the

two middle rows with the corresponding numbers 15 and 22 in the left vertical
half of the square; then interchange the numbers in the śliṣṭa cells lying in
the upper half of the square with those symmetrically lying in the lower half.
Then rotate the rectangles containing the numbers 3 and 10, 4 and 9, and 28

and 33 about the centre of the square in the anticlockwise direction and bring
each of them to the position of the next rectangle. This gives the following
magic square:

1 35 4 33 32 6

25 11 9 28 8 30

24 14 18 16 17 22

13 23 19 21 20 15

12 26 27 10 29 7

36 2 34 3 5 31

where the numbers enclosed within circles do not undergo any change.

4 Other magic figures

4.1 8× 4 magic rectangle

This is

1 16 25 24 2 15 26 23

28 21 4 13 27 22 3 14

8 9 32 17 7 10 31 18

29 20 5 12 30 19 6 11

Total: rows = 132, columns = 66.
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The following magic figures are based on this rectangle:

4.1.1 Vitana (canopy)

The figure is

4

9

23 26

14 3

28 21

161 25

15 2

22 27

13

24

8

18

11

29

31

6

20 5

19

10 7

30

12

1732

Here the sum of 8 numbers taken symmetrically, either horizontally or ver-
tically or diagonally or in a circle or in a square is the same (132). Also the
sum of groups of four numbers taken symmetrically is 66.

4.1.2 Maṇḍapa (altar)

The figure is

26 15

11

23 26

16

15

25

2 23

1624 25 24

2

14

28 21

3 22 27

28

2214

13

27

8

1

18

29

9

31 10

32

4 13

17
7

12

1

18

21

3

31
9

4

10

8 32 17

7

11 6

20 5

30

29 20
6

5
19 30

12
19
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Here any set of 8 numbers occurring together, horizontally, vertically or
diagonally sum up to 132. The 8 numbers lying in a square also have the
same total. There is cylindrical symmetry i.e., if the figure be rolled on a
cylinder any continuous 8 numbers or those lying in a square have the total
132. It is easy to find 26 sets of 8 numbers having the same total 132.

4.1.3 Padma (Lotus)

The figure is

Here any set of 8 numbers taken vertically, horizontally or in any 4 leaves
symmetrically situated gives the same total 132. There is cylindrical symme-
try. In this case 32 sets of 8 numbers having the same total can be easily
picked up.

4.2 12× 4 magic rectangle

This is

1 24 37 36 2 23 38 35 3 22 39 34

42 31 6 19 41 32 5 20 40 33 4 21

12 13 48 25 11 14 47 26 10 15 46 27

43 30 7 18 44 29 8 17 45 28 9 16

The following magic figures are based on this rectangle:
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4.2.1 Dvādaśakara (twelve hands)

The figure is

1

3

42

40

20 5

33

31

24

22

3835

39

23 2

34

37

6

4 21

19

36

26

10

12

43

45

17 8

47 11

27

25

18

16

4429

928

7

48

14

4615

13

30

32 41

Here all groups of 12, of 8 or of 4 numbers have even totals 294, 196 and
98 respectively.

4.2.2 Vajra Padma

The figure is

Here every group of 4 numbers occurring in a line or in cell has the total 98;
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every group of 8 numbers has the total 196 and every group of 12 numbers
taken horizontally, vertically or in a circle has the total 294.

4.3 8× 8 magic square

This is

1 56 16 57 4 53 13 60

38 41 17 40 29 44 20 37

49 8 64 9 52 5 61 12

48 25 33 24 45 28 36 21

2 55 15 58 3 54 14 59

31 42 18 39 30 43 19 38

50 7 63 10 51 6 62 11

47 26 34 23 46 27 35 22

On this is based the following magic figure, square called the sarvatobhadra:

57

4017

16

32 41

56 534 

29 44 20

13 60

37

1261

212845

52 59

2433

648

2548

49

55

4231

2 15 58

3918

3 54

4330

14 59

3819

50 7

47 26

63 10

34 23

51 6

46 27

62 11

35 22

1

36

In this figure the totals of all four, eight and sixteen numbers are 130, 260
and 520 respectively.

4.4 Magic triangle

The following is a magic triangle together with its key square.
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120 45 60

15 75 135

90 105 30

45

75

105

175
90

15

120

30
135

60

Total  225 

4.5 Magic cross

This figure is

94

27

144

18

117

548163108

135

36

126

90 45 99 72

9

(Total 400)

This is based on the following 4× 4 magic square:

9 72 117 108

126 99 18 63

36 45 144 81

135 90 27 54

(Total 306)
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4.6 Magic circle

Nārāyaṇa has given a number of magic circles. We give below one of these
together with the key square:

120 45 60

15 75 135

90 105 30

60
135

175

30

10590
15

120 45
75

Total 225
Total 400

5 Magic squares used by Muslims

We shall now give a brief account of the magic squares which were used by
the Muslims in India in medieval times as amulets and charms. These magic
squares include the following varieties: Dūpāyā (“two-legged”), Sulsī (3× 3),
Rubā‘ī (4×4), Khamsī (5×5), Musaddas (6×6), Musabba‘ (7×7), Muṣamman
(8 × 8), Mustassa (9 × 9), and Ma‘shsher (10 × 10). Sometimes they were so
large as to have 100 cells in a row or column.
The following is a Dūpāyā square with total 12:

3 8 1

2 4 6

7 5

To construct a Dūpāyā square, divide the given total by 12. Fill the cells
with the quotient increasing by itself in every next cell as you proceed (see
the above figure). In case the division by 10 yields any (non-zero) remainder
it is to be added to the number in the sixth cell. For example, let the total
be 786. Division by 12 yields 65 as the quotient and 6 as the remainder. This
gives the following square:

195 526 55

130 260 396

461 325

The following is the Sulsī square with total 15:
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4 9 2

3 5 7

8 1 6
To construct a Sulsī square, subtract 12 from the given total, then divide

the remainder by 3 and with the quotient fill up the 9 cells of 3 × 3 square
until the whole square is filled up. The filling may be started from the central
cell of a bordering row or column depending on the elements earth, water, air,
or fire, thus:

Air

2 7 6

9 5 1

4 3 8

Fire

4 9 2

3 5 7

8 1 6

Earth

6 7 2

1 5 9

8 3 4

Water

6 1 8

7 5 3

2 9 4
To construct a Rubā‘ī square deduct 30 from the given total, then divide

the remainder by 4, and with the quotient fill up the 16 cells of 4× 4 square.
If 1 remains over, add one to the 13th cell; if 2, add 1 to the 9th cell; if 3, add
1 to the 5th.

With total 34, there will result 4 Rubā‘ī squares depending on the elements,
viz.

Earth

8 11 14 1

13 2 7 12

3 16 9 6

10 6 4 15

Water

14 4 1 15

7 9 12 6

11 5 8 10

2 16 13 3

Air

15 1 4 14

10 8 5 11

6 12 9 7

3 13 16 2

Fire

1 14 15 4

8 11 10 5

12 7 6 9

13 2 3 16
To construct a Khamsī square, subtract 60 from the given total, then divide

the remainder by 5 and with the quotient fill up the 25 cells of 5 × 5 square.
If 1 remains over, 1 is to be added to the 21st cell; if 2, to the 16th ; if 3, to
the 11th; if 4, to the 6th.

7 13 19 25 1

20 21 2 8 14

3 9 15 16 22

11 17 23 4 10

24 5 6 12 18
Khamsī square with total 65
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To construct a Musaddas square, deduct 105 from the given total, then
divide by 6 and with the quotient fill up the square. If 1 remains over, add 1
to the 31st cell; if 2, to the 35th; if 3, to the 19th; if 4, to the 13th; if 5, to
the 7th.

36 18 30 19 7 1
13 26 2 34 24 12
5 9 22 29 15 31
25 6 14 8 35 23
21 32 10 17 3 28
11 20 33 4 27 16

Musaddas square with total 111

To construct a Musabba‘ square, deduct 168 from the given total, then
divide by 7 and with the quotient fill up 7× 7 squares. If from 1 to 5 remain
as the remainder, add 1 to the 43rd cell.

40 23 13 45 35 18 1
32 15 5 37 27 10 49
24 14 46 29 19 2 41
16 6 38 28 11 43 33
8 47 30 20 3 42 25
7 39 22 12 44 34 17
48 31 21 4 36 26 9

Musabba square with total 175

To construct a Muṣamman square, subtract 252 from the given total, then
divide by 8 and with the quotient fill up 8× 8 square. If 1 to 7 are obtained
as the remainder, add 1 to the number in the 75th cell.

36 43 35 32 27 60 26 1
41 4 49 59 21 17 45 24
37 15 11 10 58 51 50 28
23 47 57 52 12 9 18 42
3 46 8 13 53 56 19 62
25 63 54 55 7 14 2 40
31 20 16 6 44 48 61 34
64 22 30 33 38 5 39 29

Muṣamman square with total 260
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To construct a Mustassa square, subtract 360 from the given total, then
divide by 9 with the quotient fill up 9 × 9 square. If 1 to 8 are obtained as
the remainder, add 1 to the 73rd cell.

70 59 27 16 76 55 43 22 1
50 39 28 6 66 54 33 12 81
40 18 7 67 56 34 13 73 61
60 29 17 77 46 44 23 2 71
20 19 78 57 45 24 3 72 51
30 8 68 47 25 14 74 62 41
9 79 58 37 35 4 64 52 31
10 69 48 36 15 75 53 42 21
80 49 38 26 5 65 63 32 11

Mustassa square with total 369

To construct a Ma‘shshar square, subtract 495 from the given total, then
divide by 10 and with the quotient fill up 10× 10 square. If 1 to 9 remain as
the remainder, add 1 to the 91st cell.

28 60 42 61 39 70 98 72 34 1
33 4 26 74 76 95 84 24 21 68
69 83 13 92 10 90 86 12 18 32
2 79 14 50 53 56 43 87 22 99
71 96 85 55 44 49 54 16 5 30
66 19 8 45 58 51 48 93 82 35
36 20 94 52 47 46 57 7 81 65
37 23 89 9 91 11 15 88 78 64
63 80 75 27 25 6 17 77 97 38
100 41 59 40 62 31 3 29 67 73

Ma‘shshar square with total 505

For further information regarding Muslim magic squares, see “Islam in India
or Qānūn-i-Islām” by Sa‘far Sharīf, translated by G. A. Herklots.
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1 General survey

1.1 Origin of Hindu geometry

The Hindu Geometry originated in a very remote age in connection with the
construction of the altars for the Vedic sacrifices. The sacrifices, as described
in the Vedic literature of the Hindus, were of various kinds. The performance
of some of them was obligatory upon every Vedic Hindu, and hence they were
known as nitya (or “obligatory”, “indispensable”). Other sacrifices were to be
performed each with the purpose of achieving some special object. Those who
did not aim at the attainment of any such object had no need to perform any
of them. These sacrifices were classed as kāmya (or “optional”, “intentional”).
According to the strict injunctions of the Hindu scriptures, each sacrifice must
be made in an altar of prescribed shape and size. It was emphasised that even
a slight irregularity and variation in the form and size of the altar would nullify
the object of the whole ritual and might even lead to an adverse effect. So
the greatest care had to be taken to secure the right shape and size of the
altar. In this way there arose in ancient India problems of geometry and also
of arithmetic and algebra. There were multitudes of altars. Let us take for
instance the three primary ones, viz. the Gārhapatya, Āhavanīya and Dakṣiṇa,
in which every Vedic Hindu had to offer sacrifices daily. The Gārhapatya altar
was prescribed to be of the form of a square, according to one school, and of
a circle according to another. The Āhavanīya altar had always to be square
and the Dakṣiṇa altar semi-circular. But the area of each had to be the same
and equal to one square vyāma.1 So the construction of these three altars
involved three geometrical operations: (i) to construct a square on a given
straight line; (ii) to circle a square and vice versa; and (iii) to double a circle.
The last problem is the same as the evaluation of the surd

√
2. Or it may be

considered as a case of doubling a square and then circling it. There were altars
of the shape of a falcon with straight or bent wings, of a square, an equilateral
triangle, an isosceles trapezium, a circle, a wheel (with or without spokes), a

∗ Bibhutibhusan Datta and Avadhesh Narayan Singh. Revised by K. S. Shukla. Indian
Journal of History of Science, Vol. 15, No. 2 (1980), pp. 121–188.

11 vyāma = 96 aṅgulis (or “finger breadths”) = 2 yards.
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tortoise, a trough and of other complex forms all having the same area. Again
at the second and each subsequent construction of an altar, it was necessary
to increase its size by a specified amount, usually one square puruṣa,2 but the
shape was always kept similar to that of the first construction. Thus there
arose problems of equivalent areas and transformation of areas. The Vedic
geometers also treated problems of ‘application of areas’.

1.2 Different early schools of geometry

In the course of time, Hindu geometry grew beyond its original sacrificial
purpose or the bounds of practical utility and began to be cultivated as a
science for its own sake. This happened in the Vedic age when different
schools of geometry were founded. More notable ones amongst them were the
schools of Baudhāyana, Āpastamba and Kātyāyana. Though the geometrical
propositions treated in all of them were almost the same, and there were many
things common in the methods of their solution, still there were other things
to distinguish one school from another. Even in the solution of elementary
propositions such as the construction of a square, rectangle or an isosceles
trapezium, different schools had preferential liking for differential methods.
The difference appears most marked in the solution of the problems of the
division of figures. The large altars, of which the fundamental one was of the
shape of a falcon, had to be built with 200 bricks. Geometrically, it was a
case of division of a figure into 200 parts. We have described before how the
different Vedic Schools of Geometry did this in different ways.

1.3 Intuitive and demonstrative geometry

Early Hindu geometers did not describe proofs of the propositions discovered
by them. Only the bare results were recorded and those too in a language
as concise as possible, sometimes even to the fault of ellipticity. This was, of
course, in keeping with the characteristic of the Hindu race and was manifested
in all their early works. Indeed the character of all the sciences of all the early
nations is found to be more or less intuitive. Still the Vedic Geometry, as
found in the manuals of the Śulba, was not wholly intuitional without any
semblance of demonstration. In fact we find a kind of proof in case of certain
propositions of the Śulba. For instance, how to find the area of a trapezium,
has been demonstrated by Āpastamba in the course of the mensuration of the
Mahāvedi which is of the shape of an isosceles trapezium whose altitude, face
and base are respectively 36, 24 and 30 padas (or prakramas). He says:

The Mahāvedi measures (in area) one thousand less twenty-eight
(square) padas. Draw a straight line from the south-eastern corner

21 puruṣa = 120 aṅgulis = 2 1
2
yards.
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of the vedi to a point 12 padas towards the south-western corner.
Place the portion thus cut off on the other (i.e. the northern) side
of the vedi after inverting it. It (the Mahāvedi) will then become
a rectangle. After that construction the area will be apparent.3

Figure 1

After the general enunciation of the theorem of the square of the diagonal,
the so-called Pythagorean theorem, Baudhāyana observes that the truth of it
will be “realised” in case of certain rational rectangles enumerated. This is an
attempt for a kind of demonstration. After describing the constructions neces-
sary in a proposition, the early Hindu geometers are found to have remarked
sa samādhiḥ (or “This is the construction”). The significance of such an ob-
servation is obvious. It emphasises that the construction which was required
to be made, has thus been actually made, and indeed corresponds to the ex-
pression Quod Erat Faciendum (or “what was required to do”) occurring at
the end of a proposition of Euclid’s Elements. Further it discloses a rational
and demonstrative attitude of the mind of the early Hindu geometers.4

1.4 Post-vedic geometry

The Hindu geometry which started in a brilliant way not only by going much in
advance of the ancient Egyptian or Chinese geometry but also by anticipating
some of the notable discoveries of the posterior Greek geometry, did not make
much progress in the post-Vedic period as it ought to have done. In this
period there was renaissance of Hindu Mathematics.5 But compared with
arithmetic and algebra, geometry seems to have received little impetus for
further development. It will not be true to think that the study of geometry
was completely neglected by the Hindus of the early renaissance period. On
the other hand, it is found to have become widespread and came to be regarded
as a part of general education of the people. In an early Jaina canonical

3Āpastamba Śulba, v. 7.
4See Datta, B., The Science of the Śulba, pp. 50f.
5See Datta, Bibhutibhusan, “The Scope and Development of the Hindu Gaṇita”, Ind. His.
Quart., V, (1929), pp. 479 ff. We have drawn here heavily on this article.
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work, composed circa 300 bc we find the remark, “Geometry is the lotus in
Mathematics, … and the rest is inferior.”6 But it appears strange that we
do not find evidence of much progress and improvement in geometry. The
notable contributions of this period to geometry are, however, the discovery
of the ellipse, elliptic cylinder, the value π =

√
10 and certain formulae for the

mensuration of the segment of a circle. The value π =
√
10, though not a fairly

accurate one, is an improvement upon the Śulba value. It occurs as early as
in the Sūryaprajñapti (c. 500 bc).7 The ellipse is called viṣama-cakravāla, in
contradistinction to cakravāla, meaning “circle” in the Sūryaprajñapti,8 and
parimaṇḍala in the Dhammasaṅgani (before 350 bc)9 and Bhagavatī-sūtra
(c. 300 bc).10 In the last mentioned work its form has been described as
the yavamadhya-vṛttasaṃsthāna or “the circular figure resembling the middle
(longitudinal section) of a barley corn.”11 It seems to have been known that
the ellipse is symmetrical about its either axis.12 The mention of the elliptic
cylinder, called ghana-parimaṇḍala (or “solid ellipse”) in contradistinction to
pratara-parimaṇḍala (“plane ellipse”) occurs in the Bhagavatī-sūtra.13

1.5 Later Hindu geometry

Later Hindu geometry consists mainly of some mensuration formulae and
solution of certain rectilinear figures such as triangles and quadrilaterals of
different varieties. In some of these the Hindus undoubtedly showed consid-
erable proficiency and indeed they obtained some remarkable results, e.g. a
new proof of the Pythagorean theorem, formulae for the area and diagonals of
an inscribed convex quadrilateral and rational solution of triangles and cyclic
quadrilaterals. But on the whole their geometry remained empirical. There
were no definitions, no postulates, no axioms, no proofs of theorems, in short,
no scientific treatment of the subject. It is perhaps noteworthy that the later
Hindus included geometry in their treatises of arithmetic (pāṭīgaṇita) more
particularly in the sections on kṣetra (“plane figures”), khāta (“excavations”),
citi (“piles of bricks”), rāśi (“maunds of grain”) and krākacika (“saw”). The
last four topics are pertaining to solid figures.

6Sūtrakṛtāṅga-sūtra, 2nd Śrutaskanda, ch. 1, verse 154.
7Sūtra 20.
8Sūtra 19, 25, 100. See Weber, Indische Studien, X, p. 274.
9Sec. 617.

10Sūtra 726–7.
11Bhagavatī-sūtra, Sūtra 725. Bhuddhaghosa (350) describes it as kukkuṭāṇda-saṃsthāna
(or “a figure of the shape of an egg of a hen”) and the Petavattu commentary as the
āyatavṛtta (or “the elongated circle”).

12Compare Bhagavatī-sūtra, Sūtra 726.
13Sūtra 726.
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1.6 Euclid’s Elements in India

Though Hindu geometry is not connected with Euclid’s Elements in any way,
whether directly or indirectly, it will be interesting to know when and how it
came to India. The earliest attempt, as far as known, to introduce Euclid’s
Elements into India, in the garb of Sanskrit verses, was made by the eminent
Persian mathematician and traveller, Al-Bīrūnī (b. 973). But that attempt
did not succeed. With the establishment of Muhammadan supremacy in India
towards the close of the twelfth century of the Christian era, Arabic and
Persian works on mathematics began to be brought into this country. There
were very likely amongst them Arabic versions of the Elements. King Firuz
Shah Bahmani (1397–1422), we are informed by Ferishta, was used to hear
on three days in a week, lectures on botany, geometry and logic.14 A son of
Daud Shah was very fond of Taḥrīr-u-Uqlidas (Euclid’s Elements) and used to
teach it regularly to his students.15 Akbar (1575) included it into the course of
study for the school boys.16 In his Ain-i-Akbari, Abul Fazl (1590) has referred
to a few propositions of the Elements in a way which shows his thorough
acquaintance with the work. The work, however, remained confined to the
circle of Moslem schools in India. We do not find any trace of its influence
in any work of a Hindu writer before the middle of the seventeenth century.
In 1658 ad Kamalākara, the court-astronomer of the Emperor Jahangir of
Delhi, wrote a voluminous treatise on astronomy entitled Siddhānta-tattva-
viveka. Certain passages in this work can be easily recognised to have been
adapted from Euclid’s Elements.17 The first complete translation of the work
in Sanskrit was made in 1718 ad under the title Rekhāgaṇita (“Mathematics of
lines”) by Samrāṭa Jagannātha, by the order of his patron King Jaya Siṃha of
Jaipur. Another Sanskrit version is known as the Siddhānta-Cūḍāmaṇi. The
author of this version is still unknown.

2 Hindu names for geometry

The Hindu name for the science of geometry has varied from time to time.18

The earliest name was śulba. It is at least as old as the Śrautasūtra of Āpas-
tamba (c. 1000 bc). Geometry was then sometimes also called rajju, as is
evident from the opening aphorism of the Śulba of Kātyāyana, “I shall speak
of the collection of (rules regarding) the rajju”. In the Mānava Śulba and
14Law, N. N., Promotion of Learning in India during Muhammadan Rule (by Muham-
madans), 1916, p. 84.

15Ibid, p. 81, footnote 1.
16Abul Fazl’s Ain-i-Akbari, English translation by Blockmann, p. 279.
17See Siddhānta-tattva-viveka, iii. 22 ff.
18Datta, Bibhutibhusan, “Origin and history of the Hindu names for Geometry”, Quellen

und. Studien z. Gesh. d. Math., Ab. B; Bd, I, pp. 113–9.
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Maitrāyaṇīya Śulba we get the name Śulba-vijñāna (“The Science of the Śulba”)
for the science of geometry. In the early canonical works of the Jainas (500–
300 bc) the more common name for geometry is found to be rajju.

The Sanskrit words śulba and rajju have the identical significance, which
is ordinarily “a rope”, “a cord”. The word śulba (or śulva) is derived from
the root śulb (or śulv) meaning “to measure” and hence its etymological sig-
nificance is “measuring” or “act of measurement”. From that it came to de-
note “a thing measured” and consequently “ a line (or surface)” as well as
“an instrument of measurement” or “the unit of measurement”. Thus the
terms śulba and rajju have four meanings: (i) mensuration—the act and pro-
cess of measuring; (ii) line (or surface)—the result obtained by measuring;
(iii) a measure—the instrument of measuring; and (iv) geometry—the science
of measurement. Mention of a linear measure, called rajju is found in the
Āpastamba-śulba, Mānava-śulba, Arthaśāstra of Kauṭilya and later on in the
Śilpa-śāstra. In fact in ancient India, there were three kinds of measures—
linear, superficial and voluminal—having the same epithet rajju. In the Jaina
canonical works they are sometimes distinguished as sūcī-rajju (“needle-like
or linear rajju”), pratara-rajju (“superficial rajju”) and ghana-rajju (“cubic
rajju”). In the Arthaśāstra of Kauṭilya the superficial unit of rajju is called
parideśa and the cubical unit nivartana. In the works on the Śulba, we find
the use of the word rajju in the sense of a measuring tape as also of a line.
In later times, geometry was called by the Hindus kṣetra-gaṇita (“Math-

ematics of the kṣetra”). This term appears in the Gaṇita-sāra-saṃgraha of
Mahāvīra (850). In this work the term kṣetra denotes a plane figure. In the
mathematical treatises of Brahmagupta (628), Śrīdhara (900) and Bhāskara II
(1150), the section devoted to the treatment of plane figures is called kṣetra-
vyavahāra (“Treatment of plane figures”). The epithet kṣetra-gaṇita occurs
as early as the works of Siddhasena Gaṇi (550). There the term kṣetra has
a wider connotation so as to include both areas and volumes. In the same
significance it appears in the title of the Jaina cosmographical works called
kṣetra-samāsa. We think that the term kṣetra-gaṇita had a wider connotation
in the beginning so as to include the geometry of plane as well as solid figures.
But in later times, when the two branches of geometry began to be treated
separately, the old name was reserved only for the geometry of plane figures.
Jagannātha (1718) called his version of Euclid’s Elements the Rekhāgaṇita

(“Mathematics of lines”). Bāpūdeva Śāstri preferred the name kṣetra-miti
(“Measurement of areas and volumes”). He seems to have intended an accurate
translation of the Greek name, but it is less scientific. For the Greek science
is indeed the geometry of lines, but not the geometry of areas and volumes.
Jagannātha’s epithet is more in keeping with the spirit of the Greek geometry.
He had probably discarded the Greek epithet intentionally as it is a misnomer.
In some of the modern vernacular tongues of India, geometry is now more
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commonly known as kṣetra-tattva (“Principles of areas and volumes”) or jyā-
miti. This latter term is highly interesting because it is very alike the Greek
term “geometry”, not only phonetically but also in significance, and at the
same time it is not a hinduised Greek word. The word jyāmiti is a compound
of pure Sanskrit origin derived from jyā, meaning ‘earth’ and miti, meaning
“measure”. Hence its literal significance is “earth-measurement”. It is thus
clearly a translation of the Greek name.
One who was well versed in the science of geometry was called in ancient

India as saṃkhyājña (‘the expert in numbers’), parimāṇajña (‘the expert in
measuring’), sama-sūtra-nirañchaka (‘uniform-rope-stretcher’), śulba-vid (‘the
expert in the śulba’) and śulba-paripṛcchaka (‘the inquirer into the śulba’).
In the Śilpa-śāstra, he is spoken of as the sūtra-grāhī or sūtra-dhāra (‘rope-
holder’) and he is further described as an expert in alignment (rekhājña, lit.
‘one who knows the line’). In the early Pāli literature we find the terms rajjuka
and rajju-grāhaka (‘rope-holder’) for the king’s land-surveyor. The first of
these terms appears copiously in its various case-endings, in the inscriptions
of the Emperor Aśoka (250 bc).

3 Technical terms

3.1 Line

The history of a few technical terms of Hindu geometry will be considered
here. There is no attempt to define those terms in any early work. Only
in a work of the seventeenth century, Siddhānta-tattva-viveka of Kamalākara
(1658), we come across some definitions but, as already stated, it was influ-
enced by Euclid’s Elements. The line is called in the śulba, rekhā or lekhā,
both the terms being identical as, according to the rules of Sanskrit grammar,
the letters r and l can replace each other. In posterior geometry we, however,
commonly meet with the term rekhā only. A straight line is distinguished
with the help of the qualifying adjective ṛju or sarala, meaning “straight”.

3.2 Rectilinear figures

In Hindu geometry, we find two different systems of nomenclature for the
rectilinear geometrical figures.19 In one system the naming is according to
the number of sides of the figures and the names are formed by juxtaposition
of the number names with bhuja, meaning “arm”, “side”; e.g. tribhuja (‘tri-
lateral’), catur-bhuja (‘quadrilateral’), pañca-bhuja (‘pentalateral’), ṣaḍ-bhuja
(‘hexa-lateral’). In the other, the naming is based on the number of angles
19The subject has been treated fully in an article of Datta, B. JASB (new series), Vol. XXVI
(1930), pp. 283–299; see also his Śulba, pp. 221–6.
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and corners in the figures, and the names are compounds of number names
with karṇa or koṇa. The Sanskrit word karṇa means the ear. Applied to geo-
metrical figures, it implies, the angle.20 In the Katyāyana Śulba21 (c. 500 bc),
we find the terms trikarṇa (‘triangle’), pañca-karṇa (‘pentangle’). The word
karṇa degenerated into koṇa in the Prākṛta languages.22 So in the Ardha-
Māgadhī work, Sūryaprajñapti23 (c. 500 bc), we get tri-koṇa (‘trigonon’),
catuṣkoṇa (‘tetragonon’), pañca-koṇa (‘pentagon’), etc. These terms are, how-
ever, accepted in posterior Sanskrit literature.24 The oldest Hindu compound
name for rectilinear figures ending with srakti meaning the angle or corner, is
catuḥsrakti (‘quadrangle’) which occurs in the Saṃhitās and the Brāhmaṇas
(c. 2000 bc). In the time of the Śrauta-sūtra (c. 2000–1500 bc), was introduced
another kind of name consisting of compounds of number names with aśra or
asra, e.g. tryasra, caturasra, etc. Though these words aśra and asra, ordinarily
mean “corner” or “angle”, in compound names for rectilinear figures, they are
sometimes found to denote “side”. It is perhaps noteworthy that like the early
Hindus, the early Greeks also followed the usage of naming the rectilinear
figures according to the number of sides as well as of angles.25 But while with
the Hindus the angle-nomenclature is older than the side-nomenclature, with
the Greeks quite the contrary is the case.26

Triangles are classified according to the sides: sama-tribhuja (‘equilateral
triangle’), dvisama-tribhuja (‘isosceles triangle’) and viṣama-tribhuja (‘scalene
triangle’). The classification according to the angles is not found here. Only
the right-angled triangle is called by the name jātya-tribhuja by Brahmagupta
and others.27 The oblique triangles are grouped according as the perpendicu-
lar (lamba) from the vertex on the base falls inside or outside the figure, viz.
antarlamba (‘in-perpendicular’) and bahir-lamba (‘out-perpendicular’). In the
Taittirīya Saṃhitā (c. 3000 bc), the Brāhmaṇa (c. 2000 bc) and the Śulba, an
isosceles triangle is called prauga, derived probably from pra + yuga, mean-
ing “the fore part of the shafts of a chariot”. A rhombus is similarly called

20The term karṇa is used to denote the hypotenuse of a right-angled triangle (vide infra).
21iv. 7–8.
22Some writers are of opinion that the word koṇa is derived from Greek sources, but we do
not think so.

23Sūtra 19, 25.
24See for instance, Pariśiṣṭas of the Atharva-Veda, xxiii. 1; 5; xxv, 1, 3, 6, 7, etc.; Artha-

śāstra of Kauṭilya, ii. 11, 29.
25Tropfke, J. Geschichte der Elementar-Mathematik, (1923), Bd. IV. pp. 60–1.
26The conjecture of S. Gandz that “the observation of the corners and angles and the
classification according to their number seem to be distinctly Greek, a specific invention
of the Greek science, based upon the introduction of angle-geometry” is erroneous. Vide
his article on “The origin of angle-geometry” in Isis, XII, pp. 452–481; more particularly
p. 473.

27The Sanskrit word jātya means “noble”, “well-born”, “genuine”. The name jātya-tribhuja
for the right-angled triangle seems to imply that all other triangles are derived from it.
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ubhayataḥ prauga (‘prauga on both sides’).28

In the Śulba29 the diagonal of a rectilinear figure is called the akṣṇa or
akṣṇayā (‘that which goes across or transversely’, i.e. ‘the cross line’); also
karṇa, meaning ‘the line going across the karṇa or angle’, or ‘the line going
across from corner to corner’. Referring to the instrument of measurement, it
is sometimes termed the akṣṇayā-veṇu (‘diagonal bamboo-rod’) or akṣṇayā-
rajju (‘diagonal cord’). Out of all these only the term karṇa has survived,
others have become obsolete.
The classification of quadrilaterals according to the sides as well as the an-

gles is found as early as the Sūryaprajñapti. There are generally distinguished
five kinds of quadrilaterals; sama-caturbhuja (‘square’), āyata-caturbuja (‘rect-
angle’), dvisama-caturbhuja (‘isosceles trapzium’), trisama-caturbhuja (‘equi-
trilateral trapezium’), and viṣama-caturbhuja (‘quadrilateral of unequal sides’).
Similarly we have the sama-caturasra, āyata-caturasra, dvisama-caturasra and
viṣama-caturasra for those figures (caturbhuja = caturasra = quadrilateral.)
In the Śulba, the square is generally called sama-caturasra and the rectangle
dīrgha-caturasra (‘longish quadrilateral’).

3.3 Circle

In early geometry, the circle was termed maṇḍala (‘round’) or pari-maṇḍala
(‘round on all sides’); the circumference, pariṇāha (‘surrounding boundary
line’); the diameter, viṣkambha or vyāsa (‘breadth’); and the centre, madhya
(‘middle’). The last term had, however, wider use so as to denote the middle
most point of a square, rectangle or line. So also the terms viṣkambha and
vyāsa. In Prākṛta works of the fourth century before the Christian era, the
term pari-maṇḍala is used to denote the ellipse.30 In later geometry, the
term for the circle is vṛtta31 and for the centre kendra.32 The significance
of the terms vyāsa and viṣkambha has now become fixed for the diameter of
a circle. The radius is called vyāsārdha or viṣkambhārdha (‘semi-diameter’).
These terms occur as early as the works of Umāsvāti (c. 150).33 Still earlier
in the Āpastamba Śulba, we find the term ardha-vyāyāma, having the identical
significance.

28Datta, Śulba, pp. 223f.
29Ibid, pp. 224f.
30Dhammasaṅgani 617; Bhagavatī-sūtra, Sūtra 724–6. See Datta, Hindu Contribution to

Mathematics, p. 8.
31See Bhagavatī-sūtra, Sūtra 724–6.
32In Hindu astronomy the term kendra is used to signify the anomaly.
33See his Tattvārthādhigama-sūtra-bhāṣya, iv. 14; Jambūdvīpa-samāsa, ch. iv.
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3.4 Surface and area

In the early Hindu geometry, a plane surface bounded by a figure was called
by the term kṣetra and its area by bhūmi. Occasionally, however, the term
kṣetra was employed also to signify area. In the canonical works of the Jainas
(500–300 bc), a plane surface is termed pratara (‘expanse’), and it is defined as
that which is obtained by multiplying line by line. In posterior geometry, the
bhūmi, together with its synonyms bhū, mahī, etc., signifying earth, denotes
the ground or base of a plane figure; the area is called kṣetraphala, kṣetra-
gaṇita or simply phala, or gaṇita. These terms carry the concept of specific
operations of mensuration by breaking up the figure into smaller portions and
calculating them so that the area is what is obtained as the result (phala) of
such calculation (gaṇanā). Another term is more explicit. It is sama-koṣṭha-
miti (‘the measure of like compartments’ or ‘the measure of the number of
equal squares’). A curved surface or surface of a solid is called its pṛṣṭha
(‘back’), from dharā-pṛṣṭha (or ‘the back of the earth’) which is rounded. The
term for the superficial area of a solid is pṛṣṭha-phala.

4 Typical propositions of early geometry34

The Śulba-sūtras, which form a part of the Vedic literature of the Hindus,
deal with the construction of fire altars for sacrificial purposes. At present
we know of seven Śulba-sūtras, although it is quite likely that many more
such works existed in ancient times. According to European scholars, these
Sūtras were composed in the period 800 to 500 bc, but they are probably
much older. The vedīs (‘altars’) dealt with in these sūtras are of various
forms. Their construction requires a knowledge of the properties of the square,
the rectangle, the rhombus, the trapezium, the triangle and the circle. The
geometrical propositions involved in the constructions are the following.

4.1 Constructions

1. To divide a line into any number of equal parts.35

2. To divide a circle into any number of equal areas by drawing diameters.36

3. To divide a triangle into a number of equal and similar areas.37

34For details consult Datta, B., The Science of the Śulba, Calcutta, (1932).
35The knowledge of this construction is throughout assumed. It was probably done by
drawing parallels, as in Euclid. The following construction shows this surmise to be
correct.

36BŚl, ii. 73–4; ĀpŚl, vii. 13–14.
37BŚl, iii. 256; See Datta, Śulba, p. 46.
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4. To draw a straight line at right angles to a given line.38

5. To draw a straight line at right angles to a given straight line from a
given point on it.39

6. To construct a square on a given side.40

7. To construct a rectangle of given sides.41

8. To construct an isosceles trapezium of given altitude, face and base.42

9. To construct a parallelogram having given sides at a given inclination.43

10. To construct a square equal to the sum of two different squares.44

11. To construct a square equivalent to two given triangles.45

12. To construct square equivalent to two given pentagons.46

13. To construct a square equal to a given rectangle.47

14. To construct a rectangle having a given side and equivalent to a given
square.48

15. To construct an isosceles trapezium having a given face and equivalent
to a given square or rectangle.49

16. To construct a triangle equivalent to a given square.50

17. To construct a square equivalent to a given isosceles triangle.51

18. To construct a rhombus equivalent to a given square or rectangle.52

19. To construct a square equivalent to a given rhombus.53

38KŚl, i. 3.
39Ibid.
40ĀpŚl, viii. 8–10; xi. 1; i. 7; i. 2; BŚl, i. 22–28, 29–35, 42–44; iii. 13. TS, v, 2.5.1.; ff. MaiS,
iii. 2.4; KṭS, xx. 3.4; KapS, xxxii. 5.6; ŚBr x. 2.3.8 (2000 bc), etc.

41BŚl, i. 36–40.
42BŚl, i. 41; ĀpŚl, v. 2–5.
43ĀpŚl, xix. 5.
44BŚl, i. 51–52; ĀpŚl, ii. 4–6; KŚl, ii. 22, iii. 1.
45This follows from the above.
46BŚl, iii. 68, 288; KŚl, iv. 8.
47BŚl, i. 58, ĀpŚl, ii. 7; KŚl, iii. 2, 3.
48ĀpŚl, iii. 1, BŚl, i. 53.
49BŚl, i. 55; ŚBr, x. 2.1.4.
50BŚl, i. 56.
51KŚl, iv. 5.
52BŚl, i. 57; ĀpŚl, xii. 9; KŚl, iv. 4.
53KŚl, iv. 6.
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4.2 Theorems

The following theorems are either expressly stated or the results are implied
in the methods of construction of the altars of different shapes and sizes:

1. The diagonals of a rectangle bisect each other. They divide the rectangle
into four parts, two and two (vertically opposite) of which are equal in
all respects.54

2. The diagonals of a rhombus bisect each other at right angles.

3. An isosceles triangle is divided into two equal halves by the line joining
the vertex to the middle point of the base.55

4. The area of a square formed by joining the middle points of the sides of
a square is half that of the original one.

5. A quadrilateral formed by the lines joining the middle points of the sides
of a rectangle is a rhombus whose area is half that of the rectangle.

6. A parallelogram and rectangle on the same base and within the same
parallels have the same area.

7. The square on the hypotenuse of a right angled triangle is equal to the
sum of the squares on the other two sides.

8. If the sum of the squares on two sides of a triangle be equal to the square
on the third side, then the triangle is right-angled.

4.3 The Baudhāyana theorem

Theorem 7 given above has been stated by Baudhāyana (c. 800 bc) in the
following words:

The diagonal of a rectangle produces both areas which its length
and breadth produce separately.56

Āpastamba57 and Kātyāyana58 give the above theorem in almost identical
terms. The theorem is now universally associated with the name of the Greek
Pythagoras (c. 540 bc) though “no really trustworthy proof exists that it was
actually discovered by him”.59 The Chinese knew the numerical relation for
54Implied in BŚl, iii. 168–9, 178.
55BŚl, iii. 256.
56BŚl, i. 48: दीघचतुर ा यार ुः पा मानी तय ानी च य ृथ ूते कु त भयं करो त।
57ĀpŚl, i. 4.
58KŚl, ii. 11.
59Heath, Greek Math., Vol. I, p. 144f.
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the particular case 32 + 42 = 52 probably in the time of Chou-Kong (d. 1105
bc).60 The Kahun Papyrus (c. 2000 bc) contains four similar numerical rela-
tions, all of which can be derived from the above one.61 As for the Hindus,
one instance of that kind, 392 = 362+152, occurs in the Taittirīya Saṃhitā62

(before 2000 bc). It should be noted that this instance is different from that
known to other early nations.
Although particular instances of the theorem are found amongst several

ancient nations, the first enunciation of the theorem in its general form is
found in India. It cannot be said what made Baudhāyana give the theorem
in the general form. It is not improbable that he possessed a proof of the
theorem. But what this proof was will never be known with certainty. Bürk,
Hankel, Thibaut and Datta are of opinion that Baudhāyana knew a proof of
the theorem.63 It is conjectured that this proof may have been one of the
following.

4.4 Hindu proofs

(i) Let ABCD be a given square. Draw the diagonal AC; produce AB and
cut off AE equal to AC (Figure 2). Construct the square AEFG on
AE. Join DE and on it construct the square DHME. Complete the
construction as indicated in Figure 2. Now the square DHME is seen
to be comprised of four right-angled triangles each equal to DAE and
the small square ANPQ. This square will be easily recognised to be
equal to the square CRFS and triangles equal to the rectangles AERD
and ABSG. Therefore, the square DHME is equal to the sum of the
squares ABCD and AEFG. Hence the theorem.
It might be mentioned that constructions like the above are necessary
in the usual course in the Śulba.

(ii) Let ABC be a right-angled triangle (ed. see Figure 3) of which the
angle C is a right-angle. From C draw the perpendicular CD on AB.
Then the triangle ABC, ACD and CBD are similar. Therefore,

AB : AC :: AC : AD,

or AC2 = AB ×AD. Similarly, CB2 = AB ×DB. Adding we get

AC2 + CB2 = AB2.

60Mikami. Y., The Development of Mathematics in China and Japan, Leipzig (1913), p. 7.
61These are 12 +

(
3
4

)2
=

(
1 1
4

)2, 22 +
(
1 1
2

)2
=

(
2 1
2

)2, 82 + 62 = 102, 162 + 122 = 202.
62vi. 2.4.6.; It also occurs in the Śatapatha Brāhmaṇa, x. 2.3.4.
63Datta, The Science of the Śulba, ch. ix.
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This proof is given by Bhāskarācārya,64 and does not occur in the west
until 1693 when it was rediscovered in Europe by Wallis.

(iii) Let a, b, c be the sides of a right-angled triangle. Taking four such
triangles they are arranged as in Figure 4a, inside a square whose side
is equal to the hypotenuse of the given triangle. Obviously then,

c2 = 4

(
ab

2

)
+ (b− a)2 = a2 + b2.

This proof was anticipated by the Chinese by several centuries.65

The technique employed in this proof was used by Āpastamba for the
enlargement of a square. Thus to construct a square whose side will

64Cf. Colebrooke, Algebra with Arithmetic and Mensuration from the Sanscrit of Brahme-
gupta and Bhāscara, London, 1817, pp. 221–2.

65Mikami, l. c., p. 5.
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exceed a side b of a given square by a, add, says Āpastamba, on the two
sides of the given square two rectangles whose lengths are equal to b and
breadths to a; then add on the corner a square whose sides are equal to
the increment a. Thus will be obtained a square with a side equal to
a+ b (Figure 4b). A similar method was taught by Baudhāyana.66

4.5 Particular case

The particular case of the above theorem relating to the diagonal of a square
has been stated thus:

The diagonal of a square produces an area twice as much.

The statement is given in all the Śulbasūtras67 and the theorem has been used
for “doubling the square” at several places. Instances of its use are found in
the Taittirīya (before 2000 bc) and other Saṃhitās, and can be traced back
to the Ṛgveda (before 3000 bc).
Thibaut says:

The authors of the sūtras do not give us any hint as to the way
in which they found their proposition regarding the diagonal of a
square; but we suppose that they, too, were observant of the fact
that the square of the diagonal is divided by its diagonals into four
triangles, one of which is equal to half the first square (Figure 5).
This is at the same time an immediately convincing proof of the

66See Datta, The Science of the Śulba, p. 117.
67BŚl, i. 45; ĀpŚl, i. 5; KŚl, ii. 12; etc.
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Pythagorean proposition as far as squares or equilateral rectangu-
lar triangles are concerned.68

Figure 5

5 Measurement of triangles

5.1 Area of a triangle

The method for finding the area of a triangle that was known in the Śulba69

was
Area =

1

2
(base × altitude),

and that was one of the methods followed in later times. Āryabhaṭa I says:

The area of a triangle is the product of the perpendicular and half
the base.70

According to Brahmagupta:

The product of half the sums of the sides and counter-sides of a
triangle or a quadrilateral is the rough value of its area. Half the
sum of the sides is severally lessened by the three or four sides, the
square-root of the product of the remainders is the exact area.71

That is to say, if a, b, c, d, be the four sides of a quadrilateral taken in

68Thibaut, Śulbasūtras, p. 8.
69See Datta, The Science of the Śulba, p. 96.
70Ā, i. 6.
71BrSpSi, xii. 21.
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order, we have

Area =
c+ d

2
× a+ b

2
, roughly;

Area =
√
(s− a)(s− b)(s− c)(s− d) exactly,

where
s =

1

2
(a+ b+ c+ d).

In case of a triangle d = 0; so that we get

△ =
c

2
× a+ b

2
, roughly;

△ =
√
s(s− a)(s− b)(s− c) exactly.

The second formula was given before by the Greek Heron of Alexandria
(c. 200).72 Pṛthūdakasvāmi calculates by these methods the area of the trian-
gle (14, 15, 13) to be 98 roughly, 84 exactly.
Śridhara says that the exact value of a triangle will be given by the formu-

lae73

△ =
1

2
(base× altitude),

△ =
√
s(s− a)(s− b)(s− c).

Mahāvīra,74 Āryabhaṭa II,75 and Śrīpati76 teach both these accurate meth-
ods as well as the rough one of Brahmagupta. Bhāskara II77 adopts the
formula

△ =
√
s(s− a)(s− b)(s− c).

5.2 Segments and altitudes

Bhāskara I (629) writes:

In a triangle the difference of the squares of the two sides or the
product of their sum and difference is equal to the product of
the sum and difference of the segments of the base. So divide it
by the base or the sum of the segments; add and subtract the
quotient to and from the base and then halve, according to the
rule of concurrence. Thus will be obtained the values of the two

72Heath, History of Greek Mathematics, II, p. 321.
73Triś, R. 43.
74GSS, vii. 7, 50.
75MSi, xv. 66, 69, 78.
76SiŚe, xiii. 30.
77L, p. 41.
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segments. From the segments of the base of a scalene triangle, can
be found its altitude.78

That is to say

a2 − b2 = (a+ b)(a− b) = c21 − c22 = (c1 + c2)(c1 − c2),

also
c1 + c2 = c.

Therefore
c1 − c2 =

a2 − b2

c
.

Hence

c1 =
1

2

(
c+

a2 − b2

c

)
,

c2 =
1

2

(
c− a2 − b2

c

)
,

h =
√
a2 − c21 =

√
b2 − c22.

By means of these formulae Bhāskara I finds the segments (9, 5; 35, 16)
of the bases (14, 51), altitudes (12, 12) and areas (84, 306) of the scalene
triangles (13, 15, 14) and (20, 37, 51).
Brahmagupta (628) gives the same set of formulae. He says:

The difference of the squares of the two sides being divided by
the base, the quotient is added to and subtracted from the base;
the results, divided by two, are the segments of the base. The
square-root of the square of a side as diminished by the square of
the corresponding segment is the altitude.79

Pṛthūdakasvāmi proves these formulae in the same way as Bhāskara I and
also applies them to the latter’s first example (13, 15, 14).
Śrīdhara first finds the area of the triangle by means of the formula

△ =
√
s(s− a)(s− b)(s− c)

and then deduces the segments and perpendicular. His rules are:

Twice the area of the triangle divided by the base is the altitude.
(Then there will be two right-angled triangles of which) the up-
rights are equal to that altitude, bases are the segments and hy-
potenuses, the two sides (of the given triangle).80

78Vide his commentary on Ā, ii. 6.
79BrSpSi, xii. 22.
80Triś, R. 50.
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Mahāvīra says:

Divide the difference between the squares of the two sides by the
base. From this quotient and the base, by the rule of concurrence,
will be obtained the values of the two segments (of the base) of
the triangle; the square-root of the difference of the squares of
a segment and its corresponding side is the altitude: so say the
learned teachers.81

Āryabhaṭa II writes:

In a triangle, divide the product of the sum and difference of the
two sides by the base. Add and subtract the quotient to and
from the base and then halve. The results will be the segments
corresponding to the greater and smaller sides respectively. The
segment corresponding to the smaller side should be considered
negative, if it lies outside the figure. The square-root of the differ-
ence of the squares of a segment and its corresponding side is the
perpendicular.82

Similar rules are given by Śrīpati83 and Bhāskara II.84 The latter gives in
illustration a case of a scalene triangle whose have is 9, and sides 10, and 17.
There the segments are 6 and 15, and perpendicular 8.

5.3 Circumscribed circle

Brahmagupta says:

The product of the two sides of a triangle divided by twice the
altitude is the heart-line (hṛdaya-rajju). Twice it is the diame-
ter of the circle passing through the corners of the triangle and
quadrilateral.85

Pṛthūdakasvāmi proves it substantially as follows:
Let ABC be a scalene triangle (ed. see Figure 6). Draw AD perpendicular

to BC. Produce it to A′ making A′D = AD. Let O be the centre of the circle
circumscribing the triangle ABC. Join OA, OC. Triangles BAA′ and OAC
are similar. Therefore,

AB : OA :: AA′ : AC.

81GSS, vii. 49.
82MSi, xv. 76–7.
83SiŚe, xii. 29.
84L, p. 40.
85BrSpSi, xii. 27.
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Hence,

OA =
AB ×AC

AA′ ,

or,

R =
cb

2h
,

where R denotes the radius of the circumscribed circle.
Mahāvīra writes:

In a triangle, the product of the two sides divided by the altitude
is the diameter of the circumscribed circle.86

Example:87 The circum-diameter of the triangle (14, 13, 15) is 16 1
4 .

Śrīpati states:

Half the product of the two sides divided by the altitude is the
heart-line.88

86GSS, vii. 213 1
2
.

87GSS, vii. 219 1
2
.

88SiŚe, xiii. 31.
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5.4 Inscribed circle

To find the radius of a circle inscribed in a triangle (or quadrilateral, when pos-
sible) whose area as well as perimeter are known, Mahāvīra gives the following
rule:

Divide the precise area of a figure other than a rectangle by one-
fourth of its perimeter; the quotient is stated to be the diameter
of the inscribed circle.89

That is to say, if r denote the radius of the circle inscribed within the triangle
(a, b, c), we shall have

r =
1

s

√
s(s− a)(s− b)(s− c),

where
2s = a+ b+ c.

5.5 Similar triangles

The properties of similar triangles and parallel lines were known to the ancient
Hindus.90 For example, take the case of the Mount Meru or Mandara. It has
been described in the early canonical works of the Jainas as follows:

At the centre of Jambūdvīpa, there is known to be a mountain,
Mandara by name, whose height above (the earth) is 99000 yo-
janas, whose depth below is 1000 yojanas, its diameter at the base
is 10090 10

11 yojanas, at the ground 10000 yojanas. Then (its diam-
eter) diminishes by degrees until at the top it is 1000 yojanas. Its
circumference at the base is 31910 3

11 yojanas, at the ground 31623
yojanas, and at the top a little over 3162 yojanas. It is broader at
the base, contracted at the middle and (still) shorter at the top
and is of the form of a cow’s tail (i.e. a truncated right cone).91

To find the diameter of any other section parallel to the base, Jinabhadra
Gaṇi (c. 560) gives the following rule:

Wherever is wanted the diameter (of the Mandara): the descent
from the top of the Mandara divided by eleven and then added to
a thousand will give the diameter. The ascent from the bottom
should be similarly (divided by eleven) and the quotient subtracted

89GSS, vii. 223 1
2
.

90See Datta, Bibhutibhusan “Geometry in the Jaina Cosmography”, Quellen und Studien
z. Gesch. d. Math., Ab. B, Bd. 1., 1930, pp. 249ff.

91Jambūdvīpa-prajñapti, Sūtra 103.
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from the diameter of the base: what remains will be the diameter
there (i.e. at that height) of that (Mandara).92

It is stated further:

Half the difference of the diameters at the top and the base should
be divided by the height; that (will give) the rate of increase or
decrease on one side; that multiplied by two will be the rate of
increase or decrease on both sides; in going from either end of the
mountain.
Subtract from the diameter of the base of the mountain the diam-
eter at any desired place: what remains when multiplied by the
denominator (meaning eleven) will be the height (of that place).93

All these rules will follow at once from the following general formulae (ed.
see Figure 7):

a =
D − d

2h
x,

δ = a+
D − d

h
x,

y = (D − δ′)
h

D − d
,

b =
D − d

2h
y,

δ′ = D − D − d

h
y.

Rules similar to those stated above and hence the general properties leading
to them, were known to the people long before Jinabhadra Gaṇi. For as early
as the second century before the Christian era (or after) Umāsvāti correctly
observed that in case of the Mount Meru, “for every ascent of 11000 yojanas,
the diameter diminishes by 1000 yojanas.”94

Again, “Half the difference between the breadths at the source and the
mouth being divided by 45000 yojanas, and the quotient multiplied by two
will give the rate of increase (of the breadth) on both sides, in case of rivers.”95

(45000 yojanas is the length of a river).
They are found even in the early canonical works (500–300 bc). Accord-

ing to the Jaina cosmography, the Salt Ocean is annular in shape, having
a breadth of 200000 yojanas. In the undisturbed state its height as well as
92Vṛhat Kṣetra-samāsa, i. 307–8.
93Ibid, i. 309–11.
94Tattvārthādhigama-sūtra-bhāṣya, iii. 9.
95Jambūdvīpa-samāsa, ch, iv.
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depth are said to be varying continuously from its either banks till at distances
of 95000 yojanas from the banks where the height is 16000 yojanas and the
depth 1000 yojanas. The radial section of the Salt Ocean in the calm state
will be represented by Figure 8, where

AE = A′E′ = 95000 yojanas,
CE = C ′E′ = 16000 yojanas,
ED = E′D′ = 1000 yojanas,

and EE′ = 10000 yojanas.

It is described in the Jivābhigama-sūtra that “from either bank of the Salt
Ocean, for proceeding every 95 padas, the height is known to be increased by
16 padas and so on, until on proceeding to 95000 yojanas, the height is known
to be increased to 16000 yojanas”.96

These can be easily verified thus:
From the properties of similar triangles

QR =
ED ×AR

AE
=

1

95
AR,

PR =
EC ×AR

AE
=

16

95
AR.

If AR = 95x, where x is any unit of measurement, then QR = x, PR = 16x.
96Jivābhigama-sūtra, Sūtra 172.
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Again it is stated in the Jambūdvīpa-prajñapti97 that at a height of 500 yo-
janas above the ground the breadth of the Mount Mandara is 9954 6

11 yojanas,
while at 63000 yojanas above it is 4272 8

11 yojanas. These values, as can be
easily verified, tally with the general formulae.

6 Measurement of quadrilaterals

6.1 Area

It should be noted at the outset that four sides alone are not sufficient to
determine the true shape of a quadrilateral and consequently its size. For,
there can be formed various quadrilaterals with the same four sides. Hence in
order to make a quadrilateral determinate we must know, besides the sides,
another element such as a diagonal, the altitude of a corner, or an angle. Thus
Āryabhaṭa II remarks:

The mathematician who wishes to tell of the area or the altitudes
of a quadrilateral without knowing a diagonal, must be a fool or
a blunderer.98

Bhāskara II writes:
97Sūtra 104–5.
98MSi, xii. 70.
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The diagonals of a quadrilateral (whose four sides are given) are
uncertain. How can, then, the area be determinate? The diagonals
as calculated by previous teachers will be true only in case of
quadrilaterals (of a particular kind) contemplated by them, but
not in case of others. For with the same (four) sides, there can
be various other pairs of diagonals and consequently the area also
is manifold. In a quadrilateral, when two opposite corners are
so drawn as to bring the sides contiguous to them inwards, the
diagonal joining them is shortened, while the other two corners
bulge outwards and consequently their diagonal is lengthened. So
it has been stated (just before) that with the same sides there can
be other pairs of diagonals. Without specifying one of the altitudes
or diagonals, how can one ask to find the other of them and also
the area, as these are truly indeterminate? The questioner who
does not know the indeterminate nature of a quadrilateral must
be a blunderer; still more so is he, who answers such a problem.99

6.2 Brahmagupta’s formula

To find the area (A) of an inscribed convex quadrilateral whose sides are a, b,
c, d, Brahmagupta (628) gives the following formula:100

A =
√
(s− a)(s− b)(s− c)(s− d),

where
2s = a+ b+ c+ d.

This formula has been reproduced by Śrīdhara101 (900), Mahāvīra102 (850)
and Śrīpati103 (1039). None of these writers has expressly mentioned the lim-
itation that it holds only for an inscribed figure. Still it seems to have been
implied by them. So this appears from the particular remark of Bhāskara II
that the formula holds only in case of a special kind of quadrilateral contem-
plated by them. Further we find that the examples of quadrilaterals, viz. (4,
13, 14, 13), (25, 25, 39, 25) and (25, 39, 60, 52) given by Śrīdhara104 and
Pṛthūdakasvāmi105 and those, namely (14, 36, 61, 36), (169, 169, 407, 169)

99L. p. 44.
100BrSpSi, xii. 21.
101Triś, R. 43.
102GSS, vii. 50.
103SiŚe, xiii. 28.
104Triś, Ex. 78, 79, 80.
105Vide his commentary on BrSpSi, xii. 21. Elsewhere (xii. 26) he finds the circum-radii of

these quadrilaterals.
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and (125, 195, 300, 260) given by Mahāvīra,106 in illustration of the above
formula, are all of the cyclic variety. Bhāskara II has shown that in the other
cases, the above formula gives only an approximate value of the area of a
quadrilateral.107

6.3 Diagonal, altitude and segment

Āryabhaṭa I says (ed. see Figure 9):

The two sides (severally) multiplied by the altitude and divided
by their sum will give the perpendiculars let fall on them from
the point of intersection of the diagonals. Half the sum of the two
sides multiplied by the altitude should be known as the area.108

h1 =
ah

a+ c
,

h2 =
ch

a+ c
,

Area =
1

2
h(a+ c).

Brahmagupta writes:

In an isosceles trapezium109 the square-root of the sum of the
products of the sides and counter-sides is the diagonal. The square-
root of the square of the diagonal as diminished by the square of
half the sum of the face and base, is the altitude.110

d =
√
ac+ b2, h =

√
d2 −

(
a+ c

2

)2

.

The upper and lower portions of the diagonal or the altitude at
the junction of the two diagonals or of a diagonal and an altitude,
will be given by the corresponding segments of the base divided
by their sum and multiplied again by the diagonal or altitude, as
the case may be.111

106GSS, vii. 57, 58, 59. Compare also vii. 215 1
2
, 216 1

2
, 217 1

2
where it is required to find the

diameters of the circles circumscribing these very quadrilaterals.
107L, p. 41.
108Ā, ii. 8.
109The Sanskrit term is aviṣama-caturasra, meaning literally “the quadrilateral not of un-

equal sides”. Brahmagupta classifies quadrilaterals (caturasra, caturbhuja) into five vari-
eties: sama-caturasra (square), āyata-caturasra (rectangle), dvisama caturasra (isosceles
trapezium), trisama caturasra (trapezium with three equal sides) and viṣama caturasra
(quadrilateral of unequal sides). Hence aviṣama caturasra must mean all except those of
the last class. But here more particularly the isosceles trapezium is meant.

110BrSpSi, xii. 23.
111BrSpSi, xii. 25.
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h3 =
c2h

c1 + c2
, d1 =

c2d

c1 + c2
,

h4 =
c1h

c1 + c2
, d2 =

c1d

c1 + c2
.

For quadrilaterals other than isosceles trapeziums, Brahmagupta gives the
following rules:

Considering two scalene triangles within the quadrilaterals112 by
means of the two diagonals, find separately the segments of the
base in them by the method taught before; and thence the two
altitudes.113

Supposing two scalene triangles within the quadrilateral, with the
diagonals as bases, find in each of them separately the segments
of the base. They will be the portions of the diagonals above
and below their point of intersection. The lower portions of the
diagonals are taken to be the sides of another triangle whose base is
the same as that of the given quadrilateral. Its altitude is the lower
portion of the perpendicular (to the base through the junction
of the diagonals). The upper portions of it will be obtained by
subtracting this portion from half the sum of the two altitudes.114

At the intersection of the diagonals and perpendiculars, the lower
segment of a diagonal and of a perpendicular can be found by
proportion. On subtracting these segments from the whole, the

112The Sanskrit term is viṣama caturasra. As pointed out just before, it denotes “a quadri-
lateral of unequal sides” including a trapezium.

113BrSpSi, xii. 29.
114BrSpSi, xii. 30–31.
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upper portions will be found. Such is (the method) also in the
needle (i.e. the intersection of two opposite sides produced) and
the intersection (of a prolonged side and perpendicular).115

Śrīdhara states:

To find the altitude of a trapezium,116 suppose a triangle whose
base is the difference of the base and face of the trapezium and
whose sides are the same as those at the flanks of the given fig-
ure; (and then proceed as in the case of finding the altitude of a
triangle).117

Mahāvīra’s rule will be clear from the following problem with reference to
which it has been defined (ed. see Figure 10):
AB, CD are two vertical pillars. AE, CF are two strings joining the tops

A and C of the these pillars to points E and F on the ground. PQ is the
perpendicular from the point of intersection of the strings. It has been named
“the inner perpendicular.”

C

A

B D
EF

P

Q

Figure 10

Mahāvīra says:

Divide each pillar by its distance from (the farthest point of contact
of) the string (with the ground), divide again the quotients by their
sum and then multiply by the (whole) base. The results are the
segments (of the base by the inner perpendicular). These being
multiplied by the (first) quotients in the inverse order give the
inner perpendicular.118

115BrSpSi, xii. 32.
116The Sanskrit term is ṛjuvadana-caturbhuja of “the quadrilateral with parallel face.”
117Triś, R. 49.
118GSS, vii. 180 1

2
.
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That is to say, we have

QF =
AB
BE × FE
AB
BE + CD

DF

=
AB ×DF × FE

AB ×DF + CD ×BE
,

QE =
CD
DF × FE
AB
BE − CD

DF

=
CD ×BE × FE

AB ×DF − CD ×BE
,

PQ =
AB

BE
×QE =

CD

DF
×QF.

Example from Mahāvīra:119 Find the inner perpendicular and the segments
of the base caused by it in the quadrilateral (7, 15, 21, 3).
Śrīpati says:

In an isosceles trapezium, the square-root of the sum of the prod-
ucts of opposite sides is the diagonal. Next I shall speak of quadri-
laterals of unequal sides.120

Bhāskara II gives several rules. Of them we note the following:

In a quadrilateral, assume the value of one diagonal. Then in the
two triangles lying on either sides of this diagonal, it will be the
base and others (i.e. the given sides of the quadrilateral) sides.
Now find the perpendiculars and segments (in these triangles).
Then the square of the difference of the two segments lying on
the same side (i.e. taken from the same corner) being added to the
square of the sum of the perpendiculars, the square-root of the
resulting sum will be the second diagonal in all quadrilaterals.121

Ganeśa has demonstrated the rule substantially as follows (ed. see Fig-
ure 11):
Let ABCD be a quadrilateral whose diagonal AC as well as the sides are

known. Draw BN , DM perpendiculars to AC. Produce BN and draw DP

perpendicular to it. Join DB. Then

DB2 = BP 2 +DP 2,

= (BN +DM)2 + (AN −AM)2.

Suppose a triangle whose base is equal to the difference of the face
and base of a trapezium, and whose sides are the flank sides of the
latter; then as in case of a triangle, find its altitude and segments
of the base. Subtract from the base of the given trapezium one

119GSS, vii. 187 1
2
.

120SiŚe, xiii. 33.
121L, p. 47f.
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of the segments. The square of the remainder being added to
the square of the perpendicular, the square-root of the sum is the
diagonal. In a trapezium, the sum of the base and smaller flank
side is greater than the sum of the face and the other flank.122

Gaṇeśa’s Proof (ed. see Figure 12): Let ABCD be a trapezium. Draw the
perpendiculars AM,BN . Combine the two triangles ADM and BCN into
one triangle A′C ′D′. Then the altitude A′M ′ of the new triangle is equal to
the altitude of the trapezium.
Join AC and BD. Then

AC2 = AM2 +MC2 = A′M ′2 + (DC −D′M ′)2,

BD2 = BN2 +DN2 = A′M ′2 + (DC − C ′M ′)2.

Again
A′D′ −A′C ′ < D′C ′ = DC −AB.

122L. p. 48f.
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Therefore
DC +A′C ′ > AD +AB.

6.4 Circumscribed circle

To find the radius of the circle described round a quadrilateral, Brahmagupta
gives the following rule:

The diagonal of an isosceles trapezium being multiplied by its flank
side and divided by twice its altitude gives its heart line: in case
of a quadrilateral of unequal sides it is half the square-root of the
sum of the squares of the opposite sides.123

Now it has been given by Brahmagupta that

h2 = d2 −
(
a+ c

2

)2

.

Substituting the value of d2 = ac+ b2, we get

h =
√
(s− a)(s− c).

Hence according to the above, the radius of the circle described round the
isosceles trapezium (a, b, c, b) is

1

2
b

√
ac+ b2

(s− a)(s− c)
.

In case of a quadrilateral of unequal sides the circum-radius is

=
1

2

√
a2 + c2 =

1

2

√
b2 + d2.

This formula holds only in that kind of inscribed convex quadrilaterals in
which the diagonals are at right angles.

Mahāvīra says:
In a quadrilateral, the diagonal divided by the perpendicular and
multiplied by the flank side, gives the diameter of the circum-
scribed circle.124

Śrīpati states all the above formulae. He says:
In a quadrilateral, half the product of a diagonal and flank side
divided by the altitude, gives the radius of the circumscribed circle.
In a quadrilateral of unequal sides, half the square-root of the sum
of the squares of the opposite sides is stated to be the radius and
twice it the diameter of the circumscribed circle.125

123BrSpSi, xii. 26.
124GSS, vii. 213 1

2
125SiŚe, xiii. 31–2.
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6.5 Inscribed circle

We have already cited Mahāvīra’s formula for the diameter of the inscribed
circle.

Diameter = Area÷ Perimeter
4

.

6.6 Theorems for diagonals

Brahmagupta (628) gives two remarkable theorems for the lengths of the
diagonals of an inscribed convex quadrilateral. He says (ed. see Figure 13):

Divide mutually the sums of the products of the sides attached to
both the diagonals and then multiply the quotients by the sum of
the products of the opposite sides: the square-roots of the results
are the diagonals of the quadrilateral.126

m =

√
(ab+ cd)(ac+ bd)

(ad+ bc)
,

n =

√
(ad+ bc)(ac+ bd)

(ab+ cd)
.

Mahāvīra (850) writes:
126BrSpSi, xii. 28.
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The two flank sides multiplied by the base are added (respectively)
to those sides (taken reversely) multiplied by the face. Make the
sums (thus obtained respectively) the multiplier and divisor, again
the divisor and multiplier of the sum of the products of the oppo-
site sides. The square-roots of the results are the diagonals.127

Śrīpati’s (1039) enunciation128 of the theorems is nearly the same as that
of Brahmagupta.
It will be noticed that neither Brahmagupta, nor any of the posterior writers

mentioned above, has expressly stated the limitation that the theorems hold
only in case of inscribed convex quadrilaterals. Did they at all know it will
be the question that will be naturally asked. Looking at the context, we
think, it will have to be answered in the affirmative. For in the two rules just
preceding the one in question, Brahmagupta teaches how to find the radii of
the circles circumscribed about a quadrilateral and a triangle respectively. So
in the present rule too he has in view a quadrilateral of the type which can
be circumscribed by a circle. Illustrative examples given by the commentator
Pṛthūdakasvāmi, as also by Mahāvīra, are all of quadrilaterals of that kind.
Further Bhāskara II observed in connection with these theorems that they
hold in case of quadrilaterals contemplated to be of a particular kind by their
author.

7 Squaring the circle

7.1 Origin of the problem

The problem of ‘squaring the circle’, or what was more fundamental in India,
the problem of ‘circling the square’, originated and acquired special impor-
tance in connexion with the Vedic sacrifices, before the earliest hymns of
the Ṛgveda were composed (before 3000 bc). The three primarily essential
sacrificial altars of the Vedic Hindus, namely the Gārhapatya, Āhavanīya and
Dakṣiṇa, were constructed so as to be of the same area, but of different shapes,
square, circular and semi-circular. Again in constructing the fire-altars called
the Rathacakra-citi, Samuhya-citi and Paricāyya-citi, which are mentioned in
the Taittirīya Saṃhitā (c. 3000 bc) and other works, one had to draw in each
case at first a square equal in area to that of the Śyena-citi, viz. 7 1

2 square
puruṣas, and then to transform it into a circle. We find also other instances
in the early Hindu works requiring the solution of the problem of circling the
square and its converse.129

127GSS, vii. 54.
128SiŚe, xiii. 34.
129See Datta, Bibhutibhusan, Śulba, ch. xi, for further informations on the problem.
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7.2 Circling the square

Baudhāyana writes:

If you wish to circle a square, draw half its diagonal about the
centre towards the east-west line; then describe a circle together
with the third part of that which lies outside (the square).130

The same method is taught in different words also by Āpastamba131 and
Kātyāyana.132

Let ABCD be the square which is to be transformed into a circle (ed. see
Figure 14). Let O be the central point of the square. Join OA. With centre
O and radius OA, describe a circle intersecting the east-west line EW at E.
Divide EM at P , such that EP = 2PM . Then with centre O and radius OP
describe a circle. This circle is roughly equal in area to the square ABCD.
Let 2a denote a side of the given square and r the radius of the circle

equivalent to it. Then

OA = a
√
2, ME = (

√
2− 1)a.

130BŚl, i. 58.
131ĀpŚl, iii. 2.
132KŚl. iii. 13.
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Hence
r = a+

a

3

(√
2− 1

)
=
a

3

(
2 +

√
2
)
.

Āpastamba observes that the circle thus constructed will be inexact (anitya).
Now, according to the Śulba,

√
2 = 1 +

1

3
+

1

3× 4
− 1

3× 4× 34
.

Therefore
r = a× 1.1380718 . . .

7.3 Squaring the circle

Baudhāyana says:

If you wish to square a circle, divide its diameter into eight parts;
then divide one part into twenty-nine parts and leave out twenty-
eight of these, and also the sixth part (of the preceding sub-division)
less the eighth part (of the last).133

That is to say, if 2a be the side of a square equivalent to a circle of diameter
d, then

2a =
7d

a
+

{
d

a
−
(

28d

8× 29
+

d

8× 29× 6
− d

8× 29× 6× 8

)}
,

or putting d = 2r,

a = r − r

8
+

r

8× 29
− r

8× 29× 6
+

r

8× 29× 6× 8
.

Baudhāyana further teaches a still rough method of squaring the circle:

Or else divide (the diameter) into fifteen parts and remove two
(of them). This is the gross (value of the) side of the (equivalent)
square.134

This method is described also by Āpastambā135 and Kātyāyāna.136 Accord-
ing to it

a = r − 2r

15
.

According to Manu a square of two by two cubits is equivalent to a circle
of radius 1 cubit and 3 aṅgulis.137

133BŚl, i. 59.
134BŚl, i. 60.
135ĀpŚl, iii. 3.
136KŚl, iii. 14.
137MāŚl, i. 27.
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Dvārakānātha’s corrections

Dvārakānātha Yajvā, a commentator of the Baudhāyana Śulba, proposed a
correction to the above formula for the transformation of a square into a
circle. According to him

r =
{
a+

a

3

(√
2− 1

)}
×
{
1− 1

118

}
,

or
r = a× 1.1284272 . . .

Similarly he improves the formula for the reverse operation:

a = r

(
1− 1

8
+

1

8× 29
+

1

8× 29× 6
− 1

8× 29× 6× 8

)(
1 +

1

2
× 3

133

)
.

7.4 Later formulae

In the Jaina cosmography, the earth is supposed to be a flat plane divided
into successive regions of land and water by a system of concentric circles.
The innermost region is one of land and is called Jambūdvīpa. It is a circle
of diameter 100000 yojanas. Its circumference is given as a little over 316227
yojanas 3 gavyūtis 128 dhanus 13 1

2 aṅgulas and its area as 7905694150 yojanas
1 gavyūti 1515 dhanus 60 aṅgulas.138 It will be seen that in calculating these
values of the circumference and area from the assumed value of the diameter,
the following two formulae have been employed:

C =
√
10d2, A =

1

4
Cd,

where d = the diameter of a circle, C = its circumference and A = its area.
Umāsvāti (c. 150 bc or ad) writes:

The square-root of ten times the square of the diameter of a circle
is its circumference. That (circumference) multiplied by a quarter
of the diameter (gives) the area.139

So does also Jinabhadra Gaṇi (529–589).140

Āryabhaṭa I says:
138See Jambūdvīpa-prajñapti, Sūtra 3; Jīvābhigama-sūtra, Sūtra 82, 124; Anuyogadvāra-

sūtra, Sūtra 146. Compare also Sūryaprajñapti, Sūtra 20.
139Tattvārthādhigama-sūtra with the Bhāṣya of Umāsvāti, edited by K. P. Mody, Calcutta,

1903, iii. 11 (gloss); Jambūdvīpa-samāsa, ch. iv. The latter work of Umāsvāti has been
published in the Appendix C of Mody’s edition of the former.

140Vṛhat Kṣetra-samāsa of Jinabhadra Gaṇi, Bhavanagara, 1919, i. 7.
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Half the circumference multiplied by the semi-diameter certainly
gives the area of a circle.141

Brahmagupta:

Three times the diameter and the square of the semi-diameter give
the practical values of the circumference and area (respectively).
The square roots of ten times the squares of them are the neat
values.142

Śrīdhara:

The square-root of the square of the diameter of a circle as multi-
plied by ten is its circumference. The square-root of ten times the
square of the square of the semi-diameter is the area.143

Mahāvīra:

Thrice the diameter is the circumference. Thrice the square of the
semi-diameter is the area … So said the teachers.144

The diameter of a circle multiplied by the square-root of ten, be-
comes the circumference. The circumference multiplied by the
fourth part of the diameter gives the area.145

Āryabhaṭa II:

The square-root of the square of the diameter of a circle as multi-
plied by ten is the circumference. The fourth part of the square of
the diameter being squared and multiplied by ten, the square-root
of the product is the area.146

The diameter multiplied by 22 and divided by 7 will become nearly
equal to the circumference. If the square of the semi-diameter be
so treated, the result will be the value of the area as precise as
that of the circumference.147

Twice the sine of three signs of the zodiac (i.e. 3438) is the diameter
and the circumference is then 21600. Multiply the circumference
by 191 and divide by 600; the quotient is the diameter.148

141A, ii. 7.
142BrSpSi, xii. 40.
143Triś, R. 45.
144GSS, vii. 19.
145GSS, vii. 60.
146MSi, xv. 88.
147MSi, xv. 92f.
148MSi, xvi. 37.
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Śrīpati’s rule is the same as the first one of Āryabhaṭa the Younger. Bhās-
kara II writes:

When the diameter is multiplied by 3927 and divided by 1250, the
result is the nearly precise value of the circumference; but when
multiplied by 22 and divided by 7, it is the gross circumference
which can be adopted for practical purposes.149

In a circle, the one-fourth of the diameter multiplied by the cir-
cumference gives the area.150

The square of the diameter being multiplied by 3927 and divided
by 5000 gives the nearly precise value of the area; or being multi-
plied by 11 and divided by 14 gives the gross area which can be
applied in rough works.151

7.5 Values of π

The formulae of Baudhāyana, noted above, yield the following values of π:

π =
4{

1 + 1
3

(√
2− 1

)}2 = 3.0883 . . .

π = 4

(
1− 1

8
+

1

8× 29
− 1

8× 29× 6
+

1

8× 29× 6× 8

)
= 3.0885 . . .

π = 4

(
1− 2

15

)2

= 3.004.

Baudhāyana has once employed the very rough value, 3. From the rule of
Manu, we get

π = 4

(
8

9

)2

= 3.16049 . . .

With the corrections of Dvārakānātha, we have

π = 3.141109 . . . , 3.157991 . . .

In the early canonical works of the Jainas (500–300 bc) is employed the
value π =

√
10.152 This value has been adopted by Umāsvāti, Varāhamihira

(505), Brahmagupta (628), Śrīdhara (c. 900) and others. It is stated in the
Jīvābhigama-sūtra,153 that for an increment of 100 yojanas in the diameter,

149L, p. 54.
150L, p. 55.
151L, p. 56f.
152See Datta, Bibhutibhusan, “The Jaina School of Mathematics”, BCMS xxi (1929), p. 13;

“Hindu Values of π”, JASB, xxii (1926), pp. 25–43. The latter article given fuller infor-
mation on the subject.

153Sūtra 112.



7 Squaring the circle 227

the circumference increases by 316 yojanas. Here has been used the value
π = 3.16.
Āryabhaṭa the Elder (499) gives a remarkably accurate value. His rule is:

100 plus 4, multiplied by 8, and added to 62000: this will be the
nearly approximate (āsanna) value of the circumference of a circle
of diameter 20000.154

That is to say, we have

π =
62832

20000
=

3927

1250
= 3.1416.

This value appears in the works of Lalla155 (c. 749), Bhaṭṭotpala156 (966),
Bhāskara II and others. We have it on the authority of a writer of the sixteenth
century who was in possession of the larger treatise of arithmetic by Śrīdhara
that this value of π was adopted there.
The value

π =
21600

6876
=

600

191
= 3.14136 . . .

introduced first by Āryabhaṭa the Younger (950) is undoubtedly derived from
the value of the Elder Āryabhaṭa. For if the circumference of a circle measures
21600, its diameter will be

21600× 1250

3927
= 6875

625

1309
.

Āryabhaṭa takes the value of the diameter to be 6876 in round numbers.157

This relation (21600 : 6876) between the circumference and diameter of a
circle was, however, worked out before by Bhāskara I (629).158 The value
π = 600

191 appears also in the treatises of arithmetic by Gaṇeśa II (c. 1550) and
Munīśvara (1656).
It should be particularly noted that the Greek value, π = 22

7 , is found
in India first in the work of Āryabhaṭa the Younger.159 Bhāskara II (1150)
employs it as a rough approximation suitable for practical purposes.

7.6 Later approximations of π

Later Hindu writers found much closer approximations to the value of π.
Nārāyaṇa, a priest of Travancore, gave in 1426, the following rule to construct
a temple of circular shape having a given perimeter:

154Ā, ii. 10.
155ŚiDVṛ, i. 1, 2; ii. 3; etc.
156See his commentary on Bṛhat Saṃhitā, p. 53.
157MSi, xv. 88.
158Vide his commentary on Ā, ii. 10.
159MSi, xv. 92f
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Divide the given perimeter into 710 parts; with 113 of them as the
radius describe a circle and thus construct the circular temple.160

Hence he has employed π = 355
113 , the Chinese value.

Śaṅkara Vāriyar (c. 1500–60) says:

The value of the given diameter being multiplied by 104348 and
divided by 33215, becomes the accurate value of the circumference.
Again from the circumference can be obtained the correct value of
the diameter by proceeding reversely; that is, by multiplying the
value of the circumference by 33215 and then dividing by 104348,
or by multiplying by 113 and dividing by 355.161

π =
104348

33215
= 3.14159265391 . . .

π =
355

113
= 3.1415929 . . .

The first value is correct up to the ninth place of decimals, the tenth being
too large, and the second up to the sixth place of decimals, the seventh being
too large.
Mādhava (of Saṅgamagrāma) writes:

It has been stated by learned men that the value of the circumfer-
ence of diameter 900000000000 in length is 2827433388233.162

Therefore we have

π =
2827433388233

900000000000
= 3.141592653592 . . .

correct up to the tenth place of decimals, the eleventh being too large.
Putumana Somayājī (c. 1660–1740), the author of the Karaṇa-paddhati,

observes:

When the value of the circumference of a circle is multiplied by
10000000000 and divided by 31415926536, the quotient is the value
of the diameter. Half that is the radius.163

Śaṅkaravarman (1800–38) says:
160Nārāyaṇa, Tantra-samuccaya, edited by T. Ganapati Sastri, Trivandrum Sanskrit Series,

1919, ii. 65.
161Tantra-saṃgraha, (commentary in verse, edited by K. V. Sarma), p. 103, vss. 298–9.
162Quoted by Nīlakaṇṭha (c. 1500) in his commentary on the Āryabhaṭīya (ii. 10) edited by

K. Sambasiva Sastri, Trivandrum Sanskrit Series, 1930.
163Karaṇa-paddhati, vi. 7.
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In this way, if the diameter of a great circle measure one parārdha
(i.e. 1017), its circumference will be 314159265358979324.164

Here we have a value of π, 3.14159265358979324, which is correct up to 17
places of decimals.

7.7 Values in series

Śaṅkara Vāriyar (c. 1500–60) gave certain interesting approximations in series
for the value of the circumference of a circle in terms of its diameter. He says:

Multiply the diameter by four and divide by one; subtract from
and add to the result alternately the successive quotients of four
times the diameter divided severally by the odd numbers 3, 5,
etc. Take the even number next to that odd number on division
by which this operation is stopped; then as before multiply four
times the diameter by the half of that and divide by its square
plus unity. Add the quotient thus obtained to the series in case its
last term is negative; or subtract if the last term be positive. The
result will be very accurate if the division be continued to many
terms.165

That is to say, if C denotes the circumference and d the diameter, then we
shall have

C = 4d− 4d

3
+

4d

5
− 4d

7
+ · · ·+ (−1)n

4d

2n+ 1
− (−1)n

4d(n+ 1)

(2n+ 2)2 + 1
,

where n = 1, 2, 3 . . .

He then continues:

Now I shall write of certain other correction more accurate than
this: In the last term the multiplier should be the square of half
the even number together with one, and the divisor four times
that, added by unity, and then multiplied by half the even number.
After division by the odd numbers 3, 5, etc., the final operation
must be made as just indicated.166

C = 4d− 4d

3
+

4d

5
− 4d

7
+ · · ·+ (−1)n

4d

2n+ 1
− (−1)n

4d(n2 + 2n+ 2)

(n+ 1)(4n2 + 8n+ 9)
.

The author seems to have realised the slow convergence of the above infinite
series; so in order to get a closer approximation to its value after retaining a

164Sadratna-mālā, iv. 2.
165Tantra-saṃgraha, (commentary in verse), p. 101, vss. 271–4. This rule is really that of

Mādhava. See Kriyākramakarī (Śaṅkara Vāriyar’s commentary on Līlāvatī ), p. 379.
166Tantra-saṃgraha, (commentary in verse), p. 103, vss. 295–296.
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sufficient number of terms, modified the next one in the way described above
and then neglected the rest. This series, without the correction in any form,
is found also in the Karaṇa-paddhati, as follows:

Divide four times the diameter many times severally by the odd
numbers 3, 5, 7, etc. Subtract and add successive quotients al-
ternately from and to four times the diameter. The result is an
accurate value of the circumference.167

It was rediscovered in Europe two centuries later by Liebnitz (1673) and
De Lagney (1682).
Śaṅkara Vāriyar (c. 1500–60) says:

The square-root of twelve times the square of the diameter is the
first result. Divide this by three; again the quotient by three;
and so on continuously up to as many times as desired. Then
divide the results successively by the odd numbers 1, 3, etc. Of
the quotients thus obtained the sum of the odd ones (i.e. 1st, 3rd,
etc.) diminished by the sum of the even ones (i.e. 2nd, 4th, etc.)
will be the value of the circumference.168

That is to say, we shall have

C =
√
12d2

(
1− 1

3× 3
+

1

5× 32
− 1

7× 33
+ . . .

)
.

The same series is described in slightly difference words in the Sadratna-
mālā.169 It is also given by Abraham Sharp (c. 1717), who used it for cal-
culating the value of π up to 72 places of decimals.
Śaṅkara Vāriyar writes:

The fifth powers of the odd numbers 1, 3, etc. are increased by four
times their respective roots. Divide sixteen times a given diameter
severally by the sums thus obtained and subtract the sum of the
even quotients from that of the old ones. The remainder will be
the circumference.170

That is

C = 16d

(
1

15 + 4× 1
− 1

35 + 4× 3
+

1

55 + 4× 5
− 1

75 + 4× 7
+ . . .

)
.

167Karaṇa-paddhati, vi. 1.
168Tantra-saṃgraha (commentary in verse), p. 96, vss. 212(c–d)–214(a–b).
169Sadratnamālā, iv. 2.
170Tantra-saṃgraha (commentary in verse), p. 102, vss. 287–8.
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Or divide four times the diameter severally by the cubes of the odd
numbers beginning with 3, after diminishing each by its respective
root; add and subtract the successive quotients alternately to and
from thrice the diameter. Hence deduce the value of the circum-
ference also in this way.171

C = 3d+ 4d

(
1

33 − 3
− 1

53 − 5
+

1

73 − 7
− . . .

)
.

This infinite series is stated also in the Karaṇa-paddhati.172

Or the squares of the even numbers 2, etc. each diminished by
unity, are the several denominators. Add and subtract the quo-
tients alternately to and from twice the diameter. Take the odd
number next to last even number (at which the series is stopped).
The square of it added by two and then multiplied by two should
be taken as the divisor at the end.173

C = 2d+ 4d

{
1

22 − 1
− 1

42 − 1
+ · · ·+ (−1)n−1 1

(2n)2 − 1

−(−1)n−1 1

2(2n+ 1)2 + 2

}
.

Squares of the numbers beginning with two or four and increasing
by four, diminished each by unity, are the several denominators;
and the numerator in each case is eight times the given diameter.
The value of the circumference of the circle is equal in the first
case to the sum of the quotients and in the second to half the
numerator minus the quotients.174

C =

(
8d

22 − 1
+

8d

62 − 1
+

8d

102 − 1
+ . . .

)
,

C = 4d−
(

8d

42 − 1
+

8d

82 − 1
+

8d

122 − 1
+ . . .

)
.

The Karaṇa-paddhati adds a new series. It says:

Or divide six times the diameter by squares of twice the squares
of even numbers minus unity as diminished by the squares of the
respective even numbers. Thrice the diameter added by these
quotients is the value of the circumference.175

171Tantra-saṃgraha (commentary in verse), p. 103, vs. 290.
172Karaṇa-paddhati, vi. 2.
173Tantra-saṃgraha (commentary in verse), p. 103, vs. 292.
174Tantra-saṃgraha (commentary in verse), p. 103, vss. 293–4.
175Karaṇa-paddhati, vi. 4.
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C = 3d+
6d

(2× 22 − 1)2 − 22
+

6d

(2× 42 − 1)2 − 42
+

6d

(2× 62 − 1)2 − 62
+ . . .

Or,

C = 3d+ 6d

(
1

1× 3× 3× 5
+

1

3× 5× 7× 9
+

1

5× 7× 11× 13
+ . . .

)
.

Śaṅkaravarman gives another:

Take the square-root of twelve times the square of the diameter
and also its third part. Divide these continuously by nine. Again
divide the quotients (thus obtained) respectively by twice the odd
numbers 1, etc. (in the former case) and by twice the even num-
bers 2, etc. (in the latter case), each as diminished by unity. The
difference of the two sums of the final quotients is the value of the
circumference of the circle.176

C =
√
12d2

{
1

9(2× 1− 1)
+

1

92(2× 3− 1)
+

1

93(2× 5− 1)
+ . . .

}
−

√
12d2

3

{
1

9(2× 2− 1)
+

1

92(2× 4− 1)
+

1

93(2× 6− 1)
+ . . .

}
.

8 Measurement of segment of circle

8.1 Data in Jaina canonical works

In the early cosmographical works of the Jainas, we find certain interesting
and valuable data relating to the mensuration of a segment of a circle.177

Jainas suppose that Jambūdvīpa, which has been described before to be a
circle of diameter 100000 yojanas; is divided into seven varṣas (“countries”)
by a system of six parallel mountain ranges running due East-to-West. The
southern region of it is called Bhāratavarṣa. Dimensions of this segment, in

176Sadratnamālā, iv. 1.
177See the article of Datta, Bibhutibhusan, on “Geometry in the Jaina Cosmography” in

Quellen und Studien zur Gesch. d. Math. Ab. B, Bd. 1, 1930 pp. 245–254, from which
extracts are here made.
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terms of yojanas, are as follows (ed. see Figure 15):

AB = 1447
6

19
(a little less), ACB = 14528

11

19
,

PQ = 50, GCH = 10743
15

19
,

CD = 526
6

19
, ECJ = 9766

1

19
(a little over),

CP = QD = 238
3

19
, AG = BH = 1892

7

19
+

1

33
,

EJ = 9748
12

19
, EG = JH = 488

16

19
+

1

33
,

GH = 10720
12

19
.

These numerical data will be found to conform to the following formulae
for the mensuration of a segment of a circle:

c =
√
4h(d− h),

d =
c2

4h
+ h,

a =
√
6h2 + c2,

a′ =
1

2
{(bigger arc)− (smaller arc)},

h =
1

2
(d−

√
d2 − c2),

or h =

√
(a2 − c2)

6
,

where d = the diameter of the circle, c = a chord of it, a = an arc cut off
by that chord, h = height of the segment or its arrow and a′ = an arc of the
circle lying between two parallel chords.
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These formulae are not found clearly defined in abstract in any of the early
canonical works, though they state in minute details some of the above nu-
merical data.178

8.2 Umāsvāti’s rules

In his gloss on his own treatise Tattvārthādhigama-sūtra, Umāsvāti (c. 150 bc
or ad) says:

The square-root of four times the product of an arbitrary depth
and the diameter diminished by that depth is the chord. The
square-root of the difference of the squares of the diameter and
chord should be subtracted from the diameter: half of the re-
mainder is the arrow. The square-root of six times the square
of the arrow added to the square of the chord (gives) the arc. The
square of the arrow plus the one-fourth of the square of the chord
is divided by the arrow: the quotient is the diameter. From the
northern (meaning the bigger) arc should be subtracted the south-
ern (meaning the smaller) arc: half of the remainder is the side
(arc).179

All these rules have been restated by Umāsvāti in another work, Jambū-
dvīpa-samāsa by name.180 But there the formula for the arrow is different:

The square-root of one-sixth of the difference between the squares
of the arc and the chord is the arrow.

It is clearly approximate.

8.3 Āryabhaṭa I and Brahmagupta

Āryabhaṭa I writes:

In a circle, the product of the two arrows is the square of the
semi-chord of the two arcs.181

Brahmagupta says:

In a circle, the diameter should be diminished and then multiplied
by the arrow; then the result is multiplied by four: the square
root of the product is the chord. Divide the square of the chord

178For instance see Jambūdvīpa-prajñapti, Sūtra 3, 10–15; Jīvābhigama-sūtra, Sūtra 82, 124;
Sūtrakṛtāṅga-sūtra, Sūtra 12.

179Tattvārthādhigama-sūtra, iii. 11 (gloss).
180Jambūdvīpa-samāsa, ch. iv.
181Ā, ii. 17.
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by four times the arrow and then add the arrow to the quotient:
the result is the diameter. Half the difference of diameter and the
square-root of the difference between the squares of the diameter
and chord, is the smaller arrow.182

8.4 Jinabhadra Gaṇi’s rules

Jinabhadra Gaṇi (529–589) writes:

Multiply by the depth, the diameter as diminished by the depth:
the square-root of four times the product is the chord of the cir-
cle.183

Divide the square of the chord by the arrow multiplied by four;
the quotient together with the arrow should be known certainly
as the diameter of the circle. The square of the arrow multiplied
by six should be added to the square of the chord; the square-root
of the sum should be known to be the arc. Subtract the square
of the chord certainly from the square of the arc; the square-root
of the sixth part of the remainder is the arrow. Subtract from
the diameter the square-root of the difference of the squares of the
diameter and chord; half the remainder should be known to be the
arrow.184

Subtract the smaller arc from the bigger arc; half the remainder
should be known to be the side arc. Or add the square of half the
difference of the two chords to the square of the perpendicular; the
square-root of the sum will be the side arc.185

Jinabhadra Gaṇi next cites two formulae for finding the area of a segment of
a circle cut off by two parallel chords.

For the area of the figure, multiply half the sum of its greater and
smaller chords by its breadth.186

or

Sum up the squares of its greater and smaller chords; the square-
root of the half of that (sum) will be the ‘side’. That multiplied
by the breadth will be its area.187

182BrSpSi, xii. 41f.
183Vṛhat Kṣetra-samāsa of Jinabhadra Gaṇi, i. 36.
184Vṛhat Kṣetra-samāsa, i. 38–41.
185Vṛhat Kṣetra-samāsa, i. 46–7.
186Ibid, i. 64.
187Vṛhat Kṣetra-samāsa, i. 122.



236 Hindu geometry

That is to say, if c1, c2 be the lengths of the two parallel chords and h, the
perpendicular distance between them, then the area of the segment will be
given by

(i) Area =
1

2
(c1 + c2)h,

(ii) Area =

√
1

2
(c21 + c22)× h.

Neither of these formulae, the author thinks, will be available for finding
the area of the Southern Bhāratavarṣa which, as has been described before,
has only a single chord. So he gives a third formula as follows:

In case of the Southern Bhāratavarṣa, multiply the arrow by the
chord and then divide by four; then square and multiply by ten:
the square-root (of the result) will be its area.188

(iii) Area =

√
10

(
ch

4

)2

.

None of the above formulae will give the desired result to a fair degree
of accuracy. Formula (i) indeed gives the area of the isosceles trapezium of
which the two parallel chords form the two parallel sides. The result obtained
by it will therefore be approximately correct only when the breadth is small.
Otherwise as has been observed by the commentator Malayagiri (c. 1200), the
formula will give only a wrong result. Jinabhadra Gaṇi seems to have been
aware of this limitation of the formula. For he has not followed it in practice.
The rationale of formula (ii) which has been followed by our author, cannot
be easily determined. Formula (iii) seems to have been derived by analogy
with the formula for the finding the area of a semi-circle.

8.5 Śrīdhara’s rule

In his smaller treatise or arithmetic, Śrīdhara (c. 900) includes a formula for
finding the area of a segment of a circle. He says:

Multiply half the sum of the chord and arrow by the arrow; multi-
ply the square of the product by ten and then divide by nine. The
square-root of the result will be the area of the segment.189

Area =

√
10

9

{
h

(
c+ h

2

)}2

.

188Ibid., i. 122.
189Triś, R. 47.
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8.6 Mahāvīra’s rules

For the mensuration of a segment of a circle, Mahāvīra (850) gives two sets of
formulae; the first set gives results serving all practical purposes (vyāvahārika
phala), while the second set yields nearly precise results (sūkṣma phala). He
says:

Multiply the sum of the arrow and chord by the half of the arrow:
the product is the area of the segment. The square-root of the
square of the arrow as multiplied by five and added by the square
of the chord is the arc.190

The square-root of the difference between the squares of the arc
and chord, as divided by five, is stated to be the arrow. The
square-root of the square of the arc minus five times the square of
the arrow is the chord.191

Thus the rough formulae are:

Area =
1

2
h(c+ h),

h =

√
a2 − c2

5
,

c =
√
a2 − 5h2,

a =
√
5h2 + c2.

For calculation of nearly precise results his rules are as follow:

In case of a figure of the shape of (the longitudinal section of)
a barley and a segment of a circle, the chord multiplied by one-
fourth the arrow and also by the square-root of ten becomes, it
should be known, the area.192

The square of the arrow is multiplied by six and then added by
the square of the chord; the square-root of the result is the arc.
For finding the arrow and the chord the process is the reverse of
this. The square-root of the difference of the squares of the arc and
chord, as divided by six, is stated to be the arrow. The square-root
of the square of the arc minus six times the square of the arrow is
the chord.193

190GSS, vii. 43.
191GSS, vii. 45.
192GSS, vii. 70 1

2
.

193GSS, vii. 74 1
2
.
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Thus the nearly precise formulae of Mahāvīra are:

Area =

√
10

4
ch,

h =

√
a2 − c2

6
,

a =
√
6h2 + c2,

c =
√
a2 − 6h2.

8.7 Āryabhaṭa II’s rules

Like Mahāvīra, Āryabhaṭa II (950) too gives two sets of formulae, rough
(sthūla) as well as nearly precise (sūkṣma) for the mensuration of a segment
of a circle. But it will be noticed that the rough formulae are the same as
the nearly precise ones of his predecessor: one about the area yields distinctly
better results. Āryabhaṭa II writes:

The product of the arrow and half the sum of the chord and arrow
is multiplied by itself; the square-root of the result increased by
its one-ninth is the rough value of the area of the segment. The
square-root of the square of the arrow multiplied by six and added
by the square of the chord is the arc. The square-root of the
difference of the square of the arc and chord as divided by six, is
the arrow. The square-root of the remainder left on subtracting
six times the square of the arrow from the square of the arc, is the
chord. The half of the arc multiplied by itself is diminished by the
square of the arrow; on dividing the remainder by twice the arrow,
the quotient will be the value of the diameter.194

That is to say, the rough formulae are:

Area =

√(
1 +

1

9

){
h

(
c+ h

2

)}2

,

a =
√
6h2 + c2,

h =

√
a2 − c2

6
,

c =
√
a2 − 6h2,

d =
1

2h

(
1

2
a2 − h2

)
.

Āryabhaṭa II then continues:
194MSi, xv. 89–92.
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On dividing by 21 the product of half the sum of the chord and
arrow, as multiplied by the arrow and again by 22, the quotient will
be the nearly precise value of the area of the segment. The square
of the arrow being multiplied by 288 and divided by 49, is increased
by the square of the chord; the square-root of the result is the near
value of the arc. The square-root of the difference of the squares
of the arc and chord, as multiplied by 49 and divided by 288, is
the arrow. The square-root of what is left on subtracting from the
square of the arc, the square of the arrow multiplied by 288 and
divided by 49 will be the chord. Multiply the square of the arc by
245 and then divide by 484; divide the quotient as diminished by
the square of the arrow, by twice the arrow: the quotient will be
the diameter. Similarly the chord will be the square-root of the
diameter as diminished by the arrow and then multiplied by four
times the arrow. The square-root of the difference of the squares
of the diameter and chord being subtracted from the diameter,
half the remainder is the arrow. The square of the semi-chord
being added with the square of the arrow, the quotient of the sum
divided by the arrow is the diameter.195

Hence

Area =
22

21
h

(
c+ h

2

)
,

a =

√
288

49
h2 + c2,

h =

√
49

288
(a2 − c2),

c =

√
a2 − 288

49
h2,

d =
1

2h

(
245

484
a2 − h2

)
,

e =
√
4h(d− h),

h =
1

2

{
d−

√
d2 − c2

}
,

d =
1

h

{( c
2

)2
+ h2

}
.

It should perhaps be noted that the last three formulae are exact, while
others are approximate.

195MSi, xv. 93–99.
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8.8 Śrīpati’s rules

Śrīpati (c. 1039) states:
The diameter of a circle is diminished by the given arrow and then multi-

plied by it and also by four: the square-root of the result is the chord. In
a circle, the square-root of the difference of the squares of the diameter and
chord being subtracted from the diameter, half the remainder is the arrow. In
a circle, the square of the semi-chord being added to the square of the arrow
and then divided by the arrow, the result is stated to be the diameter . . .
Six times the square of the arrow being added to the square of the chord,
the square-root of the sum is the arc here. The difference of the squares of
the arc and chord being divided by six, the square-root of the quotient is the
value of the arrow. From the square of the arc being subtracted the square of
the arrow as multiplied by six, the square-root of the remainder is the chord.
Twice the square of the arrow being subtracted from the square of the arc,
the remainder divided by four times the arrow, is the diameter.196

8.9 Bhāskara II’s rules

Bhāskara II (1150) does not mention the formulae for the calculation of ap-
proximate results, but gives only the exact ones. He writes:

Find the square-root of the product of the sum and difference of
the diameter and chord, and subtract it from the diameter: half
the remainder is the arrow. The diameter being diminished and
then multiplied by the arrow, twice the square-root of the result is
the chord. In a circle, the square of the semi-chord being divided
and then increased by the arrow, the result is stated to be the
diameter.197

These rules have been reproduced by Munīśvara.198

8.10 Sūryadāsa’s proof

Sūryadāsa (born 1508) proves the formulae for the arrow and diameter as
follows (ed. see Figure 16):
Let AB be a chord of the circle having its centre at O and CH the arrow

of the segment ABC. Join BO and produce it to meet the circumference in

196SiŚe, xiii. 37–40.
197L, p. 58.
198Pāṭīsāra, R. 220–1.
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Figure 16

P . Draw PSQ parallel to AB. Join BQ. Then clearly

CH =
1

2
(CR−HS),

=
1

2
(CR−BQ),

=
1

2
(CR−

√
BP 2 − PQ2).

Hence
CH =

1

2
(CR−

√
CR2 −AB2).

Again, since
HB2 = CH ×HR,

we get

HR =
HB2

CH
.

Therefore
CR =

HB2

CH
+ CH.

8.11 Other formulae for area

For the area of a segment of a circle, Viṣṇu Paṇḍita (c. 1410) and Keśava II
(1496) gave the formula:

Area =

(
1 +

1

20

){
h

(
h+ c

2

)}
.
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Gaṇeśa (1545) and Rāmakṛṣṇadeva state:

Area = (area of the sector)− (area of the triangle)

=
1

4
ad− 1

2
c

(
1

2
d− h

)
.

8.12 Intersection of two circles

When two circles intersect, the common portion cut off is called the grāsa
(“the erosion”). The origin of the term seems to be connected with the eclipse
of the moon (or the sun) which is narrated in the popular mythology of the
early Hindus as being caused by the dragon Rāhu (earth’s shadow) swallowing
the moon. The portion swallowed up is the grāsa. In fact, the geometrical
theorem, just to be described, had its application in the calculation of the
eclipse. The common portion is also called matsya (fish) as it resembles a fish.
(ed. see Figure 17.)

Āryabhaṭa I writes:

(The diameters of) the two circles being severally diminished and
then multiplied by (the breadth of) the erosion, the products di-
vided severally by the sum of the diameters (each) as diminished
by the erosion, will be the two arrows lying within the erosion.199

This rule is nearly reproduced by Mahāvīra.200

AP × PA′ = PB2 = DP × PD′,

or
(AA′ −A′P ) A′P = (DD′ −D′P )D′P,

or

AA′ ×A′P −DD′ ×D′P = A′P 2 −D′P 2

= (A′P +D′P )(A′P −D′P )

= A′D′(A′P −D′P ),

or
(AA′ −A′D′)A′P = (DD′ −A′D′)D′P.

Hence
A′P

DD′ −A′D′ =
D′P

AA′ −A′D′

=
A′D′

(DD′ −A′D′) + (AA′ −A′D′)
.

199Ā, ii. 18.
200GSS, vii. 231 1

2
.
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B

C

A D
PD′ A′

Figure 17

Therefore

A′P =
A′D′(DD′ −A′D′)

DD′ +AA′ − 2A′D′ ,

D′P =
A′D′(AA′ −A′D′)

DD′ +AA′ − 2A′D′ .

Brahmagupta says:

The erosion being subtracted (severally) from the two diameters,
the remainders, multiplied by the erosion and divided by the sum
of the remainders, are the arrows.201

The square of half the (common) chord being divided severally
by the two given arrows, the quotients added with the respective
arrows give the two diameters. The sum of the two arrows is the
erosion; and that of the quotients is the sum of the diameters
minus the erosion.202

9 Miscellaneous figures

9.1 Miscellaneous figures

Śrīdhara, Mahāvīra and Āryabhaṭa II have treated the mensuration of certain
other plane figures such as of the shape of a barley corn (yava), drum (muraja,
mṛdaṅga), elephant’s tusk (gajadanta), crescent moon (bālendu), felloe (nemi),

201BrSpSi, xii. 42.
202BrSpSi, xii. 43.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 18: (a) barley corn, (b) drum, (c) elephant’s tusk, (d) crescent, (e) fel-
loe, (f) vajra (after Śrīdhara and Āryabhaṭa II) or paṇava (after
Mahāvīra), (g) vajra (after Mahāvīra).

thunder-bolt (vajra) etc. The formulae described in case of most of them are
only roughly approximate and some of them are deduced easily from the
results already obtained. It was probably from the point of view of some
practical utility that all the results have been stated separately.

9.2 Śrīdhara’s rules

Śrīdhara says:

A figure of the shape of an elephant tusk (may be considered) as
a triangle, of a felloe as a quadrilateral, of a crescent moon as two
triangles and of a thunderbolt as two quadrilaterals.203

203Triś, R. 44.



9 Miscellaneous figures 245

A figure of the shape of a drum, should be supposed as consisting
of two segments of a circle with a rectangle intervening; and a
barley corn only of two segments of a circle.204

9.3 Mahāvīra’s rules

For finding the gross value of the areas of above figures Mahāvīra gives the
following rules:

In a figure of the shape of a felloe, the area is the product of the
breadth and half the sum of the two edges. Half that area will be
the area of a crescent moon here.205

The diameter increased by the breadth of the annulus and then
multiplied by three and also by the breadth gives the area of the
outlying annulus. The area of an inlying annulus (will be obtained
in the same way) after subtracting the breadth from the diame-
ter.206

In case of a figure of the shape of a barley corn, drum, paṇava, or
thunderbolt, the area will be equal to half the sum of the extreme
and middle measures multiplied by the length.207

For finding the neat values of the areas of them, Mahāvīra has the following
rules:

The diameter added with the breadth of the annulus being mul-
tiplied by

√
10 and the breadth gives the area of the outlying

annulus. The area of the inlying annulus (will be obtained from
the same operations) after subtracting the breadth from the diam-
eter.208

Find the area by multiplying the face by the length. That added
with the areas of the two segments of the circle associated with
it will give the area of a drum-shaped figure. That diminished by
the areas of the two associated segments of the circle will be the
area in case of a figure of the shape of a paṇava as well as of a
vajra.209

In case of a felloe-shaped figure, the area is equal to the sum of
the outer and inner edges as divided by six and multiplied by the

204Triś, R. 48.
205GSS, vii. 7. The formula for the area of the felloe yields, indeed, the accurate value of it.
206GSS, vii. 28.
207GSS, vii. 32.
208GSS, vii. 67 1

2
.

209GSS, vii. 76 1
2
.
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breadth and
√
10. The area of a crescent moon or elephant’s tusk

is half that.210

9.4 Āryabhaṭa II’s rules

Āryabhaṭa II writes:

In (a figure of the shape of) the crescent moon, there are two
triangles and in an elephant’s tusk only one triangle; a barley corn
may be looked upon as consisting of two segments of a circle or
two triangles.211

In a drum, there are two segments of a circle outside and a rect-
angle inside; in a thunderbolt, are present two segments of two
circles and two quadrilaterals.212

9.5 Polygons

According to Śrīdhara, regular polygons may be treated as being composed
of triangles.213 Mahāvīra says:

One-third of the square of half the perimeter being divided by the
number of sides and multiplied by that number as diminished by
unity will give the (gross) area of all rectilinear figures. One-fourth
of that will be the area of a figure enclosed by circles mutually in
contact.214

That is to say, if 2s denote the perimeter of a polygon of n sides, whether
regular or otherwise, but without a re-entrant angle, then its area will be
roughly given by the formula

Area =
(n− 1)s2

3n
.

Mahāvīra has treated some very particular cases of polygons with re-entrant
angles. He says:

The product of the length and the breadth minus the product
of the length and half the breadth is the area of a di-deficient
figure; by subtracting half the latter (product form the former) is
obtained the area of a uni-deficient figure.215

210GSS, vii. 80 1
2
.

211MSi, xv. 101.
212MSi, xv. 103.
213Triś, R. 48.
214GSS, vii. 39.
215GSS, vii. 37.
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The figures contemplated in this rule are those formed by leaving out two
vertically opposite ones or any one of the four portions into which a rectangle
is divided by its two diagonals. In the first case, the figure is technically
called the ubhaya-niṣedha-kṣetra (“di-deficient figure”) and in the other the
eka-niṣedha-kṣetra (uni-deficient figure).

Mahāvīra further says:

On subtracting the accurate value of the area of one of the circles
from the square of a diameter, will be obtained the (neat) value
of the area of the space lying between four equal circles (touching
each other).216

The accurate value of the area of an equilateral triangle each side
of which is equal to a diameter, being diminished by half the area
of a circle, will yield the area of the space bounded by three equal
circles (touching each other).217

A side of a regular hexagon, its square and its biquadrate being
multiplied respectively by 2, 3, and 3 will give in order the value
of its diagonal, the square of the altitude, and the square of the
area.218

Āryabhaṭa II observes:

A pentagon is composed of a triangle and a trapezium, a hexagon
of two trapeziums; in a lotus-shaped figure there is a central circle
and the rest are triangles.219

9.6 Ellipse

Though the ellipse was known to the Hindus as early as circa 400 bc, we do
not find any formula for its mensuration in any of their works on mathematics,
except the Gaṇita-sāra-saṃgraha of Mahāvīra (850). In the latter again, we
have only roughly approximate results. Mahāvīra says:

The length of an ellipse being added by half its breadth and mul-
tiplied by two, gives the gross value of its circumference. The
circumference multiplied by one-fourth the breadth becomes the
gross value of the area.220

216GSS, vii. 82 1
2
.

217GSS, vii. 84 1
2
.

218GSS, vii. 86 1
2
.

219MSi, xv. 102.
220GSS, vii. 21.
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The square-root of six times the square of the breadth added with
the square of twice the length, will be the neat value of the circum-
ference of an ellipse. That multiplied by one-fourth the breadth
will become the neat value of the area.221

That is to say if 2a be the longer diameter of an ellipse and 2b its shorter
diameter, then, according to Mahāvīra,

Circumference (Gross) = 2(2a+ b),

Circumference (Neat) =
√
16a2 + 24b2,

Area (Gross) = b(2a+ b),

Area (Neat) = 1

2
b
√
16a2 + 24b2.

10 Measurement of volumes

10.1 Solids considered

Things in everyday life of the ancient Vedic Hindus which led them to develop
formulae for the measurement of volumes were fire-altars and excavations.
Amongst the fire-altars described in the extant works on the Śulba, we find that
some are right prisms of various cross-sections, and others are right circular
cylinders. Only in one case, namely, the fire-altar of the shape of the cemetery,
the solid considered resembles a frustum of a pyramid. For the measurement
of the latter, the Hindus developed an approximate formula. Though we meet
with copious descriptions of pits, caves and mountains etc., of the shape of
truncated cones and pyramids, in the early canonical works of the Jainas,
there is nothing to indicate that the mensuration of those solids was known
to them. In later Hindu treatises of arithmetic, solids generally treated are
excavations, mounds of grains and piles of bricks.

10.2 Prism and cylinder

The formula for calculating the volumes of prisms and cylinders is found in
the Śulba.222

Volume of a prism or cylinder = (base)× (height).

The same formula is stated in later works.223

221GSS, vii. 63.
222Datta, Śulba, p. 101. See also Jaina Math., Quel, und Stud. z. Gesch. d. Math. Bd. I.

(1930), p. 253.
223BrSpSi, xii. 44; Triś, R. 53; GSS, viii. 4; etc.
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It may be noted that in later treatises of arithmetic, an excavation (khāta)
whose depth is uniform is called the sama-khāta. The section of the base may
be of any form, as it has not been particularly mentioned. The word sama
(equal) implies that all sections parallel to the face or base are equal.

In the Veda and Saṃhitā, the prisms whose sections are regular polygons,
were named according to the number of edges. Thus in the Ṛgveda (c. 3000
bc), the triangular prism is called trirasri (three-edged solid; tri = three, asri
= edge), a quadrangular prism caturasri (= four edged solid) and so on.224

But these terms do not seem to have been completely standardised. For in
comparatively later times, a cube was called dvādasāsrika (= twelve-edged
solid).

10.3 Cone and pyramid

The Hindus do not always distinguish between a cone and a pyramid. They
include both under a generic name sūcī, which means literally “a needle”, “a
sharp pointed object”, and hence, “a solid of the form of the needle”, “a sharp
pointed solid”. Thus the term generally denotes a pyramid with a base of any
form; as the base may be a circle it includes a cone as well. A triangular
pyramid is, however, distinguished as the ghana-ṣaḍasri or simply ṣaḍasri
(literally, “six-edged solid”).

Āryabhaṭa I says:

Half the product of this area (of the triangular base) and the height
is the volume of the six-edged solid.225

This formula for the volume of the triangular pyramid is wrong. The correct
formula is found in the works of Brahmagupta. He states:

The volume of the uniform excavation divided by three is the vol-
ume of the needle-shaped solid.226

That is to say, we shall have

Volume of a cone or pyramid =
1

3
(base)× (height).

This formula reappears in the works of Āryabhaṭa II,227 Nemicandra,228 Śrī-
pati229 and Bhāskara II.230

224Datta, “On the Hindu names for the rectilinear geometrical figures”, loc. cit, pp. 284f.
225Ā, ii. 6.
226BrSpSi, xii. 44.
227MSi, xv. 105.
228Trilokasāra, Gāthā 19.
229SiŚe, xiii. 44.
230L, p. 62
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For measuring the mounds of grains which approximate to the form of
a right circular cone, the Hindus ordinarily employed a rough formula. In
such cases, they further assume the height of the mound to be equal to the
circumference of the base divided by 9, 10 or 11 according to the kind of grain
of which the mound is composed. Thus Brahmagupta says:

In case of śuki grains one-ninth, in case of course grains one-tenth
and in case of fine grains one-eleventh of the circumference (of the
base) is the height; that multiplied by the square of the sixth part
of the circumference will be the volume.231

Śrīpati writes:

Of a heap of grains standing on the plane surface of the earth,
the square of one-sixth the circumference multiplied by the height
is the volume in terms of Māgadha Khārikā. In case of grains
known as syāmāka, śāli, tila, sarṣapa, etc., the circumference is
nine times the height; in case of godhūma, mudga, yava, dhānyaka,
etc., it is ten times; and in case of vadara, kaṅgu, kulattha, etc.,
eleven times.232

The rough formula was obtained probably thus:

Volume of a cone = 1

3
(base)× (height).

If r denote the radius of the base, we have

Base = πr2 =
2πr × 2πr

4π
=

(circumference)2

4π
.

Hence
Volume of a cone = 1

12π
(circumference)2 × (height).

Now putting π = 3 roughly we get,

Volume =
(
circumference

6

)2

× (height).

This approximate formula is stated also by Srīdhara,233 Āryabhaṭa II,234

Nemicandra235 and Bhāskara II.236 The ancient commentators have observed
that it was intended only for “rough calculation”.

231BrSpSi, xii. 50.
232SiŚe, xiii. 50–1.
233Triś, R. 61.
234MSi, xv. 115.
235Trilokasāra, Gāthā, 22, 23.
236L, pp. 69f.
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10.4 Frustum of a cone

To find the volume of a frustum of a right circular cone, Śrīdhara gives the
following formula:

The square-root of ten times the square of the sum of the squares of
the diameters of the face, base and of their sum, being multiplied
by the height and divided by twenty-four, will be the volume of a
well.237

That is to say, if d, d′ denote the diameters of the upper and lower faces of
the frustum of a right circular cone and h its height, then its volume V will
be given by

V =
h

24

√
10 {d2 + d′2 + (d+ d′)2}2,

or
V =

π

3

(
r2 + r′2 + rr′

)
h,

where r, r′ denote the radii of the upper and lower faces and π =
√
10, the

value adopted by Śrīdhara. Other writers have included the treatment of the
frustum of a cone in that of a more general kind of obelisk.
Example from Śrīdhara:

The diameter of the top of a well is 16 cubits, and of the bottom 4
cubits; its depth is 12 cubits. Find, O learned man, its volume.238

10.5 Obelisk

An approximate formula for calculating the volume of a frustum of a pyramid
on a rectangular base is found as early as the works on the Śulba by Baud-
hāyana (800 bc) and others.239 If (a, b) be the length and breadth of the base
of the solid, (a′, b′) the corresponding sides of the face parallel to it and h the
height, then

Volume of the frustum =

(
a+ a′

2

)(
b+ b′

2

)
× h.

In later treatises of arithmetic we find the accurate formula for the same.
Thus Brahmagupta says:

The area from half the sum of (the edges of) the face and base,
being multiplied by the depth gives vyāvahārika volume; half the
sum of the areas of the face and base being multiplied by the depth

237Triś, R. 54.
238Triś, Ex. 91.
239Datta, Śulba, p. 103.
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will be the autra volume. Subtract the vyāvahārika volume from
the autra volume and divide the remainder by three; the quotient
added with the vyāvahārika volume will become the truly accurate
volume.240

It is noteworthy that Brahmagupta does not specify the shape of the face
and base of the excavation contemplated by him. His text is mukhatalayuti-
dalagaṇitam etc., or “the area from the half the sum of the face and base,” etc.
If we, however, suppose them to be rectangular, then according to the rule,
we shall have,

V ′ =

(
a+ a′

2

)(
b+ b′

2

)
h,

A =
1

2
(ab+ a′b′)h,

V =
1

3
(A− V ′) + V ′,

where V ′, A and V denote respectively the vyāvahārika, autra and accurate
volumes of the obelisk. Substituting the values in the last formula, we get

V =
h

6
{(a+ a′)(b+ b′) + ab+ a′b′} .

If the face and base be circular, and if their radii be r′ and r respectively,
then by the rule

V ′ = π

(
r + r′

2

)2

h =
π

4
(r + r′)2h,

A =

(
πr2 + πr′2

2

)
h.

Hence

V =
h

3

{π
2

(
r2 + r′2

)
− π

4
(r + r′)2

}
+
π

4
(r + r′)2h,

=
1

3
πh
(
r2 + r′2 + rr′

)
.

10.6 Particular cases

(i) Put a′ = 0 = b′; then we get

Volume of a cone or pyramid =
1

3
(base)(height).

240BrSpSi, xii. 45–6.
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(ii) Let b′ = 0;

Volume of a wedge = h

6
(2ab+ a′b).

(iii) Suppose a = b, a′ = b′; then

Volume of a truncated square pyramid =
h

3
(a2 + a′2 + aa′).

Pṛthūdakasvāmi has worked out the following example in illustration of the
above rule of Brahmagupta:

There is a square tank whose each side is 10 cubits long at the face
and 6 cubits long at the base; it is excavated so as to have a depth
of 30 cubits. Tell me its vyāvahārika, autra and truly accurate
volumes.

This example has misled some of the modern historians of mathematics
to presume that Brahmagupta’s rule was meant for the measurement of the
volume of a truncated pyramid on a square base only.241 But, as already
pointed out, there is nothing in the definition of the rule to warrant such a
limited application of it.242

Mahāvīra writes:

Of the outer (i.e. at the ground) and various inner sections (of
the excavation) the sides of the ground section are added by all
the corresponding sides of the other sections and divided (by the
number of sections). Multiply these sides (of the average section)
mutually in accordance with the method of finding the area of a
figure of that shape; the result (thus obtained) multiplied by the
depth will be the karmāntika volume. Find the areas of those
sections (severally), add them together and then divide by the
number of sectional areas; the quotient multiplied by the depth
will be the aundra volume. One third the difference of those two
volumes added with the karmāntika volume will be the truly accu-
rate volume.243

It will be noticed that in finding the average volumes, Mahāvīra takes into
consideration several parallel sections of the solid, instead of only two, the

241Such is the opinion of Cantor, followed by J. Tropfke and D. E. Smith.
242See also the article of Datta, Bibhutibhusan, “On the supposed indebtedness of Brah-

magupta to Chiu-chang Suan-Shu” in the BCMS, xiii (1930), pp. 39–51; more particu-
larly pp. 45 ff.

243GSS, viii. 9–11 1
2
.
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face and base.244 In three of the illustrative examples,245 he actually states
three sections of the solid. If however, we take into consideration only the top
and base, the formula obtained will be the same as that of Brahmagupta.
In illustration of his rule, Mahāvīra gives examples of excavations of vari-

ous kinds, which are indeed inverted cases of truncated pyramids on square,
rectangular, or equilateral triangular bases, and truncated cones. There is an
instance of a truncated wedge:

(In a well with rectangular sections), the lengths at the top, middle
and base are 90, 80 and 70 respectively; and the breadths are 22,
16 and 10. Its depth is 7. (Calculate its volume).246

Āryabhaṭa II says:

Divide the sum of the areas of the face, base and that arising from
the sum of (the dimensions of) them by six; the quotient multiplied
by the height will be the volume of an excavation such as a well
and tank.247

That is to say,

V =
h

6
{(a+ a′) (b+ b′) + ab+ a′b′} .

This formula reappears in the works of Śrīpati and Bhāskara II. The former
says:

The sum of the areas of the face, base and that arising from the
sum of their sides, being divided by six and multiplied by the
depth, will be the truly accurate value of the volume.248

Bhāskara II writes:

The sum of the areas from (the linear dimensions of) the face,
base and their sums, divided by six gives the area of the equiv-
alent prism (samaṃ kṣetraphalam) (of the same height). That
multiplied by the depth is the true volume.249

244Hence Raṅgācārya is wrong in supposing that the rule contemplates only the face and
base.

245GSS, xiii. 16 1
2
–18 1

2
.

246GSS, vii. 16 1
2
. In the printed text 22 is wrongly stated as 32.

247MSi, xv. 106.
248SiŚe, xiii. 49.
249L, p. 65.
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a

b

a′

b′

h

Figure 19

Gaṇeśa’s proof

Gaṇeśa demonstrates this formula substantially as follows:
Suppose (a, b) and (a′, b′) denote the length and breadth of the base and

face of the solid respectively. Let its height be h. Then it is clear from the
figure (ed. see Figure 19) that

Volume of the obelisk = volume of the prism at the centre
+ volumes of four pyramids at the corners
+ volumes of four prisms on four sides.

Now the four pyramids at the corners can be combined into one of base
(a− a′) by (b− b′) and height h. Hence its volume is

h

3
(a− a′)(b− b′).

The four side prisms can be combined into two others: (1) one on a triangle
of base (b − b′) and altitude h, its height being a′; and (2) the other on a
triangle of base (a − a′) and altitude h; its height will be b′. Therefore their
volumes are together equal to

1

2
(b− b′)ha′ +

1

2
(a− a′)hb′.
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Therefore

Volume of the obelisk

= a′b′h+
h

3
(a− a′) (b− b′) +

1

2
(b− b′) ha′ +

1

2
(a− a′) hb′.

=
h

6
(2ab+ 2a′b′ + a′b+ ab′)

=
h

6
{(a+ a′) (b+ b′) + ab+ a′b′} .

Mahāvīra has treated a problem like this : A fort wall of height h and
length l, whose extremities are vertical, has its base b in breadth and face a.
Its upper portion is blown off by cyclone, obliquely. It is required to calculate
the volume of the portion still intact.250

Another problem runs as follows:

The heights (of a certain construction) are 12, 16, and 20 cubits
(at one end, middle and other end respectively); the breadths (at
those points) are respectively 7, 6 and 5 cubits at the base and
4, 3 and 2 cubits at the top; the length is 24 cubits. (Find the
number of bricks employed in the construction.)251

10.7 Surface of a sphere

The earliest reference to a formula for the surface of a sphere occurs, so far as
known, in the treatise on arithmetic by Lalla (c. 749). That work is now lost.
But the relevant passage has survived in a citation by Bhāskara II.252 It is as
follows:

The area of the circle (of a diametral section) multiplied by its
circumference will be equal to the area of the surface of a sphere.

If r be the radius of a sphere, then according to this rule, its surface S will
be

S = πr2 × 2πr = 2π2r3.

This formula is clearly inaccurate. So it has been adversely criticised and
discarded by Bhāskara II.253

Āryabhaṭa II was undoubtedly aware of a formula for the surface of a sphere,
though he has not expressly defined it anywhere. For he says, “the diameter

250GSS, viii. 52 1
2
–54 1

2
.

251GSS, viii. 51 1
2
.

252SiŚi, Gola, iii. 57 (vāsanā).
253SiŚi, Gola, iii. 53.
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of the earth is a little less than 2109; its circumference is 6625; and the area
of its surface is 13971849.”254

Now according to Āryabhaṭa II, π = 21600
6876 . Then

Diameter of earth =
6876

21600
× (circumference of the earth) = 6876

21600
× 6625.

Surface = 6625

(
2109− 1

24

)
= 13971849− 1

24
.

Thus it seems that Āryabhaṭa II employed the formula

Surface of a sphere = (circumference)× (diameter).

This formula is, however, expressly stated by Bhāskara II.255 He further
says:

That (the area of a diametral section) multiplied by four is the
net lying all over a round ball (i.e., the area of the surface of a
sphere).256

S = 4πr2.

Bhāskara II has given a demonstration of this formula by means of the method
of infinitesimals. We shall describe it later on.

10.8 Volume of a sphere

Āryabhaṭa I writes:

That (the area of a diametral section) multiplied by its own square-
root is the exact volume of a sphere.257

That is to say, if r be the radius of a sphere, then according to Āryabhaṭa I,

Volume of a sphere = πr2
√
πr2.

This formula is inaccurate. Śrīdhara says:

Half the cube of the diameter of a sphere, then added with its
eighteenth part, will give the volume.258

Volume = 19× (diameter)3

18× 2
.

Mahāvīra writes:
254MSi, xvi. 35–6.
255SiŚi, Gola, iii. 52, 61.
256L, p. 55.
257Ā, ii. 7.
258Triś, R. 56.
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Nine times the half of the cube of the semi-diameter is the vyā-
vahārika volume of a sphere. Nine-tenth of that will be the very
accurate volume.259

Āryabhaṭa II:

The cube of the diameter of a sphere being halved and then added
with its eighteenth part, will give its volume in cubic cubits: such
is the formula taught (by the ancient teachers).260

This formula was given before by Śridhara. It reappears also in the works
of Śrīpati.261 All the above-mentioned formulae for the volume of a sphere
are more or less approximate. The truly accurate formula is, however, given
by Bhāskara II. He says:

That area of the surface multiplied by the diameter and divided
by six, will be the accurate value of the volume of a sphere.262

That is to say, we shall have

Volume = 1

6
(surface)× (diameter).

Now according to Bhāskara II,

Surface = 4 (area of a diametral section),

Area of a diametral section =
1

4
(circumference)× (diameter),

Circumference = 22

7
(diameter).

Therefore

Volume = 22

42
D3,

=

(
1 +

1

21

)
D3

2
.

Hence Bhāskara II writes:

Half the cube of the diameter being added with its twenty-oneth
part becomes the volume of a sphere.263

He has further observed that the volume of a sphere obtained by this formula
is “rough” (sthūla). This is clearly so because that formula is derived with
the rough value 22

7 of π instead of its accurate value 3927
1250 .

259GSS, viii. 28 1
2
.

260MSi, xvi. 108.
261SiŚe, xiii. 46.
262L, p. 55.
263L, p. 57.
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10.9 Average value

In measuring the volume of an excavation whose length, breadth or depth is
different at different portions, the other two dimensions remaining the same,
the Hindus take for all practical purposes the arithmetic mean of the varying el-
ements. This mean value is technically called sama-rajju (“mean measure”) by
Brahmagupta, samīkaraṇa (“equalising value”) by Mahāvīra, sāmya (“equa-
bility”, i.e. “equivalent value”) by Śrīpati and samamiti (“average value”) by
Bhāskara II.
Brahmagupta says:

In an excavation having the same breadth at the face and bottom,
the aggregates (of the partial products of lengths and depths) di-
vided by the total (length) will be the mean measure (sama-rajju)
of the depth.264

Example from Pṛthūdakasvāmi:

A tank 30 cubits in length and 8 cubits in breadth contains within
it five different excavations which subdivide the length into five
portions of lengths four, five etc. (cubits). The depths (of these
portions) are successively 9, 7, 7, 3 and 2. Tell at once what is the
mean depth of the excavation.

Mean depth =
4× 9 + 5× 7 + 6× 7 + 7× 3 + 8× 2

4 + 5 + 6 + 7 + 8
=

150

30
= 5.

Therefore the volume of the tank = 8× 30× 5 = 1200.
Mahāvīra writes:

Find the half of the top and bottom dimensions; the sum of all
the halves divided by the number of them will be the equivalent
value.265

The sum of the depths (measured at different places) divided by
the number of places will be the average depth.266

According to Bhāskara II,

Calculate the breadth at several places: the sum of them divided
by the number of places is the average value. Do in the same way
in case of the length and depth.267

264BrSpSi, xii. 44.
265GSS, viii. 4.
266GSS, viii. 23 1

2
.

267L, p. 64.
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Figure 20

11 Measurement of heights and distances

11.1 Shadow reckoning

The chāyā, meaning literally “shadow”, but implying truly the measurement
by means of shadow of a gnomon, is a common topic for discussion in the
Hindu treatises of mathematics. It is applied for measurement of time as well
as of heights and distances. We shall, however, notice here only those rules
which are related to its application in this latter aspect.268

Āryabhaṭa I says:

Multiply the distance between the gnomon and the lamp-post269

by the length of the gnomon and divide by the difference between
the lengths of the gnomon and the lamp-post. The result will be
the length of the shadow of the gnomon measured from its base.270

(ed. In Figure 20:)

AB = the lamp-post,
CD = the gnomon,
DE = the shadow of the gnomon,

DE =
BD ×DC

AB − CD
.

268The measurement of time by means of a gnomon is more fully treated in treatises on
astronomy.

269The Sanskrit original is bhuja. Ordinarily the term denotes a side of a triangle (or any
rectilinear figure). All the commentators agree in interpreting it as implying here the
lamp-post. Latter rules are quite explicit.

270Ā, ii. 15.
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Similar rules are given by Brahmagupta,271 Mahāvīra,272 Śrīpati273 and
Bhāskara II.274 Some later writers275 have described separately the formulae
for calculating the height of the lamp from the length of the shadow and the
distance of the gnomon, and the distance from the height of the lamp and the
length of the shadow, though the same follow at once from the formula stated
above.

11.2 Heights and distances

Another and more useful problem is to find the height and distance of a far
off object. By way of illustration of the method employed a high light-post
is generally taken into consideration. Then two gnomons of equal heights or
the same gnomon successively, being set up in two places at a known distance
apart, the two shadows are measured.
Āryabhaṭa I writes:

The distance between the tips of the two shadows being multiplied
by the length of a shadow and divided by the difference between
the lengths of the two shadows gives the koṭi. That koṭi multiplied
by the length of the gnomon and divided by the length of the
shadow corresponding to it will be the height of the lamp-post.276

AB is the lamp-post to be measured (ed. see Figure 21); CD, C ′D′ = the
gnomon in its two positions; and DE, D′E′ = the shadows respectively. Then
the rule says:

BE =
EE′ ×DE

D′E′ −DE
, BE′ =

EE′ ×D′E′

D′E′ −DE
,

AB =
BE × CD

DE
=
BE′ × CD

D′E′ .

These formulae are stated also by Brahmagupta277 and Bhāskara II.278

11.3 Brahmagupta’s rules

The procedure to be adopted in actual practice in measuring the height of a
distant object has been indicated by Brahmagupta as follows:

271BrSpSi, xii. 53.
272GSS, ix. 40 1

2
.

273SiŚe, xiii. 54.
274L, p. 73.
275See GSS, viii. 43, 45; SiŚe, xiii. 55; L, p. 74.
276Ā, ii. 16.
277BrSpSi, xii. 54.
278L, p. 75.
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1. Selecting a plane ground, the gnomon is fixed vertically in the position CD
(ed. see Figure 21). Now the eye is put at the level of the ground at such a
place E that E, C and A are in the same straight line. Then the distance
DE of the eye from the gnomon is measured. It is called as dṛṣṭi (sight)
by Brahmagupta. Similar observations are taken with the gnomon in a
different position C ′D′ and the eye E′. The formulae to be applied then
are the same as those stated above.
Brahmagupta re-describes them as follows:

The displacement (of the eye) multiplied by a dṛṣṭi and divided
by the difference of the two dṛṣṭis will give the distance of the
base. The distance of the base multiplied by the length of the
gnomon and divided by its own dṛṣṭi will give the height.279

2. Observations may also be taken, thinks Brahmagupta, by placing the
gnomon horizontally on the level ground (ed. see Figure 22). In this case a
graduated rod CR is fixed vertically at the extremity C of the gnomon CD
nearer to the object to be measured. Then placing the eye at the other
end D, the graduation P which is in a straight line with the tip of the
object is noted. This gives the altitude CP . Brahmagupta calls it by the
term śalākā (rod). Observations are taken again with the gnomon in the
position C ′D′.
Then Brahmagupta says:

The displacement (of the gnomon) multiplied by the other śalākā
and divided by the difference of the two śalākās will give the

279BrSpSi, xxii. 33.
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distance of the base. The distance of the base multiplied by
the śalākā corresponding to it and divided by the length of the
gnomon will give the height of the house etc.280

BD =
DD′ × C ′P ′

CP − C ′P ′ , BD′ =
DD′ × CP

CP − C ′P ′ ,

AB =
BD × CP

CD
=
BD′ × C ′P ′

CD
.

3. Brahmagupta then gives a different method (ed. see Figure 23): Placing
the eye at E, the gnomon is first directed towards the base B of the object
and then towards its tip A. From the front extremities G, G′ of the gnomon
in the two positions draw the perpendicularsGN , G′N ′ to the ground. Also
draw the perpendicular EM . Measure the distances MN , MN ′.
Now it can be proved easily that

BM =
ME ×MN

ME −GN
,

and
AB =ME +

BM(G′N ′ −ME)

MN ′ in Figure 23a,

or
AB =ME − BM(ME −G′N ′)

MN ′ in Figure 23b.

Hence Brahmagupta says:
The distance between the feet of the altitudes (of the eye and
the front extremity of the gnomon in the first observation) being

280BrSpSi, xxii. 32.
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divided by the difference between the altitudes and multiplied
by the greater (altitude) gives the distance of the base. Multiply
the distance of the base by the difference between the altitudes
(of the eye and the front extremity of the gnomon in the second
observation) and divide by the distance between the feet of these
altitudes. Then subtract the quotient from the altitude of the
eye, if the altitude of the front extremity of the gnomon (in the
second observation) be less than the altitude of the eye; or add,
if greater. The result gives the height of the house. (Thus the
height and distance of an object can be determined) by means
of observations of its base and tip.281

4. Another method of Brahmagupta is as follows: Placing the eye at E, at
an altitude ME over the ground, then fix the gnomon CD in front in such
a position that its lower end D will be in the line of sight of the bottom
of the object AB and its upper end C in the line of sight of the top of
the object (Figure 24). Also note the portion DP ′ of the gnomon below
EP , the horizontal line of sight and the distance EP ′ of the eye from the
gnomon. Then, says Brahmagupta:

The distance of the eye from the gnomon multiplied by the alti-
tude of the eye and divided by the portion of the gnomon below
(the horizontal line of sight) will be the distance of the base. The
distance of the base multiplied by the whole gnomon and divided

281BrSpSi, xxii. 34–5.
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by the distance of the eye from the gnomon will be the height.282

BM =
EP ′ ×ME

DP ′ , AB =
BM × CD

EP ′ .

11.4 Bhāskara II

For measuring the heights and distances of far-off objects, Bhāskara II gives
two methods, one of which is taken from Brahmagupta. He remarks in general
that observations should be made on a plane horizontal ground. Directing
the gnomon towards the distant object perpendiculars are drawn from its two
extremities on the plane of observation. The horizontal distance between them
is the base (bhuja), the difference between them is the upright (koṭi) and the
gnomon itself is the hypotenuse (karṇa) of the triangle of observation, says
Bhāskara.

(a) Thus observing the bottom of the bamboo, multiply the base
(of the triangle of observation) by the altitude of the eye and
divide by the upright: the result is the horizontal distance
between the self and the bamboo. Then observing the top of
the bamboo, multiply the horizontal distance by the upright
the divide by the base; the result added with the altitude of
the eye is the height of the bamboo.283 (Figure 25.)

282BrSpSi, xxii. 36.
283SiŚi, Golādhyāya, Yantrādhyāya, 43–4.
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(b) Observe the top (of the bamboo) first in the standing posture
and then again in the sitting posture. Divide each altitude by
its base. The difference of the altitudes of the eye divided by
the difference of those quotients gives the horizontal distance.
The height of the bamboo can then be determined separately
as before.284

PE =
ME −ME′

G′Q′

E′Q′ − GQ
EQ

,

AB =ME +
PE ×GQ

EQ
=ME′ +

PE ×G′Q′

E′Q′ .

Abbreviations
Ā Āryabhaṭīya MaiS Maitrāyāṇīya Saṃhitā
ĀpŚl Āpastamba Śulba MāŚl Mānava Śulba
BrSpSi Brāhmasphuṭasiddhānta MSi Mahā-siddhānta
BŚl Baudhāyana Śulba ŚBr Śatapatha Brāhmaṇa
GSS Gaṇita-sāra-saṃgraha ŚiDVṛ Śiṣyadhī-vṛddhida
KapS Kapisthala Saṃhitā SiŚe Siddhāntaśekhara
KŚl Kātyāyana Śulba SiŚi Siddhāntaśiromaṇi
KṭS Kāṭhaka Saṃhitā Triś Triśatikā
L Līlāvatī TS Tantrasaṃgraha

284SiŚi, Golādhyāya, Yantrādhyāya, 45–6.



Hindu trigonometry ∗

1 Trigonometrical functions. Definitions.

The Hindu name for the science of trigonometry is jyotpatti-gaṇita or “the
science of calculation for the construction of the sine”.1 It is found as early as
in the Brāhmasphuṭasiddhānta of Brahmagupta (628).2 Sometimes that name
is simplified into jyā-gaṇita (or “the science of calculation of the sines”).3 In
very recent years there has appeared the name trikoṇamiti,4 which is a literal
as well as phonetic rendering of the Greek name for the science.
The Hindus introduced and usually employed three trigonometrical func-

tions, namely jyā, koṭi-jyā, and utkrama-jyā. It should be noted that they
are functions of an arc of a circle, but not of an angle. If AP be an arc of a
circle with centre at O (ed. see Figure 1), then its jyā = PM , koṭi-jyā = OM ,
and utkrama-jyā = OA − OM = AM . Hence their relation with modern
trigonometrical functions will be jyā AP = R sin θ, koṭi-jyā AP = R cos θ,
utkrama-jyā AP = R − R cos θ = R versin θ, where R is the radius of the cir-
cle and θ the angle subtended at the centre by the arc AP . Thus the values of
the Hindu trigonometrical functions vary with the radius chosen. The earliest
Hindu treatise in which the above trigonometrical functions are now found
recorded is the Sūryasiddhānta.

Jyā

The Sanskrit word jyā means “a bow-string”; and hence “the chord of an arc”,
for the arc is called “a bow” (dhanu, cāpa). Its synonyms are jīvā, siñjinī,5
guṇa, maurvī, etc. This trigonometrical function is also called ardha-jyā6

∗ Bibhutibhusan Datta and Avadhesh Narayan Singh. Revised by K. S. Shukla. Indian
Journal of History of Science, Vol. 18, No. 1 (1983), pp. 39–108.

1Jyā (“sine”) + utpatti (“construction”, “generating”) + gaṇita (“the science of calcula-
tion”).

2Brāhmasphuṭasiddhānta, xii. 66.
3Compare Siddhāntatattvaviveka, ii. 1.
4Trikoṇa (“triangle”) + miti (“measure”).
5Śiṣyadhīvṛddhida, ii. 9; Mahāsiddhānta, iii. 2.
6Āryabhaṭīya, i. 10; Brāhmasphuṭasiddhānta, ii. 2.
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(“half-chord”) or jyārdha7 (“chord-half”). Thus Bhāskara II (1150) explicitly
observes, “It should be known that ardha-jyā is here called jyā”.8 Parameśvara
(1430) remarks:

A part of a circle is of the form of a bow, so it is called the “bow”
(dhanu). The straight line joining its two extremities is the “bow-
string” (jīvā); it is really the “full-chord” (samasta-jyā). Half of
it is here (called) the “half-chord” (ardha-jyā), and half that arc
is called the “bow” of that half-chord. In fact the Rsine (jyā) and
Rcosine (koṭi-jyā) of that bow are always half-chords.9

Kamalākara (1658) is more explicit. “Having seen the brevity”, says he,
“the half-chords are called jyā by mathematicians in this (branch of) math-
ematics and are used accordingly.”10 The function jyā is sometimes distin-
guished as krama-jyā11 or kramārdha-jyā,12 from krama, “regular” or “direct”
meaning “direct sine” or “direct half-chord”.
It may be noted that the modern term sine is derived from the Hindu name.

The Sanskrit term jīvā was adopted by the early Arab mathematicians but
was pronounced as jība. It was subsequently corrupted in their tongue into
jaib. The latter word was confused by the early Latin translators of the Arabic
works such as Gherardo of Cremona (c. 1150 ad) with a pure Arabic word of
alike phonetism but meaning differently “bosom” or “bay” and was rendered
as sinus, which also signifies “bosom” or “bay”.13

7Sūryasiddhānta, ii. 15; Āryabhaṭīya, ii. 11, 12; Brāhmasphuṭasiddhānta, xxi. 17, 22.
8Siddhāntaśiromaṇi, Graha, iii. 2.
9Āryabhaṭīya, ii. 11 (comm.).

10Siddhāntatattvaviveka, ii. 52.
11Pañcasiddhāntikā, iv. 28 (kramaśo-jyā); Brāhmasphuṭasiddhānta, ii. 15; vii. 12.
12Śiṣyadhīvṛddhida, ii. 1.
13Cf. Nouv. Ann. Math., XIII (1854), p. 393; Smith, History II, p. 616.
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The degeneration and variations of the term kramajyā are still more interest-
ing. In the Arabic tongue it was corrupted into karaja or kardaja. According
to Fihrist, the title of a work of Ya‘kūb ibn Ṭārik (c. 770 ad) is “On the table
of kardaja”. This table was copied from the Brāhmasphuṭasiddhānta of Brah-
magupta. In the same connection, al-Khowārizmī (825 ad) used the variant
karaja. In the Latin translations of the term we find several variants such as
kardaga, karkaya, gardaga, or cardaga. These terms had in foreign lands also
the restricted uses for the arc of 3◦45′, sometimes of 15◦.14

Koṭi-jyā

The Sanskrit word koṭi means, amongst others “the curved end of a bow” or
“the end or extremity in general”; hence in trigonometry it came to denote
“the complement of an arc to 90◦.”15 So the radical significance of the term
koṭi-jyā is “the jyā of the complementary arc”. But it began early to be used
as an independent technical term.16 The modern term cosine appears to be
connected with koṭijyā, for in Hindu works, particularly in the commentaries
koṭijyā is often abbreviated into kojyā. When jyā became sinus, kojyā natu-
rally became ko-sinus or co-sinus.

Utkrama-jyā

Utkrama means “reversed”, “going out”, or “exceeding”. Hence the term
utkrama-jyā literally means “reversed sine”. This function is so called in con-
tradistinction to krama-jyā, for it is, rather its tabular values are, derived from
the tabular values of the latter by subtracting the elements from the radius
in the reversed order. Or in other words it is the exceeding portion of the
krama-jyā taken into consideration in the reversed order. Thus it is stated:

The (tabular) versed sines are obtained by subtracting from the
radius the (tabular) sines in the reversed order.17

They (jyārdha), (being subtracted from the radius), in the reversed
order beginning from the end, will certainly give the versed sines,
that is, the arrows.”18

Again, it is noteworthy that from a table of differences of sines, the suc-
cessive sines are obtained by adding the differences in the direct order (from
14Woepeke, F. “Sur le mot kardaga et sur une méthode indienne pour calcul les sinus”, Nouv.

Ann. Math., XIII (1854), pp. 386–393; Braunmühl, A. Geschichte der Trigonometrie, 2
vols., Leipzig, 1900, 1903 (hereafter referred to as Braunmühl, Geschichte); Vol. I, pp. 44,
45, 78, 102, 110, 120; vide also Sarton’s note on the point in Isis, xiv (1930), pp. 421f.

15In Hindu mathematics, the term koṭi also denotes “the side of a right-angled triangle”.
16Compare Śiṣyadhīvṛddhida, ii. 30 (infra p. 10).
17Sūryasiddhānta, ii. 22.
18Brāhmasphuṭasiddhānta, xxi. 18; Compare also Mahāsiddhānta, iii. 3.
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the top) whereas the corresponding versed sines will be found by adding the
elements in the reversed order (from the end). This fact has been particularly
noted by Sūryadeva Yajvā (born 1191 ad) and Śrīpati (1039 ad). The former
observes:

In order to get the direct sines (krama-jyā), these (tabular) dif-
ferences of sines (khaṇḍa-jyā) should be added regularly from the
beginning; and in order to determine the reversed sines (utkrama-
jyā), they should be added in the reversed order from the end.19

Śrīpati says:

The difference of sines are called jyākhaṇḍa (tabular “difference
of sines”); (adding them) in the reversed way beginning from the
end will be obtained the versed sines (vyasta-jyā) of the half-arcs
equal to the 96th parts of the celestial circle.20

This function is also called vyasta-jyā21 (from vyasta, “cast or thrown asun-
der”, “reversed”) or viloma-jyā22 (from viloma, “reverse”). Occasionally it
is termed utkrama-jyārdha.23 Another name for it is “arrow” (iṣu, bāṇa).24

Bhāskara II observes:

What is really the arrow between the bow and the bowstring is
known amongst the scholars here (i.e. in trigonometry) as the
versed sine.25

So also says Kamalākara (1658):

What lies between the chord and the arc, like the arrow, is the
versed sine.26

Tangent and Secant

The Hindus approached very near the tangent and secant functions and ac-
tually employed them in astronomical calculations, though they did not ex-
pressly recognise them as separate functions. The Sūryasiddhānta gives the
following rule for calculating the equinoctial midday shadow of the gnomon
at a station:
19Āryabhaṭīya, i. 10 (comm.).
20Siddhāntaśekhara, xvi. 10.
21Brāhmasphuṭasiddhānta, ii. 5; Mahāsiddhānta, iii. 3, 6.
22Śiṣyadhīvṛddhida, I, ii. 5.
23Sūryasiddhānta, ii. 22, 27.
24Brāhmasphuṭasiddhānta, xxi. 18.
25Siddhāntaśiromaṇi, Gola, xiv. 5; Compare also Graha, ii. 20 (gloss).
26Siddhāntatattvaviveka, ii. 58.
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The sine of the latitude (of the station) multiplied by 12 and di-
vided by the cosine of the latitude gives the equinoctial mid-day
shadow.27

Here 12 is the usual height of a Hindu gnomon. So that

S =
jyā ϕ× h

kojyā ϕ ,

where ϕ denotes the latitude of the place, S is the equinoctial mid-day shadow,
and h is the gnomon. This is equivalent to

S = h tan θ.

Again to find the mid-day shadow (s) of the gnomon (h) and the hypotenuse
(d), having known the meridian zenith distance (z) of the sun, we have the
rules:28

s = h tan z, d = h sec z.

Similar rules occur in other astronomical works also.29 In the Gaṇita-sāra-
saṅgraha of Mahāvīra (850) by the term “shadow” of a gnomon is sometimes
meant the ratio of the actual shadow to the height of the gnomon.30 This
ratio, as has been just stated, is equal to the tangent of the zenith distance
of the sun.

Quadrants

A circle is ordinarily divided into four equal parts, called vṛtta-pāda, by
two perpendicular lines, usually the east-to-west line and the north-to-south
line. The quadrants are again classified into odd (ayugma, viṣama) and even
(yugma, sama). Earlier Hindu writers do not explain this fact fully and par-
ticularly. Thus Bhāskara I (629) simply observes: “Three signs form a quad-
rant”.31 Lalla writes:

Three anomalistic signs form a quadrant. The quadrants are suc-
cessively distinguished as odd and even.32

But the description of Bhāskara II (1150) is very full. He says:

Three signs together form a quadrant. In a circle there will be
four such; and they should be successively called odd and even.33

27Sūryasiddhānta, iii. 16.
28Sūryasiddhānta, iii. 21.
29Pañcasiddhāntikā, iv. 22.
30Gaṇita-sāra-saṅgraha, ix. 8 1

2
.

31Mahābhāskarīya, iv. 1; Laghubhāskarīya, ii. 1.
32Śiṣyadhīvṛddhida, ii. 10.
33Siddhāntaśiromaṇi, Graha, ii. 19.
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He then explains it further thus:
On a plane surface describe a circle of any specified radius with a
pair of compasses. Mark on its circumference 360 degrees. Draw
the east-to-west and north-to-south lines through its centre. These
lines will divide the circle into quadrants, which should be taken
into consideration in the left-wise manner (savya-krama, that is
‘anti-clockwise’)34 proceeding from the east-point (prācī ); They
should be called odd and even (quadrants) successively.35

Variation in value

As regards the variation in the value of a trigonometrical function as its argu-
ment changes, Bhāskara II observes as follows:

In the first quadrant, mark a point on the circumference of the
circle at any optional distance from the east point. The perpen-
dicular distance of that point from the east-to-west line is called
the Rsine (doḥ-jyā); and its distance from the north-to-south line
is the Rcosine (koṭi-jyā). The corresponding arcs are called bhuja
and koṭi. (Starting from the east point) as the point gradually
moves forward in the same way (i.e. anti-clockwise), the Rsine in-
creases and the Rcosine decreases. When the point arrives at the
end of the quadrant, the Rcosine vanishes and the Rsine is equal
to the radius. Then in the second quadrant, the Rcosine increases;
at the end of that quadrant the Rcosine is maximum (irrespective
of sign) and the Rsine vanishes.36

One fact perhaps deserves a particular notice here. It is that in Hindu
trigonometry the jyā of an arc of 90◦ in a circle is equal to the radius of
that circle. On account of that, the radius is called in Hindu mathematics by
the terms tri-jyā, tri-bha-jyā, tribhavana-jyā, etc., every one of which literally
means the “sine of three signs”. The radius is also called viṣkambhārdha,
vyāsārdha, or ardha-vyāyāma meaning the “semi-diameter”. All these terms
are very old.37

Functions of a complement or supplement

Sūryasiddhānta says:
34The Sanskrit term savya-krama ordinarily signifies the “clockwise direction”; but it may
also denote the “anti-clockwise direction”.

35Siddhāntaśiromaṇi, Graha, ii. 19 (gloss).
36Ibid, ii. 20 (gloss). The Sanskrit terms jyā and kojyā have been translated as Rsine and
Rcosine because they are equal to R× sine and R× cosine respectively.

37Compare Āpastamba-Śulbasūtra, vii. 11 (ardha-vyāyāma); Jambūdvīpasamāsa of Umā-
svāti, iv (vyasārdha); Tattvārthādhigama-sūtra-bhāṣya, iv. 14 (viṣkambhārdha).
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In odd quadrants, the arc passed over gives the Rsine, while the
arc to be passed over gives the Rcosine; and in the even quadrants,
the arc to be passed over gives the Rsine and that passed over gives
the Rcosine.38

Bhāskara I writes:

In the odd quadrants the arc described and that to be described
should respectively be known as the bhuja and koṭi; but in the
even quadrants they are respectively the koṭi and bhuja; this is
the fact.39

Lalla remarks:

When (the anomaly40 is) greater than 90◦, it is subtracted from
the semi-circle (i.e. 180◦); when greater than the semi-circle, 180◦
is subtracted from it; when greater than 270◦, it is subtracted
from the complete circle (i.e. 360◦); the remainder is called the
(corresponding) bhuja by the expert in the subject.41

In the words of Brahmagupta:

The Rsine and Rcosine (are obtained) in the odd quadrants from
the arc passed over and to be passed over (respectively); and in
the even quadrants in the reverse way.42

Or,

In the odd quadrants (the Rsine is determined) from the arc de-
scribed and in the even quadrants from the arc to be described.43

(For the determination of) the Rsine (proceed with the anomaly
as it is) when the anomaly is less than three signs (i.e. 90◦); when
greater than three signs subtract it from six signs; when greater
than six signs, subtract six signs (from it); when greater than nine
signs, subtract it from the complete circle.44

Mañjula (932) says:
38Sūryasiddhānta, ii. 30.
39Laghubhāskarīya, ii. 1–2; compare also Mahābhāskarīya, iv. 8–9.
40It is in connection with the treatment of the anomaly that the remark of Lalla, as of
several other Hindu mathematicians, occurs.

41Śiṣyadhīvṛddhida, ii. 10–11.
42Brāhmasphuṭasiddhānta, ii. 12.
43Khaṇḍakhādyaka (Bina Chatterjee’s edition), I, i. 16.
44Khaṇḍakhādyaka, I, i. 16.
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In the odd quadrants, the bhuja and koṭi are (to be calculated)
from the arc described and that to be described (respectively);
but in the even quadrants in the contrary way.45

His commentator and younger contemporary Praśastidhara (962) dilates upon
this point thus:

In the odd quadrant, where the anomaly is less than three signs
(i.e. 90◦), the Rsine should be calculated from it and the Rcosine
should be calculated after subtracting that from 90◦. In the even
quadrant, where the anomaly exceeds 90◦ but is less than 180◦;
in that case the Rsine should be taken after subtracting it from
180◦ and the cosine after subtracting 90◦ from it. In the odd
quadrant, where the anomaly is greater than 180◦, but less than
270◦, the Rsine should be calculated after subtracting 180◦ from
it and the Rcosine after subtracting it from 270◦. In the even
quadrant when the anomaly exceeds 270◦, but is less than 360◦,
the Rsine is determined after subtracting it from 360◦, and the
Rcosine after subtracting 270◦ from it.46

Śrīpati (c. 1039) remarks:

In the odd and even quadrants, the arc passed over and to be
passed over (respectively) is the bhuja and the koṭi is otherwise.
Or, as the learned have said, the Rsine of 90◦ minus the anomaly
is the Rcosine (of the anomaly).47

And Bhāskara II:

In the odd quadrants, the arc passed over and in the even quad-
rants the arc to be passed is the bhuja. Ninety degrees minus the
bhuja is said to be the koṭi.48

The above results can be represented graphically as shown in Figures 2 and 3.

Relation between functions

Varāhamihira says:

The Rsine of 90◦ minus latitude is the Rcosine of the latitude.49

45Laghumānasa, ii. 2.
46Commentary on the same.
47Siddhāntaśekhara, iii. 13.
48Siddhāntaśiromaṇi, Graha, ii. 19.
49Pañcasiddhāntikā, iv. 28.



276 Hindu trigonometry

Y

Y ′

XX′

ko
jy

ā

jyā

ko
jy

ā

jyā

ko
jy

ā

jyā

ko
jy

ā
jyā

θ

Figure 2

Y

Y ′

XX′

jyā

ko
jy

ā

jyā

ko
jy

ā

θ

Figure 3



1 Trigonometrical functions. Definitions. 277

Lalla:

The square of the base-sine (bhuja-jyā) is subtracted from the
square of the radius; the square root of the remainder is the
Rcosine; or it is the Rsine of 90◦ minus the bhuja arc.50

√
R2 − (jyā α)2 = kojyā α

or, kojyā α = jyā (90◦ − α),

where kojyā is the usual Hindu symbol for koṭi-jyā.
Brahmagupta says:

The radius diminished by the versed Rsine of an arc or of its
complement will give the Rsine of the other. The square-root of
the difference of the square of the radius and that of the Rsine of
an arc or of its complement will be the Rsine of the other.51

R− utjyā α = jyā (90◦ − α),

R− utjyā (90◦ − α) = jyā α,√
R2 − (jyā α)2 = jyā (90◦ − α),√

R2 − {jyā (90◦ − α)}2 = jyā α,

where utjyā is the usual abbreviation for utkrama-jyāa

The direct Rsine of the excess of an arc over 90◦ added to the
radius will give versed Rsine of that arc.52

R+ jyā (α− 90◦) = utjyā α,

where α > 90◦.
Śrīpati writes:

The square of the radius is diminished by the square of the Rsine;
the square root of the remainder will be the Rcosine. Again the
square-root of the square of the radius minus the square of the
Rcosine will be the Rsine. The radius minus the versed Rsine of
the complement of an arc is equal to the Rsine of the arc, and
minus the versed Rsine of the arc becomes the Rsine of the other
(i.e. complement).53

50Śiṣyadhīvṛddhida, ii. 30.
51Brāhmasphuṭasiddhānta, xiv. 7.
52Ibid, vii. 12.
53Siddhāntaśekhara, iii. 14.
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The treatment of Bhāskara II is exhaustive. He says:

Subtract from the radius the direct Rsine of an arc and of its com-
plement; the results will be the versed R sines of the complement
and the arc (respectively). Subtract from the radius the versed
Rsine of an arc and of its complement; the remainders will be the
direct Rsines of the complement and the arc (respectively).54

R− jyā α = utjyā (90◦ − α),

R− jyā (90◦ − α) = utjyā α,
R− utjyā α = jyā (90◦ − α),

R− utjyā (90◦ − α) = jyā α.

The square of the Rsine of an arc and of its complement are (sev-
erally) subtracted from the square of the radius, the square-roots
of the results are (respectively) the Rsines of the complement and
of the arc.55

√
R2 − (jyā α)2 = jyā (90◦ − α);

√
R2 − {jyā (90◦ − α)}2 = jyā α.

The square of the radius is diminished by the square of the Rsine
of an arc; the square-root of the result is the Rcosine of the arc.56

√
R2 − (jyā α)2 = kojyā α.

Kamalākara writes:

The square-root of the square of the radius diminished by the
square of the Rsine of an arc, is the Rcosine of the arc; simi-
larly, the square-root of the square of the radius diminished by
the Rcosine of an arc, is the Rsine of the arc. Again, the Rsines
of an arc and its complement when subtracted from the radius
will give the versed Rsines of the complement and the arc (respec-
tively).57

√
R2 − (jyā α)2 = kojyā α,

√
R2 − (kojyā α)2 = jyā α,

R− jyā α = utjyā (90◦ − α), R− jyā (90◦ − α) = utjyā α.
54Siddhāntaśiromaṇi, Graha, ii. 20; also Gola, v. 2; xiv. 5.
55Siddhāntaśiromaṇi, Graha, ii. 21.
56Siddhāntaśiromaṇi, Gola, v. 2; xiv. 4.
57Siddhāntatattvaviveka, ii. 56–7.
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Change of sign of a function

The Hindus were fully aware of the changes of sign of a trigonometrical func-
tion according as its argument lies in different quadrants. Though nowhere
do we find any systematic treatment of this principle in any Hindu work there
are ample concrete instances of its application in almost all their important
astronomical treatises. Thus it is stated in the Sūryasiddhānta:

The śīghra-koṭiphala is positive, when the kendra (mean anomaly)
lies in a position beginning with the Capricorn; and it is to be sub-
tracted from the radius in a position beginning with the Cancer.58

Now according to the Sūryasiddhānta and other Hindu astronomical works,
the śīghra-koṭiphala (the result derived from the complement of the distance
from the conjunction) is given by D cos θ, where θ is the śīghra-kendra59 (the
distance of the mean planet from its apex of swiftest motion; hence mean
śīghra anomaly) and D, a certain known constant. The Cancer is the fourth
sign of the Zodiac and Capricorn is the tenth sign. Again the motion of the
mean planet is anti-clockwise. Hence it is clear from the above rule that the
author was aware that the cosine of an angle lying between 0◦ and 90◦ or
between 270◦ and 360◦ is positive and that it is negative when the angle lies
between 90◦ and 270◦.
Again it has been said:

In case of the manda and śīghra corrections of all planets, the
phala (equation) will be positive, if the kendra lies in the six signs
beginning with the Aries and it will be negative in the six signs
beginning with the Libra.60

Now the phala is defined as arc (D′ sin θ), where D′ does not change sign.
Hence clearly the author knows that the sign is positive in the first two quad-
rants and negative in the other two quadrants.
Similar rules are found in other treatises of astronomy.61 The statement of

Mañjula (932) is more explicit and fuller. He says:

The (mean) planet when diminished by its apogee or aphelion is
the kendra (mean anomaly). Its Rsine is positive or negative in
the upper or lower halves (of the quadrants); and its Rcosine is

58Sūryasiddhānta, ii. 40.
59“Subtract the longitude of a planet from that of its apex of slowest motion (mandocca);
so also subtract it from that of its apex of swiftest motion (conjunction); the result (in
either case) is its kendra.” Sūryasiddhānta, ii. 29.

60Sūryasiddhānta, ii. 45.
61For instance Āryabhaṭīya, iii. 22; Mahābhāskarīya, iv. 5, 9; Laghubhāskarīya, ii. 6; Śiṣya-

dhīvṛddhida, ii. 32; Brāhmasphuṭasiddhānta, ii. 14ff.
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positive, negative, negative, and positive (respectively) according
to the (successive) quadrants.62

Thus the Hindus knew very early what in modern trigonometrical notations
will be expressed as

sin(π ∓ θ) = ± sin θ, cos(π ∓ θ) = − cos θ,
sin(2π − θ) = − sin θ, cos(2π − θ) = + cos θ,

sin
(π
2
∓ θ
)
= + cos θ, cos

(π
2
∓ θ
)
= ± sin θ,

sin
(
3π

2
∓ θ

)
= − cos θ, cos

(
3π

2
∓ θ

)
= ∓ sin θ.

Again it has been stated before that according to a rule of Brahmagupta

R+ jyā (α− 90◦) = utjyā α.

But by definition,

utjyā α = R− kojyā α = R− jyā (90◦ − α).

These clearly show that the author knows that the value of the sine function
changes sign along with its argument. Or symbolically

sin(±θ) = ± sin θ.

2 Trigonometrical formulae

(1) sin2 θ + cos2 θ = 1.
It has been stated before that according to Hindu astronomers, if α be an

arc of a circle of radius R√
R2 − (jyā α)2 = kojyā α,

√
R2 − (kojyā α)2 = jyā α.

These are of course equivalent to the modern formulae√
1− sin2 θ = cos θ,

√
1− cos2 θ = sin θ

or
sin2 θ + cos2 θ = 1,

where θ is the angle subtended at the centre of the circle by the arc α.

(2) 4 sin2 θ
2
= sin2 θ + versin2 θ.

This formulae has been stated first by Varāhamihira (505). He says:
62Laghumānasa, ii. 1.
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To find the Rsine of any other desired arc, double the arc and
subtract from the quarter of a circle; diminish the radius by the
Rsine of the remainder. The square of half the result is added to
the square of half the Rsine of the double arc. The square-root of
the sum is the desired Rsine.63

P

Q

O X

Y

S

T

D

C

θ

Figure 4

(ed. In Figure 4) Let the arc XP = arc PQ = α; then arc QY = 90◦ − 2α.
Now

XQ2 = QT 2 + TX2

or 4XD2 = QT 2 + TX2

or XD2 =

(
QT

2

)2

+

(
TX

2

)2

.

Hence

(jyā α)2 =

(
jyā 2α

2

)2

+

(
R− jyā (90◦ − 2α)

2

)2

;

which is equivalent to

4 sin2 θ = sin2 2θ + versin2 2θ.

Āryabhaṭa I (499) seems to have been aware of this formula before Varāha-
mihira. It reappears also in later works.
Brahmagupta says:

The sum of the squares of the Rsine and versed Rsine of the same
arc is divided by four; subtract this quotient from the square of the
radius. Take the square-root of the two results. The former will be

63Pañcasiddhāntikā, iv. 2f.



282 Hindu trigonometry

the Rsine of half that arc, and the other the Rsine of the arc equal
to the quarter circle less that half.64

The formula has been described almost similarly by Śrīpati (1039).65 Bhās-
kara II (1150) writes very briefly thus:

Half the square-root of the sum of the square of the Rsine and of
the versed Rsine of an arc, will be the Rsine of half that arc.66

Parameśvara (1430) says:
The square-root of the sum of the square of the Rsine and of the
versed Rsine of an arc is the ‘whole chord’ (samasta-jyā) of that arc.
Half that is the half-chord (i.e. the Rsine) of half that arc.67

(3) 2 sin2 θ
2
= 1− cos θ.

This is given first by Varāhamihira. He says:
Twice any desired arc is subtracted from three signs (i.e. 90◦), the
Rsine of the remainder is subtracted from the Rsine of three signs.
The result multiplied by sixty is the square of the Rsine of that
arc.68

In the Figure 4, since the triangles XCD and XDO are similar, we have:

XD : XC :: XO : XD

∴ XD2 = XO ×XC =
1

2
XO ×XT.

Hence
(jyā α)2 =

1

2
R {R− jyā (90◦ − 2α)} .

The factor 1
2R on the right-hand side has been stated by Varāhamihira as

60 since he has taken the value of the radius to be equal to 120. In modern
notations, the above formula becomes

sin2 θ = 1

2
(1− cos 2θ).

This also follows easily from the preceding formula.
Brahmagupta says:

The square-root of the fourth part of the versed Rsine of an arc
multiplied by the diameter is the Rsine of half that arc.69

64Brāhmasphuṭasiddhānta, xxi. 20f.
65Siddhāntaśekhara, xvi. 14–5.
66Siddhāntaśiromaṇi, Gola, v. 4; xiv. 10.
67Quoted in his commentary of Āryabhaṭīya, ii. 11.
68Pañcasiddhāntikā, iv. 5.
69Brāhmasphuṭasiddhānta, xxi. 23.
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Bhāskara II writes:

Or, the square-root of half the product of the radius and the versed
Rsine of an arc, will be the Rsine of half that arc.70

He has further given the following proof of it.71

Since
kojyā α = R− utjyā α,

so that squaring

(kojyā α)2 = R2 + (utjyā α)2 − 2R× utjyā α.

Therefore
R2 − (kojyā α)2 = 2R× utjyā α− (utjyā)2.

Or

(jyā α)2 = 2R× utjyā α− (utjyā α)2

(jyā α)2 + (utjyā α)2 = 2R× utjyā α.

But by the formula (2), the right-hand side is equal to

4
(

jyā α

2

)2
.

Hence,

jyā α

2
=

√
1

2
R× utjyā.

This rule of Bhāskara II together with his proof has been reproduced by
Kamalākara.72

(4) sin 1

2
(90◦ ± θ) =

√
1

2
(1± sin θ).

This formula first appears in the works of Āryabhaṭa II (950). He says:

The Rsine of any arc multiplied by the radius is subtracted from or
added to the square of the maximum value of the Rsine; the square-
root of half the results are extracted. These will be the Rsine of 45◦
decreased or increased by half that arc.73

70Siddhāntaśiromaṇi, Gola, v. 5; xiv. 10.
71Siddhāntaśiromaṇi, Gola, (gloss).
72Siddhāntatattvaviveka, ii. 78 and its commentary.
73Mahāsiddhānta, iii. 2.
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(ed. In Figure 5) Let the arc XP be denoted by α. Bisect the complemen-
tary arc Y P at Q. Then

Y P 2 = Y N2 +NP 2

= (OY − PM)2 + PN2

= OY 2 + PM2 +OM2 − 2 OY × PM.

Therefore,
4PC2 = 2(OP 2 −OP × PM).

Hence,

jyā 1

2
(90◦ − α) =

√
1

2
(R2 −R× jyā α).

Similarly it can be proved that

jyā 1

2
(90◦ + α) =

√
1

2
(R2 +R× jyā α).

These are of course equivalent to

sin 1

2
(90◦ ± θ) =

√
1

2
(1± sin θ).

Bhāskara II (1150) writes:
The square of the radius is diminished or increased by the product
of the radius and the Rsine of an arc; the square-root of half the
results will be the Rsine of the half of 90◦ minus or plus that arc.74

74Siddhāntaśiromaṇi, Gola, xiv. 12.
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Kamalākara defines:
The product of the radius and the Rsine of an arc is added to or
subtracted from the square of the radius. The square-root of the
half of the results are taken. They will respectively be the Rsine of
the half of three signs plus or minus the arc.75

He adduces the following proof of it:76

R± jyā α = utjyā (90◦ ± α).

Squaring and adding {jyā (90◦ ± a)}2 to both the sides, we get

R2 + (jyā α)2 + {jyā (90◦ ± α)}2 ± 2R jyā α =

{jyā (90◦ ± α)}2 + {utjyā (90◦ ± α)}2

or,

2(R2 ±R jyā α) = 4

{
jyā 1

2
(90◦ ± α)

}2

,

by formulae (1) and (2).

(5) 2 cos2 θ
2
= 1 + cos θ.

Bhāskara II remarks that if the arc α in the formula

jyā 1

2
(90◦ ± α) =

√
1

2
(R2 +R jyā (90◦ − α)

be substituted by its complement 90◦ − α, it will still be true.77 So that,

jyā 1

2
(90◦ ± {90◦ − α}) =

√
1

2
{R2 ±R jyā (90◦ − α)}

which leads to,

2 cos2 θ
2
= 1 + cos θ, 2 sin2 θ

2
= 1− cos θ.

Kamalākara says:
Half the Rcosine of an arc is added to the Rsine of one sign (i.e.
30◦) and the sum is multiplied by the radius; the square-root of the
product should be known by the intelligent as the Rcosine of half
that arc.78

75Siddhāntatattvaviveka, ii. 93.
76Siddhāntatattvaviveka, (gloss).
77Siddhāntaśiromaṇi, Gola, xiv. 12.
78Siddhāntatattvaviveka, ii. 91.
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kojyā α

2
=

√
R (jyā 30◦ +

1

2
kojyā α)

or,
cos2 θ

2
= sin 30◦ + 1

2
cos θ = 1

2
(1 + cos θ).

(6) sin2(45◦ − θ) =
1

2
(cos θ − sin θ)2.

Bhāskara II says:
The square of the difference of the Rsine and Rcosine of an arc is
halved; the square-root of the result is equal to the Rsine of half
the difference between that arc and its complement.79
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Figure 6

(ed. In Figure 6) Denote the arc XP by α; cut off the arc Y Q equal to the
arc XP . Bisect the chord PQ by the point D. Then,

CP = PN − CN = PN −QS

= kojyā α− jyā α
= QT − PM = CQ.

Therefore,

PQ2 = 2CP 2

PD2 =
1

2
CP 2

or,

jyā 1

2
{(90◦ − α)− α} =

√
1

2
(kojyā α− jyā α)2

79Siddhāntaśiromaṇi, Gola, xiv. 14.
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which is equivalent to

sin(45◦ − θ)−
√

1

2
(cos θ − sin θ)2.

Kamalākara writes:
The Rsine of half the difference between an arc and its complement
should be known by the intelligent in this (science) as equal to the
square-root of half the square of the difference of the Rsine of the
arc and of its complement.80

His proof of the formula is substantially the same as that stated above.

(7) cos 2θ = 1− 2 sin2 θ.
Bhāskara II gives:

The square of the Rsine of an arc is divided by half the radius; the
difference between this quotient and the radius is equal to the Rsine
of the difference between that arc and its complement.81

In Figure 4,

QX2 = QT 2 + TX2 = QT 2 + (OX −OT )2

= QT 2 +OT 2 +OX2 − 2OX ×OT.

or 4XD2 = 2OX2 − 2OX ×QS.

Hence,

QS = OX − XD2

OX/2
.

So that,

jyā (90◦ − 2α) = R− (jyā α)2
R
2

which is the same as
cos 2θ = 1− 2 sin2 θ.

This formula is practically the same as (3). In the words of Kamalākara:
Twice the square of the Rsine of an arc is divided by the radius, the
quotient is subtracted from the radius; the remainder will be the
Rsine of the difference of the arc and its complement.82

(8) sin2 θ + versin2 θ = 2 versin θ.
80Siddhāntatattvaviveka, ii. 95.
81Siddhāntaśiromaṇi, Gola, xiv. 15.
82Siddhāntatattvaviveka, ii. 96.
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(9) 2 sin θ cos θ + [versin θ − versin(90◦ − θ)]2 = 1.

(10) (1 + sin θ)× versin(90◦ − θ) = cos2 θ.

(11) 2 sin θ± [versin θ ∼ versin(90◦−θ)] =
√
2− [versin θ ∼ versin(90◦ − θ)]2,

according as sin θ ≶ cos θ.

(12) (cos θ + sin θ)2 + [versin θ ∼ versin(90◦ − θ)]2 = 2.
Formulae (8) to (12) and similar others occur in the Vaṭeśvara-siddhānta of

Vaṭeśvara (904).

3 Addition and subtraction theorems

Bhāskara II (1150) says:

The Rsines of any two arcs of a circle are reciprocally multiplied
by their Rcosines; the products are then divided by the radius;
the sum of the quotients is equal to the Rsine of the sum of the
two arcs; and their difference is the Rsine of the difference of the
arcs.83

If α and β be any two arcs, then the rule says:

jyā (α± β) =
jyā α× kojyā β

R
± kojyā α× jyā β

R

which is equivalent to

sin (θ ± ϕ) = sin θ cosϕ± cos θ sinϕ.

In the words of Kamalākara (1658):

The quotients of the Rsines of any two arcs of a circle divided by
its radius are reciprocally multiplied by their Rcosines; the sum
and difference of them (the products) are equal to the Rsine of the
sum and difference respectively of the two arcs.84

The rule for finding the Rcosine of the sum and difference of two arcs of a
circle is enunciated by Kamalākara thus:

The product of the Rcosines and of the Rsines of two arcs of a
circle are divided by its radius; the difference and sum of them
(the quotients) are equal to the Rcosine of the sum and difference
(respectively) of the two arcs.85

83Siddhāntaśiromaṇi, Gola, xiv. 21f.
84Siddhāntatattvaviveka, ii. 68.
85Ibid, ii. 69.
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kojyā (α± β) =
kojyā α× kojyā β

R
± jyā α× jyā β

R

which is equivalent to

cos (θ ± ϕ) = cos θ cosϕ± sin θ sinϕ.

Though we do not find this Rcosine theorem in the printed editions of the
works of Bhāskara II, we are quite sure that it was known to him. For it has
been attributed to him by his most relentless critic Kamalākara86 as well as
by his commentator Munīśvara.
The above theorems can be proved by methods algebraical as well as ge-

ometrical. Several such proofs were given by previous writers, observes Ka-
malākara87 (1658). Unfortunately we have not been able to trace them as yet.
The following two geometrical proofs are found in the Siddhāntatattvaviveka88

of Kamalākara.

First proof

(ed. In Figure 7) Let the arc Y P = β, and arc Y Q = α; α being greater than β.
Join OP , OQ. Draw PN , PM perpendicular to OY , OX respectively. Also
draw QS perpendicular to OY , and produce it to meet the circle again at Q′.
Draw QT , Q′T ′ perpendicular to OP . Then PN = jyā β, ON = kojyā β,
QS = jyā α, OS = kojyā α; PG = kojyā β − kojyā α, QG = jyā α + jyā β,
QT = jyā (α+ β), PT = R− kojyā (α+ β).
Now PG2 +QG2 = QP 2 = QT 2 +PT 2. Therefore, substituting the values

(kojyā β − kojyā α)2 + (jyā α+ jyā β)2 =

{jyā (α+ β)}2 + {R− kojyā (α+ β)}2 .

86Kamalākara remarks:
एवमानयनं च े पूव ीय शरोमणौ ।
भावना ाम त ं संयगाय ऽ प भा रः ॥
This theorem, which is evident from the two bhāvanās, was stated before
also by the highly respected Bhāskara in his (Siddhānta-)śiromaṇi.

— Siddhāntatattvaviveka, ii. 70.

87

त चानयन ायः स ा ैः पुरो दता ।
वासना ब भः बु वै च तः ु टाः ॥
Many correct proofs of this theorem were given before by the learned authors
of the siddhāntas according to the manifoldness of their intelligence.

— Siddhāntatattvaviveka, ii. 71.

88ii. 68–9 (gloss).
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Figure 7

Simplifying we get

kojyā (α+ β) =
1

R
(kojyā α× kojyā β − jyā α× jyā β)

which is equivalent to

cos(θ + ϕ) = cos θ cosϕ− sin θ sinϕ.

Again

R2 − {kojyā (α+ β)}2

=
1

R2

{
R4 − (kojyā α× kojyā β − jyā α× jyā β)2

}
=

1

R2

[{
(jyā α)2 + (kojyā α)2

}
×
{
(jyā β)2 + (kojyā β)2

}
−

(kojyā α× kojyā β − jyā α× jyā β)2
]

or,
jyā (α+ β) =

1

R
(jyā α× kojyā β + kojyā α× jyā β),

which is
sin(θ + ϕ) = sin θ cosϕ+ cos θ sinϕ.

Since
PG2 +Q′G2 = Q′P 2 = Q′T ′2 + PT ′2,

we have

(kojyā β − kojyā α)2 + (jyā α− jyā β)2 =

{jyā (α− β)}2 + {R− kojyā(α− β)}2 .
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Therefore,

kojyā(α− β) =
1

R
(kojyā α× kojyā β + jyā α× jyā β),

which is
cos(θ − ϕ) = cos θ cosϕ+ sin θ sinϕ,

whence, proceeding as before, we get

jyā (α− β) =
1

R
(jyā α× kojyā β − kojyā α× jyā β)

or
sin(θ − ϕ) = sin θ cosϕ− cos θ sinϕ.

3.1 Alternative proof

Q′

P1

P
Y

Q1

Q

Y ′

O

M

B
NC

ϕθ

D

T

Figure 8

(ed. In Figure 8) Let the arc Y P = arc PP1 = β and the arc Y Q =

arc QQ1 = α. Then it is obvious from the figure that

Y P1 = 2 jyā β, Y ′P1 = 2 kojyā β,
Y Q1 = 2 jyā α, Y ′Q1 = 2 kojyā α.

Also

Q1P
2
1 = Q1D

2 +DP 2
1 = {jyā (2α+ 2β)}2 + {(utjyā (2α+ 2β)}2 .
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Therefore,
Q1P1 = 2 jyā (α+ β).

Similarly
Q′

1P1 = 2 jyā (α− β).

By the geometrical rules for finding the height and the segments of the base
of a triangle whose sides are known, it can be easily proved that

Y ′N =
2

R
(kojyā β)2, Y N =

2

R
(jyā β)2, P1N =

2

R
jyā β × kojyā β,

Y ′T =
2

R
(kojyā α)2, Y T =

2

R
(jyā α)2, QT =

2

R
jyā α× kojyā α.

Now

Q1P
2
1 = Q1M

2 + P1M
2

= (Q1T + P1N)2 + (Y T − Y N)2

=
4

R2
(jyā α× kojyā α+ jyā β × kojyā β)2 + 4

R2

{
(jyā α)2 − (jyā β)2

}2
=

4

R2
(jyā α× kojyā β + kojyā α× jyā β)2.

Therefore,

jyā (α+ β) =
1

R
(jyā α× kojyā β + kojyā α× jyā β),

which is equivalent to

sin(θ + ϕ) = sin θ cosϕ+ cos θ sinϕ.

Again

Q′P 2
1 = Q′M2 +MP 2

1

= (Q1T − P1N)2 + (Y T − Y N)2

=
4

R2
(jyā α. kojyā α− jyā β × kojyā β)2 + 4

R2

{
(jyā α)2 − (jyā β)2

}2
whence

jyā (α− β) =
1

R
(jyā α× kojyā β − kojyā α× jyā β),

which is equivalent to

sin (θ − ϕ) = sin θ cosϕ− cos θ sinϕ.

The above theorems are called bhāvanā (“demonstration” or “proof” mean-
ing “any thing demonstrated or proved”, hence “theorem”).
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They are again divided into samāsa-bhāvanā or yoga-bhāvanā (“Addition
Theorem”) and antara-bhāvanā or viyoga-bhāvanā (“Subtraction Theorem”).89

In the proofs given above the arcs α and β have been tacitly assumed to
be each less than 90◦. But the theorems are quite general and hold true even
when the arcs are greater than 90◦.

Thus Kamalākara observes:

Even when the two arcs go beyond 90◦ to any even or odd quadrant
(the theorems) will remain the same, not otherwise. That is the
opinion of those who are aware of the true facts.90

Functions of multiple angles

As corollaries to the general case of the theorems for expanding sin(θ ± ϕ)

and cos(θ ± ϕ), Bhāskara II (1150) indicates how to derive the functions of
multiple angles. He observes:

This being proved, it becomes an argument for determining the
values of other functions. For example, take the case of the com-
bination of functions of equal arcs; by combining the functions of
any arc with those of itself, we get the functions of twice that arc;
by combining the functions of twice the arc with those of twice the
arc, we get functions of four times that arc; and so on. Next take
the case of combination of functions of unequal arcs; on combining
the functions of twice an arc with those of thrice that arc, by the
addition theorem we get the functions of five times that arc; but
by the subtraction theorem, we get the functions of one time that
arc; and so on.91

The theorems meant here are clearly these:

sin 2θ = 2 sin θ cos θ,
cos 2θ = cos2 θ − sin2 θ,
sin 4θ = 2 sin 2θ cos 2θ,

= 4 sin θ cos θ (cos2 θ − sin2 θ),
cos 4θ = cos2 2θ − sin2 2θ,

= cos4 θ − 6 sin2 θ cos2 θ + sin4 θ,
sin 3θ = 3 sin θ cos2 θ − sin3 θ,
cos 3θ = cos3 θ − 3 cos θ sin2 θ,

89Siddhāntaśiromaṇi, Gola, xiv. 21 (gloss); Siddhāntatattvaviveka, ii. 65.
90Siddhāntatattvaviveka, ii. 66f.
91Siddhāntaśiromaṇi, Gola, xiv. 21–2 (gloss).
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sin 5θ = sin 2θ cos 3θ + cos 2θ sin 3θ,
cos 5θ = cos 2θ cos 3θ − sin 2θ sin 3θ,
sin θ = sin 3θ cos 2θ − cos 3θ sin 2θ,
cos θ = cos 3θ cos 2θ + sin 3θ sin 2θ.

All these theorems have been expressly stated by Kamalākara (1658). He
says:

Hereafter I shall describe how to find the Rsine of twice, thrice,
four times or five times an arc, having known the Rsine of the sum
of two arcs. The product of the Rsine and Rcosine of an arc is
multiplied by 2 and divided by the radius; the result is the Rsine
of twice that arc.92

The difference of the squares of the Rsine and Rcosine of an arc
is divided by the radius; the quotient is certainly the Rcosine of
twice that arc.93

P

Q

XX′ O MT

C

θ

Figure 9

He has given the following proof of the above two formulae.94

(ed. In Figure 9) Let the arc XP = arc PQ, thenX ′Q = 2 OC = 2 kojyā α.
Now from the right angled triangles OPM , X ′QT , we have

PO : PM :: X ′Q : QT, and OP : OM :: X ′Q : X ′T.

Therefore

OP ×QT = PM ×X ′Q = 2 PM ×OC,

and OP ×X ′T = OM ×X ′Q,

92Siddhāntatattvaviveka, ii. 73.
93Ibid., ii. 90.
94See his own gloss on the preceding rules.
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or

OP (X ′O +OT ) = OM × 2 OC = 2 OM2, because OC = OM

or
OP (OP +OT ) = 2 OM2,

or
OP ×OT = 2 OM2 −OP 2 = OM2 − PM2.

Therefore,

QT =
2PM ×OC

R
,

OT =
OM2 − PM2

R
.

Hence,

jyā 2a =
2 jyā α× kojyā α

R
,

kojyā 2α =
(kojyā α)2 − (jyā α)2

R
.

That is,

sin 2θ = 2 sin θ cos θ,
cos 2θ = cos2 θ − sin2 θ.

It has been further observed that these results can be easily deduced from
the Addition Theorem by putting ϕ = θ.

The sine of an arc is divided by the sine of one sign (i.e. 30◦); the
square of the quotient is subtracted from 3 and the remainder is
multiplied by the R sine of the arc; the result is the Rsine of thrice
that arc.95

jyā 3α = jyā α
{
3−

(
jyā α

jyā 30◦

)2
}
.

That is,

sin 3θ = sin θ
(
3− sin2 θ

sin2 30◦

)
.

95Siddhāntatattvaviveka, ii. 74; also the gloss.
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By the successive application of the Addition Theorems, Kamalākara ob-
tains the formulae:96

jyā 3α =

{
3R2 jyā α− 4 (jyā α)3

}
R2

,

kojyā 3α =

{
4 (kojyā α)3 − 3R2 kojyā α

}
R2

,

jyā 4α =
4
{
(kojyā α)3jyā α− (jyā α)3kojyā α

}
R3

,

kojyā 4α =

{
(kojyā α)4 − 6 (kojyā α)2(jyā α)2 + (jyā α)4

}
R3

,

jyā 5α =

{
(jyā α)5 − 10 (jyā α)3(kojyā α)2 + 5 (jyā α)(kojyā α)4

}
R4

,

kojyā 5α =

{
(kojyā α)5 − 10 (kojyā α)3(jyā α)2 + 5 (kojyā α)(jyā α)4

}
R4

;

which are of course equivalent to

sin 3θ = 3 sin θ − 4 sin3 θ,
cos 3θ = 4 cos3 θ − 3 cos θ,
sin 4θ = 4(cos3 θ sin θ − sin3 θ cos θ),
cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ,
sin 5θ = sin5 θ − 10 sin3 θ cos2 θ + 5 sin θ cos4 θ,
cos 5θ = cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ.

Functions of sub-multiple angles

It has been stated before that the following two formulae for the sine of half
an angle were known to almost all the Hindu astronomers:

sin θ
2
=

1

2

√
sin2 θ + versin2 θ,

sin θ
2
=

√
1

2
(1− cos θ).

Besides these97 Kamalākara has given formulae for the functions of the third,
fourth and fifth parts of an arc.

Find the cube of one-third the Rsine of an arc; divide it by the
square of the radius; the quotient is added to its one-third and the

96Siddhāntatattvaviveka, ii. 75–7 and also the gloss on them.
97Siddhāntatattvaviveka, ii. 78f.



3 Addition and subtraction theorems 297

sum again to one-third the Rsine of the arc; the result is nearly the
Rsine of one-third that arc. From the cube of this again further
accurate values can be obtained.98

jyā α

3
=

1

3
jyā α+

4

3R2

(
jyā α
3

)3

.

The rationale of this formula has been stated to be this: As has been proved
before

jyā 3β = 3 jyā β − 4

R2
(jyā β)3.

Put 3β = α; then this formula will become

jyāα
3
=

1

3
jyā α+

4

3R2

(
jyā α

3

)3
. (13)

Now jyā α
3 can be taken, says Kamalākara, as a rough approximation (sthūla)

to be equal to
( jyā α

3

)3. So that approximately

jyā α

3
=

1

3
jyā α+

4

3R2

(
jyā α
3

)3

, (14)

as stated in the rule. Very nearer approximation (sūkṣmāsanna) to the value
of jyā α

3 can be found by substituting the cube of this value in the last term
of (13) and by repeating similar operations.
The form (14) is equivalent to

sin θ
3
=

1

3
sin θ + 4

81
sin3 θ.

From the known value of the Rsine of an arc, first calculate the
value of the Rsine of half that arc; the Rsine of the arc is divided
by that and multiplied by the square of the radius; the result is
subtracted from twice the square of the radius. Half the square-
root of the remainder is the value of the Rsine of one-fourth that
arc.99

jyā α

4
=

1

2

√
2R2 −R2

jyā α
jyā
(
α
2

) .
The rationale of this formula is given thus: It is known that

jyā 4β =
4

R3

{
(kojyā β)3jyā β − (jyā β)3kojyā β

}
,

=
4

R3

{
R2jyā β kojyā β − 2 (jyā β)3kojyā β

}
.

98Ibid, ii. 81.
99Siddhāntatattvaviveka, ii. 82–83.
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Putting α for 4β, we get

R3 jyā α = 4 jyā α

4
kojyā α

4

{
R2 − 2

(
jyā α

4

)2}
,

= 2R jyā α

2

{
R2 − 2

(
jyā α

4

)2}
;

whence

jyā α

4
=

1

2

√
2R2 − R2(jyā α)

jyā α
2

,

or

sin θ
4
=

1

2

√
2− sin θ

sin
(
θ
2

) .
The intelligent should first find the one-fifth of the Rsine of the
given arc; divide four times the cube of that by the square of
the radius; the quotient should be called the “first”. Multiply the
“first” by the square of the fifth part of the Rsine and divide the
product by the square of the radius; lessen this quotient by its
fifth part and mark the remainder as the “second”. One-fifth of
the Rsine of the arc added with the “first” and diminished by
the “second”, will be clearly the value of the Rsine of the fifth
part of the arc. Finding the value of the “first” again from this,
further approximate value to the Rsine of one-fifth the arc can be
found. Still closer approximations can be obtained by repeating
the process stated above.100

jyā α

5
=

1

5
jyā α+

4

R2

(
jyā α
5

)3

− 16

5R4

(
jyā α
5

)5

.

The rationale is stated to be this: It has been established before that

R4 jyā 5β = (jyā β)5 − 10 (jyā β)3(kojyā β)2 + 5 (jyā β)(kojyā β)4.

Substituting the value R2 − (jyā β)2 for (kojyā β)2 in this, we get

R4 jyā 5β = 16 (jyā β)5 − 20R2 (jyā β)3 + 5R4 jyā β.

Putting α for 5β,

jyā α

5
=

1

5
jyā α+

4

R2

(
jyā α3

5

)
− 61

5R4

(
jyā α

5

)5
. (15)

100Siddhāntatattvaviveka, ii. 84–87.
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In the last two terms on the right hand side, one may take as a rough approx-
imation

jyā α

5
=

1

5
jyā α;

so that

jyā α

5
=

1

5
jyā α+

4

R2

(
jyā α
5

)3

− 16

5R4

(
jyā α
5

)5

. (16)

Again substituting this value of jyā α
5 in the last two terms of (15) and re-

peating similar operations, closer approximations to the value of jyā α
5 can be

obtained.
The formula (16) is equivalent to

sin θ
5
=

1

5
sin θ + 4

(
sin θ
5

)3

− 16

5

(
sin θ
5

)5

.

Kamalākara then observes that “in this way, the Rsines of other desired sub-
multiples of an arc should be obtained.”101

sin
(θ − ϕ)

2

Bhāskara II says:

Find the difference of the Rsines of two arcs and also of their
Rcosines; then find the square-root of the sum of the squares of
the two results; half this root will be the Rsine of half the difference
of the two arcs.102

That is,

jyā 1

2
(α− β) =

1

2

{
(jyā α− jyā β)2 + (kojyā α− kojyā β)2

} 1
2 .

or, in modern notations,

sin 1

2
(θ − ϕ)− 1

2

{
(sin θ − sinϕ)2 + (cos θ − cosϕ)2

} 1
2 .

Kamalākara writes:

Half the square-root of the sum of the squares of the differences
of Rsines and Rcosines of two arcs is certainly equal to the Rsine
of half the difference of the two arcs.103

101Siddhāntatattvaviveka, ii. 87 (c–d).
102Siddhāntaśiromaṇi, Gola, xiv. 13.
103Siddhāntatattvaviveka, ii. 94.
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P
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O X
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T M

D

C

ϕ

θ

Figure 10

The latter has given the following proof of it.104 (ed. In Figure 10) Let the
arc XP be denoted by β and the arc XQ by α; then

QC = QT − PM = jyā α− jyā β,
PC = OM −OT = kojyā β − kojyā α.

Now,
PQ2 = QC2 + PC2.

Hence,

jyā 1

2
(α− β) =

1

2

{
(jyā α− jyā β)2 + (kojyā α− kojyā β)2

} 1
2 ;

which is equivalent to

sin 1

2
(θ − ϕ) =

1

2

{
(sin θ − sinϕ)2 + (cos θ − cosϕ)2

} 1
2 .

Theorem of sines

Brahmagupta105 has made use of the important relation
a

jyā A =
b

jyā B =
c

jyā C
which is of course equivalent to

a

sinA =
b

sinB =
c

sinC ,

between the sides (a, b, c) and angles (A,B,C) of a plane triangle.
104Ibid, (gloss).
105Khaṇḍakhādyaka, Part I, viii. 2. Our attention to this was first drawn by Professor

P. C. Sengupta, who was then preparing a new edition of Khaṇḍakhādyaka with English
translation and critical notes. This rule occurs in the works of other Hindu astronomers
also.
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4 Functions of particular angles

Sine of 30◦, 45◦ and 60◦

Preliminary to the calculation of tables of trigonometrical functions almost
all the Hindu writers have stated the values of the Rsines of 30◦, 45◦ and 60◦:

jyā 30◦ =

√
R2

4
, jyā 45◦ =

√
R2

2
, jyā 60◦ =

√
3R2

4

or, in modern notation

sin 30◦ =
1

2
, sin 45◦ =

1√
2
, sin 60◦ =

√
3

2
.

Śrīpati indicates the proof thus:

The experts in spherics say that the circum-radius of a regular
hexagon is equal to a side. So it will be perceived that the chord
of the sixth part of the circumference of a circle is equal to its semi-
diameter. The hypotenuse arising from the base and perpendicular
(of a right-angled triangle) each equal to the semi-diameter is the
chord of the fourth part of the circumference. Half those (chords)
will be the Rsines of half those arcs.106

The same proof is also given by Bhāskara II:107

The side of a regular hexagon inscribed in a circle is equal to
its radius; this is well known and has also been stated in (my)
Arithmetic. Hence follows that the Rsine of 30◦ is half the radius.
Suppose a right-angled triangle whose base and perpendicular are
each equal to the radius; the square-root of the sum of the squares
of these will be equal to the side of a square inscribed in that circle
and it is again the chord of 90◦. Take the half of that. Hence the
sum of the squares (of the sides) is divided by four; and the result
is half the square of the radius. The square-root of that, it thus
follows, is the Rsine of 45◦.
The Rsine of 60◦ is equal to the Rcosine of 30◦, the Rsine of which
is equal to half the semi-diameter.

Sine of 18◦ and 36◦

Bhāskara II says:
106Siddhāntaśekhara, xvi. 11–2.
107Siddhāntaśiromaṇi, Gola, v. 3–4 (gloss).
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The square-root of five times the square of the radius is diminished
by the radius and the remainder is divided by four; the result is
the exact value of the Rsine of 18◦.108

jyā 18◦ =
1

4
(
√
5R2 −R);

or sin 18◦ =
1

4
(
√
5− 1).

The square-root of five times the square of the square of the radius
is subtracted from five times the square of the radius and the
remainder is divided by eight; the square-root of the quotient is
the Rsine of 36◦.
Or the radius multiplied by 5878 and divided by 10000, is the
Rsine of 36◦. The Rcosine of that is the Rsine of 54◦.109

jyā 36◦ =

√
1

8
(5R2 −

√
5R4) =

5878R

10000
.

That is,

sin 36◦ =

√
1

8
(5−

√
5) =

5878

10000
.

Since
√
5 = 2.236068 approximately

∴ 5−
√
5 = 2.763932 . . .

∴
√

1

8
(5−

√
5)−

√
.345492 . . . = 0.5878 approximately.

Kamalākara proved the results thus:
Let x denote jyā 18◦; then

1

2
R(R− x) =

1

2
R× utjyā 72◦ = (jyā 36◦)2;

2x2

R
= R− kojyā 36◦ = utjyā 36◦;

1

2
R(R− x) +

(
2x2

R

)2

= (jyā 36◦)2 + (utjyā 36◦)2

= 4 (jyā 18◦)2

= 4x2,

108Ibid, Gola, xiv. 9.
109Ibid, Gola, xiv. 7–8.
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or

8x2R2 = 8x4 −R3x+R4,

or, multiplying by 8 and arranging,

16R2x2 + 8R3x+R4 = 9R4 − 48R2x2 + 64x4,

whence taking the positive square roots of the two sides, we get

4Rx+R2 = 3R2 − 8x2,

or (4x+R)2 = 5R2.

Therefore x = 1
4 (
√
5R2 − R); the other sign is neglected since x must be less

than R.
Again

(jyā 36◦)2 =
1

2
R(R− x),

=
R

8
(5R−

√
5R2),

∴ jyā 36◦ =

√
1

8
(5R2 −

√
5R4).

Sin
π

N

In his treatise on arithmetic, Bhāskara II has given a rule which yields the
Rsine of certain particular angles to a very fair degree of approximation.

Multiply the diameter of a circle by 103923, 84853, 70534, 60000,
52055, 45922 and 41031 severally and divide the products by 120000;
the quotients will be the sides of regular polygons inscribed in the
circle from the triangle to the enneagon respectively.110

If Sn be a side of a regular polygon of n sides inscribed in a circle of diameter

110Līlāvatī (Ānandāśrama edition), vss. 206–7, p. 207.
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D, then according to Bhāskara II,

S3 = D
103923

120000
= D × 0.866025

S4 = D
84853

120000
= D × 0.7071083̇

S5 = D
70534

120000
= D × 0.587783̇

S6 = D
60000

120000
= D × 0.5

S7 = D
52055

120000
= D × 0.4337916̇

S8 = D
45922

120000
= D × 0.382683̇

S9 = D
41031

120000
= D × 0.341925

where are given the formulae of Bhāskara II first in their original forms and
then in decimals. Now, we know that

Sn = D sin π
n
.

Hence it is found that

sin 60◦ = 0.866025 sin π
7
= 0.4337916̇

sin 45◦ = 0.7071083̇ sin π
8
= 0.382683̇

sin 36◦ = 0.587783̇ sin π
9
= 0.341925

According to modern computation

sin 60◦ = 0.8660254 . . . sin π
7
= 0.4338819

sin 45◦ = 0.7071067 . . . sin π
8
= 0.3826834

sin 36◦ = 0.5877853 sin π
9
= 0.3420201

Comparing the two tables we find that except in case of sin π
7 and sin π

9

Bhāskara’s approximations are correct up to five places of decimals; in these
two latter cases the results are near enough.

Approximate formula of Bhāskara I

Bhāskara I (629) has given the following rule for the calculation of the Rsine
and Rcosine of an arc without the help of a table.
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Subtract the arc in degrees from the degrees of the semi-circum-
ference and multiplying the arc by the remainder, put down (the
result) at two places, (at one place) subtract (the quantity) from
40500; by one-fourth of the remainder divide the quantity (at the
second place) multiplied by the maximum value of the function;
thus the value of the direct or reversed Rsine of an arc and its
complement is obtained wholly.111

If α be an arc of a circle of radius R in terms of degrees, then

jyā α =
R
(
C
2 − α

)
α{

40500−
(
C
2 − α

)
α
}
/4
,

where C denotes the circumference of the circle in terms of degrees. Since
40500 =

(
5
4

)
× 180× 180, we can write the formula in the form

jyā α =
R
(
C
2 − α

)
α

5
4

(
C
2

)2 − (C2 − α
)
α
,

which is of course equivalent to

sin θ = 4(π − θ)θ(
5
4

)
π2 − (π − θ)θ

.

From a statement of Bhāskara I it appears that this formula was known to
Āryabhaṭa I.112

The above formula has been restated by Brahmagupta (628) thus:

Subtract the degrees of an arc or its complement from the semi-
circle (i.e. 180) and multiply (the remainder) by that; subtract
one-fourth the product from 10125; divide the product by the re-
mainder and multiply by the semi-diameter; (the result) is the
Rsine of that (arc or its complement).113

jyā α =
R(180− α)α

10125− (180−α)α
4

.

Almost in the same way Śrīpati (1039) says:

Subtract the degrees of an arc or its complement from 180 and
multiply (the remainder) by that; subtract one-fourth the product
from 10125; multiply the product by the semi-diameter and divide

111Mahābhāskarīya, vii. 17ff.
112Bhāskara I’s comm. on Āryabhaṭīya, i. 11, p. 40.
113Brāhmasphuṭasiddhānta, xiv. 23.
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by this remainder; thus the Rsine of an arc or its complement can
be found even without (a table of Rsines).114

Bhāskara II (1150) writes:

Subtract an arc from the circumference and multiply (the remain-
der) by the arc; this product is called the ‘first’. From five times
the fourth part of the square of the circumference subtract the
‘first’, and by the remainder divide the ‘first’ multiplied by four
times the diameter; the quotient will be the chord of the arc.115

If s denotes the chord of an arc β of a circle, then

s =
8R(C − β)β

5
4C

2 − (C − β)β
.

Now if β = 2α, then s = 2 jyā α. So that on making the substitutions this
formula will easily reduce to that of the elder Bhāskara.
This formula has been used by Gaṇeśa (1545) in his Grahalāghava.116

Though it gives only a roughly approximate (sthūla) value of the Rsine of
an arc, observes Bhāskara II, it simplifies operations.
On putting θ = π

2 − ϕ, in the above approximate formula, it becomes

cosϕ =
16
(
π
2 + ϕ

) (
π
2 − ϕ

)
5π2 − 4

(
π
2 + ϕ

) (
π
2 − ϕ

)
=
π2 − 4ϕ2

π2 + ϕ2

=

(
1− 4ϕ2

π2

)(
1− ϕ2

π2
+
ϕ4

π4

)
,

neglecting higher powers. Therefore, to the same order of approximation,

cosϕ = 1− 5ϕ2

π2
+

5ϕ4

π4
.

If we put π =
√
10 approximately, we get

cosϕ = 1− ϕ2

2
+
ϕ4

20

nearly. According to modern trigonometry, to the same order of approxima-
tion,

cosϕ = 1− ϕ2

2
+
ϕ4

24
.

114Siddhāntaśekhara, iii. 17.
115Līlāvatī (Ānandāśrama edition), vs. 210, p. 21e. Also see GK, part 2, pp. 80–81.
116Grahalāghava, ii. 2f.
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Again putting ϕ =
π

n
in Bhāskara I’s formula, where n is an integer, we get

sin π
n

=
16(n− 1)

5n2 − 4(n− 1)

whence we have

sin π
7
= 0.4343 . . . , sin π

8
= 0.3835 . . . , sin π

9
= 0.3431 . . . ,

which are correct up to two places of decimals, the third figure in every case
being too large.

Inverse formula of Brahmagupta

Brahmagupta gave the following rule for finding approximately the arc corre-
sponding to a given Rsine function:

Multiply 10125 by the given Rsine and divide by the quarter of
the given Rsine plus the radius; subtracting the quotient from the
square of 90, extract the square-root and subtract (the root) from
90; the remainder will be in degrees and minutes; thus will be
found the arc of the given Rsine without the table of Rsines.117

If α be the arc corresponding to the given Rsine function m, then the rule
says that

α = 90−
√
8100− 10125m(

m
4 + r

) .
This result follows easily on reversing the approximate formula for the Rsine
and was very likely obtained in the same way.

m = jyā α =
R(180− α)α

10125− (180−α)α
4

.

Then
α2 − 180α+

10125m(
m
4 + r

) = 0.

Therefore

α = 90−
√
8100− 10125m(

m
4 + r

) .
The negative sign of the radical being retained, since α is supposed to be less
than 90◦.
Śrīpati describes the inverse formula thus:

117Brāhmasphuṭasiddhānta, xiv. 25–6.
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Multiply 10125 by the given Rsine and divide by the quarter of
the given Rsine plus the radius; then subtract the quotient from
the square of 90; ninety degrees lessened by the square root (of
the remainder) will be the arc (determined) without the table of
Rsines.118

Bhāskara II writes:

By four times the diameter added with the chord divide the square
of the circumference multiplied by five times a quarter of the chord;
the quotient being subtracted from the fourth part of the square of
the circumference, and the square-root of the remainder being di-
minished from half the circumference, the result will be the arc.119

That is:

β =
C

2
−
{
C2

4
− 5sC2

4(8R+ s)

} 1
2

which follows at once from his form of the approximate formula for the chord s.

5 Trigonometrical tables

Twenty-four sines

The Hindus generally calculate tables of trigonometrical functions for every
arc of 3◦45′, or what they call twenty-four Rsines in a quadrant. In the choice
of 24, they seem to have been led by an ancient observation that “the ninety-
sixth part of a circle looks (straight) like a rod.” Thus Balabhadra (c. 700 ad)
observes, “If anybody asks the reason of this, he must know that each of these
kardajat is 1

96
of the circle =225 minutes (= 3 3

4 degrees). And if we reckon
its Rsine, we find it also to be 225 minutes.”120

The origin of this idea again lies in the impression that the human eye-sight
reaches to a distance of 1

96 th part of the circumference of the earth which
appears flat.121 A more plausible hypothesis about the choice of 3◦45′ as the
unit will be this: Having determined previously a very accurate value of π it

118Siddhāntaśekhara, iii. 18.
119Līlāvatī (Ānandāśrama edition), vs. 212, p. 216.
120Quoted by Al-Bīrūnī in his India (Sachau, Alberuni’s India, I, p. 275). Balabhadra’s

works are now lost. According to Chambers’ Mathematical Tables, we find sin(3◦45′) =
0.0654031, tan(3◦45′) = 0.0655435, radian(3◦45′) = 0.0654498, so that the assumption is
fairly accurate.

121Balabhadra says, “Human eyesight reaches to a point distant from the earth and its
rotundity the 96th part of 5000 yojana, i.e. 52 yojana

(
exactly 52 1

12

)
. Therefore a man

does not observe its rotundity, and hence the discrepancy of opinions on the subject.”
This remark of Balabhadra has been quoted by Al-Bīrūnī (India, I, p. 273).
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was simply natural for the Hindus to choose the radius of the circle of reference
to be 3438′. They also knew that R sin 30◦ = semi-radius = 1719′. Starting
with this they began to calculate the function of the semi arcs 15◦, 7◦30′, 3◦45′
with the help of the well known formulae and in so doing they soon found that
3◦45′ is the first whose Rsine contains the same number of minutes as the arc.
So they chose this arc.122

Sūryasiddhānta

The earliest known Hindu work to contain a table of trigonometrical functions
is the Sūryasiddhānta (c. 300 ad). It has a table of Rsines and versed Rsines
for every arc of 3◦45′ of a circle of radius 3438′. The method of computation
has been indicated to be as follows:

The eighth part of the number of minutes in a sign (i.e. 225′) is
the first Rsine. It is divided by itself and then diminished by the
quotient; the remainder added with the first Rsine gives the second
Rsine.
(Any) Rsine is divided by the first Rsine and then diminished by
the quotient. The remainder added to the difference of that Rsine
and the preceding Rsine will give the next Rsine. Thus can be
obtained the 24 Rsines, which are as follows.123

P

Q

R

X

Y

O K T M

C

L

S
D

N

Figure 11

(ed. In Figure 11) Let the arc PQ = arc QR = α. Then,

RK = OL = OS + SL = QT + SL,

and NS − SL = 2DS = 2
OS

OQ
×QC.

122Cf. Nouv. Ann. Math., xiii (1854), p. 390.
123Sūryasiddhānta, ii. 15–6.
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Now

CP 2 = QC(2OQ−QC);

∴ QC =
QP 2

2OQ
.

Hence,

NS − SL = OS

(
QP

OQ

)2

.

Or,

SL = NS −OS

(
QP

OQ

)2

= (QT − PM)−OS

(
QP

OQ

)2

.

Therefore,

RK = QT + (QT − PM)−QT

(
QP

OQ

)2

.

Now suppose the arc XQ = nα; then arc XP = (n − 1)α; XR = (n + 1)α;
further QP = 2 jyā α

2 . Hence

jyā (n+ 1)α = jyā nα+ {jyā nα− jyā (n− 1)α} − jyā nα×
(
2 jyā α

2

R

)2

,

which is equivalent to

sin (n+ 1)θ = sin nθ + {sin nθ − sin (n− 1)θ} − sin nθ

(
2 sin θ

2

)2

.

It is also probable that the formula was obtained trigonometrically thus:

jyā (ξ ± η ) =
1

R
(jyā ξ kojyā η ± kojyā ξ jyā η).

Then,
jyā (ξ + η)− jyā ξ = 1

R
(kojyā ξ jyā η − jyā ξ utjyā n),

and,
jyā ξ − jyā (ξ − η) =

1

R
(kojyā ξ jyā η + jyā ξ utjyā n).

Hence,

jyā (ξ + η)− jyā ξ = jyā ξ − jyā (ξ − η)− 2 jyā ξ utjyā η
R

= jyā ξ − jyā (ξ − η)− jyā ξ
(
2 jyā η

2

R

)2

.
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Now put η = α, ξ = nα; so that the formula becomes

jyā (n+ 1)α− jyā nα = jyā nα− jyā (n− 1)α− jyā nα
(
2 jyā α

2

R

)2

.

So far the formula is mathematically accurate. According to the Sūrya-
siddhānta

α = 3◦45′ = 225′, jyā α = 225′, R = 3438′.

Therefore(
2 jyā α

2

R

)2

=

(
jyā α
R

)2

approximately

=

(
225

3438

)2

=

(
1

15.28

)2

=
1

225
approximately.

Hence we get

sin(n+ 1)θ = sin nθ + {sin nθ − sin(n− 1)θ} − sinnθ
225

,

where
θ = 3◦45′ and n = 1, 2, . . . , 24.

According to modern calculation, the divisor in the last term will be slightly
different. For(

2 sin θ
2

)2

= (2 sin 1◦52′30′′)2 = 0.00428255 =
1

233.506
, nearly.

This little discrepancy, however, does not make much difference in the values
of the Rsine functions calculated on the basis of that formula. They are
indeed fairly accurate even according to modern calculations except in a few
instances.124

About this method of constructing the tables of Rsines, Delambre remarks:

The method is curious; it indicates a method of calculating the
table of sines by means of their second differences.125

He then goes on:

This differential process has not up to now been employed except
by Briggs who himself did not know that the constant factor was
the square of the chord ∆A (= 3◦45′) or of the interval, and who

124Vide infra.
125Delambre, Histoire de l’Astronomie Ancienne, t. 1. Paris (1817), p. 457.
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could not obtain it except by comparing the second differences
obtained in a different manner. The Indians also have probably
done the same; they obtained the method of differences only from
a table calculated previously by a geometric process. Here then is
a method which the Indians possessed and which is found neither
amongst the Greeks, nor amongst the Arabs.126

We do not understand what valid grounds were there for Delambre to sup-
pose that the Hindus discovered the above theorem of Rsines by inspection
after having calculated the table of Rsines by a different method. For there is
absolutely no doubt that the ancient Hindus were in possession of necessary
and sufficient equipment to derive it in either of the ways indicated above. It
is noteworthy that that theorem has an important geometrical foundation. If
there be three arcs of a circle in arithmetical progression the sum of the sines
of the two extreme arcs is to the sine of the middle arc as the sine of twice
the common difference is to the sine of that difference. For

jyā (ξ + η) jyā (ξ − η) ≡ 2 jyā ξ − 2 jyā ξ utjyā η
R

=
2 jyā ξ kojyā η

R
.

Hence,
jyā (ξ + η) + jyā (ξ − η)

jyā ξ =
2 kojyā η

R
=

jyā 2η

jyā η .

This very remarkable property of the circle was discovered in Europe by Vieta
(1580).127

Āryabhaṭa

The trigonometrical table of Āryabhaṭa I (499) contains the differences be-
tween the successive Rsines for arcs of every 3◦45′ of a circle of radius 3438′.128

His first method of computing it, which is rather cryptic, seems to be the same
as that followed by Varāhamihira (infra). The other is practically the same
as that of the Sūryasiddhānta, though put in a different form. He says:

Divide a quarter of the circumference of a plane circle (into as
many equal parts as desired). From (right) triangles and quadri-
laterals (can be obtained) the Rsines of equal arcs, as many as
desired, for (any given) radius.129

126Ibid, p. 459f.
127Playfair, J. “Observations on the Trigonometrical Tables of the Brahmins,” Trans. Roy.

Soc. Edin., iv (1798), pp. 83–106; compare also Asiatic Researches, iv. p. 165.
128Āryabhaṭīya, i. 12.
129Ibid, ii. 11.
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P

X

Y

O

N

M

C

Figure 12

What is meant by the author is very probably this: If P (ed. see Figure 12)
be any point on the arc of the quadrant, draw the perpendiculars PM and
PN ; also join PX. So that corresponding to P we have a rectangle PMON

and a right-angled triangle PMX. Now having given the Rsine (PM) of the
arc XP (= α), we can determine from the rectangle PMON the side PN
which is the sine of the arc (90◦ − α). Having found PN , we can calculate
MX, which is equal to R − jyā (90◦ − α). Then in the right-angled triangle
PMX, we can determine the chord PX. Half of this is jyā α

2
. Again from

a similar set of a rectangle and a right-angled triangle corresponding to the
half arc, we can calculate jyā (90◦ − α

2
) and jyā α

4
. Proceeding thus we can

compute the Rsines of as many equal arcs as we please and it is clear that in
so doing the quadrant will be broken up into a system of right-angled triangles
and rectangles, as contemplated in the rule.
This is the interpretation of Āryabhaṭa’s rule by his ancient commentators,

like Sūryadeva Yajvā and Parameśvara (1430). Another interpretation will
be this: The quadrant is trisected by the inscribed equilateral triangle and
bisected by the inscribed square. The length of the arc between these points is
15◦(= 45◦−30◦). One-fourth of this is 3◦45′. So that the rule under discussion
indicates how to divide the quarter of the circumference into portions of 3◦45′
each. If this interpretation is right,130 which is rather forced, then it will
have to be said that Āryabhaṭa I gave only one method of computing the
trigonometrical table.131

The second method of Āryabhaṭa I is this:

The first Rsine divided by itself and then diminished by the quo-
130This interpretation has been suggested by Rodet, Kaye and Sengupta.
131In this connection, the reader is referred to “Āryabhaṭīya of Āryabhaṭa,” edited with

English translation by K. S. Shukla and K. V. Sarma, INSA, New Delhi, 1976, pp. 45–51.
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tient will give the second difference (of tabular Rsines). For com-
puting any other difference, (the sum of) all the preceding differ-
ences is divided by the first Rsine and the quotient is subtracted
from the preceding difference. Thus, all the remaining differences
(can be calculated).132

Let ∆1,∆2, . . . ,∆n denote successive differences of the tabular Rsines, such
that, α being equal to 3◦45′,

∆1 = jyā α− jyā 0,

∆2 = jyā 2α− jyā α,
...

∆n = jyā nα− jyā (n− 1)α.

Then jyā nα = ∆1 +∆2 + . . .+∆n.
The rule says:

∆n+1 = ∆n − ∆1 +∆2 + . . .+∆n

jyā α .

On substituting the values, this formula will be found to be equivalent to

{jyā (n+ 1)α− jyā nα} = {jyā nα− jyā (n− 1)α} − jyā nα
jyā α .

It is also noteworthy that the text also admits of the following interpreta-
tion:

The first Rsine is divided by itself and then diminished by the
quotient; the result with the first Rsine will give the second Rsine.
For (computing), any of the remaining Rsines, the sum of all the
Rsines preceding it is divided by the first Rsine and the quotient
is subtracted from the first Rsine, and the result added to the
preceding Rsine.

jyā (n+ 1)α = jyā nα+ jyā α− (jyā α+ jyā 2α+ . . .+ jyā nα)
jyā α .

If ∆1,∆2, . . . be the tabular differences as before, then

∆1 −∆2 =
2 jyā α (R− kojyā α)

R

∆2 −∆3 =
2 jyā 2α (R− kojyā α)

R
...

∆n −∆(n+1) =
2 jyā nα (R− kojyā α)

R
.

132Āryabhaṭīya, ii. 12.
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Adding up, we get

∆1 −∆n+1 =
2(R− kojyā α)

R
(jyā α+ jyā 2α+ . . .+ jyā nα).

Now

2(R− kojyā α)
R

=

(
2 jyā α

2

R

)2

,

=

(
jyā α
R

)2

approximately,

=
1

225
approximately.

Therefore

jyā (n+ 1)α = jyā nα+ jyā α− (jyā α+ jyā 2α+ . . .+ jyā nα)
225

.

Also

∆n+1 = ∆n − jyā nα
225

,

= ∆n − ∆1 +∆2 + . . .+∆n

225
.

Of these two interpretations the first has been given by the commentator
Parameśvara and the second by the commentators Prabhākara, Sūryadeva
(b. 1191), Yallaya (1480) and Raghunātharāja (1597).

It should be observed that Āryabhaṭa I does not appear to have used this
formula consistently to calculate the whole table. For as will be found from
Table 1, certain values actually recorded by Āryabhaṭa differ from the values
calculated by the formula. Probably he corrected the calculated values in
those cases by comparison with the known values of the sines of 30◦, 45◦,
60◦; or what is much more likely employed the formula only to calculate the
Rsines of intermediate arcs. Other plausible explanations of the discrepancy
have been furnished by Krishnaswami Ayyangar133 and Naraharayya.134

Varāhamihira and Lalla

Varāhamihira’s (d. 587) table contains the Rsines for every 3◦45′ and the
successive differences of the tabular Rsines for the radius 60.135 His method of

133Journal of the Indian Mathematical Society, xv (1924), pp. 121–6.
134Ibid, pp. 105–13 of “Notes and Questions.”
135Pañcasiddhāntikā, iv. 6–11, 12–15.
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Table 1

Differences
∆n, n =

Calculated
according to the

formula

Recorded by
Āryabhaṭa

Calculated
according to the
modern method

1 225 225 224.856
2 224 224 223.893
3 222.005 222 221.971
4 219.018 219 219.100
5 215.045 215 215.289
6 210.089 210 210.557
7 204.156 205 204.923
8 198.245 199 198.411
9 191.36 191 191.050
10 182.512 183 182.872
11 173.694 174 173.909
12 163.245 164 164.202
13 153.196 154 153.792
14 142.512 143 142.724
15 130.876 131 131.043
16 118.294 119 118.803
17 105.745 106 106.053
18 92.289 93 92.850
19 78.88 79 79.248
20 64.527 65 65.307
21 50.240 51 51.087
22 36.014 37 36.648
23 21.849 22 22.051
24 6.752 7 7.361
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computation is this:136 Starting with the known values of R sin 30◦, R sin 45◦
and R sin 60◦, by the repeated and proper application of the formulae

sin θ
2
=

1

2

√
sin2 θ + versin2θ

sin θ
2
=

√
1

2
versin θ,

says he, the other Rsines may be computed. Lalla137 gives a table of Rsines
and versed Rsines for the radius 3438′. His method of computation is the
same as that of Āryabhaṭa I and the Sūryasiddhānta. He has also a shorter
table of Rsines and their differences for intervals of 10◦ of arcs of a circle of
radius 150.138

Brahmagupta

Brahmagupta (628) takes the radius quite arbitrarily to be 3270. His expla-
nation139 for this departure from the usual practice is unsatisfactory.140 He
has, however, indicated two methods of computation.141 One is graphic and
the other mathematical.

Graphic Method

Starting from the joint of two quadrants, mark off successively (on
either directions) portions of arcs equivalent to the eighth part of
a sign (30◦). Join two and two of these marks by threads. Half of
them (lengths of threads) will be the Rsines.142

Mathematical Method143

In this method Brahmagupta employs the trigonometrical formulae

sin θ
2
=

1

2

√
sin2 θ + versin2θ (17)

sin
(
90◦ − θ

2

)
=

√
1− sin2 θ

2
. (18)

From the known value of the Rsine of 8α, that is, of 30◦, α being equal to
3◦45′, we can calculate, by (17), the Rsines of 4α, 2α, α. Then by (18) will be

136Ibid, iv. 2–5.
137Śiṣyadhīvṛddhida, ii. 1–8.
138Śiṣyadhīvṛddhida, xiii. 2–3.
139Brāhmasphuṭasiddhānta, xxi. 16.
140Datta, Bibhutibhusan, “Hindu Values of π”, JASB, N. S., Vol. 22, (1926), pp. 25–42; see

particularly p. 32, footnote 1.
141His table will be found in Brāhmasphuṭasiddhānta, ii. 2–9.
142Brāhmasphuṭasiddhānta, xxi. 17.
143Ibid, xxi. 20–21; compare also the verse 23.
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obtained the Rsines of 20α, 22α, 23α. Again from the first two of the latter
results, we shall obtain, by (17), the Rsines of 10α and 11α; and thence by (18)
the Rsines of 14α and 13α. Continuing similar operations, we can compute
the Rsines of 5α and 19α, 7α and 17α. Again starting with the Rsine of 12α,
we shall obtain on proceeding in the same way, successively the values of the
Rsines of 6α and 18α; 3α and 21α; 9α and 15α. Thus the values of all the
twenty-four Rsines are computed.
It is perhaps noteworthy that R sinnα is called by Brahmagupta as the nth

Rsine. The successive order in which the various Rsines have been obtained
above can be exhibited as follows:

8

4

2

1 23

22

11 13

20

10

5 19

14

7 17

16 12

6

3 21

18

9 15

Brahmagupta then observes:

In this way (can be computed) the Rsines in greater or smaller
numbers, having known first the Rsines of the sixth, fourth and
third parts of the circumference of the circle.144

He further remarks that theRsine of the semi-arc can be more easily calculated
by the second formula of Varāhamihira.145 Brahmagupta has also another
table giving differences of Rsines for every 15◦ of a circle of radius 150.146

Āryabhaṭa II and Śrīpati

Āryabhaṭa II (950) gives the same table as that of the Sūryasiddhānta.147 But
his method of computation is entirely different.148 He takes recourse to the
formulae

sin 1

2
(90◦ ± θ) =

√
1

2
(1± sin θ).

144Brāhmasphuṭasiddhānta, xxi. 22.
145Ibid, xxi. 23.
146Khaṇḍakhādyaka, Part I, iii. 6; Dhyānagrahopadeśa, 16.
147Mahāsiddhānta, iii. 4–8.
148Mahāsiddhānta, iii. 1–3.
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Beginning with the known values of R sin 30◦ and R sin 45◦, like Brahma-
gupta, the successive order in which the Rsines will come out in the course of
computation, can be best exhibited thus:

8

16

20

22

23 1

2

13 11

4

14

19 5

10

17 7

8

12

18

21 3

6

15 9

The table of Śrīpati (c. 1039) gives the Rsines and versed Rsines for every
3◦45′ of a circle of radius 3415.149 His first method of computing it is the
same as the graphic method of Brahmagupta. He says:

Place marks at the eighth parts of a sign (30◦); then (starting)
from the joint of two quadrants, following up these marks, join
two and two of them successively by means of threads; half of
them will be the Rsines.150

The second method followed by Śrīpati is identical with the mathematical
method of Brahmagupta.151

Bhāskara II

The table of Bhāskara II (1150) contains the Rsines and versed Rsines as
well as their differences for every 3◦45′ of a circle of radius 3438′. He has
indicated several methods of computing it. The first is practically the same
as Brahmagupta’s graphic method. He says:

For computing the Rsines, take any optional radius. On a plane
ground describe a circle by means of a piece of thread equal to

149Siddhāntaśekhara, iii. 3–10.
150Siddhāntaśekhara, xvi. 9.
151Siddhāntaśekhara, xvi. 14ff.
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that radius. On it mark the cardinal points and 360 degrees; so in
each quadrant of the circle there will be 90 degrees. Then divide
every quadrant into as many equal parts as the number of Rsines
to be computed and put marks of these divisions. For instance,
if it be required to calculate 24 Rsines, there will be 24 marks.
Then beginning from any of the cardinal points, and proceeding
either ways, the threads connecting the successive points will be
the chords. There will be thus 24 chords. Halves of these will be
the Rsines (required). So these half-chords should be measured
and the results taken as the Rsines.152

The second is again a reproduction of Brahmagupta’s theoretical method:

When twenty-four Rsines are required (to be computed), the Rsine
of 30◦ is the eighth element; its Rcosine is the sixteenth; and
R sin 45◦ is the twelfth. From these three elements, twenty-four el-
ements can be computed in the way indicated. From the eighth we
get the Rsine of its half, that is, the fourth (element), its Rcosine
is the twentieth. Similarly from the fourth, the second and the
twenty-second; from the second, the first and the twenty-third. In
the same way from the eighth are obtained the tenth and four-
teenth, fifth and nineteenth, seventh and seventeenth, eleventh
and thirteenth. Again from the twelfth follow the sixth and eigh-
teenth, third and twenty-first, ninth and fifteenth. The radius is
the twenty-fourth Rsine.153

The third method of computing trigonometrical tables described by Bhās-
kara II is the same as that of Āryabhaṭa II. The speciality of this method, as
also of the two following, is, says Bhāskara II, that it does not employ the
versed Rsine function. As for the successive order of derivation, he points
out that “from the eighth Rsine (will be obtained) the sixteenth; from the
sixteenth, the fourth and the twentieth; from the fourth, the tenth and four-
teenth. In this way all the rest may be deduced.154

The fourth method of Bhāskara II is based on the application of the formula

R sin 1

2
(θ − ϕ) =

1

2

{
(R sin θ −R sinϕ)2 + (R cos θ −R cosϕ)2

} 1
2 ,

“so that knowing any two Rsines others may be derived. For instance, let one
be the fourth Rsine and the other eighth Rsine. From them is derived the
second Rsine. From the second and fourth, the first; and so on.”155

152Siddhāntaśiromaṇi, Gola, v. 2–6 (gloss).
153Siddhāntaśiromaṇi, Gola, v. 2–6 (gloss); xiv. 10–11 (gloss).
154Siddhāntaśiromaṇi, Gola, xiv. 12 (gloss).
155Siddhāntaśiromaṇi, Gola, xv. 13 (gloss).
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The fifth method depends on the formula

R sin(45◦ − θ) =

√
1

2
(R cos θ −R sin θ)2.

“Thus, for instance, take the eighth Rsine; its Rcosine is the sixteenth Rsine.
From these the fourth is derived; and so on.”156

All the theoretical methods described above require the extraction of the
square-root. So Bhāskara II propounds a new method (the sixth) in which
that will not be necessary. It is based on the employment of the formula

R cos 2θ = R− 2(R sin θ)2
R

,

or cos 2θ = 1− 2 sin2 θ.

But this method is defective in as much as “only certain elements of a table
of Rsines can be calculated thus,”157 but not the whole table. This defect is
present in a sense in the previous methods, for no one of the trigonometri-
cal formulae employed in them suffices alone for the computation of a table
containing more Rsines (vide infra).
The seventh method of Bhāskara II for calculating a table of twenty-four

Rsines, has been described thus:

Multiply the Rcosine by 100 and divide by 1529; diminish the
Rsine by its 1

467
part. The sum of these two results will give the

next Rsine and their difference the previous Rsine. Here 225 less 1

7
is the first Rsine. And by this rule can be successively calculated
the twenty-four Rsines.158

jyā (nα± α) =

(
jyā nα− jyā nα

467

)
± 100

1529
kojyā nα,

where n = 1, 2, . . . , 24; α = 3◦45′ ; and jyā α = 225− 1
7 .

The rationale of this formula is as follows:
By the Addition and Subtraction Theorems,

jyā (nα± α) =
1

R
(jyā nα× kojyā α± kojyā nα× jyā α),

= jyā nα× kojyā α
R

± kojyā nα× jyā α
R

.

156Siddhāntaśiromaṇi, Gola, xiv. 14 (gloss).
157Siddhāntaśiromaṇi, Gola, xiv. 15 (gloss).
158Siddhāntaśiromaṇi, Gola, xiv. 18–20.
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Now

1

R
jyā α =

1

3438

(
225− 1

7

)
=

787

12033
=

1

15.289707 . . .

=
100

1528.9707 . . .
=

100

1529
nearly,

and

1

R
kojyā α =

1

R

√
R2 − (jyā α)2 =

√
1−

(
jyā α
R

)2

=

√
1− 1

233.775 . . .
= 1− 1

467.550 . . .

= 1− 1

467
nearly

and hence the rule. This formula is very nearly accurate. For according to
the modern values

jyā (3◦45′) = 224.856 . . .

Therefore
1

R
jyā (3◦45′) =

224.856

3438
=

1

15.28978 . . .
=

100

1528.978 . . .
.

Bhāskara II has indicated how to compute a table of Rsines for every 3◦ of
a circle of radius 3438′. He writes:

For instance if (it be required to compute) thirty Rsines in a quad-
rant, half the radius is the tenth Rsine, its Rcosine is the twentieth
Rsine. R sin 45◦ is the fifteenth Rsine; R sin 36◦ is the twelfth and
R cos 36◦ the eighteenth. The Rsine of 18◦ is the sixth and its
Rcosine is the twenty-fourth. Then by the rule for deriving the
Rsine of the half arc from the square-root of the sum of the squares
of the Rsine and versed Rsine of an arc, as stated before, from the
tenth (is derived) the fifth; its Rcosine is the twenty-fifth. In that
way from the twelfth (is calculated) the sixth and twenty-fourth;
from the sixth, the third and twenty-seventh; from the eighteenth,
the ninth and twenty-first. These are the only elements (of the
table) of Rsines which can be calculated in this way. So it has
been observed that ‘only certain elements etc.’ Next the formula
for the Rsine of half the difference of two arcs should be employed.
Let the fifth be the one Rsine and the ninth the other. From them
will follow the second; its Rcosine is the twenty-eight Rsine. From
these two again by employing the (previous) rule for the Rsine of
semi-arcs from the square-root of the sum of the squares of the
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Rsine and versed Rsine, the first and fourteenth (are obtained).
The remaining fourteen Rsines can also be computed in the same
way.159

Bhāskara II has further given a rule for computing a trigonometrical table
for every degree. So it is called pratibhāgika-jyakā-vidhi (“The rule for the
Rsine of every degree”).

Deduct from the Rsine of any arc its 6567th part; multiply its
Rcosine by 10 and then divide by 573. The sum of these two
results is the next Rsine and their difference the preceding Rsine.
Here the first Rsine (i.e. R sin 1◦) will be 60′ and other Rsines may
be successively found. Thus in a circle of radius equal to 3438′,
will be found 90 Rsines.160

jyā(θ ± 1◦) =

(
jyā θ − jyā θ

6567

)
± 10

573
kojyā θ,

where θ = 1◦, 2◦, . . . , 89◦; given jyā 1◦ = 60′.
The rationale of this rule can be easily found: For by the Addition and

Subtraction Theorems,

jyā (θ ± 1◦) =
1

R
(jyā θ × kojyā 1◦ ± kojyā θ × jyā 1◦).

Now it is stated that R = 3438′ and jyā 1◦ = 60′. Therefore

1

R
jyā 1◦ =

60

3438
=

10

573

1

R
kojyā 1◦ =

√
1−

(
jyā 1◦

R

)2

=

{
1−

(
10

573

)2
} 1

2

= 1− 100

2× 328329
= 1− 1

6566.58

= 1− 1

6567

= 0.999847723 . . .

The denominator wrongly appears as 6569 in Bapu Deva’s edition of the
Siddhāntaśiromaṇi.161

The short table of Bhāskara II contains differences of Rsines for intervals
of 10◦ in a circle of radius 120.162

159Siddhāntaśiromaṇi, Gola, xiv. 15 (gloss).
160Siddhāntaśiromaṇi, Gola, xiv. 16–8.
161The text given by Bapu Deva runs as “Svago’ṅgeṣusaḍaṃśena…”. It will be “Svāgāṅgeṣu-

ṣaḍaṃśena…”.
162Siddhāntaśiromaṇi, Graha, ii. 13.
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Posterior Writers

Amongst the writers posterior to Bhāskara II (1150) who have given tables
of trigonometrical functions, the most notable are Mahendra Sūri (1370) and
Kamalākara (1658). The latter has a table of Rsines and their differences for
every degree of arc of a circle of radius 60, while the former gives tables of
Rsines and versed Rsines together with their differences for every degree of the
arc of a circle of radius 3600. Mahendra Sūri has furnished also some other
tables for ready reckoning in Astronomy. It is noteworthy that Mahendra
Sūri’s work, Yantrarāja,163 is admittedly based upon some Arabic work. We
are informed by his commentator Malayendu Sūri, a direct disciple of the
author and who wrote his commentary only 12 years after the text, that the
author was the court astrologer of some potentate of the name of Firoz, who is
probably the famous Sultan Firoz Shah Tughluk of Delhi (1351–88 ad). The
illustrations chosen will agree with this date.
Table 2 gives the relevant details of the various Rsine-Tables constructed

in India from time to time.

6 Interpolation

Function of any arc

For finding the trigonometrical functions of an arc, other than those whose
values have been tabulated, the Hindus generally follow the principle of pro-
portional increase. Thus the Sūryasiddhānta says:

Divide the minutes (into which the given arc is first reduced) by
225; the quotient will indicate the number of tabular Rsines ex-
ceeded; (the remainder) is multiplied by the difference between the
(tabular) Rsine exceeded and that which is till to be reached and
then divide by 225. The result thus obtained should be added to
the exceeded tabular Rsine; (the sum) will be the (required) direct
Rsine. This rule is applicable also to the case of (determining) the
versed Rsine.164

Brahmagupta states:

Divide the minutes by 225, the quotient (will indicate) the number
of tabular Rsines (exceeded); the remainder is multiplied by the

163Mss. of the text with the commentary of Yantrarāja are available in the libraries of
India Office, London (Nos. 2906-8), Benares Sanskrit College (No. 2905), Bikaner Palace
(No. 760) and also at other places. Our copy has been procured from Benares.

164Sūryasiddhānta, ii. 31–2.



6 Interpolation 325

Table 2

Constructor of Table Radius chosen Interval
taken

Sexagesimal places calculated

Author of
Sūryasiddhānta1

3438′ 225′ 1 (minutes only)

Āryabhaṭa2 3438′ 225′ 1 (same Table as in
Sūryasiddhānta)

Varāhamihira3 120 225′ 2 (minutes and seconds)
Brahmagupta (1)4 3270 225′ 1
Brahmagupta (2)5 150 15◦ 1
Deva6 300 10◦ 1
Lalla (1)7 3438′ 225′ 1 (same Table as in

Āryabhaṭīya)
Lalla (2)8 150 10◦ 1
Sumati9 3438′ 1◦ 1
Govindasvāmi10 3437′44′′19′′′ 225′ 3
Vaṭeśvara11 3437′44′′ 56′15′′ 2
Mañjula12 8◦8′ 30◦ 2 (degrees and minutes)
Āryabhaṭa II13 3438′ 225′ 1
Śrīpati14 3415′ 225′ 1
Udayadivākara15 12375859′′′ or

3437′44′′19′′′
225′ 1 (thirds only)

Bhāskara II (1)16 3438′ 225′ 1
Bhāskara II (2) 120 10◦ 1
Brahmadeva17 120 15◦ 1
Vṛddha Vaśiṣṭha18 1000 10◦ 1
Malayendu Sūri19 3600 1◦ 2
Madanapāla20 21600 1◦ 2
Mādhava21 3437′44′′48′′′ 225′ 3
Parameśvara22 3437′44′′ 225′ 2
Munīśvara23 191 1◦ 4
Kṛṣṇa-daivajña24 500 3◦ 1
Kamalākara25 60 1◦ 5
Jagannātha Samrāṭa26 60 30′ 5
1 Sūryasiddhānta, ii. 17–22(a–b). 2 Āryabhaṭīya, i. 12.
3 Pañcasiddhāntikā, iv. 6–12. 4 Brāhmasphuṭasiddhānta, ii. 2–5.
5 Khaṇḍakhādyaka, Part I, iii. 6; Dhyānagrahopadeśa, 16.
6 Karaṇa-ratna. i. 23. 7 Śiṣyadhīvṛdhhida, I, ii. 1–8. 8 Ibid., xiii. 3. 9 Sumati-
mahā-tantra and Sumati-karaṇa. 10 His comm. on Mahābhāskarīya, iv. 22.
11 Vaṭeśvara-siddhānta, II, i. 2–26. 12 Laghumānasa, ii. 2(c–d).
13 Mahāsiddhānta, iii. 4–6(a–b). 14 Siddhāntaśekhara, iii. 3–6. 15 His comm. on
Laghubhāskarīya, ii. 2–3. 16 Siddhāntaśiromaṇi, Gaṇita, ii. 3–6; 13.
17 Karaṇa-prakāśa, ii. 1. 18 Vṛddha-Vaśiṣṭha-siddhānta, ii. 10–11. 19 Yantrarāja,
i. 5, commentary. 20 His comm. on Sūryasiddhānta, xii. 83. 21 See Nīlakaṇṭha’s
comm. on Āryabhaṭīya, ii. 12. 22 His comm. on Laghubhāskarīya, ii. 2(c–d)–3(a–b).
23 Siddhānta-sārvabhauma, ii. 3–18. 24 Karaṇa-kaustubha, ii. 4–5.
25 Siddhāntatattvaviveka, ii. 244-5 (Lucknow Edition).
26 Siddhānta-samrāṭ, ii. beginning.
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(next) difference of Rsines and divided by the square of 15; the re-
sult is added to the (tabular) Rsine corresponding to the quotient.
Such (is the method) for finding the Rsine.165

Such rules appear also in other astronomical works.166

The method of Mañjula (932) is very simple though it yields results only
roughly approximate. He says:

The sum of the signs (in the given arc successively) multiplied by
4, 3 and 1 will give the degrees in the Rsines and Rcosines (to be
found); such are the minutes.167

This rule though it appears to be cryptic has been fully explained by the
commentators; Praśastidhara (968), Parameśvara (1430) and Yallaya (1482).
We shall explain it with the help of a simple illustrative example: Suppose it
is necessary to find the Rsine of the angle 76◦30′. This angle can be written
as 2 signs 16◦30′. Now the rule says that for the first sign take 4 and for the
second sign 3. For the third sign of 30◦ we are to take 1, so for a portion
16◦30′ of that sign we should take (16 1

2×1)

30 . The sum of these 4, 3 and 33
60 will

be the degrees in the required Rsine; and they will also be the minutes of the
required Rsine. Therefore

jyā (76◦30′) =

(
4 + 3 +

33

60

)
degrees+

(
4 + 3 +

33

60

)
minutes

= 7◦40′33′′.

The rationale of this rule which has also been given by the earlier commenta-
tors, is this: Mañjula considers the circle of reference to be of radius 488′ or
in sexagesimal notation 8◦8′; and his Table (ed. see Table 3) is very short. To
find the Rsine of any intermediate arc he applies the principle of proportional
increase. And this at once leads to the rule.

Arcs of functions

The Hindus employed the principle of proportional increase also for the inverse
problem of finding the arc which has a given trigonometrical function different
from those tabulated. The Sūryasiddhānta says:

Subtract the (nearest smaller tabular)Rsine (from the givenRsine)
multiply the remainder by 225 and divide by that difference (i.e.

165Brāhmasphuṭasiddhānta, ii. 10; compare also Khaṇḍakhādyaka, Part I, iii. 6.
166Mahābhāskarīya, iv. 3–4; Laghubhāskarīya, ii. 2–3; Śiṣyadhīvṛddhida, ii. 12; Mahā-

siddhānta, iii. 10 1
2
; Siddhāntaśiromaṇi, Graha, ii. 10 1

2
; Siddhāntatattvaviveka, ii. 171;

Siddhāntaśekhara, iii. 15.
167चतु ेक रा ै ं दोःको ोरंशकाः कलाः।—Laghumānasa, ii. 2.
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Table 3

Arcs Rsines Differences

0◦ 0◦ 0′

4◦ 4′

30◦ 4◦ 4′

3◦ 3′

60◦ 7◦ 7′1

1◦ 1′

90◦ 8◦ 8′

1 Accurately speaking

jyā 60◦ = 488×
√
3

2
= 7◦2′.608 . . . ;

Mañjula takes the value to be 7◦7′ obviously
with the purpose of simplifying his rule.

the difference corresponding to the interval in which the given
Rsine lies); the quotient added to the number (corresponding to
the tabular Rsine subtracted) multiplied by 225 will give the arc
(required).168

Brahmagupta writes:

Subtract the (nearest smaller tabular)Rsine (from the givenRsine);
the remainder is multiplied by 225 and divided by the (tabular)
difference of Rsines; the result should then be added to the prod-
uct of the number corresponding to the subtracted Rsine and the
square of 15: (this will be) the arc (required).169

Similarly in other works.170

Second difference

The process explained above for calculating the trigonometrical functions of
a given arc or the arc having given trigonometrical functions of a given arc or
the arc having given trigonometrical functions, will yield results correct only
to a first degree of approximation in as much as the first difference alone of the

168Sūryasiddhānta, ii. 33.
169Brāhmasphuṭasiddhānta, ii. 11; compare also Khaṇḍakhādyaka, iii. 12; Dhyānagraho-

padeśa, 70.
170Mahābhāskarīya, viii. 6; Śiṣyadhīvṛddhida, ii. 13; Mahāsiddhānta, iii. 12; Siddhānta-

śekhara, iii. 16; Siddhāntaśiromaṇi, Graha, ii. 11f; Siddhāntatattvaviveka, ii. 172–3.
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Table 4

Values of the
argument α

Values of the
function f(α)

Differences of
functions

α1 f1
∆1

α2 f2
∆2

α3 f3

tabular Rsines has been employed.171 More accurate results will be obtained
by taking into consideration also the second (and higher) differences. The
earliest Hindu writer to do so was Brahmagupta. It is perhaps noteworthy that
this more correct method of interpolation does not occur in his bigger work,
Brāhmasphuṭasiddhānta, which was composed in 628 ad, but in his earlier
monograph Dhyānagrahopadeśa as well as in his later work Khaṇḍakhādyaka
written in 665 ad. These latter works, as has been stated before, contain a
table of differences of Rsines for every arc of 15◦ in a circle of radius equal to
150. He says:

Half the difference between the (tabular) difference passed over
and that to be passed is multiplied by (residual) minutes and di-
vided by 900; half the sum of those differences plus or minus that
quotient according as it is less or greater than the (tabular) differ-
ence to be passed, will be the (corrected) value of the difference
to be passed over.172

Suppose it is required to calculate the function—Rsine, Rcosine or versed
Rsine—of an arc α′. Let α1, α2, α3 be the three consecutive values of the
argument in the table (ed. see Table 4) such that α3 > α2 > α1.
Now if α3 > α′ > α2 for the calculation of f(α′), f2 will be technically called

“the function exceeded”, f3 “the function to be reached”, ∆1 “the difference
passed over” and ∆2 “the difference to be passed”. Let α′ − α2 = r.
Now suppose that α3 −α2 = α2 −α1 = h, say. Then according to the rules

171The roughness of the result is due also to other causes. Bhāskara II observes: “As much
large the radius of the circle is and into as many large number of (equal) arcs its quadrant
is divided, so much accurate will be the Rsines (calculated). Otherwise (the result) will
be rough (sthūla).”—Siddhāntaśiromaṇi, Graha, ii. 15 (gloss).

172गतभो ख का रदल वकलवधा तैनव भरा ा ।
तो ु तदलं युतोनं भो ा ना धकं भो ॥
Khaṇḍakhādyaka, Part 2, i, 4; Dhyānagrahopadeśa, 17. See Sengupta, P. C., “Brahma-
gupta on Interpolation”, Bulletin of Calcutta Mathematical Society, xxii, 1931.
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stated by all Hindu astronomers,

f(α′) = f2 +
r

h
∆2;

which is correct up to the first order of approximation. To get more accurate
results, says Brahmagupta

∆1 +∆2

2
± r

h

(
∆1 ∼ ∆2

2

)
should be taken as the value of “the difference to be passed”, instead of ∆2;
the positive or negative sign being taken, according as

∆1 +∆2

2
< or > ∆2.

Therefore, according to the method of Brahmagupta

f(α′) = f2 +
r

h

{
∆1 +∆2

2
± r

h

(
∆1 ∼ ∆2

2

)}
.

In the rule h is stated to be 900, as it was formulated with a view at the table
of the Khaṇḍakhādyaka, in which the interval between the consecutive values
of the argument, is 15◦ or 900′. This equation can be written in the form

f(α′) = f2 +
r

h
∆2 +

r

2h

(
1± r

h

)
(∆1 ∼ ∆2);

which agrees with the formula method of interpolation, correct up to the
second degree.173

As has been observed by Bhāskara II174 in the above formula one has to
take the negative sign in calculating the Rsine functions and the positive sign
for the versed Rsines. For in case of Rsine functions, the first difference con-
tinuously decreases as the argument increases, while contrary is the case with
the versed Rsine functions. Therefore the mean value of any two differences

173It may be mentioned here that the formula

f(α′) = f2 +
r

h
∆1 −

r

2h

(
1 +

r

h

)
(∆1 −∆2)

has been stated by Vaṭeśvara (904) in his Siddhānta (Ch. 2, sec. 1, vss. 65–6) and the
formula

f(α′) = f2 +
r

h
∆2 +

r

2h

(
1−

r

h

)
(∆1 −∆2)

by Govindasvāmi (8th century) in his commentary on Mahābhāskarīya (iv. 22) and by
Parameśvara (1408) in his commentary on Laghubhāskarīya [ii. 2(c–d)–3(a–b)]. Govinda-
svāmi has, however, prescribed it for the second sign only.

174…ऊनं यते यतः म ाकरणे ख ा पचयेन वत े। उ म ाकरणे तूपचयेनात युत म ुपप ।
—Siddhāntaśiromaṇi, Graha, ii. 16 (gloss).
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i.e.
(
∆1+∆2

2

)
is greater than the succeeding one (∆2) in case of Rsine functions

and less in case of versed Rsine functions.
Brahmagupta’s method of interpolation appears also in the works of Mañ-

jula (932) thus:

(Find) half the sum of the tabular difference passed over and that
to be passed; half their difference is multiplied by the (remaining)
degrees etc. and divided by 30; half the sum minus this quotient
will be the corrected value of the difference of (tabular) Rsines to
be passed in the (calculations of the Laghu-) Mānasa.175

The divisor is stated to be 30 in this rule, as Mañjula’s table of Rsines
contains values at intervals of 30◦ each.
Bhāskara II (1150) writes:

The difference of the (tabular) difference passed over and that to
be passed is multiplied by the remaining degrees and divided by
20; half the sum of the (tabular) difference passed over and that to
be passed minus or plus that quotient will be the corrected value
of the difference to be passed over in calculation here for Rsines
and versed Rsines.176

In formulating this rule Bhāskara II had in view a table calculated at inter-
vals of 10◦. The rationale of the rule has been explained by him thus:

Half the sum of the (tabular) difference passed over and that to
be passed will be the difference at the middle of those differences.
But the difference to be passed is at the end of that interval to be
passed. Hence proportion (should be taken) with their difference:
If for an interval of 10◦, we obtain half the difference of them, then

175गतै ख योगाधम राधन स ुणा ।
भागादःे खा ल ोनं भो ा मानसे ु टाः ॥
There is a bit of uncertainty about the authenticity of this verse. In the Calcutta Univer-
sity Collection, there are three manuscripts of the Laghumānasa and four commentaries
which contain also the text. The commentary of Praśastidhara (958) is “copied from
Ms. No. B 583 and compared with other Mss. in the Oriental Library, Mysore.” That
by Parameśvara (1430) is “copied from a palm leaf manuscript in Malayalam character
belonging to the office of the curator for the publication of Sanskrit Mss., Trivandrum.”
The source of the commentary of Yallaya (1482) is not mentioned. The above verse ap-
pears in the commentaries of Praśastidhara and Yallaya. But in the latter it has been
attributed to Mallikārjuna Sūri. Now this writer flourished about 1180 ad. Thus he is
posterior to Praśastidhara by more than two centuries. So, it is not possible for the latter
to borrow anything from the former. I think the mistake has been made by Yallaya. The
verse in question seems to me to be due in fact to Māñjula, and is more particularly from
his Bṛhat-mānasa, which is now lost. Praśastidhara has quoted copiously from that work
in his commentary of the Laghumānasa without, however, expressly mentioning it.

176Siddhāntaśiromaṇi, Graha, ii. 16.
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what will be obtained for (an interval of) the remaining degrees?
Thus by the rule of three, 20 will be the divisor of the product of
the remaining degrees and the difference of the (tabular) difference
passed over and that to be passed. By the quotient is then dimin-
ished half the sum of the (tabular) difference passed over and that
to be passed; for in the calculations of Rsines the differences are
in the decreasing order. But in the calculations of versed Rsines
they are in the increasing order and hence the plus in this case.
Thus (the rule) is proved.

This method of interpolation has been severely criticised by Kamalākara.177

But he is wrong. Munīśvara (1646) attempted to modify this method by
iterating the process but his process of iteration is incorrect as he has replaced
the (tabular) difference to be passed by the instantaneous difference, at every
stage.178

The rationale of the rule can be shown with the help of trigonometry to be
as follows:

∆1 = sinα2 − sinα1 = sinα2 − sin(α2 − h) = sinα2(1− cosh) + cosα2 sinh.

Since h is small we can expand cosh and sinh in powers of h; then neglecting
powers higher than the second, we get

∆1 = h cosα2 +
h2

2
sinα2.

Similarly,

∆2 = h cosα2 −
h2

2
sinα2.

Therefore,

∆1 +∆2

2
= h cosα2 and ∆1 −∆2

2
=
h2

2
sinα2.

Now, if α′ = α2 + r, up to the second order of approximation, we have

sinα′ = sin(α2 + r) = sinα2

(
1− r2

2

)
+ r cosα2.

Therefore,

sinα′ = sinα2 +
r

h

(
∆1 +∆2

2
− r

h
× ∆1 −∆2

2

)
.

177Siddhāntatattvaviveka, i, ii. 175–83.
178For Munīśvara’s process of iteration, see Gupta, R. C., “Munīśvara’s modification of

Brahmagupta’s rule for second order interpolation”, Indian Journal of History of Science,
Vol. 14, No. 1, 1979, pp. 66–72.
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Evidently in this case,
∆1 +∆2

2
> ∆2.

Hence,
sinα′ = sinα2 +

r

h

(
∆1 +∆2

2
− r

h
× ∆1 ∼ ∆2

2

)
.

In case of versine functions

∆1 = versinα2 − versin(α2 − h),

= cos(α2 − h)− cosα2 = h sinα2 −
h2

2
cosα2;

∆2 = versin(α2 + h)− versinα2,

= cosα2 − cos(α2 + h) = h sinα2 +
h2

2
cosα2.

Therefore,
∆1 +∆2

2
< ∆2,

and
∆1 +∆2

2
= h sinα2,

∆1 −∆2

2
= −h

2

2
cosα2.

Now

versinα′ = 1− cosα′ = 1− cos(α2 + r) = versinα2 + r sinα2 +
r2

2
cosα2.

Therefore,

versinα′ = versinα2 +
r

h

(
∆1 +∆2

2
+
r

h
× ∆1 ∼ ∆2

2

)
.

Combining these two results we get Brahmagupta’s formula.
This method of interpolation has been applied also to the inverse problem

of finding the arc having a given trigonometrical function.
Brahmagupta says:

To find the arc, multiply the residue (after subtracting as many
Rsines from the given quantity as possible) by 900 and divide by
the difference to be passed after having determined that difference
by repeated operations. The degrees in the quotient will be the
arc of the residue. Subtract (as many possible) Rsines (from the
given quantity), multiply the residue by 900 and divide by the
(next) difference not subtracted; the quotient will be the second
residue; multiply it by half the difference between the (tabular)
difference passed over and that to be passed and then divide by 900.
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With this quotient proceed as before for the (adjusted) value of
the (tabular) difference to be passed. Repeat the same operations
with the residue until the result is obtained finally.179 (By “Rsines”
in this rule is meant “tabular Rsine-differences.”)

The latter portion of this rule has become rather cryptic, as all the suc-
cessive operations have not been fully described. But it appears from the
explanations of the commentator Bhaṭṭotpala (966) that Brahmagupta has
intended the same formula as has been clearly described by Bhāskara II. The
latter says:

Subtract the (tabular) differences (as many as possible from the
given value); multiply half the remainder by the difference of the
(tabular) difference passed over and that to be passed, and then
divide by the (tabular) difference to be be passed. Half the sum of
the (tabular) difference passed over and that to be passed plus or
minus the quotient is the adjusted value of the (tabular) difference
to be passed, whence (will follow) the arc (required).180

He then remarks as before that the negative sign should be taken in calcu-
lating the Rsines and the positive sign for the versed Rsines.
The rationale of this will be clear from the previous formula on inversion.

There we shall now have f(α′) known and r (= α′ − α2) as unknown.

f = f2 +
r

h

(
∆1 +∆2

2
± r

h
× ∆1 −∆2

2

)
or

r

h
×∆2 = f − f2 +

r

h
× ∆2 −∆1

2
∓ r2

h2
× ∆1 −∆2

2
.

Now let us take for the first approximation, as before

r

h
=
f − f2
∆2

.

Substituting this value of r
h in the neglected terms; we get for the second

approximation

r = (f − f2)×
h

∆2
×
(
1 +

∆2 −∆1

2∆2
∓ f − f2

∆2
2 × ∆1 −∆2

2

)
= (f − f2)×

h

∆
, say,

179Khaṇḍakhādyaka, Part 2, i. 12. The printed text gives only the earlier part of the rule.
The remaining portion has been taken from the text of Bhaṭṭotpala.

180Siddhāntaśiromaṇi, Graha, ii. 17.
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so that ∆ will be adjusted value of the (tabular) difference to be passed. Then

1

∆
=

1

∆2

(
1 +

∆2 −∆1

2∆2
∓ f − f2

∆2
2 × ∆1 −∆2

2

)
.

Therefore,

∆ = ∆2

(
1 +

∆2 −∆1

2∆2
∓ f − f2

∆2
2 × ∆1 −∆2

2

)−1

= ∆2

(
1− ∆2 −∆1

2∆2
± f − f2

∆2
2 × ∆1 −∆2

2

)
or ∆ =

∆1 +∆2

2
± f − f2

2∆2
× (∆1 −∆2),

or as stated in the rule. But the more accurate result by inversion would have
been

∆ =
∆1 +∆2

2
± f − f2

∆1 +∆2
× (∆1 −∆2).

Bhāskara II was clearly aware of this. For he is found to have remarked:

This improved formula for calculating the arc is a little rough
(sthūla). Though rough, it has been adopted for its simplicity
(sukhārtha). By other means such as finer calculations or repeated
applications it can be made more accurate.181

Generalised formula

Brahmagupta has extended his formula of interpolation so as to be applicable
also to the case when the intervals between the consecutive tabular values of
the argument are not equal. He says:

Multiply the increase of the śīghra anomaly to be passed by the de-
grees of the increase of the śīghra equation passed over and divide
by the increase of the śīghra anomaly passed over; the quotient is
the (adjusted) increase of the śīghra equation in degrees. Multiply
half the difference of that and the increase of the śīghra equation
to be passed by the residue of the anomaly and divide by the in-
crease of the śīghra anomaly to be passed; half the sum of these
equations is decreased or increased by the (last) quotient, accord-
ing as it (half the sum) is greater or less than the śīghra equation

181इदं धनुःख ु टीकरणं क ूल । ूलम प सुखाथम कृत । अ था बीजकमणाऽसकृ मणा वा ु टं कतु
यु ते। —Ibid (gloss).
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to be passed; the result will be corrected śīghra equation to be
passed.182

That is, if α3 − α2 ̸= α2 − α1, let α3 − α2 = h2 and α2 − α1 = h1. Then

f(α′) = f2 +
r

h2

{(
1

2
× ∆1 × h2

h1
+∆2

)
± r

h2
× 1

2

(
∆1 × h2
h1

−∆2

)}
,

or
f(α′) = f2 +

r

h2
×∆2 +

r

2h2

(
1± r

h2

)(
∆1 × h2
h1

−∆2

)
,

where the upper or lower sign is to be taken according as

1

2

(
∆1 × h2
h1

+∆2

)
< or > ∆2.

7 Spherical trigonometry

Solution of spherical triangles

From the use in the treatment of astronomical problem, we find that the Hin-
dus knew how to solve spherical triangles, of oblique as well as of right-angled
varieties. They do not seem to possess a general method of solution in this
matter unlike the Greeks who systematically followed the method of Ptolemy
(c. 150) based on the well-known theorem of Menelaus (90). Still with the help
of the properties of similar plane triangles and of the theorem of the square
of the hypotenuse, they arrived at a set of accurate formulae sufficient for
the purpose. As has been proved conclusively by Sengupta,183 Braunmühl184

was wrong in supposing that in the matter of solution of spherical triangles
the Hindus utilised the method of projection contained in the Analemma of
Ptolemy.

Right-angled spherical triangle

The Hindus obtained the following formulae for the right-angled spherical
triangle, right-angled at C:

(i) sin a = sin c sinA,

(ii) cos c = cos a cos b,
182भु ग तफल शगुणा भो ग तभु ग त ता ल ं

भु गतेः फलभागा ो फला राधहत ।
वकलं भो ग त तं ल ेनोना धकं फलै ाध
भो फलाद धकोनं त ो फलं ु टं भव त ॥ —Khaṇḍakhādyaka, Part 2, ii. 2–3.

183Sengupta, P. C., “Greek and Hindu Methods in Spherical Trigonometry”, Journal of
Department Letters, Calcutta University, Vol. xxi (1931).

184Braunmühl, Geschichte, pp. 38ff; compare also Heath, Greek Math., II, p. 291.
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(iii) sin c cosA = cos a sin b,

(iv) sin b = tan a cotA,

(v) cosA = tan b cot c.

It should be particularly noted that as the tangent and cotangent func-
tions are not recognised in Hindu trigonometry, the formulae (iv) and (v) are
ordinarily written in the forms

(iv) sin b = sin a× cosA
cos a× sinA, (v) cosA =

sin b× cos c
cos b× sin c .

These formulae were obtained thus: (See Figure 13)
Let ABC be a spherical triangle right-angled at C, lying on a sphere whose

centre is at O. Produce the sides AC and AB to P and Q respectively, such
that the arc AP = arc AQ = 90◦. Join PQ by an arc of the great circle on
the sphere. Produce the arcs CB and PQ so as to meet at the point Z.

Z

Q

P
T

C

B
O

nN

A

m

Figure 13

Then clearly Z is the pole of the circle ACP as A is of the circle PQZ. Join
A, B, C, P , Q, Z, with O. Draw QT perpendicular to OP , Bm to OC, Bn
and CN to OA. Join mn.
From the similar triangles OQT and nBm

nB

OQ
=
nm

OT
=
Bm

QT
(19)
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and from the similar triangles Onm and ONC

On

ON
=
Om

OC
=
nm

NC
. (20)

Substituting the values in terms of trigonometrical functions, we get

jyā c
R

=
nm

kojyā A =
jyā a
jyā A, (21)

kojyā c
kojyā b =

kojyā a
R

=
nm

jyā b . (22)

Hence from (21), we get

jyā a =
jyā c× jyā A

R
,

which is of course equivalent to

sin a = sin c sinA. (23)

Similarly from (22)

kojyā c = kojyā a× kojyā b
R

,

or
cos c = cos a cos b. (24)

Again equating the values of mn from (21) and (22), we get

jyā c× kojyā A = kojyā a× jyā b;

that is,
sin c cosA = cos a sin b. (25)

Eliminating sin c between (23) and (25), we get

sin b = tan a cotA;

and eliminating cos a between (24) and (25), we have

cosA = tan b cot c. (26)

As an illustration of the application of the above formulae let us take the
problem of determination of the Sun’s right ascension (α) when the Sun’s
longitude (λ) and declination (δ) are known. (ed. In Figure 14) Let γM
be the equator, γS the ecliptic and S the Sun. Then λ(= γS) denotes the
Sun’s longitude, δ(= SM) the Sun’s declination and α(= γM) the Sun’s right
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γ

S

M

Figure 14

ascension. If ϵ denotes the obliquity of the ecliptic, then by the formula (iii),
we get

sinα =
sinλ× cos ϵ

cos δ .

This result is stated by Āryabhaṭa,185 Brahmagupta186 and others.187 It is
noteworthy that in this particular case the triangles Bnm and OQT are called
technically krānti-kṣetra or “declination triangles” which shows definitely that
they were actually drawn and the final result was actually obtained by the
method stated above.188

Oblique spherical triangle

For the solution of an oblique spherical triangle the Hindus had equivalents
of the following formulae:189

(i) cos a = cos b cos c+ sin b sin c cosA,

(ii) sin a cosC = cos c sin b− sin c cos b cosA,

(iii) sin a
sinA =

sin b
sinB =

sin c
sinC .

(ed. In Figure 15) Let ABC be a spherical triangle lying on a sphere whose
centre is at O. Produce the arc AC to S and arc CB to Q, such that the arc
CS = arc CQ = 90◦. Then C will be the pole of the great circle SQN . Join
OA, OS and ON . Through B draw the small circle RBR′ perpendicular to
OA, intersecting the great circle SQN at D and D′. Join DD′ intersecting
SON at V . Let the diameter RV R′ of the small circle cut OA at O′. Again
through O draw the straight line WOE parallel to DVD′. Draw the great

185Āryabhaṭīya, iv. 25.
186Brāhmasphuṭasiddhānta, iii. 15.
187Sūryasiddhānta, iii. 41–43; Pañcasiddhāntikā, iv. 29; Siddhāntaśiromaṇi, Graha, ii. 54–5

etc.
188Compare Sengupta, P. C., “Papers on Hindu Mathematics and Astronomy”, Part I,

Calcutta, 1916, pp. 46ff; PS, iv. 35 (comments).
189Braunmühl, Geschichte, I, p. 41; Kaye, G. R., “Ancient Hindu Spherical Astronomy”,

JASB, Vol. xv (1919), pp. 153ff; P. C. Sen Gupta, Papers etc., pp. 57ff.
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Figure 15

circle KEK ′W parallel to the small circle RBR′ and the great circle EAW
perpendicular to the latter and cutting it at F and F ′. From B draw BT

perpendicular to RV R′, BH to DVD′ and BM to OQ. Join MH cutting
WOE at L. Draw NY perpendicular to OA, QQ′ and MM ′ to OS. Let BH
cut FF ′ at G.
From the similar triangles BMH and OY N , we get

BM

OY
=
MH

NY
=
HB

NO
; (27)

and from the similar triangles OV O′ and ONY

OV

ON
=
V O′

NY
=
O′O

Y O
. (28)

Hence substituting the values

kojyā a
kojyā (90◦ − b)

=
MH

jyā (90◦ − b)
=
HB

R
,

and
OV

R
=

V O′

jyā (90◦ − b)
=

kojyā c
kojyā (90◦ − b)

;

Q

S

O

LM

B

T

K

R

H

F

D

G

A

Y

C

N

W

V

E

K ′

R′

M ′Q′

F ′

D′
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whence
HB =

R kojyā a
jyā b , MH =

kojyā a× kojyā b
jyā b , (29)

and
OV =

R kojyā c
jyā b , O′V =

kojyā b× kojyā c
jyā b . (30)

Further,
O′R = jyā c,

RT =
jyā c× utjyā A

R
,

ML =
jyā a× kojyā (C − 90◦)

R
.

 (31)

Now
HB = V T = RO′ +O′V −RT.

Therefore substituting the values of the constituent elements on either sides
of equations from (29), (30) and (31) we get

R kojyā a
jyā b = jyā c+ kojyā b× kojyā c

jyā b − jyā c× utjyā A
R

,

=
kojyā b× kojyā c

jyā b +
jyā c× kojyā A

R
;

which is equivalent to

cos a = cos b cos c+ sin b sin c cosA.

Again
MH =ML+ LH =ML+OV.

Therefore by (29), (30) and (31)

kojyā a× kojyā b
jyā b =

jyā a× jyā (C − 90◦)

R
+
R kojyā c

jyā b ,

or
R2 kojyā c = R kojyā a× kojyā b+ jyā a× jyā b× kojyā C;

which is equivalent to

cos c = cos a cos b+ sin a sin b cosC, (32)

a formula similar to (i).
From the similar triangles OQQ′ and OMM ′, we have

OQ

OM
=

QQ′

MM ′ =
Q′O

M ′O
. (33)
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Therefore

OM ×Q′O = OQ×OM ′ = OQ(MH −OV )

= Y N ×HB −OV ×R.

[
∵ MH

YN
=
HB

NO

]
Hence

OM ×Q′O = Y N(RO′ +O′V −RT )−OV ×R;

or

jyā a× jyā (C − 90◦) =

jyā (90◦ − b)

(
jyā c+ kojyā b× kojyā c

jyā b − jyā c× utjyā A
R

)
− R2 kojyā c

jyā b ;

or

jyā a× kojyā C =
kojyā b× jyā c

R
(R− utjyā A)− kojyā c

jyā b
[
R2 − (kojyā b)2

]
,

or
jyā a× kojyā C = kojyā c× jyā b− jyā c× kojyā b× kojyā A;

which is equivalent to

sin a cosC = cos c sin b− sin c cos b cosA.

Since MM ′ = BT , we get from (33)

OM

OQ
=

BT

QQ′ .

Hence
jyā a
R

=
jyā c× jyā A
R jyā C

or
jyā a
jyā A =

jyā c
jyā C .

Similarly it can be proved that

jyā c
jyā C =

jyā b
jyā B .

These are of course equivalent to

sin a
sinA =

sin b
sinB =

sin c
sinC .

As an illustration of the application of the above formulae we take up the
problem of the determination of the relation between the zenith distance (z),
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azimuth (ψ) and hour angle (H) of a heavenly body of known declination (δ)
at a station whose terrestrial latitude is ϕ. In Figure 15 let NEQS denote the
horizon, NACS the meridian circle, KEK ′ the equator, RBR′ the diurnal
circle of the heavenly body (B), AFE the six o’clock circle, A the north pole
and C the zenith. Then a = z, b = 90◦ − ϕ, c = 90◦ − δ, ∠A = H, C = ψ.

Substituting these values in the formulae (i), (32) and (ii), we obtain

cos z = sin δ sinϕ+ cos δ cosϕ cosH,
sin δ = cos z sinϕ+ sin z cosϕ cosψ,

and
sin z cosψ = sin δ cosϕ− cos δ sinϕ cosH.

These equations were obtained by most of the Hindu astronomers.190 It
should however be made clear that the final results were arrived at by succes-
sive stages. The straight line DVD′, the line of intersection of the diurnal cir-
cle with the horizon, is technically called udayāsta-sūtra (“the thread through
the rising and setting points”), BM is called śaṅku (“gnomon”), BH cheda
or iṣṭahṛti (“optional divisor”), MH śaṅkutala, BG (= the jyā in the diurnal
circle of the complement of the hour angle) kalā, GH (= the jyā of the arc of
the diurnal circle intercepted between the horizon and the six o’clock circle)
kujyā or kṣitijyā (“earth-sine”), HL (= jyā ED) agrā, ML bāhu, OM dṛgjyā
(“jyā of the zenith distance”), the angle EAD cara (“the ascensional differ-
ence”). The existence of these technical terms proves conclusively that the
Hindus actually made the constructions contemplated above. They recognise
the angle MBH to be equal to the latitude of the observer’s station.
The Sūryasiddhānta says:

The Rsine of the declination multiplied by the palabhā (= 12 tanϕ)
and divided by 12 gives the kujyā (“the earth-sine”); that multi-
plied by the radius and divided by the radius of the diurnal circle
will give the jyā whose arc will be the cara (“ascensional differ-
ence”).191

kujyā =
jyā δ × 12 jyā ϕ
12× kojyā ϕ ,

carajyā =
kujyā ×R

kojyā δ .

Again
190Pañcasiddhāntikā, iv. 42–4; Sūryasiddhānta, iii. 28–31, 34–5; Brāhmasphuṭasiddhānta,

iii. 25–40, 54–6; Siddhāntaśiromaṇi, Graha, iii. 50–52; etc.
191Sūryasiddhānta, ii. 61; also Āryabhaṭīya, iv. 26; Śiṣyadhīvṛddhida, ii. 17; Brāhmasphuṭa-

siddhānta, ii. 57–60; Pañcasiddhāntikā, iv. 26–7;Siddhāntaśiromaṇi, Graha, ii. 48.
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The radius plus the carajyā in the northern hemisphere, or minus
it in the southern hemisphere is called antyā; subtract from it the
versed Rsine of the hour angle; (the remainder) multiplied by the
radius of the diurnal circle and divided by the radius will be the
cheda; that multiplied by the Rsine of the co-latitude and divided
by the radius will be the śaṅku; subtract the square of it from the
square of the radius; the square-root of the remainder will be the
jyā of the zenith distance.192

R± carajyā = antyā,
(antyā − utjyā H)× kojyā δ

R
= cheda,

cheda × kojyā ϕ
R

= śaṅku,

and
√
R2 − (śaṅku)2 = jyā z.

Therefore, in the northern hemisphere,

kojyā z = śaṅku,

=
kojyā δ × kojyā ϕ

R2

(
R+R

jyā δ × jyā ϕ
kojyā δ × kojyā ϕ − utjyā H

)
,

or
R2 kojyā z = R jyā δ × jyā ϕ+ kojyā δ × kojyā ϕ× kojyā H;

which is of course equivalent to

cos z = sin δ sinϕ+ cos δ cosϕ cosH.

Again it has been said that193

śaṅkutala ∓ bāhu = agrā,

the negative or positive sign being taken according as the heavenly body is in
the northern or southern hemisphere. Further194

agrā =
R jyā δ
kojyā ϕ, and bāhu = − jyā z × kojyā ψ

R
;

Also195

śaṅkutala =
śaṅku × jyā ϕ

kojyā ϕ .

192Sūryasiddhānta, iii. 34–6.
193Ibid, iii. 23–4.
194Sūryasiddhānta, iii. 27; Pañcasiddhāntikā, iv. 39; Āryabhaṭīya, iv. 30; Brāhmasphuṭa-

siddhānta, xxi. 61.
195Āryabhaṭīya, iv. 28, 29; Brāhmasphuṭasiddhānta, iii. 65, xxi. 63.
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Hence substituting the values

− jyā z × kojyā ψ
R

=
śaṅku × jyā ϕ

kojyā ϕ − R jyā δ
kojyā ϕ

=
jyā ϕ× kojyā δ

R2

{
R+R

jyā ϕ× jyā δ
kojyā ϕ× kojyā δ − utjyā H

}
− R jyā δ

kojyā ϕ

=
jyā ϕ× kojyā δ × kojyā H

R2
− jyā δ × kojyā ϕ

R
,

which is of course equivalent to

sin z cosψ = sin δ cosϕ− cos δ sinϕ cosH.

7.1 Expansion of trigonometrical functions

Remarkable work on the expansion of trigonometrical functions, sin θ, cos θ,
tan−1 θ, etc., was done in India by the astronomers of Kerala in the fourteenth,
fifteenth and sixteenth centuries ad. It will be discussed in another article
which will be devoted to the “Calculus”.



Use of calculus in Hindu mathematics ∗

1 Differential calculus

1.1 A controversy

Attention was first drawn to the occurrence of the differential formula

∂(sin θ) = cos θ ∂θ

in Bhāskara II’s (1150) Siddhāntaśiromaṇi by Pandit Bapu Deva Sastri1 in
1858. The Pandit published a summarised translation of the passages which
involve the use of the above formula. His summary was defective in so far
as it did not bring into prominence the idea of the infinitesimal increment
which underlies Bhāskara’s analysis. Without making clear to his readers,
the full significance of Bhāskara’s result, the Pandit made the mistake of
asserting—what was plain to him—that Bhāskara was fully acquainted with
the principles of the differential calculus.
The Pandit was adversely criticised by Spotiswoode,2 who without consult-

ing the original on which the Pandit based his conclusions, remarked (1) that
Bapu Deva Sastri had overstated his case in saying that Bhāskarācārya was
fully acquainted with the principles of the differential calculus, (2) that there
was no allusion to the most essential feature of the differential calculus, viz. the
infinitesimal magnitudes of the intervals of time and space therein employed,
and (3) that the approximative character of the result was not realised.
Since the above controversy took place no serious investigation of the subject

seems to have been made by any scholar.3 In order that the reader may be
better able to judge the merit of the Hindu claim to the invention of the
differential calculus, it is desirable that the problems which required the use
of the above differential formula be stated first.
* Bhibhutibhusan Datta and Avadhesh Narayan Singh. Revised by K. S. Shukla. Indian
Journal of History of Science, Vol. 19, No. 2 (1984), pp. 95–104.

1JASB (= Journal of the Asiatic of Bengal), Vol. 27, 1858, pp. 213–6.
2JARS, Vol. 17, 1860, pp. 21–2.
3Except for a paper by P. C. Sen Gupta in the Journal of the Department of Letters,
Calcutta University, Vol. XXII (1931). Recently A. K. Bag has included this topic in his
book “Mathematics in Ancient and Medieval India”, Chaukhambha Orientalia, Varanasi,
1979.
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1.2 Problems in astronomy

The calculation of eclipses is one of the most important problems of astronomy.
In ancient days this problem was probably more important than it is now,
because the exact time and duration of the eclipses could not be foretold
on account of lack of the necessary mathematical equipment on the part of
the astronomer. In India, the Hindus observed fast and performed various
other religious rites on the occasion of eclipses. Thus their calculation was a
matter of national importance. It afforded the Hindu astronomer a means of
demonstrating the accuracy of his science and his own ability to the public
who patronised him. The problem of the calculation of conjunction of planets
and occultation of stars was equally important both from scientific as well as
religious view points.
In problems of the above nature it is essential to determine the true in-

stantaneous motion of a planet or star at any particular instant. This in-
stantaneous motion was called by the Hindu astronomers tātkālika-gati. The
formula giving the tātkālika-gati (instantaneous motion) is given by Āryabhaṭa
and Brahmagupta in the following form:

u′ − u = v′ − v ± e(sinw′ − sinw) (1)

where u, v, w are the true longitude, mean longitude, mean anomaly re-
spectively at any particular time and u′, v′, w′ the values of the respective
quantities at a subsequent instant; and e is the eccentricity or the sine of
the greatest equation of the orbit. The tātkālika-gati is the difference u′ − u

between the true longitudes at the two positions under consideration. Ārya-
bhaṭa and Brahmagupta used the sine table to find the value of (sinw′−sinw).
The sine table used by them was tabulated at intervals of 3◦45′ and thus was
entirely unsuited for the purpose. To get the values of sines of angles not
occurring in the table, recourse was taken to interpolation formulae, which
were incorrect because the law of variation of the difference was not known.

1.3 A differential formula

Mañjula (932) was the first Hindu astronomer to state that the difference of
the sines,

sinw′ − sinw = (w′ − w) cosw,
where (w′ − w) is small.

He says:

True motion in minutes4 is equal to the cosine (of the mean ano-
maly) multiplied by the difference (of the mean anomalies) and

4This clearly shows that the formula is intended for use when difference is small, the result
being expressible in minutes.
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divided by the cheda,5 added or subtracted contrarily (to the mean
motion).6

Thus according to Mañjula formula (1) becomes

u′ − u = v′ − v ± e(w′ − w) cosw, (2)

which, in the language of the differential calculus, may be written as

∂u = ∂v ± e cos θ ∂θ.

We cannot say exactly what was the method employed by Mañjula to obtain
formula (2). The formula occurs also in the works of Āryabhaṭa II (950),7
Bhāskara II (1150),8 and later writers. Bhāskara II indicates the method of
obtaining the differential of sine θ, His method is probably the same as that
employed by his predecessors.

1.4 Proof of the differential formula

Let a point P (See Figure 1) move on a circle. Let its position at two successive
intervals be denoted by P and Q. Now, if P and Q are taken very near each
other, the direction of motion in the interval PQ is the same as that of the
tangent at P. Let PT be measured along the tangent at P equal to the arc
PQ. Then PT would be the motion of the point P if its velocity at P had not
changed direction.
Discussing the motion of planets, Bhāskarācārya says:

The difference between the longitudes of a planet found at any
time on a certain day and at the same time on the following day
is called its (sphuṭa)gati (true rate of motion) for that interval of
time.
This is indeed rough motion (sthūlagati). I now describe the fine
(sūkṣma) instantaneous (tātkālika) motion.9 The tātkālika-gati (in-
stantaneous motion) of a planet is the motion which it would have,
had its velocity during any given interval of time remained uni-
form.

During the course of the above statement, Bhāskara II observes that the
tātkālika-gati is sūkṣma (“fine” as opposed to rough), and for that the interval

5Here cheda (divisor) = 1
e
. According to Hindu astronomers 1

e
= 360

P
, where P is the

periphery of the epicycle.
6Laghumānasa, ii. 7.
7MSi (=Mahā-siddhānta), iii. 15f.
8SiŚi (=Siddhāntaśiromaṇi), Gaṇitādhyāya, Spaṣṭādhikāra, 36–7.
9SiŚi (=Siddhāntaśiromaṇi), Gaṇitādhyāya, Spaṣṭādhikāra, 36 (c–d).
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must be taken to be very small, so that the motion would be very small.
This small interval of time has been said to be equivalent to a kṣaṇa10 which
according to the Hindus is an infinitesimal interval of time (immeasurably
small).11 It will be apparent from the above that Bhāskara did really employ
the notion of the infinitesimal in his definition of tātkālika-gati.
But in actual practice, the intervals that are considered are not infinitesimal.

How are we, then, to apply the notion of tātkālika-gati to actual problems?
The answer to the above question is given by Bhāskara II as follows:

In equation (1) we have to consider the sine-difference (sinw′ − sinw). Let
an arc of 90◦ be divided into n parts each equal to A, and let us consider the
sine differences R(sinA − sinO), R(sin 2A − sinA), R(sin 3A − sin 2A), etc.
These differences are termed bhogya-khaṇḍa. Bhāskara II says:

These are not equal to each other but gradually decrease, and
consequently while the increase of the arc is uniform, the increment
of the sine varies—on account of deflection of the arc.

In the figure given above, let the arc PQ = A. Then

R(sin∠BOQ− sin∠BOP ) = QN − PM = Qn

which is the bhogya-khaṇḍa. Bhāskara introduces the notion of tātkālika
bhogya-khaṇḍa (instantaneous sine difference) in order to find the variation
10The smallest unit of time, according to Bhāskara II is a truṭi (SiŚi, Gaṇita, Madhyamā-

dhikāra, Kālamānādhyāya, 6), which is equivalent to 1
33750

of a second. The kṣaṇa is
smaller, in fact the smallest interval of time that can be imagined.

11These remarks are made with reference to the motion of the moon. As the motion of the
moon is comparatively quicker, so the tātkālika-gati will not give correct result unless the
time interval is taken small enough.
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of the sine at P . According to him if the arc BP instead of being deflected to-
wards Q, be increased in the direction of the tangent, so that PT = PQ = A,
then TS − PM = Tr is the tātkālika bhogya-khaṇḍa of the sine PT , i.e. the
“instantaneous sine difference”. By having recourse to this artifice Bhāskara II
avoids the use of the infinitesimal in his analysis. It should be borne in mind
that the “instantaneous sine difference” for a finite arc PQ, is a purely arti-
ficial quantity created with a special end in view, and is different from the
actual “sine difference” R(sinBOQ− sinBOP ).
Now from the similar triangles PTr and PMO, we at once derive the pro-

portion12

R : PT :: R cosw : Tr. (3)

Therefore Tr = PT cosw. But

Tr = R(sinw′ − sinw) and PT = R(w′ − w).

Therefore
(sinw′ − sinw) = (w′ − w) cos w.

Thus the tātkālika bhogya-khaṇḍa (the instantaneous sine difference) in mod-
ern notation is

∂(sin θ) = cos θ ∂θ.

This formula has been used by Bhāskara to calculate the ayana-valana
(“angle of position”).13

If the above were the only result occurring in Bhāskara II’s work, one
would be justified in not accepting the conclusions of Pandit Bapu Deva Sastri.
There is however other evidence in Bhāskara II’s work to show that he did ac-
tually know the principles of the differential calculus. This evidence consists
partly in the occurrence of the two most important results of the differential
calculus:

(i) He has shown that when a variable attains the maximum value its dif-
ferential vanishes.

(ii) He shows that when a planet is either in apogee or in perigee the equa-
tion of the centre vanishes. Hence he concludes that for some intermedi-
ate position the increment of the equation of centre (i.e. the differential)
also vanishes.14

12It should be noted that for the purpose of the following proof, it is immaterial, whether
we take PQ small or not, because it is PT that we are considering and not PQ. Bhāskara
actually takes the ∠POQ =

(
3 3
4

)◦
= 225′ for exhibiting equation (3). The notion of the

infinitesimal is here involved in the definition of tātkālika bhogya-khaṇḍa.
13SiŚi, Golādhyāya, Grahaṇa, Grahaṇa-vāsanā; see also Sen Gupta, l.c., p. 11 ff.
14These results occur in the Golādhyāya, Spaṣṭādhikāra vāsanā of the Siddhāntaśiromaṇi,
and were first noted by Sudhakara Dvivedi.
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The second of the above results is the celebrated Rolle’s Theorem, the mean
value theorem of the differential calculus.

1.5 Remarks

The use of a formula involving differentials in the works of ancient Hindu
mathematicians has been established beyond the possibility of any doubt.
That the notion of instantaneous variation of motion entered into the Hindu
idea of differentials as found in works of Mañjula, Āryabhaṭa II, and Bhās-
kara II is apparent from the epithet tātkālika (instantaneous) gati (motion) to
denote these differentials. The main contribution of Bhāskara II to the theory
of these differentials, which were already worked out by his predecessors, seems
to be his proof of the formula by the rule of proportion without actually using
the infinitesimal or varying quantities. He has, however, made it quite clear
that the differentials give true results only when very small variations are
concerned.

1.6 Nīlakaṇṭha’s result

Nīlakaṇṭha (c. 1500) in his commentary on the Āryabhaṭīya has given proofs,
on the theory of proportion (similar triangles) of the following results:

(i) The sine-difference sin(θ+ ∂θ)− sin θ varies as the cosine and decreases
as θ increases.

(ii) The cosine-difference cos(θ+∂θ)−cos θ varies as the sine negatively and
numerically increases as θ increases.

He has obtained the following formulae:

(i) sin(θ + ∂θ)− sin θ = 2 sin ∂θ
2 cos

(
θ + ∂θ

2

)
(ii) cos(θ + ∂θ)− cos θ = −2 sin ∂θ

2 sin
(
θ + ∂θ

2

)
.

The above results are true for all values of ∂θ whether big or small. There
is nothing new in the above results. They are simply expressions as products
of sine and cosine differences.
But what is important in Nīlakaṇṭha’s work is his study of the second

differences. These are studied geometrically by the help of the property of
the circle and of similar triangles. Denoting by ∆2(sin θ), and ∆2(cosθ), the
second differences of these functions, Nīlakaṇṭha’s results may be stated as
follows:

(i) The difference of the sine-difference varies as the sine negatively and
increases (numerically) with the angle.
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(ii) The difference of the cosine-difference varies as the cosine negatively and
decreases (numerically) with the angle.

For ∆2(sin θ), Nīlakaṇṭha15 has obtained the following formula:

∆2(sin θ) = − sin θ
(
2 sin ∆θ

2

)2

.

Besides the above, Nīlakaṇṭha, has made use of a result involving the differ-
ential of an inverse sine function.16 This result, expressed in modern notation,
is

∂(sin−1 e sinw) = e cosw√
1− e2 sin2 w

∂w.

In the writings of Acyuta (1550–1621 ad) we find use of the differential of
a quotient17 also

∂

[
e sinw

1± cosw

]
=
e cosw ± [(e sinw)2/(1± e cosw)]

1± e cosw ∂w.

2 Method of infinitesimal-integration

2.1 Surface of the sphere

For calculating the area of the surface of a sphere Bhāskara II (1150) describes
two methods which are almost the same as we usually employ now for the same
purpose.

First method

Make a spherical ball of clay or of wood. On it take a (vertical)
circumference circle and divide this into 21600 parts. Mark a point
on the top of it. With that point as the centre and with the radius
equal to the 96th part of the circumference, i.e. to 225′, describe a
circle. Again with same point as the centre with twice that arc as
radius describe another circle; with thrice that another circle; and
so on up to 24 times. Thus there will be 24 circles in all. The radii
of these circles will be the jyā 225′ (= R sin 225′), etc. From them
the lengths of the circles can be determined by proportion. Now
the length of the extreme circle is 21600′ and its radius is 3438′.
Multiplying the Rsines (of 225′, 450′, etc.) by 21600 and dividing
by 3438, we shall obtain the lengths of the circles. Between two

15This together with the results given above are proved by Nīlakaṇṭha in the commentary
on the Āryabhaṭīya, ii. 12.

16Cf. Tantrasaṅgraha, ii. 53–4.
17Cf. Sphuṭa-nirṇaya-tantra, iii, 19–20; Karaṇottama, ii. 7.
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of these circles there lie annular strips and there are altogether 24
such. They will be many more in case of many Rsines being taken
into consideration (bāhujyā-pakṣe-bahūni syuḥ). In each annulus
considering the larger circle at the lower end as the base and the
smaller circle at the top as the face and 225′ as the altitude (of
the trapezium), find its area by means of the rule ‘half the sum of
the base and the face multiplied by the altitude etc.’18 Similarly
the areas of all the annular figures severally can be found. The
sum of all these areas is equal to the area of the surface of half of
the sphere. So twice that is the area of the surface of the whole
sphere. And that is equal to the product of the diameter and the
circumference.19

In other words, if Tn denotes the nth jyā (or Rsine), Cn the circumference
of the corresponding circle, An the area of the nth annulus, and S the area of
the surface of the sphere, then we shall have

Cn =
21600

3438
× Tn

An =
Cn + Cn−1

2
× 225

=
225× 21600

2× 3438
(Tn + Tn+1).

Therefore,
1

2
S =

∑
An =

225× 21600

2× 3438

∑
(Tn + Tn+1)

the summation being taken so as to include all the Rsines in a quadrant of the
circle. Since there are ordinarily 24 Rsines in a Hindu trigonometrical table,
we have

1

2
S =

225× 21600

3438

∑
(T1 + T2 + · · ·+ T23 +

1

2
T24)

=
21600× 225× 52513

3438

= 21600× 3436.7 . . .

Hence approximately
S = 21600× 2× 3437.

Bhāskara II states:

Area of the surface = circumference× diameter.
18The rule quoted here for finding the area of a trapezium is that given by Śrīdhara (Triś,
R. 42). Bhāskara II’s rule is defined slightly differently (vide L, p. 44).

19SiŚi, Gola, Bhuvanakośa, verses 55–7 (gloss).
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Second method

Suppose the (horizontal) circumference-circle on the surface of the
sphere to be divided into parts as many as four times the number
of Rsines (in a quadrant). As the surface of an emblic myrobalan
is seen divided into vapras (i.e. lunes) by lines passing through
its face (or top) and bottom, so the surface of the sphere should
be divided into lunes by vertical circles as many as the parts of
the above mentioned (horizontal) circumference-circle. Then the
area of each lune should be determined by (breaking it up into)
parts. And this area of a lune is equal to the sum of all the
Rsines diminished by half the radius and divided by the semi-
radius. Since that is again equal to the diameter of the sphere, so
it has been said that the area of the surface of a sphere is equal to
the product of its circumference and diameter.20

The method has been further elucidated by him in his gloss thus:

As many as are Rsines in the table of any particular work se-
lected, take four times that number, and suppose the (horizontal)
circumference-circle on the sphere is to be divided into, as many
parts. Like the natural lines seen on the surface of a round em-
blic myrobalan passing through its face and base and thus divid-
ing it into lunes, draw circles on the surface of the given sphere,
passing through its top and bottom and thereby dividing it into
lunes as many as the number of parts into which the (horizon-
tal) circumference-circle is divided. Next the area of each lune
has to be determined. It can be done thus: For instance in the
Dhīvrddhida,21 there are 24 Rsines. So suppose the (horizontal)
circumference-circle measures 96 cubits. On drawing the vertical
circles through every cubit, there will be as many lunes. Then
the upper half of any one lune on drawing the transverse arcs at
distances of every cubit, will be divided into portions equal to the
number of Rsines, that is, 24. The lengths of these transverse lines
will be obtained by dividing the Rsines severally by the radius. Of
these the lowest line measures one cubit; but the upper and upper
ones are a little smaller and smaller according to the Rsines. But
the altitude is all along one cubit in length. Now by finding the
area of each portion in accordance with the rule, “half the sum of
the top and the base multiplied by the altitude etc.” they should
be added together. This sum gives the area of half a lune; twice

20Ibid, verses 58–61.
21That is Śiṣyadhīvṛddhida of Lalla.
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that is the area of a lune. For the determination of that the rule
is, “the sum of all the Rsines minus half the radius etc.” Now the
sum of all the Rsines, 225 etc., is 54233.22 This diminished by the
semi-radius becomes 52514. Dividing the result by the semi-radius
we get the area of each lune as 30;33. Now 30;33 is equal to the
diameter of a circle whose circumference measures 96. And as the
number of lunes is equal to the number of portions of the circum-
ference it is consequently proved that the area of the surface of a
sphere is equal to the product of its circumference and diameter.

If ln denotes the length of the nth transverse arc, we have

ln =
Tn × 1

R
.

Therefore,

area of a lune = 2×
∑ 1

2
(ln + ln+1)× 1

= 2
∑ 1

2R
(Tn + Tn+1)

the summation being taken so as to include all the Rsines. Hence

area of a lune = 2× 1

R
(T1 + T2 + · · ·+ T23 +

1

2
T24)

=
1

R/2

(
T1 + T2 + · · ·+ T24 −

R

2

)
= 30; 32, 94 . . .

Now
96× 1250

3927
= 30; 33, 46 . . .

Hence the area of a lune is numerically equal to the diameter of the sphere.
As the number of lunes is equal to the number of parts of the circumference
of the sphere, we get

Area of the surface = circumference× diameter.

2.2 Volume of the sphere

To find the volume of a sphere Bhāskara II states the following method:

Consider on the surface of the sphere pyramidal excavations, each
of a base of a unit area having unit sides and of a depth equal to

22According to Lalla the sum of the Rsines is 54233.
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the radius, as many as the number of units of area in the surface.
The apices of these pyramids meet at the centre of the sphere. The
sum of the volumes of the pyramids is equal to the volume of the
sphere. So it is proved (that the volume of a sphere is equal to the
sixth part of the product of the surface area and diameter).23

The above results are the nearest approach to the method of the integral
calculus in Hindu Mathematics. It will be observed that the modern idea of
the “limit of a sum” is not present. This idea, however, is of comparatively
recent origin so that credit must be given to Bhāskara II for having used the
same method as that of the integral calculus, although in a crude form.

23SiŚi, Gola, Bhuvanakośa, verses 58–61, (gloss).



Use of permutations and combinations in
India ∗

Interest of the Hindus in the subject of permutations and combinations orig-
inated in connection with the variation of the Vedic metres in a very early
age. There are specific rules for the calculation of the variation of metres in
the Chandaḥ-sūtra of Piṅgala (before 200 bc). Permutations and combina-
tions seem to have been subjects of such a fascinating study for the Hindus
that they applied the ideas about them in various other spheres of life, e. g.
architecture, music, medicine, and astrology. Application of the principles
of permutations and combinations is also found in the canonical literature of
the Jainas in the study of philosophical categories. The present article aims
at giving an account of the various uses of permutations and combinations
in Indian literature.

1 Early interest in the subject

The Hindu interest in the subject of permutations and combinations began
in a very early age, first probably in connection with the variation of the
Vedic metres and philosophical categories.1 In the Chandaḥ-sūtra (“Rules
of the Metre”) of Piṅgala, a work on Vedic metres, written before 200 bc,
we find specific rules for computation of the possible number of variations
of even, semi-even, and uneven metres in a group with a specified number
of long and short syllables in a quarter of a verse. In the Nāṭya-śāstra of
Bharata Muni2 are stated the number of variations of even metres having
six to 26 syllables in a quarter of a verse. In the classical treatise on Hindu
medicine by Suśruta, called Suśruta-saṃhitā,3 written about 600 bc, the total
number of combinations that can be made out of six savours taking one, two,
three, . . . , five, and all at a time is found to have been correctly stated as
63. The early canonical literature of the Jaina’s (500–300 bc)4 abounds in

* Bibhutibhusan Datta and Avadhesh Narayan Singh. Revised by K. S. Shukla. Indian
Journal of History of Science, Vol. 27, No. 3 (1992), pp. 231–249.

1See the article of Gurugovinda Chakravarti on the “Growth and development of permu-
tations and combinations in India” in BCMS, XXIV (1932).

2See Ch. xiv, vv. 55–81.
3See Ch. lxiii.
4For instance see Jambūdvīpa-prajñapti xx. 4, 5; Bhagavatī-sūtra, Sūtras 314, 341, 371–4,
etc.; Anuyogadvāra-sūtra, Sūtras 76, 92, 126. Compare Bibhutibhusan Datta, “The Jaina

© Hindustan Book Agency 2019 and Springer Nature Singapore Pte Ltd. 2019
Studies in Indian Mathematics and Astronomy,

Sources and Studies in the History of Mathematics and Physical Sciences,
https://doi.org/10.1007/978-981-13-7326-8_18

A. Kolachana et al. (eds.), 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7326-8_18&amp;domain=pdf


2 Terminology 357

instances of speculation about the different sub-categories that can arise out
of a fixed number of fundamental philosophical categories by the combinations
of one, two, or more of them at a time. There are also similar calculations
of the groups that can be formed out of the different instruments of senses,
of the selections that can be made out of a number of males, females, and
eunuchs or of permutations and combinations of various other things. The
principles of the subject seem to have appealed to the Hindu mind and are
found to have been applied in various spheres, such as astrology, perfumery,
architecture, and music, besides those mentioned above. Thus, Bhāskara II
(1150) observes:

It serves in prosody, for those versed therein, to find the variations
of metres; in architecture to compute the changes in apertures, etc.
(of a building); (in music), the scheme of musical permutations;
and in medicine, the combination of different savours.5

2 Terminology

The oldest Hindu names for the subject of permutations and combinations
are vikalpa (lit. “alternatives”, “variations”) and bhaṅga (lit. “poses”). Both
these terms occur in the early canonical works of the Jainas (500–300 bc).
The term vikalpa can be traced still earlier in the Suśruta-saṃhitā (c. 600
bc). Brahmagupta (628) calls it chandaściti (“piling of metres”),6 obviously
because it originated, as has been stated above, in connection with the varia-
tion of Vedic metres. This name appears in later works also. Mahāvīra (850)
calls combinations by the term yutibheda (“variations of combinations”)7 and
Śrīdhara (c. 750) and Bhāskara II (1150) by the term bheda or vibheda (“vari-
ation”) only.8 Bhāskara II introduces the names aṅkapāśa (“concatenation of
numbers”) and gaṇita-pāśa9 for permutations. Nārāyaṇa (1356) has used the
term aṅkapāśa10 to denote the whole subject of permutations and combina-
tions. The Hindu expressions corresponding to the modern “taken one at a
time”, “taken two at a time”, etc., are ekaka-saṃyoga (lit. “one-combination”),
dvika-saṃyoga (“two combination”), etc. These terms occur from the Suśruta-
saṃhitā onwards. Other terms used in that sense are eka-vikalpa (“one varia-
tion”), dvi-vikalpa (“two variation”) etc.

School of Mathematics”, BCMS, XXI (1929), pp. 133 ff.
5See L (=Līlāvatī ) p. 26 f. Cf. GK (= Gaṇitakaumudī ), xiii. 2.
6See BrSpSi (=Brāhmasphuṭasiddhānta), xx.
7See GSS (=Gaṇitasārasaṅgraha), Ch. vi.
8See PG (=Pāṭīgaṇita), p. 95.
9See L, p. 83.

10See GK, II, p. 286.
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3 Suśruta’s rules for combinations

Suśruta (c. 600 bc)11 states that the number of combinations of six savours—
sweet, acid, saline, pungent, bitter, and astringent—taken two at a time is
15. He seems to have arrived at it by writing down all the combinations
exhaustively. For he observes:

On making two combinations in successive way, those beginning
with sweet are found to be 5 in number; those beginning with
acid are 4; those with saline 3; those with pungent 2; bitter and
astringent make 1 combination.

He then presents the actual combinations thus: sweet-acid, sweet-saline, sweet-
pungent, sweet-bitter, sweet-astringent; acid-saline, acid-pungent, acid-bitter,
acid-astringent; saline-pungent, saline-bitter, saline-astringent; pungent-bitter,
pungent-astringent; and bitter-astringent. In the same way, Suśruta finds the
number of 3-combinations to be 20; 4-combinations 15; 5-combinations 6; and
6-combinations 1. Thus, there are 6 + 15 + 20 + 15 + 6 + 1 = 63 different
combinations in all.

4 Jaina canonical works

In the early canonical works of the Jainas (500–300 bc), we find the results
which correspond to

nC1 = n, nC2 =
n(n− 1)

1× 2
, nC3 =

n(n− 1)(n− 2)

1× 2× 3
, . . .

After stating the results in case of n = 1, 2, 3, 4, the Bhagavatī-sūtra
observes:

And in this way 5, 6, 7, . . . , 10, etc. numerable, innumerable,
or infinite number of things may be mentioned. Forming one-
combinations, two-combinations, three-combinations, and so on,
ten-combinations, eleven-combinations, twelve-combinations, etc.,
as the successive combinations are formed, all of them should be
considered.12

5 Varāhamihira’s rule

To find the number of combinations of n unlike things taken 1, 2, 3, . . . at a
time successively, Varāhamihira (d. 587) gives the following rule:
11In Suśruta-saṃhitā, Ch. lxiii.
12Bhagavatī-sūtra, Sūtra 314.
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They say that the number (of combinations) is obtained by (writ-
ing down the natural numbers 1, 2, 3, etc. up to the total number
of things, one above the other, and) adding the preceding num-
ber to the succeeding one (in succession) and rejecting the last
number.13

The commentator Bhaṭṭotpala (966) has explained the process clearly by
taking 16 different things. We reproduce from him the following scheme for
it:

16
15 120
14 105 560
13 91 455 1820
12 78 364 1365
11 66 286 1001
10 55 220 715
9 45 165 495
8 36 120 330
7 28 84 210
6 21 56 126
5 15 35 70
4 10 20 35
3 6 10 15
2 3 4 5
1 1 1 1

(The topmost number in the first column gives 16C1, that in the second column
gives 16C2, that in the third column 16C3, and that in the fourth column 16C4.
To get 16C5 and others, the process of forming the successive columns should
be continued further on.)
While dealing with the manufacture of perfumes in his Bṛhatsaṃhitā, Varā-

hamihira says:

An immense number of perfumes can be made out of 16 ingredi-
ents, if every 4 of them are combined at will in one, two, three,
and four proportions . . . . The total number of these perfumes will
be 174720. Each substance (of a group of four) taken in one pro-
portion being combined with the other three, taken in two, three,
and four proportions, gives rise to 6 perfumes; and so it does,
when taken in two, three or four proportions. One substance as-
sociated with a group of four substances (thus) gives rise to 24

13Bṛhatsaṃhitā, with the commentary of Bhaṭṭotpala, edited by Sudhākara Dvivedī, in two
volumes, Benaras, 1897. lxxvi, 22.
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perfumes; and in the same way the remaining three substances (of
that group) (also give rise to 24 perfumes). The total of all these
is 96. Now when 16 substances are divided into separate groups
of 4 each, there arise 1820 such groups. Since each group of four
gives rise to 96 varieties (of perfumes), therefore that number (i.e.,
1820) should be multiplied by 96. The number (resulting from this
product) is the (total) number of perfumes.14

In another place, Varāhamihira states, “there are 31 varieties of anaphā-yoga
and sunaphā-yoga each, and 180 of durudharā-yoga.”15 Now it has been de-
fined that an anaphā-yoga occurs when one or more of the five planets, Mars,
Mercury, Jupiter, Venus, and Saturn, occupy the twelfth house from the Moon;
in sunaphā-yoga, a similar occurrence takes place in the second house from
the Moon; and in the durudharā-yoga, the planets occupy both these houses.
Hence, we get

5C1 +
5C2 +

5C3 +
5C4 +

5C5 = 5 + 10 + 10 + 5 + 1 = 31
5C1(

4C1 +
4C2 +

4C3 +
4C4) +

5C2(
3C1 +

3C2 +
3C3)+

5C3(
2C1 +

2C2) +
5C4(

1C1) = 75 + 70 + 30 + 5 = 180.

Brahmagupta (628) has devoted one full chapter (20th) of his treatise on as-
tronomy, the Brāhmasphuṭasiddhānta, to the treatment of variation of metres.
But on account of faulty readings, it has not been possible to make proper
sense out of it.

6 Śrīdhara’s rule

To find the number of combinations of the six savours, taken one, two, three,
. . . , five, and all at a time, Śrīdhara gives the following rule:

Writing down the numbers beginning with one and increasing by
one up to the (given) numbers of savours, in the inverse order,
divide them by the numbers beginning with one and increasing
by one in the regular order, and then multiply successively by the
preceding (quotient) the succeeding one.16

14Bṛhatsaṃhitā, lxxvi, 13–21. See also lxxvi, 29–30. It will be noted that the total number
of perfumes will be 24 × 1820, i.e., 43680, and not 174720, as stated by Varāhamihira.
His commentator Bhaṭṭotpala rightly remarks: “This number (i.e. 174720) is obtained by
taking all varieties subordinate to each ingredient, and not by taking the main varieties
(which must be all different). Considering the main varieties only, the total number of
perfumes comes to 43680, because a group of four yields only 24 varieties (of perfumes).”

15Bṛhajjātaka, edited by Sitaram Jha, with the commentary of Bhaṭṭotpala, Benaras, 1921,
Ch. xiii, vs. 4.

16PG, Rule 72.
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Thus, writing the numbers of the savours 1, 2, 3, 4, 5, 6 in the inverse order
and dividing them by the same numbers in the regular order, we get

6

1
,

5

2
,

4

3
,

3

4
,

2

5
,

1

6
.

Performing the successive multiplication by the preceding quotient of the
succeeding one, we get

6

1
,

6

1
× 5

2
,

6

1
× 5

2
× 4

3
,

6

1
× 5

2
× 4

3
× 3

4
,

6

1
× 5

2
× 4

3
× 3

4
× 2

5
,

6

1
× 5

2
× 4

3
× 3

4
× 2

5
× 1

6
.

These are the values of 6C1, 6C2, 6C3, . . . , 6C6 respectively.

7 Mahāvīra’s rule

To find the number of combinations of unlike things, Mahāvīra gives the fol-
lowing general rule:

Set down the numbers beginning with unity and increasing by one,
up to the (given) number (of things) in the regular and inverse
orders in upper and lower rows respectively. The product of the
numbers (in the upper row) taken right-to-left-wise being divided
by the product of the (corresponding) numbers (in the lower row)
taken in the same way, the quotient gives the result.17

That is to say, if there be n things, we shall have the arrangement

1, 2, 3, . . . , n− r, n− r + 1, . . . , n− 2, n− 1, n

n, n− 1, n− 2, . . . , r + 1, r, . . . , 3, 2, 1.

Then says Mahāvīra

nCr =
n× (n− 1)× (n− 2)× · · · × (n− r + 1)

1× 2× 3× · · · × r
.

It is perhaps noteworthy that one of the illustrative examples given by both
Śrīdhara and Mahāvīra is the same as that given by Suśruta.18 It appears
also in Bhāskara II’s Līlāvatī,19 and Nārāyaṇa’s Gaṇitakaumudī.20

17GSS, vi. 218.
18PG, Ex. 95, GSS, vi. 19.
19L, p. 27.
20GK, xiii. Ex. 22.
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8 Śrīśaṅkara’s rule

Bhaṭṭotpala (966) has quoted the following rule from another writer, probably
Bhaṭṭa Śrīśaṅkara, of whom we know very little now:

Write down (the natural numbers) in the reverse way and below
them in the regular way. Multiply the numbers (in the two rows)
taken in the regular way and divide the product from the upper
row by that from the lower.21

So, the scheme in this case is

n, n− 1, n− 2, . . . , n− r + 1, n− r, . . . , 3, 2, 1

1, 2, 3, . . . , r, r + 1, . . . , n− 2, n− 1, n.

9 Bhāskara II’s rule

Bhāskara II (1150) says:

Divide the numbers from one upwards, increasing by unity, set
down in the inverse order, by the same (arithmeticals) written in
the regular order. The first quotient, the second multiplied by the
first, the next multiplied by that, and so on, give the combinations
by one, two, three, etc. This is the general rule.22

An example from Bhāskara II:

A pleasant, spacious and elegant palace, constructed by a skilful
architect for the landlord, has eight apertures in it. Tell me the
number of combinations of them formed by taking one, two, three,
etc. (at a time).

The total number of combinations

= 8C1 +
8C2 +

8C3 +
8C4 +

8C5 +
8C6 +

8C7 +
8C8

= 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1

= 255.

10 Early rule for permutations

In the early canonical works of the Jainas, we find copious instances of calcu-
lation of permutations yielding results corresponding to the modern formulae.

nP1 = n, nP2 = n(n− 1), nP3 = n(n− 1)(n− 2), etc.
21Bṛhajjātaka, xii. 19 (comm).
22L, p. 27.
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But the earliest mention of a rule for finding the number of permutations
of n things taken all at a time is found in the Anuyogadvāra-sūtra, a canonical
work written before the beginning of the Christian era. It says:

What is the direct arrangement? Dharmāstikāya, Adharmāstikāya,
Ākāśāstikāya, Jīvāstikāya, Pudgalāstikāya and Addhāsamaya—this
is the direct arrangement. What is the reverse arrangement? Ad-
dhāsamaya, Pudgalāstikāya, Jīvāstikāya, Ākāśāstikāya, Adharmā-
stikāya, and Dharmāstikāya—this is the reverse arrangement. What
are the mixed arrangements? From the series of numbers begin-
ning with one and increasing by one up to six terms. The mutual
products of these minus 2 will give the number of mixed arrange-
ments.23

We have similar rules for 7, 10, 16, 24 or any variable number (asaṃkhyeya)
of unlike things.24 Thus, it was known that the number of permutations of n
unlike things taken all at a time is

1× 2× 3× · · · × (n− 2)× (n− 1)× n.

11 Jinabhadra Gaṇi’s rule

Jinabhadra Gaṇi (529–589) says:

Multiply mutually the numbers beginning with one and increasing
by one up to the number of terms (i.e., unlike things); then the
product (will give the number of permutations).25

A similar rule has been given by the commentator Śīlāṅka (862) from an
unknown writer:

Beginning with unity up to the number of terms, multiply continu-
ously the (natural) numbers. The product should be known as the
result (i.e., the total number) in the calculation of permutations
(vikalpagaṇita).26

12 Bhāskara II’s rules

To find the number of permutations of n unlike things taken all at a time.
Bhāskara II (1150) gives a rule similar to those stated above:
23Anuyogadvāra-sūtra, Sūtra, 97.
24Ibid, Sūtras 103, 114–9.
25Viśeṣāvaśyaka-bhāṣya, Gāthā 942.
26Vide Śīlāṅka’s comm. on Sūtrakṛtāṅga-sūtra, samayādhyayana, anuyogadvāra, verse 28.
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The product of the numbers beginning with and increasing by
unity and continued up to the number of places will be the number
of different permutations with all of the specified things.27

He then gives a rule for finding the permutations of n unlike things taking
any variable number of them at a time.

The product of the numbers from the total number of places and
decreasing by unity, continued up to the last of the (variable)
places gives the number of permutations of unlike things.28

That is to say, the number of r permutations of n dissimilar things will be

n(n− 1)(n− 2) . . . up to r factors.

Similar rules are given by Nārāyaṇa.29

13 Permutations of things not all different

To find the number of ways in which n things may be arranged amongst
themselves, taking all at a time, when some of the things are alike, Bhāskara II
gives the following rule:

Find separately the number of permutations for as many places
as are occupied by like digits; then divide by that the number of
permutations calculated before (on the supposition that all the
digits are unlike): the quotient will be the (required) number of
permutations.30

A similar rule is given by Nārāyaṇa:31

That is to say, if p of the digits are alike of one kind, q of them
are alike of a second kind, r of them are alike of a third kind, and
the rest all different, then the number of permutations will be

n!

p! q! r!
,

n being the total number of places occupied by the digits (like and
unlike).

27L, p. 83.
28L, p. 84.
29GK, xiii. 45, 91.
30L, p. 84.
31GK, xiii. 55(c–d)–56(a–b).
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13.1 Examples from Bhāskara II32

The different numbers that can be formed out of the digits 2, 2, 1, 1 are in all

4!

2! 2!
= 6.

The various numbers that can be formed out of the digits 4, 8, 5, 5, 5 are
altogether

5!

3!
= 20.

Nārāyaṇa33 states that when each of the n things is repeated, the number
of r-permutations is nr. As examples, he finds that with the digits 1 and 2
there can be formed as many as 26 or 64 numbers of six notational places
each, and with the digits 1, 2, and 3 will be obtained 33 or 27 numbers of
three notational places each.34

14 Sum of permutations

To find the sum of the numbers that can be formed by the permutations of
some given digits, taken all at a time, Bhāskara II gives the following rule:

That (the number of permutations) is divided by the number of
digits and multiplied by their sum; the result being repeated ac-
cording to the notational places (as many times as the number
of digits) and added together will give the sum of the permuted
numbers.35

This rule is equally applicable to both the cases when all the digits are
unlike and when some of them are alike.36

14.1 Illustrative examples from Bhāskara II37

(1) The numbers that can be formed by permutation of the eight digits 2, 3,
4, 5, 6, 7, 8, 9 are altogether

= 1× 2× 3× 4× 5× 6× 7× 8 = 40320.

Now we have
40320

8
(2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) = 221760;

32L, p. 84.
33GK, xiii. 62 (a).
34GK, xiii. Ex. 27.
35L, p. 83.
36L, p. 84.
37L, pp. 83, 84.
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also setting down 221760 eight times advanced forward one place each
time and then adding together, we get

2 2 1 7 6 0
2 2 1 7 6 0

2 2 1 7 6 0
2 2 1 7 6 0

2 2 1 7 6 0
2 2 1 7 6 0

2 2 1 7 6 0
2 2 1 7 6 0

2 4 6 3 9 9 9 9 7 5 3 6 0

Hence, the sum of the numbers obtained by permutation is 2463999975360.

(2) The number that can be formed by the digits 2,2,1,1 has been found to
be equal to 6 altogether. Now, we get

6

4
(2 + 2 + 1 + 1) = 9;

and also
9

9
9

9

9 9 9 9

Hence, the required sum is 9999.

The rationale of the rule is as follows.38

Case 1. Suppose there are n digits and all of them are unlike

The number of permutations that can be formed with these digits is n!.
Now consider any of the digits, say a. In (n − 1)! of the numbers a will
be in the units’ place; in as many cases it will be in the tens’ place; and
so on. The sum arising from a alone, since there are n digits in all,

= (n− 1)!(10n−1a+ 10n−2a+ . . .+ 10a+ a)

=

(
n!

n

)
(10n−1 + 10n−2 + . . .+ 10 + 1)a.

38Cf. Haran Chandra Banerjee; Līlāvatī, Second edition, Calcutta (1927), pp. 192–195.
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Proceeding in the same way with the other digits and adding up the partial
sums, we get the sum of all the numbers resulting from permutations of
the digits

=

(
n!

n

)
(10n−1 + 10n−2 + . . .+ 10 + 1)× (sum of the digits).

Case 2. Suppose p of the digits to be alike and equal to k1, q of
them equal to k2, r of them equal to k3, and the rest unlike

The number of permutations that can be made with these digits is

n!

p! q! r!
.

The number of cases in which k1 is in the units’ place is

(n− 1)!

(p− 1)! q! r!
.

In as many cases it is in the tens’ place; and so on. Hence, the partial
sum arising out of k1 is

(n− 1)!

(p− 1)! q! r!
(10n−1 + 10n−2 + . . .+ 10 + 1)k1.

In the same way, the partial sums arising from k2 and k3 are respectively

(n− 1)!

(q − 1)! p! r!
(10n−1 + 10n−2 + . . .+ 10 + 1)k2,

(n− 1)!

(r − 1)! p! q!
(10n−1 + 10n−2 + . . .+ 10 + 1)k3,

and the partial sum due to the unlike digits k4, k5, . . . is, by Case 1

(n− 1)!

p! q! r!
(10n−1 + 10n−2 + . . .+ 10 + 1)(k4 + k5 + . . .).

Hence, the required sum of all the numbers is

n!

n p! q! r!
(10n−1 + 10n−2 + . . .+ 10 + 1)(pk1 + qk2 + rk3 + k4 + k5 + . . .)

=
n!

n p! q! r!
(10n−1 + 10n−2 + . . .+ 10 + 1)× (sum of all the digits).
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15 Bhāskara II’s problem

Bhāskara II proposed an interesting problem: To find how many different
numbers occupying a specified number of notational places can be formed out
of digits having a definite sum. His solution is as follows:

When the sum of the digits is fixed, divide the successive num-
bers beginning with that sum minus one, and decreasing by one,
continued up to one less than the number of places, by one, two,
etc. respectively. The variations of numbers will be equal to the
product of those quotients. This rule is valid, it must be known,
only when the sum of the digits is less than the specified number
of notational places plus nine.39

15.1 Illustrative example from Bhāskara II 40

The different numbers of 5 digits of sum 13 will be altogether

12

1
× 11

2
× 10

3
× 9

4
= 495.

16 Representation

It has been noted before that the interest of the ancient Hindus in the sub-
ject of permutations and combinations was not of theoretical origin, but grew
out of a concrete purpose. For that it was essential not only to know the
number of possible variations but also, and in a greater degree, to have the
actual variations. So, we find that as early as the time of the Jaina canonical
works, distinct consideration was being made between bhaṅga-samutkīrṇatā
(“Telling permutations or combinations”, that is, “Enumeration of possible
variations”) and bhaṅga-pradarśanatā (“Representation of permutations and
combinations”). In the early state of the subject even the number of varia-
tions in any given case very probably used to be determined by writing them
all down exhaustively. But the latter was obviously a laborious task and was
often liable to be in error if all the operations be not carried out in a sys-
tematic way. Such a systematic scheme of operations is technically called the
Loṣṭa-prastāra (“Spreading out of marked objects”), apparently because in
the beginning the permutations or combinations used to be formed out of any
given number of things by laying out objects, probably clay pieces, marked
with the tachygraphic abbreviations of the names of the various things.

39L, p. 85.
40L, p. 85.
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17 Representation of combinations

A scheme of writing down all the possible combinations formed out of a given
number of unlike things is sufficiently clear from the descriptions of Suśruta.
The same appears in the Jaina canonical works.41 Varāhamihira’s rule for
that is as follows:

Any one of the things taken optionally should be successively oper-
ated upon (by the rest); when that process is exhausted, the next
(should be begun).42

The operations implied have been explained at length by Bhaṭṭotpala with
the help of specific instances. In this connection he has quoted a rule from
Bhaṭṭa Śrīśaṅkara.43 Jinabhadra Gaṇi (c. 550) also has a rule for the same.44

18 Representation of permutations

Śīlāṅka (862)45 has quoted a rule from an ancient writer who is not known
now, describing a systematic scheme of forming all the possible permutations
out of a given number of unlike things:

The total number of permutations should be divided by the last
term, then the quotient by the rest. They should be placed suc-
cessively by the side of the initial term in the calculation of per-
mutations.

The rule appears to be cryptic, but Śīlāṅka has explained it clearly with
the help of an illustrative example: To find the numbers that can be formed
by using the digits 1, 2, 3, 4, 5, 6. It is as follows:
Let there be n number of things a1, a2, . . . , an. Then the total number of

permutations that can be formed out of them will be n!. The number of
permutations which can have any particular thing, say a1, for its initial digit
(ādi) will be n!

n , that is, (n − 1)!. So, put a1 in the beginning of (n − 1)!

grooves and so on. Again amongst the first series of grooves, the number of
sub-grooves that can have a2 after a1 will be (n−1)!

(n−1) or (n − 2)!. Place a2
after a1 in those sub-grooves. The number of sub-grooves that can have a3
after a1 will be (n − 2)! and put it after a1 in those sub-grooves. Similarly,
with a4, a5, . . . , an. Again amongst the sub-grooves that can have any other
particular thing in the third place will be (n− 3)! and it should be placed in
41Bhagavatī-sūtra, Sūtra 314.
42Bṛhatsaṃhitā, lxxvi. 22; Bṛhajjātaka, xiii. 4.
43Vide Bhaṭṭotpala’s commentary on Bṛhajjātaka, xii. 19.
44Viśeṣāvaśyaka-bhāṣya.
45loc. cit.; Cf. B. Datta, Jaina Math, pp. 135 f.
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those cases. Proceeding step by step in this way in a systematic manner, we
can find out all the different permutations of things.

19 Piṅgala’s rules

Piṅgala (before 200 bc) describes a scheme of forming all the permutations
with a specified number of things when repetitions are allowed. As he was
directly concerned with metres, he dealt with only two varieties of things, long
and short syllables, which are represented respectively by the abbreviations
g from guru (“long”) and l from laghu (“short”). But the scheme is equally
applicable to cases of more varieties. Piṅgala’s scheme, described in short
aphorisms,46 will be clear from the following:

(i) Monosyllabic:

1. g

2. l

(ii) Disyllabic:
g

l

}
g

g

l

}
l

 =


1. gg

2. lg

3. gl

4. ll

(iii) Trisyllabic:
gg

lg

gl

ll

 g

gg

lg

gl

ll

 l



=



1. ggg

2. lgg

3. glg

4. llg

5. ggl

6. lgl

7. gll

8. lll

and so on. Piṅgala states that the trisyllabics are 8 in number.47 In general,
a group of n syllables will have 2n forms (vide infra).
46Chandaḥ-sūtra of Piṅgala, edited by Jīvānanda Vidyāsagara, with the commentary of
Halāyudha, Calcutta, 1892; viii. 20–2.

47Chandaḥ-sūtra of Piṅgala, viii. 23.



19 Piṅgala’s rules 371

The above systematic scheme of representation has the advantage that
(a) we can easily find out the form of versification corresponding to a given
serial number in it and vice versa, (b) we can allocate a given form of versi-
fication in its proper place in the scheme. Piṅgala’s aphorisms for (a) are, “l
when halved; g when added with one (and then halved).”48 That is to say:
Divide the given number successively by two; if at any step, the number ob-
tained is not divisible by two, add one to it and then halve. Corresponding
to each operation of exact division by two, set down l; and to that of halving
after adding unity write down g. The operations are to be continued until
the desired number of syllables in the group has been obtained. The opera-
tions for (b) are the reverse of these.49 Taking unity, we shall have to double
it successively as many times as there are syllables in the given form; but
corresponding to each long syllable we shall have to subtract one from the
corresponding product.
Piṅgala next gives a rule for finding the total number of variations without

having recourse to writing them all down exhaustively according to the scheme
described above. This method has already been described. It is found in later
writings also.50 By this rule, the total number of variations in a group of n
syllables is found to be equal to 2n.
Piṅgala has also an alternative method to find the total number of varia-

tions.51 It is technically called Meru-prastāra, because the total is obtained
by addition from numbers arranged in such a form as to present a fancied re-
semblance to the fabulous mountain Meru of the Hindu mythology. Piṅgala’s
aphorisms being too compressed and cryptic can be understood only with
the help of a commentary. Halāyudha (10th century) has explained them as
follows:

Draw one square at the top, below it draw two squares, so that half
of each of them lies beyond the former on either side of it. Below
them in the same way draw three squares; then below them four;
and so on up to as many rows as desired: this is the preliminary
representation of the Meru (Meru-prastāra). Then putting down
one in the first square, the marking should be started. In the next
two squares write one in each. In the third row, put 1 in each
of the two extreme squares and in the middle square, the sum
of the two digits in the two squares of the second row. In the
fourth row, put 1 in the two extreme squares; in an intermediate
square put the sum of the digits in two squares of the previous row,
which lie just above it. Putting down numbers in the other rows

48Ibid, viii. 24–5.
49Ibid, viii. 26–7.
50For instance, Mahāvīra (GSS, ii. 94). Pṛthudakasvāmī (BrSpSi, xii. 17. comm.), etc.
51Chandaḥ-sūtra, viii. 28–32.



372 Use of permutations and combinations in India

should be carried on in the same way. Now the numbers in the
second row of squares show the monosyllabic forms: there are two
forms, one consisting of a long and the other of a short syllable.
The numbers in the third row give the disyllabic forms: in one
form all syllables are long; in two forms one syllable is short; and
in one all syllables are short. In this row of the squares we get
the number of variations of the even verse. The numbers in the
fourth row of squares represent trisyllabics. There one form has all
syllables long, three have one short syllable; three have two short
syllables and one has all syllables short, and so on. In the fifth and
succeeding rows also the figure in the first square gives the number
of forms with all syllables long, that in the last all syllables short
and the figures in the successive intermediate squares represent
the number of forms with one, two, etc. short syllables.52

Thus according to the above, the number of variations of a metre containing
n syllables will be obtained from the representation of the Meru as follows.
(ed. See Figure 1. Caption added.)

Number of
syllables

Total no. of
variations

| 1 |

1 | 1 | 1 | 2 = 21

2 | 1 | 2 | 1 | 4 = 22

3 | 1 | 3 | 3 | 1 | 8 = 23

4 | 1 | 4 | 6 | 4 | 1 | 16 = 24

5 | 1 | 5 | 10 | 10 | 5 | 1 | 32 = 25

6 | 1 | 6 | 15 | 20 | 15 | 6 | 1 | 64 = 26

Figure 1: Meru Prastāra

From the above it is clear that Piṅgala knew the results:

1. nC1 +
nC2 + · · ·+ nCn−1 +

nCn + 1 = 2n,

2. nCr +
nCr+1 = n+1Cr+1.

Sanskrit prosody distinguishes three classes of metres: (1) even, in which the
arrangement of syllables in all the quarters (pādas) is the same; (2) semi-even,
in which the alternate quarters are alike; and (3) uneven, in which the quarters
52Chandaḥ-sūtra, viii. 33–4.
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are all dissimilar. Now with a group of n syllables in a quarter, the total
number of varieties of even metres will be, according to Piṅgala53, 2n; semi-
even, 22n − 2n; and uneven, 24n − 22n. The same formulae are stated also by
Bhāskara II:

The number of syllables in a quarter being taken for the period and
the common ratio 2 the result from multiplication and squaring54

will give the number of even metres. Its square, and square’s
square, minus their respective roots, will be the numbers of semi-
even and uneven metres respectively.55

By way of illustration, Halāyudha56 calculates that in the Gāyatrī metre,
which has six syllables in a quarter, the number of even variations will be 64,
semi-even 4032, and uneven 16773120. Bhāskara II57calculates that in the
case of the Anuṣṭubh metre, which has 8 syllables in a quarter, even variations
are 256, semi-even 65280, and uneven 4294901760.

20 Nemicandra’s rules

We find in the works of Nemicandra, a Jaina philosophical writer of the tenth
century (c. 975), certain interesting rules, some of which are akin to those of
Piṅgala. According to the Jaina philosophy, there are 15 kinds of pramāda
(“carelessness”), of which four belong to the category of vikathā (“wrong talk”),
four to that of kaṣāya (“passion”), five to that of indriya (“sense”), and one
each to those of nidrā (“sleep”) and praṇaya (“attachment”). Combinations
are made of five elements of carelessness, selecting only one element from
each of the five categories. Again, they are formed by setting down the ele-
ments according to a systematic scheme and are marked serially. Hence, the
problems that arise in this connection are, as enumerated by Nemicandra, to
find: (i) the total number of combinations that can be made, (ii) a systematic
scheme of laying out, (iii) the elements of a combination from its serial num-
ber, and (iv) the serial number of a particular combination.58 Nemicandra
has given rules for each.

(i) “All the combinations previously obtained combine with each element
of the next category. Hence, the total number will be given by the
multiplication (of the numbers of elements in the different categories).”59

53Chandaḥ-sūtra, v. 3–5.
54Reference here is to the operations described for finding the sum of a G.P. (L, p. 31).
55L, p. 31.
56See his commentary on Chandaḥ-sūtra, v. 3–5.
57L, p. 32.
58Gommaṭasāra, Jīvakāṇḍa, Gāthā 35.
59Ibid, Gāthā 36.
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Thus, the total number of combinations that can be made out of the 15
elements of carelessness in the way described above is

4× 4× 5× 1× 1 = 80.

(ii) Nemicandra has described two schemes of representation of combina-
tions: one is called (1) the prastāra and the other (2) the parivartana.
(1) “The distribution will be obtained thus: Write down severally the

first element (of the first category) of carelessness and put over it
each of the elements of the succeeding classes. When elements in the
third category are exhausted, begin afresh with the second element
of the second category (and so on). When all the elements of these
two categories are thus distributed out, operations should be begun
with (the second element of) the first category. (And so on).”60

If the four kinds of wrong talks be denoted by v1, v2, v3, v4; the
four kinds of passions by k1, k2, k3, k4; and the five kinds of senses
by i1, i2, i3, i4, i5, the representation described here will be this:

i1 i2 i3 i4 i5︸ ︷︷ ︸
k1

i1 i2 i3 i4 i5︸ ︷︷ ︸
k2

i1 i2 i3 i4 i5︸ ︷︷ ︸
k3

i1 i2 i3 i4 i5︸ ︷︷ ︸
k4

v1 v1 v1 v1

and so on, v2, v3, v4 coming successively in the place of v1.
(2) “Write down the elements of the first category as many times as

the number of elements in the second category; then put down over
each group severally each of the elements of the second category;
and proceed thus throughout. When all the elements of the first
category are exhausted, begin afresh with the second category (and
so on). When all the elements of these two categories are thus
distributed out, the operation with the elements in third category
begins.”61

i1 i1 i1 i1
k1︷ ︸︸ ︷

v1 v2 v3 v4

k2︷ ︸︸ ︷
v1 v2 v3 v4

k3︷ ︸︸ ︷
v1 v2 v3 v4

k4︷ ︸︸ ︷
v1 v2 v3 v4

(iii) “Divide (the given serial number) successively by the number of ele-
ments in the different categories, adding each time unity to the quo-
tient, except when the remainder is zero. The remainders determine
the place of an element in its category; the zero remainder indicates the
last element.”62

60Gommaṭasāra, Jīvakāṇḍa, Gāthās 37, 39.
61Ibid, Gāthās 38, 40.
62Ibid, Gāthā 41.
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For example, let us find the elements of the 13th combination.
First scheme: Dividing 13 by 5, we get 2 for the quotient and 3 as the
remainder. So, the combination contains the element i3. Adding 1 to
the quotient 2, we have 3. Dividing 3 by 4, we get the quotient 0 and
the remainder 3. Hence, there is the element k3, 0+1 = 1. On dividing
1 by 4, the remainder is 1. So, there is v1. So, the 13th combination
according to the first scheme contains i3, k3, and v1, besides sleep and
attachment.
Second scheme: On dividing 13 by 4, the quotient is 3 and the remain-
der 1. So, the combination contains v1. Adding unity to the quotient
3, we get 4. On dividing 4 by 4, the quotient is 1 and the remainder 0.
Hence, there is k4.63 Dividing 1 by 5, we get the remainder 1. So, there
is i1. Hence, the 13th combination according to the second scheme has
v1, k4, i1, besides sleep and attachment.

(iv) “Take unity. Multiply it by the total number of elements in a category
beginning from the last and subtract from the product the number of
elements there following the given element. Proceed in the same way
throughout.”64

For example, let us find the number of the combination i4k3v1. Take 1.
As there are 4 elements in the last category v, we multiply it by 4 and
get 1× 4 = 4. Since there are only 3 elements in that category after v1,
we subtract 3 from the product and get 4−3 = 1. Next, we shall have to
multiply the remainder 1 by 4, since there are 4 elements in the category
of k and subtract from the result 1, since there lies only 1 element in
the category after k3. Thus, we get 1 × 4 − 1 = 3. Now we multiply 3
by 5, there being 5 elements in the category of i and then subtract 1,
there being only one element after i4. So, we get 3× 5− 1 = 14. Hence,
the serial number of the combination i4k3v1 is 14.

To get the same results as stipulated in rules (iii) and (iv) more easily and
quickly, without going through the lengthy process of calculations described
therein, Nemicandra gives two short tables. He says:

Table 1

“Place 1, 2, 3, 4, 5; 0, 5, 10, 15; 0, 20, 40 and 60 in three rows (of cells) of the
three categories of carelessness, and find the elements and the serial numbers
of combinations.”65

63As there is no element with zero suffix, the remainder gives k4.
64Ibid, Gāthā 42.
65Ibid, Gāthā 43.
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Table 1

0 20 40 60

0
v1

5
v2

10
v3

15
v4

1
k1

2
k2

3
k3

4
k4

5
i1 i2 i3 i4 i5

Table: 2

“Set down 1, 2, 3, 4; 0, 4, 8, 12; 0, 16, 32, 48 and 64 in three rows (of cells)
of the three categories of carelessness, and find the elements and the serial
numbers of combinations.”66

Table 2

v1 v2 v3 v4

1
k1

2
k2

3
k3

4
k4

0
i1

4
i2

8
i3

12
i4 i5

0 16 32 48 64

Table 1 is to be used in case of distribution on the first scheme and Table 2 in
that on the second scheme. To find the serial number of a given combination,
we have simply to add together the figures placed in the cells of its elements in
the tables. And to determine the elements occurring in a combination whose
serial number is given, we shall have to break up that number into three parts
picked up from three rows of cells in the tables and then write down in order
the elements from those cells.
For example, since 13 = 3+10+0 the 13th combination in the first scheme

will be i3k3v1 as determined before. According to the second scheme, it will
be v1k4i1, since 13 = 1 + 12 + 0.

66Ibid, Gāthā 44.



Magic squares in India ∗

A square containing an equal number of cells in each row and each column is
called a magic square, when the total of numbers in the cells of each row, each
column and each diagonal happens to be the same. Magic squares have been
known in India from very early times. It is believed that the subject of magic
squares was first taught by Lord Śiva to the magician Maṇibhadra. Magic
squares are said to have magical properties and were used in various ways
by the Hindus as well as the Jainas. But the mathematics involved in the
construction of magic squares and other magic figures was first systematically
and elaborately discussed by the mathematician Nārāyaṇa (ad 1356) in his
Gaṇitakaumudī. Some of his methods were unknown in the west and were
recently discovered by the efforts of several scholars. The present article,
besides giving a brief history of magic squares, explains the methods given
by Nārāyaṇa and other Hindu writers for the construction of magic squares
of various types.

1 Origin and early history

Little is known as regards the origin of magic squares and other figures. Hindu
tradition assigns them to God Śiva. Nārāyaṇa (1356) says that the subject of
progression, of which magic squares form a part, was taught by Śiva to Maṇi-
bhadra,† the magician. The earliest unequivocal occurrence of magic squares
is found in a work called Kakṣapuṭa composed by the celebrated alchemist and
philosopher Nāgārjuna who flourished about the 1st century ad. One of the
squares in this work is called Nāgārjunīya after him; so there can be no doubt
that he did really construct some squares. The squares given by Nāgārjuna
are all 4× 4 squares, and some of these seem to have been known before him.
The easier case of 3×3 square must have also been known earlier to Nāgārjuna.
Another square is found in a work of Varāhamihira (d. 587 ad).

4 × 4 magic squares are considered to possess magical properties and are
supposed to bring luck when worn as amulets. They are found on gates of
buildings, on the walls where shopkeepers transact their business and on the

∗ Bibhutibhusan Datta and Avadhesh Narayan Singh. Revised by K. S. Shukla. Indian
Journal of History of Science, Vol. 27, No. 1 (1992), pp. 51–120.
†Reference to Maṇibhadra Yakṣa occurs in the Buddhist work Saṃyukta-nikāya (i. 10,
4) and the Jaina work Sūrya-prajñapti. See D. N. Shukla, Pratimā-Vijñāna (in Hindi),
p. 51.
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covers of calendars used by astrologers even to this day. A 4 × 4 square
occurs in a Jaina inscription of the 11th century, found in the ancient town
of Khajuraho.
A systematic study of magic figures was taken up by Nārāyaṇa, who in his

Gaṇitakaumudī (1356) gives general methods for the construction of all sorts
of magic squares with the principles governing such constructions. He seems
to have been the first to conceive of other figures in which numbers may be
arranged so as to possess properties similar to those of magic squares. An
account of the methods of constructing magic squares given by the authors
mentioned above and also by other Hindu writers is given in this article.
It is the opinion of some historians of mathematics that magic squares first

originated in China. This opinion is based on the occurrence of a square,
filled with white and black dots, in the introduction of a Chinese work, the
I-king. The square is called the Loh Shu, and is said to have come down to
us from the time of the great emperor Yu (c. 2200 bc). According to Chinese
tradition, the white dots denote odd numbers and the black dots even ones,
and it has been conjectured that the Loh Shu represents the square shown in
Figure 1.
But to consider the Loh Shu as a magic squares is to force upon it an

interpretation which it originally did not possess. Arrangements of white and
black dots in the figure of a square are met with elsewhere in the literature of
the Chinese. One such arrangements represents the river Ho and has nothing
to do with magic squares.1
The first unequivocal appearance of the Loh Shu in the form of a magic

square is found in the writings of Tsai Yuan-Ting2 who lived from 1135 to
1198 ad. Magic squares occur also in the writings of Hebrew3 and Arab4

scholars about the same period, while in India they were used much earlier.
It would thus appear that the Chinese claim to the invention of magic squares
is not well founded.5

1The Loh Shu and the map of the Ho are illustrated in Magic Squares and Cubes by
W. S. Andrews, Chicago, 1908, p. 122.

2Cf. W. S. Andrews, l.c., p. 123.
3In a work of Rabbi ben Ezra (c. 1140); cf. D. E. Smith, History of Mathematics, II, New
York, 1923, p. 596.

4In the work of the Arab philosopher Gazzali, cf. Smith, D. E., l.c., p. 597.
5It is said in the Vedas that the gods Indra and Viṣṇu divided 1000 into three. This incident
is related in many works. (Taittirīya Saṃhitā, vii. 1.6.; iii. 2. 11; Atharvaveda, ii. 44.1.;
Taittirīya Brāhmaṇa, i. 1.6.1; Śatapatha Brāhmaṇa, iii. 8.4.4. etc.). In the Taittirīya
Saṃhitā, we have

Ye twain have conquered; ye are not conquered,
Neither of the two of them hath been defeated;
Indra and Viṣṇu when contended,
Ye did divide the thousand into three. (Keith)

The thousand is divided into three at the three-night festival; verily he makes
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4 9 2
3 5 7
8 1 6

Figure 1

1 8
9 2

6 3
4 7

Figure 2

2 Nāgārjuna squares

In his Kakṣapuṭa, Nāgārjuna (100 ad) gives rules for the construction of 4×
4 squares with even as well as odd totals.6 These rules consist partly of
mnemonic verses in which numbers are expressed in alphabetic notations. The
general direction is

arka indunidhā nāri tena lagna vināsanam
0 1 0 8 0 9 0 2 6 0 3 0 4 0 7 0

By inserting these values in the successive cells (of the 4 × 4 square) leaving
blanks for zero, we get the primary skeleton. (ed. See Figure 2.)
The eight blank cells can be filled up in such a way as to give even as well

as odd totals. But the methods of filling up differ slightly in the two cases.

Even total

In order to have an even total, fill up, says Nāgārjuna, the blank cells by writ-
ing the difference between half of that total and the number in the alternate
cell in a diagonal direction from the cell to be filled up. This direction may
be upwards or downwards, right or left.
Taking the total to be 2n, where n is any integer, we thus get the complete

magic square with even totals. (ed. See Figure 3.)
In this magic square, the totals of all the rows, horizontal, vertical, and

diagonal, of every group of four forming a sub-square, and separated by such

her possessed of a thousand, he makes her the measure of a thousand.
In the above passages it is not clear what “dividing a thousand into three” means. As
the problem was considered so difficult that only the gods could solve it, so it is certain
that “division into three” did not mean division into three equal parts or into any three
parts or into three parts in arithmetic progression, for division as above can be easily
made by the use of ordinary fractions which were known in those times. The passage
very probably refers to the construction of a magic square with 1000 as total, especially as
it has been stated that it confers benefits acting as a charm if the operation is performed
at the three-night festival.
But to produce this passage as an evidence of the existence of magic squares, without

other corroborative facts would, in our opinion, be as unjustifiable as the use of the Loh
Shu to establish the existence of the magic square in China in 2200 bc.

6See Indian Antiquary, XI, 1882, pp. 83f.
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n− 3 1 n− 6 8
n− 7 9 n− 4 2

6 n− 8 3 n− 1

4 n− 2 7 n− 9

Figure 3: Total = 2n.

n− 2 n+ 2

2n− 10 10 2n− 10 10

n+ 2 n− 2

n− 2 n+ 2

10 2n− 10 10 2n− 10

n+ 2 n− 2

Figure 4

3 n− 1 6 n− 8 3 n− 1 6 n− 8

7 n− 9 4 n− 2 7 n− 9 4 n− 2

n− 6 8 n − 3 1 n − 6 8 n− 3 1
n− 4 2 n − 7 9 n − 4 2 n− 7 9
3 n− 1 6 n − 8 3 n − 1 6 n− 8

7 n− 9 4 n − 2 7 n − 9 4 n− 2

n− 6 8 n− 3 1 n− 6 8 n− 3 1
n− 4 2 n− 7 9 n− 4 2 n− 7 9

Figure 5

a sub-square, and of the corner four of the square and about a small square,
are equal. Another noteworthy feature of it is that each of its four minor
squares has relation to others, as may be seen in Figure 4.
The above square is “continuous” according to the definition of Paul Carus;

that is, “It may vertically as well as horizontally be turned upon itself and
the rule holds good that wherever we may start four consecutive numbers in
whatever direction, backward or forward, upward or downward, in horizontal,
vertical or slanting lines, always yield the same sum … and so does any small
square of 2 × 2 cells.”7 Since the square cannot be bent upon itself at once
in two directions, the result is shown in Figure 5 by extending the square in
each direction by half its own size.

Odd total

For an odd total, say 2n + 1, we are to fill up the blank cells by writing
the difference between n and the number in the alternate cell in a diagonal

7Andrews W. S., Magic Square and Cubes, Chicago, 1908, p. 125f.
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n− 3 1 n− 5 8
n− 6 9 n− 4 2

6 n− 7 3 n− 1

4 n− 2 7 n− 8

Figure 6: Total = 2n+ 1.

n− 2 n+ 3

2n− 9 10 2n− 9 10

n+ 3 n− 2

n− 1 n+ 2

10 2n− 9 10 2n− 9

n+ 2 n− 1

Figure 7

30 16 18 36

10 44 22 24

32 14 20 34

28 26 40 6

Figure 8: Total = 100.

direction from the cell to be filled up, when the latter number happens to be
1, 2, 3 or 4; or the difference between n+ 1 and the number in the alternate
cell in a diagonal direction from the cell to be filled up, if the latter number
be 6, 7, 8, or 9. This direction may be, as in the previous case, upwards or
downwards, right or left. Proceeding in this way, we get the complete magic
squares having an odd total. (ed. See Figure 6.)
In this case, the totals of all rows, horizontal, vertical and diagonal, of every

group of four forming a square (except the group of the fifth, sixth, ninth and
tenth cells, and that of the seventh, eighth, eleventh and twelfth cells), of the
corner four of the square, and of the four about the corners of a small square
are equal. The relation between the four minor squares in this case is not as
complete as in the previous case. (ed. See Figure 7.)
It is not a perfectly continuous square. The odd totals cannot be less than

19 in any case, and not less than 37 if the same number is not to appear more
than once in the square. (See Figure 6.)
A particular case of 4 × 4 squares with even total, 100, has been specially

noted by Nāgārjuna. Its form differs from that which results on putting n = 50

in the above general case, and further it does not contain the numbers from 1
to 9, except 6. (ed. See Figure 8.)
This magic square has been called the Nāgārjunīya.8 This special epithet

8To fill this square the mnemonic formula stated by Nāgārjuna is:
Nīlaṃ30 cāpi16 dayā18 -calo36 naṭa10 -bhuvaṃ44 khārī 22 -varaṃ24 rāginam32 |
Bhūpo14 nāri20 vago34 jarā28 cara26 -nibhaṃ40 tānaṃ06 śataṃ100 yojayet ||
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will lead one to presume that this particular square was constructed by Nāgār-
juna, while others described by him were recapitulations of former accomplish-
ments.

3 Varāhamihira square

Varāhamihira (d. 587 ad) gives a form of 4× 4 magic squares,9 in which the
total is 18 (ed. see Figure 9). It is however, a particular case of the Figures 10
and 11.
Varāhamihira has called his square sarvatobhadra (“Magic in all respects”)

and what are implied by that name, i.e., the special features of the square,
have been pointed out fully by his commentator, Bhaṭṭotpala (966). Indeed
it has properties similar to those of squares with even totals described by
Nāgārjuna. The method of filling up the blank cells in the primary skeleton
is the same. (ed. See Figures 12 and 13.)
The blank cells can be filled up so as to yield also an odd total; write the

difference between n + 1 and the number in the alternate cell in a diagonal
direction from the cell to be filled up, if the latter number happens to be 1, 2,
3, or 4, or the difference between n and the number in the alternate cell in a
diagonal direction from the cell to be filled up, if the latter number happens
to be 5, 6, 7 or 8. (ed. See Figures 14 and 15.)

4 Jaina squares

In a Jaina inscription found amongst the ruins of the ancient town of Khaju-
raho occurs a magic square of 4× 4 cells of which the total is 34 (Figure 16).
It possesses all the special features of the Nāgārjuna squares. It belongs to
the eleventh century of the Christian era. In the Tijapapahutta Stotra of the
Jainas, we find another 4×4 magic square having a total of 17010 (Figure 17).

The date of this square is uncertain. It is certainly not later than the four-
teenth century, when a commentary on the above stotra (hymn) was written.
It is probably a very old one. Its total 170 is closely connected with an ancient
Jaina mythology about the appearance of their prophets.

5 Nārāyaṇa’s results

As has been already pointed out, the only Hindu work, known to us which gives
a systematic mathematical treatment of the construction of magic squares and

9Bṛhat Saṃhitā, lxxvii. 23ff.
10The square as it actually occurs is interspersed with the bīja (“elements of a mantra”).
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2 3 5 8
5 8 2 3
4 1 7 6
7 6 4 1

Figure 9: Total = 18.

n− 7 3 n− 4 8
5 n− 1 2 n− 6

4 n− 8 7 n− 3

n− 2 6 n− 5 1

Figure 10: Total = 2n.

2 n− 6 5 n− 1

n− 4 8 n− 7 3
n− 5 1 n− 2 6

7 n− 3 4 n− 8

Figure 11: Total = 2n.

3 8
5 2
4 7

6 1

Figure 12

2 5
8 3
1 6

7 4

Figure 13

n− 7 3 n− 3 8
5 n 2 n− 6

4 n− 8 7 n− 2

n− 1 6 n− 5 1

Figure 14: Total = 2n+ 1.

2 n− 6 5 n

n− 3 8 n− 7 3
n− 5 1 n− 1 6

7 n− 2 4 n− 8

Figure 15: Total = 2n+ 1.

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

Figure 16: Total = 34.

25 80 15 50

20 45 30 75

70 35 60 5

55 10 65 40

Figure 17: Total = 170.
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other figures is the Gaṇitakaumudī of Nārāyaṇa. Chapter XIV of the work is
devoted to this subject, and we propose to give here a summarised version of
this chapter, preserving the order of treatment and giving explanatory notes
wherever necessary.

5.1 Summary

In order to bring into prominence the remarkable achievements of Nārāyaṇa
in the theory of magic squares, it is thought desirable to state briefly some of
his most important results before entering into details. These results are:

1. Magic squares are of three types: (a) those which have 4n cells in a row,
(b) those which have 4n+ 2 cells in a row, and (c) those which have an
odd number of cells in a row.

2. Series in arithmetical progression are used for the construction of these
squares.

3. Magic squares can be made of as many series or groups of numbers as
there are cells in a column.

4. Each series or group is composed of as many numbers as there are
groups.

5. The common difference must be the same for each group.

6. The initial terms of the groups are themselves in A.P.

7. The numbers is a group, although belonging to an arithmetical progres-
sion, may be disarranged in various ways for the filling of the square.

8. The method of the knight’s move for the construction of a 4n × 4n

square.

9. The method of superposition for the construction of 4n× 4n squares.

10. The method of equi-spacing for the construction of (4n+ 2)× (4n+ 2)

squares.

11. The method of superposition for odd squares.

12. A special method for odd squares.

13. The construction of a magic rectangle (vitāna or canopy).

14. The construction of magic circles, triangles, hexagons and various other
figures, such as the altar, the diamond, etc.
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5.2 Preliminary remarks

According to Nārāyaṇa, magic squares may be classified into three groups:
(1) samagarbha (2) viṣamagarbha, and (3) viṣama. These terms are defined
as follows:

If on dividing the bhadrāṅka11 (“number of cells in a line of the
square”) by four, the remainder is zero, the magic square is said to
be samagarbha. If the remainder is two, it is called viṣamagarbha;
and if the remainder is one or three, it is simply viṣama.12

After giving the above classification, Nārāyaṇa remarks:

In the construction of magic squares, the arithmetical progression
is used.13 In relation to that (magic square) which is required
to be constructed, first find the initial term and the common-
difference (of a series in arithmetical progression, corresponding
to the given sum and the number of cells).14 The sum divided by
the bhadrāṅka (“number of the square”) gives the phala (“total”).
The number of terms to be taken in the progression is the number
of gṛha (“cells”) in the square.15 If the number of cells (koṣṭha) is
a square number, its root is called the caraṇa (“foot” or “row”).
Such are the technical terms used by Nārāyaṇa in his bhadragaṇita
(“calculations relating to magic figures”).16

The method of finding out the initial term and the common-difference of
an arithmetical progression, given the sum and the number of terms, follows
the above preliminary remarks.17

5.3 The 4× 4 magic squares18

Assuming that the required arithmetical progression has been found out,
Nārāyaṇa gives the following rule for filling the cells of the 4× 4 square with
the numbers occurring in the progression:
11Henceforth we shall translate this term by “number of the square”.
12Gaṇitakaumudī, xiv. 4. All the references that follow are from chapter xiv. To avoid
unnecessary repetition, the number of the rules only, as found in Padmakara Dvivedi’s
edition of the Gaṇitakaumudī will be given.

13This seems to be the first statement of the result that magic squares are made from
numbers in A.P., a result on which the whole theory of magic squares is founded.

14Rule 5, the technical terms are: mukha = initial term and pracaya = common-difference.
15Rule 6.
16Rule 7.
17Rule 8. The problem is indeterminate. The initial term is arbitrarily assumed, and the
common- difference is obtained from the equation s− n(n−1)d

2
= na, where s = the given

sum, n = the number of cells (or terms), a = initial term, and d = the common-difference.
18Caturbhadra (“four magic square” or “4× 4 magic square”).
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In the manner of the chess-board, place the numbers forming the
progression, (taking them) two and two, in two connected cells as
well as in alternate cells, in the direct and inverse order. (Then)
by right and left knight’s move fill the cells (of the square) with
the numbers (taking them as they have been placed above). This
method has also been stated by previous teachers for the construc-
tion of the samagarbha magic square of sixteen cells. The numbers,
in the horizontal cells, in the vertical cells as well as in the diagonal
cells, added separately, give rise to the same total.19

Example from Nārāyaṇa:

Friend, tell me, how a 4 × 4 magic square be filled up with the
numbers beginning with unity and successively increasing by one,
so that the horizontal, vertical and diagonal cells shall have the
same sum.

Here the sum of the natural numbers from one to sixteen is (16×17)
2 = 136.

Therefore, the required total is 136
4 = 34.

The numbers when written, two and two, in connected cells as well as
alternate cells give Figures 18 and 19. Placing two and two in the direct and
inverse orders, we get Figures 20 and 21.
[Note that the numbers in the 4 cells on the right of the first two rows are

reversed and the same is done with the numbers in the 4 cells on the left of
the last two rows. This would probably be an easier method of stating the
method.]
Taking the arrangement (a), and filling by right and left knight’s move, the

four squares depicted in Figures 22–25 are obtained. The arrangement (b)
similarly gives the four squares as per Figures 26–29.
The filling in of the numbers begins by putting 1 in the first cell. After

the first row of numbers is exhausted, we begin by putting the first number
of the second row (i.e., 8) in a contiguous cell, as in (a1) or (a2). [In order
to make up the desired total, 10 is made to correspond to 8 and 15 to 1, as
in the illustration above.] If the square be considered to be wrapped round a
cylinder, the fourth cell is also contiguous to the first cell; hence the squares
(a3) and (a4). It may be noted that (a2) may be obtained by turning (a1)
through a right angle, whilst (a3) and (a4) may be obtained by wrapping (a1)
and (a2) round a cylinder.

19Rules 10–12. Nārāyaṇa ascribes the above method to previous writers. It cannot be
said how old it is. The squares formed by the method are very popular among Hindu
astrologers.
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(a0)

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

Figure 18

(b0)

1 3 2 4

8 6 7 5

9 11 10 12

16 14 15 13

Figure 19

(a)

1 2 4 3

8 7 5 6

10 9 11 12

15 16 14 13

Figure 20

(b)

1 3 4 2

8 6 5 7

11 9 10 12

14 16 15 13

Figure 21

(a1)

1 8 13 12

14 11 2 7

4 5 16 9

15 10 3 6

Figure 22

(a2)

1 14 4 15

8 11 5 10

13 2 16 3

12 7 9 6

Figure 23

(a3)

1 12 13 8

14 7 2 11

4 9 16 5

15 6 3 10

Figure 24

(a4)

1 14 4 15

12 7 9 6

13 2 16 3

8 11 5 10

Figure 25
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(b1)

1 8 13 12

15 10 3 6

4 5 16 9

14 11 2 7

Figure 26

(b2)

1 15 4 14

8 10 5 11

13 3 16 2

12 6 9 7

Figure 27

(b3)

1 12 13 8

15 6 3 10

4 9 16 5

14 7 2 11

Figure 28

(b4)

1 15 4 14

12 6 9 7

13 3 16 2

8 10 5 11

Figure 29

(a)

1 2 4 3

8 7 5 6

10 9 11 12

15 16 14 13

Figure 30

(b)

1 3 4 2

8 6 5 7

11 9 10 12

14 16 15 13

Figure 31

(a′)

1 5 7 3

8 4 2 6

10 14 16 12

15 11 9 13

Figure 32

(b′)

1 5 6 2

8 4 3 7

11 15 16 12

14 10 9 13

Figure 33
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(a′′)

1 2 6 5

8 7 3 4

10 9 13 14

15 16 12 11

Figure 34

(b′′)

1 3 7 5

8 6 2 4

11 9 13 15

14 16 12 10

Figure 35

5.4 Varieties of 4× 4 magic squares

Nārāyaṇa remarks:

Here, other 4× 4 squares may be produced from a 4× 4 square by
turning four cells to make the numbers inverse.20

In the rest of the caraṇa (“row”) following the first cell, (by turn-
ing) four numbers produced in two connected pairs of cells, there
result twenty-four varieties. And the same numbers arise from
others separately.21

Example from Nārāyaṇa:

How many 4×4 squares can be formed out of the series of natural
numbers from one to sixteen, and what are their forms?22

The numbers are placed according to the previous rule as per Figures 30
and 31. By turning four cells, i.e., the two connected pairs in the middle of the
first two rows, and doing the same for the last two rows, we have Figures 32
and 33. Performing the same operation on the two connected pairs of cells at
the end in (a) and (b), we have Figures 34 and 35.
The numbers in the arrangements (a′), (b′), (a′′) and (b′′) are filled in the

4 × 4 square in the same way as those of (a) or (b). Thus, there will be
altogether 24 squares with 1 in the first cell. As there are sixteen numbers, so
there can be 384 varieties of 4× 4 squares, formed out of the series of natural
numbers one to sixteen.
The twenty-four varieties with 1 in the first cell have been shown by Nārā-

yaṇa as per Figure 36.

20Rule 13(a).
21Rule 13(b)–14(a).
22Ex. 4.
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[1]
1 8 13 12
14 11 2 7
4 5 16 9
15 10 3 6

[5]
1 8 13 12
15 10 3 6
4 5 16 9
14 11 2 7

[9]
1 8 10 15
14 11 5 4
7 2 16 9
12 13 3 6

[2]
1 14 4 15
8 11 5 10
13 2 16 3
12 7 9 6

[6]
1 15 4 14
8 10 5 11
13 3 16 2
12 6 9 7

[10]
1 14 7 12
8 11 2 13
10 5 16 3
15 4 9 6

[3]
1 12 13 8
14 7 2 11
4 9 16 5
15 6 3 10

[7]
1 12 13 8
15 6 3 10
4 9 16 5
14 7 2 11

[11]
1 15 10 8
14 4 5 11
7 9 16 2
12 6 3 13

[4]
1 14 4 15
12 7 9 6
13 2 16 3
8 11 5 10

[8]
1 15 4 14
12 6 9 7
13 3 16 2
8 10 5 11

[12]
1 14 7 12
15 4 9 6
10 5 16 3
8 11 2 13

1 2 4 3
8 7 5 6
10 9 11 12
15 16 14 13

1 3 4 2
8 6 5 7
11 9 10 12
14 16 15 13

1 5 7 3
8 4 2 6
13 9 11 15
12 16 14 10

(a) Squares 1–12.
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[13]
1 8 11 14
15 10 5 4
6 3 16 9
12 13 2 7

[17]
1 8 11 14
12 13 2 7
6 3 16 9
15 10 5 4

[21]
1 8 10 15
12 13 3 6
7 2 16 9
14 11 5 4

[14]
1 15 6 12
8 10 3 13
11 5 16 2
14 4 9 7

[18]
1 12 6 15
8 13 3 10
11 2 16 5
14 7 9 4

[22]
1 12 7 14
8 13 2 11
10 3 16 5
15 6 9 4

[15]
1 14 11 8
15 4 5 10
6 9 16 3
12 7 2 13

[19]
1 14 11 8
12 7 2 13
6 9 16 3
15 4 5 10

[23]
1 15 10 8
12 6 3 13
7 9 16 2
14 4 5 11

[16]
1 15 6 12
14 4 9 7
11 5 16 2
8 10 3 13

[20]
1 12 6 15
14 7 9 4
11 2 16 5
8 13 3 10

[24]
1 12 7 14
15 6 9 4
10 3 16 5
8 13 2 11

1 5 6 2
8 4 3 7
13 9 10 14
12 16 15 11

1 2 6 5
8 7 3 4
10 9 13 14
15 16 12 11

1 3 7 5
8 6 2 4
11 9 13 15
14 16 12 10

(b) Squares 13–24.

Figure 36: Nārāyaṇa’s squares.
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Example:

In a certain 4 × 4 square, the total (phala) is 40, find the initial
term and the common-difference. Also find them when the total
is 64.

The equations giving the initial term (a) and the common difference (d)
are:

(i) 10− 15

2
d = a, when the total is 40; and

(ii) 16− 15

2
d = a, when the total is 64.

These give:

for case (i) a = −5, . . . ; d = 2, . . .

and for case (ii) a = 1,−14, . . . ; d = 2, 4, . . .

The squares constructed, according to the rule given above, with the above
values of a and d are shown in Figures 37–39.

5.5 Use of irregular series

Instead of employing 16 numbers in arithmetical progression to fill up a
4 × 4 square, four different arithmetic series, with different initial terms but
the same common-difference consisting of four terms each may be used.23

Nārāyaṇa gives the following examples to illustrate this:24

(a) To construct 4× 4 magic squares with total 40.
In this case, the caraṇas (rows, i.e., the arithmetic progressions of which

each has as many terms as there are cells in a row) may be supposed to be:

(i) 1 2 3 4

6 7 8 9

11 12 13 14

16 17 18 19

(ii) 1 2 3 4

5 6 7 8

12 13 14 15

16 17 18 19

(iii) 2 3 4 5

6 7 8 9

11 12 13 14

15 16 17 18
Now filling up the cells by the same method as before, we get Figures 40–42.

(b) To construct 4× 4 squares with total 64

The initial terms of the caraṇas (rows) may be supposed to be (i) 7, 12, 17,
22 or (ii) 4, 11, 18, 25 or (iii) 1, 10, 19, 28, the common-difference being unity
in each case. The corresponding squares are shown in Figures 43–45.
23Rule 14(b)–15.
24Examples 5. These are the first examples of squares constructed by a set of numbers not
in a regular A.P.
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−5 9 19 17

21 15 −3 7

1 3 25 11

23 13 −1 5

Figure 37: Total = 40.

1 15 25 23

27 21 3 13

7 9 31 17

29 19 5 11

Figure 38: Total = 64.

−14 14 34 30

38 26 −10 10

−2 2 46 18

42 22 −6 6

Figure 39: Total = 64.

1 9 16 14

17 13 2 8

4 6 19 11

18 12 3 7

Figure 40: Total = 40.

1 8 16 15

17 14 2 7

4 5 19 12

18 13 3 6

Figure 41: Total = 40.

2 9 15 14

16 13 3 8

5 6 18 11

17 12 4 7

Figure 42: Total = 40.

7 15 22 20
23 19 8 14
10 12 25 17
24 18 9 13

Figure 43: Total = 64.

4 14 25 21
26 20 5 13
7 11 28 18
27 19 6 12

Figure 44: Total = 64.

1 13 28 22
29 21 2 12
4 10 31 19
30 20 3 11

Figure 45: Total = 64.
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5.6 Construction of irregular series

Method 1

Narāyaṇa gives the following rule for the determination of irregular series to
be used for filling a square with a given total:

For the determination of the caraṇas (“rows”) assume the first
term and the common-difference optionally. First write down the
initial term and then add to it successively the product of the
common-difference and the number of cells in a row, and do so
as many times as the number of rows less one. The series thus
formed is the mukhapaṅkti (“the optionally assumed series of ini-
tial terms”). To the last term of this series add the first term
together with the product of the common-difference into the num-
ber of rows minus one, and multiply by half the number of rows:
this is the mukhaphala (“the total corresponding to the assumed
series”). The desired total minus the mukhaphala is the kṣepaphala
(“the total for the numbers to be interpolated”). Now determine
the first term and the common-difference of a series in A.P. whose
number of terms is equal to the number of rows and whose sum
is equal to the kṣepaphala. Add the successive terms of the se-
ries thus obtained to the corresponding terms of the mukhapaṅkti
(“the optionally assumed series of initial terms”). Thus will be
determined the caraṇas for all magic squares.25

25Rules 16–20 (a). If the number of caraṇas (“rows”) be n, and if the first term be assumed
to be a and the common difference d, the sum of n2 terms divided by n, the number
of rows, is the total (mukhaphala) of the n × n square that will be constructed with
this series. If the terms are written in rows of n, the initial terms of the rows., i.e., the
mukhapaṅkti, will be

a, (a+ nd), (a+ 2nd), . . . , [a+ n(n− 1) d].

Let the given total be T . The total corresponding to the mukhapaṅkti (i.e., mukhaphala)
is

n2
{
a+

(n2−1)d
2

}
n

=
n

2
[2a+ (n− 1)(n+ 1)d]

=
n

2
{[a+ n(n− 1)d] + a+ (n− 1)d}

which is the form in which the total is expressed by Nārāyaṇa.

Kṣepaphala = T −
n

2
{[a+ n(n− 1)d] + a+ (n− 1)d}

= K, (say).

We have now to find an arithmetic series of n terms whose sum is equal to K. The terms
of this series are added to the corresponding terms of the mukhapaṅkti. The rationale of
the above result can be easily worked out. It can be easily seen that if A, D are the first
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Examples from Nārāyaṇa:

(i) Determine the caraṇas for a 4× 4 magic square with total 40.

Optionally assume a series whose first term is 1 and the common-difference is
1. When the terms are placed in rows of four, the initial terms of the successive
rows (i.e., mukhapaṅkti) are: 1, 5, 9, 13. Since the number of caraṇas is 4,

mukhaphala =
4

2
[13 + 1 + (4− 1)× 1] = 34,

kṣepaphala = 40− 34 = 6.

Now, if A be the first term, and D, the common-difference and 6 the sum
of an A.P. of 4 terms, we must have

6− 4
2 (4− 1)D

4
= A.

Therefore,
A = 0,−3, . . . and D = 1, 3, . . . .

For the solution (A = 0, D = 1), the series is: 0, 1, 2, 3. For the solution
(A = −3, D = 3), the series is: −3, 0, 3, 6. Therefore, the initial terms of the
required caraṇas (“rows”) are (1, 6, 11, 16) or (−2, 5, 12, 19).

(ii) Determine the caraṇas for the 4× 4 square whose total is 64.

In this case, the kṣepaphala is 64− 34 = 30, so that

30− 6D

4
= A.

That is,
A = 6, 3, 0, . . . and D = 1, 3, 5, . . .

For the first solution, the series is (6, 7, 8, 9), for the second (3, 6, 9, 12)
and for the third (0, 5, 10, 15). Therefore, the initial terms of the caraṇas are
(7, 12, 17, 22) or (4, 11, 18, 25) or (1, 10, 19, 28).

The squares may now be constructed by the method of the knight’s move.

term and the common-difference of the series whose sum is K, then the initial terms of
the caraṇas (“rows”) are

[a+A], [(a+ nd) +A+D], . . . , [(a+ n(n− 1)d) +A+ (n− 1)D].
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Method 226

Divide the kṣepaphala (“total of numbers to be interpolated”) by
the caraṇa (“number of cells in a row”). The quotient increased by
unity becomes the “gaccha”,27 provided the remainder is zero or
equal to half the caraṇa. If the remainder is otherwise, the magic
square is not possible. Add to the first and the second halves of
the mukhapaṅkti respectively zero and half the kṣepaphala or these
increased and decreased by unity successively. Thus will be deter-
mined the initial terms of the caraṇas in the cases of samagarbha
and viṣamagarbha squares.

Examples from Nārāyaṇa:

(i) To construct a 4× 4 square with total 40.

Assuming the series of natural numbers, the kṣepaphala is 40 − 34 = 6. This
divided by the caraṇa, i.e., 6÷ 4, gives the quotient 1 and remainder 2. The
construction of the square is thus possible, and 1 + 1 = 2 squares may be
obtained. The mukhapaṅkti is 1, 5, 9, 13. Half of the kṣepaphala = 3.
The numbers to be interpolated are, therefore, 0 and 3, or adding and

subtracting unity, 1 and 2. Thus, adding these to the respective halves of the
mukhapaṅkti, we get:28

0 3 1 5 12 16
1 2 2 6 11 15
Interpolators Initial terms of the rows

Thus, the numbers to be filled in the square are:

1, 2, 3, 4 or 2, 3, 4, 5
5, 6, 7, 8 6, 7, 8, 9
12, 13, 14, 15 11, 12, 13, 14
16, 17, 18, 19 15, 16, 17 18

and the corresponding squares are as shown in Figures 46 and 47.

(ii) To construct a 4× 4 square with total 64.

Here, as before the kṣepaphala = 64 - 34 = 30. This divided by the caraṇa,
i.e., 30÷ 4 gives the quotient 7 and remainder 2. Thus, the square is possible
and 7 + 1 = 8 different squares may be obtained.
26Rules 20(b)–23(a).
27Here, the term gaccha means the “number” of different sets of series that may be obtained
for the filling of the square with the required total.

28Nārāyaṇa gives the initial terms only.
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1 8 16 15
17 14 2 7
4 5 19 12
18 13 3 6

Figure 46: Total = 40.

2 9 15 14
16 13 3 8
5 6 18 11
17 12 4 7

Figure 47: Total = 40.

As before, the mukhapaṅkti is 1, 5, 9, 13. Half the kṣepaphala is 15. The
numbers to be interpolated are 0, 15, or adding and subtracting unity succes-
sively to get 8 different pairs we have:

0 15
1 14
2 13
3 12
4 11
5 10
6 9
7 8

Adding these pairs to the respective halves of the mukhapaṅkti (1, 5, 9, 13),
we get the following 8 sets for the initial terms of the rows:

1 5 24 28
2 6 23 27
3 7 22 26
4 8 21 25
5 9 20 24
6 10 19 23
7 11 18 22
8 12 17 21

Eight squares may now be constructed as before.

5.7 Change of squares

Construct a magic square of the type desired. Subtract its total
from the given total, and divide by the number of cells in a line.
On adding the quotient to the numbers in the cells of that square
will be obtained the required square.29

Thus, to transform the 4 × 4 magic square of Figure 22, with total 34, into
another with total 100, one has simply to add (100−34)

4 , i.e., 33
2 to the numbers

in the cells of that magic square.
29Rule 23(b)–24(a).
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5.8 Construction by superposition

First method

Construct two samagarbha squares, one called chādaka (“covering
one”) and the other called chādya (“one to be covered”). The
superposition is to be made in the manner of folding the palms
of the hands. Form a series with an optional first term and an
optional common-difference and with as many terms as the “num-
ber”30 of the square; this is the mūlapaṅkti (“basic series”). With
another first term and common-difference form another series: this
is called parapaṅkti. Multiplying the terms of the parapaṅkti by
the quotient obtained on dividing the given total minus the sum
of the mūlapaṅkti by the sum of the parapaṅkti, is produced the
progression which is called guṇapaṅkti (“product-series”). Divide
the mūlapaṅkti and the guṇapaṅkti by turning each upon itself, so
that each part will have terms equivalent to half the “number” of
the square. The numbers are written down vertically, one above
the other, and directly in the chādaka (“covering one”) and in an-
other fashion (i.e., horizontally and inversely) in the chādya (“one
to be covered”). In the first, fill thus successively half the rows
and in the second half the columns.31 Fill the other half of each
square in the contrary way. This method of constructing magic
squares by superposition is taught by the son of Nṛhari (i.e., by
Nārāyaṇa).32

Examples from Nārāyaṇa:
(i) To construct a 4× 4 magic square with total 40.
Assume the mūlapaṅkti to be 1, 2, 3, 4. Let the parapaṅkti33 be 0, 1, 2, 3.

The multiplier = (40−10)
6 = 5. Therefore, the gunapaṅkti is 0, 5, 10, 15.

Writing the mūlapaṅkti and guṇapaṅkti by turning them upon themselves,
we get

1 2 and 0 5
4 3 15 10

respectively. Taking the first set, placing it vertically and then filling with it
the horizontal half of a 4× 4 square, we get Figure 48.
30The “number” of the square is the number of cells in a row of the square.
31i.e., the upper horizontal half of the first square is filled first and then the lower half, and
in the second square, the left vertical half is filled first.

32Rules 24(b)–29. The author Nārāyaṇa was the son of Nṛsiṃha or Nṛhari.
33It is convenient to take the parapaṅkti such that its sum is less than that of the mūlapaṅkti,
but this is not essential.
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Then filling the other half with the same numbers in the inverse order, we
get the chādaka (Figure 49). In the same way, filling horizontally with the
second set, we get the chādya (Figure 50). Then, folding (A) over (B) and
adding the numbers, we get the required square with total 40 (Figure 51).

Aliter. Or, if we take the mūlapaṅkti as before but the parapaṅkti as 1, 2, 3,
4, the multiplier is (40− 10)

10
= 3, so that the guṇapaṅkti is 3, 6, 9, 12. Thus

we get
1 2 and 3 6
4 3 12 9

and the corresponding squares are as in Figures 52–54.34

(ii) To construct a 4× 4 square with total 64.
Here, taking the mūlapaṅkti as 1, 2, 3, 4, and the parapaṅkti as 0, 1, 2, 3.

The multiplying factor is
64− (1 + 2 + 3 + 4)

(0 + 1 + 2 + 3)
= 9.

Therefore, the guṇapaṅkti is 0, 9, 18, 27. Arranging, we have correspondingly
1 2 and 0 9
4 3 27 18

and the corresponding squares (Figures 55–57) as before.
The above method of constructing squares was rediscovered in Europe by

M. de la Hire (1705), and is now attributed to him.
(iii) To construct a 8× 8 square with total 260.
Let the mūlapaṅkti be 1, 2, 3, 4, 5, 6, 7, 8, and the parapaṅkti 0, 1, 2, 3, 4,

5, 6, 7. The multiplying factor is

260− 1
2 × 8× (8 + 1)

1
2 × 7× (7 + 1)

= 8.

The guṇapaṅkti is 0, 8, 16, 24, 32, 40, 48, 56.
Breaking up the mūlapaṅkti and guṇapaṅkti into halves and writing them

by turning upon themselves we have
(a) (b)

1 2 3 4 and 0 8 16 24
8 7 6 5 56 48 40 32

Hence, the preliminary squares are as shown in Figures 58 and 59. Superpos-
ing these two as in the hinge, we get Figure 60.35

34In (A′B′), the numbers are repeated. This is due to the fact that the mūlapaṅkti and the
parapaṅkti in this case are the same.

35This square is practically the same as Frost’s “Nasik Square”. (W. S. Andrews, l.c., p. 175,
Fig. 288).
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2 3 2 3
1 4 1 4

Figure 48

(A)
2 3 2 3
1 4 1 4

3 2 3 2
4 1 4 1

Figure 49: Chādaka.

(B)
5 0 10 15
10 15 5 0
5 0 10 15
10 15 5 0

Figure 50: Chādya.

(AB)
8 2 13 17
14 16 9 1
7 3 12 18
11 19 6 4

Figure 51: Total = 40.

(A′)

2 3 2 3

1 4 1 4

3 2 3 2

4 1 4 1

Figure 52

(B′)

6 3 9 12

9 12 6 3

6 3 9 12

9 12 6 3

Figure 53

(A′B′)

9 5 12 14

13 13 10 4

8 6 11 15

10 16 7 7

Figure 54

(A)
2 3 2 3
1 4 1 4
3 2 3 2
4 1 4 1

Figure 55

(B)
9 0 18 27
18 27 9 0
9 0 18 27
18 27 9 0

Figure 56

(AB)
12 2 21 29
22 28 13 1
11 3 20 30
19 31 10 4

Figure 57: Total = 64.
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4 5 4 5 4 5 4 5
3 6 3 6 3 6 3 6
2 7 2 7 2 7 2 7
1 8 1 8 1 8 1 8

5 4 5 4 5 4 5 4
6 3 6 3 6 3 6 3
7 2 7 2 7 2 7 2
8 1 8 1 8 1 8 1

Figure 58

24 16 8 0 32 40 48 56
32 40 48 56 24 16 8 0
24 16 8 0 32 40 48 56
32 40 48 56 24 16 8 0
24 16 8 0 32 40 48 56
32 40 48 56 24 16 8 0
24 16 8 0 32 40 48 56
32 40 48 56 24 16 8 0

Figure 59

60 53 44 37 4 13 20 29
3 14 19 30 59 54 43 38
58 55 42 39 2 15 18 31
1 16 17 32 57 56 41 40
61 52 45 36 5 12 21 28
6 11 22 27 62 51 46 35
63 50 47 34 7 10 23 26
8 9 24 25 64 49 48 33

Figure 60: Total = 260.
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Second method

In as many 4×4 squares as are present in the samagarbha (4n×4n

square) such as 8× 8 square, etc., write the numbers produced in
the series, as in the method of the 4 × 4 square by right and left
(knight’s) moves. Thus is said the easy method of constructing
samagarbha (4n× 4n) squares such as 8× 8 square, etc.36

Example from Nārāyaṇa:
(i) To construct a 8× 8 square with total 260.
It is easily seen that the series of natural numbers from 1 to 64 is to be

used. Writing the numbers 1 to 64 in groups of 4, we have

1 8 9 16 48 41 40 33
2 7 10 15 47 42 39 34

(I) 3 6 11 14 46 43 38 35 (III)
4 5 12 13 45 44 37 36

32 25 24 17 49 56 57 64
(II) 31 26 23 18 50 55 58 63 (IV)

30 27 22 19 51 54 59 62
29 28 21 20 52 53 60 61

Interchanging the figures in the third and fourth columns, as in the method
of filling 4× 4 squares, we get

1 8 16 9 48 41 33 40
I 2 7 15 10 47 42 34 39 III

3 6 14 11 46 43 35 30
4 5 13 12 45 44 36 37

32 25 17 24 49 56 64 57
31 26 18 23 50 55 63 58

II 30 27 19 22 51 54 62 59 IV
29 28 20 21 52 53 61 60

Taking the first rows of I and II to fill the first 4× 4 square, the second rows
to fill the second and so on, we get Figure 61.

36Rules 30–31.
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1 32 2 31
8 25 7 26

16 17 15 18
9 24 10 23

4 29 3 30
5 28 6 27

13 20 14 19
12 21 11 22

Figure 61

1 32 49 48 2 31 50 47
56 41 8 25 55 42 7 26
16 17 64 33 15 18 63 34
57 40 9 24 58 39 10 23
4 29 52 45 3 30 51 46
53 44 5 28 54 43 6 27
13 20 61 36 14 19 62 35
60 37 12 21 59 38 11 22

Figure 62: Total = 260.

1 2* 3 4 5* 6
12* 11 10 9 8 7*

13* 14 15 16 17 18*
24* 23 22 21 20 19*

25* 26 27 28 29 30*
36 35* 34 33 32* 31

Figure 63
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Then taking the first rows of III and IV to fill the remaining cells of the
first 4×4 square, the second rows to fill the remaining cells of the second 4×4

square and so on, we get Figure 62.37

5.9 Viṣamagarbha squares

Nārāyaṇa gives two methods of construction of the (4n+2)× (4n+2) squares.

First method

This method is described by Nārāyaṇa thus:

The measure of the śliṣṭa38 cells in half of half the “number of the
square” minus one. All over the square write down the numbers in
connected cells in the direct and inverse order, one below the other
(in rows). The numbers standing in the middle two columns above
and below the middle two rows, excepting those in the last but one
column below, should be interchanged (by one place anticlockwise
turning). Then the two middle numbers in the extreme right of
the right half of the square should be interchanged with the corre-
sponding ones of the left half of the square, which lie attached to
the diagonal. Finally the numbers of the śliṣṭa cells in the upper
and lower halves of the square should be interchanged symmetri-
cally. Such is the procedure of filling the cells with numbers by
the method of śliṣṭa cells. The numbers in the cells attached to
the diagonal in the right half of the square should be left as they
are. Others may be interchanged if necessary to make up the to-
tal. This is the method of constructing the viṣamagarbha-bhadra
taught by Nārāyaṇa.39

Examples from Nārāyaṇa:
(i) To construct a 6× 6 square with total 111.
It is easily seen that the series of natural numbers from 1 to 36 is to be

used.
The measure of the śliṣṭa cells = (3− 1)

2
= 1.

37It will observed that all groups of 4 cells have the same total, except the groups included
within the thick lines. If we interchange the third and fourth 4 × 4 squares, we get an
8× 8 square in which all groups of 4 cells excepting the centre group have the total 130.

38The śliṣṭa cells are cells not belonging to the diagonal and lying in the two vertical halves
of the square. These cells are counted from the boundary inwards as will appear from
the examples given. The number of such cells in a (4n + 2) × (4n + 2) square is n cells
on the right and n cells on the left of each row.

39Rules 32–36.
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The numbers 1 to 36 are placed in the 6×6 square in the direct and inverse
order, as in Figure 63. There is only one śliṣṭa cell in each half row. These lie
at the ends and are marked by asterisks.
The numbers in the two middle columns lying above and below the two

middle rows excepting those in the last but one co-column below are inter-
changed (by one place anticlockwise turning) as shown below. The numbers
in the extreme right cells of the two middle rows are interchanged with the
corresponding ones of the left half of the square. This gives Figures 64 and
65.
The numbers standing in the śliṣṭa cells above are then interchanged with

the corresponding ones below, giving Figure 66.
(ii) To fill a 10× 10 square with the natural numbers 1 to 100.
In this case, the total = 100× 101

2× 10
= 505. Placing the numbers 1 to 100 in

a 10× 10 square, we get Figure 67.
Interchanging the numbers in the middle columns as directed and also those

in the extreme right cells of the two middle rows with the corresponding ones of
the left half of the square, we get Figure 68. Then interchanging the numbers
in the śliṣṭa cells (marked by asterisks) as before we have the required square
(Figure 69).

(iii) To construct a 14× 14 square with the series of natural numbers.
The numbers filled continuously in a 14× 14 square and then interchanged

according to Nārāyaṇa’s rule give Figures 70 and 71.

Remarks

It will be observed that when the series employed is in A.P., the squares
are constructed by making the minimum interchanges expressly stated by
Nārāyaṇa. That this is so in all cases is illustrated by the 18 × 18 squares
constructed according to this method (Figures 72 and 73).
When, however, the series to be used is a broken series, other changes have

to be made. For instance, to construct a 6× 6 square with total 132, one may
take the series of initial terms 2, 9, 16, 23, 30, 37 and common-difference 1.
Proceeding according to the rule, we get Figure 74. But in this square, the
third and fourth rows do not have the desired total. We, therefore, replace
the initial numbers 28 and 16 of the third and fourth rows by 29 and 15
respectively and thus we get the magic square shown in Figure 75.
In this magic square, no number has been repeated. Replacement of the

numbers 17 and 27 (standing in the third and fourth rows) by 18 and 26, or 20
and 24 by 21 and 23, or 26 and 18 by 27 and 17 will also yield magic squares
with total 132, but there will be repetitions of two numbers.

Nārāyaṇa, however, gives Figure 74 as a 6× 6 magic square with total 132.
But as pointed out above, it is truly speaking not a magic square.
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1 * 4 33 * 6
* 11 9 28 8 *

* 14 15 16 17 18*
* 23 22 21 20 19*

* 26 27 10 29 *
36 * 34 3 * 31

Figure 64

1 * 4 33 * 6
* 11 9 28 8 *

* 14 18 16 17 15*
* 23 19 21 20 22*

* 26 27 10 29 *
36 * 34 3 * 31

Figure 65

1 35 4 33 32 6
25 11 9 28 8 30

24 14 18 16 17 22
13 23 19 21 20 15

12 26 27 10 29 7
36 2 34 3 5 31

Figure 66: Total = 111.

1 2 3 4 5 6 7 8 9 10
20 19 18 17 16 15 14 13 12 11
21 22 23 24 25 26 27 28 29 30
40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50
60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70
80 79 78 77 76 75 74 73 72 71
81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

Figure 67
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1 * * 4 6 95 7 * * 10
* 19 * 17 15 86 14 * 12 *
* * 23 24 26 75 27 28 * *
* * 38 37 35 66 34 33 * *

* * 43 44 50 46 47 48 * 45*
* * 58 57 51 55 54 53 * 56*

* * 63 64 65 36 67 68 * *
* * 78 77 76 25 74 73 * *
* 82 * 84 85 16 87 * 89 *

100 * * 97 96 5 94 * * 91

Figure 68

1 99 98 4 6 95 7 93 92 10
81 19 83 17 15 86 14 88 12 90
80 79 23 24 26 75 27 28 72 71
61 62 38 37 35 66 34 33 69 70

60 59 43 44 50 46 47 48 52 56
41 42 58 57 51 55 54 53 49 45

40 39 63 64 65 36 67 68 32 31
21 22 78 77 76 25 74 73 29 30
20 82 18 84 85 16 87 13 89 11

100 2 3 97 96 5 94 8 9 91

Figure 69: Total = 505.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

28 27 26 25 24 23 22 21 20 19 18 17 16 15

29 30 31 32 33 34 35 36 37 38 39 40 41 42

56 55 54 53 52 51 50 49 48 47 46 45 44 43

57 58 59 60 61 62 63 64 65 66 67 68 69 70

84 83 82 81 80 79 78 77 76 75 74 73 72 71

85 86 87 88 89 90 91 92 93 94 95 96 97 98

112 111 110 109 108 107 106 105 104 103 102 101 100 99

113 114 115 116 117 118 119 120 121 122 123 124 125 126

140 139 138 137 136 135 134 133 132 131 130 129 128 127

141 142 143 144 145 146 147 148 149 150 151 152 153 154

168 167 166 165 164 163 162 161 160 159 158 157 156 155

169 170 171 172 173 174 175 176 177 178 179 180 181 182

196 195 194 193 192 191 190 189 188 187 186 185 184 183

Figure 70: Key-square.

1 195 194 193 5 6 8 189 9 10 186 185 184 14

169 27 171 172 24 23 21 176 20 19 179 180 16 182

168 167 31 165 33 34 36 161 37 38 158 40 156 155

141 142 143 53 52 51 49 148 48 47 46 152 153 154

140 139 138 60 61 62 64 133 65 66 67 129 128 127

113 114 115 81 80 79 77 120 76 75 74 124 125 126

112 111 110 88 89 90 98 92 93 94 95 101 100 106

85 86 87 109 108 107 99 105 104 103 102 96 97 91

84 83 82 116 117 118 119 78 121 122 123 73 72 71

57 58 59 137 136 135 134 63 132 131 130 68 69 70

56 55 54 144 145 146 147 50 149 150 151 45 44 43

29 30 166 32 164 163 162 35 160 159 39 157 41 42

28 170 26 25 173 174 175 22 177 178 18 17 181 15

196 2 3 4 192 191 190 7 188 187 11 12 13 183

Figure 71: Total = 1379.
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If we use the series of initial terms 1, 7, 13, 26, 32, 38 and common-difference
1, and proceed as above, we shall get Figure 76.

Here also, the third and fourth rows do not have the desired total. But if we
replace the numbers 31 and 13, in those rows, by 38 and 6, or 14 and 30 by 21
and 23, or 17 and 27 by 24 and 20, or 29 and 15 by 36 and 8 respectively, we
shall get 4 magic squares with total 132. In two of these magic squares there
will be no repetition of numbers, but in the other two there will be repetition
of numbers.

Second method

In the viṣamagarbha squares such as 6 × 6, etc. the two middle
lines of cells (both horizontal and vertical) are called pīṭha. Fill
the cells of the square with the numbers (of the given or chosen
series) in the direct order. Reverse the number in the cells of each
diagonal. Then interchange the numbers lying at the north-east
corner between the diagonal and the pīṭha with the numbers in the
(corresponding) opposite cells. Then interchange the two numbers
at the south pīṭha, and also those at the west pīṭha. Thus will be
obtained the desired total in the horizontal and vertical outskirts
of the square. The interchange of the numbers in the other cells
should be made as required in order to make up the total by noting
the deficit or excess from it.40

Examples:
(i) To construct a 6× 6 square with the series of natural numbers.
The numbers are placed in the square in the direct order as in Figure 77. In

the above, the pīṭhas (“central rows and columns”) are marked by thick lines.
The directions are indicated by the letters E, N, W and S. The numbers in
the diagonal cells are reversed. The numbers 2 and 7 lying at the north-east
corner between the diagonal cells and the pīṭha cells are interchanged with
the numbers 32 and 12, respectively, which lie in the corresponding opposite
cells. Then the numbers 18 and 24 at the south pīṭha are interchanged; so
also are interchanged the numbers 33 and 34 at the west pīṭha. Thus, we
have Figure 78, in which the totals of the bounding rows and columns are as
desired. The sums of the diagonal cells are also as desired. The other numbers
should now be interchanged by trial to get the desired total 111. The squares
shown in Figures 79 and 80 result.

(ii) To construct a 10× 10 square with the series of natural numbers.
The above process gives the square shown in Figure 81.

40Rules 37–39.
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2 41 5 39 38 7

30 13 11 33 10 35

28 17 21 19 20 26

16 27 23 25 24 18

14 31 32 12 34 9

42 3 40 4 6 37

Figure 74

2 41 5 39 8 7

30 13 11 33 10 35

29 17 21 19 20 26

15 27 23 25 24 18

14 31 32 12 34 9

42 3 40 4 6 37

Figure 75: Total = 132.

1 42 4 40 39 6

32 11 9 35 8 37

31 14 18 16 17 29

13 30 26 28 27 15

12 33 34 10 36 7

43 2 41 3 5 38

Figure 76

5.10 Viṣama squares

Nārāyaṇa gives two methods for construction of the viṣamabhadra (“odd
squares”). The first of these is Nārāyaṇa’s own method, the method of su-
perposition, which was rediscovered in the west by M. de la Hire (1705). The
second method seems to have been known in India before Nārāyaṇa.

First method

Determine the mūlapaṅkti and guṇapaṅkti in the way indicated
before. The first term of the former should be placed in the centre
cell of the top row of the first of the (chādya and chādaka) squares.
Beneath it should be written down vertically the successive terms
of the series. The other columns should be filled similarly, so
that the numbers in the top row are in order. In the same way,
beginning with the first term of the second series fill up the second
square. The method of superposition of the chādya (“one to be
covered”) and chādaka (“covering one”) is as before.41

41Rules 41–42.
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E
1 2 3 4 5 6
7 8 9 10 11 12

N 13 14 15 16 17 18 S
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

W

Figure 77

36 32 3 4 5 31
12 29 26 7

13 22 21 24
19 16 15 18

25 11 8 30
6 2 34 33 35 1

Figure 78

36 32 3 4 5 31
12 29 27 10 26 7

13 17 22 21 14 24
19 20 16 15 23 18

25 11 9 28 8 30
6 2 34 33 35 1

Figure 79: Total = 111.

36 32 3 4 5 31
12 29 9 28 26 7

13 14 22 21 17 24
19 23 16 15 20 18

25 11 27 10 8 30
6 2 34 33 35 1

Figure 80: Total = 111.

100 92 93 94 5 6 7 8 9 91
20 89 88 14 16 15 87 83 82 11
30 29 78 77 75 26 74 73 22 21
40 39 63 67 65 66 64 38 32 31
41 49 48 54 56 55 57 43 42 60
51 52 53 47 46 45 44 58 59 50
61 62 33 37 35 36 34 68 69 70
71 72 28 27 25 76 24 23 79 80
81 19 18 84 86 85 17 13 12 90
10 2 3 4 96 95 97 98 99 1

Figure 81
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Examples from Nārāyaṇa:
(i) To construct a 3× 3 square with total 24.
Assume the mūlapaṅkti (“basic series”) to be 1, 2, 3. Let the parapaṅkti

(“second series”) be 0, 1, 2. Then the multiplying factor is

24− (1 + 2 + 3)

(0 + 1 + 2)
= 6.

Therefore, the guṇapaṅkti is 0, 6, 12.
Now, filling the chādaka (“one to be covered”) square with the mūlapaṅkti

and chādaka (“covering one”) with the guṇapaṅkti as directed in the rule, we
get Figures 82 and 83. Superposing these as in a hinge, we have the required
square (Figure 84).

(ii) To construct a 5× 5 square with total 90.
Let the mūlapaṅkti be 1, 2, 3, 4, 5. Also let the parapaṅkti be 1, 2, 3, 4, 5.

Then the multiplier is

90− (1 + 2 + 3 + 4 + 5)

1 + 2 + 3 + 4 + 5
= 5.

Therefore, the guṇapaṅkti is 5, 10, 15, 20, 25. Filling the squares as before,
we have Figures 85–87.

(iii) To construct a 7× 7 square with total 238.
Here, taking the mūlapaṅkti as 1, 2, 3, 4, 5, 6, 7, and the parapaṅkti as 0, 1,

2, 3, 4, 5, 6, the guṇapaṅkti is 0, 10, 20, 30, 40, 50, 60. The squares obtained
as above are shown in Figures 88–90.

Second method

In the first cell of a middle line (of cells) write the first term of the
series of numbers, and in the cell beside the opposite cell of the
same line (write) the next number. Then, in the cells lying along
the shorter diagonal from that write the following numbers. (On
reaching an extremity) continue the filling beginning with the cell
of the opposite line which will be diagonally in front (considering
the square to be rolled on a cylinder). When the next diagonal
cell is found to be already filled up, begin from the cell behind and
fill successively (in the same way). In the viṣamabhadra there will
be eight varieties.”42

Examples from Nārāyaṇa:
(i) To construct a 3× 3 square with the series of natural numbers.

42Rules 43–45.
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3 1 2
1 2 3
2 3 1

Figure 82

12 0 6
0 6 12
6 12 0

Figure 83

9 1 14
13 8 3
2 15 7

Figure 84: Total = 24.

4 5 1 2 3
5 1 2 3 4
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2

Figure 85: Chādya.

20 25 5 10 15
25 5 10 15 20
5 10 15 20 25
10 15 20 25 5
15 20 25 5 10

Figure 86: Chādaka.

19 15 6 27 23
25 16 12 8 29
26 22 18 14 10
7 28 24 20 11
13 9 30 21 17

Figure 87: Total = 90.

5 6 7 1 2 3 4
6 7 1 2 3 4 5
7 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3

Figure 88: Chādya.

40 50 60 0 10 20 30
50 60 0 10 20 30 40
60 0 10 20 30 40 50
0 10 20 30 40 50 60
10 20 30 40 50 60 0
20 30 40 50 60 0 10
30 40 50 60 0 10 20

Figure 89: Chādaka.

35 26 17 1 62 53 44
46 37 21 12 3 64 55
57 41 32 23 14 5 66
61 52 43 34 25 16 7
2 63 54 45 36 27 11
13 4 65 56 47 31 22
24 15 6 67 51 42 33

Figure 90: Total = 238.
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8 1 6
3 5 7
4 9 2

Figure 91: Total = 15.

6 1 8
7 5 3
2 9 4

Figure 92: Total = 15.

7 5 12
13 8 3
4 11 9

Figure 93: Total = 24.

Writing 1 at the top of the middle line (column), 2 in the last cell of the
next column and proceeding diagonally upwards we have Figure 91. In the
above, whenever a block occurs, we begin with the cell underneath.
Another filling would be as per Figure 92. As the filling can be started by

placing the first term in any one of the four centre cells of the outskirts, there
will be altogether 8 different squares, as stated by Nārāyaṇa.

(ii) To construct a 3× 3 square with total 24.
Nārāyaṇa uses an irregular series for filling up the square. According to

the method for finding out such series, we get 3, 7, 11 as the initial terms
of the caraṇas, the common difference being 1. The numbers to be filled are,
therefore,

3, 4, 5
7, 8, 9
11, 12, 13

Hence the magic square is as in Figure 93.
Note: In this and the following squares, the filling begins from the extreme

right cell of the middle row.
(iii) To construct a 5× 5 square with total 90.
Here, the initial terms of the caraṇas are found to be 4, 10, 16, 22, 28, the

common-difference being unity. The square is shown in Figure 94.
(iv) To construct a 7× 7 square with total 238.
In this case, the initial terms of the caraṇas may be taken as 7, 15, 23,

31, 39, 47, 55, the common-difference being unity. The square is shown in
Figure 95.
The magic squares constructed by the above method are such that the

sum of any two numbers that are geometrically equidistant from the cen-
tre is equal to twice the centre number. Such squares are called perfect by
W. S. Andrews.43

5.11 Other magic squares

Nārāyaṇa says:

With the help of 4× 4 magic squares filled by natural numbers 1,
etc. construct a magic rectangle or 4n× 4n magic square. From it

43See W. S. Andrews, l.c., p. 1 ff.
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16 14 7 30 23
24 17 10 8 31
32 25 18 11 4
5 28 26 19 12
13 6 29 22 20

Figure 94: Total = 90.

31 29 20 11 58 49 40
41 32 23 21 12 59 50
51 42 33 24 15 13 60
61 52 43 34 25 16 7
8 55 53 44 35 26 17
18 9 56 47 45 36 27
28 19 10 57 48 39 37

Figure 95: Total = 238.

one can always construct other magic figures. Lines drawn through
the corners in any desired way so as always to keep the num-
ber of cells the same give rise to the figures of vitāna (“canopy”),
maṇḍapa (“altar”), vajra (“diamond”), etc. Those are saṅkīrṇa-
bhadra (“other magic figures”). By the meeting together of lines
between two cells and two diagonals are produced bases and up-
rights of triangle-pairs in all directions. Here, the triangles are
filled with the numbers of a magic rectangle produced by 4n× 4n

squares, first in the direct order and then in the inverse order and
so on. Such is the method of filling magic figures.44

Besides the three types of magic figures mentioned above, Nārāyaṇa has
given rules for the construction of many other types of figures with illustration.
These figures will be given and their peculiarities pointed out. The rules
regarding their constructions will not be given, as they are apparent from the
figures.

Vitāna (“Canopy”)

The figure is as shown in Figure 96.
This is a rectangle constructed with the natural numbers 1 to 32 and consists

of two 4×4 squares. The numbers are filled according to the method of 4n×4n

squares given before.45 It will be observed that the total of each row in the
above is 132 and that of each column is 66.
For another magic rectangle constructed with the natural numbers 1 to 48

and consisting of three squares, see below (Figure 105).

Maṇḍapa (“Altar”)

The figure is as shown in Figure 97.
44Rules 46–49.
45Rules 30–31.
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Here the numbers of the magic rectangle (Figure 96) have been used by
taking them successively in rows. Here, any set of eight numbers occurring
together,46 horizontally, vertically or diagonally, gives the total 132. The
eight numbers lying in a square have the same total 132. There is cylindrical
symmetry, i.e., if the figure be rolled on a cylinder, any continuous eight
numbers or those lying in a square give the total 132. It is easy to find 26 sets
of eight numbers having the same total 132.

Vajra (“Diamond”)

The figure (Figure 98) is constructed from the magic rectangle in Figure 96.
Any eight numbers lying together in the same line, as well as the vertical
diagonal, have the same sum 132. The sum of two horizontal rows, one in the
upper half of the square and the other in the lower half, together containing
eight numbers is 132. The sum of eight numbers lying in a small square is
132. In this case, it is easy to find 32 sets of eight numbers having the same
total.

Padma (“Lotus”)

The figure (Figure 99) is constructed from the rectangle in Figure 96. Any
set of eight numbers taken vertically, horizontally (along lines side by side) or
in any four leaves symmetrically situated give the same total 132. There is
cylindrical symmetry. In this case, 32 sets of eight numbers having the same
total can be easily picked out.

Vajra (“Diamond”)

The vajra (“diamond”) (Figure 100) uses the numbers of the 8 × 8 magic
square in Figure 62. In the above groups of 16 numbers with the same total
520, groups of eight numbers with total 260 and also groups of four numbers
with total 130 can be picked out easily. The sixteen numbers may be taken
horizontally, vertically, and in two rings etc. Groups of eight may be taken
horizontally, vertically, diagonally, in rings, etc. Groups of four may be taken
horizontally or vertically, as half rows or columns, in small squares, etc.

Maṇḍapa

The following maṇḍapa (“altar”) (ed. see Figure 101) is constructed by using
the numbers of the 8× 8 magic square in Figure 62. It has groups of sixteen,
eight and four numbers having equal totals, as in the vajra.
46i.e., any two lines of numbers that are side by side.
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1 16 25 24 2 15 26 23
28 21 4 13 27 22 3 14
8 9 32 17 7 10 31 18
29 20 5 12 30 19 6 11

Figure 96: Vitāna or Canopy.
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Figure 97: Maṇḍapa or Altar.

Sarvatobhadra (“Perfect magic figure”)

In this figure (Figures 102 and 103) constructed from the 8× 8 magic square
in Figure 62, the totals of all four, eight and sixteen numbers are 130, 260 and
520 respectively. The figure is perfectly continuous.

Dvādaśakara (“Twelve hands”)

The figure (Figure 104) is constructed by the numbers of the 12× 4 rectangle
(Figure 105) using the numbers 1 to 48. In the above figure (ed. see Figure 104)
all groups of 12, of 8 or of 4 numbers have equal totals, 294, 196 and 98
respectively.

Vajra Padma (“Diamond lotus”)

The figure (Figure 106) is constructed with the numbers of the 12×4 rectangle
given above (ed. see Figure 105). In this figure, every group of four numbers
whether occurring in a line or cells has the total 98, every group of eight
numbers has the total 196 and every group of 12 numbers taken horizontally,
vertically or in a circle has total 294.
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24

225 13

16 415 27 17

1 26 21 22 32 7 12

23 28 3 9 10 5 30

14 8 31 20 19

18 29 6

11

Figure 98: Vajra or Diamond.

Figure 99: Padma or Lotus.
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1
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Figure 100: Vajra or Diamond.
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Figure 101: Maṇḍapa.
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57

4017
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32 41

56 534 

29 44 20
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Figure 102: Sarvatobhadra.
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Figure 103: Sarvatobhadra.
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1

3
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14
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Figure 104: Dvādaśakara.

1 24 37 36 2 23 38 35 3 22 39 34

42 31 6 19 41 32 5 20 40 33 4 21

12 13 48 25 11 14 47 26 10 15 46 27

43 30 7 18 44 29 8 17 45 28 9 16

Figure 105
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241 37 36

35
20

3
3340
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42 31
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47 14
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9 16
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43 30 7 18

Figure 106: Vajra Padma.
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Figure 107: Ṣaḍasra or Hexagon.
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Figure 108: Padmavṛtta or Lotus circle.

Ṣaḍasra (“Hexagon”)

The figure (Figure 107) is constructed with the numbers of the 12×4 rectangle
(ed. see Figure 105). Every group of twelve numbers has the same sum 294.

Padma Vṛtta (“Inscribed lotus”)

The figure (Figure 108) is constructed with the numbers of the 12× 4 magic
rectangle (ed. see Figure 105). Every group of twelve numbers has the same
sum 294.

Magic triangle

Nārāyaṇa has proposed the problem of constructing a magic triangle (ed. see
Figure 110) with total 400. His magic triangle is constructed with the help of
the numbers of a magic square whose total is 225 (ed. see Figure 109).
The square is obtained by multiplying each of the numbers of a 3×3 square

using the natural numbers by 15. It will be further observed that (400−225) =

175 is placed in the centre, so that the sum of each of the arms radiating from
the centre may be 400.
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120 15 90
45 75 105
60 135 30

Figure 109: Total = 225.

Magic cross

The figure of the magic cross given by Nārāyaṇa is shown in Figure 111. This
cross has been made with the help of the numbers of the 4 × 4 square given
in Figure 114. 94 has been placed in the centre to give the required total.

Magic circles

Nārāyaṇa has given a number of magic circles each with the total 400. These
circles together with their key squares or rectangle are:

(i) Magic circle from a 3× 3 square using the series whose first term is 15
and common-difference 15 (Figure 112 and 113).

(ii) Magic circle from a 4 × 4 square whose first term is 9 and common-
difference 9 (Figures 114 and 115).

(iii) Magic circle from a 5 × 5 square whose first term is 4 and common-
difference 4 (Figures 116 and 117).

(iv) Magic circle from a 6 × 6 square whose first term is 3 and common-
difference 3 (Figures 118 and 119).

(v) Magic circle from a 8 × 4 rectangle using the natural numbers 1 to 32
(Figures 120 and 121).

6 Dharmanandana square

Dharmanandana, a Jaina scholar (circa fifteenth century) has given47the fol-
lowing 8× 8 square48 with total 260 (Figure 122).
The above square has been constructed by placing the natural numbers 1

to 64 in a 8 × 8 square in the direct order and then shifting the numbers so
placed suitably. The square is divided into smaller squares of four cells each.
The numbers in those squares that lie on the diagonals are unchanged, while
47The square occurs in the catuḥṣaṣṭi-yoginī-maṇḍala-stuti of Dharmanandana.
48This square is given in W. S. Andrews’ book, l.c., Figure 94, p. 43.



6 Dharmanandana square 427

75

45

90
15

120

30
135

60

175

105

Figure 110: Total = 400.

81

135 2794

54

90

144 11718

63

108

36

45

99

72

1269

Figure 111: Total = 400.
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120 45 60
15 75 135
90 105 30

Figure 112: Total = 225.

9015120 175

105

75

45

30

135

60

Figure 113: Total = 400.

9 72 117 108
126 99 18 63
36 45 144 81
135 90 27 54

Figure 114: Total = 306.

9
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36
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90 45 99 72
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144

18
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548163108 94

Figure 115: Total = 400.
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68 92 16 40 44
96 20 24 48 72
4 28 52 76 100
32 56 80 84 8
60 64 88 12 36

Figure 116: Total = 260.
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Figure 117: Total = 400.
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3 105 12 99 96 18
75 33 27 84 24 90
72 42 54 48 51 66
39 69 57 63 60 45
36 78 81 30 87 21
108 6 102 9 15 93

Figure 118: Total = 333.
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Figure 119: Total = 400.
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1 16 25 24 2 15 26 23
28 21 4 13 27 22 3 14
8 9 32 17 7 10 31 18
29 20 5 12 30 19 6 11

Figure 120: Row total = 132, Column total = 66.
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Figure 121: Total = 400.

8 7 59 60 61 62 2 1
16 15 51 52 53 54 10 9
41 42 22 21 20 19 47 48
33 34 30 29 28 27 39 40
25 26 38 37 36 35 31 32
17 18 46 45 44 43 23 24
56 55 11 12 13 14 50 49
64 63 3 4 5 6 58 57

Figure 122

8 7 6 5 4 3 2 1
16 15 14 13 12 11 10 9
24 23 22 21 20 19 18 17
32 31 30 29 28 27 26 25
40 39 38 37 36 35 34 33
48 47 46 45 44 43 42 41
56 55 54 53 52 51 50 49
64 63 62 61 60 59 58 57

Figure 123
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1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108

109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132
133 134 135 136 137 138 139 140 141 142 143 144

Figure 124: Key-square.

1 2 3 141 140 139 138 137 136 10 11 12
13 14 15 129 128 127 126 125 124 22 23 24
25 26 27 117 116 115 114 113 112 34 35 36
108 107 106 40 41 42 43 44 45 99 98 97
96 95 94 52 53 54 55 56 57 87 86 85
84 83 82 64 65 66 67 68 69 75 74 73
72 71 70 76 77 78 79 80 81 63 62 61
60 59 58 88 89 90 91 92 93 51 50 49
48 47 46 100 101 102 103 104 105 39 38 37

109 110 111 33 32 31 30 29 28 118 119 120
121 122 123 21 20 19 18 17 16 130 131 132
133 134 135 9 8 7 6 5 4 142 143 144

Figure 125: Total = 870.

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

(a) Key-square.

1 15 14 4
12 6 7 9
8 10 11 5

13 3 2 16

(b) Total = 34.

Figure 126
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4 9 2
3 5 7
8 1 6

Figure 127: Total = 15.

n− 8 n− 1 2 7
6 3 n− 4 n− 5

n− 2 n− 7 8 1
4 5 n− 6 n− 3

Figure 128: Total = 2n.

8 15 2 7
6 3 12 11
14 9 8 1
4 5 10 13

Figure 129: Total = 32.

22 3 9 15 16
14 20 21 2 8
1 7 13 19 25
18 24 5 6 12
10 11 17 23 4

Figure 130: Total = 65.

those in the other squares are interchanged with the diagonally opposite ones.
The manner of the change will be evident from the key square in Figure 123
in which the smaller squares that are not to be interchanged are marked by
thick letters and thick boundaries.
Dharmanandana’s method is quite general.49 For instance, the 12 × 12

square shown in Figure 125 can be made by dividing the key square (Fig-
ure 124) into smaller squares of nine cells.
The 4 × 4 magic square (Figure 126) based on Dharmanandana’s method

is interesting as it is not included in Nārāyaṇa’s squares (Figure 36).

7 Sundarasūri squares

Another Jaina scholar, Sundarasūri (circa fifteenth century), has given a num-
ber of interesting squares which have been constructed by novel methods.50

An account of these squares is given below.
3× 3 square: The filling of the 3× 3 square as per Figure 127 is according

to the traditional Hindu method, already noted in Nārāyaṇa’s work.
4×4 squares: A 4×4 square with any desired even total may be constructed

by giving particular values to n in Figure 128.
Sundarasūri exhibits the instance with total 32 as per Figure 129. In this

figure, the number 8 occurs twice, because the total is less than 34, which is
the least total for a 4× 4 square constructed with a series of natural numbers.

Odd squares: Sundarasūri uses the elongated knight’s move to obtain the
5× 5 square shown in Figure 130.
49It is equally applicable to the smaller 4× 4 square.
50These squares occur in a stotra by Sundarasūri
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20 28 29 37 45 4 12
44 3 11 19 27 35 36
26 34 42 43 2 10 18
1 9 17 25 33 41 49
32 40 48 7 9 16 24
14 15 23 31 39 47 6
38 46 5 13 21 22 30

Figure 131: Total = 175.

The method of filling is: Put 1 in the extreme cell of the middle row; move
two cells in front and one cell diagonally, and put down the next number 2
and so on. When a block occurs, put the next number in the adjoining cell in
the direction of the move, and continue as before.51

The method can be easily generalised and is applicable to all odd squares.
For filling up a (2n + 1) × (2n + 1) square the move to be used is n cells
horizontally or vertically and one cell diagonally. When a block occurs, the
next number is to be put down in front of the cell last filled in the direction
of the move. By proceeding in this way, we obtain the required magic square.
As an example, we give the 7× 7 square as per Figure 131.

8× 8 square: Sundarasūri gives the 8× 8 square52 shown in Figure 132.
It has been constructed by dividing symmetrically the following key-square

into groups of four and two cells. The numbers that lie in groups standing on
the diagonals remain unchanged, while those in the others are interchanged
with the diagonally opposite ones. The method of division will be apparent
from Figure 133 of the key-square.

Compound magic squares: Sundarasūri gives the 9 × 9 square shown in
Figure 134.
The method of construction of the above square is apparent from the figure

if we consider the square to be divided into nine smaller squares, as is done in
the figure given above. It will be found that each of the smaller squares is a
3× 3 magic square. Therefore, the method is: Divide the numbers 1–81 into
9 groups in order, and with these groups construct nine 3× 3 squares. These
nine squares, being numbered one to nine in order, are filled in the bigger
square just as in the method of filling a 3× 3 square with the numbers 1–9.53

51W. S. Andrews gives the above method (p. 4, Figure 5) and claims it as his own. He has
been anticipated by Sundarasūri by several centuries.

52The same square has been given by W. S. Andrew, l.c., Figure 53, p. 25. The square is
perfect in all its characteristics. Sundarasūri’s method can be generalised to obtain other
squares.

53The above method is now attributed to Prof. Hermann Schubert (cf. W. S. Andrews, l.c.,
Figure 96, p. 44). In India it was known several centuries earlier.



7 Sundarasūri squares 435

1 63 62 4 5 59 58 8
56 10 11 53 52 14 15 49
48 18 19 45 44 22 23 41
25 39 38 28 29 35 34 32
33 31 30 36 37 27 26 40
24 42 43 21 20 46 47 17
16 50 51 13 12 54 55 9
57 7 6 60 61 3 2 64

Figure 132: Total = 260.

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

Figure 133: Key-square.

71 64 69 8 1 6 53 46 51
66 68 70 3 5 7 48 50 52
67 72 65 4 9 2 49 54 47
26 19 24 44 37 42 62 55 60
21 23 25 39 41 43 57 59 61
22 27 20 40 45 38 58 63 56
35 28 33 80 73 78 17 10 15
30 32 34 75 77 79 12 14 16
31 36 29 76 81 74 13 18 11

Figure 134: Total = 369.
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8 Concluding remarks

The foregoing pages would have shown to the reader that the Hindu achieve-
ments in the theory and construction of magic squares stand unsurpassed even
up to the present day. The simplest square presenting any difficulty is the 4×4

square whose study began in India as early as the beginning of the Christian
Era. The success obtained in constructing this square must have encouraged
the consideration of larger squares. The construction of magic squares was
not made a part of mathematics, as no theoretical treatment could be given
in the earlier stages. There are, however, stray examples of the occurrence of
magic squares from the beginning of the Christian Era right up to the time
of Nārāyaṇa (1356).54 A very elegant and satisfactory method for the con-
struction of the 4×4 square was developed before the time of Nārāyaṇa. This
method, which we may call the method of knight’s move, gives us 384 magic
squares, which are perfect and possess the characteristics of what are now
called “Nasik squares”. This method of construction will be new to western
scholars of today.
Nārāyaṇa (1356), who undertook the study of these squares, obtained re-

sults which have been only recently found in the west by the efforts of several
workers. Of his theoretical results, the most important is the demonstration
of the fact that magic squares may be constructed with as many series or
groups of numbers in A.P. as there are cells in a column. This result was
first stated in the west by L. S. Frierson in the beginning of the present cen-
tury.55 Another very important feature of Nārāyaṇa’s work is the division
of magic squares into three types. In our opinion, the recent work done in
the west suffers from considerable inelegance because of the absence of such
classification.
Nārāyaṇa claims as his own the methods for construction of 4n×4n squares

and odd squares by means of superposition, and also a method for the con-
struction of (4n+2)×(4n+2) square. Methods for the construction of certain
squares by means of superposition were devised by M de la Hire (1705).56

Nārāyaṇa’s methods, given more than six centuries earlier, are more elegant
and practical, although theoretically there is little difference between the two.
Nārāyaṇa’s method for the construction (4n+ 2)× (4n+ 2) squares seems to
be the only general method for the construction of such squares known up to
the present.
54Magic squares were used as charms and the method of construction seems to have been
kept secret by the astrologers who used them in their trade. Another reason for their not
occurring more frequently is that they did not belong to any particular subject and so
has no place in the literature of the land.

55Andrews, W. S., l.c., pp. 62 and 151–152.
56Memoires de l’ Academie Royale (1705). For a description of the method see also
W. S. Andrews, l.c.
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The squares given by the Jaina monks Dharmanandana and Sundarasūri
have evidently been obtained by generalisation of Nārāyaṇa’s methods and
show that the study of magic squares engaged the attention of the Hindus up
to the fifteenth century.
The history of the development of magic squares in India, detailed in the

preceding pages, leads irresistibly to the conclusion that the magic square
originated in India. The knowledge of these squares might have gone outside
India at any time between the first century and the tenth century ad. But
it appears to be most probable that the west as well as China got the magic
squares from India through the Arabs about the tenth century. This would
account for the simultaneous occurrence of the magic square in such far off
places as China, Arabia and Western Europe.



Use of series in India ∗

Particular instances of arithmetic and geometric series have been found to
occur in Vedic literature as early as 2000 bc. From Jaina literature it ap-
pears that the Hindus were in possession of the formulae for the sum of the
arithmetic and the geometric series as early as the fourth century bc, or
earlier. In the Bakhshali Manuscript and other works on Pāṭīgaṇita, series
were treated as one of the major topics of study and a separate section was
generally devoted to the rules and problems relating to series. In Europe, the
series were looked upon as one of the fundamental operations, evidently due
to Hindu influence through the Arabs. Besides the arithmetic and the geo-
metric series, a number of other types of series, e.g., the series of sums, the
series of squares or cubes of the natural numbers, the arithmetico-geometric
series, the series of polygonal or figurate numbers, etc. occur in the works on
Pāṭīgaṇita. There is, however, no mention of the harmonic series.

Evidence of the use of the infinite geometric series with common ratio
less than unity is found in the ninth century. The formula for the sum of
this series was known to the Jainas who used it to find the volume of the
frustum of a cone. The Kerala mathematicians of the fifteenth century gave
the expansions of sinx, cosx, tanx and π long before they were known in
Europe or anywhere else.

The present article gives an account of the use of series in Indian literature.

1 Origin and early history

Series of numbers developing according to certain laws have attracted the
attention of people in all times and climes. The Egyptians are known to have
used the arithmetic series about 1550 bc.1 Arithmetic as well as geometric
series are found in the Vedic literature of the Hindus (c. 2000 bc). In the
Taittirīya-saṃhitā2 we find the series:

(i) 1, 3, 5, . . . , 19, 29, . . . , 99

(ii) 2, 4, 6, . . . , 20

(iii) 4, 8, 12, . . .

* Bibhutibhusan Datta and Avadhesh Narayan Singh. Revised by K. S. Shukla. Indian
Journal of History of Science, Vol. 28, No. 2 (1993), pp. 103–129.

1In the Ahmes Papyrus. Cf. Peet, Rhind Papyrus, p. 78; Smith, History, II, p. 498.
2TS, vii. 2.12–17; iv. 3.10.

© Hindustan Book Agency 2019 and Springer Nature Singapore Pte Ltd. 2019
Studies in Indian Mathematics and Astronomy,

Sources and Studies in the History of Mathematics and Physical Sciences,
https://doi.org/10.1007/978-981-13-7326-8_20

A. Kolachana et al. (eds.), 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7326-8_20&amp;domain=pdf


1 Origin and early history 439

(iv) 10, 20, 30, . . .

(v) 1, 3, 5, . . . , 33.

In the Vājasaneyī-saṃhitā3, we have the yugma (“even”) and the ayugma
(“odd”) series:

(vi) 4, 8, 12, 16, . . . , 48

(vii) 1, 3, 5, 7, . . . , 31.

The Pañcaviṃśa-brāhmaṇa4 has the following geometric series:

(viii) 12, 24, 48, 96, . . . , 196608, 393216.

Another geometric series occurs in the Dīgha Nikāya.5 It is

(ix) 10, 20, 40, . . . , 80000.

The Hindus must have obtained the formula for the sum of an arithmetic
series at a very early date, but when exactly they did so cannot be said with
certainty. It is, however, definite that in the 5th century bc, they were in
possession of the formula for the sum of the series of natural numbers, for in
the Bṛhaddevatā (500-400 bc)6 we have the result

2 + 3 + 4 + . . .+ 1000 = 500499.

In the Kalpa-sūtra of Bhadrabāhu (c. 350 bc), we have the sum of the
following geometric series

1 + 2 + 4 + . . .+ 8192 (i.e., to 14 terms)

given correctly as 16383, showing that the Hindus possessed some method of
finding the sum of the geometric series in the 4th century bc.
The following result occurs in the commentary, entitled, Dhavalā7 by Vīra-

sena (c. 9th century ad) on the Ṣaṭkhaṇḍāgama of Puṣpadanta Bhūtabali:

49
217

452

(
1 +

1

4
+

1

42
+

1

43
+ . . . ad inf.

)
= 65

110

113
.

This shows that the following formula giving the sum of the infinite geo-
metric series was well known in India in the 9th century ad:

a+ ar + ar2 + ar3 + . . . =
a

1− r
, when r < 1.

3VS, xvii. 24.25.
4xviii. 3. Compare also Lāṭyāyana Śrauta-sūtra, viii. 10.1 et seq.; Kātyāyana Śrauta-sūtra,
xxii. 9. 1–6.

5T. W. Rhys Davids, Dialogues of the Buddha, III, 1921, pp. 70–72.
6Bṛhaddevatā edited in original Sanskrit with English translation by A. Macdonell, Har-
vard, 1904.

71.3.2. Also see A. N. Singh, History of India from Jaina Sources, JA, Vol. xvi, Dec. 1950,
No. 2, pp. 54–69.
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2 Kinds of series

It thus appears that the Hindus studied the arithmetic and geometric series at
a very early date. Āryabhaṭa I (499), Brahmagupta (628) and other posterior
writers considered also the cases of the sums of the sums, the squares and the
cubes of the natural numbers. Mahāvīra (850) gave a rule for the summation
of an interesting arithmetico-geometric series, viz.

n∑
1

tm where t1 = a and tm = rtm−1 ± b, m ≥ 2;

and Nārāyaṇa (1356) considered the summation of the figurate numbers of
higher orders.

3 Technical terms

The Sanskrit term for a series is śreḍhī, meaning literally “progression”, “any
set or succession of distinct things”, or śreṇī (or śreṇi), literally “line”, “row”,
“series”, “succession”; hence in relation to mathematics it implies “a series or
progression of numbers”. Thus, it is clear that the modern terms progression
and series are analogous to the Hindu terms and they seem to have been
adopted in the West under Hindu influence, in preference to the Greek term
ϵκθϵσιs (ekthesis) which literally means a setting forth. The Sanskrit name
for a term of the series is dhana8 (literally, “any valued object”). The first
term is called ādi-dhana (“first term”) and any other term iṣṭa-dhana (“desired
term”). When the series is finite, its last term is called antya-dhana (“last
term”), and the middle term madhya-dhana (“middle term”). Often, for the
sake of abridgement, the second words of these compound names are deleted,
so that we have the terms ādi, iṣṭa, madhya and antya in their places. The first
term is also called prabhava (“initial term”), mukha (“face”) or its synonyms.
The technical names for the common difference in an arithmetic series are
caya or pracaya (from the root cay “to go”, hence meaning “that by which
the terms go”, that is, “increment”), uttara (“difference”, “excess”), vṛḍhi
(“increment”), etc. The common ratio in a geometric series is technically
called guṇa or guṇaka (“multiplier”) and so this series is distinguished from
the arithmetic series by the specific name guṇa-śreḍhī. The number of terms
in a series is known as pada (“step”, meaning “the number of steps in the
sequence”) or gaccha (“period”). The sum is called sarva-dhana (“total of all
terms”), średhī-phala (“result of the progression”), śreḍhī-gaṇita (or simply
gaṇita, because the sum of the series is obtained by computation), and śreḍhī-
saṃkalita (or in short saṃkalita, “sum of the series”).

8In mathematics dhana means an affirmative quantity or plus. This probably explains the
use of this term to denote the elements of a series which have to be summed up.
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The above-mentioned technical terms occur commonly in almost all the
known Hindu treatises on arithmetic from the so-called Bakhshali treatise
(c. 200) onwards. But in the latter, the series has been designated by varga
meaning “group”. Occasionally, we meet with the terms paṅkti9 and dhārā,10

which signify “continuous line or series”. Nārāyaṇa (1356) has used also a
special term, āya (literally, “income”) for the sum of natural numbers.

4 Sum of an arithmetic progression

Problems on the summation of arithmetic series are met with in the earli-
est available Hindu work on mathematics, the Bakhshali Manuscript. The
statement of the formula for the sum begins with the word rūponā, so that
summation is indicated by the terms rūponā karaṇena (“by the operation
rūponā, etc.”) throughout the work. In the statement of the solution of prob-
lems, the first term, the common difference and the number of terms, are
written together and the resulting sum after these, as follows:

ā 1 u 1 pa 19 rūpoṇā karaṇena phalam 190

1 1 1 1

In the above, ā stands for ādi (“first term”), u for uttara (“common dif-
ference”), and pa for pada (“number of terms”). The above quotation may
be translated thus: “the first term is 1

1 , the common difference is 1
1 , and the

number of terms is 19
1 ; therefore, performing rūponā, etc. the sum is 190

1 ”. 11

Āryabhaṭa I (499) states the formulae for finding the arithmetic mean and
the partial sum of a series in A. P. as follows:

Diminish the given number of terms by one, then divide by 2,
then increase by the number of the preceding terms (if any), then
multiply by the common difference, and then increase by the first
term of the (whole) series: the result is the arithmetic mean (of
the given number of terms). This multiplied by the given number
of terms is the sum of the given terms. Alternatively, multiply the
sum of the first and last terms (of the series or partial series to be
summed up) by half the number of terms.12

9See Chapter xiii of the Gaṇitakaumudī of Nārāyaṇa.
10For instance, see the Triloka-sāra of Nemicandra (c. 975).
11The denominator 1 is written in the case of all the integral quantities. This is to show
that the quantities involved may have non-integral values also.

12Ā, ii. 19. The commentator Bhāskara I says that several formulae are set out here. For
details see Āryabhaṭīya, edited and translated by K. S. Shukla in collaboration with
K. V. Sarma, New Delhi (1976), pp. 62–63.
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Let the series be
a+ (a+ d) + (a+ 2d) + . . .

Then the rule says that:

(1) the arithmetic mean of the n terms

[a+ pd] + [a+ (p+ 1)d] + . . .+ [a+ (p+ n− 1)d] = a+

(
n− 1

2
+ p

)
d;

(2) the sum of the n terms

[a+pd]+[a+(p+1)d]+ . . .+[a+(p+n−1)d] = n

[
a+

(
n− 1

2
+ p

)
d

]
.

In particular (when p = 0)

(3) the arithmetic mean of the series

a+ [a+ d] + [a+ 2d] + . . .+ [a+ (n− 1)d] =

[
a+

n− 1

2
d

]
;

(4) the sum of the series

a+ [a+ d] + [a+ 2d] + . . .+ [a+ (n− 1)d] = n

[
a+

n− 1

2
d

]
.

Alternatively, the sum of n terms of an arithmetic series with A as the first
term and L as the last term

=
n

2
(A+ L),

where 1
2 (A+ L) is the arithmetic mean of the terms.

Brahmagupta says:

The last term is equal to the number of terms minus one, mul-
tiplied by the common difference, (and then) added to the first
term. The arithmetic mean (of the terms) is half the sum of the
first and the last terms. This (arithmetic mean) multiplied by the
number of terms is the sum.13

Similar statements occur in the works of Śrīdhara,14 Āryabhaṭa II,15 Bhās-
kara II16 and others. Mahāvīra points out that the common difference may
be a positive or negative quantity.17

13BrSpSi, xii. 17.
14Triś, p. 28.
15MSi, xv. 47.
16L, p. 27.
17GSS, p. 102, (290).
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The particular case
n∑
1

r =
n(n+ 1)

2

is mentioned in all the Hindu works.18

5 Ordinary problems on arithmetic progression

The problems of finding out (1) the first term or (2) the common difference
or (3) the number of terms, are common to all Hindu works. They occur
first in the Bakhshali Manuscript.19 The problem of finding the number of
terms requires the solution of a quadratic equation.20 Some indeterminate
problems in which more than the one of the above quantities are unknown
also occur in the Bakhshali Manuscript, the Gaṇitasārasaṅgraha of Mahāvīra
and the Gaṇitakaumudī of Nārāyaṇa. A typical example of such problems is
the finding out of an arithmetic series that will have a given sum and a given
number of terms.
As illustrations of some other types of Hindu problems of arithmetical pro-

gression may be mentioned the following:

(1) There were a number of utpala flowers representable as the sum of a
series in arithmetical progression, whereof 2 is the first term and 3 the
common difference. A number of women divided those flowers equally
among them. Each woman had 8 for her share. How many were the
women and how many the flowers?21

(2) A person travels with velocities beginning with 4 and increasing succes-
sively by the common difference 8. Again, a second person travels with
velocities beginning with 10 and increasing successively by the common
difference of 2. What is the time of their meeting?22

(3) The continued product of the first term, the number of terms and the
common difference is 12. If the sum of the series is 10, find it.23

18It is sometimes mentioned in connection with addition, as in Śrīdhara’s Triśatikā and
Mahāvīra’s Gaṇitasārasaṅgraha.

19See p. 25; p. 35 problem 9; and p. 36 problem 10. The solution of this problem is
incorrectly printed.

20For the equation and its solution see the section on quadratic equations in the chapter
on Algebra in Part II.

21GSS, vi. 295.
22GSS, vi. 323 1

2
. A problem of the above type in which one of the men travels with a

constant velocity occurs in the Bakhshali Manuscript, p. 37.
23GK, Śreḍhī-vyavahāra, Ex. under Rule 6.
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(4) A man starts with a certain velocity and a certain acceleration per day.
After 8 days, another man follows him with a different velocity and an
acceleration of 2 per day. They meet twice on the way. After how many
days do these meetings occur?24

6 Geometric series

Mahāvīra gives the formula:

S =
a(rn − 1)

r − 1

for the sum of a geometric series whose first term is a and common ratio r.
He says:

The first term when multiplied by the continued product of the
common ratio, taken as many times as the number of terms, gives
rise to the guṇadhana. And it has to be understood that this
guṇadhana, when diminished by the first term and (then) divided
by the common ratio lessened by 1, becomes the sum of the series
in geometrical progression.25

The same result is stated by him in the following alternative form:

In the process of successive halving of the number of terms, put
zero or 1 according as the result is even or odd. (Whenever the
result is odd subtract 1). Multiply by the common ratio when
unity is subtracted and multiply so as to obtain square (when
otherwise, i.e., when the half is even). When the result of this
(operation) is diminished by 1 and is then multiplied by the first
term and (is then) divided by the common ratio lessened by 1, it
becomes the sum of the series.26

If n be the number of terms and r the common ratio, the first half of the
above rules gives rn. This process of finding the nth power of a number was
known to Piṅgala (c. 200 bc), and has been used by him to find 2n. The
second half of the rule then gives

S =
a(rn − 1)

r − 1
.

24Ibid, under rule 9.
25GSS, ii. 93.
26GSS, ii. 94; also vi. 311 1

2
, where the rule is applied to the case in which the common ratio

is a fraction.
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The above formula for the sum is stated by Pṛthūdakasvāmi,27 Āryabhaṭa
II,28 and Bhāskara II29 in the second form which appears to be the traditional
method of stating the result.
Mahāvīra has given rules for finding the first term, common ratio or number

of terms, one of these being unknown and the others as well as the sum being
given.30

As illustrations of problems on geometric series may be mentioned the fol-
lowing:

1. Having first obtained 2 golden coins in a certain city, a man goes on
from city to city, earning everywhere three times of what he earned
immediately before. Say how much he will make on the eighth day?31

2. When the first term is 3, the number of terms 6, and the sum of 4095,
what is the value of the common ratio?32

3. The common ratio is 6, the number of terms is 5, and the sum is 3110.
What is the first term here?33

4. How many terms are there in a geometric series whose first term is 3,
the second ratio is 5, and the sum is 228881835937?34

7 Series of squares

The series whose terms are the squares of natural numbers seems to have
attracted attention at a fairly early date in India. The formula

n∑
1

r2 =
n(n+ 1)(2n+ 1)

6

occurs in the Āryabhaṭīya35 where it is stated in the following form:

The sixth part of the product of the three quantities consisting of
the number of terms, the number of terms plus 1, and twice the
number of terms plus 1, is the sum of the squares.

27BrSpSi, xii. 17, quoted in the commentary.
28MSi, xv. 52–53.
29L, p. 31.
30GSS, ii. 97–103.
31GSS, ii. 96.
32GSS, ii. 102 (first half).
33GSS, ii. 102 (second half).
34GSS, ii. 105 (last half).
35Ā, ii. 22.
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The formula occurs in all the known Hindu works.36

Mahāvīra (GSS, vi. 298, 299) gives the sum of a series whose terms are the
squares of the terms of a given arithmetic series.
Let

a+ [a+ d] + . . .+ [a+ (r − 1)d] + . . .+ [a+ (n− 1)d]

be an arithmetic series. Then, according to him,

a2 + [a+ d]2 + . . .+ [a+ (r − 1)d]2 + . . .+ [a+ (n− 1)d]2

= n

[(
2n− 1

6
d2 + ad

)
(n− 1) + a2

]
= n

[
(2n− 1)(n− 1)d2

6
+ a2 + (n− 1)ad

]
.

Śrīdhara37 and Nārāyaṇa38 give the above result in the following form:

n∑
1

[a+ (r − 1)d]2 = a

n∑
1

[a+ 2(r − 1)d] + d2
n−1∑
1

r2.

8 Series of cubes

Āryabhaṭa I states the formula giving the sum of the series formed by the
cubes of natural numbers as follows:

The square of the sum of the original series (of natural numbers)
is the sum of the cubes.39

Thus, according to him,

n∑
1

r3 =

(
n∑
1

r

)2

=

[
n(n+ 1)

2

]2
.

The above formula occurs in all the Hindu works. The general case in which
the terms of the series are cubes of the terms of a given arithmetic series, has
been treated by Mahāvīra.40

Let
S =

n∑
1

αr

36Although this rule does not occur in the Triśatikā, it occurs in Śrīdhara’s bigger work of
which the Triśatikā is an abridgement. See PG, Rule 102.

37PG, Rule 105.
38GK, Śreḍhī-vyavahāra, 17 1

2
and the first half of 18.

39Ā, ii. 22.
40GSS, vi. 303.
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be an arithmetic series whose first term is a, and common difference d. Then,
according to Mahāvīra,

n∑
1

α3
r = d× S2 ± Sa(a ∼ d),

according as a > or < d.
Śrīdhara41 and Nārāyaṇa42 have also given the above result in the same

form as Mahāvīra.

9 Series of sums

Let
Nn = 1 + 2 + 3 + . . .+ n.

Then the series
n∑
1

Nr

formed by taking successively the sums up to 1, 2, 3, . . . terms of the series
of natural numbers, is given in all the Hindu works,43 beginning with that of
Āryabhaṭa I, who says:

In the case of an upaciti which has 1 for the first term and 1 for
the common difference between the terms, the product of three
terms having the number of terms (n) for the first term and 1 for
the common difference, divided by six is the citighana. Or, the
cube of the number of terms plus 1, minus the cube root of the
cube,44 divided by 6.45

The above rule states that
n∑
1

Nr =
n (n+ 1) (n+ 2)

6

=
(n+ 1)3 − (n+ 1)

6
.

41PG, Rule 107.
42GK, Śreḍhī-vyavahāra, 18 (c–d) f.
43This rule does not occur in the Triśatikā of Śrīdhara, but it occurs in his Pāṭīgaṇita. See

PG, Rule 103.
44This means [(n + 1)3]

1
3 = (n + 1). Recourse is taken to this form of expression for the

sake of meter.
45Ā, ii. 21.



448 Use of series in India

The sum of the series
n∑
1
Nr has been called by Āryabhaṭa I citighana which

means “the solid content of a pile in the shape of pyramid on a triangular base”.
The pyramid is constructed as follows:

Form a triangle with
n∑
1
m things arranged as below:

0 1
0 0 2

0 0 0 3
… … … … …

… … … … … …
0 0 0 … 0 0 (n-1)

0 0 0 … 0 0 0 n

Total = n(n+ 1)

2

Form a similar triangle with
n−1∑
1
m things and place it on top of the first,

then form another such triangle with
n−2∑

m things and place it on top of the
first two. Proceed as above till there is one thing at the top. The figure
obtained in this manner will be a pyramid formed of n layers, such that the

base layer consists of
n∑
1
r things, the next higher layer consists of

n−1∑
1
r things,

and so on. The number of things in the solid pyramid citighana =
n∑
1
Nr,

where
Nr =

m=r∑
m=1

m.

The base of the pyramid is called upaciti, so that

upaciti =
m=n∑
m=1

m.

The above citighana is the series of figurate numbers. The Hindus are known
to have obtained the formula for the sum of the series of natural numbers as
early as the fifth century bc. It cannot be said with certainty whether the
Hindus in those times used the representation of the sum by triangles or not.
The subject of piles of shots and other things has been given great importance
in the Hindu works, all of which contain a section dealing with citi (“piles”).
It will not be a matter of surprise if the geometrical representation of figurate
numbers is traced to Hindu sources.

10 Mahāvīra’s series

Mahāvīra (850) has generalised the series of sums in the following manner:
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Let
α1 + α2 + α3 + . . . + αn

be a series in arithmetical progression, the first term being α1, and the com-
mon difference β, so that

αr = α1 + (r − 1)β.

Mahāvīra considers the following series

r=n∑
r=1

(
m=αr∑
m=1

m

)

and gives its sum as46

n

2

[(
(2n− 1)β2

6
+
β

2
+ α1β

)
(n− 1) + α1(α1 + 1)

]
.

Nārāyaṇa47 gives the above result in another form. According to him

r=n∑
r=1

(
m=αr∑
m=1

m

)
=

(
α1+β∑

1

m−
α1∑
1

m

)
n−1∑
1

m+ n

α1∑
1

m+ β2
n−2∑
1

(
r∑
1

m

)
.

Denoting byNr the sum of r terms of the series of natural numbers, Nārāyaṇa’s
result may be written in the form

r=n∑
r=1

Nαr = (Nα1+β −Nα1)Nn−1 + nNα1 + β2
n−2∑
1

Nr

=

[
(α1 + β)(α1 + β + 1)

2
− α1(α1 + 1)

2

]
n(n− 1)

2
+
n1α1(α1 + 1)

2

+ β2 (n− 2)(n− 1)n

6

which can be reduced to Mahāvīra’s form.
Śrīdhara48 puts the result in the form

r=n∑
r=1

(
m=αr∑
m=1

m

)
=

1

2

[
r=n∑
r=1

α2
r +

r=n∑
r=1

αr

]
.

46GSS, vi. 305–305 1
2
.

47GK, I, p. 117, lines 11–16.
48See PG, Rule 106.
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11 Nārāyaṇa’s series

Nārāyaṇa has given formulae for the sums of series whose terms are formed
successively by taking the partial sums of other series in the following manner:
Let the symbol nV1 denote the arithmetic series of natural numbers up to

n terms; i.e., let
nV1 = 1 + 2 + 3 + . . .+ n.

Let nV2 denote the series formed by taking the partial sums of the series nV1.
Then

nV2 =

r=n∑
r=1

rV1.

Similarly, let

nV3 =

r=n∑
r=1

rV2,
nV4 =

r=n∑
r=1

rV3, . . . , nVm =

r=n∑
r=1

rVm−1.

The series nVm has been called by Nārāyaṇa as m-vāra-saṅkalita (“m-order-
series”) meaning thereby that the operation of forming a new series by taking
the partial sums of a previous series has been repeated m times. The number
m may be called the order (vāra) of the series.
Nārāyaṇa states the sum nVm as follows:

The terms of the sequence beginning with the pada (number of
terms, i.e., n) and increasing by 1 taken up to the order (vāra)
plus 1 times are successively the numerators and the terms of the
sequence beginning with unity and increasing by 1 are respectively
the denominators. The continued product of these (fractions) gives
the vāra-saṅkalita (“sum of the iterated series of a given order”).

Thus, according to the above, n being the number of terms of the iterated
and m the order, we get the following sequence of numbers:

n

1
,
n+ 1

2
,
n+ 2

3
, . . . ,

n+m

m+ 1
.

The sum of the series is the continued product of the above sequence, i.e.,

nVm =
n× (n+ 1)× (n+ 2)× · · · × (n+m)

1× 2× 3× · · · × (m+ 1)
.
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Putting m = 1, 2, 3, . . ., we get

nV1 =

n∑
r=1

r =
n(n+ 1)

1× 2
,

nV2 =

n∑
r=1

rv1 =
n(n+ 1)(n+ 2)

1× 2× 3
,

nV3 =

n∑
r=1

rv2 =
n(n+ 1)(n+ 2)(n+ 3)

1× 2× 3× 4
,

and so on.
Nārāyaṇa (1356) has made use of the numbers of the vāra-saṅkalita in

the theory of combinations, in chapter xiii of his Gaṇitakaumudī. The series
discussed above are now known as the series of figurate numbers. They seem
to have been first studied in the west by Pascal (1665).

12 Generalisation

Nārāyaṇa has considered the more general series obtained in the same way as
above form a given arithmetical progression.
Let

nS1 =

n∑
1

αr = α1 + α2 + . . .+ αn,

where
n∑
1
αr is an arithmetic series whose first term is α1 and common dif-

ference β. As above, let us define the iterated series nS2, nS3, . . ., nSk as
follows:

nS2 =

r=n∑
r=1

rS1,
nS3 =

r=n∑
r=1

rS2, . . . , nSk =

r=n∑
r=1

rSk−1.

Nārāyaṇa states the formula for the sum of the series nSr thus:

The sum of the iterated series of the given order derived from the
natural numbers equal to the given number minus 1 is put down at
two places. These become the multipliers. The order as increased
by unity being divided by the given number of terms as diminished
by unity is a multiplier of the first (of these multipliers). The first
term and the common difference multiplied respectively by the two
quantities and (the results) added together gives the required sum
of the iterated series.
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Suppose it be required to find nSm, where n is the pada (“number of terms”)
and m the vāra (“order”) of the iterated series. Let, as before, nVr denote the
iterated series of the rth order derived from the series of n natural numbers.
Then, taking n−1Vm as two places, and multiplying the first of these by m+1

n−1

as directed, we get

m+ 1

n− 1
× n−1Vm and n−1Vm.

Multiplying the first term (α1) and the common difference (β) by these two
respectively and adding we get the required sum

nSm = α1
m+ 1

n− 1
× n−1Vm + β × n−1Vm.

Rationale

The above formula has been evidently obtained by Nārāyaṇa as follows:

nS1 =

n∑
1

αr = α1 + [α1 + β] + . . .+ [α1 + (n− 1)β]

= n

[
α1 +

n− 1

2
β

]
nS2 =

n∑
1

rS1 = α1

n∑
1

r + β
n∑
1

r(r − 1)

2

= α1 × nV1 + β × n−1V2

nS3 =

n∑
1

nS2 = α1

n∑
1

rV1 + β

n∑
1

r−1V2

= α1 × nV2 + β × n−1V3

...
nSm = α1 × nVm−1 + β × n−1Vm.

But
nVm−1 =

m+ 1

n− 1
× n−1Vm.

Therefore
nSm = α1

m+ 1

n− 1
× n−1Vm + β × n−1Vm.

13 Nārāyaṇa’s problem

The above series have been investigated by Nārāyaṇa in order to solve the
following type of problems:
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A cow gives birth to one calf every year. The calves become young
and themselves begin giving birth to calves when they are three
years old. O learned man, tell me the number of progeny produced
during twenty years by one cow.

Solution

(i) The number of calves produced during 20 years by the cow is 20.

(ii) The first calf becomes a cow in 3 years and begins giving birth to calves
every year, so that the number of its progeny during the period under
consideration is (20−3) = 17. Similarly, the second calf becoming a cow
produces, during the period under consideration (19 − 3) = 16 calves,
and so on. The total number of calves of the second generation is

17∑
1

r = 17V1.

(iii) The first calf of the eldest cow (of the group of 17) produces during the
period under consideration (17 − 3) = 14 calves; the second calf of the
same group produces 13 calves; and so on. The total progeny (of the
second generation) of the group of 17 in (ii) is

14 + 13 + 12 + . . .+ 1 =14 V1.

Similarly, the total progeny of 16 in (ii) is 13V1 of the group of 15 in (ii)
is 12V1, and so on. Thus, the total progeny of the third generation is

14∑
1

rV1 =14 V2.

Similarly, the total progeny of the fourth generation is
(14−3)∑

1

rV2 =11 V3,

and so on.
The total number of cows and calves at the end of 20 years is

1+20 + 17V1 +
14V2 +

11V3 +
8V4 +

5V5 +
2V6

= 1 + 20 +
17× 18

1× 2
+

14× 15× 16

1× 2× 3
+

11× 12× 13× 14

1× 2× 3× 4× 5

+
5× 6× 7× 8× 9× 10

1× 2× 3× 4× 5× 6
+

2× 3× 4× 5× 6× 7× 8

1× 2× 3× 4× 5× 6× 7

= 1 + 20 + 153 + 560 + 1001 + 792 + 210 + 8

= 2745.
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After giving the solution of the problem Nārāyaṇa remarks:

An alternative method of solution is by means of the Meru used
in the theory of combination in connection with (the calculations
regarding) metre. This I have given later on.

14 Miscellaneous results

The following results have been given by Śrīdhara, Mahāvīra, and Nārāyaṇa:

R1:49 n2 = 1 + 3 + 5 + . . . to n terms

R2:50 n3 =

n∑
1

[3r(r − 1) + 1] = 3

n∑
1

r(r − 1) + n

R3:51 n3 = n+ 3n+ 5n+ . . . to n terms

R4:52 n3 = n2(n− 1) +

n∑
r=1

(2r − 1)

R5:53
[
(n+ 3)

n

4
+ 1
]
(n2 + n) =

n∑
1

r +

n∑
1

r2 +

n∑
1

r3 +

n∑
1

r∑
1

m

=

n∑
1

r(1 + r + r2 +
r + 1

2
)

R6:54
n∑
1

r + n2 = 3

n∑
1

r − n;

n∑
1

r + n3 =

(6n+ 1)

(
n∑
1
r + n2

)
+ 4n

9

R7:55
n∑
1

r + n2 + n3 =
n(n+ 1)(2n+ 1)

2

R8:56
m=n∑
m=1

r=m∑
r=1

r +

r=n∑
r=1

r2 +

r=n∑
r=1

r3 =
n(n+ 1)2(n+ 2)

4

49Triś, p. 5; GSS, ii. 29; GK, i. 18.
50Triś, p. 6; GSS, ii. 45; GK, i. 22.
51GSS, ii. 44; GK, Śreḍhī-vyavahāra, 10–11.
52Ibid.
53GSS, vii. 309 1

2
.

54(6) and (7) are given by Nārāyaṇa, GK, l.c., Rules 11 and 12.
55PG, Rule 102; GK, l.c., Rule 13 (a–b).
56PG, Rule 104.
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R9:57
a∑

r=1

r +

a+d∑
r=1

r +

a+2d∑
r=1

r + . . . to n terms

=
1

2

[
r=n∑
r=1

(a+ (r − 1)d)2 +

r=n∑
r=1

(a+ (r − 1)d)

]

R10:58 S ±
(
S

a
− n

)
m

r − 1
= a+ (ar ±m) + [(ar ±m) +m]

±[(ar ±m)r ±m]r ±m+ . . . to n terms,
where S = a+ ar + ar2 + . . . to n terms.

15 Binomial series

The development of (a+ b)n for integral values of n has been known in India
from very early times. The case n = 2 was known to the authors of the Śulba
Sūtras (1500-1000 bc). The series formed by the binomial coefficients

nC0 +
nC1 +

nC2 + . . .+ nCn

seems to have been studied at a very early date. Piṅgala (c. 200 bc), a writer
on metrics, knew the sum of the above series 59 to be 2n. This result is found
also in the works of Mahāvīra (850),60 Pṛthūdakasvāmī (860),61 and all later
writers.

16 Pascal triangle

The so-called Pascal triangle was known to Piṅgala, who explained the method
of formation of the triangle in short aphorisms (sūtra). These aphorisms have
been explained by the commentator Halāyudha thus:

Draw one square at the top; below it draw two squares, so that
half of each of them lies beyond the former on either side of it.
Below them, in the same way, draw three squares; then below
them four; and so on up to as many rows as are desired: this is
the preliminary representation of the Meru. Then putting down 1

in the first square, the figuring should be started. In the next two
squares put 1 in each. In the third row put 1 in each of the extreme
squares, and in the middle square put the sum of the two numbers
in the two squares of the second row. In the fourth row put 1 in

57PG, Rule 106.
58GSS, vi. 314.
59Piṅgala, Chandaḥ Sūtra, viii. 23–27.
60GSS, ii. 94.
61BrSpSi, xii. 17 comm.
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Number of
syllables

Total no. of
variations

| 1 |

1… | 1 | 1 | …2 = 21

2… | 1 | 2 | 1 | …4 = 22

3… | 1 | 3 | 3 | 1 | …8 = 23

4… | 1 | 4 | 6 | 4 | 1 | …16 = 24

5… | 1 | 5 | 10 | 10 | 5 | 1 | …32 = 25

6… | 1 | 6 | 15 | 20 | 15 | 6 | 1 | …64 = 26

Figure 1: Meru Prastāra

each of the two extreme squares: in an intermediate square put the
sum of the numbers in the two squares of the previous row which
lie just above it. Putting down of the numbers in the other rows
should be carried on in the same way. Now the numbers in the
second row of squares show the monosyllabic forms: there are two
forms, one consisting of one long and the other one short syllable.
The numbers in the third row give the disyllabic forms: in one
form all syllables are long, in two forms one syllable is short (and
the other long), and in one all syllables are short. In this row of
the squares we get the number of variations of the even verse. The
numbers in the fourth row of squares represent trisyllabic forms.
There one form has all syllables long, three have one syllable short,
three have two short syllables, and one has all syllables short. And
so on in the fifth and succeeding rows; the figure in the first square
gives the number of forms with all syllables long, that in the last
all syllables short, and the figures in the successive intermediate
squares represent the number of forms with one, two, etc. short
syllables.

Thus, according to the above, the number of variations of a metre containing
n syllables will be obtained from the representation of the Meru shown in
Figure 1.
From the above it is clear that Piṅgala knew the result

nC0 +
nC1 +

nC2 + . . .+ nCn−1 +
nCn = 2n.
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17 Infinite series

Early History

As already remarked, the formula for the sum of an infinite geometric series,
with common ratio less than unity, was known to Jain mathematicians of the
ninth century. Application of this formula was made to find the volume of the
frustum of a cone in Vīrasena’s commentary on the Ṣaṭkhaṇḍāgama, which
was completed about 816 ad. The mathematicians of South India, especially
those of Kerala, seem to have made notable contribution to the theory of
infinite series. We find that in the first half of the fifteenth century they
discovered what is now known as Gregory’s series. Use of this series seems
to have been made for the calculation of π, and in astronomy. As the works
of this period are not available to us, it is not possible to trace the gradual
evolution of the infinite series in India. Some of these series that are found to
occur in the works of the Kerala mathematicians of the 16th, 17th, and 18th
centuries are given below.

Series for the arc of a circle

Śaṅkara Vāriyar (1500–1560), the commentator of Nīlakaṇṭha Somayājī’s
Tantra-saṅgraha, gives an infinite series for the arc of a circle in terms of
its sine and cosine and the radius of the circle. He says:

By the method stated before for the calculation of the circle, the
arc corresponding to a given value of the sine can be found. Mul-
tiply the given value (iṣṭa) of the sine (jyā) by the radius and
divide by the cosine (koṭijyā). The result thus obtained is the first
quotient. Then operating again and again with the square of the
(given) sine as the multiplier and the square of the cosine as the
divisor, obtain from the first quotient, other quotients. Divide the
successive quotients by the odd numbers 1, 3, etc., respectively.
Now subtract the even order of quotients from the odd ones. The
remainder is the arc required.62

That is to say, if R denotes the radius of a circle, α an arc of it, and θ the
angle subtended at the centre by that arc, then

Rθ = α =
R sin θ
1× cos θ − R sin3 θ

3× cos3 θ +
R sin5 θ
5× cos5 θ − R sin7 θ

7× cos7 θ + . . .

This series will be convergent if sin θ < cos θ, that is, if θ < π
4 . But if θ >

π
4 ,

the series will be divergent and so the rule appears to fail. If in that case,
62Verses 206–208 of Śaṅkara Vāriyar’s larger commentary on TS (=Tantrasaṅgraha), enti-
tled Yuktidīpikā, ed. by K. V. Sarma, Hoshiarpur (1977).
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however, we take sin(π2 − θ) as given instead of sin θ, then in accordance with
the rule, we shall get the series

Rπ

2
− α =

R sin(π2 − θ)

1× cos(π2 − θ)
−

R sin3(π2 − θ)

3× cos3(π2 − θ)
+

R sin5(π2 − θ)

5× cos5(π2 − θ)
− . . .

or Rπ

2
− α =

R cos θ
1× sin θ − R cos3 θ

3× sin3 θ
+

R cos5 θ
5× sin5 θ

− . . .

which is convergent. Knowing the value of Rπ
2 −α, we can easily calculate the

value of α. Thus, the rule will give the desired result even in the case θ > π
4 .

Hence, the author remarks:

Of the arc and its complement, one should take here (the sine of)
the smaller as given (iṣṭa): this is what has been stated.63

The above series is stated also by Putumana Somayājī (c. 1660–1740) and
Śaṅkaravarman (1800–38). The former writes:

Find the first quotient by dividing by the cosine the given sine as
multiplied by the radius. Then get the other quotients by multi-
plying the first and those successively resulting by the square of
the sine and dividing them in the same way by the square of the
cosine. Now dividing these quotients respectively by 1, 3, 5, etc.
subtract the sum of even ones (in the series) from the sum of the
odd ones. Thus, the sine will become the arc.64

Śaṅkaravarman says:

Divide the product of the radius and the sine by the cosine. Divide
this quotient and others resulting successively from it on repeated
multiplication by the square of the sine and division by the square
of the cosine by 1, 3, 5, etc., respectively. Then subtract the sum
of the even quotients (in the series) from the sum of the odd ones.
The remainder is the arc (required).65

Introducing the modern tangent function, the above series can be written
as

θ = tan θ − 1

3
tan3 θ + 1

5
tan5 θ − 1

7
tan7 θ + . . .

This series was rediscovered by James Gregory in 1671 and then by G. W. Leib-
nitz in 1673. It is now generally ascribed to the former. But rightly speaking,
this series was first discovered in India, probably by the Kerala mathematician
Mādhava, who lived about 1340–1425 ad.
63Verse 209 (a–b) of the commentary Yuktidīpikā on TS, ii.
64Karaṇapaddhati, vi. 18.
65Sadratnamālā, iv. 11.
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For the case θ = π
4 , Jyeṣṭhadeva (c. 1500–1610), in his Yuktibhāṣā, gives

three successively better approximations to π
4 :66

1− 1

3
+

1

5
− 1

7
+ . . .± 1

n
± 1

n+ 1
(1)

1− 1

3
+

1

5
− 1

7
+ . . .± 1

n
±

1
2 (n+ 1)

(n+ 1)2 + 1
(2)

1− 1

3
+

1

5
− 1

7
+ . . .± 1

n
±

[ 12 (n+ 1)]2 + 1
1
2 (n+ 1)[(n+ 1)2 + 4 + 1]

(3)

Saṅkara Vāriyar has also stated (2)67 and (3)68 and in addition the approx-
imation69

1

2
+

1

22 − 1
− 1

42 − 1
+ . . .± 1

n2 − 1
± 1

2[(n+ 1)2 + 2]
.

A number of infinite series expansions for π (circumference/diameter) occur
in the works of Śaṅkara Vāriyar, Putumana Somayājī, and Śaṅkaravarman.
Some of these are:

R1:
π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .

R2:70 π =
√
12

[
1

9(2× 1− 1)
+

1

92(2× 3− 1)
+

1

93(2× 5− 1)
+ . . .

]
−
√
12

3

[
1

9(2× 2− 1)
+

1

92(2× 4− 1)
+

1

93(2× 6− 1)
+ . . .

]
R3:71 π =

√
12

[
1− 1

3× 3
+

1

5× 32
− 1

7× 33
+ . . .

]
R4:72 π = 3 + 4

[
1

33 − 3
− 1

53 − 5
+

1

73 − 7
− . . .

]
R5:73 π = 16

[
1

15 + 4× 1
− 1

35 + 4× 3
+

1

55 + 4× 5
− . . .

]
R6:74 π = 8

[
1

22 − 1
+

1

62 − 1
+

1

102 − 1
+ . . .

]
66C. T. Rajgopal and M. S. Rangachari, “On the Untapped Source of Medieval Keralese
Mathematics”, Archives for History of Exact Sciences, Vol. 18, No. 2, 1978.

67Tantrasaṅgrahavyākhyā Yuktidīpikā, vss. 271–274.
68Ibid, vss. 295–296.
69Ibid, vs. 292.
70Sadratnamālā, iv. 1.
71Ibid, iv. 2.
72Karaṇapaddhati, vi. 2.
73Tantrasaṅgrahavyākhyā Yuktidīpikā, vss. 287–288.
74Ibid, vss. 293–294.
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R7:75 π = 4− 8

[
1

42 − 1
+

1

82 − 1
+ . . .

]
R8:76 π = 3 + 6

[
1

(2× 22 − 1)2 − 22
+

1

(2× 42 − 1)2 − 42

+
1

(2× 62 − 1)2 − 62
+ . . .

]
.

Series for the sine and cosine of an arc

The Hindus discovered series also for the sine and cosine of an angle in powers
of its circular measure. Putumana writes:

In the series of quotients obtained by dividing an arc of a circle
severally by 2, 3, etc., times the radius, multiply the arc by the first
(term); the resulting product by the second (term); this product
again by the third (term); and so on. Put down the even terms
of the sequence so obtained after the arc and the odd ones after
the radius, and subtract the alternative ones. The remainders will
respectively be the Jyā and Kojyā of that arc.77

That is to say,

Jyā α = α− α3

3! R2
+

α5

5! R4
− α7

7! R6
+ . . .

Kojyā α = R− α2

2! R
+

α4

4! R3
− α6

6! R5
+ . . .

corresponding to our modern series

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ . . .

cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ . . .

These series reappear in the works of Śaṇkaravarman.78 When θ is small,
we have the approximation

sin θ = θ − 1

6
θ3.

Similarly
θ = sin θ + 1

6
sin3 θ.

Thus, Puthumana says:
75Ibid, vss. 293–294.
76Karaṇapaddhati, vi. 4.
77Karaṇapaddhati, vi. 12f.
78Sadratnamālā, iv. 5.
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A small arc being diminished by the sixth part of its cube as
divided by the square of the radius becomes the Jyā. A small Jyā
being increased in the same way becomes the arc.79

So does Śaṅkaravarman.80

Śaṅkara Vāriyar has also given an infinite series expansion for sin2 θ. He
says:

(Repeatedly) multiply the square of the arc by the square of the arc
and divide successively by the square of the radius as multiplied
by the squares of 2, etc. diminished by half of their square roots.
Write the square of the arc, and below it the successive results and
(then starting from the lowest) subtract the lower from that above
it. What is thus obtained is the square of the Jyā.81

That is to say,

Jyā2 α = α2 − α4

(22 − 2
2 )R

2
+

α6

(22 − 2
2 )(3

2 − 3
2 )R

4

− α8

(22 − 2
2 )(3

2 − 3
2 )(4

2 − 4
2 )R

6
+ . . .

or, in modern notation,

sin2 θ = θ2 − θ4

(22 − 2
2 )

+
θ6

(22 − 2
2 )(3

2 − 3
2 )

− θ8

(22 − 2
2 )(3

2 − 3
2 )(4

2 − 4
2 )

+ . . .

79Karaṇapaddhati, vi. 19.
80Sadratnamālā, iv. 12.
81Tantrasaṅgrahavyākhyā Yuktidīpikā, vss. 455–456.



Surds in Hindu mathematics∗

Elementary treatment of surds, particularly their addition, multiplication
and rationalisation, is found in the Śulbasūtras. Fuller treatment of this sub-
ject occurs in the works on Hindu algebra where rules for addition and sub-
traction, multiplication and involution, separation and extraction of square-
root of surds and compound surds are given. The present article gives an
account of the treatment of surds in Hindu mathematics.

The Sanskrit term for the surd is karaṇī. Śrīpati (1039) defines it as follows:

The number whose square-root cannot be obtained (exactly) is
said to form an irrational quantity karaṇī.1

Similar definitions are given by Nārāyaṇa (1356) and others.2 Of course, the
number is to be considered a surd when the business is with its square root.
A surd number is indicated by putting down the tachygraphic abbreviation
ka before the number affected. Thus, ka 8 means

√
8 and ka 450 means

√
450.

1 Origin of surds

The origin of the term karaṇī is interesting. Literally it means “making one”
or “producing one”. It seems to have been originally employed to denote the
cord used for measuring (the side of) a square. It then meant the side of
any square and was so called because it made a square (caturaśra-karaṇī ).
Hence, it came to denote the square-root of any number. As late as the
second century of the Christian era, Umāsvātī (c. 150) treated the terms mūla
(“root”) and karaṇī as synonymous. In later times, however, the application
of the term has been particularly restricted to its present significance as a
surd. Nemicandra (c. 975)3 has occasionally used the generic term mūla to
signify a surd, e.g., daśa-mūla =

√
10.

* Bibhutibhusan Datta and Avadhesh Narayan Singh. Revised by K. S. Shukla. Indian
Journal of History of Science, Vol. 28, No. 3 (1993), pp. 253–264.

1SiŚe (=Siddhānta-śekhara), xiv. 7.
2NBi (= Nārāyaṇa’s Bījagaṇita) I, R. 25. See also the commentaries of Gaṇeśa and Kṛṣṇa
on the Bījagaṇita of Bhāskara II.

3Gommaṭa-sāra of Nemicandra, Jīvakāṇḍa, Gāthā 170.
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2 Addition and subtraction 463

2 Addition and subtraction

For addition of surds, we have the following ancient rule:

Reducing them by some (suitable) number, add the square-roots
of the quotients; the square of the result multiplied by the reducer
should be known as the sum of the surds.

We do not know the name of the author of this rule. It is found to have been
quoted by Bhāskara I (629) in his commentary on the Āryabhaṭīya (ii. 10). A
similar rule is given by Brahmagupta (628):

The surds being divided by a (suitable) optional number, the
square of the sum of the square-roots of the quotients should be
multiplied by that optional number (in case of addition); and the
square of the difference (of the square-roots of the quotients being
so treated will give the difference of the surds).4

Mahāvīra says:

After reducing (the surd quantities) by an optional divisor, the
square of the sum or difference of the square-roots of the quotients
is multiplied by the optional divisor, the square-root (of the prod-
uct) is the sum or difference of the square-root quantities. Know
this to be the calculation of surds.5

Śrīpati writes:

For addition or subtraction, the surds should be multiplied (by
an optional number) intelligently (selected), so that they become
squares. The square of the sum, or difference of their roots, should
then be divided by that optional multiplier. Those surds which
do not become squares on multiplication (by an optional number),
should be put together (side by side).6

Bhāskara II says:

Suppose the sum of the two numbers of the surds (a+b) as the ma-
hatī (‘greater’) and twice the square-root of their product (2

√
ab)

as the laghu (‘lesser’). The addition or subtraction of these like
integers is so (of the original quantities).
Multiply and divide as if a square number by a square number. In
addition and subtraction, the square-root of the quotient of the

4BrSpSi (=Brāhmasphuṭasiddhānta), xviii. 38.
5GSS (=Gaṇitasārasaṅgraha), vii. 88 1

2
.

6ŚiŚe, xiv. 8f.
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greater surd number divided by the smaller surd number should
be increased or diminished by unity; the result multiplied by itself
should be multiplied by the smaller surd number. The product (is
the sum or difference of the two surds). If there be no (rational)
root, the surds should be stated separately side by side.7

Nārāyaṇa says:

Divide the two surds separately by the smaller or greater among
them; add or subtract the square-roots of the quotients; then mul-
tiply the square of the result by that divisor. The product is the
sum or difference.
Or multiply the two surds by the smaller or greater one among
them; add or subtract the square-roots of the products; then di-
viding the square of the result by that selected multiplier, the
quotient is the sum or difference.
Or divide the greater surd by the smaller one; add unity to or
subtract unity from the square-root of the quotient; then multiply
the result by itself and also by the smaller quantity. The result
is the sum or difference (required). Or proceed in the same way
with the greater surd.
Or add twice the square-root of the product of the two surds,
supposed as if rational, to or subtract that from their sum. The
result is the sum or difference. If there be no rational root of the
product, then the two surds should be stated severally.
To add up several surds, divide them by an optional number and
then take the sum of the square-root of the quotients. This sum
multiplied by itself and also by that divisor will give the sum of
them.8

Thus, we have the following methods for addition or subtraction of surds:

(i)
√
a±

√
b =

√
b
(√

a
b ± 1

)2,
(ii)

√
a±

√
b =

√
1
a (a±

√
ab)2,

(iii)
√
a±

√
b =

√
c

(√
a
c ±

√
b
c

)2

,

(iv)
√
a±

√
b =

√
1
c (
√
ac±

√
bc)2,

7BBi (=Bhāskara’s Bījagaṇita), pp. 12f.
8NBi (Junction of a door), I, R. 25–30.
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(v)
√
a±

√
b =

√
(a+ b)± 2

√
ab.

The optional number c is so chosen that (ac, bc) or
(
a
c ,

b
c

)
become perfect

squares.
Brahmagupta and Mahāvīra teach the method (iii), Śrīpati gives (iv). Bhās-

kara states (i) and (v). Nārāyaṇa gives (i), (ii), (iii), and (v).

3 Multiplication and involution

For the multiplication of surd expressions, the Hindu works give an algebraic
method. Thus, Brahmagupta says:

Put down the multiplicand horizontally below itself as many times
as there are terms in the multiplier; then multiplying by the khaṇḍa-
guṇana method (i.e., by the method of multiplication by compo-
nent parts), add the (partial) products.9

Thus, to multiply
√
a+

√
b by

√
c+

√
d, one should proceed as follows:

(
√
a+

√
b)(

√
c+

√
d) = (

√
a+

√
b)×

√
c+ (

√
a+

√
b)×

√
d

=
√
ac+

√
bc+

√
ad+

√
bd.

Brahmagupta further notes:
The squaring of a surd is (finding) the product of two equal (surds).10

Śrīpati writes:
Putting down the multiplicand and multiplier in the manner of
the kapāṭasandhi multiply according to the method taught before.
But those surds should be added, as before, in which the product
yields a perfect square.11

On multiplying two equal surd quantities, the square of that surd
is obtained.12

Bhāskara II (1150) observes:
For abridgement, multiplication or division of surd expressions
should be proceeded with after addition (or subtraction) of two
or more terms of the multiplier and multiplicand or of the divisor
and dividend.13

A similar remark has been made by Nārāyaṇa.14

9BrSpSi, xviii. 38.
10BrSpSi, xviii. 39.
11SiŚe, xiv. 9.
12SiŚe, xiv. 11.
13BBi, p. 13.
14NBi, I, R. 31.
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4 Division

Brahmagupta (628) teaches the following method of division of surds:

Multiply the dividend and divisor separately by the divisor after
making an optional term of it negative; then add up the terms.
(Do this repeatedly until the divisor is reduced to a single term).
Then divide the (modified) dividend by the divisor reduced to a
single term.15

Śrīpati (1039) writes:

Reversing the sign, negative or positive, of one of the surds occur-
ring in the denominator, multiply by it both the numerator and
the denominator separately and then add together the terms of the
(respective) products. Repeat (the operations) until there is left
only a single surd in the denominator. By it divide the dividend
above. Such is the method of division of surds.16

This rule has been almost reproduced by Bhāskara II17 (1150) and Nārā-
yaṇa18 (1356). The latter delivers also another method similar to the division
of one algebraic expression by another. He says:

Multiply the divisor surd so as to make all or some of its terms
square such that the sum of their square-roots will be equal to
the rational term (in the dividend). Thus will be determined the
multiplier surd. Subtract from the dividend the divisor multiplied
by that. If there be left a remainder, the sum of the terms of the
divisor multiplied by that multiplier should be subtracted from
the terms of the dividend. In case of absence of a rational term
(in the dividend), that by which the divisor is multiplied and then
subtracted for the dividend so as to leave no remainder, will be
the quotient.19

Example from Bhāskara II20

Divide
√
9 +

√
450 +

√
95 +

√
45 by

√
25 +

√
3.

15BrSpSi, xviii, 39.
16SiŚe, xiv. 11.
17BBi, p. 14.
18NBi, I, R. 37–8.
19NBi, I, R. 33–5.
20BBi, pp. 15–16.
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√
9 +

√
450 +

√
95 +

√
45√

25 +
√
3

=
(
√
9 +

√
450 +

√
95 +

√
45)(

√
25−

√
3)

(
√
25 +

√
3)(

√
25−

√
3)

=

√
8712 +

√
1452√

484

=
√
18 +

√
3.

Example from Nārāyaṇa21

First method:
Divide 5 +

√
90 +

√
180 +

√
648 by

√
5 +

√
36.

√
5 +

√
36 ) 5 +

√
90 +

√
180 +

√
648 ( √

5 +
√
18

5 +
√
180

√
90 +

√
648√

90 +
√
648

Second method:
Divide

√
175 +

√
150 +

√
105 +

√
90 +

√
70 +

√
60 by

√
5 +

√
3 +

√
2.

√
175 +

√
150 +

√
105 +

√
90 +

√
70 +

√
60√

5 +
√
3 +

√
2

=
(
√
175 +

√
150 +

√
105 +

√
90 +

√
70 +

√
60)(

√
5 +

√
3−

√
2)

(
√
5 +

√
3 +

√
2)(

√
5 +

√
3−

√
2)

=

√
2100 +

√
1800 +

√
1260 +

√
1080√

60 +
√
36

=
(
√
2100 +

√
1800 +

√
1260 +

√
1080)(

√
60−

√
36)

(
√
60 +

√
36)(

√
60−

√
36)

=

√
20160 +

√
17280√

576

=
√
35 +

√
30.

5 Rule of separation

Bhāskara II gives a rule for an operation converse to that of addition. He
says:

(Find) a square number by which the compound-surd will be
exactly divisible. Breaking up the square-root of that (square-
number) into parts at pleasure, multiply the square of the parts

21NBi, I, example on R. 33–5; also Ex. 18.
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of the previous quotient. These will be the several component
surds.22

A similar rule is stated by Nārāyaṇa:

Divide the compound-surd by the square of some number so as to
leave no remainder. Parts of it multiplied by themselves and also
by the quotient will be the (component) terms of the surd.23

That is to say, if N = m2k and m = a+ b+ c+ d, then
√
N =

√
m2k = m

√
k = (a+ b+ c+ d)

√
k,

= (
√
a2k +

√
b2k +

√
c2k +

√
d2k).

6 Extraction of square-root

For the extraction of the square-root of a surd expression, Brahmagupta de-
scribed the following method:

The optionally chosen surds being subtracted from the square of
the absolute (i.e. rational) term, the square-root of the remainder
should be added to and subtracted from the rational term and
halved; then the first is considered as a rational term and the
second a surd different from the previous. (Such operations should
be carried on) repeatedly (if necessary).24

Illustrative example from Pṛthūdakasvāmi (860)

To find the square-root of 16 +
√
120 +

√
72 +

√
60 +

√
48 +

√
40 +

√
24. It

has been solved substantially as follows:
Subtract the surd numbers 120, 72, 48 from the square of the rational

number, viz., 256; the remainder is (256 − 120 − 72 − 48) = 16. Its root is
4; 1

2 (16 ± 4) = 10, 6. Now subtracting the surd numbers 60 and 24 from 102,
we get 16; its root is 4; 1

2 (10± 4) = 7, 3. Again subtracting the surd number
40 from 72, we have 9; its root is 3; and 1

2 (7± 3) = 5, 2. Hence, the required
square-root is

√
6 +

√
5 +

√
3 +

√
2.

The same method is taught by Śrīpati (c. 1039)25 and Bhāskara II (1150).
The latter says:

22BBi, p. 15.
23NBi, I, R. 36.
24BrSpSi, xviii, 40.
25SiŚe, xiv. 12.
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From the square of the rational number in the (proposed) square-
surd, subtract the rational equivalent to one or more of the surd
numbers; the square-root of the remainder should be severally
added to and subtracted from the rational number; halves of the
results will be the two surds in the square-root. But if there be
left any more surd term in the (proposed) square surd, the greater
surd number amongst those two should again be regarded as a
rational number (and the same operations should be repeated).26

The above example of Pṛthūdakasvāmi is solved by Bhāskara substantially
thus: √

162 − (48 + 40 + 24) =
√
144 = 12;

1

2
(16± 12) = 14, 2.√

142 − (120 + 72) = 2,
1

2
(14± 2) = 8, 6.√

82 − 60 = 2,
1

2
(8± 2) = 5, 3.

Therefore,

(16 +
√
120 +

√
72 +

√
60 +

√
48 +

√
40 +

√
24)

1
2 =

√
6 +

√
5 +

√
3 +

√
2.

For the above rule, all the terms of the surd expression have been contem-
plated to be positive, as is also clear from the illustrative examples given. For
the case in which there is a negative term, Bhāskara II lays down the following
procedure:

If there be a negative surd in the square (expression), the traction
of roots should be proceeded with supposing it as if positive: but
of the two surds deduced one, chosen at pleasure by the intelligent
mathematician, should be taken as negative.27

Example from Bhāskara II28

To find the square-root of 10 +
√
24−

√
40−

√
60.

The solution is given substantially as follows:√
102 − (40 + 60) = 0,

1

2
(10± 0) = 5, 5√

52 − 24 = 1,
1

2
(5± 1) = 3, 2.

26BBi, pp. 17f.
27BBi, p. 19.
28BBi, pp. 19f.
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Therefore, (10 +
√
24−

√
40−

√
60)

1
2 =

√
3 +

√
2−

√
5,

or,
√
102 − (24 + 60) = 4,

1

2
(10± 4) = 7, 3.

The greater number, viz., 7 is considered as negative. Then√
72 − 40 = 3,

1

2
(7± 3) = 5, 2.

Hence,
(10 +

√
24−

√
40−

√
60)

1
2 =

√
3 +

√
2−

√
5.

Also,
(10 +

√
24−

√
40−

√
60)

1
2 =

√
5−

√
3−

√
2.

7 Limitation of the method

Bhāskara II indicates how to test whether a given multinominal surd has a
square-root at all or not. “This matter has not been explained at length”,
observes he, “by previous writers. I do it for the instruction of the dull”.29 He
then says:

In a square surd, the number of irrational terms must be equal
to a number same as the sum of the (natural) number 1 etc. In
a square surd having three irrational terms, the rational number
equal to two of the surd numbers; in a square surd having six
irrational number terms, the rational equal to three of them in
one of ten irrational terms, integers equal to four of them; and in
one of fifteen irrational terms, integers equal to five of them; having
been subtracted from the square of the rational term the square-
root of the remainder should be extracted. If (done) otherwise (in
any case), it will not be proper. The numbers to be subtracted
from the square of the rational number (in extracting roots of a
square-surd) should be exactly divisible by four times the smaller
term in the resulting root-surd. The quotients obtained by this
exact division will be the surd terms in the root. If they are not
obtained by the last rule, then the (resulting) root is wrong.30

He has added the following explanatory notes to the above rule:

In the square of an expression containing irrational terms, there
must be a rational term. In the square of (an expression consisting

29BBi, p. 20.
30BBi, pp. 20ff.
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of) a singe surd, there will be only a rational term; of two surds,
one surd together with a rational term; of three surds, three irra-
tional terms and a rational term; of four surds, six; of five surds,
ten; of six surds, fifteen; and so on. Thus, in the square of surd
expressions consisting of two or more irrational terms, the number
of irrational terms will be equal to the sum of the natural numbers
one, etc. respectively, besides the rational term. So if in an ex-
ample (proposed), the number (of irrational terms present) be not
such; then it must be considered as a compound surd. Break it up
(into required number of component surds) and then extract the
square-root. This is what has been implied. Thus will be clear the
significance of the rule, “In a square surd having three irrational
terms, the rational number equal to two of the surd numbers, etc.”

Illustrative examples with solution from Bhāskara II

Example 1: Find the square-root of 10 +
√
32 +

√
24 +

√
8.

In this square there being three surd terms, a rational number
equivalent to two of the surd numbers is first subtracted from the
square of the rational term and the root (of the remainder) ex-
tracted. Then proceeding in the same way with (the remaining)
one term, no root is found in this case. Hence this (i.e., the pro-
posed expression) does not possess a root expressible in surd terms.
If, however, we extract the root by subtracting, contrary to the
rule, an integer equivalent to all the surd terms, we get

√
2 +

√
8.

But this is wrong as its square is 18.
Or on adding together the surds

√
32 and

√
8, (the expression

becomes) 10 +
√
72 +

√
24. Then (by the rule) we obtain 2 +

√
6.

But that is also erroneous.31

Example 2: Find the square-root of 10 +
√
60 +

√
52 +

√
12.

Here in this square, are present three surd terms; so subtracting
a rational number equal to two surd numbers, viz., 52 and 12, the
two surd terms for the root are obtained as

√
8 and

√
2; of these

the smaller one, namely, 2 multiplied by four, that is 8, does not
exactly divide 52 and 12. So they should not be subtracted, for it
has been stated, “The numbers to be subtracted from the square
of the rational number (in extracting root of a square surd) should
be exactly divisible by four times the smaller term in the resulting
root-surd.” Let it, however, be supposed that the mention of “the

31BBi, p. 23.
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smaller term” here is metaphorical and may sometimes imply also
“the greater term” and that it should be considered as “the greater
term”, if with that root-surd as the rational term other surd terms
are deducible. Now on doing so we obtain for the root

√
2+

√
3+

√
5.

But this is also wrong; for its square is 10 +
√
24 +

√
40 +

√
60.32

Example 3: Extract the root of

13 +
√
48 +

√
60 +

√
20 +

√
44 +

√
32 +

√
24.

There being six surd terms in this, an integer equal to three of
the surd terms should be first subtracted from the square of the
rational term and the root (of the remainder) found; next an in-
teger equal to two of the surd terms and then an integer equal to
one surd term (should be subtracted). But on so doing, no root is
found in this instance. If we, however, proceed in a different way
and subtract from the square of the rational term first an integer
equal to the first surd term, then an integer equal to the second
and third terms and lastly an integer equal to the remaining surd
terms, we get for the root

√
1+

√
2+

√
5+

√
5. But this is incorrect,

since its square is 13 +
√
8 +

√
80 +

√
160.33

Bhāskara then observes in general:

This is certainly a defect of those (ancient writers) who have not
defined the limitations of this method of extracting the square root
of a surd. In case of such square surds, the roots should be found
by taking the roots of the surd terms by the method for finding
the approximate values of the roots and then combining them with
the rational term.34

Further he says:

The mention of “the greater surd” is metaphorical, for sometimes
it might imply the less.

Example from Bhāskara II35 (1150)

To find the root of 17 +
√
40 +

√
80 +

√
200.

32BBi, p. 23.
33BBi, p. 24.
34BBi, p. 24.
35BBi, p. 24.
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Here √
172 − (80 + 200) = 3,

1

2
(17± 3) = 10, 7√

72 − 40 = 3,
1

2
(7− 3) = 5, 2.

Therefore,
(17 +

√
40 +

√
80 +

√
200)

1
2 =

√
10 +

√
5 +

√
2.

8 Nārāyaṇa’s rules

For finding the square-root of a surd expression, Nārāyaṇa (1350) gives the
following rules:

The number of irrational terms in the square of a surd expression is
equal to the sum of natural numbers: this is the usual rule. In the
square of a single surd term, there is only a rational number. In
the square of an expression consisting of two surds terms, there is
one surd term together with a rational number; of three, three; of
four, six; of five, ten; and in the square of an expression consisting
of six surd terms, there will be as many as fifteen surd terms; so
it should be known. In an expression having the number of surd
terms equal to the sum of the natural numbers, subtract from the
square of the rational term a rational number equal to the sum of
that number of surd numbers and then extract the square-root of
the remainder. Add and subtract this to the rational number and
halve. The results are the two surd terms. If further terms remain
to be operated upon, regard the greater of these two as a rational
number and find the other terms (of the root) by proceeding as
before. If the number of surd terms in any expression be not equal
to the sum of the natural numbers, the (requisite) number should
be made up by breaking up some of the terms and then the square-
root should be extracted. If that is not possible, the problem is
wrong.36

Increase twice the number of surd terms (in a given expression) by
one fourth and then extract the square-root. Subtract half from
that. The residue will give the number of terms (the sum of which
is to be subtracted from the square of the rational term).37

Or divide all the surd numbers (present in an expression) by four
and arrange the quotients in the descending order. Divide the

36NBi, I, R. 41–5.
37NBi, I, R. 50.
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product of the two surds nearest to the first surd (in the series) by
the latter. The square-root of the quotient will be a surd term (in
the root). Those two surds divided by this root will give another
two surd terms (of the root). By these (three surds) divide next
(three) terms of the series and the quotient will be another surd
of the root. Again by these should be divided the other terms
and the quotient is another surd; and so on. If now the square
of the sum of surd numbers (in the root) be subtracted from the
rational term (in the given expression) no remainder will be left.
If it be not so (i.e., if a remainder is left), then the (given) square
expression is a compound surd and it should be broken up into
other surds by the rule of separation.38

38NBi, I, R. 46–9.



Approximate values of surds in Hindu
mathematics ∗

As has been shown in an earlier article, the Hindu interest in the mathematics
of surds is very old. The ancient Hindus were interested not only in the
operations of the surds but also in finding their approximate values. The
present article gives an account of the methods used for this purpose.

1 Introduction

The method to find approximate values of surds is found as early as the time
of the Śulba. Thus, Baudhāyana (800 bc) states:

Increase the measure (of which the dvi-karaṇī is to be found) by
its third part, and again by the fourth part (of this third part) less
by the thirty-fourth part of itself (i.e., of this fourth part). (The
value thus obtained is called) the saviśeṣa (approximate).1

That is to say, if d be the dvi-karaṇī of a, that is, if d be the side of a square
whose area is double that of the square on a then we shall have:

d = a+
a

3
+

a

3× 4
− a

3× 4× 34
, approx.,

whence, we get

√
2 = 1 +

1

3
+

1

3× 4
− 1

3× 4× 34
, approx.

Expressing in decimal fractions, we obtain
√
2 = 1.4142156 . . . . According

to modern calculation,
√
2 = 1.414213 . . . . Thus, it is clear that the ancient

Hindus attained a very remarkable degree of accuracy in calculating an ap-
proximate value of

√
2. There has been much speculation among modern

writers about the method by which the Hindus arrived at this result.2 The

* Bibhutibhusan Datta and Avadhesh Narayan Singh. Revised by K. S. Shukla. Indian
Journal of History of Science, Vol. 28, No. 3 (1993), pp. 265–275.

1Baudhāyana Śulba, i. 61–2; see also Āpastamba Śulba, i. 6; Kātyāyana Śulba, ii. 13.
2Thibaut, Śulvasūtras, pp. 13 ff; C. Muller, “Die Mathematik der Śulvasūtra”, Abhand,
a.d. Math. Sem.d. Hamburg University, Bd. vii, 1929, pp. 173–204.
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476 Approximate values of surds in Hindu mathematics

most recent hypothesis is that of Bibhutibhusan Datta.3 It is based on a sim-
ple and elegant geometrical procedure quite in keeping with the spirit of the
early Hindu geometry and hence seems to be a very plausible one. According
to Nīlakaṇṭha (c. 1500),4 Baudhāyana supposed the side of a square to be 12
units in length, so that its diagonal would be√

2× 122 =
√
288 units.

Now
√
288 =

√
172 − 1 = 17− 1

34
, nearly.

Therefore
12
√
2 = 17− 1

34
, nearly.

Hence,
√
2 =

17

12
− 1

12× 34
,

or
√
2 = 1 +

1

3
+

1

3× 4
− 1

3× 4× 34
.

Other notable approximate values occurring in the Śulba are:5

√
2 =

7

5
, 1

11

25
,

√
29 = 5

7

18
,

√
5 = 2

2

7
,

√
61 = 7

5

6
.

Probably it was also known that6

√
3 = 1 +

2

3
+

1

3× 5
− 1

3× 5× 52
.

In the early canonical works of the Jainas (500–300 bc),7 we find applica-
tions of the formula √

N =
√
a2 + r = a+

r

2a
.

This formula has been applied consistently by the Jaina writers even up to
the middle ages.8

3Bibhutibhusan Datta, Śulba, pp. 192ff.
4Vide his commentary on the Āryabhaṭīya, ii. 4. His commentary has been published in
the Trivandrum Sanskrit Series (Nos. 101, 110, and 185).

5Datta, Śulba, p. 205.
6For an elegant method of getting this approximate value see Datta, Śulba, pp. 194 ff.
7For instance, see Jambūdvīpaprajñapti, Sūtra 3, 10–16; Jīvābhigamasūtra, Sūtra 82, 124;
Sūtrakṛtāṅgasūtra, Sūtra 12, etc.

8See the commentaries of Siddhasena Gani (c. 550), Malaya-giri (c. 1200) and others.



2 Bakhshālī formula 477

2 Bakhshālī formula

In the Bakhshālī treatise on arithmetic (c. 200), we have the following rule
for determining the approximate root (śliṣṭa-mūla, literally “nearest root”) of
a non-square number:

In case of a non-square number, subtract the nearest square num-
ber; divide the remainder by twice (the root of that number). Di-
vide half the square of that (that is, the fraction just obtained) by
the sum of the root and fraction and subtract. (This will be the
approximate value of the root) less the square (of the last term).9

That is to say,
√
N =

√
a2 + r = a+

r

2a
−

(
r
2a

)2
2
(
a+ r

2a

)
approximately, the error being[ (

r
2a

)2
2
(
a+ r

2a

)]2 .
Example from the work:

√
41 = 6 +

5

12
−

(
5
12

)2
2
(
6 + 5

12

) ,
√
339009 = 579 +

384

579
−

(
384
579

)2
2
(
579 + 384

579

) .
In applying this approximate formula to concrete examples, the Bakhshālī

treatise exhibits an accurate method of calculating errors and an interesting
process of reconciliation, the like of which are not met elsewhere.10

3 Lalla’s formula

To find the square-root of a sexagesimal fraction Lalla gives the following rule:

Find the square-root (of the integral part in minutes) by the
method indicated before. Multiply by sixty the remainder plus
unity and then add the seconds. The result divided by twice the
root plus 2 will be the fractional part (of the square root in terms
of seconds).11

9This rule is not preserved in its entirely at any place in the surviving portion of the
Bakhshālī manuscript; but it can be easily restored from the cross-references, especially
on the folios 56, recto and 57 verso. See Bibhutibhusan Datta, Bakh. Math., pp. 11 ff.

10Datta, Bakh. Math., pp. 14 ff.
11ŚiDVṛ, iii. 52.
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That is if α = β2 + ϵ, then we shall have
√
α′r′′ = β′ +

{
60(ϵ+ 1) + r

2(β + 1)

}′′

in sexagesimal fractions. The same formula appears in the Rājamṛgāṅka of
Bhojarāja and the Karaṇakutūhala of Bhāskara II.12 It is obviously based on
the approximate formula:√

a2 + r = a+
r + 1

2(a+ 1)
.

4 Brahmagupta’s formula

Brahmagupta (628) says:

The integer (in degrees), multiplied by its sexagesimal fraction (in
minutes) and divided by thirty is (approximately) the square due
to the fraction which is to be added to the square of the integer.13

That is, we have

(α◦β′)2 =

(
α+

β

60

)2

= α2 +
αβ

30
+

(
β

60

)2

= α2 +
αβ

30
, nearly,

neglecting
(

β
60

)2
as being very small.

From the above rule, we easily obtain a formula for finding the approximate
value of a non-square number. For if x be a small fraction compared with a,
we have

(a+ x)2 = a2 + 2ax.

Putting 2ax = r, we get
x =

r

2a
.

Hence √
a2 + r = a+

r

2a
.

Brahmagupta expressly states a formula very much akin to that found in
the Bakhshālī treatise. To find the square-root of the sum or the difference
of the squares of two numbers, the larger of which has a fractional part, he
gives the following rule:
12Rājamṛgāṅka, vi. 26(c-d)–28(a-b); Karaṇakutūhala, spaṣṭādhikāra, vs. 14.
13Brāhmasphuṭasiddhānta, xii. 62.
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Divide the square of the given smaller number plus or minus the
portion in the square of the other due to its fractional part by
twice (the integral part of) the other (at one place) and (at a
second place) by the latter plus or minus the quotient obtained at
the other place. The (last) divisor being added or subtracted by
the last quotient and halved gives the square-root of the sum or
the difference of the two squares. Or it is the other number plus
or minus that quotient.

That is, if a > b and ϵ, a small fraction, then

√
(a+ ϵ)2 ± b2 =

1

2

2a±
b2 ±

(
2aϵ+ ϵ2

)
2a

±
b2 ±

(
2aϵ+ ϵ2

)
2a±

b2 ±
(
2aϵ+ ϵ2

)
2a

 , (1)

or √
(a+ ϵ)2 ± b2 = a±

b2 ±
(
2aϵ+ ϵ2

)
2a±

b2 ±
(
2aϵ+ ϵ2

)
2a

. (2)

The second formula gives an approximation by defect. The value

√
(a+ ϵ)2 ± b2 = a±

b2 ±
(
2aϵ+ ϵ2

)
2a

(3)

gives an approximation by excess. Taking the mean of (2) and (3), Brahma-
gupta finds the closer approximation given by (1).
On simplifying, we get from the formula (2):

√
(a+ ϵ)2 ± b2 = a±

b2 ±
(
2aϵ+ ϵ2

)
2a

∓

{
b2 ±

(
2aϵ+ ϵ2

)2
2a

}2

2a+
b2 ±

(
2aϵ+ ϵ2

)
2a

.

Putting ϵ = 0, b2 = r, we have the formula

√
a2 ± r = a± r

2a
±

( r
2a

)2
2a± r

2a

.

5 Śrīdhara’s formula

Śrīdhara (c. 750) gives the following rule for finding the approximate value of
the square-root of a non-square number:
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Multiply the non-square number by some large square number;
then take the square-root (of the product), neglecting the excess,
and divide it by the root of the multiplier.14

√
N =

√
Nm2

m
=
R

m
, nearly,

where m is an arbitrary large number and R is the nearest integral root of
Nm2. Śrīdhara gives two illustrative examples:

√
1000 =

√
1000× 10000

100
=

3162

100
= 31

31

50
,

√
6250 =

√
6250× 10000

100
=

7905

100
= 79

1

20
.

There are found various other formulae based upon Śrīdhara’s formula.
Thus, Āryabhaṭa II (c. 950) gives:15√

a

b
=

√
ab× 10000

b× 100
=

R

b× 100
.

Śrīpati (1039) has16√
a

b
=

√
ab×m2 × 10000

b×m× 100
=

R

bm× 100
.

Bhāskara II (1150) states the formula:17√
a

b
=

√
abm2

bm
=

R

bm
.

Example from Bhāskara II:√
169

8
=

√
169× 8× 10000

800
=

3677

800
= 4

477

800
.

Munīśvara (1658) gives18√
a

b
=

√
ab× 10, 000, 000, 000, 000, 000

b× 100, 000, 000
=

R

b× 100, 000, 000
.

Illustrative example from him:19

√
208 =

√
2080, 000, 000, 000, 000, 000

100, 000, 000
=

1442220510

100, 000, 000
= 14

4222051

10, 000, 000
.

14Triś (=Triśatikā), R. 46.
15MSi (= Mahāsiddhānta), xv. 55.
16SiŚe (= Siddhāntaśekhara), xiii. 36.
17L (= Līlāvatī ), p. 34.
18PāSā (= Pāṭīsāra), R. 117.
19PāSā, R. 120.
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6 Nārāyaṇa’s method

Nārāyaṇa (1356) says:

Obtain the roots (of a square-nature) having unity as the additive
and the number whose square-root is to be determined (as the
multiplier). Then the greater root divided by the lesser root will
be the approximate value of the square-root.20

That is to say, to find the approximate value of the surd
√
N we shall have to

solve the quadratic indeterminate equation

Nx2 + 1 = y2.

If x = α, y = β be a solution of this equation, then, says Nārāyaṇa
√
N =

β

α
, approximately.

In illustration of his method, Nārāyaṇa finds approximations to
√
10 and√

1
5 .21 Since the roots of 10x2 + 1 = y2 are (6, 19), (228, 721), (8658, 27379),

etc., we have
√
10 =

19

6
,
721

228
,
27379

8658
, etc.

Again the values of (x, y) satisfying the equation√
1

5
x2 + 1 = y2

are (20, 9), (360, 161), (6460, 2889), etc. Therefore√
1

5
=

9

20
,
161

360
,
2889

6460
, etc.

7 Jñanarāja’s method

Jñanarāja (1503) writes:

Divide its square by the root of the nearest square number. The
quotient together with that approximate root being halved will
be a root more approximate than that. Values more and more
accurate can certainly be found by proceeding in the same way
repeatedly.22

20NBi (= Nārāyaṇa’s Bījagaṇita) I, R. 88. Cf. Bibhutibhusan Datta, “Nārāyaṇa’s method
for finding approximate value of a surd”, BCMS, xxiii (1931), pp. 187–194.

21NBi, I, Ex. 45.
22आस मूलेन ता वग ेन मूलं स हतं भ ।

भवेदास पदं ततोऽ प मु मु ः ा ु टमूलमेव ॥
—Sundara-siddhānta, bījādhyāya, 12(c–d)–13(a–b).
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In other words, if a2 be the square number nearest to the non-square number
N , so that N = a2 ± r, then the first approximate value (α1) of

√
N will be,

says Jñanarāja,
1

2

(
a+

N

a

)
.

The next approximation will be

1

2

{
1

2

(
a+

N

a

)
+

N
1
2

(
a+ N

a

)}

and so on. The following illustrative examples are given:

√
8 =

1

2

(
3 +

8

3

)
=

17

6
= 2◦50′ approximately,

also
√
8 =

1

2

(
17

6
+

8× 6

17

)
=

577

204
= 2◦49′42′′, approximately.

∴
√
8 =

1

2
(2◦50′ + 2◦49′42′′)

= 2◦49′51′′, approximately.
√
20 =

1

2

(
4 +

20

4

)
=

9

2
= 4◦30′, approximately,

also
√
20 =

1

2

(
9

2
+

20× 2

9

)
=

161

36
= 4◦28′20′′, approximately.

∴
√
20 =

1

2
(4◦30′ + 4◦28′20′′)

= 4◦29′10′′, approximately.

8 Formula of an anonymous writer

In his commentary on the Līlāvatī of Bhāskara II, Gaṇeśa (1545) has quoted
a rule from a “previous writer” (ādya) for finding the approximate value of
the square-root of a non-square number. It runs as:

The residue of the root together with unity is multiplied by 60
and divided by twice the root plus 1. The sixtieth part of the root
added with this fraction is (the required approximate value of) the
root.

The process implied is clearly this:

√
N =

√
3600N

60
.
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Now on finding the square-root of 3600N by the ordinary method for it, sup-
pose the root comes out to be b and the residue in excess r. Then according
to the rule √

N =
1

60

{
b+

60(r + 1)

2(b+ 1)

}
in sexagesimal fractions. It is obviously based on the approximate formula√

a2 + r = a+
r + 1

2(a+ 1)
.

9 Kamalākara

Kamalākara (1658) mentions all the formulae for finding the approximate
value of a surd from that of Śrīdhara onwards.23 But he has always employed
the formula of Lalla. Its rationale has been given by him to be as follows.24

Suppose √
b2 + r = b+ ϵ,

where ϵ is a small quantity. Then

b2 + r = b2 + 2bϵ+ ϵ2,

or
ϵ(2b+ 2ϵ) = r + ϵ2.

Therefore,

ϵ =
r + ϵ2

2b+ 2ϵ
=

r + 1

2b+ 2
approximately.

Hence, we have the approximate formula√
b2 + r = b+

r + 1

2b+ 2
,

or in sexagesimal fractions:√
b2 + r = b+

60(r + 1)

2(b+ 1)
.

Examples:
√
5 = 2◦14′10′′,

√
10 = 3◦9′44′′12′′′,

√
468◦5′ = 21◦28′7′′.

By the repeated application of the method, Kamalākara also finds the fourth
root of numbers, e.g.,

10
1
4 = 1◦46′41′′36′′′.

23SiTVi, iii. 10–19.
24SiTVi, xiv. 324 (comm.).
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Astronomy in ancient and medieval India ∗

Glimpses of the ancient Hindu astronomy are found in the Vedas and the
vedic literature. The Vedāṅgajyotiṣa (c. 500 bc), which exclusively deals with
vedic astronomy, shows that the vedic seers were well versed in the motion of
the Sun and the Moon and had developed a luni-solar calendar to regulate
their activities. Further progress in the field of Hindu astronomy is recorded
by the five well-known siddhāntas summarised by Varāhamihira in his Pañca-
siddhāntikā. These siddhāntas were the result of the great Renaissance in
Hindu Gaṇita which began some time before the beginning of the Christian
era. Renaissance in Hindu astronomy which seems to have begun in the
third or fourth century ad continued right up to the twelfth century ad.
The Āryabhaṭīya of Āryabhaṭa I (b. 476 ad) is the earliest preserved work
on astronomy written during this period. Of subsequent works, the notable
ones are the Brāhmasphuṭasiddhānta of Brahmagupta (628 ad), the Śiṣyadhī-
vṛddhida of Lalla (c. 749 ad), the Vaṭeśvarasiddhānta of Vaṭeśvara (904 ad),
the Siddhāntaśekhara of Śrīpati (c. 1039 ad) and the Siddhāntaśiromaṇi of
Bhāskara II (1150 ad).

Astronomy has been studied in India from time immemorial. The earliest
Indian astronomy is preserved in the Vedas and the Vedāṅgajyotiṣa. The time
of composition of these works ranges from c. 2500 bc to c. 500 bc.1 The
Ṛgveda divides the Sun’s yearly path into 12 and 360 divisions. The Moon’s
path was likewise divided into 27 parts and each part was called a nakṣatra.
The stars lying near the Moon’s path were also divided into 27 (or sometimes
28) groups and each of them was called a nakṣatra (asterism). The names
of these nakṣatras are found to occur in the Taittirīya-saṃhitā of the Black
Yajurveda. Some of them, viz. Tiṣya (i.e. Puṣya), Aghā (i.e. Maghā), Arjunī
(i.e. Phālgunī ), Citrā, and Revatī, are earlier mentioned in the Ṛgveda. The
above 27 nakṣatras were utilised in the study of the position of the Sun and
the Moon.
The culture of astronomy in vedic times was motivated by the need of fixing

time for the various religious sacrifices which were performed at different times
in different seasons. For this the knowledge of the Sun’s yearly motion was
necessary. The ancient Hindus determined the solstices and the equinoxes and
defined the seasons with reference to them. The Kauṣītaki-brāhmaṇa records

* K. S. Shukla, Indian Journal of History of Science, Vol. 4, Nos. 1–2 (1969), pp. 99–106.
1Winternitz, M., A History of Indian Literature, Vol. 1, Calcutta (1959), p. 271.
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488 Astronomy in ancient and medieval India

the occurrence of the winter solstice on the new moon day of Māgha.2 It is also
stated there that the year ended with the full moon at the Pūrva-Phālgunī,3
and that the spring commenced one day after the new moon of Caitra.4 This
shows that the beginning of the year under the amānta reckoning synchronised
with the beginning of the seasons.

The year of vedic astronomy seems to have been a tropical one. The months
were lunar and measured from full moon to full moon and also from new
moon to new moon. There is evidence to show that to make the lunar year
correspond to the solar year 12 days were intercalated after every lunar year
and one month was dropped after every 40 years.5 At a later stage this
correspondence was established by evolving a cycle of five solar years with 62
lunar months. This cycle was called a yuga.
The Vedāṅgajyotiṣa is the earliest Hindu work dealing exclusively with as-

tronomy. It represents the rudimentary vedic astronomy developed by the
Hindus about 500 years before the beginning of the Christian era and shows
that at that remote past they considered astronomy as a separate subject of
study and realised its importance. The Vedāṅgajyotiṣa has come down to us
in two recensions, viz. the Ṛgvedic recension (called Ārca-jyotiṣa) and the
Yajurvedic recension (called Yājuṣa-jyotiṣa). The former contains 36 verses
and the latter 43 verses, of which 31 verses are common. Both the recensions
are thus practically the same and give an account of months, years, days and
day-divisions, nakṣatras, new moons and full moons, solstices, and seasons
occurring in the cycle of five solar years, which is taken to begin at the winter
solstice in the beginning of the month Māgha when the Sun and the Moon
simultaneously crossed into the nakṣatra Śraviṣṭhā. Both state the tithi (lunar
date), nakṣatra, and month in which the Sun commenced its northward and
southward journeys in the five-year cycle, give the amount by which the day
increased or decreased during the two journeys of the Sun (in terms of water
of the water-clock) and lay down rules for determining (i) the beginning of a
season, (ii) the positions of the Sun and the Moon, (iii) the nakṣatra corre-
sponding to a given tithi, (iv) the position of the Sun on its diurnal circle at
the end of a tithi, (v) the time when the Sun crossed a nakṣatra, and (vi) the
length of a day. The five-year cycle contains, 1830 civil days, 1835 sidereal
days, 1800 saura days, 62 lunar months, 5 revolutions of the Sun, and 67
revolutions of the Moon. It is noteworthy that the phenomenon of the winter
solstice at the beginning of the nakṣatra Śraviṣṭhā with which the five-year
cycle is taken to begin occurred about 1200 bc.
There is also a third recension called the Atharva-jyotiṣa which belongs to

2Kauṣītaki-brāhmaṇa, xi. 3.
3Ibid, v. 1.
4Ibid, xix. 3.
5Law, N. N., Age of the Ṛgveda, pp. 20, 28–29.
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a later date. It mentions the names of the seven planets6 and the weekdays
and in addition to the tithi, nakṣatra, and yoga (which were already known)
gives the names of the seven karaṇas of the Hindu calendar. The Atharva-
jyotiṣa consists of 162 verses and deals with both astronomy and astrology.
The teachings of the Ārca-jyotiṣa are ascribed to sage Lagadha, and those of
the Atharva-jyotiṣa to Svayambhū and Bhṛgu.
The Vedas and likewise the Vedāṅgajyotiṣa have survived the ravages of

time because they were religious works and were studied in their original
form. This was not the case with the works dealing with the sciences and
the arts. With the emergence of new discoveries, new techniques or tools, or
new style of writing, older works had either to be revised or recast or had to
be discarded and replaced by new ones. This accounts for a big gap in the
existing Sanskrit literature. On the one hand, we have the religious works
comprising the vedic literature and, on the other, works written in an entirely
new and different style belonging to the early centuries of the Christian era.
Practically no scientific work of the intervening period ranging from c. 500 bc
to c. 500 ad is available.
From the writings of Varāhamihira (died 587 ad) we gather that works

on astronomy written during this intervening period were known as siddhān-
tas. Varāhamihira in his Pañcasiddhāntikā summarised the teachings of five
of these siddhāntas, viz. (1) the Paitāmahasiddhānta, (2) the Saurasiddhānta,
(3) the Vasiṣṭhasiddhānta, (4) the Romakasiddhānta, and (5) the Pauliśasid-
dhānta. Of these siddhāntas, none in its original form is now available.

The five siddhāntas summarised by Varāhamihira were written during the
early centuries of the Christian era. It is probable that the Paitāmaha-
siddhānta (which is the earliest of the five) was written in 80 ad, this being
the epoch mentioned in Varāhamihira’s version of that work. The Vasiṣṭha-
siddhānta was written prior to 269 ad as is shown by the fact that Sphujid-
hvaja Yavaneśvara, who wrote his Yavanajātaka in that year, refers to this
work. The other siddhāntas were written later. During the early centuries of
the Christian era the Indians were in touch with the Greeks and the Romans,
and the Babylonian and Greek astronomical texts may have been accessible
to them. This accounts for the traces of the Babylonian and Greek influences
which are noticeable in the works summarised by Varāhamihira. Neugebauer7

has shown that some of the astronomical constants in the Vasiṣṭha and the
Pauliśasiddhāntas are inspired by the Babylonian linear astronomy. The Ro-
maka and the Saurasiddhāntas likewise bear traces of the Greek influence. It
is, however, intriguing to find that the refinements introduced by Ptolemy in
the Greek astronomy remained unknown to the Hindus.

6The seven planets are mentioned in theTaittirīya-āraṇyaka and the Maitrāyaṇī-upaniṣad
also.

7Neugebauer, O., The Exact Sciences in Antiquity, second edition, 1957.
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The progress recorded by the publication of the five siddhāntas was indeed
the result of the great Renaissance in Hindu mathematics which began some
time before the Christian era.8 The invention of the zero and the decimal
place value system of notation and the development of the decimal arithmetic
in India in the early centuries of the Christian era led to the development of
mathematics in general including algebra and trigonometry. The availability
of the decimal arithmetic along with the refined algebraic and trigonometrical
tools revolutionised calculations and methods in astronomy. The Renaissance
in Hindu astronomy which appears to have begun in the third or fourth cen-
tury ad continued right up to the twelfth century when due to the advent
of the Muslims in India and consequent unsettled political conditions further
progress was stopped at least in north India. The writings of Āryabhaṭa I
(born 476 ad), Brahmagupta (628 ad), Lalla (c. 749 ad), Vaṭeśvara (904
ad), Āryabhaṭa II (c. 950 ad), Śrīpati (c. 1039 ad), and Bhāskara II (1150
ad) represent landmarks in this era of progress of Hindu astronomy. One very
unfortunate consequence of the writings of these eminent scholars has been
that the study of the earlier texts was given up, so that they have been lost
and we have little authentic material to reconstruct the history of astronomy
from the time of the Vedāṅgajyotiṣa to the end of the fifth century ad when
the Āryabhaṭīya was written by Āryabhaṭa I.
The Āryabhaṭīya of Āryabhaṭa I written about the end of the fifth century

ad is the earliest work on astronomy of the Renaissance period that has been
preserved. It is a small work consisting of 121 verses distributed over four
chapters, of which Chapter I gives the astronomical constants and the sine
table, Chapter II deals with mathematics, Chapter III defines the divisions
of time and explains the motion of the planets with the help of eccentrics
and epicycles, and Chapter IV describes the armillary sphere and gives rules
relating to various problems of spherical astronomy including the calculation
and graphical representation of the eclipses and the visibility of the planets.
The Āryabhaṭīya proved to be a work of great merit, much superior to the
earlier siddhāntas and won for its author a great name as an original mathe-
matician and astronomer. It laid the foundation of a new school of astronomy,
the Āryabhaṭa school, which flourished in India south of the river Narmada.
The main centres of this school existed in Aśmaka and Kerala. The Aśmaka
school was probably founded by Āryabhaṭa I himself and the main exponents
of this school were Bhāskara I (629 ad) and Lalla (749 ad), etc. To the Kerala
school belonged Haridatta (683 ad), Govinda Svāmī, Śaṅkaranārāyaṇa (869
ad), Udayadivākara (1073 ad), and others. The astronomers of the Kerala
school utilised the constants of the Āryabhaṭīya to develop two new systems

8B. Datta, ‘The Scope and Development of the Hindu Gaṇita’, Indian Historical Quarterly,
Vol. V, No. 3 (1929), p. 484.



491

of astronomy, the Parahita and the Vākya, which received wide popularity in
that country.
The works of Āryabhaṭa I and later Hindu astronomers were either modifica-

tions of earlier works or based on them. From what we know about the earlier
siddhāntas and the Pañcasiddhāntikā we are certain that the Āryabhaṭīya and
later works followed the same general pattern of the earlier siddhāntas and
enunciated rules and methods most of which were already well known. It may
be that the arrangement of the subject-matter was changed and the style of
expression and the language were improved.
In astronomy the epoch as well as the elements by which the mean motions

were determined had to be changed from time to time, as we do even now as
a result of observation. It may be that Āryabhaṭa I was the first to make con-
siderable changes in the elements. In fact, it has been claimed by his followers
that his elements continue to give correct results consistent with observation
even after the lapse of long time and in far-off places.9 It is this change in the el-
ements that accounts in our opinion more for the popularity of the Āryabhaṭīya
than his theory of rotation of the earth which did not in any way modify the
methods of calculation based on a stationary earth. Āryabhaṭa I himself, how-
ever, clearly states that he has based his Āryabhaṭīya on the teachings of the
Svāyambhuvasiddhānta (i.e. the Paitāmaha or Brahmasiddhānta), which was
already held in high esteem at Kusumapura.10 About 130 years later, Brah-
magupta based his siddhānta on the same Brahmasiddhānta. During these 130
years a number of other works were written, based on the Āryabhaṭīya and
the earlier siddhāntas. For example, Lāṭadeva, a direct pupil of Āryabhaṭa I,
wrote two works in one of which he reckoned the day from midnight at Laṅkā
and in the other from sunset at Yavanapura.11 According to Varāhamīra,
Lāṭadeva was the author of the commentaries on the Romaka and Pauliśa-
siddhāntas.12 During the same period Śrīṣeṇa brought out a redaction of the
Romakasiddhānta, Vijayanandī and Viṣṇucandra independently brought out
new editions of the Vasiṣṭhasiddhānta.13

In the early part of the seventh century, we find Bhāskara I writing works
based on the Āryabhaṭīya wherein he does not change the elements of the
Āryabhaṭīya but has interpreted the teachings of Āryabhaṭa I according to
the traditions of the Aśmaka school and has made additions to Āryabhaṭa I’s
system to simplify astronomical calculations. At the same time, Brahmagupta
brought out another recast, a very comprehensive one, containing 1008 stan-
zas, of the Brahmasiddhānta. His elements differ from those contained in

9Laghubhāskarīya, i. 2.
10Āryabhaṭīya, ii. 1.
11Pañcasiddhāntikā, xv. 18; Siddhāntaśekhara ii. 10.
12Pañcasiddhāntikā, xv. 18.
13Brāhmasphuṭasiddhānta, xi. 48–51.
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the Āryabhaṭīya. Brahmagupta and his followers claimed greater accuracy for
the Brāhmasphuṭasiddhānta, which was adopted as a standard textbook on
astronomy in North India. The superiority of Brahmagupta’s constants was
recognised even by the followers of Āryabhaṭa I who introduced bīja correc-
tion to modify the constants given by Āryabhaṭa I. Thus, the astronomers
of the Aśmaka school, headed by Lalla, introduced a correction taking 499
ad as the origin, whereas the astronomers of the Kerala school introduced a
similar correction with 522 ad as the origin. The process of modification and
improvement of the existing works continued till the middle of the twelfth
century ad when Bhāksara II wrote his Siddhāntaśiromaṇi. After the time of
Bhāksara II no significant progress was made in the field of astronomy.
Works on Hindu astronomy differ from one another either in the astronom-

ical constants or in the details of calculation. The astronomical constants
were subject to correction from time to time as a result of observation, and
the methods of calculation were improved with the advance of mathematical
knowledge. On basic principles and theories, there is complete unanimity.
The following hypotheses are inherent in all of them:

Hypothesis 1: The mean planets revolve in geocentric circular orbits.

Hypothesis 2: The true planets move in epicycles or in eccentrics.

Hypothesis 3: All planets have equal linear motion in their respective
orbits.

The Hindu astronomers, unlike their Greek counterparts, have established
an epoch when all the planets were in zero longitude. According to Āryab-
haṭa I the epoch, when the Sun, the Moon, Mars, Mercury, Jupiter, Venus
and Saturn were last in zero longitude, was sunrise at Laṅkā (a hypotheti-
cal place at the intersection of the equator and the meridian of Ujjain) on
Friday, 18 February, 3102 bc. The period from one such epoch to the next,
according to Āryabhaṭa I, is 1,080,000 years. When the Moon’s apogee and
the Moon’s ascending node are included in the list of the planets, the above
mentioned period becomes 4,320,000 years, which is defined as the duration
of a yuga. Thus, a yuga is a period of time which begins and ends when the
Sun, the Moon, Mars, Mercury, Jupiter, Venus, Saturn, the Moon’s apogee,
and the Moon’s ascending node are in zero longitude. It consists of four pe-
riods of 1,080,000 years, which are called quarter yugas and bear the names
Kṛtayuga, Tretā, Dvāpara, and Kaliyuga. The current quarter yuga is the
current Kaliyuga which is assumed to have begun at sunrise at Laṅkā on Fri-
day, 18 February, 3102 bc. A bigger period than the yuga is called kalpa.
According to Āryabhaṭa I, a kalpa consists of 1,008 yugas, and 459 3

4 yugas
had elapsed at the beginning of the current Kaliyuga since the beginning of
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the current kalpa. The Hindu astronomical works called Siddhānta adopt the
time of creation as the epoch of calculation whereas those called Tantra adopt
the beginning of Kaliyuga as the epoch of calculation. Both these epochs are
epochs of zero longitude, i.e., at these epochs the longitudes of the planets are
zero.
The epoch of zero longitude is useful in the computation of the mean lon-

gitude of a planet. The Hindu astronomers calculate the ahargaṇa, i.e., the
number of days elapsed since the epoch chosen and then by the application
of the following formula (based on Hypothesis I) to determine the mean lon-
gitude of a planet:

mean longitude = R×A

C
;

where

R = number of revolutions of the planets in a yuga (or kalpa),
C = number of days in a yuga (or kalpa), and
A = ahargaṇa.

The true geocentric longitude of a planet is derived from its mean longitude
by applying the following corrections:

1. Correction for local longitude (deśāntara)

2. Equation of the centre (bāhuphala)

3. Correction for the equation of time due to the eccentricity of the ecliptic
(bhujāvivara)

4. Correction for local latitude (cara), in the case of the Sun and the Moon,
and an additional correction called śīghraphala in the case of the other
planets. The method of applying these corrections in the case of the
planets other than the Sun, however, is not the same with all the as-
tronomers.

Besides the above-mentioned corrections, a few more corrections were devised
by later astronomers on the basis of continued observations. Vaṭeśvara (904
ad), for example, gave a lunar correction, which consists of the deficit of the
Moon’s equation of the centre and the ‘evection’, and Bhāskara II (1150 ad)
gave another lunar correction which corresponds to the ‘variation’. Śrīpati
(1039 ad) prescribed a general correction which was meant to account for the
equation of time due to the obliquity of the ecliptic.

The corrections applied to the mean longitude to get the true geocentric lon-
gitude were based on the epicyclic theory. Comparison of the Hindu epicyclic
theory, as given by Āryabhaṭa I and his followers with that of the Greeks,
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reveals striking differences between the two theories. Whereas the epicycles
of the Greek astronomers do not undergo any variation in size and remain the
same at all places, the epicycles of Āryabhaṭa I and other Hindu astronomers
are different in size in the beginnings of the odd and even quadrants and vary
in size from place to place.
The longitudes of the Sun and the Moon were used in computing the el-

ements of the Hindu Calendar (Pañcāṅga), viz. tithi, nakṣatra, karaṇa and
yoga, and the times of the eclipses. Hindu astronomers were specially inter-
ested in the calculation and the projection of the eclipses as they had an
important bearing on their religious observances. The Moon and its motion
with respect to the nakṣatras has been a subject of study from the vedic times.
The Āryabhaṭīya and other later works treat of the rising and setting, the
phases, and the elevation of the horns of the Moon, as also deal with the con-
junction of the Moon with the prominent stars or the nakṣatras. Among other
topics dealt with in the Āryabhaṭīya and other works may be mentioned the
heliacal risings and settings of the planets and the conjunction of the planets
with the prominent stars of the nakṣatras.

The Hindu astronomers did not possess the telescope. They made their ob-
servations with the naked eye using suitable devices for measuring the angles.
Their astronomy therefore remained confined to the study of the Sun, Moon,
and the planets.



Main characteristics and achievements of
ancient Indian astronomy in historical
perspective ∗

1 Introduction

Ancient Indian astronomy may be classified into two main categories: (1) the
vedic astronomy and (2) the post vedic astronomy. The vedic astronomy is the
astronomy of the vedic period, i.e., the astronomy found in the vedic saṃhitās
and brāhmaṇas and allied literature. The principal avocation of the people
in the vedic times being the performance of the vedic sacrifices at the times
prescribed by the śāstras, it was necessary to have accurate knowledge of the
science of time so that the times prescribed for performing the various vedic
sacrifices could be correctly predicted well in advance. Astronomy in those
times, therefore, was essentially the science of time-determination. It centred
round the Sun and Moon and its aim was to study the natural divisions of time
caused by the motion of the Sun and Moon, such as days, months, seasons,
and years, special attention being paid to the study of the times of occurrence
of new moons, full moons, equinoxes, and solstices.

2 Vedic astronomy

The Ṛgveda (1. 52. 11; 10. 90. 14), which is believed to be the earliest of
the Vedas, describes the universe as infinite and made up of the Earth, the
atmosphere, and the sky. According to the Taittirīya-saṃhitā (7. 5. 23), fire
rests in the Earth, the air in the atmosphere, the Sun in the sky, and the
Moon in the company of the nakṣatras (zodiacal star-groups). The Ṛgveda
(1. 105. 10; 4. 50. 4; 10. 123. 1; also see Śatapatha-brāhmaṇa, 4. 2. 1) refers to
the five planets as gods and mentions Bṛhaspati1 (Jupiter) and Vena (Venus)

* K. S. Shukla, in History of Oriental Astronomy (Proceedings of an International Astro-
nomical Union Colloquium No. 91, New Delhi, India, 13–16 November, 1985, Edited by
G. Swarup, A. K. Bag and K. S. Shukla), Cambridge University Press, Cambridge, 1987,
pp. 9–22.

1According to the Taittirīya-brāhmaṇa 3. 1. 1, “Jupiter when born was first visible in the
nakṣatra Tiṣya (Puṣya)”.
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by name.2 It also mentions the thirty-four lights which, in all probability, are
the Sun, the Moon, the five planets and the twenty-seven nakṣatras (Ṛgveda,
10. 55. 3).

The Ṛgveda (8. 58. 2; 1. 95. 3; 1. 164. 14) describes the Sun as the sole
light-giver of the universe, the cause of the seasons, the controller and lord of
the world (Aitareya-brāhmaṇa 2. 7 describes Sun as the cause of the wind).
The Moon is called Sūrya-raśmi, i.e., one which shines by sunlight (Taittirīya-
saṃhitā 3. 4. 7. 1). The Moon’s path was divided into 27 equal parts, because
the Moon took about 27 1

3 days in traversing it. These parts as well as the
stars lying in their neighbourhood were called nakṣatras and given the names
Kṛttikā etc. When the constellation called Abhijit (Lyra) was included in the
list of nakṣatras, their number was stated as 28. Of these nakṣatras, Tiṣya
(or Puṣya), Aghā (or Maghā), Arjunī (or Phalgunī ), Citrā, and Revatī are
mentioned in the Ṛgveda (5. 54. 13; 10. 64. 8.; 10. 85. 13; 4. 51. 2; 4. 51. 4).
The Taittirīya-saṃhitā (4. 4. 10. 1-3; see also Atharva-saṃhitā, 19. 7. 2–5;
Kāṭhaka-saṃhitā, 39. 13; Maitrāyaṇī-saṃhitā, 2. 13. 20) and the Taittirīya-
brāhmaṇa (1. 5. 1; 3. 1. 1–2; 3. 1. 4–5) give the names of the 28 nakṣatras
along with those of the deities supposed to preside over them. The Śatapatha-
brāhmaṇa (10. 5. 4. 5) gives the names of the 27 nakṣatras as well as those of
the 27 upa-nakṣatras. The nakṣatras were categorised into male, female, and
neuter as well as into singular, dual, and plural. It seems that the prominent
stars of each nakṣatra were counted and classified in order of their brilliance.
Some constellations other than the nakṣatras were also known. The Ṛgveda

(1. 24. 10; 10. 14. 11; 10. 63. 10) mentions the Ṛkṣas or Bears (the Great Bear
and the Little Bear), the two divine Dogs (Canis Major and Canis Minor), and
the heavenly Boat (Argo Navis). The Great Bear was also known as Saptarṣi
(the constellation of the seven sages) and was mentioned by this name in
Śatapatha-brāhmaṇa3 (2. 1. 2. 4) and the Tāṇḍya-brāhmaṇa (1. 5. 5). The
golden Boat (Argo Navis) is mentioned in the Atharvaveda (5. 4. 4; 6. 95. 2)
also. The Aitareya-brāhmaṇa (13. 9) mentions the constellation of Mṛga or
Deer (Orion) and the star Mṛgavyādha (Sirius), and narrates an interesting
story regarding them.
Besides the Sun, the Moon, and the nakṣatras, mention is also made of some

of the other heavenly bodies and heavenly phenomena. For example, ulkā
(meteors) and dhūmaketu (comets) have been mentioned in the Atharvaveda
(19. 9. 8–9, 19. 9. 10). Eclipses have been mentioned and described as caused
by Svarbhānu or Rāhu. The Ṛgveda (5. 40. 5–9) describes an eclipse of the

2 Other planets are not mentioned by name in the early vedic literature. But Śani (Saturn),
Rāhu (Moon’s ascending node), and Ketu (Moon’s descending node) are mentioned in the
Maitrāyaṇī-upaniṣad, 7.6.

3According to Śatapatha-brāhmaṇa (2. 1. 2. 4) the Great Bear was originally called Ṛkṣa
but later the name Saptarṣi was given to it.
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Sun as brought about by Svarbhānu. The Tāṇḍya-brāhmaṇa (4. 5. 2; 4. 6. 13;
6. 6. 8; 14. 11. 14–15; 23. 16. 2) mentions eclipses as many as five times.
Eclipses have been mentioned in the Atharvaveda (19. 9. 10), the Gopatha-
brāhmaṇa (8. 19) and the Śatapatha-brāhmaṇa (5. 3. 2. 2) also.

The day, called vāsara or ahan in the vedic literature, was reckoned from
sunrise to sunrise. The variability of its length was known. The Ṛgveda
(8. 48. 7) invoking Somarāja says: “O Somarāja, prolong thou our lives just
as the Sun increases the length of the days.” Six days were taken to form a
ṣaḍaha (six-day week); 5 ṣaḍahas, a month; and 12 months, a year. As to the
names of the six days of a ṣaḍaha, there is no reference in the vedic literature.
However, the six-day week was later replaced by the present seven day week
(saptāha) which had attained popularity and was in general use at the time
of composition of the Atharva-jyautiṣa.
The duration of daylight, reckoned from sunrise to sunset, was divided into

two parts called pūrvāhṇa (forenoon) and aparāhṇa (afternoon), three parts
called, pūrvāhṇa, madhyāhna, and aparāhṇa, four parts called pūrvāhṇa mad-
hyāhna, aparāhṇa and sāyāhna,4 and five parts called prātaḥ, saṅgava, mad-
hyāhna, aparāhṇa, and sāyāhna (Śatapatha-brāhmaṇa, 2. 2. 3. 9). The days
and nights were also divided into 15 parts each, and these parts were called
muhūrta. The muhūrtas falling during the days of the light and dark fortnights
as well as those falling during the nights of the light and dark fortnights were
given specific names (Taittirīya-brāhmaṇa, 3. 10. 1. 1–3). The fifteen days and
nights of the light fortnight as well as the fifteen days and nights of the dark
fortnight were also assigned special names (Taittirīya-brāhmaṇa, 3. 10. 1. 1–3;
3. 10. 10. 2).

On the analogy of a civil day, a lunar day was also sometimes reckoned
from one moonrise to the next and the name tithi was given to it (Aitareya-
brāhmaṇa, 32. 10). The use of the term tithi in the sense in which it is used
now occurs in the Vedāṅga-jyautiṣa (Ārca-jyautiṣa, 20, 21, 31; Yājuṣa-jyautiṣa,
20–23, 25, 26). It does not occur in the vedic saṃhitās and brāhmaṇas, but
there are reasons to believe that tithis were used even in those times.
The year, generally called by the terms samā, vatsara, and hāyana in the

vedic literature, was seasonal or tropical and was measured from one winter
solstice to the next, but in due course it was used in the sense of a sidereal
year. In the early stages, therefore, the names of the seasons were used as
synonyms of a year. The Kauṣītaki-brāhmaṇa (19. 3) gives an interesting
account of how the year-long sacrifice was commenced at one winter solstice
and continued until the next winter solstice: “On the new moon of Māgha he
(the Sun) rests, being about to turn northwards. They (the priests) also rest,

4Of these names the first three occur in Ṛgveda, 5. 76. 3; and sāyam (evening) occurs
in Ṛgveda, 8. 2. 20; 10. 146. 3, 40. Kauṭilya (Arthaśāstra, 1.19), Dakṣa, and Kātyāyana
divided the day and night each into eight parts.
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Table 1: Vedic seasons (Taittirīya-saṃhitā, 4. 3. 2; 5. 6. 23; 7. 5. 14) and
months (Taittirīya-saṃhitā, 1. 4. 14; 4. 4. 11)

Seasons Months

1. Vasanta (Spring) 1. Madhu
2. Mādhava

2. Grīṣma (Summer) 3. Śukra
4. Śuci

3. Varṣā (Rainy) 5. Nabhas
6. Nabhasya

4. Śarada (Autumn) 7. Iṣa
8. Ūrja

5. Hemanta (Winter) 9. Sahas
10. Sahasya

6. Śiśira (Chilly Winter) 11. Tapas
12. Tapasya

being about to sacrifice with the introductory Atirātra. Thus, for the first
time, they (the priests) obtain him (the Sun). On him they lay hold with the
Caturviṃśa rite; that is why the laying hold rite has that name. He (the Sun)
goes north for six months; him they (the priests) follow with six day rites
in continuation. Having gone north for six months, he (the Sun) stands still,
being about to turn southwards. They (the priests) also rest, being about to
sacrifice with the Viṣuvanta (summer solstice) day. Thus, for the second time,
they obtain him (the Sun). He (the Sun) goes south for six months; they (the
priests) follow him with six day rites in reverse order. Having gone south for
six months, he (the Sun) stands still, being about to turn north; and they
(the priests) also rest, being about to sacrifice with the Mahāvrata day. Thus,
they (the priests) obtain him (the Sun) for the third time”.
The Taittirīya-brāhmaṇa (3. 9. 22) calls the year “the day of the gods”, the

gods being supposed to reside at the north pole.
The year was supposed to consist of six seasons and each season of two

(solar) months. The relation between the seasons and months was as shown
in Table 1.
Two (solar) months commencing with the winter solstice were called Śiśira;

the next two months, Vasanta; and so on. Sometimes Śiśira and Hemanta were
treated as one season and the number of seasons was taken as five (Aitareya-
brāhmaṇa, 1. 1; Taittirīya-brāhmaṇa, 2. 7. 10)

The lunar or synodic month was measured from full moon to full moon or
from new moon to new moon (Taittirīya-saṃhitā, 7. 5. 6. 1) as is the case even
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now. The names Caitra etc. based on the nakṣatras in which the Moon be-
comes full do not occur in the early saṃhitās and brāhmaṇas but such terms as
phalgunī-pūrnamāsī, citrā-pūrnamāsī, etc. are found to occur in the Taittirīya-
saṃhitā (7. 4. 8). They occur in the Saṅkhāyana and Tāṇḍya-brāhmaṇas, the
Vedāṅga-jyautiṣa, and the Kalpa-sūtras.5 Twelve lunar months constituted a
lunar year. In order to preserve correspondence between lunar and solar years,
intercalary months were inserted at regular intervals. Mention of the inter-
calary month is made in the Ṛgveda (1. 25. 8), but how it was arrived at and
where in the scheme of months it was introduced in that time is not known.
The Vedāṅga-jyautiṣa prescribes insertion of an intercalary month after every
30 lunar months (Yājuṣa-jyautiṣa, 37). Thus, a year sometimes contained
12 lunar months and sometimes 13 lunar months. The Taittirīya-saṃhitā
(5. 6. 7) refers to 12 as well as 13 months of a year and calls the thirteenth
(intercalary) month by the names saṃsarpa and aṃhaspati (1. 4. 14). The
Vājasaneyī-saṃhitā (7. 30; 22. 31) calls the intercalary month on one occasion
by the name aṃhasaspati and on another by the name malimluca (22. 30). In
later works the synodic month with two saṃkrantis is called aṃhaspati, the
synodic month without any saṃkrānti, occurring before it, is called saṃsarpa,
and the synodic month without any saṃkrānti occurring after it is called
adhimāsa (intercalary month, Tantrasaṃgraha i. 8)

Originally the lunar (or synodic) months Caitra etc. were named after the
nakṣatras occupied by the Moon at the time of full moon. But in due course
they were linked with the solar months. Thus, the lunar month (reckoned
from one new moon to the next) in which the Sun entered the sign Aries was
called Caitra or Madhu; that in which the Sun entered the sign Taurus was
called Vaiśākha or Mādhava; and so on. The lunar month in which the Sun
did not enter a new sign was treated as an intercalary month.
Periods bigger than a year are also met with in the vedic literature. They

were called yuga. One such yuga consisted of 5 solar years. The five con-
stituent years of this yuga were called saṃvatsara, parivatsara, idāvatsara,
anuvatsara and idvatsara. The Ṛgveda (7. 103. 7–8) mentions two of these,
viz. saṃvatsara and parivatsara. The Taittirīya-saṃhitā (5. 5. 7. 1–3), the
Vājasaneyi-saṃhitā (27. 45; 30. 16), and the Taittirīya-brāhmaṇa (3. 4. 11;
3. 10. 4), mention all the five names, with some alteration. The Taittirīya-
saṃhitā calls them saṃvatsara, parivatsara, idāvatsara, iduvatsara, and vat-
sara; the Vājasaneyi-saṃhitā, saṃvatsara, parivatsara, idāvatsara, idvatsara,
and vatsara, and the Taittirīya-brāhmaṇa saṃvatsara, parivatsara, idāvatsara,
idvatsara, and vatsara respectively. The names Kṛta, Tretā, Dvāpara, and Kali

5Māgha is mentioned in Sāṅkhāyana-brāhmaṇa (= Kauṣītaki-brāhmaṇa) 19. 3; Phālguna
in Tāṇḍya-brāhmaṇa, 5. 9. 7–12; and Srāvana, Māgha and Pauṣa in Ārca-jyautiṣa, 5, 6,
32, and 34 and Yājuṣa-jyautiṣa 5, 6, and 7; and Mārgaśīrṣa and Śrāvana in Āśvalāyana-
gṛhyasūtra, 2. 3. 1 and 3. 5. 2 respectively.



500 Main characteristics and achievements of ancient Indian astronomy

which are used in later astronomy as the names of longer yugas are also used in
the vedic literature to indicate different grades, each inferior to the preceding.
But Dvāpara, as a unit of time, is found to be used in the Gopatha-brāhmaṇa
(1. 1. 28).

The earliest work which exclusively deals with vedic astronomy is the Ved-
āṅga-jyautiṣa. It is available in two recensions, Ārca-jyautisa and Yājuṣa-
jyautiṣa. Both the recensions are essentially the same; a majority of the
verses occurring in them being identical. The date of this work is controver-
sial, but the situation of the Sun and Moon at the beginning of the yuga of
five years mentioned in this work, according to T. S. Kuppanna Sastry, ex-
isted about 1150 bc or about 1370 bc, according as the first point of nakṣatra
Śraviṣṭhā stated there means the first point of the nakṣatra-segment Śraviṣṭhā
or the nakṣatra-group Śraviṣṭhā (Sastry 1984, 3, p. 13). This work defines jy-
otiṣa (astronomy) as the science of time-determination and deals with months,
years, muhūrtas, rising nakṣatras, new moons, full moons, days, seasons, and
solstices. It states rules to determine the nakṣatra occupied by the Sun or
Moon, the time of the Sun’s or Moon’s entry into a nakṣatra, the duration
of the Sun’s or Moon’s stay in a nakṣatra, the number of new moons or full
moons that occurred since the beginning of the yuga, the position of the Sun
or Moon at the end of a new moon or full moon day or tithi, and similar
other things. It gives also the measure of the water-clock, which was used
to measure time, and tells when an intercalary month was to be added or a
tithi was to be omitted. In short, it gives all necessary information needed
by the vedic priest to predict times for the vedic sacrifices and other religious
observances.
The five-year yuga of the Vedāṅga-jyautiṣa contained 61 civil, 62 lunar, and

67 sidereal months. The year consisted of 366 civil days which were reck-
oned from sunrise to sunrise. After every thirty lunar months one intercalary
month was inserted to bring about concordance between solar and lunar years.
Similarly, to equate the number of tithis and civil days in the yuga of five so-
lar years, the thirty full moon tithis which ended between sunrise and midday
were omitted. There were six seasons of equal duration in every year, each
new season beginning after every 61 days. Besides tithis and nakṣatras, the
yoga called Vyatīpāta was also in use.

The five-year yuga was taken to commence at the winter solstice occurring
at the beginning of the first tithi of the light half of the month Māgha. Since
the Sun and Moon were supposed to occupy the same position at the beginning
of each subsequent yuga and all happenings in one yuga were supposed to be
repeated in the subsequent yugas in the same way, the calendar constructed
on the basis of the Vedāṅga-jyautiṣa was meant to serve for a long time.
The Vedāṅga-jyautiṣa astronomy suffered from two main defects. Since

there are actually 1826.2819 days in a yuga of five solar (sidereal) years and
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not 1830 as stated in the Vedāṅga-jyautiṣa, therefore if one yuga was taken to
commence at a winter solstice the next one commenced about four days later
than the next winter solstice and not at the next winter solstice. Similarly,
since there are actually 1830.8961 days in a period of 62 lunar months and not
1830 as stated in the Vedāṅga-jyautiṣa, therefore there was a deficit of about
one tithi in the yuga of five solar years. These discrepancies must have been
rectified but we do not know when and how this was done.
There is one more work on jyotiṣa belonging to the later vedic period. It is

known as Atharva-jyautiṣa. This work describes the muhūrtas, tithis, karaṇas,
nakṣatras, and week days, and prescribes the deeds that should be performed
in them. The names of the lords of the week days stated in this work viz.
Āditya (Sun), Soma (Moon), Bhauma (the son of Earth), Bṛhaspati, Bhārgava
(the son of Bhṛgu), and Śanaiścara (the slow-moving planet), are undoubtedly
of Indian origin and must have been in use in India from very early times.6

3 Post-Vedic astronomy

In the post-vedic period the scope of astronomy was widened. Astronomy
outgrew its original purpose of providing a calendar to serve the needs of
the vedic priests and was no longer confined to the study of the Sun and
Moon. The study of the five planets was also included within its scope and it
began to be studied as a science for its own sake. While further improvement
of luni-solar astronomy continued, astronomers now devoted their attention
towards the study of the planets which were known in the vedic period and
were now well known. In the initial stages their synodic motion was studied.
Astronomers noted the times of their first and last visibility, the duration of
their appearance and disappearance, the distance from the Sun at the time of
their first and last visibility, the times of their retrograde motion, the distances
from the Sun at the times of their becoming retrograde and re-retrograde,
and so on. Study was also made of their motion in the various zodiacal signs
under different velocities called gatis (viz. very fast, fast, mean, slow, very
slow, retrograde, very retrograde, and re-retrograde) and along their varying
paths called vīthīs. The synodic motion of a planet was called grahacāra and it
was elaborately recorded in the astrological works particularly the saṃhitās,
the earlier works of the Jainas, the earlier purāṇas, and the earlier siddhā-
ntas such as the Vasiṣṭhasiddhānta and the Pauliśasiddhānta. These records
were analysed and in the beginning crude methods or empirical formulae were
evolved to get the longitudes of the planets. Later on a systematic theory was
established which gave rise to the astronomy of the later siddhāntas.
Of the astronomical works written in this period, the Vasiṣṭhasiddhānta is

6As regards the origin of the week-days, see Kāne, P. V. (1974) under references.
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the earliest. Vasiṣṭha and his teachings have been mentioned in the Yavana-
jātaka of Sphujidhvaja Yavaneśvara which was written about 269 ad. From
the summary of the Vasiṣṭhasiddhānta in the Pañcasiddhāntikā of Varāhami-
hira we learn that this work made improvement in the luni-solar astronomy
and besides describing the synodic motion of the planets gave empirical formu-
lae for knowing the positions of the planets Jupiter and Saturn. The Vedāṅga-
jyautiṣa sidereal year of 366 days was replaced by Vasiṣṭha by the sidereal year
of 365. 25 days (Neugebauer & Pingree 1971, ii. 1). To obtain the Sun’s longi-
tude use was made of a table giving the Sun’s motion in the various zodiacal
signs (Neugebauer & Pingree 1971, ii. 1). The Moon’s longitude was obtained
in a special way. One anomalistic revolution of the Moon was divided into
248 equal parts called pada, each pada corresponding to 1/9 of a day. The pe-
riod of the Moon’s one anomalistic revolution was called gati, and that of 110
anomalistic revolutions ghana. It was assumed that the Moon moved through
111 revolutions− 3

4 signs+2 mins. in one ghana and 1 rev. (185− 1
10 ) mins. in

one gati. First the Moon’s anomalistic motion since the epoch was obtained in
terms of ghanas, gatis, and padas, and then the Moon’s motion corresponding
to this was obtained and added to the Moon’s position at the epoch (Neuge-
bauer and Pingree 1971, ii. 2–6). To obtain the Moon’s motion for p padas in
the first half of its anomalistic revolution, the formula used was:

Moon’s motion for p padas in the first half of its anomalistic revolution =

p degrees+ [1094 + 5(p− 1)]p

63
mins.

And to obtain the Moon’s motion for p padas in the second half of its anoma-
listic revolution, the formula used was:

Moon’s motion for p padas in the second half of its anomalistic revolution =

p degrees+ [2414− 5(p− 1)]p

63
mins.

(Neugebauer & Pingree 1971, ii. 6)
In the case of Jupiter, starting from the point of zero longitude, its sidereal

revolution was divided into 391 equal parts, called padas, divided into three
unequal segments, the first segment containing 180 padas, the second con-
taining the next 195 padas, and the third containing the remaining 16 padas.
When Jupiter was at the end of p padas of the first segment, its longitude
λ1(p) was given by the formula:

λ1(p) =
p(1456− p)

24
mins.;

when at the end of q padas of the second segment, its longitude λ2(q) was
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given by the formula:

λ2(q) = λ1(180) +
q(1165 + q)

24
mins.;

and when at the end of r padas of the third segment, its longitude λ3(r) was
given by the formula:

λ3(r) = λ2(195) +
r(1486− r)

24
mins.

(Neugebauer & Pingree 1971, xvii. 9–10)
Similarly, in the case of Saturn, starting with the point of zero longitude, its

sidereal revolution was divided into 256 equal parts, called padas, divided into
three segments, the first segment consisting of 30 padas, the second consisting
of the next 127 padas, and the third consisting of the remaining 99 padas.
When Saturn was the end of p padas of the first segment, its longitude λ1(p)
was given by the formula:

λ1(p) =
p(2416 + 2p)

27
mins.;

when at the end of q padas of the second segment, its longitude λ2(q) was
given by the formula:

λ2(q) = λ1(30) +
q(2519− 2q)

27
mins.;

and when at the end of r padas of the third segment, its longitude λ3(r) was
given by the formula:

λ3(r) = λ2(127) +
r(2037 + 2r)

27
mins.

(Neugebauer & Pingree 1971, xvii. 16–17)
The above formulae show that at the time of their formulation the longitude

of Jupiter’s apogee was 165.7 degrees and that of Saturn’s apogee 220.8 de-
grees approximately. In the case of the other three planets no such empirical
formulae could be devised and recourse was taken to their motion from one
heliacal rising to the next.
A notable feature of the Vasiṣṭhasiddhānta is that it makes use of signs

which were not used up to the Vedāṅga period, and reckons the longitudes of
the planets from the first point of Aries.
Further progress in astronomy is recorded in the Pauliśasiddhānta. Varā-

hamihira has described the Vasiṣṭhasiddhānta as inaccurate but the Pauliśa-
siddhānta as accurate (Neugebauer & Pingree 1971, i. 4).

The length of the sidereal year, according to the Pauliśasiddhānta, is 365
days 6 hours 12 seconds (Neugebauer & Pingree 1971, iii. 1). This value is
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better than 365 days 6 hours given by Vasiṣṭha. Vasiṣṭha used approximate
rules to get the longitudes of the Sun and Moon, Pauliśa, in the case of the Sun,
first obtains the mean longitude and then applies correction for the equation
of the centre to get the true longitude. He states a table giving the equation
of the centre for the Sun for the intervals of 30 degrees starting from the point
lying 20 degrees behind the point of zero longitude (Neugebauer & Pingree
1971, iii. 1–3).

According to Vasiṣṭha, the Moon’s motion on the first day of its anomalistic
revolution when it is least is 702′; thereafter it increases and reaches the
maximum value of 879′ (Neugebauer & Pingree 1971, iii, 4). According to
the tables prepared by the followers of Āryabhaṭa the minimum value of the
Moon’s motion on the first day of its anomalistic revolution is 722′ and the
maximum daily motion near its perigee7 is 859′, the former being 20′ greater
and latter 20′ less than the values given by Vasiṣṭha. The values given by
Vasiṣṭha are evidently gross. Pauliśa applied two corrections one after the
other to the Moon’s motion given by Vasiṣṭha but the rules summarised by
Varāhamihira have not been understood so far (Neugebauer & Pingree 1971,
iii. 5–8).
Pauliśa calls the Moon’s ascending node by the name “Rāhu’s head”, and

takes 6795 days as the period of its sidereal revolution. The corresponding
periods, according to Āryabhaṭa, Ptolemy, and modern astronomers are 6794.7
days, 6796.5 days, 6793 days respectively. The value given by Pauliśa is
evidently closer to that of Āryabhaṭa.
The Pauliśasiddhānta deals also with the motion of the planets, the visibility

of the Moon, and the eclipses. In the treatment of the planetary motion, it
gives the distances from the Sun at which the planets rise or set heliacally and
become retrograde and re-retrograde. Table 2 gives the synodic periods of
the planets according to Vasiṣṭha, Pauliśa, Āryabhaṭa, Ptolemy, and modern
astronomers.
Pauliśa’s treatment of the visibility of the planets and the eclipses is very

approximate.
A notable feature of the Pauliśasiddhānta is the mention of the viṣuva and

ṣaḍaśītimukha saṃkrāntis.
The Pauliśasiddhānta was followed by the Romakasiddhānta. This siddhā-

nta bears the impact of the teachings of the Greek astronomers. The day
is reckoned from sunset at Yavanapura (Alexandria in Egypt). To obtain
the mean positions of the Sun and Moon a luni-solar yuga of 2850 years was
defined and astronomical parameters were stated for this period (Neugebauer
& Pingree 1971, i. 15–16). The length of the year used in this work was

7Vide Candravākyāni. See Kuppanna Sastri & Sarma (1962) under references. For Can-
drasāraṇī, see Sūrya-candra-sāraṇī. Ms. No. 1657 of the Akhila Bharatiya Sanskrit
Parishad, Lucknow.
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Table 2: Synodic periods in days.

Planet Vaśiṣṭha Pauliśa Āryabhaṭa Ptolemy Modern

Mars 779.955 799.978 779.92 779.943 779.936
Mercury 115.879 115.875 115.87 115.879 115.877
Jupiter 398.889 398.885 398.889 398.886 398.884
Venus 583.909 583.906 583.89 584.000 583.921
Saturn 378.1 378.110 378.08 378.093 378.092

365.246 days (Neugebauer & Pingree 1971, viii. 1.) which is exactly the same
as given by the Greek astronomers Hipparchus and Ptolemy. It was really
the value of the tropical year but it was used in the Romakasiddhānta as
the value of the sidereal year. As the value of the sidereal year it was worse
than that given by Vasiṣṭha. The longitude of the Sun’s apogee stated in
the Romakasiddhānta (Neugebauer & Pingree 1971, viii. 2) was 75◦. This
was the same as given by Hipparchus when reckoned from the point of zero
longitude of Indian astronomy. The period of a sidereal revolution of the
Moon’s ascending node according to the Romakasiddhānta was 6796.29 days.
This is also almost the same as the value 6796.5 days given by Ptolemy. The
maximum equation of the centre for the Sun adopted in the Romakasiddhānta
(Neugebauer & Pingree 1971, viii. 3, 6). was 2◦23′23′′ and that for the
Moon 4◦56′. The corresponding values given by Ptolemy are 2◦23′ and 5◦1′

respectively. Romaka’s treatment of the solar eclipse was similar to that
found in the later works on Indian astronomy but the rules given are very
approximate (Neugebauer & Pingree 1971, viii). It may be that Varāhami-
hira himself has condensed them. The Romakasiddhānta did not deal with
the planets.
Perfection in astronomy was brought about by Āryabhaṭa who carried out

his observations at Kusumapura (modern Patna). He was successful in giving
quite accurate astronomical parameters and better methods of calculation.
Roger Billard (Billard 1971, pp. 81–83) has analysed these parameters and
has shown that they were based on observations made around 512 ad.
Āryabhaṭa wrote two works on astronomy, in one reckoning the day from

midnight to midnight and in the other from sunrise to sunrise, in the former
dealing with the subject in detail and in the latter briefly and concisely. Both
the works proved to be epoch-making and earned a great name for the au-
thor. The larger work was popular in northern India and was summarised
by Brahmagupta in his Khaṇḍakhādyaka which was carried to Arabia and
translated into Arabic. This work has been in use by the pañcāṅga mak-
ers in Kashmir till recently. The Sūryasiddhānta which was summarised by
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Varāhamihira and declared by him as the most accurate work was simply a
redaction of the larger work of Āryabhaṭa. The smaller work of Āryabhaṭa
called the Āryabhaṭīya was studied in south India from the seventh century to
the end of the nineteenth century. This work was also translated into Arabic,
by Abu’l Hasan al-Ahwāzī.
Āryabhaṭa ’s astronomy is based on three fundamental hypotheses viz.

1. That the mean planets revolve in geocentric circular orbits

2. That the true planets move in epicycles or in eccentrics

3. That all planets have equal linear motion in their respective orbits.

Āryabhaṭa’s epicyclic theory differs in some respects from that of the Greeks.
In Āryabhaṭa’s theory there is no use of the hypotenuse-proportion in finding
the equation of the centre. Moreover, unlike the epicycles of the Greek as-
tronomers which remain the same in size at all places, Āryabhaṭa’s epicycles
vary in size from place to place.

The main achievements of Āryabhaṭa are:

1. His astronomical parameters which were well known for yielding accu-
rate results

2. His theory of the rotation of the Earth which was described by him as
spherical like the bulb of the kadamba flower

3. The introduction of sines by him

4. His value of π = 3.1416

5. Fixation of the Sun’s greatest declination at 24◦ and the Moon’s greatest
celestial latitude at 4◦30′. These values were adopted by all later Indian
astronomers.

6. Integral solution of the indeterminate equation of the first degree viz.
ax+ c = by, a, b, and c being constants.

The pattern set by the works of Āryabhaṭa was followed by all later as-
tronomers. The works written by later astronomers differ either in the pre-
sentation of the subject matter, or in the astronomical constants which were
revised from time to time on the basis of observation, or in the methods of
calculation which were improved from time to time. A few new corrections
which were not known in the time of Āryabhaṭa were discovered and used by
later astronomers. Thus Mañjula (also called Muñjāla) discovered the lunar
correction called “evection” and Bhāskara II another lunar correction called
“variation”.
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According to Āryabhaṭa the Sun, the Moon, and the planets were last
conjunction in zero longitude at sunrise at Laṇkā8 on Friday, February 18,
3102 bc. This was chosen by him as the epoch of zero longitude to calculate
the longitudes of the planets. The period from one such epoch to the next,
according to him, is 10,80,000 years. This he has defined as the duration of
a quarter yuga. Likewise the period of 43,20,000 years is called a yuga. At
the beginning and end of this yuga the Moon’s apogee and ascending node
too are supposed to be in conjunction with the Sun, Moon, and the planets
at the point of zero longitude. The revolution-numbers of the planets stated
by Āryabhaṭa are for this yuga. The astronomical parameters and the rules
stated by Āryabhaṭa are sufficient to solve all problems of Indian astronomy.
The main problems dealt with by Āryabhaṭa and other later astronomers
are the determination of the elements of the Indian pañcāṅga, calculation
and graphical representation of the eclipses of the Sun and Moon, rising and
setting of the Moon and the planets, the Moon’s phases and the elevation of
the Moon’s horns and their graphical representation, and the conjunction of
the planets and stars.
The ancient Indian astronomers did not posses the telescope. They made

their observations with the naked eye using suitable devices for measuring
angles. Their astronomy therefore remained confined to the study of the Sun,
Moon, and the planets.

Bibliography

[1] Aitareya-brāhmaṇa. (1) Tr. Martin Haug, 2 Vols, Bombay, 1863; (2)
Ed. Satya–vrata Samasrami with the commentary Vedārthaprakāśa of
Sāyanācārya, 4 Vols, Asiatic Society, Calcutta, 1895–1907.

[2] Ārca-jyautiṣa. See Vedāṅga-jyautiṣa.

[3] Arthaśāstra of Kauṭilya. (1) Tr. English by R. Shamasastry with an in-
troductory note by J. F. Fleet, 4th edition, Mysore, 1951; (2) Ed. and
Tr. English with critical explanation by R. P. Kangle, Parts I, II, III,
Bombay University, 1960, 1963, 1965.

[4] Atharva-saṃhitā. (1) Tr. English by M. Bloomfield as Hymns of the
Atharvaveda, Clarendon Press, Oxford, 1897; (2) Ed. Visvabandhu with
the commentary of Sayanacarya, Visvesvaranand Vedic Research Insti-
tute, 4 Vols., Hoshiarpur, 1960–62; (3) Tr. R. T. H. Griffith, 2 vols.,
Chowkhamba Sanskrit Series Office, Varanasi, 1968.

[5] Billard, Roger (1971). L’Astronomie Indienne, Paris, pp. 81–83.
8Laṅkā is the hypothetical place on the equator where the meridian of Ujjain intersects it.



508 Main characteristics and achievements of ancient Indian astronomy

[6] Dvivedi, O. and Sharma, C. L. Atharva-vedīya-Jyautiṣam, ed. vs. 93.

[7] Kane, P. V. (1974). History of Dharmaśāstra, 5, pt. 1, Bhandarkar
Oriental Research Institute, Poona, pp. 677–85; see particularly pp. 683–
685 where theories about the origin of the seven days in India are given.

[8] Kāṭhaka-saṃhitā. Ed. Schroeder von Leopold, 4 vols., Leipzig, 1909–27.

[9] Kauṣītaki-brāhmaṇa. See Sāṅkhāyana-brāhmaṇa.

[10] Maitrāyaṇī-saṃhitā. Ed. by Schroeder von Leopold, 2 vols., Leipzig, 1925.

[11] Maitrāyaṇī-upaniṣad – Ed. and Tr. E. B. Cowell, Calcutta, 1870.

[12] Neugebauer, O. & Pingree, D. (1971). Pañcasiddhāntikā of Varāhamihira
(d. 587 ad). Pt. II. Tr. & commentary, Copenhagen.

[13] Ṛgveda. (1) Ed. F. Max Müller, 6 vols., London, 1857–74; (2) Tr. English
by H. H. Wilson, 6 vols., London, 1850; (3) Tr. R. T. H. Griffith, 1896;
reprinted in the Chowkhamba Sanskrit Series, Benares, 1963.

[14] Sastry, T. S. K. (1984). Vedāṅga-jyautiṣa of Lagadha, Ed. & Tr. Indian
Journal of History of Science, 19 (3 & 4), Supplement.

[15] Sastry, T. S. K. and Sarma, K. V. (1962). Vākyakaraṇa, ascribed to
Vararuci (c. ad. 1300). Critically edited with introduction and appen-
dices, Kuppuswami Sastry Research Institute, Madras.

[16] Śatapatha-brāhmaṇa. (1) Ed. A. Weber with extracts from the commen-
taries of Sāyana, Harisvāmin and Dvivedaganga, Leipzig, 1924; Second
edition, Chowkhamba Sanskrit Series No. 97, Varanasi; (2) Tr. English
by Julius Eggeling, 5 vols., Sacred Books of the East, 12, 26, 41, 43, 44,
reprinted by Motilal Banarsidass, New Delhi, 1966.

[17] Sāṅkhāyana-brāhmaṇa (or Kauṣītaki-brāhmaṇa). (1) Ed. Ānandāśrama
Sanskrit Series, Poona, 1911; (2) Tr. English by A. B. Keith, vide his
Ṛgveda Brāhmaṇas, 1920.

[18] Taittirīya-brāhmaṇa. Edited by H. N. Apte with the commentary of
Sāyanācārya, Ānandāśrama Sanskrit Series No. 37, 3 vols., Poona, 1898.

[19] Taittirīya-saṃhitā. (1) Ed. Roer and Cowell with the commentary
Vedārthaprakāśa of Sāyanācārya, 6 vols., Calcutta, 1854–99; (2) Tr. A. B.
Keith, Harvard Oriental Series, 18, 19, 1914.

[20] Tāṇḍya-brāhmaṇa (or Pañcaviṃśa-brāhmaṇa). Tr. into English by W. Ca-
land, Asiatic Society, Calcutta, 1931.



Bibliography 509

[21] Tantrasaṃgraha of Nīlakaṇtha Somayāji (1444–1545 ad). (1) Ed. with
commentary Laghuvivṛti of Śaṅkaravāriar, Trivandrum, 1958; (2) Ed.
K. V. Sarma with commentary, Yuktidīpikā and Laghuvivrti of Śaṅka-
ra, Hosiarpur, 1977.

[22] Vājasaneyī-saṃhitā (or Śukla Yajurveda-saṃhitā). Tr. English by R. T. H.
Griffith, 1899.

[23] Vedāṅga-jyautiṣa of Lagadha. It has two recensions, Ārca-jyautiṣa and
Yājuṣa-jyautiṣa. (1) Ed. with Somākara’s commentary by Sudhakara
Dvivedi, 1908; (2) Ed. and Tr. English by R. Shamasastry, 1936; (3)
Ed. and Tr. English by T. S. K. Sastry, Indian Journal of History of
Science, 19 (3 & 4), Supplement, 1984.

[24] Yājuṣa-jyautiṣa. See Vedāṅga-jyautiṣa.

Discussion

L. C. Jain: Could you comment on whether the Jaina Astronomy (Sūrya
Prajñapati, Candra Prajñapati or Tiloyapannatti) was motivated by Vedāṅga
Jyotiṣa or originated independently?
K. S. Shukla: It was motivated by Vedāṅga Jyotiṣa.



On three stanzas from the Pañcasiddhāntikā ∗

1. We will here consider three stanzas from the Pañcasiddhāntikā of Varā-
hamihira (c. 550 ad), edited by G. Thibaut and S. Dvivedī (1889 ad). These
stanzas were examined by us while comparing the astronomical constants of
the midnight day-reckoning of Āryabhaṭa I (499 ad), as given by his follower
Bhāskara I (629 ad), with those of the old Sūryasiddhānta, as summarised by
Varāhamihira. This comparison revealed to us that the astronomical constants
ascribed to Āryabhaṭa I’s midnight day-reckoning were in general agreement
with those found in Varāhamihira’s version of the Sūryasiddhānta. The differ-
ences were, however, found to exist as regards the distances from the Sun at
which the planets become visible and as regards the distances and diameters
of the Sun and the Moon. It was soon discovered that the differences were
not real but were due to the emendations made in the traditional text of the
Pañcasiddhāntikā by the editors.

2. Of the above-mentioned three stanzas, one is stanza 12 of the seventeenth
chapter. It states the distances of the planets from the Sun at which they rise
heliacally, and runs as follows:

Traditional text

ु ट दनकर तर शा-
ादीन च दशनी ेयाः ।

वश त नावसुश श
श खमु ननव े दयैः मशः ॥

Text as emended by Thibaut and Dvivedī

ु ट दनकरा र शा-
ादीन च दशने ेयाः ।

वंश त ना वसुश श-
श खमु ननवके यैः मशः ॥

The emended version, translated by Thibaut, is as follows:

The degrees of the distances from the sun at which the true planets
become visible are 12 for the moon, 19 for Mars, 17 for Mercury,
13 for Jupiter, 11 for Venus, 15 for Saturn.

* K. S. Shukla, Ganita, Vol. 5, No. 2 (1954), pp. 129–136.
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Table 1: Distances from the Sun at which the planets become visible.

Planet

Distance according to

Modern Āryabhaṭa I Brahmagupta The above
Sūryasiddhānta and emended

Bhāskara I text

Moon 12◦ 12◦ 12◦ 12◦

Mars 17◦ 17◦ 17◦ 19◦

Mercury 12◦ to 14◦ 13◦ 13◦ 17◦

Jupiter 11◦ 11◦ 11◦ 13◦

Venus
(when direct) 10◦ 9◦ 10◦ 11◦

Saturn 15◦ 15◦ 15◦ 15◦

The constants given in this stanza and those given in the modern Sūrya-
siddhānta and by Āryabhaṭa I and Brahmagupta (628 ad) are exhibited in
Table 1.

The table shows that the constants given in the emended text differ from
those given by the other Hindu authorities in the case of Mars, Mercury,
Jupiter, and Venus and that the differences are such as to throw doubt in
the correctness of the emended text. It appears from the comparison of the
last three columns that the error, if any, in the emended text lies between the
words giving the constants for the Moon and Mars and between the words
giving the constants for Venus and Saturn. Note that the constants for Mars,
Mercury, and Jupiter in the second and third columns have shifted bodily by
one space downwards in the last column.
Let us now examine the traditional text to see whether it gives any clue to

the above discrepancy. We observe that

(i) it is inconsistent with the subject matter, as the number of constants
mentioned there is seven, whereas the number of planets to which those
constants correspond is only six; and

(ii) it is metrically defective, as there are 14 syllables in place of 12 in the
third quarter.

Turning to the emended text, we find that Thibaut and Dvivedī have got
rid of the above defects of the traditional text by replacing the word rudra

On three stanzas from the Pañcasiddhāntikā
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(meaning 11) by the suffix ka. And this drastic change, made in the traditional
text, is indeed the cause of the whole trouble.
The most plauseworthy emendation of the text at this place would be the

deletion of the superfluous word śaśi (meaning Moon or 1). With this emen-
dation the stanza would run

ु ट दनकरा र शा-
ादीन च दशने ेयाः ।

वंश त ना वसु श ख-
मु ननव े यैः मशः ॥

and mean

The degrees of the true distances from the Sun at which the Moon
and others become visible are 12, l7, 13, 11, 9, and 15 respectively.

One may easily see that these constants are exactly the same as prescribed by
Āryabhaṭa I, and also not much different from those occurring in the modern
Sūryasiddhānta.

3. The other two stanzas are stanzas 15 and 16 of the ninth chapter. They
deal with the distances and diameters of the Sun and the Moon and run as
follows:

Traditional Text

मु नकृतगुणे य ः
ु टकणः खकृतभा जतोऽक  ।

क े त च करण
ः क ा शश क  ॥

खखवसुखमुन वषया
भानोः खकृततुसुगुणाः श शनः ।
ता ा लकमानाथ

ु टक ा पृथ भजे ॥
Text as emended by Thibaut and Dvivedī

मु नकृतगुणे य ः
ु टकणः खाकभा जतोऽक ।

क े त च कण -
ऽ ः क ा शशा  ॥
खवसुखमुनी वषया
भानोः खकृततुसुरगुणाः श शनः ।
ता ा लकमानाथ

ु टक ा पृथ भजे ॥
The emended text, translated by Thibaut, runs:
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The true hypotenuse multiplied by 5347 and divided by 120 gives
the kakshā of the sun; the true hypotenuse of the moon multiplied
by 3 gives the kakshā of the moon. Take 5147080 for the sun
and 333640 for the moon and, in order to find their (apparent)
dimensions for a given time, divide those two quantities separately
by the true distances in yojanas.

In the notes that follow this translation, Thibaut interprets these stanzas
as containing the following formulae:

Sun’s true distance in yojanas

=
5347× (Sun’s mean distance in mins.)

120
;

Moon’s true distance in yojanas
= 3× (Moon’s mean distance in mins.);

Sun’s true diameter in minutes

=
5147080

Sun’s true distance in yojanas ;

Moon’s true diameter in minutes

=
333640

Moon’s true distance in yojanas .

Both Thibaut and Dvivedī derive the first two formulae by assuming 5347
and 360 to be the mean distances in yojanas of the Sun and the Moon respec-
tively. But this assumption does not agree with the numbers used in the last
two formulae, as they yield 962.6 and 926.8 minutes for the mean diameters
of the Sun and the Moon respectively, which is wrong. These numbers are
about 30 times greater than the real diameters. Thibaut and Dvivedī, there-
fore, prescribe the division by 30 of the diameters obtained by the application
of the third and fourth formulae. Dvivedī thinks that this division by 30 has
been omitted in the text probably because, in the time of Varāhamihira, this
operation was obligatory by convention. Thibaut is, however, doubtful of the
correctness of the text, and writes:

But for some reason or other their text—provided it be correct—
does not mention the division by 30.

Thibaut and Dvivedī’s assumption that the numbers 5347 and 360 denote
the distances (in yojanas) of the Sun and Moon respectively is incompatible
with their assumption in the next chapter1 of the number 146 for the diam-
eter (in yojanas) of the Sun. The last mentioned number should have been

1See Thibaut’s and Dvivedī’s notes on Pañcasiddhāntikā, x. 1.
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Table 2: Mean distances and diameters (in yojanas) of the Sun and Moon
according to the modern Sūryasiddhānta and the midnight day-
reckoning of Āryabhaṭa I

(a) Actual

Modern Sūryasiddhānta Midnight day-reckoning of
Āryabhaṭa I

Distance Diameter Distance Diameter

Sun 689378 6500 689358 6480

Moon 51566 480 51566 480

(b) As abraded by 42.97

Modern Sūryasiddhānta Midnight day-reckoning of
Āryabhaṭa I

Distance Diameter Distance Diameter

Sun 16043 151 16040 150.8

Moon 1200 11.4 1200 11.4

more appropriately taken to be 151 yojanas. Table 2 shows that the correct
distances of the Sun and the Moon conforming to the diameter 151 yojanas of
the Sun are 16040 and 1200 yojanas and not 5347 and 360 yojanas as assumed
by Thibaut and Dvivedī.
The inconsistencies in the interpretation of Thibaut and Dvivedī are due,

as in the previous case, to the changes made by them in the traditional text.
For example, khakṛta (meaning 40) has been changed into khārka (meaning
120), and dṛ has been changed into agni.

Such drastic changes are not necessary; emendation of the obvious clerical
errors is enough to secure mathematically correct meaning. With these minor
corrections, the text reads:

मु नकृतगुणे य ः
ु टकणः खकृतभा जतोऽक ।

क े त च कण
द ः क ा शशा  ॥
खवसुखमुनी ु वषया
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भानोः खकृततु(व )सुगुणाः श शनः ।
ता ा लकमानाथ

ु टक ा पृथ भजे ॥
This gives the following four formulae:

Sun’s true distance in yojanas

=
5347× (Sun’s true distance in minutes)

40
;

Moon’s true distance in yojanas
= 10× (Moon’s true distance in minutes);

Sun’s true diameter in minutes

=
517080

Sun’s true distance in yojanas ;

Moon’s true diameter in minutes

=
38640

Moon’s true distance in yojanas .

These may be derived as follows:
Assuming 16040 and 1200 yojanas to be the distances of the Sun and Moon

respectively,2 we have

Sun’s true distance in yojanas =
16040× (Sun’s true distance in minutes)

120
,

120 being the value of the radius (in minutes) used in the Pañcasiddhāntikā.
Thus,

Sun’s true distance in yojanas =
5347× (Sun’s true distance in minutes)

40
.

Similarly,

Moon’s true distance in yojanas =
1200× (Moon’s true distance in mins.)

120

= 10× (Moon’s true distance in mins.).

Now assuming that the Sun’s mean diameter is 32 95
401 minutes and the Moon’s

mean diameter 32.2 minutes, we have

Sun’s true diameter in minutes

=
(Sun’s mean diameter in minutes)× (Sun’s mean distance in yojanas)

Sun’s true distance in yojanas

=
517080

Sun’s true distance in yojanas .

2See Table 2b.
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Similarly,

Moon’s true diameter in minutes = 38640

Moon’s true distance in yojanas .

(ed. The following note is given as a footnote to the above equation in the
original:) The word ‘yojana’ has been used above in the general sense of
a ‘linear unit’. It should not be confused with the terrestrial yojana of the
Pañcasiddhāntikā which is equal to 7.8 miles approximately.



The Pañcasiddhāntikā of Varāhamihira (1) ∗

The Pañcasiddhāntikā of Varāhamihira is one of the most important sources
for the history of Hindu astronomy before the time of Āryabhaṭa I (b. 476
ad). Two editions of this work (both furnished with English translation and
commentary) have appeared, one in 1889 under the editorship of G. Thibaut
and S. Dvivedi, and the other in two parts in 1970 and 1971 under the
editorship of O. Neugebauer and D. Pingree. But even now the contents of
the work are at places not correctly understood. The object of the proposed
series of papers is to deal with certain passages of the work which have not
been properly understood so far. In the present paper, which is the first of
the series, I propose to deal with four topics, viz. (i) criticism of Viṣṇucandra
and Romaka by Pauliśa, (ii) the declination table of Varāhamihira, (iii) the
fifth correction for Mercury and Venus in the old Sūryasiddhānta, and (iv) a
traditional correction of the Pauliśa school for the longitude of the Moon’s
ascending node.

1 Viṣṇucandra and Romaka criticised by Pauliśa

The following seven verses (ed. see Table 1) occurring in the end of the third
chapter of the Pañcasiddhāntikā, which contains the teachings of the Pauliśa-
siddhānta, were not clear to G. Thibaut and S. Dvivedi and so these verses
were left uninterpreted by them in their edition of the Pañcasiddhāntikā.

D. Pingree, whose edition of the Pañcasiddhāntikā appeared in 1970, has
translated the above verses as follows:

32. If the beginning (pratipatti) occurs when there is separation
of tithi and nakṣatra, then it is good. But it is not so in a
bhadrā tithi and Viṣṇu’s nakṣatra (Śravaṇa): for thus does
the world disappear.

33. There is not simultaneously everywhere a rising of the Sun
or its setting. In what place is its setting? From that basis
they know what has passed of the day.

* K. S. Shukla, Indian Journal of History of Science, Vol. 9, No. 1 (1974), pp. 62–
76. (Updated version of the paper originally published in Gaṇita, Vol. 24, No. 1 (June
1973), pp. 59–73. This paper was read at the seminar organised by the Indian National
Science Academy, New Delhi, on the occasion of the 500th Birth Anniversary of Nicolaus
Copernicus on February 19–20, 1973.)
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Table 1

Manuscript Text Emended Text

त थन ेदा- त थन ेद-
तप य द तथा ततः साधुः । तप य द तथा ततः साधुः ।

न तथा च भ व ाे- न तथा च भ व ाे-
था व नवतते लाेकः ॥३२॥ था प व नवतते लाेकः ॥३२॥

न युगप दयाे भानु- न युगप दयाे भानाे-
र मयाे वा प भव त सव । र मयाे वा प भव त सव ।

क दशेे मये क दशेेऽ मयः
पादा द े न भ मं ः ॥३३॥ पादा नेन भु ं व ः ॥३३॥1

माग पेतमेत माग पेतमेत
काले लघुता न तावद त रे । काले लघुता न तावद त रे ।

ष वषयभूता रसै- ख वषयभूता रसै-
र ःै प ा व नपात ॥३४॥ र ःै प ा व नपात ॥३४॥

राेमकमहगणं पा- राेमकहगणं पा-
दमक मं ं च गणयत त ा । दमक मं ं च गणयत ा ।

चै पाैणमा चै पाैणमा
नवमी न मा द ॥३५॥ नवमी न मा द ॥३५॥

कालापे ा वधय- कालापे ा वधयः
ाैताः ात तदपचारेण । ौताः ात तदपचारेण ।

ाय ी भव त ाय ी भव त
जाे यताेताे धग ेद ॥३६॥ जाे यताेऽताेऽ धग ेद ॥३६॥

कुकरण वदाे जाे ये कुकरण वदाे जाे ये
कथयं ु ट स ं … । कथय ु ट(म)स ं (च ग णत ) ।

कुकरणकारस ह- कुकरणकारस ह(ता )
ते णं नरके कृतवासाः ॥३७॥ ते णं नरके कृतवासाः ॥३७॥1

ु टग णत व दह ु टग णत व दह ल ा
ल ा धम थयश स दनकरादीन ॥३८॥ धम थयश स दनकरादीना ॥३८॥
1 Emended by D. Pingree
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34. This is arrived at from a method; there is no quickness in
so very long a time. Look at its (the world’s) destruction in
68550 years.

35. Taking the Romaka ahargaṇa as the basis, let one calculate
(the longitudes of) the Sun and the Moon on the full moon
(tithi) of Caitra; on the ninth (tithi) the nakṣatra is Āditya
(Punarvasu).

36. The śrauta and smārta regulations depend on time; because
a twice-born through offending them is a prāyaścittī (i.e., he
has to perform propitiatory rites), therefore he studies this
(i.e., time).

37. Whatever twice-born men, knowing a bad karaṇa, say that
(astronomical) calculations are inaccurate and false, they, to-
gether with the makers of bad karaṇas, instantly make their
homes in hell.

38. (But) one who knows accurate calculations of the Sun, and
so on, obtains dharma, wealth, and praise in this world.

O. Neugebauer and D. Pingree have supplemented the above translation by
the following commentary:

These verses are evidently based on some obscure speculation in
Romakasiddhānta about the duration of creation.
The separation of tithi and nakṣatra presumably means that at
the first tithi of the month the Moon is not in the first nakṣatra,
Aśvinī; this separation is supposed to be an auspicious muhūrta for
the pratipatti, i.e. the beginning of any action (or the beginning of
creation?). However, if on a bhadrā tithi (the 2nd, 7th, or 12th in
any pakṣa) the Moon is in Śravaṇa (Sagittarius 10◦ to 23◦ 20′), the
muhūrta is inauspicious. The inauspiciousness arises from the fact
that the creation ceases at such a yuga, i.e. when the conjunction
of the Sun and Moon (the first tithi) occurs in Uttarāṣāḍha, i.e. at
the winter solstice. This is reminiscent of Hellenistic speculations
regarding a “world-year”.
The 68550 years in verse 34 is derived from the Romakasiddhānta;
it is equal to 24 × 19 × 150 + 150, where 19 × 150 = 2850 years
is the Romaka’s yuga (cf. ch. 1, vs. 15). The significance of this
computation is obscure.
The meaning of verse 35 also defies comprehension. Dikshit has in-
deed demonstrated that, by the elements of Varāhamihira’s Sūrya-
siddhānta, the Caitra whose pratipad is used as epoch in this
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karaṇa is pūrṇimānta; but there is no reason to compute the longi-
tudes of the Sun and Moon for the pūrṇima of that month. More-
over, at Caitrapūrṇimā the Moon must be close to Libra 0◦ so
that the Moon on the ninth tithi is far from Punarvasu (Gemini
20◦ to Cancer 3◦20′). The reference to Punarvasu rather suggests
an ecpyrosis at the summer solstice as we had a cataclysm at the
winter solstice (vs. 32), but the text as it stands does not allow us
to arrive at this interpretation.

The above translation and commentary clearly shows that Neugebauer and
Pingree have not understood the real import of the text and are guided by
conjectures only. They are indeed off the track. The verses in question, in fact,
constitute a criticism of Viṣṇucandra and Romaka whose tithis and nakṣatras
were showing a wide divergence from the actual ones. The following modified
translation would make the contents quite clear:

32. If the end (cheda) or commencement (pratipatti) of tithi and nakṣatra is
as it should be, then it is good. But that of Śrī Viṣṇu(candra)1 is not
so; even then people (instead of discarding him) revert to him.

33. There is not simultaneously everywhere (on the same meridian) a rising
of the Sun or its setting. In what meridian (lit. place) is its setting?
From that basis they say what has passed of the day.2

34. From the tradition (of the śāstras) it is learnt that there is no decrease in
time even after a lapse of enormous time. (But) look at its (the world’s)
destruction in 68550 years (advocated by Romaka).

35. For those who calculate (the longitudes of) the Sun and Moon on the
full moon day of Caitra, taking the Romaka ahargaṇa as the basis, it
is the ninth (tithi) and the Punarvasu nakṣatra (and not the full moon
tithi and the Citrā nakṣatra as it should be).

36. The śrauta and smārta regulations depend on time; because a twice-
born through offending them is a prāyaścittī (i.e. he has to perform
propitiatory rites), therefore he studies this (time-ascertaining science
of astronomy).

37. Those twice-born who, having studied bad karaṇas, declare inaccurate
and false calculations, they, together with the authors of bad karaṇas,
instantly make their homes in hell.

1Bhadraviṣṇu = Bhadra (=Śrī) + Viṣṇu (=Viṣṇucandra).
2This is a criticism of the rule which seeks to tell the time of a place on one meridian from
the time of a place on another meridian by using the difference of longitudes of the two
places only. In fact, correction due to difference in latitudes of the two places has also to
be made.
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38. (But) one who knows accurate calculations of the Sun, etc., obtains
dharma, wealth, and praise in the world.

This translation is self-explanatory and on the basis of it one can easily
draw the following conclusions:

1. In the time of Pauliśa, Viṣṇucandra’s edition of the Vasiṣṭhasiddhānta
was not yielding correct tithis and nakṣatras. But Viṣṇucandra was a
popular astronomer and had a great following.

2. Calculations based on the Romakasiddhānta were showing an error of
six tithis and seven nakṣatras.

3. Pauliśa, like Āryabhaṭa I, believed that time had no beginning or end,
but Romaka held the contrary view.

Criticism of Viṣṇucandra and Romaka in the Pauliśasiddhānta further shows
that Pauliśasiddhānta was written subsequent to the siddhāntas of Viṣṇucan-
dra and Romaka. The statement of Varāhamihira, viz.

रोमक स ा ेऽयं ना त चरे पौ लशेऽ ेव ।

in ch. 1, vs. 10 is thus significant and should be understood to mean:

This is according to the Romakasiddhānta; so it is also according
to the Pauliśasiddhānta which is not much old.

This is the natural and straightforward meaning of the above hemistich.
Occurrence of criticism of Viṣṇucandra, Romaka, Vijayanandī and Prad-

yumna in the writing of a person like Varāhamihira shows that Brahmagupta’s
critical remarks against them are not totally baseless and unjustified. Sarcas-
tic remarks against the Romakas are also found in the writings of Bhāskara I
who was a contemporary of Brahmagupta. It is significant that Pauliśa has
not been criticised by Brahmagupta or others.

2 The declination table of Varāhamihira

We now turn to verses 16–18(i) of ch. IV of the Pañcasiddhāntikā. Thibaut and
Dvivedi were unable to interpret these verses and the credit of interpreting
them for the first time is again due to D. Pingree. Pingree supposed that
these verses contained the declination-differences for every 7◦30′ of the ecliptic
(beginning with the first point of Aries) corresponding to the obliquity of the
ecliptic equal to 23◦40′. So he emended the text as follows:
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Manuscript Text As emended by D. Pingree

जीवा ा शत शाः जीवा धशत शााः
सैकाः ष दनेशका तः । सा ल ा दनेशका ातः ।

चं स व ेप- चं स व ेप-
दप मरा शपादे ः ॥१६॥ दप माे रा शपादे ः ॥१६॥

ल ाशतमासीत- ल ाशतमशी तं
दश षयु मं यमनून । दश संयु ा म यमनूना ।

ग वसेमनुभवमु न- ग व मनुभवमु न पै-
पै गुणैः संयुतं च शतं ॥१७॥ ( )गुणैः संयुतं च शत ॥१७॥

नव त युता ष - नव त युता ष -
ािरंश छवा मथुना रे । ािरंश वा मथुना े ।

And his translation runs as follows:

16. The Sine of the maximum declination (kāṣṭhā) of the Sun
is 50 minus 2 (= 48) parts and 9 minutes. (As) there is a
latitude of the Moon, (so) is there a declination (of the Sun;
it is) for fourths of a sign:

17. 180 minutes, plus 10 (= 190), plus 3 (= 183), minus 5 (= 175),
and minus 14 (= 166); in Taurus 100 plus 14 times 3 (= 142),
plus 11 times three (= 133), plus 7 times 3 (= 121), and plus
1 times 3 (= 103);

18. 90, 60 plus 3 (= 63), 40 plus 3 (= 43), and 11 at the end of
Gemini.

The declination-differences given above are exhibited in Table 2 which also
gives the corresponding modern values when the obliquity of the ecliptic ϵ =
23◦40′. The value 48′9′′ of the Sine of the Sun’s maximum declination given
above corresponds to the obliquity of the ecliptic equal to 23◦40′.
Comparison of the textual values with the modern ones in Table 2 clearly

shows that there is a significant difference between the two. We cannot expect
such a wrong table from Varāhamihira. Evidently Pingree has missed the
target and has not been able to interpret the text correctly. Had he checked
the accuracy of his values by comparing them with the modern ones he must
have saved himself from committing the error. He has also missed to see
that according to Varāhamihira, Sin(23◦40′) = 48′9′′, and not 48 parts and 9
minutes as stated by him.
In fact, there is no need of changing the text to that extent. The following

minor emendation of the text would be sufficient to rectify it:
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Manuscript Text Emended Text

जीवा शत शाः जीवाऽ धशत शाः
सैकाः ष दनेशका तः । सैका ष दनेशका ाऽतः ।

चं स व ेप- चं स व ेप-
दप मरा शपादे ः ॥१६॥ दप माे रा शपादे ः ॥१६॥

ल ाशतमासीत- ल ा साशी तशतं
दश षयु मं यमनून । मेषे खयु मं यमनून ।

ग वसेमनुभवमु न- ग व मनुभवमु न पै-
पै गुणैः संयुतं च शतं ॥१७॥ (तु)गुणैः संयुतं च शत ॥१७॥

नव त युता ष - नव त युता ष -
ािरंश छवा मथुन तरे । ािरंश वा मथुना े ।

This emendation does not interfere with the numerical parameters given
in the text and is intended simply to rectify the grammatical error in the
first half of verse 17 (Pingree has overlooked it) and to supply the missing
word meṣe (meaning “in Aries”) in view of the presence of the words gavi
(meaning “in Taurus”) and mithunānte (meaning “at the end of Gemini”).
Thus we have interchanged the words māsīta (corrected as sāśīti) and śata
(corrected as śataṃ) and replaced the unnecessary word daśa by meṣe. We
have also inserted the missing letter tu in the last quarter of verse 17; Pingree
had inserted tri. The unnecessary letter se has been removed from the third
quarter of verse 17, as was also done by Pingree.
With the above emendation the text may be translated as follows:

16. The Sine (= 120′ × sine) of the Sun’s maximum declination is 61
75 of a

degree or 48′48′′ (saikā ṣaṣtiḥ = 60 + 1; adhyardhaśatāṃśāḥ = adhi +
ardhaśatāṃśāḥ = adhyardha+ardhaśatāṃśāḥ = one and a half times 50).
With the help of it one may calculate the Sun’s declination (for the de-
sired time). That (declination) plus the Moon’s latitude is the Moon’s
declination. The declinations arising from the successive quarters of the
zodiacal signs are the following:

17. In Aries, 180 plus 3 (= 183), plus 0 (= 180), minus 5 (= 175), and minus
14 (= 166) minutes; in Taurus, 100 plus 4 times 14 (= 156), plus 4 times
11 (= 144), plus 4 times 7 (= 128), and plus 4 times 1 (= 104) minutes;

18. (then) 90, 60 plus 3 (= 63), 40, and 11 (minutes) at the end of Gemini.

Since 61
75 of a degree is equal to 48′48′′ which is the Sine of 24◦ according to

Varāhamihira (vide ch. IV, vs. 24), it follows that the declination-differences
given in the above verses correspond to the obliquity of the ecliptic equal to
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Table 2: Declination-differences for every 7◦30′ of the Sun’s longitude (λ)
when ϵ = 23◦40′.

λ ∆δ ∆δ Difference
(modern) (textual)
(correct to half
a minute)

7◦30′ 3◦0′ 180′ + 10′ = 3◦10′ + 10′

15◦ 2◦57′30′′ 180′ + 3′ = 3◦ 3′ + 5′30′′

22◦30′ 2◦52′30′′ 180′ − 5′ = 2◦55′ + 2′30′′

30◦ 2◦44′30′′ 180′ − 14′ = 2◦46′ + 1′30′′

37◦30′ 2◦34′ 100′ + 42′ = 2◦22′ − 12′

45◦ 2◦20′30′′ 100′ + 33′ = 2◦13′ − 6′30′′

52◦30′ 2◦5′ 100′ + 21′ = 2◦ 1′ − 4′

60◦ 1◦46′30′′ 100′ + 3′ = 1◦43′ − 2′30′′

67◦30′ 1◦25′30′′ 90′ = 1◦30′ + 4′30′′

75◦ 1◦2′30′′ 63′ = 1◦ 3′ + 0′30′′

82◦30′ 0◦38′30′′ 43′ = 0◦43′ + 4′30′′

90◦ 0◦13′ 11′ = 0◦11′ −2′

Total 23◦40′ 23◦40′ 0

24◦. We give below in Table 3 the declination-differences stated in the above
verses along with the corresponding modern values, taking the obliquity of
the ecliptic (ϵ) to be equal to 24◦. The differences between the two are also
noted.
Table 3 shows that the values given in the text are generally in agreement

with the modern ones. This proves that our interpretation of the text is
correct. The value of the Sine of the Sun’s maximum declination according to
our interpretation is exactly the same as that given by Varāhamihira in the
same chapter (in vs. 24).

3 The fifth correction for Mercury and Venus in the old
Sūryasiddhānta

In the old Sūryasiddhānta school, the true longitudes of the superior plan-
ets (Mars, Jupiter and Saturn) were obtained by applying the following four
corrections:
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Table 3: Declination-differences for every 7◦30′ of the Sun’s longitude (λ)
when ϵ = 24◦.

λ ∆δ ∆δ Difference
(modern) (textual)
(correct to half
a minute)

7◦30′ 3◦2′30′′ 180′ + 3′ = 3◦3′ +0′30′′

15◦ 3◦ 180′ + 0′ = 3◦

22◦30′ 2◦54′30′′ 180′ − 5′ = 2◦55′ +0′30′′

30◦ 2◦47′ 180′ − 14′ = 2◦46′ −1′

37◦30′ 2◦36′ 100′ + 56′ = 2◦36′

45◦ 2◦23′ 100′ + 44′ = 2◦24′ +1′

52◦30′ 2◦6′30′′ 100′ + 28′ = 2◦8′ +1′30′′

60◦ 1◦48′ 100′ + 4′ = 1◦44′ −4′

67◦30′ 1◦27′ 90′ = 1◦30′ +3′

75◦ 1◦3′30′′ 60′ + 3′ = 1◦3′ −0′30′′

82◦30′ 0◦39′ 40′ = 0◦40′ +1′

90◦ 0◦13′ 11′ = 0◦11′ −2′

Total 24◦00′ 24◦00′ 0

For obtaining the true longitude of the planet’s apogee:

1. Half śīghraphala to the longitude of the planet’s apogee (reversely).

2. Half mandaphala to the corrected longitude of the planet’s apogee (re-
versely).

For obtaining the true longitude of the planet:

3. Entire mandaphala (calculated with the help of the true longitude of the
planet’s apogee) to the mean longitude of the planet.

4. Entire śīghraphala to the corrected mean longitude (called true-mean
longitude) of the planet.

In the case of the inferior planets (Mercury and Venus) a fifth correction
(called pañcama saṃskāra) was applied in addition to the above mentioned
four corrections. In the case of Mercury this correction was calculated and
applied in accordance with the following rule:
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Subtract the longitude of the Sun’s apogee from the longitude of Mercury’s
śīghrocca; multiply the Rsine of the resulting difference by the Sun’s epicycle
and divide by 360; the quotient gives the fifth correction for Mercury. Apply
it to the longitude of Mercury (as corrected for the above mentioned four
corrections) like the mandaphala of the Sun, i.e., subtract it when Mercury’s
śīghrocca minus Sun’s apogee is less than 180◦ and add it when otherwise.

This correction has been stated in verse 21, chap. XVI (Pingree’s edition)
of the Pañcasiddhāntikā, the correct text of which runs as follows:

सव ु टाः ुरेवं तु शी ा हाय र वम ।
र वपिर धनतं बा ं बुधेऽकव यधनं कुय ॥२१॥

In Thibaut and Dvivedi’s edition of the Pañcasiddhāntikā the reading is
budhaphalavat in place of budhe’rkavat, so their interpretation of the text has
become erroneous. This rule, however, has been mentioned by Lalla in his
Śiṣyadhīvṛddhida (I, ii. 37 (ii)) and is stated correctly there.

Pingree supposed that the above correction was applicable not only to Mer-
cury but to Venus as well, so he has emended the text as follows:

सव ु टाः ुरेवं े ेषु शी ा हाय र वम ।
र वपिर धनतं बा ं बुधे कवाै यधनं कुय ॥२१॥

In doing so Pingree was probably guided by the consideration that in the
school of Āryabhaṭa I in the matter of planetary correction Mercury and
Venus go together. But from the writings of astronomer Sumati, who belongs
to the school of the old Sūryasiddhānta, we now know definitely that the above
correction was meant for Mercury and Mercury alone. Sumati writes:3

अक ं बुधशी ाे े शो ा ं शरा भः ।
भ ं पा कोषै ु य ेपबुध ु ट ॥
बुध पंचमं कम सूयव ं ु टीकृत ॥
Having subtracted the longitude of the Sun’s apogee from the lon-
gitude of Mercury’s śīghrocca, multiply the Rsine thereof by 25
and divide by 641;4 application of this (quotient) as a negative or
positive correction (to the longitude of Mercury as corrected for
the four corrections) gives the true longitude of Mercury.
The fifth correction for Mercury should be applied like the correc-
tion for the Sun.

In the case of Venus, the fifth correction is always subtractive. Its value is
found to be stated in three different forms:

3Sumati-mahātantra (MS., British Museum).
4 Sun’s epicycle

360
= 14

360
= 25

641
.
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1. Half the Sun’s mandaphala.

2. 10× radius
514 minutes, where radius = 3438′.

3. 67 minutes.

It can be easily verified that all the three forms yield the same value, viz.
67 minutes of arc. Form (3) is found in the Pañcasiddhāntikā; form (1) is
mentioned in the Śiṣyadhīvṛddhida of Lalla. Sumati gives all the three forms.
Writes he:

ासाध दश भ न ं श बाणै वभाजये ।
भानोभू तच ाध ु ट े वशाेधये ॥

प मं कम स ष कलैः य ।
The radius multiplied by 10 and divided by 514, or half the dis-
tance between (the centres of) the Earth and the Sun’s eccentric
should be subtracted from the true longitude of Venus (i.e., from
the longitude of Venus as corrected for the four corrections).

The fifth correction for Venus is the subtraction of 67 minutes of
arc.

When Āryabhaṭa I wrote his Āryabhaṭa-siddhānta based on the old Sūrya-
siddhānta, he dropped the fifth correction. And later on when Brahmagupta
wrote his Khaṇḍakhādyaka based on the Āryabhaṭa-siddhānta, he followed
Āryabhaṭa I and did not use the fifth correction. From Lalla’s statement in his
Śiṣyadhīvṛddhida we learn that it was in regular use in his time. Mallikārjuna
Sūri (1178 ad), who has written a commentary on the Śiṣyadhīvṛddhida, does
not seem to be aware of the school to which the correction belonged. He has
ascribed it to the followers of Āryabhaṭa I.
When the old Sūryasiddhānta was revised and given the present form, the

fifth correction was considered superfluous and was discarded.

4 A traditional correction of the Pauliśa school for the
longitude of the Moon’s ascending node

In Chapter VI of the Pañcasiddhāntikā where Varāhamihira deals with the cal-
culation of a lunar eclipse according to the Pauliśasiddhānta, there occurs the
following verse having reference to a correction to be applied to the longitude
of the Moon’s ascending node:

राहाेः सष ृ तकलं ह शं त श क ववर शैः ।
हणं याेदशा ः प दशा म ॥२॥
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The same verse with some alteration reappears in Chapter VII, which deals
with the calculation of a solar eclipse according to the same Pauliśasiddhānta:

राहाेः सष ृ तकलं ह शं त श क ववर शैः ।
हणं याेेदशा ः श शनाे भानाे था ा ः ॥५॥

These verses have been translated by Thibaut and Pingree as follows.
Thibaut’s translation:

2. Deduct from the longitude of Rāhu twenty-six minutes, and
thereupon take the degrees intervening between Rāhu and
the Moon. If these degrees are within thirteen, there is an
eclipse; if within fifteen, there is the shadow of an eclipse.

5. Deduct twenty-six minutes from the longitude of Rāhu, and
take the degrees intervening between Rāhu and the Moon. If
they are within thirteen, there takes place an eclipse of the
Moon; and an eclipse of the Sun, if they are within eight.

Pingree’s translation:

2. Put down the degrees of the ascending node increased by 36
(or 26?) minutes. (Operate) with the degrees of the difference
between this and (the longitude of) the Moon; if they are
within 13◦, there is an eclipse, and if within 15◦, a darkening
of it (the Moon).

5. Put down the degrees of the ascending node increased by 36
(or 26?) minutes. (Operate) with the degrees of the difference
between this and (the longitude of) the Moon; if they are
within 13◦, there is an eclipse of the Moon, and if within 8◦,
an eclipse of the Sun.

A close scrutiny reveals that the translation of the first line of each of the
above two verses as given by both Thibaut and Pingree is not correct, because

राहाेः सष ृ तकलं अशंं ह ा
actually means “having subtracted one degree together with thirty six min-
utes”. The above two verses should therefore be translated as follows:

2. One degree and thirty-six minutes having been subtracted from (the
longitude of) the Moon’s ascending node, if the degrees arising from the
difference of that (corrected longitude of Moon’s ascending node) and
(the longitude of) the Moon are within thirteen, there is an eclipse (of
the Moon), and if within fifteen, there is a darkening of that (Moon).
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5. One degree and thirty-six minutes having been subtracted from (the
longitude of) the Moon’s ascending node, if the degrees arising from the
difference of that (corrected longitude of the Moon’s ascending node)
and (the longitude of) the Moon are within thirteen, there is an eclipse
of the Moon, and if within eight, there is an eclipse of the Sun.

The correctness of this translation is confirmed by the fact that the correc-
tion of 1◦36′ to the longitude of the Moon’s ascending node was in regular use
amongst the followers of the Khaṇḍakhādyaka of Brahmagupta (b. 598 ad).
Although this correction was not mentioned in the Khaṇḍakhādyaka, the fol-
lowers of the Khaṇḍakhādyaka made use of it as a traditional correction. The
following verse occurring in a manuscript5 of the Khaṇḍakhādyaka in the col-
lection of the Akhila Bharatiya Sanskrit Parishad, Lucknow, throws light on
this tradition:

पात स दाया वशोधयेदकेमंशकं ल ाः ।
ष ंश ु टपात भव त सव साधने यो ः ॥6

From (the longitude of) the Moon’s ascending node one should,
following the tradition, subtract one degree and thirty six minutes.
Then is obtained the true (longitude of the) Moon’s ascending
node, which is fit for use in all calculations.

This verse is also mentioned in Bina Chatterjee’s edition of the Khaṇḍa-
khādyaka (Vol. II, p. 8, footnote, lines 10–11), where it runs as:

पात स दाया शाेधयेदकेमंशकं ल ाः ।
ष ंश तः ु टपातः स भव त सव साधने याे ः ॥

The reading ष ंश तः given here is undoubtedly wrong, firstly because in the
same edition elsewhere7 the correction in question has been expressly stated as
“ninety six minutes” (ष व तः कलाः) and secondly because the reading ष ंश तः
does not fit in in the metre of the verse. With this reading the third quarter of
the verse contains 13 syllabic instants (mātrās), whereas in fact there should
be 12 syllabic instants only.
It is noteworthy that the commentators of the Khaṇḍakhādyaka have pre-

scribed the use of the above correction if the longitude of the Moon’s ascending
node was calculated according to the rule given in the Pūrva Khaṇḍakhādyaka
and have forbidden its use if the longitude of the Moon’s ascending node was
calculated according to the rule given in the Uttara Khaṇḍakhādyaka. Thus
writes the commentator Pṛthūdaka (864 ad):

5Accession No. 1662; script: Śāradā.
6This verse occurs in the manuscript after verse 14 of chapter I of PKK (= Pūrva
Khaṇḍakhādyaka).

7See comm. on PKK, p. 104, line 23 and p. 120, line 4. Also see comm. on UKK (= Uttara
Khaṇḍakhādyaka), ch. 1, vs. 3, p. 177, line 14.
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त ा ष व तः कलाः संशाे ाः स दायाव ेदाः। पार यणैवं कृते कमयाे -
पाताे भव त।8

उ रकृता पाता ष व तः कला न शाे ा इ त।9

From that (i.e. the longitude of the Moon’s ascending node cal-
culated according to Pūrva Khaṇḍakhādyaka) one should subtract
the traditional correction of 96 minutes. This correction having
been applied in accordance with the tradition, the longitude of the
Moon’s ascending node becomes fit for use in calculations.
From the longitude of the Moon’s ascending node calculated from
(the rule given in) the Uttara Khaṇḍakhādyaka, 96 minutes should
not be subtracted.

So also writes the commentator Bhaṭṭotpala (968 ad):

अशंः सष ृ तकलः शो ः पात पूव ।10

अनेन कारेण कृत च पात ष व तः कला न शो ाः।11

One degree together with thirty-six minutes should be subtracted
from (the longitude of) the Moon’s ascending node calculated ac-
cording to Pūrva (Khaṇḍakhādyaka).
Ninety-six minutes should not be subtracted from the longitude of
the Moon’s ascending node if it is calculated by this method (of
the Uttara Khaṇḍakhādyaka).

Note that the language used by Bhaṭṭotpala in his first statement is exactly
similar to that used by Varāhamihira.
One may ask the question: How is it that the correction prescribed for

application to the longitude of the Moon’s ascending node by the Pauliśa-
siddhānta of Varāhamihira was regarded as traditional by the followers of
the Pūrva Khaṇḍakhādyaka? The reason seems to be that at a certain stage
the followers of the Pauliśasiddhānta fell in line with the followers of the
Āryabhaṭa-siddhānta. They revised the old Pauliśasiddhānta in the light of the
teachings of the Āryabhaṭa-siddhānta and adopted the Pūrva Khaṇḍakhādyaka
(which was based on the Āryabhaṭa-siddhānta) as a work of their own school.
Quotations from the Pauliśasiddhānta which are found to occur in the writings
of Pṛthūdaka (864 ad), Bhaṭṭotpala (968 ad), Āmarāja (c. 1200 ad) and the
Persian scholar Al-Bīrūnī (b. 973 ad) leave no room to doubt that the revised

8See Khaṇḍakhādyaka (P. C. Sengupta’s edition), ch. 1, vs. 14 (comm.), p. 13, lines 16–18.
Also see p. 13, lines 26–27, and ch. IV, vs. I (i) (comm.), p. 91, lines 13–14.

9Ibid, Khaṇḍakhādyakottaram, vs. 2 (comm.), p. 150, lines 25–26.
10See Khaṇḍakhādyaka (Bina Chatterjee’s edition), Vol. I, p. 163, line 6. Also see Vol. II,
p. 104, lines 23–24 and p. 120, line 4.

11Ibid, Vol. II, tithinakṣatrottarādhyāyaḥ, vs. 3 (comm.), p. 177, lines 13–14.
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Pauliśasiddhānta was in conformity with the teachings of Āryabhaṭa I under
the midnight day-reckoning. It is noteworthy that the commentators of the
Khaṇḍakhādyaka have shown special preference to Pauliśasiddhānta in their
citations from the ancient siddhāntas.
The followers of the Uttara Khaṇḍakhādyaka did not apply the above cor-

rection because the Uttara Khaṇḍakhādyaka conformed to the teachings of
the Brāhmasphuṭasiddhānta of Brahmagupta and such a correction was not
prescribed there.

Note

The correction of −96′ for the Moon’s ascending node shows its appearance in
the school of Āryabhaṭa I under the sunrise day-reckoning also. For example,
the bīja correction prescribed for the Moon’s ascending node in the verses

शाके नखा र हते श शनोऽ द ैः
त ु तः कृत शवै मसः षड ै ः ।
शैला भः सुरगुणोगु णते सतो ा-

ो ं प कुहतेऽ शरा भ े ॥
ेरमा ु धहते तन न

सूय ज गु णतेऽ रलोचनै ।
ोमा वेद नहते वदधीत ल ं

शीत सूनुचलतु कलासु वृ ॥
ascribed to astronomer Lalla is based in the assumption that in the year 420
Śaka (= 498 ad) the bīja correction for the Moon’s ascending node was zero
and that in the year 670 Śaka (= 748 ad) it decreased to −96′. Similarly, the
bīja correction prescribed for the Moon’s ascending node in the verses

च े बाणकरा बीजा ो े मनुभूमयः ।
कुजे शरा ेयाः खा वेदा बुध तु ॥
गुरोः खप व ेयाः े खा नशाकराः ।
शनेः श शकराः ो ा राहोः ष व तः ृताः ।
भवभानू नते शाके बीज े शबरो तृे ।
फलं ल ा व ल ा ाराक ण धनं भवे ।
रा च ो जीवानामृणं काय भृगोर प ॥

mentioned in Haridatta’s Grahacāranibandhanasaṃgraha (vv. 19–22(i)) and
quoted by Sūryadeva in his commentary on the Laghumānasa (dhruvaka-
nibandha, 1–2) and by Nīlakaṇṭha in his commentary on the Āryabhaṭīya
(iv. 48) is based on the assumption that in the year 444 Śaka (= 522 ad) the
bīja correction for the Moon’s ascending node was zero and that in the year
679 Śaka (= 757 ad) it decreased to −96′. Assumption of −96′ as the bīja
correction for the Moon’s ascending node in the years 748 and 757 ad seems to
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have been due to the influence of the followers of the Pūrva Khaṇḍakhādyaka.
It must however be noted that whereas the followers of the Pūrva Khaṇḍa-
khādyaka used it as a fixed bīja, the followers of the Āryabhaṭīya used it as a
variable bīja taking its value to be −96

250 or −96
235 minutes of arc per annum.



The Pañcasiddhāntikā of Varāhamihira (2) ∗

This is the second paper of this series.1 In this paper I propose to deal
with three topics, viz. (1) the epoch of Varāhamihira’s Romakasiddhānta, (2)
Vasiṣṭha’s theory for the Moon’s motion, and (3) the 30 days of the Parsi
calendar.

1 The epoch of Varāhamihira’s Romakasiddhānta

Verses 8–10 of Chapter 1 of the Pañcasiddhāntikā in G. Thibaut and S.
Dvivedi’s edition, run as follows:

स ा वेदसं ं शककालमपा चै ादाै |
अध मते भानाै यवनपुरे सोम दवसाधे ॥८॥
…………………………………………………
रोमक स ा ेऽयं …………………………… ॥१०॥
(To calculate the ahargaṇa first) subtract 427 Śaka years, which
elapsed at sunset at Yavanapura, the beginning of the light half
of Caitra synchronising with the commencement of Monday, (from
the given Śaka year) …. This is according to the Romakasiddhānta.

This shows that the epoch of calculation adopted in Varāhamihira’s Romaka-
siddhānta is sunset at Yavanapura (Alexandria), beginning of Monday and the
first tithi of the light half of Caitra, Śaka 427 (505 ad).
David Pingree, following S. B. Dikshit, has replaced सोम दवसा े in the above

verse by भाैम दवसा े and thus he takes the above epoch at the beginning of
Tuesday instead of at the beginning of Monday.

There are reasons to believe that the above epoch occurred at the begin-
ning of Monday, as stated by G. Thibaut and S. Dvivedi, and not at the
beginning of Tuesday, as stated by Dikshit and Pingree. A very simple and
straightforward proof may be given in support of this assertion. This is as
follows:
In verse 17 of the same chapter, Varāhamihira takes 2227 as the ahargaṇa

for the above mentioned epoch reckoned since the commencement of a seven-
civil year cycle starting with a Sunday. Since

2227 ≡ 1 (mod 7)
* K. S. Shukla, Gaṇita, Vol. 28, 1977, pp. 99–116.

1The first paper of this series appeared in Gaṇita, Vol. 24, No. 1 (1973), pp. 59–73.
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it is clear, without any shadow of doubt, that the above epoch of Varāhami-
hira’s Romakasiddhānta is the beginning of Monday and not the beginning of
Tuesday.

Verse 17, referred to above, and verse 18 following it, contain a rule for
finding the lord of the current civil year. These are:

मु नयमयम यु े गुणे प यमभ े ।
तरा खतुदहनैल ं वष ण याता न ॥१७॥

ता न प स हता गुणा व जता न हरे ।
स भरेवं शेषो वष धप तः ऋमा सूय ॥१८॥
Add 2227 to the ahargaṇa (reckoned from the epoch of the Pañca-
siddhāntikā) and divide (the resulting sum) by 2520 (= 7 × 360,
the number of days in a 7-civil year cycle): (the quotient gives the
number of the 7-civil year cycles elapsed since the epoch occurring
2227 days before the above mentioned epoch of Varāhamihira’s
Romakasiddhānta).
In another place divide the remainder of the division by 360: the
quotient (of this division) gives the number of civil years elapsed
since the beginning of the current 7–civil year cycle.
To these civil years add 1, for the current civil year, then multiply
by 3, then subtract 2, and then divide by 7: the remainder counted
with the Sun, in the order of the lords of the week days, gives the
lord of the current civil year.

It means that a 7–civil year cycle commenced 2227 days prior to the epoch
of Varāhamihira’s Romakasiddhānta, when it was the beginning of a Sunday.
That a 7–civil year cycle actually commenced 2227 days before the epoch

of Varāhamihira’s Romakasiddhānta and the next one 293 days after that
epoch is confirmed from the fact that astronomer Sūryadeva Yajvā (b. 1191
ad), in his commentary on the Āryabhaṭīya, iii. 5, takes the beginning of a
7-civil year cycle on Sunday Kali-Ahargaṇa 1317416, which occurred 293 days
after the epoch of Varāhamihira’s Romakasiddhānta. For, the Kali-Ahargaṇa
for the epoch of Varāhamihira’s Romakasiddhānta is 1317123, and 1317416−
1317123 = 293.

We may point out here that the next verse (i.e., vs. 19) of the same chapter,
as stated by Thibaut and Dvivedi and Pingree, is incorrect. The correct
reading is that stated by Bhaṭṭotpala (in his commentary on Bṛhatsaṃhitā,
ch. 2, Sudhākara Dvivedi’s ed., p. 32), viz.

ंश े मासाः प स हता स ुणा ेकाः ।
स ाे तृावशेषे मासा धप त थैवाक ॥१९॥
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(The same remainder) divided by 30 (instead of 360) gives the
number of months elapsed since the beginning of the current 7-
civil year cycle. These increased by 1, for the current month, then
multiplied by 2, then diminished by 1, and then divided by 7, and
the remainder counted from Sunday, as before, gives the lord of
the current month.

The reading काय ः, given by Thibaut etc., in place of ेकाः is not correct as it
does not lead to a correct rule. For the correct rule, one might also refer to
Brāhmasphuṭasiddhānta, xiii. 43 and Siddhāntaśekhara, ii. 88.

2 Vasiṣṭha’s theory for the Moon’s motion

The Vasiṣṭha-samāsa-siddhānta, summarised by Varāhamihira in Chapter 2
of the Pañcasiddhāntikā, ascribes to Moon a regular zigzag motion which
increases step by step during the first half of its anomalistic revolution and
decreases in the same way during the second half of its anomalistic revolution,
the increase and decrease being in an arithmetic progression. This motion has
not been correctly interpreted so far and is being explained here for the first
time. (ed. See Figure 1. Figure caption added.)
Let ABPC be the Moon’s orbit, A its apogee and P its perigee. Starting

from A and proceeding anti-clockwise, let the orbit be divided into 248 equal
divisions, called padas or steps (the Moon’s steps). Thus, there are 124 padas
or steps in the first half of its anomalistic revolution (gati or motion). One
pada or step is supposed to be comprised of 1

9 of a day, and the whole of the
anomalistic motion or gati, of 248

9 days (= 27 days 13 hours 20 mins.). A
period of 3031 days is supposed to form a solid block (ghana), in which the
Moon is supposed to make 110 anomalistic revolutions, approximately. In a
period of 16 ghanas, it is supposed that the Moon makes complete sidereal
revolutions.
The Moon is supposed to be slowest in the 1st pada, its motion in this pada

being 4874
63 or 77+ 23

63 minutes. Thereafter, the motion increases at the rate of
10
63 mins. per pada. The motion in the 124th pada is thus 4874

63 + 1230
63 or 6104

63

mins.
As the Moon passes from the 124th pada to the 125th pada, its motion is

supposed to increase by 10
7 mins., this being the average rate of increase per

pada (the total increase in motion during 9 padas comprising a day in the first
half-gati being 90

7 mins.).
Thus in the 125th pada, or the 1st pada of the second half revolution (or

second half-gati), the Moon’s motion amounts to

6104

63
+

10

7
or 6194

63
mins.
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Figure 1: Vasiṣṭha’s theory for the moon’s motion.

This is supposed to be the maximum velocity of the Moon. Thereafter, the
motion decreases at the rate of 10

63 min. per pada, the motion in the 248th
pada being 6194

63 − 1230
63 or 4964

63 mins.
As the Moon passes from the 248th pada to the 1st pada, its motion is

supposed to get diminished by 10
7 mins., this being the average rate of decrease

per pada (the total decrease in motion during 9 padas comprising a day in the
second half-gati being 90

7 mins.).
The above pattern of the Moon’s motion is exhibited in tabular form in

Table 1.
According to the above theory, the Moon’s motion for P padas (steps) in

the first half of the anomalistic revolution (or the first half-gati)

=
P

2

[
2× 4874

63
+

10

63
× (P − 1)

]
mins.

= P degrees+ P

63
× [1094 + 5(P − 1)]mins., (1)

as stated in PSi (= Pañcasiddhāntikā), ii. 5-6.
Similarly, the Moon’s motion for P padas (steps) in the second half of the

anomalistic revolution (or the second half-gati)

=
P

2

[
2× 6194

63
− 10

63
× (P − 1)

]
mins.
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Table 1: Moon’s motion pada-wise.

1st half-gati 2nd half-gati

Pada or Step Motion in minutes Pada or Step Motion in minutes

1st 4874
63 or 77 + 23

63 1st 6194
63 or 98 + 20

63

2nd 4874
63 + 10

63 2nd 6194
63 − 10

63

3rd 4874
63 + 20

63 3rd 6194
63 − 20

63

… … … …
… … … …

122nd 4874
63 + 1210

63 122nd 6194
63 − 1210

63

123rd 4874
63 + 1220

63 123rd 6194
63 − 1220

63

124th 4874
63 + 1230

63 or 6104
63 124th 6194

63 − 1220
63 or 4964

63

125th 6104
63 + 10

7 or 6194
63 125th 4964

63 − 10
7 or 4874

63

= P degrees+ P

63
× [2414− 5(P − 1)] mins., (2)

as stated in PSi, ii. 5–6.
Substituting P = 124 in (1), the total motion of the Moon during the first

half-gati comes out to be

= 124◦ +
124

63
× (1094 + 5× 123) mins.

= 180◦ + 3
47

63
mins., or 180◦4′ approx., (3)

as stated in PSi, ii. 5.
Similarly, substituting P = 124 in (2), the total motion of the Moon during

the second half-gati

= 124◦ +
124

63
× (2414− 5× 123) mins.

= 183◦
(
56

63

)′

. (4)

Adding (3) and (4), the Moon’s motion for a gati

= 363◦ + 4
40

63
mins.

= 1 rev.
(
185− 23

63

)′
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= 1 rev.
(
185− 1

3

)′

approx.

According to Vasiṣṭha (see PSi, ii. 3–4):

Moon’s motion for a gati = 1 rev.
(
185− 1

6

)′

approx.

Moon’s motion for a ghana = 110 revs. 11 signs 7◦32′

= −3

4
signs+ 2′, neglecting complete revs.

Pauliśa-siddhānta

Let us now revert to Table 1. The motion of the Moon for the first 9 padas
of the first half-gati

=
9

2

[
2× 4874

63
+

10

63
× 8

]
mins.

= 702′.

The motion for the next 9 padas is 702 + 90
7 mins.; for the next 9 padas,

702 + 180
7 mins.; and so on. The motion for the first 9 padas of the second

half-gati.

=
9

2

[
2× 6194

63
− 10

63
× 8

]
mins.

= 879
1

7
or 879 mins. approx.

Hence, we have the following table (ed. see Table 2) for the Moon’s motion
for the successive days of the first and second half-gatis, according to Pauliśa
(see PSi, iii. 4).

Since the minimum daily motion of the Moon is taken as 702 mins. and the
maximum daily motion as 879 1

7 mins., it follows that the mean daily motion
of the Moon, according to Vasiṣṭha, is

1

2

(
702 + 879

1

7

)
mins. or 790′ 34′′.

Lunar Tables

Lunar tables giving Moon’s motion for each day of the ghana period of 3031
days were in vogue in Kaśmīr until about the 14th century ad. One such
lunar table, known as Candra-sāraṇī, based on the parameters of the Uttara-
Khaṇḍakhādyaka, occurs in a manuscript, in Śāradā script (Accession No.
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Table 2: Moon’s motion day-wise.

1st half-gati 2nd half-gati

Day Motion in minutes Day Motion in minutes

1st 702 1st 879
2nd 702 + 90

7 2nd 879− 90
7

3rd 702 + 180
7 3rd 879− 180

7

4th 702 + 270
7 4th 879− 270

7

… … … …
… … … …

1657), in the collection of the Akhila Bharatiya Sanskrit Parishad, Lucknow.
This table is in 379 columns and 8 rows.

Lunar tables, called Candra-vākyas, giving the Moon’s motion for 1–248
anomalistic days are in use in certain parts of South India even today. One
such table, ascribed to Vararuci, occurs as Appendix II in T. S. Kuppanna
Sastri and K. V. Sarma’s edition of the Vākya-karaṇa.

3 The 30 days of the Parsi calendar

The Parsi Calendar is that of the old Persians when they were
Zoroastrians. The year of this calendar consists of 12 months
(Mah) each of 30 days (Roz), and 5 additional days at the end
called Gathas. Each of the months and days bears a name, that
of God or one of his angels, and the five additional days bear the
names of the five Gathas, the oldest and most sacred hymns of
the Avesta. The names commonly used by the Parsis of India
for the months, days, and Gathas are given in Tables 3, 4, and 5
respectively.

Table 3: Names of the twelve months.

1. Farwardin 4. Tir 7. Meher 10. De
2. Ardibahesht 5. Amordad 8. Avan 11. Bahman
3. Khurdad 6. Shahrivar 9. Adar 12. Spandarmad

In PSi, i, 23–25, Varāhamihira writes:
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Table 4: Names of the 30 days.

1. Ahurmazd 11. Khurshed 21. Ram
2. Bahman 12. Mah 22. Govad
3. Aradibahesht 13. Tir 23. Depdin
4. Shahrivar 14. Gosh 24. Din
5. Spandarmad 15. Dep-Meher 25. Ashisvang
6. Khurdad 16. Meher 26. Ashtad
7. Amordad 17. Sarosh 27. Asman
8. Depadar 18. Rashna 28. Zamyad
9. Adar 19. Farwardin 29. Marespand
10. Avan 20. Behram 30. Aneran

Table 5: Names of the 5 Gathas

1. Ahunavad 3. Spentomad 5. Vahishtoyasht
2. Ustavad 4. Vohukhshathra1

1 See M. P. Khareghat’s introduction (p. 27) to “100 Years’ Indian
Calendar containing Christian, Samvat, Śaka, Bengali, Mulki, Mugee,
Burmese, Yazdejardi, Fasli, Nauroz and Hizri Eras with their corre-
sponding dates from 1845 to 1944 ad by Jagjivan Ganeshji Jethabhai,
Limbdi-Kathiawar (3rd Edition 1932)”.

गुणे पा धके प तुगुणाे तृे मगा ाः ुः ।
ंश े शेषं ेयं रा ंशके ाणा ॥२३॥

कमलाे वः जेशः गः श ं मुा वास स ।
कालानला रवयः शशी गो नयतयः मशः ॥२४॥
हरभवगुह पतृव णा बलदवेसमीरणाै यम ैव ।
वा ीधनदाै नरयो धा ी वेदाः परः पु षः ॥२५॥2

Add 1 to the ahargaṇa and then divide by 365: the quotient de-
2Verses 24 and 25 have been incorrectly deciphered by the other scholars. Thibaut and
Dvivedi read them as:

कमलो वः जेशः ग श मा वास स ।
कमलानला रवयः शशी गो नऋतयः मशः ॥२४॥
हरभवगुह पतृव णा बलदवेसमीरणौ यम ैव ।
वा ीधनदौ गरयो धा ी वेधाः परः पु षः ॥२५॥

David Pingree’s reading is:

कमलो वः जेशः ग(श)शा ृ म ुवसवः ।
कमलानला रवयः शशी गो नऋतयः मशः ॥२४॥
हरभवगु पतृव णा बलदवेसमीरणौ यम ैव ।
वा ीधनदौ गरयो धा ी वेधाः परः पु षः ॥२५॥
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notes the number of elapsed years of the Zoroastrians (Magas).
Divide the remainder by 30: the remainder is to be known as
(the days) belonging to the lords of the 30 degrees of the signs,
which are: Kamalodbhava, Prajeśa, Svarga, Śastra, Druma, Anna,
Vāsa, Kāla, Anala, Abhra, Ravi, Śaśi, Indra, Go, Niyati, Hara,
Bhava, Guha, Pitṛ, Varuṇa, Baladeva, Samīraṇa, Yama, Vāk, Śrī,
Dhanada, Niraya, Dhātrī, Veda and Para Puruṣa.

One can easily see that in the above passage, Varāhamihira is referring
to the years and the days of the the Parsi Calendar. which is used by the
Parsi community in India even today. The names Kamalodbhava, etc., are
the Sanskrit renderings of the names of the Parsi days, Ahurmazd, etc., as
Table 6 will show. In order to facilitate comparison, English translation of
the names is given where necessary. The correctness of the names given by
Varāhamihira can be easily verified from comparison with the corresponding
names given by astronomer Vaṭeśvara (904 ad), which are mentioned in the
third column of the table.3

Table 6: Names of the 30 days of the Parsi months.

Parsi name Name given by
Varāhamihira

Name given by
Vaṭeśvara

1. Ahurmazd (Lord God) Kamalodbhava
(Lotus-born)

Brahmā

2. Bahman (Protector of
creatures, Brahman)

Prajeśa (Protector
of creatures)

Prajāpati
(Protector of
creatures)

3. Ardibahesht (Holder
of the keys of heaven)4

Svarga (Heaven) Dyauḥ (Heaven)

4. Shahrivar (Lord of
pure metal)

Śastra (Weapon) Śastra (Weapon)

5. Spandarmad
(Charitable)

Druma (Tree) Taru (Tree)

6. Khurdad (Lord of
festivals)

Anna (Food) Anna (Food)

7. Amordad Vāsa (Residence) Vāsa (Residence)
3Vaṭeśvara’s text runs thus (Vaṭeśvarasiddhānta, ch. 1, sec. 5, vss. 117(c-d)–118):

ा जप त ः श ं तव वास स ॥११७॥
काला खर वशशी गो नय तस वतृगुहाज पतृव णाः ।
ह लवायुयमा वा ीधनद नरयभू मवेदपरपु षाः ॥११८॥

4See M. P. Kharegat, “On the interpretation of certain passages in the Pañcasiddhāntikā
of Varāhamihira, an old Hindu Astronomical Work”, JBBRAS, Vol. XIX, 1895–97.



542 The Pañcasiddhāntikā of Varāhamihira (2)

Table 6: Names of the 30 days of the Parsi months (continued).

Parsi name Name given by
Varāhamihira

Name given by
Vaṭeśvara

8. Depadar (Associate of
Ahurmazd)

Kāla (Yama) Kāla (Yama)

9. Adar (Fire) Anala (Fire) Agni (Fire)
10. Avan (Waters) Abhra (Filled with

water, cloud)
Kha (Same as
Abhra)

11. Khurshed (Sun) Ravi (Sun) Ravi (Sun)
12. Mah (Moon) Śaśī (Moon) Śaśī (Moon)
13. Tir (Distributor of

water)
Indra (God of rain) Indra (God of rain)

14. Gosh (Cow) Go (Cow) Go (Cow)
15. Depmeher

(Ahurmazd’s
associate)

Niyati (Destiny) Niyati (Destiny)

16. Meher (Sun) Hara (=Meher) Savitṛ (Sun)
17. Sarosh (Protector of

the living and dead)
Bhava (Śiva) Guha

18. Rashna Guha Aja (Unborn God)
19. Farwardin (Farohars

of the dead)
Pitr (Manes) Pitṛ (Manes)

20. Behram (or Varenes) Varuṇa Varuṇa
21. Ram Baladeva

(=Balarāma)
Hali (=Balarāma)

22. Govad (Wind) Samīraṇa (Wind) Vāyu (Wind)
23. Depdin (Ahurmuzd’s

associate)
Yama Yama

24. Din Vāk (Speech) Vāk (Speech)
25. Ashisvang (Righteous) Śrī (Righteousness) Śrī (Righteousness)
26. Ashtad (Angel created

by Mazda)
Dhanada (Bestower
of wealth, Kubera)

Dhanada (Bestower
of wealth, Kubera)

27. Asman (Sky) Niraya (Hell) Niraya (Hell)
28. Zamyad (Earth) Dhātrī (Earth) Bhūmi (Earth)
29. Marespand

(Zarathushtrian and
law religion)

Veda Veda

30. Aneran (Endless lights
of shining heaven)

Paraḥ Puruṣaḥ
(Supreme Being)

Parapuruṣa
(Supreme Being)
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I am grateful to Shri H. H. Vach, Joint Secretary, Parsi Punchayat, Bombay,
for supplying me the following information regarding the meanings of the 30
Parsi days and the attributes of the corresponding 30 deities:

1. Ahurmazd—All-knowing Existing Lord. He is Lord God, whose 72 Aves-
tan names are given in Hormazd Yasht, and 101 names are in Pazend. In
Yasna Ha 1, Ahurmazda is called shining, glorious, greatest, best, wis-
est, most well-shaped, most attainable through holiness, who created
and nourished us, who is the most bountiful spirit.

2. Bahman—Good mind. Attributes: Victorious friend, best amongst all
creations, lord of inborn and acquired wisdom, created by Mazda (God),
Protector of Cattle.

3. Ardibahesht—Best Righteousness. Attributes: most handsome; presid-
ing on fire.

4. Shahrivar—Lord of pure metal; kind, nourisher of the poor; ‘free-willed’

5. Spandarmad—Bountiful obedience; deity of earth; good, broad visioned,
charitable, holy, Mazda-created.

6. Khurdad—Deity of waters—fullness; lord of seasons and of holy festi-
vals.

7. Amordad—(Mordad is a misnomer)—deity of trees—immortality; lord
of increase of herd of cattle, of corn, and of white Haoma.

8. Depadar—Associate of God Mazda, so called as the day precedes Adar’
day. Attribute—‘creator’.

9. Adar—Fire; son of Ahur Mazda, purifier, possessing lustre, and glory of
Hormazd, health-giver, beneficent, fighter against demons.

10. Avan—Waters; good, undefiled, holy.

11. Khurshed—Shining Sun—immortal, brilliant, having swift horses (i.e.,
rays).

12. Mah—Moon, having seed of earth, only created, and of many varieties.

13. Tir—Star Sirius—shining, having glory, who works with star Satves,
brave and distributor of waters.

14. Gosh—Also knows as Dravasp; a female deity—‘giving health to horses’,
i.e., to all animals; brave, Mazda-created, holy.
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15. Depmeher—Associate of God Mazda; so called because the day precedes
Meher’ day.

16. Meher—Light, ether; ‘having broad postures’—1000 ears and 1000 eyes,
well-known Yazata or angel; Avesta word Mithra = love, contract, etc.

17. Sarosh—Humility. The angel protects the living as well as the souls
of the dead. ‘Holy, strong, protector of body, with strong weapons,
handsome, victorious’.

18. Rashna—Most righteous rectitude, making the world prosperous.

19. Farwardin—Farohar or Guardian Spirit—angel presiding over strong,
valiant Farohars of the dead.

20. Behram—Smiter of evil enemy—well-shaped angel giving greatest vic-
tory.

21. Ram—Spiritual joy. The angel presiding over pure, health-giving air.

22. Govad—Good wind blowing above, below, forward, backward, with
brave defence.

23. Depdin—Associate angel of God Mazda, so called because the day pre-
cedes the day ‘Din’.

24. Din—Religion. Angel presiding over ‘most righteous holy knowledge
and of the good Mazda-worshipping religion’.

25. Ashisvang—Good, righteous. The angel presiding over good rectitude,
wisdom, truthfulness and justice. Wealth of good life.

26. Ashtad—Universal law. Presiding angel, created by Mazda, furthering
the world, brilliant through order and intelligence-holding.

27. Asman—The sky, containing the abode of paradise (Best Existence),
full of happiness for the Holy.

28. Zamyad—Good Creation. The angel presides over lands, countries,
mountains.

29. Marespand—Beneficent, holy spells that are effective, happiness-giving,
anti-demoniac, expounding Zarathushtrian law and religion.

30. Aneran—Endless natural lights of shining Heaven, beyond the Bridge
of Selection.
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Each of the 30 days are supposed to be presided over by the deity of the
same name. Deities of days 1 to 7 are known as ‘Amshaspands’ or arch-angels,
Ahurmazd being considered one of them. Each Amshaspand has correspond-
ing three or four associates or angels out of the thirty deities. They are thus
classed:

1. Ahurmazd’s associates are Nos: 8, 15, 23.

2. Bahman’s associates are Nos: 12, 14, 21.

3. Ardibehesht’s associates are Nos: 9, 17, 20.

4. Shahrivar’s associates are Nos: 11, 16, 27, 30.

5. Spandarmad’s associates are Nos: 10, 24, 25, 29.

6. Khurdad’s associates are Nos: 13, 19, 22.

7. Amordad’s associates are Nos: 18, 26, 28.

Nos. 5, 10, 14, 24 and 25 are female deities.

Lucky and unlucky days

On this point Shri Vach gives the following information.

Originally all the thirty days of the month were auspicious and
good, the 30 deities presiding over them were good, as can be seen
above. In course of time contact with other nations of the world
made the Iranians adopt some of their customs; and hence in some
Pahlavi and Persian books of a much later period the idea of lucky
and unlucky days crept in.

Referring to one such Pahlavi book, Dossabhai Framji Karaka, in his “His-
tory of the Parsis”, London, 1884, Volume I, page 33, says:

Madigan i Si Ruz describes in detail peculiar virtues of each day
of Zoroastrian month. Great stress is laid in it upon the impor-
tance of each day in its bearing upon certain relations and trans-
actions of life. Every single day is set apart as the fittest and most
auspicious for certain special works of either devotion or worldly
business. Some are best for beginning a journey or voyage; others
for regulation of matters of domestic economy; some again for so-
cial gatherings and festivities; others again for pursuit of learning;
while not a few reserved for rest and contemplation. Thus the
Zoroastrian in his spiritual and temporal life is to be guided in the
selection of a proper time for every new work by a knowledge of
the auspiciousness or otherwise of the several days of the month.
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A translation of this Pahlavi treatise is given at pages 133–143 of Karaka’s
book.
The attributes of the 30 angels are described in Persian verse by an un-

known writer from sayings of Dastur Nosherwan Murzban of Kerman. [See
(1) Rivayet of Dastur Darab Hormazdiar; Text, by Maneckji Rustomji Unvala;
Vol. II pages 164–192. (2) Persian Rivayets of Hormazyar Framroze and oth-
ers; by B. N. Dhanbhar; page 579. (3) Gujrati version of the Rivayet; Edited
by Rustomji J. Dastur Meherji Rana; pages 565–68.]
Dr. Louis H. Gray of Columbia University, in his paper on “Alleged Zoroas-

trian Ophiomancy and its possible origin”, pages 454–464, published in the
“Dastur Hoshang Memorial Volume”, 1918, says:

One of the most curious superficial phenomena of the Zoroastrian
faith is its intense horror of the serpent. Yet there is an elaborate
system of divination from snakes.

Gray thinks this due to Babylonian influence.
The Rivayet contains a short tract in Persian verse, entitled “Mar Nameh”,

i.e., Book about Snakes, mentioning the effect, good or bad, at the sight of
a snake on any one of the 30 days of the month. [See; (1) Unvala, II, pages
193–194. (2) Dhabhar, page 579. (3) Meherjirana, page 569.]

According to Gray, a Persian manuscript contains omens from seeing a
snake on week days and at time of the moon entering the 12 signs of the
Zodiac (pages 456–457, Hoshang Mem. Volume). [See Burj Nameh Rivayet;
(1) Unvala II, 194. (2) Dhabhar, page 579. (3) Meherjirana, page 569.]

Al-Bīrūnī the great mathematician and astronomer of Persia who lived a
thousand years ago, has, in his Arabic-Persian work on “Vestiges of the Past”
which is translated in English by Dr. C. Edward Sachau of the Royal University
of Berlin and published at London in 1879 under the title, “The Chronology
of Ancient Nations”, thus stated:

The Persians divide all days of the year into preferable and lucky
days and unlucky and detested ones. Further they have certain
rule regarding appearance of snakes on different days of the month.
Day ‘Mah’ (12th) is considered a preferable day as God created
moon for distributing good till moon begins to wane.
Two days of conjunction and opposition are unlucky. On conjunc-
tion madness and epilepsy occur. Child born is of imperfect health.
Everything planted grows scanty.
Al-Kindi says conjunction is detested as moon is being burned.
At opposition full moon is detested since it requires light of sun.
(Chronology, page 219).
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Table 7: Unlucky days of the month.

No. and name of day Omen as per
Mar Nameh

Omen according to
Al-Bīrūnī

2. Bahman Great sorrow Illness and disease
3. Ardibehesht Death of relative Death in family
7. Amordad Regret Illness, disease
12. Mah Ruin of affairs Evil after noon
15. Depmeher . . . Illness, convalescence
18. Rashna Increase of defects,

failures
Illness during journey

20. Behram Evil omen Death in family
21. Ram Warfare and quarrel . . .

22. Govad Destruction of
property

Suspicion of theft

23. Depdin Trouble and loss Illiness and disease
25. Ashisvang Cause for sorrow Bad and blameable
27. Asman Grave accusations Accusation of lying
28. Zamyad . . . Calamity in family
30. Aneran Grief and anxiety Punishment for

fornication

The following days of the year are unlucky, according to AI-Bīrūnī when
snake is sighted: 9th and 22nd of Farwardin month; 15th of 2nd month
Ardibehesht; 11th and 30th of Khordad; 13th of Tir; 20th of Amordad; 3rd of
Shahrivar; 20th of Adar; 20th of De; 2nd of Bahman; and 5th of last month
Spandarmad. (Chronology, page 218).
The following (ed. see Table 7) are unlucky days of the month, when a

snake is sighted according to Mar Nameh and according to AI-Bīrūnī.
According to the Hindu astronomer Vaṭeśvara (VSi, ch. 1, sec. 5, vs. 120),

the unlucky days are those assigned to Śastra, Kāla, Agni, Niyati and Yama
(i.e., Shahrivar, Depadar, Adar, Depmeher, and Depdin).



Āryabhaṭa I’s astronomy with midnight
day-reckoning ∗

1 Introduction

Āryabhaṭa I (born 476 ad) is generally known as the author of the Āryabhaṭīya
and his fame as a mathematician and astronomer of the first rank is assessed
on the basis of that work alone. No other work written by him is available
to us. But there are reasons to believe that he was the author of at least one
more work on astronomy. References to two works of Āryabhaṭa I, one in
which the day was reckoned from sunrise (and is known as Āryabhaṭīya) and
the other in which the day was reckoned from midnight, have been made by
posterior Hindu astronomers. For instance Varāhamihira (died 583 ad) has
written:

Āryabhaṭa maintains that the beginning of the day is to be reck-
oned from midnight at Laṅkā; and the same teacher again says
that the day begins from sunrise at Laṅkā.1

Brahmagupta (628 ad) has criticised Āryabhaṭa I for making contradictory
statements in his two works:

When it is (once) stated that the number of revolutions performed
in a yuga by the sun is 4,32,000, the duration of the yuga is fixed.
Why, then, is there a difference of 300 civil days (in the two works
of Āryabhaṭa)?2

In a period of 14,400 years, there would be a difference of one civil
day, according to the works (of Āryabhaṭa) following the sunrise
and the midnight day-reckonings.3

* K. S. Shukla, Gaṇita, Vol. 18, No. 1 (June 1967), pp. 83–105.
1लंकाधरा समये दन वृ ं जगाद चायभटः ।
स एव भूयः चाक दया भृ ाह लंकाया ॥ (PSi, xv. 20)

2 युगर वभगणाः ु ी त य ो ं त तयोयुगं ।
शती र ुदयान तद रं हेतुना केन ॥ (BrSpSi, xi. 5)

3 अ धकैः शतै तु भवषसह ै तुदश भरेकः ।
युगयातै दनवारा रमौद यकाधरा कयोः ॥(BrSpSi, xi. 13)
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(On account of the difference in daily motions of the planets pre-
vailing in the two works of Āryabhaṭa) the mean longitude calcu-
lated according to the work with midnight day-reckoning may be
smaller than that calculated according to the (other) work with
sunrise day-reckoning by one-fourth of the planet’s daily motion.
Which of the two is correct is not certain. Therefore, not one of
them is correct.4

References to Āryabhaṭa I’s work with midnight day-reckoning are found to
occur also in Al-bīrūnī’s India and Nīlakaṇṭha’s (c. 1500 ad) commentary on
the Āryabhaṭīya.
It seems that, unlike the Āryabhaṭīya, the midnight astronomy taught by

Āryabhaṭa I was more popular in the northern parts of India than in the south-
ern. In the latter half of the seventh century ad when Brahmagupta wrote
his Khaṇḍakhādyaka, scholars and Pandits in north India had a tendency to
regard Āryabhaṭa I’s midnight astronomy as the most accurate and generally
based their calculations on it. This is probably the reason why the celebrated
Brahmagupta who once bitterly criticised and ridiculed Āryabhaṭa I turned
out to be his ardent follower in old age and based his Khaṇḍakhādyaka on
his teachings. In the opening stanzas of the Khaṇḍakhādyaka, Brahmagupta
writes:

Having bowed in reverence to God Mahadeva, the cause of cre-
ation, maintenance and destruction of the world, I set forth the
Khaṇḍakhādyaka which will yield the same results as the work of
Āryabhaṭa.

As it is generally not possible to perform calculations pertaining
to marriage, nativity, etc., every day by the work of Āryabhaṭa,
hence this smaller work giving the same results.5

The Khaṇḍakhādyaka being handy and more convenient for every day use
than the work of Āryabhaṭa I on which it was based, was preferred to the latter
and soon became a popular work in north India. A number of commentaries
(bhāṣya, vyākhyā, udāharaṇa, etc.) were also written on it by scholars who
hailed from Kashmir, Nepal, the Punjab, Uttar Pradesh, Saurāṣṭra, Orissa,
etc. With the growing popularity of the Khaṇḍakhādyaka, Āryabhaṭa I’s
midnight astronomy fell into the background and was ultimately lost and

4 अौद यका नभु े ुय शेनाधरा को भव ूनः ।
कतरः ु टं न न तमनयोः ु टमेकम प नातः ॥ (BrSpSi, xi. 14)

5 णप महादवें जग त लयहेतु ।
व ा म ख खा कमाचाय यभटतु फल ॥१॥
ायेणायभटेन वहारः त दनं यतोऽश ः ।

उ ाहजातका दषु त मफललघुतरो रतः ॥२॥ (KK, i. 1–2)
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forgotten. The result is that today we know of Āryabhaṭa I as the author of
the Āryabhaṭīya alone.
The discovery of the works of Bhāskara I (629 ad) has provided a new

source of knowledge regarding ancient Hindu astronomy. To our great fortune,
in the Mahābhāskarīya there is material which contributes to our information
regarding the lost work of Āryabhaṭa I. Bhāskara I has distinguished the two
works of Āryabhaṭa I by calling the Āryabhaṭīya by the name Āryabhaṭa-tantra
or Bhaṭa-tantra and referring to the other simply as Tantrāntara (“another
tantra”) without giving to it any particular name. In chapter VII of the
Mahābhāskarīya, which deals with the astronomical elements, Bhāskara I has
pointed out the differences between the two works of Āryabhaṭa I.
Further light in this direction is thrown by the commentators of the Sūrya-

siddhānta, such as Rāmakṛṣṇa Ārādhya (1472 ad), Tamma Yajvā (1599 ad)
and Bhūdhara (1572 ad), who have called Āryabhaṭa I’s work with midnight
day-reckoning by the name Āryabhaṭasiddhānta and has given the details of
certain astronomical instruments described in that work. Rāmakṛṣṇa Ārādhya
has even quoted 34 verses of the chapter on “Astronomical Instruments” from
that work. Tamma Yajvā informs us that he himself wrote a work entitled
Siddhānta-sārvabhauma which he based on the Āryabhaṭasiddhānta. Hence,
there remains little doubt regarding the existence of a work with midnight
day-reckoning coming from the pen of Āryabhaṭa I.
In the present paper we propose to set forth our present information regard-

ing the Āryabhaṭasiddhānta. We shall first state the distinguishing features of
the two works of Āryabhaṭa I, the Āryabhaṭīya and the Āryabhaṭasiddhānta,
and then shall discuss the astronomical instruments stated in the 34 verses as
quoted by Rāmakṛṣṇa Ārādhya from the Āryabhaṭasiddhānta. We shall also
invite the attention of our readers to certain other verses which are found
ascribed to Āryabhaṭa I in later works.

2 Distinguishing features of the two works of
Āryabhaṭa I

According to Bhāskara I, the two works of Āryabhaṭa I differed mainly in three
things: (i) Astronomical constants, (ii) Calculation of planetary longitudes,
(iii) Calculation of planetary latitudes.

2.1 Astronomical constants

The differences in the astronomical constants in the two works of Āryabhaṭa I
are exhibited in tabular form in Tables 1, 2, 3, 4, and 5.
The numbers in the second and the third columns of Table 1 are in the ratio

of 2 : 3 approximately. This is due to the fact that the measures of the yojanas
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Table 1: Diameters and distances of planets.

Āryabhaṭīya Āryabhaṭasiddhānta
(sunrise day-reckoning) (midnight day-reckoning)

in yojanas in yojanas

Earth’s diameter 1050 1600
Sun’s diameter 4410 6480
Moon’s diameter 315 480
Sun’s distance 4,59,585 6,89,358
Moon’s distance 34,377 51,566
circumference of the sky
revolutions of the Moon 21,600 32,400

Table 2: Civil days, omitted lunar days, and revolutions of Mercury and
Jupiter in a period of 43,20,000 years.

Āryabhaṭīya Āryabhaṭasiddhānta

Civil days 1,57,79,17,500 1,57,79,17,800
Omitted lunar days 2,50,82,580 2,50,82,280
Revolutions of Mercury 1,79,37,020 1,79,37,000
Revolutions of Jupiter 3,64,224 3,64,220

employed in the two works were in the ratio of 3 : 2. The circumference of a
planet’s concentric or deferent (or mean orbit) is supposed to be of 180 units
(called degrees) in length and the dimensions in Table 4 are on the same scale.

2.2 Calculation of planetary longitudes

2.2.1 Sunrise day-reckoning

For obtaining the true longitudes of the superior planets (Mars, Jupiter and
Saturn), Āryabhaṭa I’s astronomy with sunrise day-reckoning prescribes the
following corrections.

For obtaining corrected mean anomaly:

(i) Half bāhu-phala (“equation of the centre”) to mean longitude.

(ii) Half śīghra-phala to the resulting longitude.
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Table 3: Longitudes of planets’ apogees (mandocca).

Āryabhaṭīya Āryabhaṭasiddhānta

Sun 78◦ 80◦

Moon 118◦ 110◦

Mercury 210◦ 220◦

Jupiter 180◦ 160◦

Venus 90◦ 80◦

Saturn 236◦ 240◦

Table 4: Dimensions of planets’ manda epicycles.

Āryabhaṭīya Āryabhaṭasiddhānta
Beginning of

odd quadrant even quadrant

Sun 13◦30′ 13◦30′ 14◦

Moon 31◦30′ 31◦30′ 31◦

Mars 63◦ 81◦ 70◦

Mercury 31◦30′ 22◦30′ 28◦

Jupiter 31◦30′ 36◦ 32◦

Venus 18◦ 9◦ 14◦

Saturn 40◦30′ 58◦30′ 60◦

Table 5: Dimensions of planets’ śīghra epicycles.

Āryabhaṭīya Āryabhaṭasiddhānta
Beginning of

odd quadrant even quadrant

Mars 239◦30′ 229◦30′ 234◦

Mercury 139◦30′ 130◦30′ 132◦

Jupiter 72◦ 67◦30′ 72◦

Venus 265◦30′ 256◦30′ 260◦

Saturn 40◦30′ 36◦ 40◦
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For obtaining true longitude:

(iii) Entire bāhu-phala (as calculated from corrected mean anomaly) to mean
longitude.

(iv) Entire śīghra-phala (as calculated from the resulting longitude) to the
resulting longitude.

In the case of the inferior planets (Mercury and Venus), the corrections
applied are as follows:

(i) Half śīghra-phala to mean longitude.

(ii) Entire bāhu-phala (as calculated from the resulting mean anomaly) to
mean longitude.

(iii) Entire śīghra-phala to the resulting longitude.

2.2.2 Midnight day-reckoning

According to Āryabhaṭa I’s astronomy with midnight day-reckoning, the true
longitudes of all planets are obtained by applying the corrections as follows:

For obtaining corrected mean anomaly:

(i) Half śīghra-phala to mean longitude.

(ii) Half bāhu-phala to the resulting longitude.

For obtaining true longitude:

(iii) Entire bāhu-phala (as calculated from corrected mean anomaly) to mean
longitude.

(iv) Entire śīghra-phala to the resulting longitude.

2.3 Calculation of planetary latitudes

2.3.1 Sunrise day-reckoning

In the case of the superior planets, the formula stated is

R sinβ =
R sin(λ− Ω)×R sin i

D
,

where β is the latitude of the planet, λ the longitude of the planet, Ω the
longitude of the planet’s ascending node, i the inclination of the planet’s
orbit, and D is the distance of the planet in minutes.
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In the case of the inferior planets, the formula is

R sinβ =
R sin(S − Ω)×R sin i

D
,

where S is the longitude of the planet’s śīghrocca, the other symbols being as
before.

2.3.2 Midnight day-reckoning

Under midnight day-reckoning, two kinds of nodes (pāta) are defined: (i)
manda-pāta and (ii) śīghra-pāta. Their longitudes are determined by the fol-
lowing formulae:

manda-pāta of Mars = (apogee of Mars− 3 signs)+ 1◦30′

manda-pāta of Jupiter = (apogee of Jupiter− 3 signs)+ 2◦

manda-pāta of Saturn = (apogee of Saturn− 3 signs)+ 2◦

manda-pāta of Mercury = (apogee of Mercury+ 6 signs)+ 1◦30′

manda-pāta of Venus = (apogee of Venus+ 6 signs)+ 2◦

śīghra-pāta of Mars = (śīghrocca of Mars− 3 signs)+ 1◦30′

śīghra-pāta of Jupiter = (śīghrocca of Jupiter− 3 signs)+ 2◦

śīghra-pāta of Mercury = does not exist
śīghra-pāta of Venus = (śīghrocca of Venus+ 6 signs)+ 2◦

For the celestial latitude of a planet the following formula is prescribed:

Celestial latitude = (celestial latitude derived from manda-pāta)
± (celestial latitude derived from śīghra-pāta),

where + or − sign is taken according as the two latitudes are of like or un-
like directions, and the celestial latitude from the manda or śīghra-pāta is
determined by the formula:

R sin(celestial latitude) = R sin(planet− pāta)×R sin i
D

,

where the symbols D and i have the same meanings as before.6

6See MBh, vii. 28(ii)–32. The concept of the manda-pāta and the śīghra-pāta and the
method of deriving the celestial latitude from them are erroneous and represent a very
old phase of Hindu astronomy. Such a concept is not found to occur in any other Hindu
work on astronomy known to us.
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3 Relationship of Āryabhaṭa I’s midnight astronomy
with other works

3.1 Āryabhaṭa I’s midnight astronomy and the Khaṇḍakhādyaka

A comparison of the Khaṇḍakhādyaka with Āryabhaṭa I’s midnight astronomy
(as described by Bhāskara I) confirms Brahmagupta’s claim that the former
is based on the latter. The former work agrees with the latter in all respects
excepting one which relates to the calculation of the celestial latitude of a
planet. In that particular item Brahmagupta instead of following the incorrect
method of Āryabhaṭa I’s midnight astronomy makes use of the method of the
sunrise system which has been described in detail by Bhāskara I in his works.

3.2 Āryabhaṭa I’s midnight astronomy and Varāhamihira’s
Sūryasiddhānta

The original Sūryasiddhānta does not exist, but a rough idea of the contents
of that work may be had from chapters i, ix, x, xi, xvi and xvii of the Pañca-
siddhāntikā of Varāhamihira in which that work has been summarised.

A comparison of Āryabhaṭa I’s midnight astronomy with the above men-
tioned chapters of the Pañcasiddhāntikā shows that:

(i) The astronomical constants in the two works agree. For example, the
revolutions of the planets, the longitudes of the apogees of the planets,
the dimensions of the epicycles and the limits for the visibility of the
planets, etc., stated in those works are the same. The method of finding
the true longitudes of the planets ascribed to Āryabhaṭa I’s midnight
astronomy is also the same as found in the Pañcasiddhāntikā (xvii. 4–9).

(ii) The actual diameters and distances of the Sun and the Moon are not
stated in Varāhamihira’s version of the Sūryasiddhānta, but their abrad-
ed values used in the Pañcasiddhāntikā (ix. 15–16) very nearly corre-
spond to those of Āryabhaṭa I’s midnight astronomy.7

The astronomical constants given in the Sumati-mahātantra, which too was
based on the old Sūryasiddhānta, are also exactly the same as those of Āryab-
haṭa I’s midnight astronomy.
It appears therefore that Āryabhaṭa I’s midnight astronomy was based on

the old Sūryasiddhānta. This is the reason that certain later writers have re-
garded Āryabhaṭa I as an incarnation of God Sun, the promulgator of the orig-

7It may be mentioned that verse 12 of chapter xii of the Pañcasiddhāntikā as well verses
15 and 16 of chapter ix of the same work, as edited by G. Thibaut and S. Dvivedi, are
incorrect. See my paper entitled “On three stanzas from the Pañcasiddhāntikā” in Gaṇita,
5 (2). pp. 129–136.
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inal Sūryasiddhānta, as is evident from the following verse quoted by H. Kern
in his introduction to the Āryabhaṭīya:

स ा प क वधाव प -
मौ ोपरागमुखखेचरचार ौ ।
सूयः यं कुसुमपुयभव कलौ तु
भूगोल व कुलप अायभटा भधानः ॥

References to the Āryabhaṭasiddhānta in the commentaries of the Sūryasiddhānta
too point to the same conclusion.

3.3 Āryabhaṭa I’s midnight astronomy and the Puliśa-siddhānta

The Puliśa (or Pauliśa)-siddhānta quoted by Al-bīrūnī in his India and by
Bhaṭṭotpala in his commentary on the Bṛhat-saṃhitā of Varāhamihira also
agrees with Āryabhaṭa I’s midnight astronomy. The Pauliśa-siddhānta quoted
by Āmarāja (c. 1200 ad) in his commentary on the Khaṇḍakhādyaka, how-
ever, differs from Āryabhaṭa I’s midnight astronomy in the case of one or
two astronomical constants. But it is interesting to note that Āmarāja on
more than one occasion in that commentary cites the Pauliśa-siddhānta as an
authority, while interpreting the rules of the Khaṇḍakhādyaka.
The above discussion seems to suggest that

(i) Āryabhaṭa I’s midnight astronomy was based on the old Sūryasiddhānta.

(ii) The Puliśa-siddhānta quoted by Bhaṭṭotpala and Al-bīrūnī was a recast
of that work, made up-to-date on the basis of Āryabhaṭa I’s midnight
astronomy.

(iii) The Puliśa-siddhānta quoted by Āmarāja was a subsequent redaction
of the same work in which certain new additions and alterations were
made.

It may be added that the Puliśa-siddhānta too reckoned the day from mid-
night.

4 The astronomical instruments of the
Āryabhaṭasiddhānta

We have already referred to the 34 verses of the Āryabhaṭasiddhānta which
have been quoted by Rāmakṛṣṇa Ārādhya in his commentary on the Sūrya-
siddhānta. These verses have been taken from the Yantrādhyāya (“Chapter
on Astronomical Instruments”) of that work, and give a detailed account of
(i) the Chāyā-yantra, (ii) the Dhanu-yantra, (iii) the Yaṣṭi-yantra, (iv) the
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Cakra-yantra, (v) the Chatra-yantra, (vi) the water instruments, (vii) the
Ghaṭikā-yantra, (viii) the Kapāla-yantra, and (ix) the Śaṅku-yantra.

Rāmakṛṣṇa quotes the above mentioned 34 verses with an introductory
sentences as follows:

. . . अायभट स ा ो य ानुसारेण। त ृ तय ा ाय ोका व ल े—

. . . according to the astronomical instruments mentioned in the
siddhānta of Āryabhaṭa. (Below) are indited the verses from the
chapter on the astronomical instruments, written by him—

4.1 छायाय ा ण (The shadow instrument)

द ा प ाशद ु लै क शकैः ।
लखे ृ ं च च श च तं समम ल ॥१॥
चरा ा नुाडी भः छायाय ा ण साधये ।
समवृ व द ायाकण ा दोगुणाः ॥२॥
समवृ े द द ा ा पराशयोः ।
चर ानामथा ा ा द ा द श से ॥३॥
तद ब तुो वृतं वृ ा ा ं लखे ु त ।

ाहोरा दलं त ा ना ः श ु भः ॥४॥
ाहोरा दलऽशाः ुः ष णुा दनना डकाः ।

अ ा ेऽ ोदयाक च या ाध पूवप मे ॥५॥
त ूव पररेखातो द णाध च त ृत ।
1. Construct a perfect circle (samamaṇḍalaṃ vṛttaṃ) with radius
equal to 57 aṅgulas, the number of degrees in a radian, and on
(the circumference of) it mark the 360 divisions of degrees.

2. Then construct shadow instruments (for every day of the year)
with the help of the Rsine of the Sun’s ascensional difference, the
Rsine of the Sun’s agrā, and the nāḍīs of the duration of the day
(in the following manner):

Determine the Rsines of the Sun’s declination and of the Sun’s
longitude from the samavṛttacchāyākarṇa (i.e. the hypotenuse of
the shadow of the gnomon when the Sun is on the prime vertical)
or from the vidik-chāyākarṇa (i.e. the hypotenuse of the shadow
when the Sun is in a mid-direction).

3. On the perfect circle (drawn above), lay off the (Sun’s) agrā in
its own direction (north or south) in the east as well as in the west
(and at each place put down a point). Again lay off the (Sun’s)
agrā corresponding to the Sun’s ascensional difference in its own
direction from the centre of the circle.
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4. With that end of the (Sun’s) agrā (as centre) draw a circle
passing through the (two) points marked on the circle: this circle
denotes the Sun’s diurnal circle. On (the southern half of) that
circle, put down marks indicating true ghaṭīs with the help of the
corresponding positions of the gnomon.8

5. These ghaṭīs of the day, multiplied by six, are the degrees on
the diurnal circle. At the two points marked at the ends of the
Sun’s agrā in the east and west, are the positions of the Sun at
rising and setting.
6(i). Half of the diurnal circle lying towards the south of the rising-
setting line (of the Sun) is called the southern half of the diurnal
circle.

In Figure 1 (ed. figure caption added), let ENWS be the perfect circle
(referred to above), in which E,W,N and S are the east, west, north, and
south cardinal points respectively. Let A and B be the points at the ends of
the Sun’s agrā, laid off in the east and west in their proper direction. Also let
C be the end of the Sun’s agrā laid off from the centre O of the circle.
Let BDA be the circle drawn with C as centre and passing through A and

B. This has been called “the diurnal circle”. AB is the rising-setting line; A
is the point where the Sun rises, and B the point where the Sun sets.
The southern half of the diurnal circle BDA was marked by the divisions

of ghaṭīs and degrees as follows:
A gnomon was held on the plane of the circle at right angles to it in such a

way that the end of its shadow at that moment was at the centre of the circle.
By holding the gnomon in this way, marks were made on the diurnal circle
where the shadow of the gnomon intersected it at the end of each ghaṭī after
sunrise. These marks indicated the ending moments of the ghaṭīs of the day.
Intervals between these graduations were then divided into six equal parts,
called degrees.
The chāyā-yantra (shadow-instrument), thus constructed, was used for de-

termining the ghaṭīs and degrees elapsed (since sunrise) at any time of the day.
For this purpose one had to find the point where the instantaneous shadow of
the gnomon crossed the diurnal circle, and to read the graduations between
that point and the point A.
One chāyā-yantra served the purpose of giving time for one day only. So

365 such instruments were constructed, one for each day of the year.
Shadow-instruments (chāyā-yantra) of the type described above are unusual,

as they are not found to occur in any other work on Hindu astronomy known
to us.

8In each position the gnomon is to be held in such a way that the end of the shadow may
lie at the centre of the circle.
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Figure 1: The chāyā-yantra.

4.2 धनुय (The semi-circle)

वृ ासो धनु ा ासाध धनुषः शरः ॥६॥
श ु ाया धनु य द ा भा सदा ।
ाग ं धनुषो वृ े ामयेदक द ुख ॥७॥

चापा ोदयम शाः ष भ ा दने गताः ।
6(ii). The chord of the dhanuryantra is equal to the diameter of
the circle (i.e. the perfect circle), and its arrow is equal to the
radius. It is mounted on the circle vertically with the two ends of
its arc coinciding with the east and west points.

7. The eastern end of the dhanuryantra should be moved along
(the circumference of) the circle until the dhanuryantra is towards
the Sun.9 The shadow of the gnomon will then fall along the chord
of the dhanuryantra, and (the shadow-end being at the centre of
the circle) the distance of the gnomon as measured from the centre
of the circle, will always be equal to the shadow for the desired

9The dhanuryantra resembles a semi-circular arc. It is held vertically with the two ends
of its arc coinciding with the east and west points of the circle drawn on the ground.
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time.10

8(i). The degrees intervening between the (eastern) end of the
dhanuryantra and the rising point of the Sun divided by six, give
the ghaṭīs elapsed in the day.

4.3 य य
वृ ासदलं य शा ुलस ता ॥८॥
द ेऽक ुखी धाय य ः कण तः ।
श ु ैव मूला ु छाया द गा सदा ॥९॥
य ोदयम शाः ष भ ा दने गताः ।
8(ii)–10(i). The yaṣṭi-yantra11 which is equal in length to the
semi-diameter of the (perfect) circle with as many graduations
of aṅgulas as there are degrees in a radian (i.e. 57) should be
held at the centre of the circle towards the Sun. The yaṣṭi then
denotes the hypotenuse, its elevation denotes the gnomon, and
the distance from the foot of the gnomon up to the centre of the
circle always denotes the shadow (of that gnomon). The degrees
intervening between the end of the yaṣṭi and the rising point of
the Sun, divided by six, give the ghaṭīs elapsed in the day.

4.4 च य (The circle)

भगण शा तं च ं सर ं वषुव थ ॥१०॥
धनू र ु ुखं कृ ा चापव य क ।
क ये श ोव छायाना य व ॥११॥
10(ii)–11. The cakra-yantra (“an instrument resembling a circular
hoop”) bears (on its circumference) 360 marks of degrees and has
(two) holes at the equinoctial points. Pointing the arc of the cakra-
yantra towards the Sun, like the (arc of the) dhanuryantra, the
shadow of the gnomon as also the nāḍīs elapsed in the day should
be ascertained as in the case of the yaṣṭi-yantra.

The instruments dhanu, cakra, and yaṣṭi, have been mentioned in the Sūrya-
siddhānta,12 but details are not given there. The cakra instrument is men-
tioned in the Pañcasiddhāntikā,13 where it is described as follows:
10The gnomon is represented in this case by means of a cord suspended from the Sun’s
position on the arc of the dhanuryantra.

11The yaṣṭi-yantra resembles a cylindrical stick.
12xiii. 20.
13xiv. 21–22.
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Take a circular hoop, on whose circumference the 360 degrees are
evenly marked, whose diameter is equal to one hasta, and which
is half an aṅgula broad. In the middle of the breadth of that hoop
make a hole. Through this small hole made in the circumference
allow a ray of the Sun at noon to enter in an oblique direction.
The degrees, intervening on the lower half of the circle between
(the spot illumined by the ray and) the spot reached by a string
hanging perpendicularly from the centre of the circle, represent
the degrees of the zenith distance of the mid-day Sun.14

How the time was determined by this instrument is not explained there.
The methods of determining time with the help of the cakra and dhanu in-

struments are given by Brahmagupta,15 Lalla,16 Śrīpati,17 and Bhāskara II.18

They differ from that given above.
As regards the yaṣṭi instrument, the details given by later astronomers are

the same as those mentioned above. Lalla’s procedure for finding time is,
however, different.19

श ु म कारेण ो ा ना त भा ।
अधुना भा मा ा ः त ाया च क ते ॥१२॥
12. Above have been stated the methods of obtaining the shadow
of the gnomon and the nāḍīs (elapsed in the day) by the movement
of the gnomon. Now will be stated the method of finding the nāḍīs
(elapsed) and also the shadow (of the gnomon) by the movement
of the shadow of the gnomon (set up at the centre of the circle).

4.5 छ य (The umbrella)

छ ं वेणुशलाका भः कृ ा च शसं या ।
द े समवृ क ये य क ॥१३॥
छ द त े ासाध श ु रेव सः ।

ाहोरा दलं सौ ं ा ं भा मा य ॥१४॥
ष णुा दनना ऽशाः सौ ा छ य तः ।
अ ा ेऽक दया े च ा भा ता ॥१५॥
त ग म ा ं ाग मुदया य ।
अ ा ा दय ा ं छायाकाल शकाः ताः ॥१६॥

14Psi, xvi. 21–22 (Thibaut’s translation).
15BrSpSi, xxii. 8–16, 18.
16ŚiDVṛ, II, xi. 20–21, 22.
17SiŚe, xix. 12–13.
18SiŚi, II, xi. 10–12, 15(ii).
19See ŚiDVṛ, II, xi. 46–47.
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छ म श ो ु छायैवे भा सदा ।
छाया ा ा म शा ष न ो दवा गताः ॥१७॥
13. Construct a chatra-yantra (“an instrument resembling an um-
brella”) by bamboo-needles, mark (the circumference of) it with
the 360 divisions of degrees, and set it at the centre of the (perfect)
circle. Or, treat the perfect circle itself as a chatra-yantra.
14. The rod of the chatra-yantra, in the middle of it, equal to
the radius, is the gnomon; the northern half of the diurnal circle
drawn through the end-points of the (Sun’s) agrā, laid off in the
contrary direction (in the west and the east), is the so called “path
of shadow”.20

15. The nāḍīs of the day, multiplied by six, are the degrees in
(the diurnal circle lying in) the north half of the chatra-yantra.
Towards the end-points of the (Sun’s) agrā, in the west and the
east, falls the shadow at sunrise and sunset respectively.
16. The end (of the Sun’s agrā) in the west is (therefore) called
the “setting point (asta)”; and the end (of the Sun’s agrā) in the
east the “rising point (udaya)”. From the “setting point” to the
“rising point” (on the northern half of the diurnal circle) lie (the
graduations of) the degrees of time in a chatra-yantra.
17. The shadow cast by the gnomon, situated in the middle of the
chatra, is always the shadow for the desired time. The degrees (on
the diurnal circle) intervening between the end of the shadow and
the “setting point”, divided by six, give the nāḍīs elapsed in the
day.

The chatra-yantra is not found to have been mentioned in any other work
known to us. But a similar instrument called pīṭha-yantra occurs in the works
of Lalla and Śrīpati.21

4.6 तोयय ा ण (Water instruments)

ं स लस ूण तोयं र े तु योजये ।
त ु कालस ा ः ायामोऽ ुला क ॥१८॥
अ ुलान म तः े तनाड तु य के ।
ना ा ा भूतल ा पूय द ुघटीतल ॥१९॥
बीजमेत घटीमानं य ेषु सू योः ।
य े ब नरे श े यु े मेषा दकेऽ प च ॥२०॥

20In fact, this is not the path of shadow.
21See ŚiDVṛ, II, xi. 24–25 and SiŚe, xix. 15–16.
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अ ःसु षरमेवं त यूरं वानरं तथा ।
ा े तु स ूण य े ष ुलो ते ॥२१॥

सु क लकं सू ं य ा पिरक त ।
ष ु लेन सू ेण वे ये ष वे नैः ॥२२॥
तं पे रे मू नग कणर योः ।
पा यो न पे सू ं मयूरे वानरेऽ प वा ॥२३॥
म वे तसू ा े ब ाऽलाबुं सपारदा ।
नरोपिर जले ा गुद ऽे ु मोचये ॥२४॥
मयूरे वानरे वे ं ब ाऽलाबुं सपारदा ।
ना भर ादधः जले ाऽ ु मोचये ॥२५॥
तनाड जलं छ ा ग ेकम ुल ।

ेऽलाबु बला ाऽधो या त तथाऽ ुल ॥२६॥
त म क ल वे नं चैकम ुल ।
अलाबुकषणे सू ं अधो या त बलो ुख ॥२७॥
त ला ेऽपरं सू ं नाडी ानाय ल ये ।
त े ना न याव ताव ो घ टका गताः ॥२८॥
18. Construct a pillar with an excellent (cylindrical) cavity inside
itself. Fill up the cavity with water (and then open the hole at
the bottom of the pillar so that the water may flow out). By the
time (in ghaṭīs) taken by the water to flow out completely, divide
the whole length of the pillar. This gives the measure of an aṅgula
(which corresponds to a ghaṭī ).
19. On the pillar mark the aṅgulas corresponding to each ghaṭī.
The water corresponding to one ghaṭī flowing out from the hole
(at the bottom of the pillar) in the level of the ground, completely
fills a ghaṭikā vessel (in one ghaṭī ).
20(i)–22. This measure of a ghaṭī is the basis (bīja) (for the deter-
mination) of (the height of) the pillar and of (the length of) the
cord to be used in connection with the (time) instruments. Having
tied around the pillar a man or a pair of fighting rams of crafts-
manship (keeping the head of the figure just above the top of the
pillar), or having surmounted the pillar by the figures of a peacock
or monkey, bearing a cavity inside it, thus making the whole in-
strument sixty aṅgulas in height, take a smooth fine (cylindrical)
needle with its periphery equal to a unit of graduation (i.e. one
aṅgula) on the instrument, and on it wrap a cord of sixty aṅgulas
in sixty coils.
23. Place this needle within the head of the man passing through
the holes of the ears, or, in the case of peacock or monkey, support
the needle (over the holes) on the two sides (of the body).
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24. Having tied a gourd containing (an appropriate quantity of)
mercury to the end of the cord wrapped round the needle, place
it on the water (inside the pillar, through the hole) at the top of
the man, and then let the water flow out through the hole at the
anus.

25. Similarly, in the case of peacock or monkey, tying a gourd
containing mercury (as before), throw it on the water of the pillar
through the navel hole and release the flow of water.

26–27. An aṅgula of water now flows out in a nāḍī, as also the
gourd within the pillar goes down by aṅgula. The cord wrapped
around the needle, within the instrument, also goes down towards
the hole underneath due to the pull of the gourd.

28. At one extremity of the needle, protruding outside the in-
strument, suspend another cord to know the nāḍīs elapsed. The
number of coils made by this cord on the needle will indicate the
nāḍīs elapsed.

Water instruments, such as nara, mayūra, and vānara, are mentioned in
the Sūryasiddhānta,22 but details of construction of those instruments are
not given there. Similar instruments are also mentioned by Brahmagupta,23

Lalla,24 and Śrīpati,25 but the details given by them differ from those given
above.

4.7 घ टकाय
वृ ं ता मयं पा ं कारये श भः पलैः ।
षड ु लं त ेधो व ारो ादशानने ॥२९॥
त ाधः कारये ं पलेना ा ु लेन तु ।
इ ेत टकासं ं पलष ुपूरणा ॥३०॥
29–30. One should get a hemispherical bowl manufactured of cop-
per, ten palas in weight, six aṅgulas in height, and twelve aṅgulas
in diameter at the top. At the bottom thereof, let a hole be made
by a needle eight aṅgulas in length and one pala in weight.

This is the ghaṭikā-(yantra), (so named) because it is filled up by
water in a period of 60 palas (i.e. one ghaṭī ).26

22xiii. 21.
23See BrSpSi, xxii. 50.
24See ŚiDVṛ, II, xi. 12–17.
25See SiŚe, xix. 9–11.
26Cf. ŚiDVṛ, II, xi. 34–35 and SiŚe, xix. 19–20.
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4.8 कपालय (The bowl)

े ं वाऽ दहोरा े ष ाऽ स नम त ।
ता पा मध म ुय ं कपालक ॥३१॥
31. Any other copper vessel made according to one’s liking, with
a hole in the bottom, which sinks into water 60 times in a day and
night, is the water instrument called kapāla.

This description of the kapāla-yantra agrees with that given in the Sūrya-
siddhānta.27

4.9 श ु वभेदाः (Śaṅku-yantras or gnomons)

तले य ुल व ारः समवृ ो ादशो यः ।
सारदा मयः श ु तीयो ादशा ुलः ॥३२॥
सू ूलमूलोऽ ेध ला योः ।
स तय ेधसू ो ु ल सूची ु टो नरः ॥३३॥
तु ा लवृ ोऽ ः श ु ः ा ादशा ुलः ।
या ा श ु भा य ा सा ै व नत भा ॥३४॥
32–33. (The first kind of gnomon is) two aṅgulas in diameter at
the bottom, uniformly circular (i.e. cylindrical), twelve aṅgulas in
height, and made of strong timber.

The second kind of gnomon is twelve aṅgulas (in height), pointed
at the top, and massive at the bottom (i.e., conical in shape).
(Associated with it is) another true gnomon of the same height,
mounted vertically on two (horizontal) nails fixed (to the previous
gnomon) at the top and bottom thereof.

34. Another (third) kind of gnomon (which is more handy) is that
having equal circles at the top and bottom (i.e. cylindrical) and of
twelve aṅgulas.

Whatever shadow of the gnomon is seen to be cast by this instru-
ment is indeed the projection of the (Sun’s) zenith distance (i.e.
the Rsine of the Sun’s zenith distance).

Of the above three kinds of gnomons, the first is mentioned by Lalla28 and
Śrīpati,29 and the third by Bhāskara II.30 That of the second kind is unusual.
27xiii. 23.
28See ŚiDVṛ, II, xi. 31–32.
29See SiŚe, xix. 18.
30See SiŚi, II, xi. 9.
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4.10 Observations

It is noteworthy that Āryabhaṭa I has devoted as many as 34 verses to the
treatment of the shadow and water instruments only. This shows that the
chapter on the astronomical instruments of the Āryabhaṭasiddhānta must have
been fairly large, for it must have included the discussion of the armillary
sphere (gola) and the self-rotating device (svayaṃvaha) etc., which have re-
ceived special treatment in the Āryabhaṭīya and the Sūryasiddhānta etc. Judg-
ing from the size of the chapter on the astronomical instruments, it may be
easily inferred that the Āryabhaṭasiddhānta as a whole must have been a vo-
luminous work on astronomy. The opening stanzas of the Khaṇḍakhādyaka
too point to the same conclusion.
The composition of the above verses in the anuṣṭubh metre is another no-

table point. This shows that the Āryabhaṭasiddhānta, instead of being in the
āryā metre like Āryabhaṭīya, was written in the anuṣṭubh metre following the
usual style of the old siddhānta works.
The subject matter treated in the above verses too is no less important and

interesting, for it throws light on the astronomical instruments which were in
vogue in India in the fifth century ad.

5 Other verses ascribed to Āryabhaṭa

(a) Śaṅkaranārāyaṇa (869 ad) in his commentary on the Laghubhāskarīya
of Bhāskara I informs that some astronomers in his time attributed the
authorship of the following two verses to Āryabhaṭa I:

व ेकेषुयुग ं मनुयुगमक दम मचतुण ।
धनमृणमृणमृणमथ कृ तगु णतं च े शभैल ॥
भौमा र नीन दयेमृणं दयेम न ते ।
सतबुधयोहयं दयें स हतं बुध ो े ॥
Severally multiply the elapsed yugas of the current Manu (i.e.
27 3

4 ) by 8, 1, 5, and 4, and treating the results as minutes,
apply them positively, negatively, negatively, and negatively
to the mean longitudes of the Sun, Moon, Moon’s apogee,
and Moon’s ascending node respectively. Next, multiply the
elapsed yugas of the current Manu (i.e. 27 3

4 ) by 20 and sev-
erally divide the product by 12, 11, and 27, and treating the
quotients as minutes, apply them positively, negatively, and
positively to the mean longitudes of Mars, Jupiter, and Sat-
urn respectively. Next, divide that (product of the elapsed
yugas of the current Manu and 20) severally by 4 and 9, and
treating the quotients as minutes, apply the former negatively
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to the mean longitude of the śīghrocca of Venus, and the lat-
ter, as multiplied by 7, positively to the mean longitude of the
śīghrocca of Mercury.

The above correction has been called “the Manuyuga correction”. Param-
eśvara (1380–1450 ad) in his commentary on the Laghubhāskarīya (i. 37)
of Bhāskara I has included it among the five bīja corrections listed by
him, and has remarked that one should apply that one of them which
makes computation correspond with observation.
Both the above verses are in the āryā metre, but they are not found to
occur in the Āryabhaṭīya which is also in the same metre. They could
not possibly have belonged to the Āryabhaṭasiddhānta, for as we have
seen, it was composed in the anuṣṭubh metre. So if the above verses are
from the pen of Āryabhaṭa I, they must be regarded as being detached
compositions having no special connection with any of the works com-
posed by him. Bhāskara I in his commentary on the Āryabhaṭīya has
indeed referred to certain detached verses composed by Āryabhaṭa I.

(b) The following two verses in the anuṣṭubh metre are also found to be as-
cribed to Āryabhaṭa I by Mallikārjuna Sūri (1178 ad) in his commentary
on the Sūryasiddhānta:

यो यो भागः परः सू ः राशे दयमागतः ।
पुन ोदयो ेयो दवसो भोदया कः ॥
ना सावनादीन सावन दना न ।
य ा ादध ढु गमनम बु ीना ॥

6 Concluding remarks

We thus see that Āryabhaṭa I was the author of at least two works on astron-
omy which were written in the following chronological order:

(i) Āryabhaṭasiddhānta

(ii) Āryabhaṭīya.

The former work was a voluminous work based on the old Sūryasiddhānta.
The latter work, now well known, is a small work comprising 121 verses in
āryā metre. It deals with both mathematics and astronomy and claims to be
based on the Svāyambhuva-siddhānta.
The Āryabhaṭīya, though based on the Svāyambhuva-siddhānta, was the re-

sult of the author’s deep study and continued observations and incorporated
the discoveries made by the author. This work gave birth to a new school
of astronomy (the Āryabhaṭa school) whose exponents called themselves “fol-
lowers of Āryabhaṭa” and were scattered throughout the length and breadth
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of South India. These devoted followers of Āryabhaṭa set up schools of as-
tronomy at various places in that region and zealously undertook the task of
teaching and propagating the system of astronomy propounded by Āryabhaṭa
in his Āryabhaṭīya. One of the most important of these schools of astronomy
was located at Aśmaka, a territory lying between the rivers Naramadā and
Godāvarī. This school was perhaps the oldest and established by Āryabhaṭa I
himself. It produced great men like Lāṭadeva and Bhāskara I who earned
a great name and fame as scholars and teachers of astronomy. Bhāskara I
explained and elucidated the teachings of Āryabhaṭa I by writing a compre-
hensive commentary on the Āryabhaṭīya and two text-books on astronomy viz.
the Mahābhāskarīya and the Laghubhāskarīya. These works added freshness,
vigour and life to the teachings of Āryabhaṭa and gave impetus to the study
of the Āryabhaṭīya.
Astronomers residing to the north of the river Narmadā were followers of

the Sūryasiddhānta. They adopted the Āryabhaṭasiddhānta for obvious rea-
sons, but did not give much credit to the teachings of the Āryabhaṭīya. Brah-
magupta even went to the extent of criticising that work as harshly as he
could possibly do. But he too hailed the teachings of the Āryabhaṭasiddhānta
and wrote his calendrical work the Khaṇḍakhādyaka on the basis of that work.
With the growing popularity of the Khaṇḍakhādyaka in the northern India

and that of the Āryabhaṭīya in the southern, the study of the Āryabhaṭa-
siddhānta was ultimately given up; still it continued to be used as a reference
book by the scholars and teachers who wrote commentaries on astronomical
works. Our present knowledge of the Āryabhaṭasiddhānta, as we have seen
above, is indeed due to the references made by the commentators Mallikār-
juna Sūri, Rāmakrṣṇa Ārādhya, Tamma Yajvā, and Bhūdhara in their respec-
tive commentaries on the Sūryasiddhānta. The commentator Tamma Yajvā
besides making references to the Āryabhaṭasiddhānta wrote a book entitled
“Siddhānta-sārvabhauma” which he based on the Āryabhaṭasiddhānta and has
quoted from that work. It is interesting to note that the quotations deal-
ing with the astronomical instruments contain practically the same matter as
given in the foregoing 34 verses from the Āryabhaṭasiddhānta. Tamma Yajvā’s
Siddhānta-sārvabhauma, when discovered, will be of great value to historians
of mathematics and astronomy as it is expected to throw further light on the
work of Āryabhaṭa I now lost to us.



Glimpses from the Āryabhaṭasiddhānta ∗

1 Introduction

In a paper entitled “Āryabhaṭa I’s astronomy with midnight day-reckoning”
published by me nine years ago in the Gaṇita (Vol. 18, No. I, 1967), I had
adduced concrete and conclusive evidence to show that Āryabhaṭa I, the cele-
brated author of the Āryabhaṭīya, wrote one more work on astronomy which
was known as Āryabhaṭasiddhānta. Whereas in the Āryabhaṭīya the day was
reckoned from one sunrise to the next, in the Āryabhaṭasiddhānta the day
was reckoned from one midnight to the next. This latter work of Āryabhaṭa
which adopted midnight day-reckoning was first mentioned by Brahmagupta
(628 ad) of Bhinmal in Rajasthan, who was so much impressed by its wide
popularity that he epitomised the teachings of this work in his calendrical
work bearing the title “Food prepared with sugar candy” (Khaṇḍakhādyaka).
The notable points of difference of this work of Āryabhaṭa I from his other
work (viz. the Āryabhaṭīya) were recorded by his scholiast Bhāskara I (629
ad) hailing from Valabhī in Gujarat, in Ch. vii of his Mahābhāskarīya. The
above work of Āryabhaṭa was also mentioned by Varāhamihira (died 587 ad)
of Kāpitthaka near Ujjain, Govindasvāmī (ninth century) of Kerala, Mallikār-
juna Sūri (1178 ad) of Veṅgī in Āndhra, Maithila Caṇḍeśvara of Benaras,
Rāmakṛṣṇa Ārādhya (1472 ad) of Āndhra, Bhūdhara (1572 ad) of Kampil in
Uttar Pradesh, and Tamma Yajvā (1599 ad) of Ahobila in Āndhra. This work
of Āryabhaṭa was famous for its description of the astronomical instruments
particularly the water clocks, and has been remembered by the commentators
of the Sūryasiddhānta while commenting on the Yantrādhyāya of that work.
The commentator Rāmakṛṣṇa has even quoted as many as 34 verses from that
work. These verses were discussed by me in the said paper. But this is not all
that is known regarding that work. The above mentioned commentators of
the Sūryasiddhānta have given some more information regarding the contents
of that work which is otherwise unknown to us. The object of the present
paper is to throw light on this information.

* K. S. Shukla, Indian Journal of History of Science, Vol. 12, No. 2 (1977), pp. 181–186.
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2 Time from shadow

Mallikārjuna Sūri (1178 ad) states the following method for finding time from
the gnomonic shadow and ascribes it to the Āryabhaṭasiddhānta:

When the Sun is in the signs of Scorpion, (Sagittarius), Capricorn
or Aquarius, then, as a rule, and elsewhere too, if it is within two
ghaṭīs before or after noon, the measure of the gnomonic shadow
in terms of digits (aṅgulas) is equīvalent to time in terms of ghaṭīs.
At that time one might get an approximate estimate of time in the
manner stated in the Āryabhaṭasiddhānta. If you ask how, then
proceed like this: If it is 1

2 of a ghaṭī, or 1 ghaṭī, or 1 1
2 ghaṭīs, or

any number of ghaṭīs not exceeding two before noon, then (having
constructed a circle on level ground and having drawn the east-
west and north-south lines through its centre) set up a gnomon of
9 digits on the line directed towards the east from the centre of
the circle in such a way that the tip of the shadow may fall on the
north-south line passing through the centre of the circle. Then if
the distance between the centre of the circle and the foot of the
gnomon is 1

2 of a digit, it would indicate that 1
2 of a ghaṭī is to

elapse before noon. If the distance is one digit, it is 1 ghaṭī before
noon, and if 1 1

2 digits, then it is 1 1
2 ghaṭīs before noon.

If the desired time is (within 2 ghaṭīs) after noon, then one should
set up a gnomon of 9 digits on the line going towards the west from
the centre. If the distance between the centre and the gnomon is
1
2 of a digit, it is 1

2 of a ghaṭī past noon; if 1 digit, it is 1 ghaṭī past
noon; and if 1 1

2 digits, it is 1 1
2 ghaṭīs past noon. But this method

would work only when the gnomon is set up in such a way that
the tip of its shadow falls on the north-south line (passing through
the centre).1

Tamma Yajvā,2 too, has ascribed this method to the Āryabhaṭasiddhānta.

3 Possibility of an eclipse

Mallikārjuna Sūri informs us that the possibility of an eclipse was discussed
in the Āryabhaṭasiddhānta in the following way:

Adding 6 signs to the Sun at a parva (full moon or new moon),
one gets the Earth’s shadow. This is the eclipser of the Moon.
When it is equal to the Moon’s node, we have a total eclipse of

1Mallikārjuna’s commentary on Sūryasiddhānta, iii. 35.
2In his commentary on Sūryasiddhānta, iii. 35.
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the Moon. A solar eclipse will also be total provided the Moon’s
latitude corrected for parallax happens to be zero at that time.
Even when the Moon’s latitude exists, a partial eclipse of the Sun
will be possible provided the parallax in latitude is less than half
the sum of the diameters of the eclipsed and eclipsing bodies. Thus,
at places where the equinoctial midday shadow is 1 digit, parallax
in latitude is always less than half the sum of the eclipsed and
eclipsing bodies. Where the equinoctial midday shadow is 5 digits,
there the parallax in latitude is sometimes less and sometimes
equal to half the sum of the diameters of the eclipsed and eclipsing
bodies. When the parallax in latitude amounts to half the sum of
the eclipsed and eclipsing bodies, then, if the Moon’s latitude is
zero, a solar eclipse does not occur. Where the equinoctial midday
shadow is 9 digits, there the parallax in latitude is sometimes less
than, sometimes equal to, and sometimes greater than half the
sum of the diameters of the eclipsed and eclipsing bodies. When
the former is equal to or greater than the latter, a solar eclipse is
not possible provided the Moon’s latitude (at new Moon) is zero.
But all this happens only when the longitude of the eclipsed body
is equal to that of the Moon’s node.

When the distance of the Shadow or the Sun from the Moon’s
node is 12◦ and also if the Moon’s velocity per day amounts to
12◦20′, a lunar eclipse certainly does not occur anywhere. When
this distance is less than 12◦ and the Moon’s velocity greater than
12◦20′, then there is a possibility of a lunar eclipse. But when the
distance is 13◦ and the Moon’s velocity 13◦20′, even then a lunar
eclipse is impossible. When the distance is less than that (and
the Moon’s velocity greater than 13◦20′), there is a possibility of
a lunar eclipse. Again, when the distance of the Shadow or the
Sun from the Moon’s ascending node exceeds 14◦ and also if the
Moon’s velocity is 14◦20′, a lunar eclipse is impossible. (In fact)
when the distance is 14◦, a lunar eclipse is always impossible. In
that case, the Moon’s velocity does not play any role. Hence, one
should proceed to calculate a lunar eclipse only when the said
distance is less than 14◦.

In the case of a solar eclipse too, at places where the equinoctial
midday shadow is 1 digit and the distance of the Earth’s shadow
or the Sun from the Moon’s ascending node amounts to 14◦, a so-
lar eclipse is impossible. At those very places, if the said distance
is less than 14◦, there is a possibility of a solar eclipse. Where
the equinoctial midday shadow is 5 digits and the said distance
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is 16◦, a solar eclipse is impossible. But if the said distance is
less than 16◦, there is a possibility of a solar eclipse. In a place
where the equinoctial midday shadow is 9 digits and the Sun is at
the last point of the sign Gemini, the length of the day amounts
to 36 ghaṭīs; and when at the end of the sign Sagittarius, the
day amounts to 24 ghaṭīs. Where the equinoctial midday shadow
exceeds 9 digits, there is no habitation. Hence, knowledge of oc-
currence of eclipses for those places is of no use. People do not
live beyond 600 yojanas from the equator. The region lying north
of that is inaccessible to man.

All this has been explained in detail in the Āryabhaṭasiddhānta.3

Tamma Yajvā and Rāmakṛṣṇa Ārādhya too have included the above dis-
cussion of the possibility of an eclipse in their commentaries on the Sūrya-
siddhānta.4

4 Lord of the parva (New Moon or Full Moon)

Mallikārjuna Sūri says:

Although the method of finding the lord of the parva is not dis-
cussed here, but this topic having been discussed in the Āryabhaṭa-
siddhānta and also because it is necessary at this place it is being
stated here. The sum of the revolutions performed since the begin-
ning of creation by the Sun and the Moon’s ascending node at the
desired parva, multiplied by 2, gives the number of parvas elapsed
since the time of creation. (These are presided over by the seven
lords Brahmā, Indra, Śakra, Kubera, Varuṇa, Agni, and Yama in
the serial order). Dividing the number of parvas elapsed by 7, we
get the number of complete cycles of the parvas. The number that
is obtained as the remainder, counted with Brahmā, gives the lord
of the current parva.5

Tamma Yajvā has also quoted this rule.6

It is noteworthy that Mallikārjuna quotes the above rule for the reason
that it was stated in the Āryabhaṭasiddhānta. This probably suggests that
the Āryabhaṭasiddhānta was an important work of the Sūryasiddhānta school.

3Mallikārjuna’s commentary on Sūryasiddhānta, iv. 6.
4iv. 6.
5Mallikārjuna’s commentary on Sūryasiddhānta, iv. 7–8.
6See Tamma Yajvā’s commentary on Sūryasiddhānta, i. 67.
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5 Observation of the planets

The Sūryasiddhānta, the Brāhmasphuṭasiddhānta, the Śisyadhīvṛddhida and
other works on Hindu astronomy describe the method of observing the planets.
According to Mallikārjuna Sūri, the same method occurred in the Āryabhaṭa-
siddhānta also. It might be explained briefly as follows:7

First of all calculation was made of the length of the gnomonic
shadow cast by the planet. The length of this gnomon was taken
to be equal to the height of the observer’s eye. Then two bamboos
were set up vertically near the gnomon in the direction contrary
to the shadow and a pipe (yaṣṭi) of 5 cubits in length was tied to
these bamboos in the direction of the hypotenuse of shadow, in
such a way that one end of the pipe was just at the top of the
gnomon. This done, the planet was seen by the observer through
the pipe by placing his eye at the top of the gnomon.

Sometimes the planet was seen indirectly in water, oil, or mirror
placed at the tip of the shadow. For this purpose another gnomon
of equal length was set up in the direction of the shadow at a
distance equal to double the shadow. The same method was used
for the observation of the conjunction of two planets. When the
two planets were in close conjunction, only one pipe was used. But
when they were separated by a distance, two pipes were used, one
directed towards one planet and the other towards the other. One
end of each pipe was at the top of the gnomon, so that the observer
could see both the planets with his eye at the top of the gnomon.

This method was used also to see the Moon at its first visibility,
the elevation of the lunar horns and the eclipses of the Sun and
the Moon.

6 Distances of Mercury and Venus at rising or setting

Mallikārjuna Sūri writes:

According to the Āryabhaṭasiddhānta, the time-degrees of the he-
liocentric distance of Venus at the time of its rising or setting are
9 when Venus is in swift motion, and 7 when in retrograde mo-
tion. The corresponding time-degrees of Mercury are 13 for swift
motion and 12 for retrograde motion.8

7See Mallikārjuna’s commentary on Sūryasiddhānta, vii. 12.
8Mallikārjuna’s commentary on Sūryasiddhānta, ix. 9–11.
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It might be mentioned here that the Khaṇḍakhādyaka gives 9 time-degrees for
Venus and 13 time-degrees for Mercury which correspond to their swift motion.
Those for retrograde motion are not given. From the above statement of
Mallikārjuna Sūri we find that the Āryabhaṭasiddhānta contained time-degrees
for swift as well as retrograde motions of Mercury and Venus.

7 Rising and setting of Canopus (Agastya)

Mallikārjuna Sūri writes:

Canopus sets when the Sun’s longitude amounts to 2 signs minus
the local latitude. It rises when the Sun’s longitude is 6 signs
minus that. Thus we have stated here the view of the Āryabhaṭa-
siddhānta as an alternative method.9

That this method really belonged to the Āryabhaṭasiddhānta is confirmed by
its occurrence in the Pūrva-Khaṇḍakhādyaka. See Bina Chatterjee’s edition,
Vol. 2, p. 147, lines 9–10.

8 The shadow instruments

Tamma Yajvā describes the shadow instruments of the Āryabhaṭasiddhānta as
follows:

We now describe the (shadow) instruments described there (i.e. in
the Āryabhaṭasiddhānta). The gnomon (śaṅku) is of three kinds.
The first is cylindrical in shape, 12 digits high, and 2 digits in
diameter. The second is conical in shape, 2 digits in diameter at
the base, 12 digits in height, pointed at the top, and having two
horizontal holes at the bottom and top (separated by a distance
of 12 digits) with two nails fixed to them. This gnomon having
been set up vertically, a thread of 12 digits in length should be
suspended between the two nails. The third gnomon is cylindrical
in shape with small diameter, and its height is 12 digits. This
(last) gnomon is fit for use by all people. The yaṣṭi-yantra (i.e.
the pipe) is a smooth cylindrical pipe which is as many digits in
length as there are degrees in a radian (i.e. 57). The dhanur-yantra
(i.e. the semi-circle) is a semi-circle whose radius has as many
digits as there are degrees in a radian, and whose circumference
is graduated with the marks of degrees, and which is furnished
with the chord and the arrow. The cakra-yantra (i.e. the circle)

9Mallikārjuna’s commentary on Sūryasiddhānta, ix. 17.
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is a circle (or hoop) whose radius is as many digits in length as
there are degrees in a radian, and whose circumference bears 360
marks of degrees as well as two holes one at each equinoctial point.
The chatra-yantra (i.e. the umbrella) is constructed like the cakra-
yantra with a vertical rod at its centre. The rod should be made
as big as there are digits in a radian.10

9 The water-clocks

Describing the water-clocks of the Āryabhaṭasiddhānta, Tamma Yajvā says:

Now I give the method of knowing time as taught by Āryabhaṭa
and others. First of all one should construct a high cylindrical
pillar with a (uniform cylindrical) cavity inside and a hole at the
bottom, and fill it with water. Then, keeping an eye on the clock,
allow the water to flow out through the hole at the bottom. Now
divide the digits of the height of the pillar by the ghaṭīs in which
the water has flown out (of the pillar): this would give the digits
corresponding to one ghaṭī. The pillar should then be surmounted
by the effigy of a peacock, man or monkey, or of a tortoise or some
bird constructed out of bamboo pieces and leather. (A needle
should then be inserted horizontally through the belly of the effigy;
one end of a cord should be tied to it in the middle, some portion
of the cord should be wrapped on it in coils, and the other end of
the cord should be tied to a sling carrying a dry hollow gourd filled
with some mercury; and the sling containing gourd should then be
put on water in the cavity of the pillar underneath, so that, as
the water flows out of the cavity through the hole at the bottom,
the gourd goes down and the needle rotates.) A cord should also
be hung at the end of the needle which is made to pass through
the belly of the bird, for the knowledge of time. The number of
coils that the thread makes on the needle indicates the number of
ghaṭīs elapsed. Or, tie a cord to the sling carrying a dry gourd
full of mercury and throw the sling into the cylindrical cavity full
of water underneath the effigy of the man or peacock etc., and let
the other end of the cord go out of the mouth of the man etc. and
hang there. This outer cord should be made to pass through 60
beads, separated by equal intervals of one ghaṭī. This done, as the
water flows out of the cavity, the beads enter the mouth of the
man etc., one by one, at the end of every ghaṭī. In this way one

10Tamma Yajvā’s commentary on Sūryasiddhānta, xiii, 20–21.
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might have a proper knowledge of time.11

The above description of the shadow and water instruments closely agrees
with that given in the verses cited by Rāmakṛṣṇa Ārādhya in his commentary
on the Sūryasiddhānta. For details one might refer to Gaṇita, Vol. 18, No. 1,
pp. 83–105.

11Tamma Yajvā’s commentary on Sūryasiddhānta, xiii. 22–25.
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Early Hindu methods in spherical astronomy ∗

1 Introduction

The Hindu astronomers did not possess a general method for solving prob-
lems in spherical astronomy, unlike the Greeks who systematically followed
the method of Ptolemy (c. 150 ad), based on the well known theorem1 of
Menelaus (90 ad). But, by means of suitable constructions within the armil-
lary sphere, they were able to reduce many of their problems to comparison
of similar right-angled plane triangles. In addition to this device, they some-
times also used the theory of quadratic equations, or applied the method of
successive approximations. In spite of this, some of their problems could not
be solved accurately till the twelfth century ad when complete and accurate
solutions to all astronomical problems, based on the solution of right-angled
or oblique spherical triangles, were obtained in India. This was done by the
systematic use of the formula

R sin b = R sin c× R sinB
R

for the spherical triangle ABC, right-angled at C, and the credit of this
achievement is due to the mathematician Nīlakaṇṭha (1500 ad) of Kerala in
south India. Unfortunately, the discoveries made by him remained unknown
in north India, and the astronomers there continued the work of perfecting
methods in spherical astronomy up to the end of the seventeenth century.
It is worthy of note that all through the history of development of methods

in spherical astronomy in India, we do not find any trace of the use of the the-
orem of Menelaus, or of the method of projection occurring in the Analemma
of Ptolemy.2

* K. S. Shukla, Gaṇita, Vol. 19, No. 2 (1968), pp. 50–72.
1“If the sides BC,AC, and AB of a spherical triangle ABC be intersected by a transversal
at the points L,M , and N respectively, then

sin B̃L

sin L̃C

sin C̄M

sin M̄A

sin ĀN

sin N̄B
= 1.”

2Braunmühl misunderstood the Hindu methods and supposed (Geschichte der Trigonome-
trie, pp. 38–42) that they were based on the method of projection given in the Analemma,
but Sengupta has proved his assumption to be wrong. See P. C. Sengupta, Greek
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Of the methods taught by Āryabhaṭa I (499 ad) and demonstrated by his
scholiast Bhāskara I (629 ad), some are based on comparison of similar right-
angled plane triangles, and others are derived from inference. Brahmagupta
is probably the earliest astronomer to have employed the theory of quadratic
equations and the method of successive approximations to solving problems
in spherical astronomy. In the present paper we shall discuss the methods
found in the works of Bhāskara I and shall also throw light on the innovations
made by Brahmagupta.

2 Preliminary methods in plane trigonometry

2.1 Measurement of arcs

In Hindu trigonometry use of angles has not been made, and, instead of
referring to the angle at a point, mention is made of an arc of a circle, centred
at that point, subtending that angle. A circle is assumed to contain 3438
units in the radius and 21600 units in the circumference. These units are
called kalā or liptā and correspond to minutes of arc in modern trigonometry.
An arc is more commonly measured in kalās (minutes), but the other circular
measures are also used. These are rāśi (sign), aṁśa or bhāga (degree), vikalā
or viliptā (second), and tatparā (third). Besides these terms, Bhāskara I has
also used the terms bhavana (sign), maurika (minute), vimaurika (second),
and sukṣmakā (second).
It is customary to use the term trijyā (radius) for its length, i.e., 3438′.3

We have denoted the radius by the letter R, and have meant by it 3438′ in
accordance with the Hindu usage.

2.2 Trigonometrical functions

Only four trigonometrical functions have been used by the Hindus, viz. jyā,
koṭijyā, utkramajyā, and koṭyutkramajyā. The corresponding functions in mod-
ern trigonometry are sine, cosine, versed-sine, and coversed-sine respectively.
They are related by the following equalities:

jyā θ = R× sin θ = R sin θ (where R = 3438′),

koṭijyā θ = R cos θ,
utkramajyā θ = R versin θ,

koṭyutkramajyā θ = R covers θ.

and Hindu Methods in Spherical Astronomy, Appendix II to his translation of the
Khaṇḍakhādyaka, Calcutta (1934), pp. 172 ff. It may be mentioned that Sengupta is
at places not very accurate in demonstrating the Hindu methods.

3It may be noted that 3438 denotes the number of minutes of arc in a radian.
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For convenience, we have omitted the multiplication sign, and have trans-
lated jyā by Rsine, koṭijyā by Rcosine, utkramajyā by Rversed-sine, and koṭyu-
tkramajyā by Rcoversed-sine. Bhāskara I has used only three trigonometrical
functions, jyā, koṭijyā, and utkramajyā. The function koṭyutkramajyā has been
used by his commentator Śaṅkaranārāyāṇa (869 ad).4

2.3 The geometrical significance of jyā θ etc.

Let θ denote the number of minutes in the arc AB of a circle centred at O
(see Figure 1), and suppose that AD is perpendicular to the radius OB. Also
let OC be perpendicular to OB, and AE perpendicular to OC. Then jyā θ is
defined by the length AD, koṭijyā θ by the length AE, utkramajyā θ by the
length DB, and koṭyutkramajyā θ by the length EC.
It is easy to see that

AD = OA sin θ, or R sin θ,
and OD = R cos θ.

2.4 Calculation of R sin θ, θ < 90◦

The value of the Rsine of an acute angle (or arc)5 θ is calculated by means of
a table of Rsine-differences.6 The table mentioned by Bhāskara I is the same
as given in the Āryabhaṭīya.7

4See his commentary on LBh (=Laghubhāskarīya), ii. 31–32; iv. 17; v. 13–14.
5As the radius of the circle is assumed to be one radian, it is immaterial whether we say
“angle θ” or “arc θ”.

6See our notes on MBh (=Mahābhāskarīya), iv. 3–4 (i).
7See Ā (=Āryabhaṭīya), i. 12.
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Bhāskara I8 has also stated the following approximate formula for calculat-
ing the Rsine of an acute angle without the use of a table:

R sin θ = R(180◦ − θ)θ

40500− (180◦ − θ)θ

4

,

where θ is in degrees.
This formula, in modern notation, may be written as

sinλ =
16λ(π − λ)

5π2 − 4λ(π − λ)
,

where λ radians correspond to θ degrees.
Putting λ = π

3 ,
π
4 , and

π
7 , we get

sin
(π
3

)
= .8648 . . . , sin

(π
4

)
= .70058 . . . , and sin

(π
7

)
= .4313 . . . ,

which are correct up to two places of decimals. The values of sinπ, sin
(
π
2

)
,

and sin
(
π
6

)
, however, come out to be accurate.9

Bhāskara I ascribes the above approximate formula to Āryabhaṭa I.10 It
occurs in the Brāhmasphuṭasiddhānta11 and in several later works also, such
as the Siddhāntaśekhara,12 and the Līlāvatī.13 Occurrence of this formula in
the Mahābhāskarīya and the Brāhmasphuṭasiddhānta, written about the same
time, shows that it was well known in the first quarter of the seventh century
ad.

2.5 Calculation of R sin θ, θ > 90◦

Bhāskara I makes use of two methods for the purpose.

Method I

The first method is equivalent to the use of the following formulae:

R sin(90◦ + ϕ) = R sin 90◦ −R versinϕ
R sin(180◦ + ϕ) = 90◦ −R versin 90◦ −R sinϕ
R sin(270◦ + ϕ) = R sin 90◦ −R versin 90◦ −R sin 90◦ +R versinϕ,

where ϕ < 90◦.
8In his Mahābhāskarīya (vii. 17–19) and also in his commentary on Ā, i. 11.
9For details regarding the above formula, see our notes on MBh, vii. 17–19.

10See his commentary on Ā, i. 11.
11xiv. 23–24.
12iii. 17.
13See Līlāvatī, Ānandāśrama Sanskrit Series (No. 107), stanza 210, p. 212.
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These formulae were used earlier in the Āryabhaṭīya,14 but they were not
explicitly stated there. W. E. Clark has, therefore, missed the exact signif-
icance of Āryabhaṭa I’s rule in Ā, iii. 22 (i), although his interpretation is
mathematically correct. Use of the above formulae is made by Brahmagupta
also.15 In later works they have been discarded in favour of Method II which
is simpler.

Method II

This method may be explained as follows:
Let the circle ABCD (See Figure 2) denote the mean orbit of a planet,

and A the planet’s apogee from which the mean anomaly is measured anti-
clockwise. AOB, BOC, COD, and DOA are the first, second, third, and
fourth anomalistic quadrants.
When the planet is at P1 in the first quadrant, the arc traversed is AP1

and the arc to be traversed is P1B; when the planet is at P2 in the second
quadrant, the arc traversed is BP2 and the arc to be traversed is P2C; when
the planet is at P3 in the third quadrant, the arc traversed is CP3 and the arc
to be traversed is P3D; and when the planet is at P4 in the fourth quadrant,
the arc traversed is DP4 and the arc to be traversed is P4A.
14iii. 22 (i). Also see commentaries on it.
15See BrSpSi (Brāhmasphuṭasiddhānta), ii. 15–16.
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In odd quadrants, the arc traversed is called bhuja and the arc to be tra-
versed is called koṭi; and in even quadrants, the arc traversed is called koṭi and
the arc to be traversed is called bhuja. The Rsine of the bhuja is defined to be
the Rsine of the corresponding anomaly, and the Rsine of the koṭi is defined
to be the Rcosine of the corresponding anomaly. The Rsine is positive in the
first and the second quadrants, and negative in the third and fourth quad-
rants; the Rcosine is positive in the first and fourth quadrants, and negative
in the second and third quadrants.
Thus we have

R sin ĀP1 = P1E, R cos ĀP1 = P1F ;

R sin ĀP2 = P2G, R cos ĀP2 = −P2H;

R sin ĀP3 = −P3K, R cos ĀP3 = −P3L;

R sin ĀP4 = −P4M, R cos ĀP4 = −P4N.

It can be easily seen that this method is equivalent to the application of the
following formulae:

R sinϕ = R sinϕ,
R sin(90◦ + ϕ) = R sin(90◦ − ϕ),

R sin(180◦ + ϕ) = −R sinϕ,
and R sin(270◦ + ϕ) = −R sin(90◦ − ϕ),

where ϕ < 90◦.

3 Solution of right-angled spherical triangles

Given two elements (not both angles) of a right-angled spherical triangle,
Bhāskara I could solve it completely.16 The results enunciated by him corre-
spond to the following relations between the sides and angles of a spherical
triangle ABC, right-angled at C: (see Figure 3)

sin b = sin c sinB
sin c cosB = cos b sin a

cos c = cos a cos b
tan c cosB = tan a
tanB sin a = tan b.

As already pointed out, Bhāskara I did not adopt any systematic method for
deriving the above results. The methods used by him can be best illustrated
by means of his own problems.
16The methods used by him are the same as taught by Āryabhaṭa I.
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3.1 Problem 1

Given the longitude (λ) of the Sun, and the obliquity (ϵ) of the ecliptic, to
find the declination (δ) of the Sun.

In Figure 4, let O be the centre of the armillary sphere; BD a quadrant
of the equator, P its pole; BE a quadrant of the ecliptic, A the Sun. PGB,
PAC, and PED are the secondaries to the equator. G is the point where the
Sun’s diurnal circle (represented by the dotted circle) intersects PGB. B is
evidently the first point of Aries.
Let CH be the perpendicular from C to OB, AK the perpendicular from A

to IG, KL the perpendicular from K to OB, and EF the perpendicular from
E to OP . Join OC, OE, and LA. OE and LA are the evidently perpendicular
to OB.17

In the triangles AKL and EFO, right-angled at K and F respectively, we
have

KL = R sin ÃC, i.e. R sin δ,

LA = R sin B̃A, i.e. R sinλ,

and

FO = R sin ẼD, i.e. R sin ϵ,
OE = R, the radius of the armillary sphere.

These triangles are evidently similar, and by comparing them we have
KL

FO
=
LA

OE
,

giving18

R sin δ = R sinλ×R sin ϵ
R

.

17All lines within the armillary sphere were shown by means of threads.
18See MBh, iii. 6(i).
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This formula corresponds to

sin δ = sinλ sin ϵ

of modern astronomy. If the radius of the armillary sphere be taken to be
unity, and ABC be any spherical triangle right-angled at C drawn on it, the
above procedure will give

sin b = sin c sinB,

which is the relation between b, c, and B in modern spherical trigonometry.
Note: The triangle AKL is known in Hindu astronomy by the name krānti-

kṣetra (“declination triangle”). It may be noted that the sides of the triangle
FOE are equal to the Rsines of the angles of the triangle AKL, and the
comparison of the triangles AKL and FOE is equivalent to the use of the
Rsine-formula

R sinA
a

=
R sinB

b
=
R sinC

c

corresponding to the sine-formula

sinA
a

=
sinB
b

=
sinC
c
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for the plane triangle ABC. Whenever we use the above Rsine-formula, it
should be understood that we are comparing two similar triangles.

Similar other problems solved by Bhāskara I

1. Given the longitude of the Sun, the longitude of the rising point of the
ecliptic, and latitude of the place, to determine the altitude of the meridian-
ecliptic point.19

2. Given the longitude of the Moon, the longitude of the Moon’s ascending
node, and the inclination of the Moon’s orbit to the ecliptic, to find the
latitude of the Moon.20

3. Given the longitude of the rising point of the ecliptic, the longitude of
the Moon’s ascending node, and the inclination of the Moon’s orbit, to
determine the latitude of the rising point of the ecliptic.21

4. Given the longitude of the meridian-ecliptic point and of the Moon’s as-
cending node, to determine the latitude of the meridian-ecliptic point.22

5. Given the zenith distance of the meridian-ecliptic point and the amplitude
(agrā) of the rising point of the ecliptic, to determine the arcual distance
between the central-ecliptic and meridian-ecliptic points.23

6. Given the Sun’s declination, and the obliquity of the ecliptic, to obtain the
Sun’s longitude.24

7. Given the zenith distance and declination of the Sun when it is on the
prime vertical, to determine the hour angle of the Sun.25

3.2 Problem 2

Given the longitude (λ) and declination (δ) of the Sun, and the obliquity (ϵ)
of the ecliptic, to obtain the right-ascension (α) of the Sun.

See Figure 4. Comparing the similar triangles AKL and EFO, we have
AK

LA
=
EF

OE
,

or AK =
EF × LA

OE
. (1)

19MBh, iii. 21.
20LBh, iv. 8.
21MBh, v. 14.
22MBh, v. 16 (ii).
23MBh, v. 19.
24MBh, iii. 16.
25MBh, iii. 40.



588 Early Hindu methods in spherical astronomy

Again, comparing the similar triangles AKI and CHO, we have

CH

OC
=
AK

IA
,

or CH =
AK ×OC

IA
.

Using (1), we get

CH =
EF × LA

OE
× OC

IA

=
LA× EF

IA
, because OC = OE.

Now, in Figure 4, CH = R sinα, LA = R sinλ, EF = R cos ϵ, and IA =

R cos δ, therefore
R sinα =

R sinλ×R cos ϵ
R cos δ ,

which is the formula stated by Bhāskara I.26

If the radius of the armillary sphere be taken to be unity and the triangle
ABC be assumed to be any spherical triangle right-angled at C, the above
procedure will give

sin c× cosB = cos b× sin a,

which is the relation between a, b, c, and B in modern spherical trigonometry.

3.3 Problem 3

Given the declination (δ) of the Sun when it is on the prime vertical, and the
latitude (ϕ) of the place, to determine the Sun’s altitude (a).

Figure 5 is a triangle drawn within the armillary sphere. S is the Sun (on
the armillary sphere), SA is the perpendicular drawn from S to the plane of
the horizon. Since S is on the prime vertical, SA is evidently perpendicular
to the east-west line. SB is perpendicular to the Sun’s rising-setting line. AB
evidently denotes the distance between the east-west and the Sun’s rising-
setting lines. AC is perpendicular to SB.
In the triangle SAB right-angled at A, we have

SA = R sin a,
AB = R sin(Sun’s agrā),

∠SBA = 90◦ − ϕ,

and ∠ASB = ϕ.

26MBh, iii. 9.
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And in the triangle SCA, right-angled at C, we have

SA = R sin a,
AC = R sin δ,

∠ASC = ϕ,

and ∠SAC = 90◦ − ϕ.

Applying the Rsine-formula to the triangle SCA, we obtain
SA

R sin∠SCA =
AC

R sin∠ASC ,

or SA =
AC ×R sin∠SCA

R sin∠ASC ,

i.e., R sin a =
R sin δ ×R

R sinϕ , (2)

which is the result stated by Bhāskara I.27

In modern astronomy, the above problem requires the solution of the tri-
angle SZP (see Figure 6), in which Z is the zenith, P is the celestial north
pole, and S the Sun on the prime vertical. ZP = 90◦ − ϕ, ZS = 90◦ − a,
SP = 90◦ − δ, and ∠SZP = 90◦. Applying the cosine formula of modern
spherical trigonometry, we get sin a = sin δ

sinϕ which is the same as (2) in mod-
ern form.
The above method illustrates how the Hindus solved a right-angled spherical

triangle when the three sides were given. Their result corresponds to the
relation

cos c = cos a cos b.
for a triangle ABC, right-angled at C, in modern spherical trigonometry.
27See LBh, iii. 22.
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Z P

S

Figure 6

Other similar problems solved by Bhāskara I

1. Given the longitude (λ) of the Sun when it is on the prime vertical, the
obliquity of the ecliptic (ϵ), and the latitude (ϕ) of the place, to find the
Sun’s altitude (a).28

Bhāskara I gives the formula:

R sin a =
R sin(Sun’s agrā)×R cosϕ

R sinϕ ,

where R sin(Sun’s agrā) = R sinλ×R sin ϵ
R cosϕ .

In Figure 4, if we assume BC to be the equator, BA to be the local horizon,
and the dotted circle GA to be the Sun’s diurnal circle, then in the triangles
AKL and EFO, we have

AL = R sin(Sun’s agrā),
KL = R sin δ,

and OF = R cosϕ.

Therefore, comparing those triangles, we get

AK

OE
=
KL

OF
,

giving
R sin(Sun’s agrā) = R sin δ ×R

R cosϕ =
R sinλ×R sin ϵ

R cosϕ ,

28MBh, iii. 37–38.
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because
R sin δ = R sinλ×R sin ϵ

R
.

Now from the triangle SAB, right-angled at A, in Figure 5, we have

SA =
AB ×R sin(∠SBA)

R sin(∠ASB)
,

i.e., R sin a =
R sin(Sun’s agrā)×R cosϕ

R sinϕ .

2. Given the altitude of the Sun when it is on the prime vertical, and the
latitude of the place, to obtain the Sun’s longitude.29

3. Given the longitude of the rising point of the ecliptic, the obliquity of the
ecliptic, and the latitude of the place, to determine the amplitude of the
rising point of the ecliptic.30

3.4 Problem 4

Given the longitude (λ) of the Sun when it is on the prime vertical, the obliq-
uity (ϵ) of the ecliptic, and the latitude (ϕ) of the place, to find the hour angle
(H) of the Sun.

Bhāskara I gives the formula31

R cosH =
R sinλ×R sin ϵ×R cosϕ

R cos δ ×R sinϕ . (3)

The problem is really to obtain the hour angle H, when the declination δ of
the prime vertical Sun, and the local latitude ϕ are known.
From the triangle SCA, right-angled at C, in Figure 5, we have

SC =
R sin δ ×R cosϕ

R sinϕ .

But SC bears the same ratio to the radius of the Sun’s diurnal circle as
R cosH bears to the radius of the equator, therefore

SC =
R cosH ×R cos δ

R
.

Hence we get
R cosH =

R sin δ ×R cosϕ×R

R cos δ ×R sinϕ . (4)

29MBh, iii. 41.
30MBh, v. 13.
31See, MBh, iii. 39.
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Formula (3) is obtained by substituting R sinλ×R sin ϵ
R for R sin δ, (vide Problem

1).
Formula (4) corresponds to the relation

cosB =
tan a
tan c

between a, c, and B of a spherical triangle ABC, right-angled at C, in modern
spherical trigonometry.

3.5 Problem 5

Given the declination (δ) of the Sun, and the latitude (ϕ) of the place, to
determine the ascensional difference (c) of the Sun.

In Figure 4, let us suppose that BA is the local horizon, BC the equator
and P its pole, and the dotted circle the Sun’s diurnal circle. Then in the
triangle ABC, BC = c, AC = δ, and < ABC = 90◦ − ϕ. Also CH = R sin c,
KL = R sin δ, EF = R sinϕ, and FO = R cosϕ.
Comparing the similar triangles AKL and EFO, we get

AK

EF
=
KL

FO
,

or AK =
KL× EF

FO
,

i.e., AK =
R sin δ ×R sinϕ

R cosϕ . (5)

Again, comparing the similar triangles CHO and AKI, we have

CH

AK
=
OC

IA
,

or CH =
OC ×AK

IA
,

i.e., R sin c = R×AK

R cos δ

=
R sin δ ×R sinϕ×R

R cos δ ×R cosϕ , using (5),

which is the formula stated by Bhāskara I.32

This formula corresponds to

sin a =
tan b
tanB

for a spherical triangle ABC, right-angled at C, in modern trigonometry.
32See MBh, iii. 7.
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Approximate solution

The following problem shows that Bhāskara I was unable to write down a
relation involving two angles of a spherical triangle.

3.6 Problem 6

Given the Sun’s longitude (λ), and the obliquity (ϵ) of the ecliptic, to obtain
the ayanavalana (av).
In Figure 4, as already explained, BC is the equator, BA is the ecliptic,

and A is the Sun. Thus, in spherical triangle ABC

AB = λ,

∠ABC = ϵ,

∠BAC = 90◦ − av,
and < ACB = 90◦.

Both Bhāskara I and Brahmagupta were unable to get the desired relation
between λ, ϵ and av, and have given only approximate solutions to the above
problem. Thus, Brahmagupta gives

R sin(av) = R sin ϵ×R sin(90◦ + λ)

R
,

and Bhāskara I states

R sin(av) = R sin ϵ×R versin(90◦ + λ)

R
,

Both these approximations are divided from inference.33 It may be mentioned
that Brahmagupta’s approximation is better than that of Bhāskara I. The
accurate solution to the above problem was given by Bhāskara II (1150 ad).34

4 Solution of oblique spherical triangles

As regards an oblique spherical triangle, Bhāskara I could write down the
relation between the three sides and any one of the angles in the form

R cos a =
R×R cos b×R cos c+R sin b×R sin c×R cosA

R2
,

corresponding to the cosine formula of modern spherical trigonometry. He
has solved the following problems accurately.
33For details see our notes on MBh, v. 45.
34See SiŚi, I, v. 21(ii)–22(i). Also see SiŚi. II, viii. 32 (ii) ff.
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4.1 Problem 7

Given the Sun’s declination (δ), the time elapsed since sunrise (say t), and
the latitude (ϕ) of the place, to obtain the Sun’s altitude (a).

Bhāskara I’s solution to this problem is35

R sin a =
C ×R cosϕ

R
,

where,

C =
R sin(t− Sun’s ascensional difference)×R cos δ

R
+
R sinϕ×R sin δ

R cosϕ .

Since
t− Sun’s ascensional difference = 90◦ −H,

where H is the Sun’s hour angle (east), therefore the above result reduces to

R sin a =

[
R cosH ×R cos δ

R
+
R sinϕ×R sin δ

R cosϕ

]
× R cosϕ

R

=
R×R sinϕ×R sin δ +R cosϕ×R cos δ ×R cosH

R2
,

which corresponds to the following formula in modern astronomy:

sin a = sinϕ sin δ + cosϕ cos δ cosH.

Other similar problems solved by Bhāskara I are:

1. Given the declination and altitude of the Sun, and the latitude of the place,
to obtain the time elapsed since sunrise.36

This is the converse of Problem 7.

2. Given the declination (δ) and altitude (a) of the Sun, and the latitude (ϕ)
of the place, to determine the distance of the Sun’s projection on the plane
of the celestial horizon from the east-west line (i.e. the so called bāhu.)
Assuming the Sun’s azimuth A to be less than 90◦, Bhāskara I’s formula
for the bāhu is:

bāhu =
R sin a×R sinϕ

R cosϕ +
R×R sin δ
R cosϕ .

But in terms of A and a,

bāhu =
R cosA×R cos a

R
.

35See MBh, iii. 25–26, 29–30(i), 30(ii)–31(i).
36MBh, iii. 27–29.
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It follows that
R cosA×R cos a

R
=
R sin a×R sinϕ

R cosϕ +
R×R sin δ
R cosϕ ,

which corresponds to the following relation in modern astronomy:

sin δ = sin a sinϕ+ cos a cosϕ cosA.

Approximate solutions

Both Bhāskara I and Brahmagupta could not derive the correct relation be-
tween the four contiguous elements of an oblique spherical triangle, and have
given only approximate solutions in such a case (see Problem 8). They were
also probably unaware of the relation between the opposite sides and angles
of an oblique triangle.

4.2 Problem 8

Given the hour angle (H) and the declination (δ) of the Sun, and the latitude
(ϕ) of the place, to obtain the akṣavalana.

The akṣavalana is the angle subtended at the Sun by the arc of the celestial
sphere joining the north pole of the equator and the north point of the horizon.
Bhāskara I’s solution to the above problem is37

R sin(akṣavalana) = R versinH ×R sinϕ
R

.

Brahmagupta’s solution is38

R sin(akṣavalana) = R sinH ×R sinϕ
R

.

Both the solutions are approximate and based on inference. The latter is the
better than the former.39

The accurate solution to the above problem was given by Bhāskara II (1150
ad). Stated in modern notation, his solution is40

sin(akṣavalana) = sinH × sinϕ
cos y ,

where
cos y = sin δ cosϕ− cos δ sinϕ cosH.

37See MBh, v. 42.
38See BrSpSi, iv. 6.
39Brahmagupta has stated a still better formula in BrSpSi, x. 17.
40See SiŚi, II, viii. 66(ii)–67.
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Note: Bhāskara I’s formulae for the visibility corrections also are approx-
imate, but they need not be mentioned here. The reader is referred to MBh,
vi. 1–3, where they have been discussed in detail.

5 New methods introduced by Brahmagupta

5.1 Use of the theory of quadratic equations

Bhāskara I seems to have felt difficulty in cases where the required quantity is
obtained in terms of its tangent (i.e. Rsine/Rcosine), and not in terms of its
Rsine or Rcosine, for he has not considered any such problem. Brahmagupta
has resolved the above difficulty by making use of the theory of quadratic
equations, as the following problem solved by him will show.

5.1.1 Problem 9

Given the hour angle (H) of the Sun when it is on the prime vertical, and the
latitude (ϕ) of the place, to obtain the declination (δ) of the Sun.

Brahmagupta states the result as follows:41

R sin δ = R cosH × s√
122 +

(
R cos H×s

R

)2 ,
where s denotes the equinoctial midday shadow. Replacing s

12 by R sin ϕ
R cos ϕ , the

above result may be written as

R sin δ = R cosH ×R sinϕ√
(R cosϕ)2 +

(
R cos H×R sinϕ

R

)2
which is derived from the formula42

R cosH =
R sin δ ×R cosϕ×R

R cos δ ×R sinϕ

by solving it as a quadratic in R sin δ.

5.1.2 Problem 10

Given the Sun’s ascensional difference (c), and the latitude (ϕ) of the place,
to obtain the Sun’s declination (δ).

41See BrSpSi, xv. 24–25.
42See Problem 4.
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Brahmagupta gives the following formula:43

R sin δ = 12R×R sin c√
122(R sin c)2 + (R× s)2

,

which is obtained from the result44

R sin c = R sin δ ×R sinϕ×R

R cos δ ×R cosϕ

by solving it as a quadratic in R sin δ, and then replacing R sin ϕ
R cos ϕ by s

12 .

5.1.3 Problem 11

Given the declination (δ) of the Sun when its azimuth is 135◦, and the latitude
of the place (ϕ), to find the altitude (a) of the Sun.

Brahmagupta states the result as follows:45

R sin a =
√
x+ y2 ± y,

where x =

[
1

2
R2 − {R sin(agrā)}2

]
× 144

(722 + s2)
,

and y =
12s×R sin (agrā)

722 + s2
,

s being the equinoctial midday shadow of a gnomon of 12 units (aṅgulas), +
or − sign being taken according as the Sun is in the northern or southern
hemisphere.
In Figure 7, let S be the Sun (on the armillary sphere) when its azimuth is

135◦, SA the perpendicular from S to the plane of the horizon, and SB the
perpendicular from S to the Sun’s rising-setting line. Then

SA = R sin a,
and SBA = 90◦ − ϕ,

and it can be easily shown that

AB =
R cos a√

2
±R sin(agrā).

Therefore from the triangle SAB, we get

R sin a =

[
R cos a√

2
±R sin(agrā)

]
× R cosϕ
R sinϕ

=
12

s

[
R cos a√

2
±R sin(agrā)

]
.

43See BrSpSi, xv. 36–38.
44See Problem 5.
45See BrSpSi, iii. 54–56.
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BA

S

Figure 7

Solving this as a quadratic in R sin a, we get the result stated by Brahmagupta.

5.2 Use of the method of successive approximations

The method of successive approximations is a common method in Hindu as-
tronomy and has been extensively employed by both Bhāskara I46 and Brah-
magupta. But its use in solving problems in spherical astronomy is probably
first made by Brahmagupta. He has used this method in solving the following
problem.

5.2.1 Problem 12

Given the time (t) elapsed since sunrise when the Sun is on the prime vertical,
and the latitude (ϕ) of the place, to obtain the Sun’s longitude (λ).47

Brahmagupta’s method of solving this problem may be explained as fol-
lows:48

From Figure 5, it is clear that SA (= R sin a) can be easily obtained if, in
addition to latitude (ϕ), we also know the length SB. Since SB is not known,
we assume49

SB = R sin t
as the first approximation I1 to SB. Then from the triangle SAB, the first
approximation R sin a1 to R sin a is given by

R sin a1 =
R sin t×R cosϕ

R
.

46See MBh, iv. 8–12, 19–20, 55(ii); v. 24–27(i), 34–37, 74(ii)–76; vi. 27, 35–36, 28–31, 32–34,
37–38, 39–40, 49–51, 56–60; viii. 5.

47This problem is essentially the same as Problem 9.
48See BrSpSi, xv. 21–23.
49In fact, SB = R sin t×R cos δ

R
.
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Now using the formula50

R sinλ =
R sin a×R sinϕ

R sin ϵ ,

where ϵ is the obliquity of the ecliptic, the first approximation R sinλ1 to
R sinλ is given by

R sinλ1 =
R sin a1 ×R sinϕ

R sin ϵ =
R sin t×R cosϕ×R sinϕ

R sin ϵ×R
.

From this value of λ1, calculate the value of SB anew. This will give the second
approximation I2 for SB. The second approximation R sinλ2 to R sinλ is then
obtained by the equation

R sinλ2 =
R sinλ1 × I2

I1
=
R sinλ1 × I2

R sin t .

Proceeding as above till the successive approximations to λ are the same up
to the desired unit, we obtain the required value of λ.

50See MBh, iii. 41.



Use of hypotenuse in the computation of the
equation of the centre under the epicyclic
theory in the school of Āryabhaṭa I ??? ∗

The present paper refutes the assertion of T. S. Kuppanna Shastri that the
use of the hypotenuse in the computation of the equation of the centre under
the epicyclic theory is one of the principal characteristics of the school of Ārya-
bhaṭa I. It has been shown that the followers of Āryabhaṭa I, like other Hindu
astronomers, did not employ the hypotenuse in calculating the equation of the
centre under the epicyclic theory. The reason for not using the hypotenuse
is explained and the views of the prominent Hindu astronomers, such as
Bhāskara I, Govinda Svāmi, Parameśvara, Nīlakaṇṭha, and others are cited
in support.

1 Introduction

T. S. Kuppanna Shastri in a paper entitled “The school of Āryabhaṭa and
the peculiarities thereof” published in an earlier issue of this Journal1 has
proclaimed that the use of the hypotenuse in the computation of the equation
of the centre under the epicyclic theory is an important characteristic of the
school of Āryabhaṭa I. Writes he:

Another important peculiarity of this school is the use of the true
hypotenuse in the computation of the equation of the centre. The
use of the hypotenuse in the equation of conjunction is common
and accepted by all schools, as justified by the eccentric or epicyclic
theory of the motion of the planets, which can be readily seen from
a geometrical representation of the motion. By the same logic, the
hypotenuse should be used for the equation of the centre also, the
theory being essentially the same. That is why this school uses
it, as a geometrical consequence of this theory set forth by Ārya-
bhaṭa in Kālakriyā: 17–21, combined with the theory of uniform
motion given in Kāla: 12–14. Thus, in the Mahābhāsk., IV, 8–
12, the manner of getting the true hypotenuse as based on the

* K. S. Shukla, Indian Journal of History of Science, Vol. 8, Nos. 1–2 (1973), pp. 43–57.
1Indian Journal of History of Science, Vol. 4, Nos. 1–2, pp. 126–134.
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theory of epicycles is given, and in 19–20 the same as based on
the eccentric theory. In 21, the approximate sine equation of the
centre is asked to be multiplied by the radius and divided by the
true hypotenuse to get the correct sine equation of the centre. Vaṭ.
Sid. Spaṣṭādhikāra, II, 3–4, gives the method of getting the true
hypotenuse, and III, 11 instructs its use to divide the approximate
equation of the centre to get the correct one.
The use of the hypotenuse is not only a logical result of the theory,
but it will also give a better result. It supplies part of the second
term of the modern correct equation of the centre. Neglecting pow-
ers of e (eccentricity) higher than the square, the first two terms
are 2e sin m − 5

4 e
2 sin 2m, where m is the mean anomaly reck-

oned from the higher apsis, as in Hindu astronomy. The distance
between the centres of the original and eccentric circles is equal to
2e. It is also the radius of the epicycle. According to the theory,
correct sine equation of the centre = 2e sin m÷h (=hypotenuse).
But

h =
sinm

sin(m− eq. cent.) ,

if the radius of the eccentric circle is taken as unity. Therefore,

sin (eq. cent.) = 2e sinm× sin(m− eq. cent.)
sinm

= 2e sin(m− eq. cent.)
= 2e sin(m− 2e sinm) (since eq. cent. is small)
= 2e sinm− 4e2 sinm cosm
= 2e sinm− 2e2 sin 2m.

Though we get 2e2 as the coefficient of the second term, instead
of the correct 5

4 e2, it will not make much difference, being the
second power of e. Also, the point is that we get the term instead
of neglecting it. Using the Moon’s epicycle of 31 1

2 degrees, which
gives 7

80 as the value of 2e, we get for the second term—13′ sin 2m,
the same as the modern correct one. (The apparent complete
agreement is due to the Hindu coefficient of the first term being
defective by about a fifth.).
Bhāskarācārya II discusses the point, why other schools do not
use the hypotenuse for the equation of centre. He says that some
do not use it thinking that the difference is small. This depends
upon what we consider small and negligible and may be accepted.
But the other argument he gives, quoting his master Brahmagupta,
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that the theory itself is that the epicycle, instead of being uniform,
is proportionate to the true hypotenuse and has to be multiplied
by it and divided by the radius, and therefore, the division by
the true hypotenuse is cancelled out, is untenable, for this kind of
argument helps only to shut out a tolerably good theory already
existing and nothing more, and is just a way of escape, as pointed
out by Caturvedācārya in his commentary on the Brāhmasphuṭa-
siddhānta (cf. Siddhāntaśiromaṇi: Gola: Chedyaka; and commen-
tary thereon).

The above statement does not reflect a correct understanding of the school
of Āryabhaṭa I. In paragraph 1, Kuppanna Shastri tells us that in Mahā-
bhāskarīya, iv. 21, the approximate sine equation of the centre is asked to
be multiplied by the radius and divided by the true hypotenuse to get the
correct sine equation of the centre. The same are stated to be the contents of
Vaṭeśvarasiddhānta, II, iii. 11. But, contrary to what Kuppanna Shastri has
said, both Mahābhāskarīya, iv. 21 and Vaṭeśvarasiddhānta, II, iii. 11 state the
following formula and its application:

R sin(spaṣṭabhuja) = R sinm×R

H
,

where m is the madhyamabhuja (i.e. mean anomaly reduced to bhuja).
The formula

sin (equation of centre) = 2e sinm÷ h,

on which Kuppanna Shastri bases his conclusions in paragraph 2 does not
occur even in any nook or corner of the school of Āryabhaṭa I. There is not
even a smell of it. The formula which has been actually used by the followers
of Āryabhaṭa I is

R sin (equation of centre) = tabulated manda epicycle×R sinm
80

, (1)

the denominator being 80 instead of 360 because the tabulated manda epicycle
is abraded by 4 1

2 , or in the notation of Kuppanna Shastri,

sin (equation of centre) = 2e sinm.

Kuppanna Shastri seems to have been misled by the use of the true hy-
potenuse (mandakarṇa obtained by iteration) in the formula for the planet’s
spaṣṭabhuja, viz.

R sin(spaṣṭabhuja) = R sinm×R

H
, (2)
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where H is the true mandakarṇa (obtained by iteration), or, in the notation
of Kuppanna Shastri,

sin (m− eq. centre) = sinm÷ h.

He has missed to see that equation (1) is based on the tabulated manda
epicycle which is false (asphuṭa) and on which the planet does not move,
whereas equation (2) relates to the true eccentric on which the planet actually
moves.
Kuppanna Shastri has also misquoted Bhāskara II to suit his purpose. In

the passage under reference, Bhāskara II has said that Caturvedācārya Pṛthū-
daka, who held views similar to those of Kuppanna Shastri, was not correct,
and that Brahmagupta, whose views have been declared to be untenable by
Kuppanna Shastri, was correct.
It would be interesting to note that whereas Kuppanna Shastri declares

the use of hypotenuse in the computation of the equation of the centre to
be an important peculiarity of the school of Āryabhaṭa I, the great scholiasts
of Āryabhaṭa I, such as Bhāskara I, Govinda Svāmi, Parameśvara, and Nīla-
kaṇṭha, have taken pains to demonstrate why the hypotenuse has not been
used in the computation of the equation of the centre.
The object of the present paper is to explain why the hypotenuse has not

been used in the computation of the equation of the centre under the epicyclic
theory and also to give the views of the prominent Hindu astronomers on this
point.

2 Tabulated manda epicycles, true or actual manda
epicycles, and computation of the equation of the
centre

The manda epicycles whose dimensions are stated in the Hindu works on as-
tronomy are not the actual epicycles on which the true planet (in the case of
the Sun and Moon) or the true-mean planet (in the case of the star-planets,
Mars, etc.) moves. Āryabhaṭa I has given two sets of the manda epicycles one
for the beginning of the odd quadrant and the other for the beginning of the
even quadrant. If one wants to find the manda epicycle for any other place in
the odd or even quadrant, one should apply the proportion stated in Mahā-
bhāskarīya, iv. 38–39(i) or Laghubhāskarīya, ii. 31–32. The local manda epicy-
cle thus obtained is called the true manda epicycle (sphuṭa-manda-vṛtta), but
this too is false (asphuṭa). Writes Parameśvara (1430) in his Ṣiddhāntadīpikā:2

ु टता प म वृ ा ु टा न भव , तेष कणसा ा । अतः कणसा धत-
वृ सा ा भुजाकाे टफलकण इ त।

2Mahābhāskarīya, edited by T. S. Kuppanna Shastri, p. 224, lines 15–17.
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The manda epicycles, though made true, are false (asphuṭa), be-
cause the true (actual) manda epicycles are obtained by the use of
the (manda) karṇa. Therefore, (the true values of) the bhujāphala,
koṭiphala, and karṇa should be obtained by the use of the (manda)
epicycles determined from the (manda) karṇa.

But how are the manda epicycles made true by the use of the mandakarṇa?
Lalla (c. 748) has answered this question. Says he:3

सूय मु गुणकौ मृ कण नघनौ
ाे तृौ भवत एव मह ु टौ तौ ।

ता पुन भुजकाे टफले वधाय
सा े ुती मु रतः गुणौ ुती च ॥
The manda multipliers (= tabulated manda epicycles) for the Sun
and Moon become true when they are multiplied by the (corre-
sponding) mandakarṇas and divided by the radius. Calculating
from them the bhujāphala and koṭiphala again, one should obtain
the mandakarṇas (for the Sum and Moon as before); proceeding
from them one should calculate the manda multipliers and the
mandakarṇas again and again (until the nearest approximations
for them are obtained).

The process of iteration is prescribed because the (true) mandakarṇa is
unknown and is itself dependent on the true manda epicycle. If the (true)
mandakarṇa were known, the true manda epicycle could be easily determined
from the formula:

true manda epicycle = tabulated manda epicycle× true mandakarṇa
R

. (3)

What is true for the manda epicycles of the Sun and Moon is also true for
the manda epicycles of the planets, Mars, etc. Bhāskara II, commenting on
the above passage of the Śiṣyadhīvṛddhida of Lalla, observes:4

तथा कुजादीन म कम ण उ व कणमु ाद य ा तेन मंदपिर धं ह ा ासा-
धन वभजे , फलं कणवृ े पिर धः। तेन पुन व भुजकाे टफले कृ ा ता
म कणमानये । एवं ताव म कत ं यावद वशेषः।
म पिर ध ु टीकरणं ैरा शका — य द ासाधवृ े एतावा पिर ध णवृ े
कया न त फलं कणवृ पिर धः, कणवृ पिरधेरसकृ रण च कण ा थाभूत-
ा ।

Similarly, in the manda operation of the planets, Mars, etc., too,
having obtained the (manda) karṇa in the manner stated above,

3Śiṣyadhīvṛddhida, I, iii. 17.
4Bhāskara II’s comm. on Śiṣyadhīvṛddhida, 1, iii. 17.
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multiply the manda epicycle by that and divide (the product) by
the radius: the result is the (manda) epicycle in the karṇavṛtta (i.e.,
at the distance of the mandakarṇa). Determining from that the
bhujāphala and the koṭiphala again, in the manner stated before,
obtain the mandakarṇa. Perform this process (again and again)
until there is no difference in the result (i.e., until the nearest
approximation for the true manda epicycle is obtained).
Conversion of the false manda epicycle into the true manda epicy-
cle is done by the (following) proportion: If at the distance of the
radius we get the measure of the (false) epicycle, what shall we get
at the distance of the (manda) karṇa? The result is the manda
epicycle at the distance of the (manda) karṇa. Iteration of the true
manda epicycle is done because the (manda) karṇa is of a different
nature (i.e. because the mandakarṇa is obtained by iteration).

From what has been stated above it is evident that manda epicycles stated
in the works on Hindu astronomy correspond to the radius of the deferent
and are false, whereas the true manda epicycles which are derived therefrom
by formula (3) above correspond to the distance (true mandakarṇa) of the
planet and are the actual epicycles on which the planet (in the case of the
Sun and the Moon) or the true-mean planet (in the case of the planets Mars,
etc.) moves.
Therefore, if we use the tabulated manda epicycle, we shall get

bhujāphala =
tabulated manda epicycle×R sinm

80
, (4)

where m is the planet’s mean mandakarṇa (reduced to bhujā), the tabulated
manda epicycle being abraded by 4 1

2 as is usual in the school of Āryabhaṭa I.
Since the tabulated manda epicycle corresponds to the radius of the deferent,

there is absence of the hypotenuse-proportion and we have

R sin (equation of centre) = bhujāphala

=
tabulated manda epicycle×R sinm

80
,

which is the formula used in the school of Āryabhaṭa I.
If we choose to use the true manda epicycle, we shall get

true bhujāphala =
true manda epicycle×R sinm

80
,

and since this true bhujāphala corresponds to the true mandakarṇa, therefore,
applying the hypotenuse-proportion, we have

R sin (equation of centre) = true bhujāphala ×R

H
, (5)
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where H is the true mandakarṇa (obtained by iteration).
Substituting the value of true bhujāphala and making use of formula (3),

equation (5) reduces to

R sin (equation of centre) = tabulated manda epicycle×R sinm
80

.

But this result is the same as (4) which was obtained without the use of the
hypotenuse-proportion. This explains why in the school of Āryabhaṭa I, the
mandakarṇa (true hypotenuse) is not used in the computation of the equation
of the centre under the epicyclic theory.

3 Views of astronomers of the school of Āryabhaṭa I

3.1 Bhāskara I (629)

In his commentary on the Āryabhaṭīya, Bhāskara I, the greatest authority on
Āryabhaṭa I, raises the question as to why the hypotenuse was used in finding
the śīghraphala but was not used in finding the mandaphala (i.e. equation of
centre) and answers it. Writes he:5

अ शी फलं ासाधन संगुण त कणन भागल ं फलं धनमृणं वा। …अ-
नेनाथ म ाे फलमेवं क ा यते? उ ते — यमाणेऽ प तावदवे त लं
भवती त न यते। कुतः? म ाे कणाऽ व श ते। त चा वशे षतेन फलेन ासा-
ध संगुण कणन भागे ते पूवमानीतमेव फलं भवती त। अथ क म त शी ाे कणा
ना व श ते? अभावाद वशेषकमणः।
Here the śīghra (bhujā)phala is got multiplied by the radius and
divided by the śīghrakarṇa and the quotient (obtained) is added
or subtracted (in the manner prescribed) . . .

[Question:] How is it that the manda (bhujā)phala is not operated
upon in this way (i.e. why is the mandabhujāphala not multiplied
by the radius and divided by the mandakarṇa)? [Answer:] Even
if it is done, the same result is obtained as was obtained before;
that is why it is not done. [Question:] How? [Answer:] The
mandakarṇa is iterated. Therefore when we multiply the iterated
(mandabhujā)phala (i.e. true mandabhujāphala) by the radius and
divide by the (true) mandakarṇa, we obtain the same result as was
obtained before. [Question:] Now, how is it that the śīghrakarṇa
is not iterated? [Answer:] This is because the process of iteration
does not exist there.

5Bhāskara I’s comm. on Āryabhaṭīya, iii, 22.
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3.2 Govinda Svāmi (c. 800–850)

Govinda Svāmi, who is another important exponent of the school of Ārya-
bhaṭa I, raises the same question and answers it is the same way. Writes
he:6

कथं पुनिरदं म फलं तम ले न मीयते? कृतेऽ प पुन ावदवेे त। कथ ?
म ाे कण तावद वशेष उ ः। अ व श ा फला ासाधहता कणन ( ता )
पूव नीतमेव फलं ल त इ त। क म त शी कणा ना व श ते? अ वशेषाभावा ।
[Question:] How is it that the manda (bhujā)phala is not mea-
sured in the manda eccentric (i.e. How is it that the mandabhu-
jāphala is not calculated at the distance of the planet’s manda-
karṇa)? [Answer:] Even if that is done, the same result is got.
[Question:] How? [Answer:] Because iteration of the mandakarṇa
is prescribed. So when the iterated (i.e. true) bhujāphala is mul-
tiplied by the radius and divided by the (true manda) karṇa, the
same result is obtained as was obtained before. [Question:] How
is it that the śīghrakarṇa is not iterated? [Answer:] Because there
is absence of iteration.

3.3 Parameśvara (1430)

So also writes the celebrated Parameśvara:7

म ु टे तु कण ा वशे षत ा फलम प अ वशे षतं भव त। अ व श ा पुनम-
फला ासाधता डता अ व श ेन कणन ल ं थमानीतमेव भजाफलं भव त।

In the case of the manda correction, the (manda) karṇa being sub-
jected to iteration the manda (bhujā)phala is also got iterated (in
the process). So, the iterated manda (bhujā)phala being multiplied
by the radius and divided by the iterated mandakarṇa, the result
obtained is the same bhujāphala as was obtained in the beginning.

3.4 Nīlakaṇṭha (c. 1500)

Nīlakaṇṭha, author of the Mahābhāṣya on the Āryabhaṭīya and an eminent
authority on Āryabhaṭa I, says the same thing in his Mahābhāṣya:8

पूव तु केवलम फलम व श ेन कणन ह ा ासाध तमेवा व श म फल ।
तदवे पुन साधन ह ा कणन तं पूवतु मेव ा , यत उभयाे ैरा शककम-
णाे मथाे वैपर ं ा । एत ं महाभा र यभा े — कृतेऽ प पुन ावदतेे त।
त ा कम ण भुजाफलं न कणसा । केवलमेव म मे सं ाय । शी े तु

6Mahābhāskarīya, edited by T. S. Kuppanna Shastri, p. 224, lines 1–4.
7Mahābhāskarīya, edited by T. S. Kuppanna Shastri, p. 223, line 22, p. 224, lines 12–13.
8Nīlakaṇṭha’s comm. on Āryabhaṭīya, iii. 17–21, p. 43, lines 4–10.
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कणवशा उ नीचवृ वृ ासाभावा सकृदवे कणः कायः। भुजाफलम प
ासाधन ह ा कणन तमेव चापीकाय ।

Earlier, the iterated antyaphala (= radius of epicycle) was ob-
tained by multiplying the uniterated antyaphala by the iterated
hypotenuse and dividing (the product) by the radius. The same
(i.e. iterated antyaphala) having been multiplied by the radius and
divided by the (iterated) hypotenuse yields the same result as
the earlier one, because the two processes of “the rule of three”
are mutually reverse. The same has been stated in the Mahā-
bhāskarīyabhāṣya (i.e. in the commentary on the Mahābhāskarīya
by Govinda Svāmi): ‘Even if that is done, the same result is got.’
So in the manda operation, the bhujāphala is not to be determined
by the use of the (manda) karṇa; the (uniterated) bhujāphala itself
should be applied to the mean (longitude of the) planet. In the
śīghra operation, since the śīghra epicycle does not vary with the
hypotenuse, the karṇa should be calculated only once (i.e., the pro-
cess of iteration should not be used). The bhujāphala, too, should
be multiplied by the radius, (the product obtained) divided by the
hypotenuse, and (the resulting quotient) should be reduced to arc.

What is meant is that if we first find the true antyaphala (radius of the true
manda epicycle) by the formula

true antyaphala =
radius of uniterated manda epicycle×H

R
,

and then apply the hypotenuse proportion, we shall again get the radius of
the uniterated manda epicycle with which we started. So the final result, viz.

R sin(equation of centre) = radius of uniterated manda epicycle×R sinm
R

,

may be obtained directly without finding the radius of the iterated manda
epicycle and then applying the hypotenuse-proportion.

3.5 Sūryadeva Yajvā (b. 1191)

The same thing has been stated in a slightly different way by the commentator
Sūryadeva, who writes:9

अ ाचायण क ाम लकला भम नीचो वृ ा न प ठता न। अत तैव ा का-
ीकृता क ाम लकलासा ा े म हे सं यते। कण नयने तु त ृ पिर-

णामाय ैरा शकं कृ ा अ वशेषेण कणः कत ः। शी वृ ा न तु तम ल ा े-
वाचायण प ठता न। अतः फल ायाःक ाम लपिरणामाथ ैरा शकं — कण ेय

9Sūryadeva’s comm. on Āryabhaṭīya, iii. 24.
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ा ासाध के त? ल ा फल ा चापीकृता क ाम लस शी म ( ) हे
सं यते। कण नयनं तु सकृ मणैव काय ।
Here the Ācārya (viz. Ācārya Āryabhaṭa I) has stated the manda
epicycles in terms of the minutes of the deferent. So the (manda-
bhujāphala) jyā which pertains to that (deferent) when reduced to
arc, its minutes being equivalent to the minutes of the deferent,
is applied (positively or negatively as the case may be) to (the
longitude of) the mean planet situated there (on the deferent). In
finding the (manda) karṇa, however, one should, having applied
the rule of three in order to reduce the manda epicycle to the
circle of the (mandakarṇa), obtain the (true manda) karṇa by
the process of iteration. The śīghra epicycles, on the other hand,
have been stated by the Ācārya for the positions of the planets
on the (true) eccentric. So, in order to reduce the (śīghrabhuja)
phalajyā to the concentric, one has to apply the proportion: If this
(śīghrabhujaphala) jyā corresponds to the (śīghra) karṇa, what jyā
would correspond to the radius (of the concentric)? The resulting
(śīghra) phalajyā reduced to arc, being identical with (the arc of)
the concentric is applied to (the longitude of) the true-mean planet.
The determination of the (śīghra) karṇa, however, is to be made by
a single application of the rule (and not by the process of iteration).

3.6 Putumana Somayājī (1732)

A glaring example of the fact that the astronomers of the school of Āryabhaṭa I
regarded the manda epicycles as corresponding to the mean distances of the
planets and the śīghra epicycles as corresponding to the actual distances of
the planets is provided by the following rule occurring in the Karaṇa-paddhati
(vii. 27) of Putumana Somayājī, a notable exponent of the Āryabhaṭa school:

Let 4 1
2 × e be the periphery of a planet’s manda epicycle at the beginning

of the odd anomalistic quadrant and 4 1
2 ×e

′ the periphery of a planet’s śīghra
epicycle at the beginning of the odd anomalistic quadrant. Then, the planet
being at its mandocca (apogee),

mandakarṇa =
80×R

80− e
,

and, the planet being at its mandanīca (perigee),

mandakarṇa =
80×R

80 + e
.

On the other hand, the planet being at its śīghrocca,

śīghrakarṇa =
(80 + e′)×R

80
,
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and the planet being at its śīghranīca,

śīghrakarṇa =
(80− e′)×R

80
.

4 Views of astronomers of other schools

4.1 Brahmagupta’s view: Caturvedācārya Pṛthūdaka’s
disagreement: Bhāskara II’s judgement

The astronomers of the Brahma school also use false manda epicycles and
likewise they do not make use of the hypotenuse in the computation of the
equation of the centre under the epicyclic theory. Brahmagupta (628), the
author of the Brāhmasphuṭasiddhānta and the main exponent of this school,
explains the reason for not using the hypotenuse in finding the mandaphala
as follows:10

ाभ ः पिर धः कणगुणाे बा काे टगुणकारः ।
असकृ ा े त लमा समं ना कणाऽ ा ॥
In the manda operation (i.e., in finding the mandaphala), the
manda epicycle divided by the radius and multiplied by the hy-
potenuse is made the multiplier of the bāhu(jyā) and the koṭi(jyā)
in every round of the process of iteration. Since the mandaphala
obtained in this way is equivalent to the bhujāphala obtained in
the beginning, therefore the hypotenuse-proportion is not used
here (in finding the mandaphala).

This is the same explanation as was given by the astronomers of the school
of Āryabhaṭa I.
Caturvedācārya Pṛthūdaka (864), on the other hand, was of the opinion

that the hypotenuse-proportion was not applied in finding the equation of the
centre because it did not produce any material difference in the result. He
has therefore remarked:11

अतः ा र ा कणा म कम ण न काय: इ त ।
So, there being little difference in the result, the hypotenuse-pro-
portion should not be used in finding the mandaphala.

The celebrated Bhāskara II (1150), the author of the Siddhāntaśiromaṇi,
has examined the views of both Brahmagupta and Caturvedācārya Pṛthūdaka
and has given his verdict in favour of Brahmagupta’s view. Writes he:12

10Brāhmasphuṭasiddhānta, golādhyāya, 29.
11Pṛthūdaka’s comm. on Brāhmasphuṭasiddhānta, golādhyāya, 29.
12Siddhāntaśiromaṇi golādhyāya, Chedyakādhikāra, 36–37, comm.
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यो म पिर धः पाठप ठतः स ापिरणतः। अतोऽसौ कण ासाध पिरणा ते।
ततोऽनुपातः। य द ावृ ेऽयं पिर ध दा कणवृ े क इ त। अ पिरधेः कण
गुण ा हरः। एवं ु टपिर ध ेन दाे गु ा भ शैभ ा। तत या गु ा
कणन भा ा। एवंस त ातु योः कणतु याे गुणहरयाे ु ा ाशे कृते
पूवफलतु मेव फलमाग ती त गु मत । अथ य वें पिरधेः कणन ु ट ं
त ह कं शी कम ण न कृत म ाश चतुवद आह। गु ेना ेष तारणपर म-
दमु म त। तदस । चले कमणी ं कं न कृत म त नाश नीय । यतः फलवासना
व च ा। ा था पिरधेः ु ट ं भाैम ा था तथा कं न बुधादीना म त
नाश । अताे ाे र सु र ।
The manda epicycle which has been stated in the text is that
reduced to the radius of the deferent. So it is transformed to
correspond to the radius equal to the hypotenuse (of the planet).
For that the proportion is: If in the radius-circle we have this
epicycle, what shall we have in the hypotenuse circle? Here the
epicycle has the hypotenuse for its multiplier and the radius for
its divisor. Thus is obtained the true epicycle. The bhujajyā is
multiplied by that and divided by 360. That is then multiplied
by the radius and divided by the hypotenuse. This being the case,
radius and hypotenuse both occur as multiplier and also as divisor
and so they being cancelled the result obtained is the same as
before: this is the opinion of Brahmagupta. If the epicycle is to be
corrected in this way by the use of the hypotenuse, why has the
same not been not done in the śīghra operation? With this doubt
in mind, Caturveda has said: “Brahmagupta has said so in order
to deceive and mislead others.” That is not true. Why has that
not been done in the śīghra operation, is not to be questioned,
because the rationales of the manda and śīghra corrections are
different. Correction of Venus’ epicycle is different and that for
Mars’ epicycle different; why is that for the epicycles of Mercury
etc. not the same, is not to be questioned. Hence what Brahma-
gupta has said here is right.

4.2 Śrīpati (c. 1039)

Śrīpati, author of the Siddhāntaśekhara, has expressed the same opinion as
Brahmagupta has done. He has written:13

ा तः ु तगुणः पिर धयताे दाेः-
काे ाेगुणो मृ फलानयनेऽसकृ ा ।

ा मा सममेव फलं तत
कणः कृतो न मृ कम ण त कारैः ॥

13Siddhāntaśekhara, xvi, 24.
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Since in the determination of the mandaphala the epicycle multi-
plied by the hypotenuse and divided by the radius is repeatedly
made the multiplier of the bhuja(jyā), and the koṭi(jyā), and since
the mandaphala obtained in this way is equal to the bhujāphala ob-
tained in the beginning, therefore the hypotenuse-proportion has
not been applied in the manda operation by the authors of the
astronomical tantras.

4.3 Āditya Pratāpa

The same view was held by the author of the Ādityapratāpa-siddhānta, whose
words are:14

भवे ाभवाे म पिर धः तम ले ।
मृ कणगुणः ः क ा ासदलो तृः ॥
त ा को टतः ा णः सा ोऽसकृ ु टः ।
तेन बा फलं भ ं क ा ासाधस ुण ॥
भवे फलं म पिर ु स त ।
य ेन न कृतः कणः फलाथ म कम ण ॥
The manda epicycle corresponding to (the radius of ) the orbit
(concentric), when multiplied by the mandakarṇa and divided by
the semi-diameter of the orbit (concentric) becomes true and cor-
responds to (the distance of the planet on) the eccentric. With
the help of that (true epicycle), the bāhu(jyā), and the koṭi(jyā),
should be obtained the true karṇa by proceeding as before and
by iterating the process. Since the (true) bāhuphala divided by
that (true karṇa) and multiplied by the semi-diameter of the orbit
yields the same mandaphala as is obtained from the mean epicy-
cle (without the use of the hypotenuse-proportion), therefore use
of the hypotenuse-(proportion) has not been made for finding the
mandaphala in the manda operation.

4.4 The Sūryasiddhānta school

The method prescribed in the Sūryasiddhānta for finding the equation of the
centre is exactly the same as given by the exponents of the schools of Ārya-
bhaṭa I and Brahmagupta and there is no use of the hypotenuse-proportion.
The author of the Sūryasiddhānta has not even taken the trouble of finding
the manda hypotenuse. So it may be presumed that the views of the author
of the Sūryasiddhānta on the omission of the use of the hypotenuse in finding

14Āmarāja’s comm. on Khaṇḍakhādyaka, i. 16, p. 33.
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the equation of the centre were similar to those obtaining (sic) in the schools
of Āryabhaṭa I and Brahmagupta.

5 Conclusion

From what has been said above it is clear that the hypotenuse has not been
used in Hindu astronomy in the computation of the equation of the centre
under the epicyclic theory. It is also obvious that with the single exception of
Caturvedācārya Pṛthūdaka all the Hindu astronomers are unanimous in their
views regarding the cause of omission of the hypotenuse. According to all of
them the manda epicycles stated in the works on Hindu astronomy correspond
to the radius of the planet’s mean orbit and are therefore false.
Since the manda epicycle stated in the Hindu works corresponded to the

radius of the planet’s mean orbit, the true manda epicycle corresponding to
the planet’s true distance (in the case of the Sun and Moon) or true-mean
distance (in the case of the planets Mars, etc.) was obtained by the process
of iteration. The planet’s true or true-mean distance (mandakarṇa) was also
likewise obtained by the process of iteration.
Direct methods for obtaining the true mandakarṇa or true manda epicycle

were also known to later astronomers. Mādhava (c. 1340–1425) is said to have
given the following formula for the true mandakarṇa:15

true mandakarṇa (or iterated mandakarṇa)

=
R2√

R2 − (bhujāphala)2 ∼
+ koṭiphala

,

∼ or + sign being taken according as the planet is in the half orbit beginning
with the anomalistic sign Capricorn or in that beginning with the anomalistic
sign Cancer.
The following alternative formula is attributed by Nīlakaṇṭha (c. 1500) to

his teacher (Dāmodara):16

true mandakarṇa (or iterated mandakarṇa)

=
R2√

(true koṭijyā ∼
+ antyaphalajyā)2 + (true bhujajyā)2

,

∼ or + sign being taken according as the planet is in the half orbit beginning
with the anomalistic sign Capricorn or in that beginning with the anomalistic
sign Cancer.
15Nīlakaṇṭha’s comm. on Āryabhaṭīya, iii. 17–21, p. 47. Also see Tantrasaṅgraha, ii, 44.
16Nīlakaṇṭha’s comm. on Āryabhaṭīya, iii. 17–21, p. 48. Also see Tantrasaṅgraha, i. 46–47.
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The following alternative formula occurs in the Karaṇa-paddhati (vii. 17,
18, 20(ii)) of Putumana Somayājī:

true mandakarṇa (or iterated mandakarṇa)

=
R2√

(R± koṭiphala)2 + (bhujāphala)2
,

+ or − sign being taken according as the planet is in the half-orbit beginning
with the anomalistic sign Cancer or in that beginning with the anomalistic
sign Capricorn.17

One can easily see that each of these formulae gives an exact expression for
the iterated mandakarṇa.

6 Use of hypotenuse under the eccentric theory
indispensable

The problem of finding the spaṣṭabhuja (true manda anomaly reduced to bhuja)
under the eccentric theory is quite different. Here one has to take the planet
on its true manda eccentric and has to apply the proportion: “When corre-
sponding to the radius vector equal to the iterated mandakarṇa one gets the
madhyama bhujajyā, what shall one get corresponding to the radius R of the
concentric?” The result is the Rsine of the spaṣṭabhuja equal to

(madhyama bhujajyā)×R

H
,

where H is the true (or iterated) mandakarṇa.
It must be noted that the planet moves on the true manda eccentric whose

centre is displaced from the Earth’s centre by an amount equal to the radius
of the true manda epicycle. Bhāskara I writes:18

पिर धचालना याेगेण ु टीकृतपिर धना ासाध संगुण ाशी ा भागल ं त-
म लभू ववर ।
Multiply the radius by the epicycle rectified by the process of
iteration and divide by 80: the quotient obtained is the distance
between the centres of the eccentric and the Earth.

This shows that the Hindu epicyclic theory in which the equation of the
centre is obtained directly without the use of the hypotenuse-proportion is
much simpler than the Hindu eccentric theory in which the use of the iterated
17The bhujāphala and koṭiphala used in this formula are those derived from true bhujajyā
and true koṭijyā. This formula was known to Mādhava and Nīlakaṇṭha also. See Nīla-
kaṇṭha’s commentary on Āryabhaṭīya, iii. 17–21, pp. 48–49 and Tantrasaṅgraha, i. 51.

18Nīlakaṇṭha’s comm. on Āryabhaṭīya, iii. 21.
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hypotenuse is indispensable. It is for this reason that the use of the epicyclic
theory has been more popular in Hindu astronomy than the eccentric theory.
The Sūryasiddhānta and other works, which have avoided finding the iterated
hypotenuse, have dispensed with the eccentric theory altogether.

7 Exceptions: Use of true manda epicycle

Munīśvara (1646) and Kamalākara (1658), who claim to be the followers of
the Siddhāntaśiromaṇi of Bhāskara II and the Sūryasiddhānta respectively,
are perhaps the only two Hindu astronomers who, disregarding the general
trend of Hindu astronomy, have stated the dimensions of the true manda
epicycles in their works and have likewise used the hypotenuse-proportion in
finding the equation of the centre under the epicyclic theory. The formula for
the equation of the centre given by them is:19

R sin (equation of centre) = bhujāphala ×R

H
, (6)

where H is the mandakarṇa. Since they have used the true manda epicycle,
they have obtained the mandakarṇa directly without making use of iteration;
this is as it should be.
It is noteworthy that although Kamalākara makes use of the true manda

epicycle and used formula (6) above, he does not forget to record the fact that
the bhujāphala obtained directly by the use of the manda epicycle correspond-
ing to the radius of the planet’s mean orbit yields the same result as formula
(6) above. Writes he:20

ाहतः कण तः कृत े
यथाे आ ः पिर धः ु टः ा ।
त ा धतं दाेःफलचापमेव
फलं भवे ाे फलेन तु ॥
The true (manda) epicycle as stated earlier when multiplied by
the radius and divided by the hypotenuse becomes corrected (i.e.
corresponds to the radius of the planet’s mean orbit). The arc
corresponding to the bhujāphala computed therefrom yields the
equation of centre which is equal to that stated before.

19Siddhāntasārvabhauma, ii. 124 (i); Siddhāntatattvaviveka, ii. 207 (i).
20Siddhāntatattvaviveka, ii. 208.



Hindu astronomer Vaṭeśvara and his works ∗

1 Early references

The earliest references to Vaṭeśvara are found to occur in Rasā’ilul’Bīrūnī 1

and Tārikh al-Hind2 of the Persian scholar Al-Bīrūnī (b. 973 ad) and in the
Siddhāntaśekhara3 of the Hindu astronomer Śrīpati (1039 ad). Al-Bīrūnī has
also quoted some passages from the Karaṇasāra, a calendrical work of Vaṭeś-
vara.4 According to Al-Bīrūnī, Vitteśvara (Vaṭeśvara) was a son of Mihdatta
(Mahadatta) and belonged to the city of Nāgarapura.5 From the passages
quoted by Al-Bīrūnī from the Karaṇasāra,6 we find that this work adopted
the year 821 of the Śaka era (corresponding to the year 899 of the Christian
era) as the origin of calculation, which shows that the Karaṇasāra was written
in 899 ad, i.e. exactly four hundred years after the composition of the Āryab-
haṭīya of Āryabhaṭa I. Śrīpati has mentioned the name of Vaṭeśvara amongst
the first rate astronomers of India—Āryabhaṭa I, Brahmagupta, Lalla, and
Sūrya. He has also utilised the Vaṭeśvarasiddhānta in writing his own sid-
dhānta.

References to the Vaṭeśvarasiddhānta, the astronomical siddhānta written
by Vaṭeśvara have also been noticed in Hindu works on astronomy. One
passage ascribed to the Vaṭeśvarasiddhānta, consisting of four verses in āryā
metre and dealing with the lunar correction corresponding to the modern
“evection”, was discovered by D. V. Ketkar7 in Yallaya’s commentary (1480
ad) on the Laghumānasa of Mañjula (932 ad). But neither these verses nor
the correction contained in them finds its occurrence in the manuscripts of the
Vaṭeśvarasiddhānta available to us. Another set of three verses in āryā me-

* K. S. Shukla, Gaṇita, Vol. 23, No. 2 (December 1972), pp. 65–74.
1See Mohammad Saffouri and Adnan Ifram, “Al-Bīrūnī on Transits”, pp. 32, 142. “Al-
Bīrūnī on Transits” is an English translation of the third treatise included in Rasā’ilul’
Bīrūnī published by the Osmania Oriental Publications Bureau, Hyderabad-Deccan, in
1948.

2See Al-Bīrūnī’s India, translated into English by E. C. Sachau, Vol. I, pp. 156, 392.
3xviii, 18.
4See Al-Bīrūnī’s India, Vol. I, pp. 317, 392; Vol. II, pp. 54, 60, 79; and “Al-Bīrūnī on
Transits”, p. 32. Also see Al-Bīrūnī’s “Exhaustive Treatise on shadows”, ch. xxiii.

5Cf. Al-Bīrūnī’s India, Vol. I, p. 156.
6Cf. Al-Bīrūnī’s India, Vol. I, p. 392; Vol. II, p. 54.
7See Ketakī-graha-gaṇitam, pp. 127–128.
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tre, ascribed to the Paṭṭīśvara-siddhānta (probably Vaṭeśvarasiddhānta) and
dealing with the astronomical phenomenon Pāta, is found quoted in Mallikār-
juna’s commentary (1178 ad) on the Sūryasiddhānta from some commentary
on the Laghumānasa, but these verses are not exactly the same as their coun-
terparts found in the manuscripts of the Vaṭeśvarasiddhānta known to us. It is
probable that the verses quoted by Yallaya and Mallikārjuna belonged to the
Karaṇasāra and have been ascribed to the Vaṭeśvarasiddhānta by inadvertence;
or they might have occurred in the Golādhyāya of the Vaṭeśvarasiddhānta,
which is not available to us completely. The celebrated Bhāskara II, author
of the Siddhāntaśiromaṇi, has made a reference to certain scholars who be-
lieved that eight and a half years of Brahmā’s life had then elapsed.8 He is
probably referring to Lalla and Vaṭeśvara who held this view.9
The Vaṭeśvarasiddhānta seems to have been a popular work amongst the

scholars of the Dharmaśāstra. References to this work have been found to
occur in the Kālanirṇaya,10 in the Kālasāra of Gadādhara,11 and in the works
of Kamalākara Bhaṭṭa.12

2 Works of Vaṭeśvara: Existing manuscripts

No other work besides the Karaṇasāra and the Vaṭeśvarasiddhānta mentioned
above has been ascribed to Vaṭeśvara. These are the only works coming from
the pen of Vaṭeśvara now known to us. The Karaṇasāra, written in 899 ad,
was his earlier work. The Vaṭeśvarasiddhānta was written five years later in
904 ad.
The Karaṇasāra is now lost and is known only through quotations in the

writings of Al-Bīrūnī. The Vaṭeśvarasiddhānta has, however, come down to us,
but we are aware of only two manuscripts of this work, both incomplete. Of
these manuscripts, one belongs to the West Panjab University Library, Lahore
(Pakistan). This manuscript begins as follows:

ीकृ ाय नमः। ावनी बुुध दवाकरारजीवाकसूनुभगु पतरौ च न ा।
ा ं ह ग णतं महद सूनुव ेऽ खलं ु टमतीव वटे रोऽह ॥

It breaks off in the course of the seventh adhikāra (chapter) and ends thus:

चुरा ु समीिरतं बुधैग णत वशेषभाजनैः दनशेष वधू ासव हतारा -
गृतासवो ल र वव रकणदी योम व धमेणभुजा द च। ा मसौ व-
ल

8Siddhāntaśiromaṇi, I, i (a). 26.
9According to both these writers 8 1

2
years and 1

2
of a month of Brahmā’s life had elapsed

up to the beginning of the current kalpa.
10See P. V. Kane, “History of Dharmaśāstra”, Vol. I, p. 376.
11See P. V. Kane, ibid, Vol. I, p. 617.
12See T. S. Kuppana Shastri, “The system of the Vaṭeśvarasiddhānta”, Indian Journal of

History of Science, Vol. 4, Nos. 1 & 2, p. 135.



618 Hindu astronomer Vaṭeśvara and his works

The colophons at the ends of the chapters runs as follows:

1. ीमदान पुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े म ग तः थ-
मो धकारः॥

2. ीमदानंदपुर यभ महद सुतवटे र वर चते ु ट स ा े नामसं ते … टग धकारो
( ती)यः॥

3. ीमदान पुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े भ गो वंदावता-
िरते ा ाय ृतीयः॥

4. ीमदानंदपुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े भ गो वंदावता-
िरते चं हणा धकार तुथः॥

5. ीमदानंदपुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े भ गो वंदावता-
िरते र व हणा धकारः पंचमः॥

6. ीमदानंदपुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े भ गो वंदावता-
िरते उदया मया धकारः ष ः॥

Ram Swarup Sharma and Mukunda Mishra’s edition of the Vaṭeśvara-
siddhānta was based on this manuscript. A photostat copy of this manuscript
was kindly procured for our use by the librarian of the Lucknow University
Library.
The other manuscript of the Vaṭeśvarasiddhānta was discovered by me in the

collection of the late Pandit Girish Chandra Awasthi of the Oriental Depart-
ment, Lucknow University. It was later sold at my instance to the Lucknow
University Library. This manuscript, though incomplete, is larger than the
other one. It contains all the eight adhikāras of the Kālakriyā (or Grahagaṇita)
Part. Besides that, there are four additional chapters written by Govinda, the
copyist of the manuscript which are meant to serve as a supplement to the
third adhikāra of the Vaṭeśvarasiddhānta. There are also a few opening chap-
ters of the Golādhyāya which is incomplete in the manuscript available to me.
It breaks off in the middle of the chapter entitled Graha-gola-bandha. This
manuscript begins as follows:

॥ ीकृ ाय नमः ॥ ावनी बुुध दवाकरारजीवाकसूनुभगु तरौ च न ा।
ा ं ह ग णतं महद सूनुव ेऽ खलं ु टमतीव वटे रोह ॥१॥

and ends thus:

ागपरकपालयोः कुफलल छनं यमत मूभुदलपृ गनरयो ा ाल छनं न म-
ा े उपप या ो ा ागपरे ल छनेन त थ वरहेल छने वरहेवनतेया ो

The colophons at the ends of the chapters run as follows:
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1. ीमदान पुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े म ग तः थ-
मो धकारः॥

2. ीमदानंदपुर यभ महद सुतवटे र वर चते ु ट स ा े नामसं ते … टग धकारो
( ती)यः॥

3. ीमदान पुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े भ गो व ाव-
तािरते ा ाय ृतीयः॥

4. ीमदान पुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े भ गो वंदावता-
िरते चं हणा धकार तुथः॥

5. ीमदान पुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े भ गो व ाव-
तािरते र व हणा धकारः पंचमः॥

6. ीमदान पुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े भ गो व ाव-
तािरते उदया मया धकार ः॥

7. ीमदान पुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े भ गो व ाव-
तािरते ो धकार मः॥

8. ीमदान पुर यभ महद सुतवटे र वर चते नामसं ते ु ट स ा े भ गो व ाव-
तािरते समागमा धकारो मः॥॥ समा ेयं काल याप ॥

The supplementary chapters of the copyist begin with the following opening
remarks:

अन रं ा धकारम े दौर ीयभ वा कसुतगो वंद वर चते ान नदशश ा-
ानयन व धः ख सतमासी ः स ल ते।

The colophons at the ends of the chapters run as follows:

1. काल ान नदशशं ा ानयना ायः॥
2. काल नदशशं ा ानयने स कालशं ा ानयना ायः॥
3. ान नदशशं ा ानयने सव ानशं ा ानयना ायः॥
4. ान नदशशं ा ानयने कोणशं ा ानयना ायः॥ ीदौर ीयभ व कसुतगो व कृतो

वटे र स ा े ा धकारापरम ेऽ मो ायः समा ः॥
The chapters of the Golādhyāya bear the titles: (i) Gola-praśaṃsā, (ii) Go-
la-bandha, (iii) Chedyaka, (iv) Khagola-bandha, (v) Bhagola-bandha, (vi) Gra-
hagola-bandha, (vii) Gola-vāsanā, and (viii) Bhūgolādhāya. Of these chap-
ters, those entitled Gola-praśaṃsā, Gola-bandha, Chedyaka, Khagola-bandha,
Bhagola-bandha, and Grahagola-bandha are appended to the manuscript of the
Vaṭeśvarasiddhānta after the supplementary chapters of the copyist. The last
chapter (Grahagola-bandha) is not complete and breaks off in the course of the
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seventeenth verse. This chapter being incomplete, its name does not occur
in the manuscript. We have called this chapter Grahagola-bandha because its
subject matter agrees with that of the chapter of the same name in the Śiṣya-
dhīvṛddhida of Lalla. The chapter entitled Gola-vāsanā and Bhūgolādhāya are
found to occur in the midst of the third supplementary chapter of the copyist.
The opening lines of the Gola-vāsanā are missing; only the concluding eleven
verses are available; the chapter ends with the name of the chapter. In the
case of the other chapter, the first 12 verses only are preserved. The name of
the chapter is not given in the manuscript but the subject matter is similar
to that of the Bhūgolādhāya of the Śiṣyadhīvṛddhida of Lalla.
Both the manuscripts of the Vaṭeśvarasiddhānta available to us seem to be

copies of the same manuscript and, as far as they go, agree very closely with
each other.

3 Vaṭeśvarasiddhānta: An outline

The Vaṭeśvarasiddhānta is perhaps the largest work on Hindu astronomy.
Whereas the Āryabhaṭīya contains 121 verses, the Brāhmasphuṭasiddhānta
1008 verses, the Sūrya-siddhānta 500 verses, the Śiṣyadhīvṛddhida of Lalla
639 verses, the Siddhāntaśekhara of Śrīpati 890 verses, and the Siddhānta-
śiromaṇi of Bhāskara II 962 verses, the available manuscript of the Vaṭeśvara-
siddhānta contains 1779 verses (approx). The first eight chapters of the
Vaṭeśvarasiddhānta which deal with mathematical astronomy (Kālakriyā or
Grahagaṇita) consist of 1308 verses.

The Vaṭeśvarasiddhānta, as available to us, may be divided into three parts:

1. Kālakriyā Part (dealing with mathematical astronomy).

2. Four additional chapters written by Govinda to supplement the Tri-
praśnādhikāra of the Kālakriyā Part.

3. Golādhyāya.

The Kālakriyā Part is divided into eight chapters (called adhikāra) and each
of them is divided into sections. The headings of these chapters and sections
and the number of verses comprising them are given in Table 1.
The four chapters appended to the Kālakriyā Part by the copyist run as

follows:

Chapter No. Chapter Name No. of verses

1 काल ान नदशश ा ानयना ायः 111
2 काल नदशश ा ानयने सवकालश ा ानयना ायः 64
3 ान नदशश ा ानयने सव ानश ा ानयना ायः 75
4 ान नदशश ा ानयने कोणश ा ानयना ायः 125
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Table 1: Contents of the Kālakriyā Part of the Vaṭeśvarasiddhānta.

Chapters Verses Sections Verses

1. भगण नदशः 21
2. मान ववेकः 14
3. गुण- व धः 25 + 2

4. सवतोभ ः 62
1. म मा धकारः 358 vss. + 5. - व धः 116 + 5

8 half vss. 6. करण- व धः 10
7. क ा वधान- हानयन व धः 24
8. दशेा र व धः 18 + 1

9. व धः 21
10. त पर ा ायः 47

1. ु टीकरण व धः 102 + 3

2. ो नीच ह ु टीकरण व धः 29
3. तम ल ह ु टीकरण व धः 21

2. ु टग ा धकारः 261 + 4 4. ा व धना ु टीकरण व धः 15
5. फल ा ु टीकरण व धः 37
6. त ानयन व धः 42
7. व धः 15 + 1

1. वषुव ायासाधन व धः 33 + 3

2. ल ा ानयन व धः 27
3. ा ानयन व धः 13
4. ु ानयन व धः 8
5. कु ानयन व धः 15
6. अ ानयन व धः 14

3. ा धकारः 387 + 15 7. चराध ा ाणसाधन व धः 22 + 5

8. ल ा द व धः 25 + 1

9. दुलभा द व धः 47 + 1

10. इ ाया व धः 39 + 1

11. समम ल वेश व धः 25 + 2

12. कोणश ु व धः 29 + 1

13. छायातोऽक नयन व धः 29
14. छायापिरलेख व धः 26
15. ा ायः 35 + 1

4. च हणा धकारः 40 + 1

1. ल न व धः 32 + 1

2. अवन त व धः 6 + 1

3. ध व धः 9 + 1

5. र व हणा धकारः 117 + 8 4. पिरलेख व धः 28 + 3

5. पव ान व धः 14
6. लघूकरण व धः 21 + 2

7. छे क व धः 7

6. उदया मया धकारः 29 + 2

7. ो ा धकारः 53 + 1

8. समागमा धकारः 43 + 1 1. हयु त व धः थमः 14
2. हयु त व धः तीयः 29 + 1
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The Golādhyāya of the Vaṭeśvarasiddhānta is incomplete. Our manuscript
contains the following chapters only:

Chapter No. Chapter Name No. of verses

1 गोल शंसा 9
2 गोलब ः 18 + 1

3 छे कः 18 + 1

4 खगोलब ः 4
5 भगोलब ः 6
6 हगोलब ः 17
7 गोलवासना 11
8 भूगोला ायः 12

4 Sharma and Mishra’s edition of Vaṭeśvarasiddhānta

Ram Swarup Sharma and Mukunda Mishra brought out Part I of the Vaṭ-
eśvara-siddhānta containing the first three adhikāras. Their edition was based
on the manuscript belonging to West Panjab University Library, Lahore. The
following comparison will reveal that Sharma and Mishra’s edition does not
give the full text of the first three adhikāras of the Vaṭeśvarasiddhānta. A large
number of verses which actually occur in the manuscript have been silently
omitted by them. Some of the verses have received drastic emendation at
their hands.

Chapter No. of verses in
the manuscript

No. of verses in
Sharma-Mishra’s edition

1 358 + 8 290
2 261 + 4 184
3 387 + 15 222

Total 1006 + 27 696

This shows that Sharma and Mishra’s edition does not give the whole text
but about two-third of it.

5 Vaṭeśvara’s date and place

In the closing verse of Section 1, Chapter 1, of the Vaṭeśvarasiddhānta, Vaṭeś-
vara himself gives the time of his birth as well as the time of composition of
the Vaṭeśvarasiddhānta. Writes he:
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When 802 years had elapsed since the commencement of the Śaka
era, my birth took place; and when 24 years had passed since
my birth this Siddhānta was written by me with the grace of the
heavenly bodies.

This shows that Vaṭeśvara was born in 880 ad and Vaṭeśvarasiddhānta was
written in 904 ad. His work, Karaṇasāra, was written, as reported by Al-
Bīrūnī, five years earlier in 899 ad.
In the opening verse of the Vaṭeśvarasiddhānta, Vaṭeśvara has called himself

“a son of Mahadatta”. The colophons at the ends of the various chapters of
the Vaṭeśvarasiddhānta go a step further and declare him as being “the son of
Bhaṭṭa Mahadatta resident of Ānandapura.” This shows that Vaṭeśvara was
the son of Bhaṭṭa Mahadatta and belonged to the place called Ānandapura.
Ānandapura has been identified by Cunningham and Dey with the town

of Vadnagar in northern Gujarat situated to the south-east of Sidhpur (lat.
23.45 N, long. 72.39 E).13 “Ānandapura or Vaḍnagar,” writes Dey, “is also
called Nāgara which is the original home of the Nāgara Brāhmaṇas of Gujarat.
Kumārapāla surrounded it with a rampart. Bhadrabāhu Svāmī, the author of
the Kalpasūtra, composed in 411 ad, flourished at the court of Dhruvasena II,
King of Gujarat, whose capital was at this place.”14 That Vaṭeśvara’s Ānanda-
pura was the same place as Vadnagar or Nāgara is confirmed by the testimony
of Al-Bīrūnī who has written that Vaṭeśvara belonged to the city of Nāgara-
pura. Nāgara and Nāgarapura are obviously one and the same.
Ānandapura seems to have been a great seat of Sanskrit learning. Āmarāja

(c. 1200 ad), a commentator of the Khaṇḍakhādyaka of Brahmagupta, and
Mādhava (1263 ad), a commentator of the Ratnamālā of Śrīpati, also be-
longed to this place. According to both these writers the equinoctial midday
shadow at this place was 5 aṅgulas and 20 vyaṅgulas and the hypotenuse of
the equinoctial midday shadow, 13 aṅgulas and 8 vyaṅgulas,15 which shows
that the latitude of Ānandapura was 24◦ north approximately. The latitude
of Vadnagar is also approximately the same.
In the closing verse of Section 9, Chapter 3, Vaṭeśvara has mentioned Daśa-

pura which seems to suggest that he had some association with that place.
This Daśapura was probably the same place as has been identified with Man-
dasor (lat. 24.03◦ N, long. 75.08◦ E), which is situated in Madhya Pradesh
and is not far from Vadnagar. What kind of association Vaṭeśvara actually
had with this place is difficult to say.

13Cf. Sir Alexander Cunningham, “The Ancient Geography of India,” p. 416; Nundo Lal
Dey, “The Geographical Dictionary of Ancient and Medieval India,” p. 6.

14Cf. Nundo Lal Dey, ibid.
15See Āmarāja’s commentary on Khaṇḍakhādyaka, iii. 1, p. 87, and Bhāratīya Jyotiṣa

Śāstra (Marathi) by S. B. Dikshit, Second Edition, p. 471.
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6 Govinda, copyist of the manuscript

We conclude this paper with a note on Govinda, the copyist of the second
manuscript of the Vaṭeśvarasiddhānta.16 As already pointed out, he has
added four chapters by way of supplementing the third chapter, entitled the
Tripraśnādhikāra, of the Vaṭeśvarasiddhānta. This shows that Govinda was a
good astronomer who had the capability of saying something which did not
occur even to such a great astronomer as Vaṭeśvara. The contents of the
chapters written by him definitely add to the value of the Vaṭeśvarasiddhānta.
A number of rules given by him are quite new and do not occur in any other
work on Hindu astronomy.

We know of more than one Hindu astronomer who bore the name Govinda
but our Govinda is quite different from them. From the colophons occurring at
the end of his four chapters it appears that he was the son of Bhaṭṭa Vāhnika
or Vahnika who lived at the place called Dauraṇḍa.

16There are reasons to believe that the manuscript available to us was not actually written
by Govinda. It seems to have been transcribed from the copy originally made by Govinda
or from another copy thereof.



The evection and the deficit of the equation of
the centre of the Moon in Hindu astronomy ∗

Section I

1. Dhirendranath Mukhopadhyaya (1930) published a paper entitled “The
Evection and the Variation of the Moon in Hindu Astronomy” wherein he
showed that the Hindu astronomer Mañjula knew of a lunar correction which
is equivalent to the deficit of the equation of the centre and the evection.
P. C. Sengupta (1932) published another paper entitled “Hindu Luni-solar
Astronomy” in which, among other things, he considered various formulae
regarding this dual correction as given by Mañjula (932), Śrīpati (1039), and
Candra Śekhara Siṃha (latter half of the 19th century). None of these pa-
pers, however, contains a complete or systematic study of this correction and
in consequence some errors have crept in. The object of the present paper is
to exhibit the central idea underlying the corrections prescribed by various
Hindu authors and to explain them more thoroughly in the light of further
investigations in the field of Hindu astronomy.

2. The discovery of this correction is one of the greatest achievements of the
Hindus in the field of practical astronomy. Early Hindu astronomers made ob-
servations and recorded the differences between the observed and computed
positions of the heavenly bodies. As early as Vedic times, the Hindus per-
formed sacrifices when the planets occupied specified positions in the heavens.
This practice continued for thousands of years. The record of such observa-
tions served as the basis for the foundation of the Hindu theoretical astronomy
and later on supplied material on the basis of which corrections were made
and refinements introduced from time to time. These observations continued
over long periods led to the discovery of the above lunar inequality as well as
of all the other inequalities.

3. Due to the fact that a good deal of the early Hindu astronomical litera-
ture has not been preserved, it is impossible to locate the exact date when the

* K. S. Shukla, Proceedings of the Benares Mathematical Society, New Series, Vol. 7,
No. 2 (1945), pp. 9–28.
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lunar inequality was first detected in India and to trace a regular theoretical
history of this subject. The available formulae giving this correction exhibit
an advanced state of the subject and it is our belief that they must have taken
centuries to develop.

4. At present this correction can be traced back to the time of Vaṭeśvara,1
the well-known critic of Brahmagupta2 (628). The works of Vaṭeśvara are
not available to us, but from Yallaya’s commentary (1482) on the Laghumā-
nasa (932) we learn that the Vaṭeśvarasiddhānta contained this correction. In
his commentary on the Laghumānasa, i(c), 1–2, Yallaya has actually quoted
Vaṭeśvara’s version of this correction. This is as follows:

एकादश भभ गै वव जतैः च ग तभागैः ।
ु टसूय च ो ं ा त ो टजीवा या ॥

गु णता ा णुकारैधनणसं या ेषा ।
े ौ ु टसूय वशो को ट क भुज वा ॥

ा ा तयोधना ामृणसं वा यथो चत कृ ा ।
भुजको ट े गु णते तेन गुणेनैव ते भुजे मशः ॥
पेण प भय ल ा े शीतगो त ु ौ ।

भव त फलं श श ल गुणकभुजातु भ नामयुतौ ॥
कुय पूा ं य धनमृण म ोः मा ु ा ।
भ ाशा ौ ात को टगुणौ त नं यं कुय ॥3 By the multiplier ob-
tained by subtracting eleven degrees from the Moon’s true daily
motion, in degrees (bhāga), multiply the Rcosine of the Sun’s true
longitude minus the longitude of the Moon’s apogee (ucca). This
comes positive or negative. (Next) having subtracted the Sun’s
true longitude from the Moon’s true longitude and having obtained
the Rsine and Rcosine thereof, and (then) having properly ascer-
tained their signs—positive or negative—, multiply the Rsine and
Rcosine (thus obtained) by the (previous) product (or epicyclic
multiplier). The results should be respectively divided by 1 and 5
and applied as correction, in minutes (liptās), to the Moon’s true
longitude and true daily motion (in the following manner): The

1According to Śaṅkara Bālakṛṣṇa Dīkṣita, Vaṭeśvara’s time is 899 ad.
2In his Gaṇakataraṅgiṇī, Sudhākara Dvivedī writes:

यथा गु ेनायभटादीन ख नं कृतं तथैव वटे रेण स ा े ब गु ख नं कृतम ।
3Dattarāja gives the last 1 1

2
verses thus:

भव त फलैः श श ल गुणकभुजातु भ नामयुतौ ॥
कुय पूा ं य धनमृण म ोः मा ा ।
भ ाशा ौ ात को टगुणा त नं यं कुय ॥

Cf. Ketakī-grahagaṇitam, p. 128.
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result which is obtained on dividing by one should be applied as
a positive or negative correction to the minutes of the Moon ac-
cording as the multiplier and the Rsine are of like or unlike signs;
(and) the product of the Rcosines is to be applied as a positive
or negative correction to the Moon’s true daily motion provided
their signs satisfy the contrary condition.

5. This correction is also found in the Laghumānasa of Mañjula in exactly
the same form as stated above by Vaṭeśvara. According to the commentator
Yallaya, Mañjula has borrowed this correction from the Vaṭeśvarasiddhānta
itself. Yallaya gives the following introductory line to Mañjula’s stanzas re-
garding this correction:

अथ च हसमागम ाया ो त ाधने वटे र स ा ो म वशेषं
ोक येनाह—

Now, in the (next) two verses, (the author) gives a special visibil-
ity correction, the same which has been stated in the Vaṭeśvara-
siddhānta in connection with the calculation of the Moon’s conjunc-
tion with the planets, the Moon’s shadow, the Moon’s śṛṅgonnati
and the Moon’s longitude agreeing with observation.

And actually we find that Mañjula has only summarised the above verses of
Vaṭeśvara4. He says:

इ ू ोनाकको ट ा ग ंशा वभवा वधोः ।
गुणो क दुोःको ो पप ा योः मा ॥
फले शशा त ो ल ा े णयोवधे ।
ऋणं च े धनं भु ौ णसा वधेऽ था ॥5

Multiply the degrees of the Moon’s true daily motion6 as dimin-
ished by 11 by the Rcosine of the true longitude of the Sun minus
the longitude of the Moon’s apogee. This is the multiplier of the
Rsine and the Rcosine of the true longitude of the Moon dimin-
ished by that of the Sun respectively divided by 1 and 5. The

4Note the brevity and conciseness of Mañjula’s composition. He states the correction in
two verses while Vaṭeśvara gives the same in five.

5Cf. Laghumānasa, i(c), 1–2.
6From the word śuddhacandragatibhāga used by Vaṭeśvara it is obvious that Mañjula’s cor-
responding word gatyaṁśa should mean “the true daily motion, in degrees” and not “the
mean daily motion” which has been given as a translation of gatyaṁśa by D. Mukhopad-
hyaya (1930), P. C. Sengupta (1932), and N. K. Majumdar (1944). Sūryadeva Yajvā also
observes:

वधो ु टभु ं ष ा आरो भागा कुय ते ग ंशा इ त उ े।
Cf. Laghumānasa, i(c). 1–2 (comm).
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results (thus obtained) are respectively the corrections, in min-
utes (liptās), of the Moon and its true daily motion. If in the
above product one (factor) is positive and the other negative, the
correction for the Moon is subtractive and that for its true daily
motion additive. If both are of like sign, both positive or both
negative, the corrections are contrary.

If S, M , and U respectively denote the true longitudes of the Sun, the
Moon, and the Moon’s apogee (mandocca), then the correction for the Moon’s
longitude stated above by Vaṭeśvara and Mañjula is

∓
(
8
2

15

)
cos(S − U) [Moon’s true daily motion, in degrees− 11]

×
(
8
2

15

)
sin(M − S) minutes, (1)

according as (
8
2

15

)
cos(S − U) and

(
8
2

15

)
sin(M − S)

are of unlike or like signs; and the correction for the Moon’s true daily motion
is

±
(
8
2

15

)
cos(S − U) [Moon’s true daily motion, in degrees− 11]

×
(
8 2
15

)
cos(M − S)

5
minutes, (2)

according as (
8
2

15

)
cos(S − U) and

(
8
2

15

)
cos(M − S)

are of unlike or like signs.
Expression (2) is clearly an approximate value of the differential of (1). For,

R being the radius,

d

{(
8
2

15

)
sin(M − S)

}
=

(
8
2

15

)
cos(M − S) d

{
M − S

R

}
=

(
8 2
15

)
cos (M − S)

5
, 7

the term involving the differential of
(
8 2
15

)
cos(S − U) being neglected.8

7For let dM = 790′35′′, dS = 59′8′′, and R = 3438′; then
d(M − S)

R
=

731′27′′

3438′
=

1

5
approx.

8The error committed is generally negligible.
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6. The general form of this correction appears in the Siddhāntaśekhara of
Śrīpati (1039), who gives it thus:

भ वर हतच ो ोनभा जु ा
गगननृप व न ी भ य ा वभ ा ।
भव त परफला ं त पृथ ं शर ं
तमुडुप तकण योर रेण ॥

य दह फलमवा ं त नण पृथ े
तु हन करणकण कोना धकेऽथ ।

ु ट दनकरहीना द तुो या भुज ा
ु टपरमफल ी भा जता याऽऽ ॥

श श न चरफला ं सूयहीने गुोला
त णमुतधनं ा हीनाकगोलः ।
य द भव त ह या ो मेत धेयं

ु टग णत गै ं कतु म र ॥9

Deduct 90◦ from the longitude of the Moon’s apogee and by that
diminish the true longitude of the Sun and obtain the Rsine of that.
Multiply that by 160′ and divide by the radius. This is known as
the paraphala (i.e., the maximum correction). Set it down in two
places. Multiply one by 5 and divide by the Moon’s true distance
as divided by its difference with the radius.10 Add whatever is
obtained here to or subtract that from the other placed elsewhere
according as the Moon’s true distance is less or greater than the
radius. (Thus is obtained the sphuṭaparamaphala). Now diminish
the true longitude of the Moon by that of the Sun and take its
Rsine. Multiply it by the sphuṭaparamaphala and divide by the
radius. Then is obtained the so-called cara correction of the Moon.
(When

{Sun’s true longitude− (longitude of Moon’s apogee− 90◦)}

is less than 6 signs) this is subtractive or additive according as

(Moon’s true longitude− Sun’s true longitude)

is less or greater than 6 signs. When

{Sun’s true longitude− (longitude of Moon’s apogee− 90◦)}

9Cf. Siddhāntaśekhara, xi. 2–4. The text of the above as printed by Babua Misra in his
edition of the Siddhāntaśekhara (Calcutta University Press) is defective. Emendations
have been made by us by comparison with the text of the above as found in the MS of
Suryadeva Yajvā’s commentary on the Laghumānasa in the Lucknow University.

10 ाकणयोर रेण गु णते ु टकलाकणन ते। (Sūryadeva Yajvā).
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is greater than 6 signs, the correction is reversed. This is the
process performed by those who wish to tally computation with
observation.11

Expressed mathematically, Śrīpati’s correction is

∓R sin {S − (U − 90◦)} × 160

R
×[

1± 5(Moon’s true distance, in minutes ∼ R)

Moon’s true distance, in minutes

]
R sin(M − S)

R
minutes, (3)

where, within the square brackets, + or − sign is to be taken according as

Moon’s true distance in minutes ≶ R

and the correction is to be applied positively or negatively according as

R sin{S − (U − 90◦)} and R sin(M − S)

are of unlike or like signs.12

It would be easily seen that the correction of Śrīpati may also be stated as

±R cos(S − U)

R
[Moon’s true daily motion, in minutes− 630′35′′]

× R sin(M − S)

R
minutes approx.,

11P. C. Sengupta gives a different translation of the above passage which seems to us to be
incorrect. For the sake of comparison, however, we quote it here.

From the moon’s apogee subtract 90◦, diminish the sun by the remainder left;
take the “sine” of the result; multiply it by 160′ and divide by the radius; the
result is the caraphala. Put it down in another place, multiply it by śara (i.e.,
Rvers(M−U) or versed sine of the Moon’s distance from the apogee) and divide
by the difference between the moon’s distance (hypotenuse) and the radius; the
result is called parama(cara)phala, which is to be considered to be positive or
negative according as the hypotenuse put down in another place is less or greater
than the radius. Multiply the “sine” of the moon which has been diminished
by the apparent sun, by the apparent paramaphala and divide by the radius;
the final result is to be called caraphala to be applied to the moon negatively
or positively, if the moon minus the sun and the sun minus the moon’s apogee
(diminished by 90◦) be of opposite signs; if these latter quantities be of the same
sign the new equation should be applied in the inverse order by those who want
to make the calculation of the apparent moon agree with observation.

In consequence, P. C. Sengupta gives the correction in the following form:

∓
160×R cos(S − U)×R sin(M − S)

R×R
×

Rvers (M − U)

H −R
,

H being the Moon’s true distance (mandakarṇa).
12The corresponding correction for the Moon’s true daily motion does not occur in the

Siddhāntaśekhara.
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according as
R cos(S − U) and R sin(M − S)

are of unlike or like signs, which form is analogous to the forms of Vaṭeśvara
and Mañjula.
It will be noted that all the formulae stated above are but approximate. The

approximation has been preferred because it gives the formulae a particular
form. The correct form of the formula of Śrīpati, say, would be

±R sin {S − (U − 90◦)} × 160

R
×[

1± (Moon’s true distance, in minutes ∼ R)

Moon’s true distance, in minutes

]
× R sin(M − S)

R

according as

R sin{S − (U − 90◦)} and R sin(M − S)

are of unlike or like signs; or

±R

H
× 160

R
× R sin(M − S)×R cos(S − U)

R

13

according as
R sin(M − S) and R cos(S − U)

are of unlike or like signs, which is equivalent to the form of Nīlakaṇṭha; or,

±160× R sin(M ∼ S)

R
× R cos(S − U)

R
× Moon’s true daily motion

Moon’s mean daily motion

according as
R sin(M ∼ S) and R cos(S − U)

are of unlike or like signs, which exactly conforms to the result of Candra
Śekhara Siṃha.
Śrīpati has introduced the number 5 in his formula to make it agree with

the forms of Vaṭeśvara and Mañjula.

7. The error committed in the above formulae of Vaṭeśvara, Mañjula, and
Śrīpati was recognised by Nīlakaṇṭha (1500), who states his rule in the follow-
ing manner:

क बुा को ट े हते वी ू भा तः ।
को धन जीवा े दश े कुला ुतौ ॥

13H denotes the Moon’s true distance, in minutes.
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अयनै े च भेदे च ण को टजमेतयोः ।
त ा फलवग मूल म धुरा र ॥

ा ं बा जं तेन भ ं ण वधोः ु टे ।
ककणादौ वधू ोनरवौ े ऽ थाऽ सते ॥14

Divide by the radius the Rsine and the Rcosine of the Moon’s true
longitude minus the Sun’s true longitude severally multiplied by
half the Rcosine of the sun’s true longitude minus the longitude
of the Moon’s apogee: (the results are, in yojanas, the bāhuphala
and the koṭiphala). Add the koṭiphala to or subtract that from ten
times the true distance of the Moon (viz. the Moon’s mandakarṇa),
in minutes (kalās), according as the Rcosines are of like or unlike
signs. The square root of the sum of the squares of that and the
bāhuphala is the distance (in yojanas) between (the true positions
of) the Moon and the Earth.15 By that divide the bāhuphala as
multiplied by the radius and apply it as a positive or negative
correction to the Moon according as the Sun minus the Moon’s
apogee is in the six signs beginning with Cancer or in those begin-
ning with Capricorn provided that it is the light half of the lunar
month; in the dark half the correction is to be reversed.

Stated mathematically, Nīlakaṇṭha’s correction takes the following form:

± R

H1
×
R sin(M − S)× 1

2R cos(S − U)

R
minutes (4)

according as
R sin(M − S) and R cos(S − U)

are of unlike or like signs, H1 being the Moon’s second true distance, in min-
utes.16

14Cf. Tantrasaṅgraha, viii. 1–3.
15This is also known as Moon’s second true distance (dvitīya-sphuṭa-karṇa).
16As regards the corresponding correction for the Moon’s true daily motion, Nīlakaṇṭha does
not give any formula analogous to that given by Vaṭeśvara and Mañjula. He has, however,
prescribed the following rule (cf. Tantrasaṅgraha, viii. 4) for obtaining the second true
daily motion of the Moon:

म भु दश े ो ा ा योजनै ता ।
भूच ा रगैभु वधोर ु टा मता ।।
Ten times the Moon’s mean daily motion (in minutes) multiplied by the ra-
dius and divided by the distance between (the true positions of) the Earth
and the Moon (bhūcandrāntara), in yojanas, has been stated to be its (sec-
ond) true daily motion (in minutes).

This gives the following formula:
Moon’s second true daily motion =

Moon’s mean daily motion, in minutes× 10×R

Moon’s second true distance, in yojanas
minutes.
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8. This correction also occurs in the Siddhāntadarpaṇa of Candra Śekhara
Siṃha where it has been called tuṅgāntara and stated as follows:

अभी कालो तच म ा प े सते स भसूयहीना ।
कृ े भोनायमव जता के ं तदीया भुजमौ वका या ॥
सा ा भू ी गुणेन भ ा ु टाकच ा रदोगुण ी ।

ो तृा ल मतः कला ं ग ा व न ं थम ु टे ोः ॥
त ग ा व तं फलं ा तु ा रं तेन वहीनयु ः ।
पय यतः स भ व भाकहीने मु ो भवो के े ॥
तुलाधराजा दभष न े ा च ो भव त तीयः ।17

From the longitude of the Moon’s apogee for the desired instant
subtract the Sun’s true longitude as increased by 3 signs if it is the
light half of the lunar month and subtract the Sun’s true longitude
as diminished by 3 signs if it is the dark half of the lunar month.
Treat the remainder as kendra and determine the Rsine thereof.
Multiply that by 160 and divide by the radius; (again) multiply
by the Rsine of the difference between the true longitudes of the
Sun and the Moon and divide by the radius. Multiply the quo-
tient, in minutes, thus obtained, by the daily motion of the first
true Moon18 and divide by the Moon’s mean daily motion: the
result (thus obtained) is known as tuṅgāntara. The true longitude
of the Moon obtained before, when diminished or increased, or
increased or diminished by that according as the kendra obtained
by subtracting the Sun’s true longitude as increased by 3 signs
or decreased by 3 signs from the longitude of the Moon’s apogee
is in the six signs commencing with Libra or Aries respectively,
becomes the second true longitude of the Moon.

This is equivalent to the following correction:

± 160× R cos(M ∼ S)

R
× R sin(S − U)

R
×

daily motion of the first true Moon
Moon’s mean daily motion minutes, (5)

where + and − signs are chosen according as

R sin(M ∼ S) and R cos(S − U)

are of unlike or like signs.
17Cf. Siddhāntadarpaṇa, grahagaṇita, vi. 7–10 (i).
18The first true Moon is the same as the true Moon. Similarly the first true longitude and
the first true daily motion are the same as the true longitude and the true daily motion.
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The corresponding correction for the Moon’s true daily motion given by
Candra Śekhara Siṃha is contained in the following lines:

तु ा रं य फलम स ं ाहतं त थमे भुा ोः ।
व ेषदो फलं तदीया रो कोटीगुणस ुण ॥

ो तृं त पुनरकच ग र ं गुणा ल ।
यो ं तदवे थमे भुु फले भवे ु फलं तीय ॥
त सं ृ तं म गतौ पुरोव वे तीया रजनीशभु ः ।19

The result known as tuṅgāntara, which has been just obtained,
should be multiplied by the radius and divided by the Rsine of
the difference of the first true longitudes of the Moon and the
Sun. The result should be multiplied by the Rcosine of the same
difference and divided by the radius. That should be again mul-
tiplied by the motion-difference of the Sun and the Moon, and
divided by the radius and that should be added to (or subtracted
from) the Moon’s first bhuktiphala (correction for motion): result
is the Moon’s second bhuktiphala. That applied (as a correction—
positive or negative—) to the Moon’s mean daily motion as before
gives the Moon’s second (true) daily motion.

Accordingly, the corresponding correction for the Moon’s true daily motion
is

±160× R cos(M ∼ S)

R
× R cos(S − U)

R
×

daily motion of the first true Moon
Moon’s mean daily motion ×

motion-difference of the Moon and the Sun
R

minutes, (6)

+ or − sign is to be taken according as

R cos(M ∼ S) and R cos(S − U)

are of unlike or like signs.
Expression (6) is clearly an approximate differential of (5), the term involv-

ing the differential of R cos(S − U) having been neglected.
Correspondence between formulae (2) and (6) may be noted.

9. The above discussion clearly shows that there is striking similarity among
the rules stated above. The differences are due to different maximum values
of the correction taken by different authors.

19Cf. l.c. vi. 17–19 (i).



635

10. Although there is a general unity among the rules above, yet it is sur-
prising to note, at first sight, that Śrīpati, Nīlakaṇṭha, and Candra Śekhara
Siṃha have deviated from Vaṭeśvara and Mañjula regarding the sign of the
correction for the Moon’s longitude. Vaṭeśvara and Mañjula apply the correc-
tion negatively where Śrīpati, Nīlakaṇṭha, and Candra Śekhara Siṃha apply it
positively and vice versa. The reason for this deviation is that all the Hindu
astronomers including, of course, Śrīpati, Nīlakaṇṭha, and Candra Śekhara
Siṃha agree among themselves in taking R sin θ positive or negative accord-
ing as

0 < θ < 6 signs

or
6 signs < θ < 12 signs,

whereas Vaṭeśvara and Mañjula take R sin θ positive or negative according as

6 signs < θ < 12 signs

or

0 < θ < 6 signs.

Mañjula gives his rule of sign as follows:

हः ो ो नतः के ं त धोऽधजो भुजः ।
धनण पदशः कोटी धनणणधना का ॥20

The (mean or true-mean) longitude of the planet diminished by the
(mean) longitude of the (manda or śīghra) ucca is known as (manda
or śīghra) kendra. There the bhuja21 (and the Rsine thereof) is
positive or negative according as the kendra is greater or less than
half a circle; and the koṭi (i.e., the complementary arc of the bhuja)
(and the Rsine thereof) is plus, minus, minus, and plus in the
respective quadrants.22

20Cf. Laghumānasa, i(b), 1. The text given here agrees with that given by Sūryadeva Yajvā
(b. 1191), Parameśvara (1409), and Yallaya (1482). N. K. Majumdar, however, gives
ṣaḍūrdha instead of tadūrdhva. P. C. Sengupta’s version is ṣaḍūrdhvādardhajo.

21“If the (mean or true-mean) planet is in the odd quadrant (the portion of) the kendra
(which lies in that quadrant) is known as bhuja (and the complementary arc as koṭi); if
the (mean or true-mean) planet is in the even quadrant (the portion of) the kendra (which
lies in that quadrant) is called koti (and the complementary arc as bhuja).” (Lalla).

22Parameśvara says: के े तुला दषडा शगते धना को भुजः मेषा दषडा शगते ऋणा क इ थः। Sūryadeva
Yajvā says: के च उ ध अधोऽध जात भुजः मा धनसं ं च ऋणसं ं च भवतः। यदा के ं
रा शष ाद धकं तदा ऊ ध वतत इ त ेय । यदा रा शष ा नं तदा अधोऽध वतत इ त ेय ।
Literally translated the latter part of the above verse would give: “There the bhuja

arising from the upper half-circle (commencing from the sign Libra) and the lower half-
circle (commencing from the sign Aries) is positive and negative and the koṭi in the
respective quadrants is positive, negative, negative, and positive.”

The evection and the deficit of the equation of the centre …
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Consequently in the four quadrants the signs of R sin θ and R cos θ taken by
Vaṭeśvara and Mañjula are minus, minus, plus, plus and plus, minus, minus,
plus respectively. As regards the sign of R sin θ, this convention, as already
pointed out, does not agree with the general Hindu convention.
The conception of Vaṭeśvara and Mañjula is based, however, on the follow-

ing two considerations:

(i) the bhujaphala (the equation of the centre) is a function of the Rsine
of the bhuja while the koṭiphala (i.e., the correction for the radius) is a
function of the Rsine of the koṭi; and

(ii) the bhujaphala (i.e., equation of the centre) is subtractive, subtractive,
additive, and additive in the four successive quadrants while in the same
quadrants the koṭiphala (i.e., the correction for the radius) is additive,
subtractive, subtractive, and additive.

Following this Vaṭeśvara and Mañjula take the Rsine and the correspond-
ing arc known as bhuja negative where the bhujaphala (i.e., the equation of
the centre) is negative and positive where it is positive. Similarly, where the
koṭiphala (i.e., the correction for the radius) is negative the Rcosine and like-
wise the corresponding arc known as koṭi is taken as negative and where the
koṭiphala is positive, the Rcosine and the koṭi are taken as positive.

This explains the difference in sign in the corrections for the Moon’s longi-
tude given by Vaṭeśvara and Mañjula and those given by Śrīpati, Nīlakaṇṭha,
and Candra Śekhara Siṃha.

11. Thus there has been established complete unity among the rules of
Vaṭeśvara, Mañjula, Śrīpati, Nīlakaṇṭha, and Candra Śekhara Siṃha.

Section II

12. Vaṭeśvara and Mañjula call the expression(
8
2

15

)
cos(S − U)[Moon’s true daily motion, in degrees− 11]

by the term guṇa, which has also been used to denote the epicyclic multiplier.
Śrīpati calls

160

R
×R sin{S − (U − 90◦)}
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paraphala, which corresponds with the antyaphala i.e., the radius of the epicy-
cle, and

R sin{S − (U − 90◦)} × 160

R
×[

1± 5(Moon’s true distance, in minutes ∼ R)

Moon’s true distance, in minutes

]
sphuṭa-parama-phala, which may be translated by the expression “corrected
epicyclic radius”. Nīlakaṇṭha has actually used the terms bāhuphala and
koṭiphala, and says

bāhuphala =
R sin(M − S)× 1

2R cos(S − U)

R
yojanas,

and koṭiphala =
R cos(M − S)× 1

2R cos(S − U)

R
yojanas.

These facts clearly indicate that the Hindu astronomers had also an epicyclic
representation of the above correction. In what follows we shall explain this
point of view.

13. The Hindu astronomers believed that the Earth did not always occupy
its natural position (which coincides with the centre of the so-called bhagola)
and that the dual correction above was due to its displacement. Let E (ed.
See Figure 1) denote the natural position of the Earth’s centre (bhagolaghana-
madhya), the bigger circle round E the Moon’s concentric (kakṣāvṛtta), the
point U the position of the Moon’s apogee on the concentric, M the true
position of the Moon’s centre and ES the direction of the Sun from the Earth’s
centre. The small circle round E has λ for its radius where λ denotes the
maximum value of the dual correction at the Moon’s distance given by the
following table:

Authority λ, in minutes (kalās)

Vaṭeśvara and Mañjula 144 approx.
Śrīpati and Candra Śekhara Siṃha 160
Nīlakaṇṭha 171.9

K is the point on the small circle opposite to U . KE1 is perpendicular
to SES1 and E1P to MEM1. The point E1 denotes, according to Hindu
astronomers, the displaced position of the Earth’s centre and is known as
ghanabhūmadhya.

The circle with centre E and radius EE1 (not shown in the figure) is treated
as an epicycle and its radius EE1 is known as the epicyclic radius23 (para-
phala). In consequence E2P is known as bāhuphala (or bhujāphala) and EP
23It will be noted that the size of this epicycle does not remain constant. It depends on the
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1
1

E
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Figure 1

as koṭiphala.

∵ ∠KEE1 = S − U,

and ∠E1EP =M − S,

∴ EE1 = λ cos(S − U),

whence E1P i.e., bāhuphala = λ cos(S − U)× sin(M − S),

and24 EP i.e., koṭiphala = λ cos(S − U)× cos(M − S).

positions of the Sun and the Moon’s apogee. When S − U is zero or 180◦, it assumes its
greatest size and coincides with the small circle drawn in the figure. When S ∼ U equals
90◦, it reduces to the point-circle at E. It will be further noted that EE1 denotes the
epicyclic radius at the Moon’s second true distance. When it is reduced to the distance
R, it is known as corrected epicyclic radius (sphuṭa-parama-phala).

24If we put λ = 171.9 minutes or R
2

yojanas, we have

bāhuphala =
R sin(M − S)× 1

2
R cos(S − U)

R
yojanas,

and koṭiphala =
R cos(M − S)× 1

2
R cos(S − U)

R
yojanas,

which agree with the formulae stated by Nīlakaṇṭha.
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Due to the displacement of the Earth’s centre from E to E1 the Moon’s true
distance, measured in minutes, (mandakarṇa or sphuṭa-kalā-karṇa) changes
from EM to E1M . The distance E1M is known as the distance between
(the true positions of) the Moon and the Earth (bhūmyantara-karṇa) or the
Moon’s second true distance (dvitīya-sphuṭa-karṇa) and is obtained by the
following formula:

Moon’s second true distance, in minutes =[
(Moon’s true distance, in kalās ± koṭiphala, in kalās)2

+ (bāhuphala, in kalās)2
] 1

2

according as the koṭiphala is positive or negative.25

Similarly, the dual correction due to the displacement of the Earth’s centre
from E to E1 is obviously given by the following:

the dual correction = ∠EME1

= R sin−1

{
E1P ×R

E1M

}
=
E1P ×R

E1M
approx.

=
R

H1
× λ sin(M − S)× cos(S − U)26

where H1 denotes the Moon’s second true distance, in minutes.
Since the Moon’s true distance is approximately equal to the Moon’s second

true distance, the Hindu astronomers have in general used the Moon’s true
distance, in minutes, in place of the Moon’s second true distance, in minutes,
in their formulae for the dual correction. The error is negligible. Nīlakaṇṭha,
however, used the Moon’s second true distance, in minutes.

14. The displacement of the Earth’s centre conceived by Hindu astronomers
not only changes the Moon’s true distance but it also creates a change in the
25This corresponds with Nīlakaṇṭha’s formula above.
26Putting various values of λ in this formula, we obtain the formulae of Vaṭeśvara etc.
in their modified form. For example, putting λ = R

2
yojanas, we obtain Nīlakaṇṭha’s

formula

the dual correction =
R

H1
×

R sin(M − S)× 1
2
R cos(S − U)

R
yojanas,

=
R

H1
×

R sin(M − S)× 1
2
R cos(S − U)

10×R
minutes.
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distances of all other planets, howsoever small that change may be. Nīla-
kaṇṭha has considered the two particular cases relating to the lunar and solar
distances:

(1) when the longitudes of the Sun and the Moon are the same; and

(2) when the longitudes of the Sun and the Moon differ by 180◦.

He says:

उ ोनश शको ट ादलं पव जं ु ट ।
ु टयोजनकण ं ज ा क दजं ततः ॥

स भू रकणः ा तेन ब कल नये ।
ु टयोजनकण े मासा े श शव वेः ॥

ं प ा जं काय र वभू रा ये ।27

The half of the true value of the Rcosine of the Moon’s longitude
minus the longitude of the Moon’s apogee (mandocca) correspond-
ing to the instant of geocentric conjunction or opposition of the
Sun and the Moon should be added to the true distance of the
Moon, in yojanas, (when the Moon is in the six anomalistic signs
commencing with Capricorn) and subtracted from that when the
Moon is in the six anomalistic signs beginning with Cancer. This
gives the distance, in yojanas, between (the true positions of) the
Moon and the Earth (bhūmyantarakarṇa). This is to be used in
calculating the Moon’s diameter, in minutes (kalās), (for the in-
stant of geocentric conjunction or opposition). In order to obtain
the distance (in yojanas) between (the true positions of) the Sun
and the Earth, apply the same as a positive or negative correction
to the Sun’s true distance, in yojanas, as in the case of the Moon,
provided that it is the end of the lunar month; if it is the end of
the fifteenth lunar date, apply the same reversely.

From figures similar to that drawn above for the general case, it will be
seen that, when the Sun and the Moon are in geocentric conjunction,

(i) the Sun and the Moon are in the same direction from the natural position
of the Earth’s centre (bhagolaghanamadhya) while the displaced position
of the Earth’s centre is in the contrary or the same direction according
as the Moon is in the six anomalistic signs commencing with Capricorn
or Cancer; and

(ii) M − S = 0,whence

bāhuphala = 0 and koṭiphala =
1

2
R cos(M − U) yojanas.

27Cf. Tantrasaṅgraha, iv. 12–14 (i).
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Consequently

Sun’s second true distance, in yojanas =

Sun’s true distance, in yojanas ± 1

2
R cos(M − U) yojanas,

and

Moon’s second true distance, in yojanas =

Moon’s true distance, in yojanas ± 1

2
R cos(M − U) yojanas,

according as the Moon is in the six anomalistic signs commencing with Capri-
corn or Cancer.
When the Sun and the Moon are in geocentric opposition, it will be, simi-

larly, seen that

(i) the Moon and the Sun are on the opposite sides of the natural position
of the Earth’s centre (bhagolaghanamadhya) and the displaced position
of the Earth is directed towards that of the Sun or the Moon according
as the Moon is in the six anomalistic signs commencing with Capricorn
or Cancer; and

(ii) M − S = 180, whence

bāhuphala = 0 and koṭiphala =
1

2
R cos(M − U) yojanas.

Consequently

Sun’s second true distance, in yojanas =

Sun’s true distance, in yojanas ∓ 1

2
R cos(M − U) yojanas,

and

Moon’s second true distance, in yojanas =

Moon’s true distance, in yojanas ± 1

2
R cos(M − U) yojanas,

according as the Moon is in the six anomalistic signs beginning with Capricorn
or Cancer.
Hence Nīlakaṇṭha’s rules above.

15. In the above graphical method of the Hindus the true position of the
Moon remains unaffected whereas the position of the Earth goes on changing

The evection and the deficit of the equation of the centre …
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from time to time. Also the size of the epicycle ascribed to the Earth does
not remain invariable. It depends upon the positions of the Sun and the
Moon’s apogee. It is maximum when the Sun crosses the Moon’s line of
apsides (uccanīcarekhā) and minimum when the Sun is at right angles to
it. This variation in the size of the Earth’s epicycle causes a variation in
the eccentricity of the Moon’s path which, it will be noted, always assumes
its maximum value when the Sun crosses the Moon’s line of apsides and its
minimum value when the Sun is at right angles to it. This variation in the
eccentricity of the Moon’s orbit is obviously related to the dual correction.
In fact the dual correction depends upon it. Young (1889) has actually said
that the evection “depends upon the alternate increase and decrease of the
eccentricity of the Moon’s orbit, which is always a maximum when the sun is
passing the moon’s line of apsides, and a minimum when the sun is at right
angles to it.” According to Mañjula and Vaṭeśvara the maximum value of the
eccentricity of the Moon’s orbit comes out to be roughly about 0.0652 and
according to Śrīpati and Candra Śekhara Siṃha about 0.0674; the minimum
Hindu value of the Moon’s eccentricity is about 0.0442. The corresponding
maximum and minimum values given by Horrocks (1640) are 0.06686 and
0.04362 respectively. According to Young the eccentricity of the Moon’s orbit
varies from 1

14 to 1
22 .

Section III

16. The Greek astronomer Ptolemy (140 ad) was also aware of this dual
correction of the Moon.28 He is said to have constructed an instrument by
means of which he observed the Moon in all parts of its orbit and found

(i) that the computed positions of the Moon were generally different from
the observed ones, the maximum amount of this difference noted by him
being 159 minutes, and

(ii) that the difference between the observed and computed positions of the
Moon attained its maximum value when |M−S| equalled 90◦ and S−U

28In modern works we find that instead of this dual correction being attributed to Ptolemy,
the evection is generally attributed to him. It should be noted that Ptolemy did not
detect the evection alone but a mixture which contains the deficit of the equation of the
centre and the evection. And this is what can be naturally expected from the ancient
astronomers who took the maximum value of the Moon’s equation of the centre smaller
than its actual value. Some writers also make the erroneous statement that the ancient
astronomers detected the evection because it can affect the time of an eclipse by about
6 hours at its maximum. The fact is that the ancient astronomers did not detect the
evection separately, and if we call this dual correction by the name of evection, we find
that it does not make any difference in the time of an eclipse. Even Ptolemy says that
this correction is zero when (M − S) is zero or 180◦.
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was either zero or 180◦, and that it vanished altogether when M − S

equalled zero or 180◦.

To represent this dual correction Ptolemy imagined an eccentric in the cir-
cumference of which the centre of the epicycle moved while the Moon moved
on the circumference of the epicycle. Later on it was discovered by Coperni-
cus (1543) that the lunar distances resulting from Ptolemy’s hypothesis were
totally at variance with the observations of the Moon’s apparent diameter.
Consequently he gave another method of representing the lunar inequality
which is known as Copernicus’s hypothesis.

17. Ptolemy had previously discovered that in quadrature when the equa-
tion of the centre assumed its maximum value viz. 5◦1′, the dual correction
increased it to 7◦40′, which happened when the apse-line (ucca-nīca-rekhā)
coincided with the direction of the Sun from the Earth’s centre, but when the
Sun’s direction was perpendicular both to the apse–line and Moon’s direction,
the equation of the centre vanished with the dual correction. Consequently
Ptolemy had fixed 6◦20 1

2

′ as the value of the mean of the two corrections.
Copernicus took it as the corrected value of the maximum equation of the
centre and treated it as the radius of the Moon’s first epicycle. Thus the
deficit of the equation of the centre was unconsciously added to it. The ra-
dius of the first epicycle conceived by Copernicus was likewise equal to M1O

(ed. See Figure 2). In order to account for the remaining correction viz. the
evection, Copernicus took Om for the radius of the Moon’s second epicycle
and supposed the Moon M to move on it in the anti-clockwise direction from
the point m in such a way that, at any instant,

∠MOm = 2(M1 − S1),

whereM1 and S1 are the mean positions of the Moon and the Sun respectively.
Copernicus’s hypothesis also leads to the same form of expression for the

Moon’s dual correction as given by Hindu astronomers but it does not explain
the variation of the eccentricity of the Moon’s orbit which really causes the
dual correction.29

19. According to modern lunar theory the relevant terms of the Moon’s
longitude are given by

Moon’s longitude =M1 − 377′ Sin (M1 − U)

− 76′ Sin {2(M1 − S1)− (M1 − U)} . (7)

29ed. As per the sequence, the subsequent point of discussion should be numbered 18.
However, since in the original it jumps by one number, we have just retained it.
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M1 and S1 denote the mean longitudes of the Moon and the Sun and U the
longitude of the Moon’s apogee.
The term −377′ Sin (M1 − U) denotes the equation of the centre and the

term −76′ Sin {2(M1 − S1)− (M1 − U)} is known as evection.
If the equation of the centre viz. −377′ Sin (M1−U) be broken up into two

components −301′ Sin (M1 − U) and −76′ Sin (M1 − U) and the second com-
ponent be combined with the evection-term, then formula (7) would become

Moon’s longitude =M1 − 301′ Sin (M1 − U)

− 152′ Cos (S1 − U)× Sin (M1 − S1). (8)

Here, if the term −301′ Sin (M1 − U) be taken for the equation of the centre,
then the term −152′ Cos (S1 − U)× Sin (M1 − S1) would give the deficit of
the equation of the centre and the evection. The term −301′ Sin (M1 − U)

corresponds to the Hindu equation of the centre and the term −152′ Cos (S1−
U)× Sin (M1−S1) to the dual correction discussed above. Comparison of this
term with the expressions for the dual correction given by Hindu astronomers
proves the correspondence between the two as also the perfectness of the
Hindu form. It would also be noted that the difference between the Moon’s
longitudes calculated according to Vaṭeśvara or Mañjula and by formula (7)
would never exceed about 5 minutes.
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20. The above discussion proves conclusively the soundness of the formulae
for the Moon’s dual correction given by various Hindu astronomers. We have
also seen that this correction in its perfect form was known in India in the
time of Vaṭeśvara (c. 899) or earlier. In view of the advanced state of the
available Hindu formulae, we have every reason to believe that the correction
was known much earlier in India, specially when we see that in Europe it was
known in its proper from about 1400 years after it was actually detected. The
graphic method of the Hindus which not only explains the dual correction but
also the variation of the eccentricity of the Moon’s orbit was known to the
Hindus long before Copernicus gave his own. Hindus were, thus, the first to
give the Moon’s dual correction in its perfect form and the first to explain it
properly.

21. I take this opportunity to express my thanks to Prof. A. N. Singh for
help and guidance.
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Phases of the Moon, rising and setting of
planets and stars and their conjunctions ∗

1 Introduction

It has been known from time immemorial that the Moon is intrinsically a
dark body but looks bright as it is lighted by the Sun. There is an oft-quoted
statement in the Yajurveda1 which describes the Moon as sunlight. As the
Moon revolves round the Earth its lighted portion that faces us is seen by us
in successively increasing or diminishing amounts. These are called the phases
of the Moon.
When the Sun and Moon are in the same direction, the face of the Moon

which is turned towards us is completely dark. It is called new-moon and
marks the beginning of the light fortnight. When the Moon is 12 degrees
ahead of the Sun, it is seen after sunset in the shape of a thin crescent. As
the Moon advances further this crescent becomes thicker and thicker night
after night. When the Moon is 180 degrees away from the Sun, the Moon is
seen fully bright. It is called full-moon. The light fortnight now ends and the
dark fortnight begins. The phases are now repeated in reverse order until the
Moon is completely dark at the end of the dark fortnight when the Sun and
Moon are again in the same direction.
Vaṭeśvara says:

The Sun’s rays reflected by the Moon destroy the thick darkness of
the night just as the Sun’s rays reflected by a clean mirror destroy
the darkness inside a house.2

In the dark and light fortnights the dark and bright portions of the
Moon (gradually) increase as the Moon respectively approaches
and recedes from the Sun.3

* K. S. Shukla, in History of Astronomy in India, S. N. Sen and K. S. Shukla (eds.),
Indian National Science Academy, New Delhi, 1985, pp. 212–251 (Originally published in
Indian Journal of History of Science, Vol. 20, Nos. 1–4 (1985)).

1Adhyāya 18, mantra 40: सुषु ः सूयर मा ग वः।
2VG, iv. 23.
3VG, iv. 25.

© Hindustan Book Agency 2019 and Springer Nature Singapore Pte Ltd. 2019
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Sources and Studies in the History of Mathematics and Physical Sciences,
https://doi.org/10.1007/978-981-13-7326-8_34

A. Kolachana et al. (eds.), 
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On the new-moon day the Moon is dark, in the middle of the light
fortnight, it is seen moving in the sky half-bright; on the full moon
day it is completely bright as if parodying the face of a beautiful
woman.4

The crescent of the Moon appears to the eye like the creeper of
Cupid’s bow, bearing the beauty of the tip of the Ketaka flower
glorified by the association of the black bees, and giving the false
impression of the beauty of the eyebrows of a fair-coloured lady
with excellent eyebrows.5

When the measure of the Moon’s illuminated part happens to be
equal to the Moon’s semi-diameter, the Moon looks like the fore-
head of a lady belonging to the Lāṭa country (Southern Gujarat).6

Similar statements appear in the writings of Varāhamihira and other Indian
astronomers.

1.1 Phase and sita

In modern astronomy the phase of the Moon is measured by the ratio of the
central width of the illuminated part to the diameter. In Indian astronomy
it is generally measured by the width of the illuminated part itself which is
called sita or śukla. The width of the un-illuminated part, which is equal to
‘the Moon’s diameter minus the sita’, is called asita.

The Pūrva Khaṇḍakhādyaka of Brahmagupta, which summarises the con-
tents of Āryabhaṭa I’s astronomy based on midnight day-reckoning, gives the
following approximate rule to find the sita in the light half of the month:

The difference in degrees between the longitudes of the Sun and
the Moon, divided by 15, gives the śukla (in terms of aṅgulas).7

Stated mathematically, it is equivalent to the following formula:

sita =
M − S

15
aṅgulas,

where S and M denote the longitudes of the Sun and the Moon respectively,
in terms of degrees. This formula may be obtained by substituting

Moon’s diameter = 12 aṅgulas
4VG, iv. 24.
5VSi, VII, i. 51.
6VSi, VII, i. 49 (c–d).
7KK, Part I, vii. 4 (a–b).
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in the general formula:

sita =
(M − S)×Moon’s diameter

180
. (1)

Bhāskara I (629), a follower of Āryabhaṭa I, who claims to have set out in
his works the teachings of Āryabhaṭa I, however, gives the following rule:

(In the light fortnight) multiply (the diameter of) the Moon’s disc
by the Rversed-sine of the difference between the longitudes of the
Moon and the Sun (when less than 90◦) and divide (the product)
by the number 6876: the result is always taken by the astronomers
to be the measure of the sita. When the difference between (the
longitudes of) the Moon and the Sun exceeds a quadrant (i.e. 90◦),
the sita is calculated from the Rsine of that excess, increased by
the radius.
After full-moon (i.e. in the dark fortnight), the asita is determined
from the Rversed-sine of (the excess over six or nine signs, respec-
tively, of) the difference between the longitudes of the Moon and
the Sun in the same way as the sita is determined (in the light
fortnight).8

That is to say:

(i) In the light fortnight (śukla-pakṣa)

sita =
R versin(M − S)×Moon’s diameter

6876
,

if M − S ≤ 3 signs, i.e. if it is the first half of the fortnight; and

=
[R+R sin(M − S − 90◦)]×Moon’s diameter

6876
,

if M − S > 3 signs, i.e. if it is the second half of the fortnight.

(ii) In the dark fortnight (kṛṣṇa-pakṣa)

asita =
R versin(M − S − 180◦)×Moon’s diameter

6876
,

if M − S > 6 signs, i.e. if it is the first half of the fortnight; and

=
[R+R sin(M − S − 270◦)]×Moon’s diameter

6876
,

if M − S > 9 signs, i.e. if it is the second half of the fortnight.
8MBh, vi. 5(c–d)–7. Also see LBh, vi. 6–7.
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Bhāskara I’s contemporary Brahmagupta (628) gives the following rule,
which is a via media between the above two rules:

One half of the Moon’s longitude minus Sun’s longitude, multiplied
by the Moon’s diameter and divided by 90, gives the sita. This is
the first result.
When the Moon’s longitude minus Sun’s longitude, reduced to
degrees, is less than or equal to 90◦, take the Rversed-sine of that;
and when that exceeds 90◦, take the Rsine of the excess over 90◦
and add that to the radius. Multiply that by the measure of the
Moon’s diameter and divide by twice the radius (i.e. by 2 × 3438

or 6876). This is another result. The former result gives the sita
in the night and the latter in the day. One half of their sum gives
the same during the two twilights.9

That is:

(i) sita for night

=

[
(M−S)

2

]
×Moon’s diameter

90
,

M − S being in degrees.

(ii) sita for day

=
R versin(M − S)×Moon’s diameter

2R
,

if M − S ≤ 90◦; or

=
[R+R sin(M − S − 90◦)]×Moon’s diameter

2R
,

if M − S > 90◦. (R = 3438)

(iii) sita for twilights

=
sita for day+ sita for night

2
.

These formulae obviously relate to the light half of the month.
Vaṭeśvara10 (904) and Śrīpati11 (1039) have followed Brahmagupta. Lalla12

gives the two results stated by Brahmagupta, treating them as alternative.
9BrSpSi, vii. 11–13 (a–b).

10VSi, VII, i. 23–24.
11SiŚe, x. 16–19 (a–b).
12ŚiDVṛ, X, ix. 13, 14.
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But whereas his commentator Mallikārjuna Sūri (1178) interprets them as
alternative rules, his other commentator Bhāskara II (1150) makes no distinc-
tion between the rules of Brahmagupta and Lalla and interprets them in the
light of Brahmagupta’s rules. Bhāskara II has also attempted to explain why
different formulae were prescribed for day, night, and twilights. He says:

The first sita, being based on arc, is gross. This is to be used
in the graphical representation of the Moon in the night, because
then there is absence of the accompaniment of the Sun’s rays. The
second sita, being based on Rsine, is accurate. This is to be used
in the graphical representation of the Moon in the day, because
then the Moon’s rays being overpowered by the Sun’s rays are not
bright. During the twilights, the sita should be obtained by taking
their mean value, because then the characteristic features of the
day and night are medium.13

Āryabhaṭa II14 (c. 950) and Bhāskara II15 have prescribed the first result
of Brahmagupta for all times. The method given in the Sūryasiddhānta16 is
also essentially the same. The difference exists in form only.
According to Bhāskara II17 the sita amounts to half when the Moon’s lon-

gitude minus Sun’s longitude is 85◦45′, not when it is 90◦ as presumed by the
earlier astronomers. This means that he understood that the sita varies as
the elongation of the Earth from the Sun (as seen from the Moon) and not as
the Moon’s longitude minus Sun’s longitude. However, he has not stated this
fact expressly, nor has he attempted to obtain the Earth’s elongation from
the Sun. Instead, he has applied a correction to the Moon in order to get the
correct value of the sita.18

The astronomers who succeeded Bhāskara II have calculated the sita from
the actual elongation of the Moon from the Sun and not from the difference
between the Moon’s longitude and the Sun’s longitude. Since the actual elon-
gation of the Moon from the Sun was the same as the angular distance between
the discs of the Sun and Moon, these astronomers have called it bimbāntara
(“the disc interval”) and have calculated the sita by using it in place of the
Moon’s longitude minus Sun’s longitude.
The sita really varies as the versed sine of the elongation of the Moon from

the Sun (or more correctly as the versed sine of the elongation of the Earth
from the Sun as seen from the Moon), not as the elongation of the Moon
13Bhāskara II’s commentary on ŚiDVṛ, ix. 14.
14MSi, vii. 7.
15See SiŚi, I, ix. 7, comm.
16x. 9.
17SiŚi, I, ix. 6; also his comm. on it.
18Ibid.
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from the Sun (as measured on the ecliptic). So Brahmagupta’s first result is
gross and has been rightly criticised by the author of the Valana-śṛṅgonnati-
vāsanā. “Brahmagupta and others (who have followed him)” says he, “have
not considered the nature of the arc relation.”19 The rule given by Bhāskara I,
however, is fairly good for practical purposes.

1.2 Special rules

Muñjala (932), the author of the Laghumānasa, gives the following ingenious
rule:

The number of karaṇas elapsed since the beginning of the (current)
fortnight diminished by two and then (the difference obtained)
increased by one-seventh of itself, gives the measure of the sita if
the fortnight is white or the asita if the fortnight is dark.20

That is:
sita = (K − 2)

(
1 +

1

7

)
aṅgulas,

where K denotes the number of karaṇas elapsed in the light fortnight, the
diameter of the Moon being assumed to be 32 aṅgulas.
As the Moon is visible only when it is at the distance of 12 degrees from

the Sun, i.e. when 2 karaṇas have just elapsed, so the proportion is made
here with 180− 12 = 168 degrees, instead of 180 degrees. If M and S denote
the longitudes of the Moon and the Sun in terms of degrees, the proportion
implied is: “When M −S−12 degrees amount to 168 degrees, the measure of
the sita is 32 aṅgulas, what will be the measure of the sita when M − S − 12

degrees have the given value?” The result is:

sita =
(M − S − 12)× 32

168

=

(
M − S

6
− 2

)(
1 +

1

7

)
= (K − 2)

(
1 +

1

7

)
aṅgulas.

Similar is the rule stated by Gaṇeśa Daivajña (1520):

The number of tithis elapsed in the light fortnight diminished by
one-fifth of itself gives the measure of the sita.21

19Gaṇitayuktayaḥ, Tract no. 8, p. 49.
20LMā, viii. 3.
21GLā, xii. 3d.
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That is:
sita =

(
1− 1

5

)
T aṅgulas,

T being the number of tithis elapsed in the light fortnight and the Moon’s
diameter being assumed to be equal to 12 aṅgulas.
Gaṇeśa Daivajña has applied proportion with the tithis elapsed in the light

fortnight. His proportion is: “When on the expiry of 15 tithis the sita amounts
to 12 aṅgulas, what will it amount to on the expiry of T tithis?” The result
is:

sita =
12T

15
=

(
1− 1

5

)
T aṅgulas.

Both the above rules are approximate.
It will be noticed that Gaṇeśa Daivajña’s formula is the same as the first

result of Brahmagupta. The difference is in form only.

1.3 Graphical representation of the sita

The Indian astronomers have also stated rules to exhibit the sita graphically.
It enabled them to know which of the two lunar horns was higher than the
other at the time of the Moon’s first visibility, the knowledge of which is of
importance in natural astrology.
Bhāskara I and other early astronomers have exhibited the sita by project-

ing the Sun and Moon in the plane of the observer’s meridian. They have first
constructed a right-angled triangle MAS, in which S denotes the projection
of the centre of the Sun, M the projection of the centre of the Moon, andMA

the projection of the altitude-difference of the Sun and Moon, all in the plane
of the observer’s meridian. AS, the horizontal side of this triangle, is called
the base; MA, the vertical side, the perpendicular or upright; and MS, the
hypotenuse.
Describing how the construction of the sita is to be done at sunset in the

first quarter of the lunar month, Bhāskara I says:

Lay off the base from the Sun in its own direction. (Then) draw
a perpendicular-line passing through the head and tail of the fish-
figure constructed at the end (of the base). (This) perpendicular
should be taken equal to the Rsine of the Moon’s altitude and
should be laid off towards the east. The hypotenuse-line should
(then) be drawn by joining the ends of that (perpendicular) and
the base.
The Moon is (then) constructed by taking the meeting point of
the hypotenuse and the perpendicular as centre (and the semi-
diameter of the Moon as radius); and along the hypotenuse (from
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the point where it intersects the periphery of the Moon) is laid off
the sita towards the interior of the Moon.
The hypotenuse (indicates) the east and west directions; the north
and south directions should be determined by means of a fish-
figure. (Thus are obtained the three points, viz.) the north point,
the south point, and a third point obtained by laying off the sita.
(Now) with the help of two fish-figures constructed by the method
known as triśarakarāvidhāna draw the circle passing through the
(above) three points. Thus is shown, by the elevation of the lunar
horns which are illuminated by the light between two circles, the
Moon which destroys the mound of darkness by her bundle of
light.22

Figure 1 illustrates how the construction is made at sunset in the first
quarter of the month. AS andM are the projections of the centres of the Sun
and Moon in the plane of the observer’s meridian, and MA the projection of
the Moon’s altitude in the same plane.
The triangle MAS is right-angled at A, SA is called the base, MA the

perpendicular or upright, and MS the hypotenuse of this triangle. In the
present case the base lies to the south of the Sun and the upright to the east
of the base. The circle centred at M is the Moon’s disc, i.e. the projection of
the Moon’s globe in the plane of the observer’s meridian. The point W where
MS intersects it is the west point of the Moon’s disc. E, N , and S′ are the
22LBh, vi. 12–17, also see MBh, vi. 13–17.
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east, north, and south points. WC is the sita which has been laid off, in the
present case, from the west point W towards the interior of the Moon’s disc.
NCS′ is the circle drawn through N , C, and S′. The shaded portion of the
Moon’s disc between the circles NWS′ and NCS′ is the illuminated part of
the Moon’s disc; the remaining part of the Moon’s disc does not receive light
from the Sun and remains dark (asita) and invisible.
Let GH be drawn perpendicular to MA through M . Then the Moon’s

horn which is intersected by it lies to the north of the upright MA. This is
the higher horn. The elevation of this higher horn is measured by the angle
NMH. The other horn, viz. CS′W , which is not intersected by GH is the
lower one. It lies to the south of the upright MA. So in the present case the
northern horn is the higher one.
If the figure be held up with MA in the vertical position, the Moon in the

sky will look like the shaded portion in the figure. This is what was intended.
The author of the Sūryasiddhānta has followed the method of Bhāskara I.

Describing the construction of the sita, at sunrise in the last quarter of the
month, he says:

Set down a point and call it the Sun. From it lay off the base in
its own direction. From the extremity of that lay off the upright
towards the west. Next draw the hypotenuse by joining the ex-
tremity of the upright and the point assumed as the Sun. Taking
the junction of the upright and the hypotenuse as centre and the
semi-diameter of the Moon at that time as the radius, draw the
Moon’s disc. Now with the help of the hypotenuse (assumed as
the east-west line), first determine the directions (relative to the
Moon’s centre). From the point where the hypotenuse intersects
the Moon’s disc lay off the sita towards the interior of the Moon’s
disc. Between the point at the extremity of the sita and the north
and south points draw two fish-figures. From the point of intersec-
tion of the lines going through them (taken as centre) draw an arc
of a circle passing through the three points. As the Moon looks
(in the figure) between this arc and the eastern periphery of the
Moon’s disc, so it looks in the sky that day. If the directions are
determined with the help of the upright, the horn which is inter-
sected by the line drawn at right angles to the upright through the
Moon’s centre is the higher one. The shape of the Moon should
be demonstrated by holding up the figure keeping the upright in
a vertical position.23

The construction given by Lalla is more general. He says:
23SūSi, x. 10–14.
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Take a point on the level ground and assume it to be Sun. From
this point lay off the base in its own direction (north or south).
From the point reached lay off the upright. If the Moon is in
the eastern hemisphere, the upright should be laid off towards the
western direction; if the Moon is in the western hemisphere, it
should be laid off towards the east. The hypotenuse should then
be drawn by joining the extremity of the upright and the point
assumed as the Sun. The Moon’s disc should (then) be drawn by
taking the junction of the hypotenuse and the upright as the centre.
The hypotenuse-line here goes from west to east. The remaining
(north and south) directions should be determined by means of a
fish-figure. All this should be drawn very clearly with chalk. From
the west point lay off the sita in the light fortnight or the asita
in the dark fortnight (towards the interior of the Moon’s disc).
Taking the point thus reached, as also the north and south points
(on the Moon’s disc) as the centre draw two fish-figures. Where
the mouth-tail lines of these fish-figures meet, taking that as the
centre draw a neat circle passing through the sita-point inside the
Moon’s disc to exhibit the illuminated portion of the Moon. The
direction in which the aṅgulas of the base have been laid off gives
the direction of the depressed horn; the other horn is the elevated
one.24

Āryabhaṭa II and Bhāskara II have omitted the construction of the triangle
MAS. They have drawn the Moon directly with any point in the plane of the
horizon as centre. Then they draw the direction-lines, i.e. the east-west and
north-south lines. Assuming the north-south line as the same as the line XY
of Figure 1, they lay off ED (drawn orthogonally to the upright) which they
call digvalana (“direction-deflection”). Having thus obtained the point E they
draw EW , the line joining the Sun and Moon. After this their procedure is
the same as that of Bhāskara I. The digvalana ED is evidently equal to

SA×Moon’s diameter
MS

which follows from the comparison of the similar triangles MED and MAS.
See Figure 1.
Brahmagupta does not project the Sun and Moon in the plane of the ob-

server’s meridian or any other plane. He keeps them where they are. So in
the triangle MAS, which he constructs, M and S denote the actual positions
of the centres of the Sun and Moon; AS is parallel to the north-south line of
the horizon, and MA is perpendicular from M on this line. The Moon’s disc
24ŚiDVṛ, ix. 15–19 (a–b).
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is drawn in the plane of MAS with M as the centre. The laying off of the
sita and the construction of the inner boundary of the sita is done as before.

Brahmagupta has been followed by Lalla and Śrīpati. Vaṭeśvara too follows
Brahmagupta except in the case of sunset or sunrise where he follows Bhās-
kara I.
Bhāskara II has pointed out a fallacy in the method of Brahmagupta. He

says:

When the sita of the Moon is graphically shown in the way taught
by him, using his base and hypotenuse, the lunar horns (shown in
the figure) will not look like those seen in the sky. This is what I
feel. Those proficient in astronomy should also observe it carefully.
For, at a station in latitude 66◦, the ecliptic coincides with the
horizon and when the Sun is at the first point of Aries and the
Moon at the first point of Capricorn the Moon appears vertically
split into two halves by the observer’s meridian and its eastern half
looks bright. But this is not so in the opinion of Brahmagupta,
for his base and upright are then equal to the radius. Actually,
the tips of the lunar horns fall on a horizontal line when there is
absence of the base, and on a vertical line when there is absence of
the upright. Brahmagupta’s base and upright then are both equal
to the radius. Or, be as it may; I am not concerned. I bow to the
great.25

Gaṇeśa Daivajña does not see any utility of the parilekha (graphical rep-
resentation of the Moon). When from the direction of the (dig)valana itself,
one can know which horn is high and which low, then, asks he, what is the
use of the parilekha?26

1.4 The visible Moon

In the present problem, we are concerned with the actual Moon and not with
its calculated position on the ecliptic. The Indian astronomers have found
it convenient to use, in place of the actual Moon, that point of the ecliptic
which rises or sets with the actual Moon. This point of the ecliptic is called
“the visible Moon” (dṛśya-candra). This is derived from the calculated true
Moon by applying to the latter a correction known as the visibility correction
(dṛkkarma or darśana-saṃskāra). The early astronomers, from Āryabhaṭa I to
Bhāskara II, have applied two visibility corrections, viz. the ayana-dṛkkarma
and the akṣa-dṛkkarma. The former is the portion of the ecliptic that lies
between the secondaries to the ecliptic and the equator going through the
25SiŚi, I, ix. 10–12.
26GL, xii. 4.
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actual Moon, and the latter is the portion of the ecliptic that lies between the
horizon and the secondary to the equator going through the actual Moon, the
actual Moon being supposed to be on the horizon.
Āryabhaṭa I gives the following rule for deriving the above mentioned visi-

bility corrections:

Multiply the Rversed-sine of the Moon’s (tropical) longitude (as
increased by three signs) by the Moon’s latitude and also by the
(Rsine of the Sun’s) greatest declination and divide (the resulting
product) by the square of the radius: (the result is the ayana-
dṛkkarma for the Moon). When the Moon’s latitude is north, it
should be subtracted from or added to the Moon’s longitude, ac-
cording as the Moon’s ayana is north or south (i.e. according as
the Moon is in the six signs beginning with tropical sign Capricorn
or in the six signs beginning with the tropical sign Cancer); When
the Moon’s latitude is south, it should be added or subtracted
(respectively).27

Multiply the Rsine of the latitude of the local place by the Moon’s
latitude and divide (the resulting product) by the Rsine of the co-
latitude: (the result is the akṣa-dṛkkarma for the Moon). When
the Moon is to the north (of the ecliptic), it should be subtracted
from the Moon’s longitude (as corrected for the ayana-dṛkkarma)
in the case of the rising of the Moon and added to the Moon’s lon-
gitude in the case of the setting of the Moon; when the Moon is to
the south (of the ecliptic), it should be added to the Moon’s longi-
tude (in the case of the rising of the Moon) and subtracted from
the Moon’s longitude (in the case of the setting of the Moon).28

If β be the Moon’s latitude and M the Moon’s tropical longitude, then the
above rules are equivalent to the following formulae:

ayana-dṛkkarma =
R versin(M + 90◦)× β ×R sin 24◦

R×R
(2)

and akṣa-dṛkkarma =
R sinϕ× β

R cosϕ , (3)

ϕ being the latitude of the place and 24◦ being the Indian value of the Sun’s
greatest declination.
The same formulae occur in the works of Lalla,29 Vaṭeśvara,30 and Śrīpati.31

27Ā, iv. 36.
28Ā, iv. 35.
29ŚiDVṛ, viii. 3 (a–b).
30VSi, VII, i. 9.
31SiŚe, ix. 4.
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These formulae are approximate and were modified by the later astronomers.
Brahmagupta32 replaced (2) by the better formula:

ayana-dṛkkarma =
R sin (M + 90◦)× β ×R sin 24◦

R×R
.

This formula reappears in the Mahāsiddhānta33 of Āryabhaṭa II in the form

ayana-dṛkkarma =
R cosM × β ×R sin 24◦

R×R
.

Śrīpati, while retaining the use of the Rversed-sine, has improved (2) by
multiplying it by 1800 and dividing by the asus of the rising of the sign
occupied by the Moon.34 (The asus are the minutes of arc of the equator).
Bhāskara II has criticised the use of the Rversed-sine and has applauded

Brahmagupta for replacing the Rversed-sine by the Rsine. He has also given
the following new formulae:35

(i) ayana-dṛkkarma

=
R sin(ayanavalana)× β

R cos δ × 1800

T

where the ayanavalana is the angle between the secondaries to the equa-
tor and the ecliptic going through the Moon, δ the Moon’s declination,
and T the time of rising (in asus) of the sign occupied by the Moon.

(ii) ayana-dṛkkarma

=
R sin(ayanavalana)× β

R cos(ayanavalana) .

Formula (3) was modified by Bhāskara II. For his modified formulae the
reader is referred to his Siddhāntaśiromaṇi (Part I, ch. vii, vss. 3, 6–8 and
Part II, ch. ix, vs. 10).

1.5 Altitude of Sun and Moon

To determine the Sun’s altitude for the given time one has to know the Sun’s
ascensional difference and the earth-sine. The Sun’s ascensional difference is
the difference between the times of rising of the Sun at the equator and at the
local place. It is measured by the asus (minutes of equator) lying between the
32BrSpSi, vi. 3; also xxi. 66; x. 17.
33vii. 2, 3.
34SiŚe, ix. 6.
35SiŚi, I, vii. 4; vii. 5 (a–b).
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hour circle through the east point (called the six o’clock circle) and the hour
circle through the rising Sun. The formula used to obtain is:

R sin c = R sinϕ×R sin δ ×R

R cosϕ×R cos δ

or, in modern notation,
sin c = tanϕ tan δ,

where c denotes the ascensional difference, δ the declination, and ϕ the latitude
of the place.
The Sun’s declination is obtained by the formula:

R sin δ = R sinλ×R sin 24◦
R

where λ is the Sun’s tropical longitude and 24◦ the Indian value of the obliquity
of the ecliptic.
The earth-sine is the Rsine of c reduced to the radius of the diurnal circle

and is obtained by the formula:

earth-sine = R sin c R cos δ
R

=
R sinϕ R sin δ

R cosϕ .

The Sun’s ascensional difference and the earth-sine being thus known, the
Sun’s altitude can be determined. Bhāskara I gives the following rule to find
the Sun’s altitude when the time elapsed since sunrise in the forenoon or to
elapse before sunset in the afternoon is known:

The ghaṭīs elapsed (since sunrise) or those to elapse (before sunset),
in the first half and the other half of the day (respectively), should
be multiplied by 60 and again by 6: then they (i.e. those ghaṭīs) are
reduced to asus. (When the Sun is) in the northern hemisphere,
the asus of the Sun’s ascensional difference should be subtracted
from them and (when the Sun is) in the southern hemisphere,
the asus of the Sun’s ascensional difference should be added to
them. (Then) calculate the Rsine (of the resulting difference or
sum) and multiply that by the day-radius (i.e. by R cos δ). Then
dividing that (product) by the radius, operate (on the quotient)
with the earth-sine contrarily to the above (i.e. add or subtract
the earth-sine according as the Sun is in the northern or southern
hemisphere). Multiply that (sum or difference) by the Rsine of
the co-latitude and divide by the radius: the result is the Rsine of
the Sun’s altitude.36

36LBh, iii. 7–9.
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Figure 2

When the Sun’s ascensional difference cannot be subtracted from
the given (time reduced to) asus, reverse the subtraction (i.e. sub-
tract the latter from the former) and with the Rsine of the re-
mainder (proceed as above). In the night the Rsine of the Sun’s
altitude should be obtained contrarily (i.e. by reversing the laws
of addition and subtraction).37

That is, when the Sun is in the northern hemisphere,

R sin a =

[
{R sin(T ∼

+ c)R cos δ}/R +∼ earth-sine
]
R cosϕ

R
,

where a denotes the Sun’s altitude, δ the Sun’s declination, T the time elapsed
since sunrise in the forenoon or to elapse before sunset in the afternoon (re-
duced to asus), c the Sun’s ascensional difference (in asus), and ϕ the local
latitude, the sign + or ∼ being chosen properly, depending on the Sun’s po-
sition.
In Figure 2, which represents the celestial sphere for a place in latitude ϕ,

S′ENW is the horizon, E, W , N , and S′ being the east, west, north, and
37LBh, ii. 11.
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south points. Z is the zenith. RER′ is the equator and P its north pole. S is
the Sun and LSM its diurnal circle. V U ′ is the Sun’s rising-setting line and
EW the east-west line. SA is the perpendicular from the Sun on the plane of
the horizon and SB on the rising-setting line; AB is the perpendicular to the
rising-setting line. C is the point where AB intersects EW . SA is the Rsine
of the Sun’s altitude, AB is the Sun’s śaṅkutala, CB the Sun’s agrā, AC the
Sun’s bhuja, and SB the Sun’s iṣṭahṛti.
It can be easily seen that

SB =
R sin(T − c)R cos δ

R
+ earth-sine,

so that from the triangle SAB, right-angled at A, in which ∠SBA = 90◦ − ϕ,
we easily have

SA or R sin a =
SB ×R cosϕ

R

=
[{R sin(T − c)R cos δ}/R+ earth-sine]R cosϕ

R
.

Using modern spherical trigonometry, the rationale of this rule is as follows:
In Figure 2, ∠V PS = T and ∠V PE = c, so that ∠EPS = T − c, and

likewise ∠ZPS = 90◦ − (T − c). Now in the spherical triangle ZPS, we have
ZS = 90◦ − a, ZP = 90◦ − ϕ, SP = 90◦ − δ, and ZPS = 90◦ − (T − c).
Therefore, using cosine formula, we have

cosZS = cosZP cosSP + sinZP sinSP cos∠ZPS
or sin a = sinϕ sin δ + cosϕ cos δ sin(T − c),

and multiplying by R and rearranging,

R sin a =
[{R sin(T − c)R cos δ}/R+R sinϕR sin δ/R cosϕ]R cosϕ

R

=
[{R sin(T − c)R cos δ}/R+ earth-sine]R cosϕ

R
.

This is true when the Sun is in the northern hemisphere and above the horizon.
Similar rationale may be given when the Sun is in the southern hemisphere
or below the horizon.
The Moon’s altitude is obtained in the same way. But in this case one has

to use the Moon’s true declination, i.e. the declination of the actual Moon. For
this, in the present context, the early Indian astronomers, from Āryabhaṭa I
to Bhāskara II, use the following approximate formula:

Moon’s true declination = δ
+∼ β,
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where δ is the declination of the Moon’s projection on the ecliptic and β the
Moon’s latitude.
In place of the time elapsed since sunrise or to elapse before sunset, one

has to use the time elapsed since moon-rise or to elapse before moon-set. The
methods used to find the time of moon-rise or moon-set will be described in
the next chapter. (ed. See Section 2.)

1.6 Base and upright

The base SA of the triangle MAS (in Figure 1) is equal to the difference
or sum of the Sun’s bhuja and the Moon’s bhuja. In case of the Sun and the
Moon are both above the horizon, the difference is taken provided the Sun and
Moon are on the same side of the east-west line; otherwise the sum is taken.
The bhuja of a heavenly body is defined by the distance of its projection on
the plane of the horizon from the east-west line, so that

bhuja = distance of projection from the east-west line
= distance of projection from the rising-setting line (called śaṅkutala

or śaṅkvagra) +∼ distance between the east-west and
rising-setting lines (called agrā)

= śaṅkutala +∼ agrā.

In Figure 2, S is the Sun. A is the Sun’s projection on the plane of the
horizon, AB is the Sun’s śaṅkutala, CB is the Sun’s agrā, and AC the Sun’s
bhuja. It is evident from the figure that in this case

AC = AB − CB

i.e. Sun’s bhuja = Sun’s śaṅkutala − Sun’s agrā.

The Sun’s śaṅkutala AB is obtained from triangle SAB (of Figure 2) by
using the sine relation:

AB or Sun’s śaṅkutala =
SA×R sin∠ASB

R sin∠SBA
=
R sin a×R sinϕ

R cosϕ .

Bhāskara I says:

The Rsine of the Sun’s altitude multiplied by the Rsine of the
latitude and divided by the R cosine of the latitude is the (Sun’s)
śaṅkvagra, which is always to the south of the rising-setting line.38

38LBh, iii. 16.
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The Sun’s agrā is obtained thus: In Figure 2, let CD be the perpendic-
ular from C to SB. Then in the triangle CDB, right-angled at D, CB =

Sun’s agrā, CD = R sin δ, ∠CBD = 90◦ − ϕ, so that

CB or Sun’s agrā =
AD ×R sin∠CDB

R sin∠CBD
=
R sin δ ×R

R cosϕ .

Brahmagupta says:

The Rsine of the declination multiplied by the radius and divided
by the Rsine of the co-altitude is the agrā which lies east-west in
the plane of the horizon.39

The Moon’s bhuja is obtained in the same way, using the Moon’s true
declination. The difference or sum of the Moon’s bhuja and Sun’s bhuja finally
gives the base.
When the calculations are made for sunset, the Sun’s agrā itself is the Sun’s

bhuja. In that case, the difference or sum of the Moon’s bhuja and the Sun’s
agrā gives the base.

Bhāskara I says:

From the asus intervening between the Sun and Moon (corrected
for the visibility corrections) and from the Moon’s earth-sine and
ascensional difference, determine the Rsine of the (Moon’s) alti-
tude; and from that find the (Moon’s) śaṅkvagra, which is always
south (of the rising-setting line of the Moon).

The Rsine of the difference or sum of the (Moon’s) latitude and
declination, according as they are of unlike or like directions is
(the Rsine of) the Moon’s true declination. From that (Rsine of
the Moon’s true declination) determine her day-radius, etc. Then
multiply (the Rsine of) the Moon’s (true) declination by the radius
and divide by (the Rsine of) the co-latitude: then is obtained (the
Rsine of) the Moon’s agrā.

If that (Rsine of the Moon’s agrā) is of the same direction as the
(Moon’s) śaṅkvagra, take their sum; otherwise, take their differ-
ence. Thereafter take the difference of (theRsine of) the Sun’s agrā
and that (sum or difference), if their directions are the same; oth-
erwise, take their sum: thus is obtained the base (bāhu or bhuja).40

39BrSpSi, iii. 64 (a–b).
40LBh, vi. 8–12 (a–b).
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The difference of the Rsines of the Moon’s altitude and the Sun’s altitude
during the day or their sum during the night, obviously, gives the upright.
When the calculations are made for sunset, the Rsine of the Moon’s altitude
itself is the upright, as the Sun then is on the horizon and its altitude is zero.
The base and upright obtained in the above way are according to those

astronomers who, like Bhāskara I, project the Sun and Moon in the plane of
the meridian. Brahmagupta and his followers, who keep the Sun and Moon
where they are, obtain their base and upright, which shall be called Brahma-
gupta’s base and upright, thus:

Brahmagupta’s base = b
+∼ b′

Brahmagupta’s upright =
√

(k
+∼ k′)2 + (R sin a +∼ R sin a′)2,

where b, b′; k, k′; a, a′ are the bhujas, uprights, and altitudes of the Sun and
Moon respectively, derived in the manner described above.
It will be noted that whereas Brahmagupta’s upright differs in length from

that of Bhāskara I, his base is exactly equal to that of the latter.

2 Rising and setting of planets and stars

2.1 Heliacal rising and setting of the planets

When a planet gets near the Sun, it is lost in the dazzling light of the Sun
and becomes invisible. The planet is then said to set heliacally. Sometimes
later the planet comes out of the dazzling light and is seen again. It is then
said to rise heliacally. In the case of the Moon, a special term candra-darśana
(“Moon’s first appearance”) is used for its heliacal rising.

Brahmagupta says:

A planet with lesser longitude than the Sun rises in the east, in
case it is slower than the Sun; in the contrary case, it sets in the
east. A planet with greater longitude than the Sun rises in the
west, in case it is faster than the Sun; and sets in the west, in case
it is slower than the Sun.41

The author of the Sūryasiddhānta says:

Jupiter, Mars, and Saturn, when their longitude is greater than
that of the Sun, go to their setting in the west; when it is lesser,
to their rising in the east; so likewise Venus and Mercury, when
retrograding. The Moon, Mercury, and Venus, having a swifter

41BrSpSi, vi. 2.
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motion, go to their setting in the east when of lesser longitude
than the Sun; when of greater, go to their rising in the west.42

Vaṭeśvara’s account is fuller and more explicit:

A planet with lesser longitude (than the Sun) rises in the east if it
is slower than the Sun; and sets in the east if it is faster than the
Sun; whereas a planet with greater longitude (than the Sun) rises
in the west if it is faster than the Sun, and sets in the west if it is
slower than the Sun.

The Moon, Venus, and Mercury rise in the west, whereas Saturn,
Mars, and Jupiter and also retrograding Mercury and Venus rise
in the east. These planets set in the opposite direction.43

Similar statements have been made by Lalla,44 Āryabhaṭa II,45 Śrīpati,46

Bhāskara II47 and others.
The distances from the Sun at which the heliacal rising or setting occurs is

not the same for all the planets. It depends upon the size and luminosity of
the planet. The larger or more luminous it is, the lesser will be its distance
from the Sun at the time of its rising or setting.
The Indian astronomers state the distances of the planets from the Sun at

the time of their first visibility (“rising”) or last visibility (“setting”) in terms
of time-degrees i.e. in terms of time, between the time of rising or setting of
the planet and that of the Sun, converted into degrees by the formula:

60 ghaṭīs or 24 hours = 360 degrees.

Āryabhaṭa I says:

When the Moon has no latitude it is visible when situated at a
distance of 12 degrees (of time) from the Sun. Venus is visible when
9 degrees (of time) distant from the Sun. The other planets taken
in the order of decreasing sizes (viz. Jupiter, Mercury, Saturn, and
Mars) are visible when they are 9 degrees (of time) increased by
two-s (i.e. when they are 11, 13, 15, and 17 degrees of time) distant
from the Sun.48

42SūSi, ix. 2–3.
43VSi, VI, 1–2.
44ŚiDVṛ, viii. I.
45MSi, ix. 1–2.
46SiŚe, ix. 2–3.
47SiŚi, I, viii. 4 (c–d)-5.
48Ā, iv. 4.
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The same distances have been given in the Āryabhaṭa-siddhānta and the
Khaṇḍakhādyaka,49 and by Brahmagupta,50 Lalla,51 Vaṭeśvara,52 and Śrī-
pati.53 Those given by Āryabhaṭa II,54 Bhāskara II,55 and by the author
of the Sūryasiddhānta56 slightly differ in one or two cases.
Regarding Venus and Mercury, Brahmagupta says:

Owing to its small disc, Venus (in direct motion) rises in the west
and sets in the east at a distance of 10 time-degrees (from the
Sun); and owing to its large disc, the same planet (in retrograde
motion) sets in the west and rises in the east at a distance of (only)
8 times-degrees (from the Sun). Mercury rises and sets in a similar
manner when its distance (from the Sun) is 14 time-degrees (in the
case of direct motion) or 12 time-degrees (in the case of retrograde
motion).57

So has been said by the author of the Sūryasiddhānta58 and Śrīpati.59

To find the day on which a planet is to rise or set heliacally in the east or
west, the Indian astronomers proceed as follows: In the case of rising or setting
in the east, they first calculate for sunrise the longitudes of the Sun and the
planet, the latter being corrected by the visibility corrections for rising. Then,
using the table giving the times of rising of the signs for the local place, they
calculate the time of rising of the portion of the ecliptic lying between the Sun
and the corrected planet. This they convert into time-degrees, and then find
the difference between these time-degrees and the time-degrees for rising or
setting of the planet under consideration. If the planet is in direct motion they
divide this difference by the degrees of difference between the daily motions of
the Sun and the planet; and if the planet is in retrograde motion they divide
that difference by the degrees of the sum of the daily motions of the Sun and
the planet. The quotient obtained gives the days elapsed since or to elapse
before the rising or setting of the planet in the east.
In the case of rising or setting in the west, they first calculate for sunset

the longitudes of the Sun and the planet, the latter corrected by the visibility
corrections for setting. Both these longitudes are increased by six signs. Then,
49Part I, vi. 1.
50BrSpSi, vi. 6, 11, 12.
51ŚiDvṛ, viii. 5.
52VSi, VI, 3.
53SiŚe, ix. 8–3.
54MSi, ix. 3.
55SiŚi, I, viii. 6.
56x. 1; ix. 6–8.
57BrSpSi, vi. 11, 12; KK, II, v. 3–4.
58ix. 7.
59SiŚe, ix. 9.
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Table 1: Time-degrees for the heliacal rising and setting.

Time-degrees according to

Celestial
body

Āryabhaṭa
I

Brahma-
gupta

Lalla and
Vaṭeśvara

Āryabhaṭa
II

Sūryasiddhānta
and Bhāskara II

Moon 12◦ 12◦ 12◦ 12◦ 12◦

Mars 17◦ 17◦ 17◦ 17◦ 17◦

Mercury 13◦ 13◦ (mean),
14◦

13◦ 13◦ 14◦

Mercury
(retro)

12◦ 12◦ 12◦30′ 12◦

Jupiter 11◦ 11◦ 11◦ 12◦ 11◦

Venus 9◦ 9◦ (mean),
10◦

9◦ 8◦ 10◦

Venus
(retro)

8◦ 8◦ 7◦30′ 8◦

Saturn 15◦ 15◦ 15◦ 15◦ 15◦

using the table giving the times of rising of the signs for the local place, they
calculate the time of rising of the portion of the ecliptic lying between the Sun
as increased by six signs and the corrected planet as increased by six signs.
This they convert into time-degrees, and find the difference between these
time-degrees and the time-degrees for rising or setting of the planet under
consideration. If the planet is in direct motion they divide this difference
by the degrees of difference between the daily motions of the Sun and the
planet; and if the planet is in retrograde motion they divide that difference by
the degrees of the sum of the daily motions of the Sun and the planet. The
quotient obtained gives, as before, the days elapsed since or to elapse before
the rising or setting of the planet in the west.
Bhāskara I says:

(When the planet is to be seen) in the east, (its) visibility should
be announced by calculating the time (of rising of the part of the
ecliptic between the Sun and the planet corrected by the visibility
corrections) by using the time of rising at the local place of that
very sign (in which the Sun and the planet are situated); (when
the planet is to be seen) in the west, (its) visibility should be
announced by calculating the time (of setting of the part of the
ecliptic between the Sun and the planet) by using the time of rising
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of the seventh sign at the local place.60

Lalla describes the method as follows:

(If the heliacal rising or setting of a planet) on the western horizon
is considered, the true longitude of the Sun and the dṛggraha (i.e.
the planet corrected by the visibility corrections for setting) should
each be increased by six signs.
Find the asus of rising of the untraversed part of the sign occupied
by the planet with lesser longitude and the asus of rising of the
traversed part of the sign occupied by the planet with greater
longitude. To the sum of the two add the asus of rising of the
intervening signs. The result divided by 60 gives the time-degrees
of the planet’s distance from the Sun. If these time-degrees are
lesser than the time-degrees stated for the rising or setting of the
planet, it must be understood that the planet is invisible.
Find the difference expressed in minutes between the calculated
time-degrees and the time-degrees for rising or setting of the planet.
Divide it by (the minutes of) the difference of the daily motions of
the Sun and the planet if they are moving in the same direction,
or by (the minutes of) the sum if they are moving in opposite
directions. The quotient gives the days elapsed since or to elapse
before the rising or setting of the planet, which is to be understood
by the following consideration.
When the setting of a planet is considered, if the time-degrees for
rising or setting of the planet are greater than the calculated time-
degrees, know then that the planet has set heliacally before the
number of days found above; if the former is lesser, the planet will
set after so many days. When the rising is considered, then in the
former case the planet will rise after the days calculated and in
the latter case the planet has risen before the days calculated.61

Vaṭeśvara explains the method thus:

In the case of rising in the east, find the asus of rising of the
untraversed part of the sign occupied by the planet (computed for
sunrise and corrected by the visibility corrections for rising), those
of the traversed part of the sign occupied by the Sun (at sunrise);
and in the case of setting in the west, in the reverse order.62 Add
them to the asus of rising of the intervening signs. (Then are

60LBh. vii. 3.
61ŚiDVṛ, viii. 5(c–d)–8.
62What is meant is that, in the case of rising or setting in the west, one should compute
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obtained the asus of rising of the part of the ecliptic lying between
the planet corrected by the visibility corrections and the Sun at
sunrise. These divided by 60 give the time-degrees between the
planet corrected by the visibility corrections and the Sun).
(To obtain the time-degrees corresponding to the traversed and
untraversed parts), one should multiply the untraversed and tra-
versed degrees by the asus of rising of the corresponding signs and
divide (the products) by 30 and 60 (i.e. by 1800). The time-degrees
divided by 6 give the corresponding ghaṭīs.
When the time-degrees between the planet corrected by the visi-
bility corrections and the Sun are greater than the time-degrees
for the planet’s rising or setting, it should be understood that the
planet has already risen (heliacally); if lesser, the rising has not
yet taken place.
Divide their difference by the daily motion of the Sun diminished
by the daily motion of the planet when the planet is in direct
motion, and by the daily motion of the Sun increased by the daily
motion of the planet when the planet is in retrograde motion: the
result is the time (in days) which have to elapse before the planet
will rise or set or elapsed since the rising or setting of the planet.63

Similar rules have been given by the other Indian astronomers.64

2.2 Heliacal rising and setting of the stars

The stars having no motion rise in the east and set in the west. The distance
from the Sun at which they rise or set heliacally, according to the Indian
astronomers, is 14 time-degrees or 6 1

3 ghaṭīs. In the case of Canopus (Agastya)
this distance is 12 time-degrees or 2 ghaṭīs and in the case of Sirius (Mṛga-
vyādha) it is 13 time-degrees or 2 1

6 ghaṭīs. This is so because Canopus and
Sirius are bright stars.
The point of the ecliptic which rises on the eastern horizon exactly when

a star rises on the eastern horizon, is called the star’s udayalagna; and the
point of the ecliptic which rises on the eastern horizon exactly when a star
sets on the western horizon, is called the star’s astalagna. Similarly, the point
for sunset the longitude of the planet and apply to it the visibility correction of setting
and also the longitude of the Sun. Both of these should be increased by six signs. One
should then find the asus of rising of the traversed part of the sign occupied by the
resulting planet as also the asus of rising of the untraversed part of the sign occupied by
the resulting Sun.

63VSi, VI. 23(b–d)–25, 27.
64See e.g. BrSpSi, x. 32; vi. 7; x. 33; SūSi, ix. 16; MSi, ix. 4–5; SiŚe, ix. 12–13; 10; SiŚi, I,
viii. 8(c–d)–10.
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of the ecliptic occupied by the Sun when a star rises heliacally is called the
star’s udayārka or udayasūrya; and the point of the ecliptic occupied by the
Sun when a star sets heliacally is called the star’s astārka or astasūrya.
The positions of the stars are given in terms of their polar longitudes. So

only one visibility correction, viz. the akṣa-dṛkkarma, has to be applied to
them. When the akṣa-dṛkkarma for rising is applied to the polar longitude of
a star, one gets the star’s udayalagna; and when the akṣa-dṛkkarma for setting
is applied to the polar longitude of a star and six signs are added to that, one
gets the star’s astalagna.
The udayārka for a star is obtained by calculating the lagna (the rising

point of the ecliptic), by taking the Sun’s longitude as equal to the star’s
udayalagna and the time elapsed since sunrise as equal to the ghaṭīs of the
star’s distance from the Sun at the time of its heliacal rising. The astārka for
a star is obtained by calculating the lagna, by taking the Sun’s longitude as
equal to the star’s astalagna and the time to elapse before sunrise as equal
to the ghaṭīs of the star’s distance from the Sun at the time of its heliacal
visibility, and adding six signs to that.

Taking the case of Canopus and Sirius, Brahmagupta says:

From the udayalagna of Canopus calculate the lagna at two ghaṭīs
after sunrise by means of the times of rising of the signs (at the
local place). The result is the udayasūrya of Canopus. Again
from the astalagna (of Canopus) calculate the lagna at two ghaṭīs
before sunrise, and add six signs to it. The result is the astasūrya
of Canopus.
In the same manner the udayasūrya and astasūrya of Sirius may
be found. In this case 2 1

6 ghaṭīs should be used.
Similarly, the udayasūrya and astasūrya of other stars should be
calculated. In this case 2 1

3 ghaṭīs should be used.
Canopus, Sirius, or any of the (other) stars rises or sets according
as its udayasūrya or astasūrya is the same as the true Sun.65

Lalla says:

On account of the motion of the provector wind, the rising of a
star occurs with the rising of its udayalagna, and the setting of a
star occurs with the rising of its astalagna.
Two ghaṭīs plus one-third of a ghaṭī is the time-distance of a star
from the Sun at the time of its heliacal rising or setting; that
for Sirius, it is two ghaṭīs plus one-sixth of a ghaṭī ; and that for
Canopus, it is two ghaṭīs.

65KK, II, v. 8–10.
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The star whose udayalagna increased by the result due to that
time-distance (i.e. by the arc of the ecliptic that rises in that time)
happens to be equal to the Sun’s longitude (at that time), rises
heliacally; and the star whose astalagna diminished by the result
due to that time-distance and also by six signs, happens to be
equal to the Sun’s longitude (at that time), sets heliacally.66

So also says Vaṭeśvara:

When the longitude of the Sun is equal to the longitude of the
star’s udayalagna as increased by the result obtained on converting
the 14 time-degrees for the star’s heliacal rising or setting into the
corresponding arc of the ecliptic (which rises at the local place in
that time), the star rises heliacally; and when the longitude of the
Sun is equal to the longitude of the astalagna as diminished by
the result due to the time-degrees for the star’s heliacal rising or
setting and by half a circle, the star sets heliacally.
When the star’s udayalagna or astalagna is at a lesser distance
from the Sun, the star is invisible; in the contrary case, the star is
visible.67

A similar statement has been made by Bhāskara II.68

As regards the duration of a star’s visibility or invisibility, Brahmagupta
says:

A star is visible as long as the Sun lies between its udayasūrya and
astasūrya; otherwise, it is invisible.
Find the difference between the star’s udayasūrya and the Sun;
or between the astasūrya and the Sun. Express the difference in
minutes. Divide each difference by the daily motion of the Sun.
The result gives respectively the number of days passed since the
heliacal rising of the star and those which will pass before the star
sets heliacally.69

Lalla says:

As long as the Sun is between the star’s udayārka and astārka, so
long is the Sun heliacally visible, provided that the star’s decli-
nation diminished or increased by the local latitude according as
they are of like or unlike directions, is less than 90◦.

66ŚiDVṛ, xi. 16–17. Also see SiŚe, xii. 16–17.
67VSi, VIII, 19(c–d)–20.
68SiŚi, I, xi. 12–14.
69BrSpSi, x. 39; KK, II, v. 12.
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As long as the Sun is between the star’s astasūrya and udayasūrya,
so long is the star heliacally invisible.
The difference between the two (i.e. the star’s udayasūrya minus
the star’s astasūrya) expressed in minutes, when divided by the
true daily motion of the Sun, gives the day (for which the star is
invisible).70

Śrīpati says:

As long as the Sun is between the star’s udayasūrya and the star’s
astasūrya, so long is the star heliacally visible, and as long as the
Sun is between the star’s astasūrya and the star’s udayasūrya, so
long is the star invisible. The star, however, is seen as long as its
zenith distance is less than 90◦.71

Vaṭeśvara:

Subtract the star’s astārka from the star’s udayārka and reduce
the difference to minutes. Divide these minutes by the minutes of
the Sun’s daily motion.
Then is obtained the number of days during which the star remains
set heliacally.72

2.3 Stars always visible heliacally

The stars which are far away from the ecliptic do not fall prey to the dazzling
light of the Sun. Such stars are always visible heliacally. The author of the
Sūryasiddhānta says:

Vega (Abhijit), Capella (Brahmahṛdaya), Arcturus (Svātī ), α Aquilae
(Śravaṇa), β Delphini (Śraviṣṭhā), and λ Pegasi (Uttara-Bhādrapada),
owing to their (far) northern situation, are not extinguished by the
Sun’s rays.73

These stars have large latitudes and in their case the astasūrya exceeds the
udayasūrya. The latter is the condition for a star’s permanent heliacal visibil-
ity.
Brahmagupta says:

The star whose udayārka is smaller than its astārka is always vis-
ible.74

70ŚiDVṛ, xi. 18–19.
71SiŚe, xii. 18.
72VSi, VIII, ii. 21 (a–b).
73SūSi, ix. 18.
74BrSpSi, x. 38 (c–d); KK, II, v. 11 (c–d).
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Lalla says:

The star, whose astārka is greater than its udayārka, never sets
heliacally.75

So also say the other Indian astronomers.76

2.4 Diurnal rising and setting

The rising of the heavenly bodies every day on the eastern horizon is called the
diurnal rising of those heavenly bodies. Similarly the setting of the heavenly
bodies on the western horizon is called their diurnal setting. It is this rising
or setting that is meant when one talks of sunrise or sunset, moon-rise or
moon-set.
The rising of the Sun does not present any difficulty, because it is taken as

the starting point of time measurement. The rising and setting of the Moon
are indeed of importance to the Indian astronomers. All astronomical works
deal with them and give rules to find the time of moon-set or moon-rise in
the light and dark fortnights of the month.
Bhāskara I gives the following rules to find the time of moon-set or moon-

rise:

In the light fortnight, find out the asus due to oblique ascension
(of the part of the ecliptic) intervening between the Sun (at sun-
set) and the (visible) Moon (at sunset treated as moon-set) both
increased by six signs and apply the method of successive approx-
imations. This gives the duration of the visibility of the Moon (at
night) (or, in other words, the time of moon-set).77

Thereafter (i.e. in the dark fortnight) the Moon is seen (to rise)
at night (at the time) determined by the asus (due to oblique as-
cension) derived by the method of successive approximations from
the part of the ecliptic intervening between the Sun as increased
by six signs and the (visible) Moon as obtained by computation,
(the Sun and the Moon both being those calculated for sunset).78

Further he says:

(In the light half of the month) when the measure of the day
exceeds the nāḍīs (due to the oblique ascension of the part of the
ecliptic) lying between the Sun and the (visible) Moon (computed

75ŚiDVṛ, xi. 20 (a–b).
76VSi, VIII, ii. 21 (c-d); SiŚe, xi. 21 (a-b); SiŚi, I, xi. 15.
77MBh, vi. 27.
78MBh, vi. 28.
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for sunset), the moon-rise is said to occur in the day when the
residue of the day (i.e. the time to elapse before sunset) is equal
to the ghaṭīs of their difference.79

(In the dark half of the month) find out the asus due to the oblique
ascension of the part of the ecliptic lying from the setting Sun up
to the (visible) Moon; and therefrom subtract the length of the
day. (This approximately gives the time of moon-rise as measured
since sunset). Since the Moon is seen (to rise) at night when so
much time, corrected by the method of successive approximations,
is elapsed, therefore the asus obtained above should be operated
upon by the method of successive approximations.80

Or, determine the asus (due to the oblique ascension of the part
of the ecliptic lying) from the (visible) Moon at sunrise up to the
rising Sun; then subtract the corresponding displacements (of the
Moon and the Sun) from them (i.e. from the longitudes of the vis-
ible Moon and the Sun computed for sunrise); and on them apply
the method of successive approximations (to obtain the nearest
approximation to the time between the visible Moon and the Sun
computed for moon-rise, i.e. between the risings of the Moon and
the Sun). The Moon, …, rises as many asus before sunrise as
correspond to the nāḍīs obtained by the method of successive ap-
proximations.81

Bhāskara I has given the details of the implied processes of successive approx-
imations also.
Vaṭeśvara gives the methods of finding out the time of moon-rise and moon-

set thus:

In the light half of the month the calculation of the time of rising of
the Moon in the day is prescribed to be made from the positions of
the Sun and the (visible) Moon (for sunrise) in the manner stated
before; and that of the time of setting of the Moon at the end of
the day (i.e. night) from the positions of the Sun and the (visible)
Moon (for sunset), both increased by the six signs.
In the dark half of the month, the (time of) rising of the Moon,
when the night is yet to end, should be calculated by the process
of iteration from the positions of the Sun and the (visible) Moon
(for sunrise); and in the light half of the month, the (time of) rising
of the Moon, when the day is yet to end, should be calculated by

79MBh, vi. 35.
80MBh, vi. 32–33.
81MBh, vi. 37–38.
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the process of iteration from the position of the Sun (for sunset)
increased by six signs and the position of the (visible) Moon (for
sunset).
In the dark half of the month, the time of setting of the Moon,
when the day is yet to elapse, should be obtained from the positions
of the Sun and the (visible) Moon (for sunset), each increased by
six signs.
In the light half of the month, the same time (of setting of the
Moon), when the night is yet to elapse, should be obtained from
the positions of the (visible) Moon (for sunrise) increased by six
signs and the position of the Sun (for sun rise).82

Similar methods have been prescribed by the other Indian astronomers also.
The phenomenon of moon-rise on the full moon day is of special importance

and the Indian astronomers have dealt with this separately. Bhāskara I says:
If (at sunset) on the full moon day the longitude of the Moon (cor-
rected for the visibility corrections for rising) agrees to minutes
with the longitude of the Sun (increased by six signs), then the
Moon rises simultaneously with sunset. If (the longitude of the
Moon is) less (than the other), the Moon rises earlier; if (the lon-
gitude of the Moon is) greater (than the other), the Moon rises
later.
(In the latter cases) multiply the minutes of the difference by the
asus of the oblique ascension of the sign occupied by the Moon
and divide by the number of minutes of arc in a sign, and on the
resulting time apply the method of successive approximations (to
get the nearest approximation to the time to elapse at moon-rise
before sunset or elapsed at moon-rise since sunset).83

Lalla says:
If the true longitude of the Moon, (corrected for the visibility
corrections for rising), is the same as the true longitude of the Sun
at sunset, increased by six signs, the Moon rises at the same time
as the Sun sets; if greater, it rises later; and if less, it rises before
sunset.
If the true longitude of the Moon, (corrected for the two visibility
corrections for setting) and increased by six signs, is the same as
the true longitude of the Sun while rising, the Moon sets at that
time; if greater, it sets after, and if less, before sunrise.84

82VSi, VII, 1, 2–5.
83LBh, vi. 20–21.
84SiDVṛ, viii. 9–10.
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So also says Vaṭeśvara:
When the true longitude of the Moon (for sunset), (corrected for
the visibility corrections for rising), becomes equal to the longitude
of the Sun (for sunset), increased by six signs, then the Moon, in
its full phase, resembling the face of a beautiful lady, rises (si-
multaneously with the setting Sun), and goes high up in the sky,
glorifying by its light the circular face of the earth freed from
darkness, making the lotuses close themselves and the water lilies
blossom forth.
On the full-moon day, at evening, the Sun and the Moon, stationed
in the zodiac at the distance of six signs, appear on the horizon
like the two huge gold bells (hanging from the two sides) of Indra’s
elephant.85

2.5 Time-interval from rising to setting

In the case of the Sun, the time-interval from rising to setting is called the
duration of sunlight or the duration of the day. Similarly, the time-interval
from setting to rising is called the duration of the night. These are obtained
by the formulae:

duration of day = 2 (15 ghaṭīs ± ghaṭīs of Sun’s ascensional difference)
duration of night = 2 (15 ghaṭīs ± ghaṭīs of Sun’s ascensional difference),

the upper of lower sign being taken according as the Sun is to the north or
south of the equator.
Brahmagupta says:

15 ghaṭīs respectively increased and diminished when the Sun is
in the northern hemisphere, or respectively diminished and in-
creased when the Sun is in the southern hemisphere, by the ghaṭīs
of the Sun’s ascensional difference, and the results doubled, give
the ghaṭīs of the durations of the day and night, respectively.86

Lalla says:
When the Sun’s ascensional difference expressed in ghaṭīs is re-
spectively added to and subtracted from 15 ghaṭīs, and the results
are doubled, the lengths of night and day are obtained, provided
the Sun is in the southern hemisphere beginning with Libra. The
same give the lengths of day and night, if the Sun is in the northern
hemisphere, beginning with Aries.87

85VSi, VII, 1, 7–8.
86BrSpSi, ii. 60; KK, I, iii. 3.
87ŚiDVṛ, ii. 20(c–d)–21.
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So also has been stated by Śrīpati,88 Bhāskara II,89 and other Indian as-
tronomers.
The duration from moon-rise to moon-set is called the length of the Moon’s

day and the duration from moon-set to moon-rise, the length of the Moon’s
night. The former is obtained by the formula:

length of Moon’s day = (time of rising of the untraversed portion of the
sign occupied by the Moon’s udayalagna) + (time
of rising of the traversed portion of the sign
occupied by the Moon’s astalagna) + (time of
rising of the intermediate signs).

Vaṭeśvara says:

The Moon’s udayalagna increased by six signs gives the Moon’s
astalagna. Find the oblique ascension of that part of the ecliptic
that lies between the two (i.e. between the Moon’s udayalagna
and astalagna) with the help of the oblique ascensions of the signs:
(this gives the length of the Moon’s day). The difference between
half of it and 15 ghaṭīs is the Moon’s ascensional difference.90

Vaṭeśvara’s method of finding the Moon’s astalagna is gross. For, here the
motion of the Moon from moon-rise to moon-set has been neglected. The
correct rule is: First find out the Moon’s true longitude for the time of moon-
rise; then increase it by half the Moon’s daily motion; then apply to it the
visibility corrections for setting; then add six signs to that: the result thus
obtained will be the Moon’s astalagna.
In the case of a planet or a star the length of the day is defined and obtained

as in the case of the Moon.
Āryabhaṭa II gives the following rule to get a planet’s astalagna:

Calculate the true longitude of the planet for the time of its rising,
apply to it one-half of the planet’s daily motion, then correct it by
the visibility corrections for the western horizon (i.e. for setting),
and then add six signs to it. (The result is the planet’s astalagna).
Now find the time of rising of the traversed part of the decan
occupied by it, to it add the time of rising of the untraversed
part of the decan occupied by the planet’s udayalagna, as also
the times of rising of the intervening decans. The result is the
length of the planet’s day. Using this length of the planet’s day,

88SiŚe, iii. 70.
89SiŚi, I, ii. 52.
90VSi, VII, i. 11.
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again calculate the true longitude of the planet for the time of
its setting, and iterate the above process. Thus will be obtained
the accurate longitude of the visible planet on the western horizon.
That increased by six signs is the planet’s astalagna.91

The planet’s udayalagna and astalagna being known, the length of the
planet’s day is obtained by adding together the time of rising of the untra-
versed portion of the decan (or sign) occupied by the planet’s udayalagna, the
time of rising of the traversed portion of the decan (or sign) occupied by the
planet’s astalagna, and the times of rising of the intervening decans (or signs).
In the case of the stars too the method used to find the length of the day is

the same. The stars being fixed, their udayalagna and astalagna remain the
same for years. Āryabhaṭa II says:

In the case of Canopus, the Seven Sages and the stars (in general)
the udayalagna and the astalagna remain invariable for some years.
Not so in the case with the ever moving planets, the Moon etc.,
because of their inconstancy.92

2.6 Stars that do not rise or set (circumpolar stars)

The stars whose direction is greater than or equal to the co-latitude of the
place do not rise or set at that place. If the declination is north, these stars
are always visible at the place; if south, they are always invisible there.
Bhāskara II says:

The stars for which the true declination, of the northern direction,
exceeds the co-latitude (of the local place), remain permanently
visible (at that place). And the stars such as Sirius and Cano-
pus etc. for which the true declination, of the southern direction,
exceeds the co-latitude (of the local place), remain permanently
invisible (at that place).93

3 Conjunction of planets and stars

3.1 Conjunction of two planets: Samāgama and Yuddha (“Union
and encounter”)

When two planets have equal longitudes they are said to be in conjunction.
This conjunction of two planets is given different names depending on the
participating planets. When the conjunction of a planet takes place with the
91MSi, x. 4–5.
92MSi, x. 8.
93SiŚi, I, xi. 16.
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Sun, it is called astamaya (setting of the planet); when with the Moon, it is
called samāgama (union), and when any two planets, excluding the Sun and
Moon, are in conjunction, it is called yuddha (encounter).
Viṣṇucandra says:

Conjunction (of a planet) with the Sun is called astamaya (setting);
that with the Moon, samāgama (union); and that of Mars etc.
with one another, yuddha (encounter).94

Brahmagupta says:

Conjunction (of two planets), in which the Sun and Moon do not
take part, is called yuddha (encounter); that of Mars etc. with
the Moon, samāgama (union); and that with the Sun, astamaya
(setting). (In the case of encounter) the planet that lies to the
north of the other is the victor, but Venus is the victor (even)
when it is to the south of the other.95

According to the Sūryasiddhānta:

Of the star-planets (Mars etc.) there take place, with one an-
other, yuddha (encounter) and samāgama (union); with the Moon,
samāgama (union); with the Sun, astamaya (setting).96

(In an encounter) Venus is generally the victor, whether it lies to
the north or to the south (of its companion).97

The conjunction of two star-planets Mars etc. which has been defined above
as yuddha (encounter), is further classified into five categories, depending on
the distance between them at the time of their conjunction. Let d be the
distance between their centres at the time of their conjunction, and s the sum
of their semi-diameters. Then the conjunction is called:

1. Ullekha (external contact), when d = s;

2. Bheda (occultation), when d < s;

3. Aṃśu-vimarda (pounding or crushing of rays, friction of rays), when
d > s;

4. Apasavya (dexter) when d > s but < 1◦ and one planet is tiny;

5. Samāgama (union), when d > s and also > 1◦ and the planets have
large discs.

94KK, I, viii. 1 (Bhaṭṭotpala’s comm.).
95KK, I, viii. 1.
96SūSi, vii. 1.
97SūSi, vii. 23 (a–b).
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The Sūryasiddhānta says:

The conjunction of two star-planets is called ullekha (external
contact), when they touch each other (externally); bheda (occul-
tation), when there is overlapping; aṃśu-vimarda (pounding or
crushing of rays, or friction of rays), when there is mingling of
rays of each other; apasavya-yuddha (dexter), when one planet
has tiny disc and the distance between the two is less than one
degree; samāgama (union), when the discs of the planets are large
and the distance between them is greater than one degree.98

The Sūryasiddhānta further says:

In the apasavya-yuddha (dexter encounter) the star-planet which
is tiny, destitute of brilliancy, and covered (by the rays of the
other), is the defeated one. (In general) the star-planet which is
rough, colourless, struck down, and situated to the south, is the
vanquished one. That situated to the north is the victor if it is
large and luminous; that situated to the south too is the victor
if it is powerful (i.e. large and luminous). When two star-planets
are in proximity, there is samāgama (union) if both are luminous;
kūṭa (confrontation) if both are small in size; and vigraha (conflict,
or fight) if both are struck down. Venus is generally the victor
whether it is to the north or to the south (of the other).99

The Bhārgavīya says:

Hostility should be foretold when there is apasavya (dexter); war
when there is raśmi-saṃkula (melee of rays); ministerial distress
when there is ullekha (external contact); and loss of wealth when
there is bheda (occultation).100

3.2 Conjunction in celestial longitude (Kadambaprotīya-yuti)

Āryabhaṭa I and his staunch follower Bhāskara I have dealt with the con-
junction of the planets in celestial longitude (i.e. along the circle of celestial
longitude or secondary to the ecliptic) and have given rules to find the time
when such a conjunction occurs.

Bhāskara I says:

If one planet is retrograde and the other direct, divide the differ-
ence of their longitudes by the sum of their daily motions; other-
wise (i.e. if both of them are either retrograde or direct), divide

98SūSi, vii. 18–19.
99SūSi, vii. 20(c–d)–23(a–b).

100Quoted by Kapileśvara Chaudhary in his comm. on SūSi, vii. 18–19.
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the same by the difference of their daily motions; thus is obtained
the time in terms of days etc. after or before which the two planets
are in conjunction (in longitude). The velocity of the planets be-
ing different (from time to time), the time thus obtained is gross.
One, proficient in the science of astronomy, should, therefore, ap-
ply some method to make the longitudes of the two planets agree
to minutes. Such a method is possible from the teachings of the
preceptor or by day to day practice.101

In the case of Mercury and Venus, subtract the longitude of the
ascending node from that of the śīghrocca: (thus is obtained the
longitude of the planet as diminished by the longitude of the as-
cending node). The longitudes (in terms of degrees) of the ascend-
ing nodes of the planets beginning with Mars (i.e. Mars, Mercury,
Jupiter, Venus, and Saturn) are respectively 4, 2, 8, 6, and 10,
each multiplied by 10.
The greatest latitudes, north or south, in minutes of arc, (of the
planets beginning with Mars) are respectively 9, 12, 6, 12, and 12,
each multiplied by 10. (To obtain the Rsine of the latitude of a
planet) multiply (the greatest latitude of the planet) by the Rsine
of the longitude of the planet minus the longitude of the ascending
node (of the planet) (and divide by the “divisor” defined below).
The product of the mandakarṇa and the śīghrakarṇa divided by
the radius is the distance between the Earth and the planet: this
is defined as the “divisor”.
Thus are obtained the minutes of arc of the latitudes (of the two
planets which are in conjunction in longitude).
From these latitudes obtain the distance between those two given
planets (which are in conjunction in longitude) by taking their
difference if they are of like directions or by taking their sum if
they are of unlike directions. The true distance between the two
planets, in minutes of arc, being divided by 4 is converted into
aṅgulas.
Other things should be inferred from the colour and brightness of
the rays (of the two planets) or else by the exercise of one’s own
intellect.102

The method prescribed by Āryabhaṭa I in his work employing midnight
day-reckoning was also practically the same. Brahmagupta has summarised
it as follows:

101MBh, vii. 49–51.
102LBh, vii. 6–10.
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Divide the difference between the longitudes of the two planets
(whose conjunction is under consideration) by the difference of
their daily motions, if they are both direct or both retrograde, or
by the sum of their daily motions, if one is direct and the other
retrograde. The result is in days. If the slower planet is ahead of
the other (and if both the planets are direct), the conjunction is
to occur after the days obtained; if the quicker planet is ahead of
the other, the conjunction has already occurred before the days
obtained.
Multiply the difference between the longitudes of the two planets
by their own daily motions and divide (each product) by the dif-
ference or sum of their daily motions, as before. Subtract each
result from the longitude of the corresponding planet, if the con-
junction has already occurred, and add, if it is to occur, provided
the planet is in direct motion. If it is retrograde, reverse the or-
der of subtraction and addition. The planets will then have equal
longitudes.
From the longitudes of the two planets made equal up to minutes
of arc, subtract the longitudes of their own ascending nodes (in
the case of Mars, Jupiter, and Saturn). In the case of Mercury and
Venus, the longitude of the ascending node should be subtracted
from the śīghrocca of the planet. Multiply the Rsine of that by the
greatest latitude of the corresponding planet and divide by the last
karṇa (“hypotenuse for the planet”): the result is the latitude of
the planet.
Take the difference or sum of the latitudes of the two planets
(which are in conjunction in longitude) according as they are of
like or unlike directions. Then is obtained the distance between
the planets (at the time of their conjunction in longitude).103

3.3 Occultation (Bheda-yuti)

When the distance between the two planets in conjunction in longitude falls
short of the sum of their semi-diameters the lower planet covers partly or
wholly the disc of the higher planet. The situation is analogous to the solar
eclipse where the Moon eclipses the Sun. In such a case the lower planet is
treated as the Moon and the upper one as the Sun, and all processes prescribed
in the case of a solar eclipse are gone through in order to obtain the time of
contact and separation, immersion and emersion, etc.
Vaṭeśvara says:

103KK, I, viii. 3–6(a–b).
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When the distance between the two planets (which are in con-
junction) is less than half the sum of the diameters of the two
planets, there is occultation (bheda) of one planet by the other.
The eclipser is the lower planet. All calculations (pertaining to
this occultation), such as those for the semi-duration etc. are to
be made as in the case of a solar eclipse.
When the Moon occults a planet, the time of conjunction should
be reckoned from moon-rise and for that time one should calcu-
late the lambana (parallax-difference in longitude) and the avanati
(parallax-difference in latitude). In case one planet occults another
planet, the time of conjunction should be reckoned from the (oc-
culted) planet’s own rising and for that time one should calculate
the lambana and the avanati.104

The whole process has been explained by Bhaṭṭotpala as follows:

The planet which lies in the lower orbit is the occulting planet
(or the occulter); it is to be assumed as the Moon. The planet
which lies in the higher orbit is the occulted planet; it is to be as-
sumed as the Sun. Then, assuming the time of conjunction (of the
two planets) as reckoned from the rising of the occulted planet as
the tithyanta, calculate the lagna for that tithyanta, with the help
of (the longitude of) the occulted body, which has been assumed
as the Sun, and the oblique ascensions of the signs. Subtracting
three signs from that, calculate the corresponding declination (i.e.
the declination of the vitribha).105 Taking the sum of that (dec-
lination) and the local latitude when they are of like directions,
or their difference when they are of unlike directions, calculate
the lambana (for the time of conjunction) as in the case of a solar
eclipse. When the longitude of the planets in conjunction is greater
than (the longitude of) the vitribha, subtract this lambana from
the time of conjunction; and when the longitude of the planets in
conjunction is less than (the longitude of) the vitribha, add this
lambana to the time of conjunction; and iterate this process: this
is how the lambana is to be calculated. Then from the longitude of
the vitribhalagna which has got iterated in the process of iteration
of the lambana, severally subtract the ascending nodes of the two
planets, and therefrom calculate the celestial latitudes of the two
planets, as has been done in the case of the solar eclipse. Then tak-
ing the sum or difference of the declination of the vitribhalagna, the

104VSi, VIII, i, 7–8.
105The vitribha or vitribhalagna is the lagna (rising point of the ecliptic) minus tribha (three

signs).
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latitude of the vitribhalagna, and the local latitude, each in terms
of degrees, (according as they are of like or unlike directions), in
the case of both the planets. Then applying the rule: “Multiply
the Rsine of those degrees of the sum and difference by 13 and di-
vide by 40: the result is the avanati,” calculate the avanatis for the
two planets. Then calculate the latitudes of the occulted and the
occulting planets in the manner stated in the chapter on the rising
and setting of the heavenly bodies, and increase or decrease them
by the corresponding avanatis according as the two are of like or
unlike directions: the results are the true latitudes (of the occulted
and occulting planets). Take the sum or difference of those true
latitudes according as they are of unlike or like directions. The
result of this is the sphuṭa-vikṣepa.
Having thus obtained the sphuṭa-vikṣepa, one should see whether
there exists eclipse-relation between this sphuṭa-vikṣepa and the di-
ameters of the discs of the two planets. If the sphuṭa-vikṣepa is less
than half the sum of the diameters of the two planets, this relation
does exist; if greater, it does not. The totality of the occultation
should also be investigated as before. Then, (severally) subtract
the square of the sphuṭa-vikṣepa from the squares of the sum and
the difference of the semi-diameters of the occulted and occulting
planets, and take the square roots (of the results). Multiply them
by 60 and divide by the difference or sum of the daily motions
of the planets as before: then are obtained the sthityardha and
the vimardārdha, (respectively). They are fixed (by the process of
iteration) as in the case of a solar eclipse. The sthityardha and
vimardārdha having been obtained in this way, they should be cor-
rected by the lambana obtained by the process of iteration. Then
the time of apparent conjunction should be declared as the time of
the middle of the occultation; this diminished and increased by the
(spārśika and maukṣika) sthityardhas, (respectively), the times of
contact and separation (of the two planets); and the same dimin-
ished and increased by the (spārśika and maukṣika) vimardārdhas
(respectively), the times of immersion and emersion.106

Bhāskara II explains the same as follows:

When there is bheda-yuti, then one should compute the lambana
etc. as in the case of a solar eclipse. There, the lower of the two
planets is to assumed as the Moon and the upper one as the Sun.
Why are they so assumed? To compute the lambana etc. But

106KK, I, viii. 5–6, comm.
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the lagna, which is obtained in order to find the vitribhalagna, is
to be computed from the actual Sun, not from the assumed Sun.
For what time is the lagna calculated from the Sun? For the time
of conjunction (in longitude of the two planets). What is meant
is this: On the day the conjunction (of the two planets) takes
place, find the ghaṭīs of the night elapsed at the time of conjunc-
tion. Therefrom calculate the Sun as increased by six signs, and
therefrom the lagna. Then calculate the vitribha and then the cor-
responding śaṅku (i.e. Rsine of the altitude of the vitribha). Then,
applying the rule: “Multiply the Rsine of the difference of that
vitribha and the assumed Sun by 4 and divide by the radius, and
so on,” calculate the lambana and nati, as before. Then correct the
time of conjunction by that lambana. But the lambana etc. should
be applied only when the two planets are fit for observation. In
this bheda-yuti, the north-south distance between the planets is
the latitude; and the direction of the latitude is that in which the
assumed Moon lies, as seen from the assumed Sun. Now is stated
the peculiarity in the case of parilekha (graphical representation of
the occultation). When the lower planet, which has been assumed
as the Moon, is slower or retrograde, then one should understand
that the contact (of the two planets) occurs towards the east and
the separation towards the west. In the contrary case, one should
understand that the contact occurs towards the west and the sepa-
ration towards the east. We have stated here the (notable) points
of difference in the case of bheda-yoga: there is no other difference
in the procedure.107

3.4 Conjunction along the circle of position (Samaprotīma-yuti)

Conjunction in longitude, though theoretically sound and perfect, suffered
from one practical setback viz. that there being no star at the pole of the
ecliptic such a conjunction could not be observed with precision and so the cal-
culated time of its occurrence could not be confirmed by observation. Brahma-
gupta noted that the stars Citrā (Spica) and Svāti (Arcturus), which, though
of unequal longitudes, were seen daily to be in conjunction along the circle
of position (samaprota-vṛtta). This conjunction was easily observable and
agreement between computation and observation in this case could be estab-
lished. Brahmagupta therefore gave preference to conjunction along the circle
of position over conjunction in longitude.
To obtain the time when two planets are in conjunction along the circle of

position, Brahmagupta first finds the time of their conjunction in longitude
107SiŚi, I, x. 7–9, comm.
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and then he derives how much earlier or later conjunction along the circle of
position takes place. He states two rules for the purpose, one gross and the
other approximate.

3.5 Brahmagupta’s gross rule

Brahmagupta’s gross rule runs as follows:

Find the udayalagna (the rising point of the ecliptic at the time
of rising of the planet) and also the astalagna (the setting point of
the ecliptic at the time of setting of the planet) of the two planets
equalised up to minutes of arc (i.e. for the time of their conjunction
in longitude). Then find the ghaṭīs of the day-lengths of the two
planets by adding together the times of rising at the local place of
(1) the untraversed part of the udayalagna, (2) the traversed part
of the astalagna as increased by six signs, and (3) the intervening
signs, (in each case). If out of the two planets (in conjunction
in longitude), the planet with lesser udayalagna is such that its
astalagna increased by six signs is smaller than the other planet’s
astalagna, increased by six signs, one should understand that the
conjunction of the two planets along the circle of position is to
occur;108 if greater, one should understand that the conjunction
of the two planets along the circle of position has already occurred.

Now (in the case of both the planets) multiply the minutes of
the difference between the planet’s astalagna plus six signs and
the udayalagna by the ghaṭīs of the planet’s own day-length. The
result (in each case) should be taken as negative or positive ac-
cording as the astalagna plus six signs is smaller or greater than
the udayalagna. In case these results are both negative or both
positive, divide the minutes of the difference between the planets’
own udayalagnas by the difference of the two results; in case one
result is positive and the other negative, divide the same minutes
by the sum of the two results. (This gives the time, in terms of
ghaṭīs, to elapse before or elapsed since the conjunction of the two
planets along the circle of position, at the time of their conjunc-
tion in longitude). By these ghaṭīs multiply the minutes of the
difference between the planet’s udayalagna and astalagna, the lat-
ter increased by six signs, and divide by the ghaṭīs of the planet’s
own day-length. By the resulting minutes increase or diminish the

108For, the planet whose rising point at rising and the rising point at setting are both smaller
than of the other planet, has greater day-length than the other. So the latter is swifter
than the other.
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planet’s own udayalagna according as it is smaller or greater than
the planet’s (own) astalagna plus six signs: then is obtained the
planets’ common longitude at the time of their conjunction along
the circle of position. In case it is less than the udayalagna for that
time in the night or greater than the udayalagna plus six signs, the
two planets will be seen (in the sky) in conjunction along the circle
of position.109

Śrīpati, following Brahmagupta, has stated this rule in his Siddhāntaśe-
khara.110 But Lalla and Vaṭeśvara have omitted it.

3.6 Brahmagupta’s approximate rule

The second rule of Brahmagupta which is intended to give better time of
conjunction (of two planets along the circle of position) than the first rule
(stated above), runs as follows:

Multiply the duration of day for the planet with greater day-length
by the time (in ghaṭīs) elapsed (at the time of conjunction in lon-
gitude) since the rising of the planet with smaller day-length and
divide by the duration of day for the planet with smaller day-
length. When the resulting time is greater than the time elapsed
(at the time of conjunction in longitude) since the rising of the
planet with greater day-length, (it should be understood that) the
conjunction of the two planets (along the circle of position) has
already occurred; when less, (it should be understood that) the
conjunction of the two planets (along the circle of position) is to
occur.111

The difference of the two times (in terms of ghaṭīs) is the “first”. A
similar result derived from the two planets, diminished or increased
by their motion corresponding to “arbitrarily chosen ghaṭīs”112 (as
the case may be), is the “second”. When the “first” and the “sec-
ond” both correspond to conjunction past or to occur, divide the
product (of the ghaṭīs) of the “first” and the “arbitrarily chosen
ghaṭīs” by the ghaṭīs of the difference between the “first” and the
“second”; in the contrary case (i.e. when out of the “first” and the
“second”, one corresponds to conjunction past and the other to con-
junction to occur), divide the product by (the ghaṭīs of) the sum

109BrSpSi, ix. 13–18.
110SiŚe, xi. 21–27.
111(15).
112These are the ghaṭīs elapsed since or to elapse before conjunction along the circle of

position, at the time of conjunction, chosen by conjecture.
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of the “first”and the “second”. The resulting ghaṭīs give the ghaṭīs
elapsed since or to elapse before the conjunction along the circle of
position, at the time of conjunction in longitude, depending upon
whether the “first” relates to conjunction past or to occur.
The conjunction of two planets, along the circle of position, takes
place when the result (in ghaṭīs) obtained on dividing by the ghaṭīs
of the day-length of one planet, the product of the ghaṭīs elapsed
since the rising of that planet and the ghaṭīs of the day-length of
the other planet, is equal to the ghaṭīs elapsed since the rising of
the other planet.113

This latter rule of Brahmagupta has been adopted by Lalla,114 and Śrīpati.115

3.7 Alternative form of Brahmagupta’s approximate rule

Brahmagupta has stated his approximate rule in the following alternative form
also:

Multiply the nāḍīs of the duration of day for the planet with
smaller day-length by the ghaṭīs elapsed since the rising of the
planet with greater day-length and divide by the ghaṭīs of the du-
ration of day for the planet with greater day-length: the result
is in terms of nāḍīs. When these nāḍīs are less than the ghaṭīs
elapsed since the rising of the planet with smaller day-length, (it
should be understood that) conjunction (along the circle of posi-
tion) of the two planets has already occurred; when greater, (it
should be understood that) conjunction is to occur. Assume the
difference of the two, in terms of ghaṭīs, as the “first”. Now mul-
tiply the daily motion of each planet by “the arbitrarily chosen
ghaṭīs” and divide each product by 60: add the result to or sub-
tract it from the longitude of the corresponding planet according
as the conjunction has occurred or is to occur. Then obtain the
difference similar to the “first” and call it “second”. When both
the differences, the “first” and the “second”, correspond either to
conjunction past or to conjunction to occur, divide the product of
the “first” and the “arbitrarily chosen ghaṭīs” by the difference of
the “first” and the “second”; in the contrary case (i.e. when out of
the “first” and the “second”, one corresponds to conjunction past
and the other to conjunction to occur), divide that product by the
sum of the “first” and the “second”. The resulting ghaṭīs give the

113BrSpSi, ix. 22–25; KK, II, vi. 1–4.
114ŚiDVṛ, x. 17–20.
115SiŚe, xi. 28–31.
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ghaṭīs elapsed since or to elapse before the conjunction of the two
planets (along the circle of position), depending upon whether the
“first” relates to conjunction past or to conjunction to occur. If by
applying the above rule once conjunction of the two planets is not
arrived at, the rule should be iterated (until one does not get the
conjunction of the two planets).116

This alternative form of Brahmagupta’s approximate rule has been adopted
by Vaṭeśvara who states it as follows:

Multiply the duration of day for the planet with smaller day-length
by the time (in ghaṭīs) elapsed since the rising of the planet with
greater day-length, and divide by the duration of day for the planet
with greater day-length. When the resulting time is greater than
the time elapsed since the rising of the planet with smaller day-
length, (it should be understood that) the conjunction (along the
circle of position) of the two planets is to occur; in the contrary
case, (it should be understood that) the conjunction has already
occurred.

The difference of the two times (in terms of ghaṭīs) is the “first”. A
similar difference derived from the “ghaṭīs arbitrarily chosen” (for
ghaṭīs elapsed since or to elapse before conjunction) is the “second”.
When both the “first” and the “second” correspond either to con-
junction past or to conjunction to occur, divide the product of the
“first” and the “arbitrarily chosen ghaṭīs” by the ghaṭīs of the dif-
ference between the “first” and the “second”; in the contrary case
(i.e. when out of the “first” and the “second”, one corresponds to
conjunction past and the other to conjunction to occur), divide
that product by (the ghaṭīs of) the sum of the “first” and the “sec-
ond”. The resulting ghaṭīs give the ghaṭīs elapsed since or to elapse
before the conjunction of the two planets (along the circle of posi-
tion), depending on whether the “first” relates to conjunction past
or to occur.117

Munīśvara has criticised conjunction along the circle of position advocated
by Brahmagupta, for the reason that the time of such a conjunction will differ
from place to place, and so it will create confusion in making astrological
predictions. See Siddhānta-sārvabhauma, Bhagrahayuti, vs. 15, p. 543.

116BrSpSi, x. 51–58.
117VSi, VIII, i. 12–14.
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3.8 Āryabhaṭa II’s rule

Āryabhaṭa II gives the following rule to find the time of conjunction in celestial
longitude and that of conjunction along the circle of position:

Divide the difference (in minutes) between the longitude of the
two planets (whose conjunction is under consideration) by the dif-
ference between the daily motions (of the two planets), provided
they are both direct or both retrograde; if one of the planets is
retrograde (and the other direct), divide by the sum of the daily
motions (of the two planets); the result gives the days elapsed
since the conjunction of the two planets, in case the faster planet
is greater than the other, and also if the planet with lesser longi-
tude is retrograde (and the other direct). When both the planets
are retrograde, the case is contrary to what happens when both
the planets are direct. The two planets should then be calculated
for the time of conjunction. Then the two planets become equal
in longitude.
When conjunction suitable for observation (i.e. along the circle of
position) is required, then the two planets should be corrected for
the ayana-dṛkkarma and akṣa-dṛkkarma also. The time when they
become equal in longitude, is certainly the time of conjunction
(along the circle of position).118

Indications of this rule occur in the Sūryasiddhānta119 and the Vaṭeśvara-
siddhānta120 also. According to Kamalākara, a staunch follower of the Sūrya-
siddhānta, however, the conjunction of the planets and stars taught in the
Sūryasiddhānta is in celestial longitude.121

3.9 Conjunction in polar longitude (Dhruvaprotīya-yuti)

Bhāskara II has given rules for conjunction in celestial longitude as well as
conjunction in polar longitude. But as there is no star at the pole of the
ecliptic, conjunction in celestial longitude does not, says he, create confidence
in the observer; while there being one at the pole of the equator, conjunction
in polar longitude is better for observation. However, conjunction of two
planets, in his opinion, really occurs when the two planets are nearest to each
other and this happens when the two planets are in conjunction in celestial
longitude only.122 He has given no credit to conjunction along the circle of

118MSi, xi. 3(c–d)–6(a–b).
119vii. 7–12.
120VIII, i. 9.
121SiTVi, Bhagrahayuti, vss. 105–106.
122SiŚi, I, x. 4(c–d)–5, gloss.
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position probably because it was not universal. He has not even mentioned
this conjunction.
Bhāskara II’s rule for the conjunction of two planets in polar longitude runs

thus:

Divide the minutes of the difference between the longitudes of
the two planets by the difference of their daily motions (if both
planets are direct or both retrograde); if one of them is retrograde
(and the other direct), divide by the sum of the daily motions
(of the planets): the result is the number of days elapsed since
the conjunction of the two planets provided the slower planet has
lesser longitude than the other, or if, one planet being retrograde,
its longitude is lesser than that of the other. If otherwise, the
conjunction occurs after the days obtained. If both the planets
are retrograde, the result is contrary to that for direct planets.
(This gives approximate time for conjunction. To get accurate
time, proceed as follows:)

(Calculate the longitudes of the planets for the time of conjunction
and) apply the ayana-dṛkkarma (to them). Iterate the process
until the time of conjunction is not fixed. When this is done, the
two planets lie on the same great circle passing through the poles
of the equator. The planets are then said to be in conjunction in
the sky. If the ayana-dṛkkarma is not applied, the planets lie on
the same secondary to the ecliptic.123

4 Conjunction of a planet and star

The conjunction of a planet and a star is treated in the same way as the
conjunction of two planets and the rules in the two cases are similar. The only
remarkable difference is that the stars, unlike the planets, are supposed to be
points of light having no diameter and fixed in position having no eastward
daily motion.
Bhāskara I says:

All planets whose longitudes are equal to the longitude of the
junction-star of a nakṣatra124 are seen in conjunction with that
star. (Of a planet and a star) whose longitudes are unequal, the
time of conjunction is determined by proportion.125

123SiŚi, I, x. 3–5.
124The junction-stars are the prominent stars of the nakṣatras.
125LBh, viii. 5.
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The distance between a planet and a star (when they are in con-
junction) is determined from (the sum or difference of) their lati-
tudes.126

Brahmagupta says:

If the longitude of a planet is less than the longitude (dhruvaka) of
a star, their conjunction is to occur; if greater, their conjunction
has already occurred. If the planet is retrograde, reverse is the case.
The rest is similar to that stated in the case of the conjunction of
two planets.127

Lalla says:

If the longitude of a planet is greater than the longitude of the
junction-star of a nakṣatra, their conjunction has already taken
place; if less, it will take place. If the planet is retrograde, the
contrary is the case. The rest is similar to that in the case of the
conjunction of two planets.128

A similar statement has also been made by Vaṭeśvara,129 Āryabhaṭa II,130

Śrīpati,131 the author of the Sūryasiddhānta,132 and others.
In the case of occultation, Brahmagupta says:

When a planet is on the same side of the ecliptic as the junction-
star of a nakṣatra, the planet will occult the junction-star if its true
latitude is greater than the latitude of the junction-star minus
the semi-diameter of the planet or less than the latitude of the
junction-star plus the semi-diameter of the planet.133

The occultation of a star by the Moon was considered important. So the
occultation of certain prominent stars was specially noted and recorded by
the Indian astronomers.
Bhāskara I says:

The Moon, moving towards the south of the ecliptic, destroys (i.e.
occults) the Cart of Rohiṇī (the constellation of Hyades), when
its latitude amounts to 60 minutes; the junction-star of Rohiṇī

126MBh, iii. 71 (a–b).
127KK, I, ix. 7.
128ŚiDvṛ, xi. 4.
129VSi, VIII, ii. 4 (a–c).
130MSi, xii. 9.
131SiŚe, xii. 3.
132SūSi, viii. 15.
133KK, I, ix. 14. Also see BrSpSi, x. 4.
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(i.e. Aldebaran), when its latitude amounts to 256 minutes; (the
junction-star of) Citrā (i.e. Spica), when its latitude amounts to 95
minutes; (the junction-star of) Jyeṣṭha (i.e. Antares), when its lat-
itude amounts to 200 minutes; (the junction-star of) Anurādhā,134

when its latitude amounts to 150 minutes; (the junction-star of)
Śatabhiṣak (i.e. λ Aquarii), when its latitude amounts to 24 min-
utes; (the junction-star of) Viśākha,135 when its latitude amounts
to 88 minutes; and (the junction-star of) Revatī (i.e. Zeta Piscium),
when its latitude vanishes. When it moves towards the north (of
the ecliptic), it occults the nakṣatra Kṛttikā (i.e. Pleiades), when
its latitude amounts to 160 minutes; and the central star of the
nakṣatra Maghā, when it assumes the greatest northern latitude.
These minutes (of the Moon’s latitude) are based on actual ob-
servation made by means of the Yaṣṭi instrument (i.e. the Indian
telescope).136

Brahmagupta says:

The planet whose south latitude at 17◦ of Taurus exceeds 2◦, oc-
cults the Cart of Rohiṇī.137 The Moon, when it has the maximum
north latitude, occults the third star of Maghā; when it has no
latitude, it occults Puṣya, Revatī, and Śatabhiṣak.138

Lalla says:

The Moon, situated in the middle of the nakṣatra Rohiṇī, occults
the Cart of Rohiṇī, when its southern latitude amounts to 2◦40′;
(the junction-star of) the nakṣatra Rohiṇī, when its southern lat-
itude is 4◦30′; the middle of the nakṣatra Maghā, when its north
latitude amounts to 40◦30′; and the nakṣatras Revatī, Puṣya, and
Śatabhiṣak, when it is devoid of latitude.139

Vaṭeśvara says:

The planet, whose latitude at 17◦ of Taurus amounts to 1 1
2 degrees

south, occults the Cart of Rohiṇī. The Moon with its (maximum)
latitude south (i.e., 4◦30′ S) covers the junction-star of Rohiṇī.140

Śrīpati similarly says:
134β or δ Scorpii.
135α or K Librae.
136MBh, iii. 71(c–d)–75(a–b). Also see LBh, viii. 11–16.
137SūSi, viii. 13 also.
138BrSpSi, x. 11–12; KK, ix. 15–16.
139ŚiDVṛ, xi. 11.
140VSi, VIII, ii. 10–11.
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The planet whose southern latitude at 17◦ of Taurus exceeds 2◦

certainly occults the Cart of Rohiṇī. The Moon with its longitude
equal to that of (the junction-star of) Maghā occults the third
star of Maghā, when it has maximum (north) latitude; and the
nakṣatras Śatabhiṣak, Revatī, and Puṣya when its longitude is equal
to their longitudes.141

141SiŚe, vii. 8–9.
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Reviews and Responses



Vedic Mathematics: The deceptive title of
Swamiji’s book∗

The title of the book, Vedic Mathematics or Sixteen Simple Mathemati-
cal Formulae from the Vedas, written by Jagadguru Svāmī Śrī Bhāratī Kṛṣṇa
Tīrthajī Mahārāja, Śaṅkarācārya of Govardhana Matha, Puri, bears the im-
pression that it deals with the mathematics contained in the Vedas—Ṛgveda,
Sāmaveda, Yajurveda and Atharvaveda. This indeed is not the case, as the
book deals not with Vedic Mathematics but with modern elementary mathe-
matics up to the Intermediate standard. In his Foreword to Swamiji’s book,
V. S. Agrawala, the editor, writes:

The question naturally arises as to whether the sūtras which form
the basis of this treatise exist anywhere in the Vedic literature as
known to us. But this criticism loses all its force if we inform
ourselves of the definition of Veda given by Sri Sankaracharya
himself as quoted below:

The very word “Veda” has this derivational meaning,
i.e., the fountain-head and illimitable store-house of all
knowledge. This derivation, in effect, means, connotes,
and implies that the Vedas should contain within them-
selves all the knowledge needed by mankind relating not
only to the so called “spiritual” (or otherworldly) mat-
ters but also to those usually described as purely “sec-
ular”, “temporal”, or “worldly” and also to the means
required by humanity as such for the achievement of all-
round, complete and perfect success in all conceivable
directions and that there can be no adjectival or restric-
tive epithet calculated (or tending) to limit that knowl-
edge down in any sphere, any direction or any respect
whatsoever.
In other words, it connotes and implies that our ancient
Indian Vedic lore should be all-round, complete and per-

* K. S. Shukla, in Issues in Vedic Mathematics, New Delhi: Rashtriya Veda Vidya
Pratishthan in association with Motilal Banarsidass, 1991, pp. 31–39 (This volume came
out as Proceedings of the National Workshop on Vedic Mathematics held during 25–28
March, 1988, at the University of Rajasthan, Jaipur).

© Hindustan Book Agency 2019 and Springer Nature Singapore Pte Ltd. 2019
Studies in Indian Mathematics and Astronomy,

Sources and Studies in the History of Mathematics and Physical Sciences,
https://doi.org/10.1007/978-981-13-7326-8_35

A. Kolachana et al. (eds.), 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7326-8_35&amp;domain=pdf


698 Vedic Mathematics: The deceptive title of Swamiji’s book

fect and able to throw the fullest necessary light on all
matters which any aspiring seeker after knowledge can
possibly seek to be enlightened on.

It is the whole essence of his assessment of Vedic tradition that it
is not to be approached from a factual stand-point but from an
ideal stand point, viz. as the Vedas as traditionally accepted in
India as the repository of all knowledge should be and not what
they are in human possession. That approach entirely turns the
tables on all critics, for the authorship of Vedic mathematics then
need not be laboriously searched in the texts as preserved from
antiquity.

In his preface to his Vedic Mathematics, Swamiji has stated that the sixteen
sūtras dealt with by him in that book were contained in the Pariśiṣṭa (the
Appendix) of the Atharvaveda. But this is also not a fact;1 for they are un-
traceable in the known Pariśiṣṭas of the Atharvaveda edited by G. M. Bolling
and J. von Negelein (Leipzig, 1909–10). Some time in 1950 when Swamiji
visited Lucknow to give a black-board demonstration of the sixteen sūtras of
his ‘Vedic Mathematics’ at the Lucknow University, I personally went to him
at his place of stay with Bolling and Negelein’s edition of the Pariśiṣṭas of
the Atharvaveda and requested him to point out the places where the sixteen
sūtras demonstrated by him occurred in the Pariśiṣṭas. He replied off hand,
without even touching the book, that the sixteen sūtras demonstrated by him
were not in those Pariśiṣṭas, they occurred in his own Pariśiṣṭa and not in
any other.
As regards the Pariśiṣṭas of the Atharvaveda referred to by Swamiji, V. S.

Agrawala says:

The Vedas are well-known as four in number, Ṛk, Yajus, Sāma
and Atharva, but they have also the four Upavedas and the six
Vedāṅgas all of which form an individual corpus of divine knowl-
edge as it once was and as it may be revealed. The four Upavedas
(associated with the four Vedas) are as follows:

Vedaṣ Upavedas

Ṛgveda Āyurveda
Sāmaveda Gandharvaveda
Yajurveda Dhanurveda
Atharvaveda Sthāpatyaveda

1ed. The original contains the following editorial note here: “In order to put the matter
in proper perspective the views of the Jagadguru Śaṅkarācārya contained in the chapter
on Vedic mathematics in his book Vedic Metaphysics have been given at the end of this
publication as Appendix II. (Editorial note).”
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In this list the Upaveda or Sthāpatya or engineering comprises
all kinds of architectural and structural human endeavour and all
visual arts. Swamiji naturally regarded mathematics or the science
of calculations and computations to fall under this category
In the light of the above definition and approach must be under-
stood the author’s statement that the sixteen sūtras on which the
present volume is based form part of a Pariśiṣṭa of the Atharvaveda.
We are aware that each Veda has its subsidiary apocryphal texts
some of which remain in manuscripts and others have been printed
but that formulation has not closed. For example, some Pari-
śiṣṭas of the Atharvaveda were edited by G. M. Bolling and J. von
Negelein, Leipzig, 1909-10. But this work of Sri Sankaracharyaji
deserves to be regarded as a new Pariśiṣṭa by itself and it is not
surprising that the sūtras mentioned herein do not appear in the
hitherto known Pariśiṣṭas.

V. S. Agrawala’s verdict that the work of Śrī Śaṅkarācārya deserves to be
regarded as a new Pariśiṣṭa by itself is fallacious. The question is whether
any book written in modern times on a modern subject can be regarded as a
Pariśiṣṭa of a Veda. The answer is definitely in the negative.

From what has been said above it is evident that the sixteen sūtras of
Swamiji’s Vedic Mathematics are his own compositions, and have nothing
to do with the mathematics of the Vedic period. Although there is nothing
Vedic in his book, Swamiji designates his Preface to the book as ‘A Descriptive
Prefactory Note on the Astounding Wonders of Ancient Indian Mathematics’
and at places calls his mathematical processes as Vedic processes.
The deceptive title of Swamiji’s book and the attribution of the sixteen

sūtras to the Pariśiṣṭas of the Atharvaveda, etc., have confused and baffled
the readers who have failed to recognise the real nature of the book, whether
it is Vedic or non-Vedic. Some scholars, in their letters addressed to me,
have sought to know whether the sixteen sūtras stated by Swamiji occurred
anywhere in the Vedas or the Vedic literature.
Even the Rashtriya Veda Vidya Pratishthan, under whose auspices this

Workshop on Vedic Mathematics has been organised, in their circular latter
issued through the Ministry of Human Resource Development, are under the
impression that the sixteen sūtras were actually reconstructed from materials
in the various parts of the Vedas and the sixteen formulae contained in them
were based on an Appendix of the Atharvaveda, which Appendix was not
known to exist before the publication of Swamiji’s book.
Let us now examine briefly the contents of that part of Swamiji’s book

which demonstrates the sixteen sūtras. These are divided into 40 chapters
which run as follows:

Vedic Mathematics: The deceptive title of Swamiji’s book



700 Vedic Mathematics: The deceptive title of Swamiji’s book

Ch. 1 deals with the conversion of vulgar fractions into decimal or recurring
decimal fractions. Here it may be remarked that nobody in the Vedic period
could think of decimal or recurring decimal fractions. The decimal fractions
were first introduced by the Belgian mathematician Simon Stevin in his book
La Disme which was published in ad 1585. The decimal point (.) was used
for the first time by Lemoch of Lemberg. The recurring decimal point (.6 for
.666 . . . ) is the invention of Nicholas Pikes (ad 1788).

Chs. 2 and 3 deal with methods of multiplication and chs. 4 to 6 and 27
with methods of division. All these methods are quite different from the
traditional Hindu methods.

Chs. 7 to 9 deal with factorisation of algebraic expressions, a topic which
was never included in any work on Hindu algebra.

Ch. 10 deals with the H.C.F. of algebraic expressions. This topic also does
not find place in Hindu works on algebra.

Chs. 11 to 14 and 16 deal with the various kinds of simple equations. These
are similar to those occurring in modern works on algebra.

Chs. 1 and 20–21 deal with the various types of simultaneous algebraic equa-
tions. These are also similar to those taught to Intermediate students and
do not occur in ancient Hindu works on algebra.

Ch. 17 deals with quadratic equations; ch. 18 with cubic equations; and
ch. 19 with biquadratic equations.

Ch. 22 deals with successive differentiation, covering the theorems of Leibnitz,
Maclaurin and Taylor, among others; ch. 23 with partial fractions; and ch. 24
with integration by partial fractions. These are all modern topics

Ch. 25 deals with the so called Kaṭapayādi system of expressing numbers
by means of letters of the Sanskrit alphabet. It is called by Swamiji by the
name ‘the Vedic numerical code’ although it has not been used anywhere in
the Vedic literature.

Ch. 26 deals with the recurring decimals; ch. 28 with the so-called auxiliary
fractions; and chs. 29 and 30 with divisibility and the so-called osculators.
These topics too do not find place in the Hindu works on algebra.

Ch. 31 deals with the sum and difference of squares.

Chs. 32 to 36 deal with squaring and cubing, square-root and cube-root.

Ch. 37 deals with Pythagoras Theorem and ch. 38 with Appolonius Theorem.
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Ch. 39 deals with analytical conics, and finally ch. 40 with miscellaneous
methods.

From the contents it is evident that the mathematics dealt with in the book
is far removed from that of the Vedic period. Instead, it is that mathematics
which is taught at present to High School and Intermediate classes. It is
indeed the result of Swamiji’s own experience as a teacher of mathematics in
his early life. Not a single method described is Vedic, but the Swamiji has
declared all the methods and processes explained by him as Vedic and ancient.
Let us now say a few words regarding the mathematics which was known

in the Vedic period, i.e. during the period ranging from c. 2500 bc to c. 500
bc.
Works of this period dealing exclusively with mathematics have not survived

the ravages of time and our knowledge regarding mathematics of this period
is based on the religious works of this period, viz. the Vedic Saṃhitās, the
Brāhmaṇas and the Vedāṅgas. The religious works of the Buddhists and
the Jainas and the Āryabhaṭīya of Āryabhaṭa (ad 499) give some idea of the
development of mathematics from 500 bc to ad 500.
A study of the Vedic works reveals that by 500 bc the Hindus were well-

versed in the use of numbers. They knew all the fundamental operations
of arithmetic, viz. addition, subtraction, multiplication, division, squaring,
cubing, square-root and cube-root. They were also well-versed in the use of
fractional numbers and surds, mensuration and construction of simple geo-
metrical figures, and could solve some algebraic problems also.
In arithmetic, they were masters of numbers and could use large numbers.

They had developed an extremely scientific numeral terminology based on
the scale of 10. In the Yajurveda-saṃhitā (Vājasaneyi, XVII.2) we have the
following list of numeral denominations proceeding in the ratio of 10:

eka (1), daśa (10), śata (100), sahasra (1000), ayuta (10000), niyuta
(105), prayuta (106), arbuda (107), nyarbuda (108), samudra (109),
madhya (1010), anta (1011), and parārdha (1012).

The same list occurs in the Taittirīya-saṃhitā (IV.40.11.4 and VII.2.20.1),
and with some alterations in the Maitrāyaṇī (II.8.14) and Kāṭhaka (XVII.10)
Saṃhitās and other places.

The numbers were classified into even (yugma, literally meaning ‘pair’) and
odd (ayugma, literally meaning ‘not pair’). In two hymns of the Atharvaveda
(XIX.22, 23), there seems to be a reference to the zero, as well as to the
recognition of the negative number. The zero has been called kṣudra (trifling).
The negative number is indicated by the term anṛca, while the positive number
by ṛca.

Vedic Mathematics: The deceptive title of Swamiji’s book
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The Vedic Hindus seem to have been interested in series or progressions of
numbers as well. The following series are found to occur in the Taittirīya-
saṃhitā (VII.2.12.17):

1, 3, 5, . . . , 19, . . . , 29, . . . , 39, . . . , 99;

2, 4, 6, . . . , 20;

4, 8, 12, . . . , 20;

5, 10, 15, . . . , 100;

10, 20, 30, . . . , 100.

The arithmetic series were classified into even (yugma) and odd (ayugma)
series. The following examples of these two categories are given in the Vājasa-
neyi-saṃhitā (XVIII.24, 25):

4, 8, 12, . . . 48;

1, 3, 5, . . . 33.

Of these two series, the second one is found to occur also in the Taittirīya-
saṃhitā (IV.3.10). In the Pañcaviṃśa-brāhmaṇa (XVIII.3) is given a list of
sacrificial gifts which form the following series in geometrical progression:

24, 48, 96, 192, . . . , 49152, 98304, 196608, 393216.

This series occurs also in the Śrauta-sūtras.
Some method for summing a series was also known. In the Śatapatha-

brāhmaṇa (X.5.4.7), the sum of the series

3× (24 + 28 + 32 + . . . to 7 terms)

is stated correctly as 756. And in the Bṛhaddevatā (III.13) the sum of the
series

2 + 3 + 4 + · · ·+ 1000

is stated correctly as 500499.
From the method indicated by Baudhāyana for the enlargement of a square

by successive addition of gnomons, it seems that the following result was
known to him:

1 + 3 + 5 + · · ·+ (2n+ 1) = n+ 1.

From the following results occurring in the Śulba-sūtras we find that the
Vedic Hindus knew how to perform fundamental operations with fractional
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numbers:

7
1

2
÷ 1

25
= 187

1

2
,(

2
1

7

)2

+

(
1

2
+

1

12

)(
1− 1

3

)
= 7

1

2
,

7
1

9
= 2

2

3
,

7
1

2
÷ 1

15
of 1

2
= 225.

In geometry, the Vedic Hindus solved propositions about the construction
of various rectilinear figures, combination, transformation and application of
area, mensuration of areas and volumes, squaring of the circle and vice versa,
and about similar figures. One theorem which was of the greatest importance
to them on account of its various applications was the so-called Pythagoras
Theorem. It has been enunciated by Baudhāyana (800 bc) thus: ‘The diagonal
of a rectangle produces both (area) which its length and breadth produce
separately’ (Baudhāyana-Śulba, 1.48). That is, the square described on the
diagonal of a rectangle has an area equal to the sum of the areas of the squares
described on its two sides.
The converse theorem, viz. ‘If a triangle is such that the square on one

side of it is equal to the sum of the squares on the other two sides, then
the angle contained by these two sides is a right angle’, is not found to have
been expressly stated by any Vedic geometrician. But its truth has been
tacitly assumed by all of them and it has been most freely employed for the
construction of a right angle.
In the course of construction of fire-altars, it was necessary to add together

two or more figures such as squares, rectangles, triangles, etc., or subtract one
of them from another. In the case of combinations of squares, mere application,
repeated when necessary, of the Pythagoras Theorem was sufficient to get the
desired result. But in the case of other figures, they had first to be transformed
into squares before the theorem could be applied and the combined square was
then used to be transformed into any desired shape.
The Vedic Hindus knew elementary treatment of surds. They were aware

of the irrationality of
√
2 and attained a very remarkable degree of accuracy

in calculating its approximate value, viz.
√
2 = 1 +

1

3
+

1

3× 4
− 1

3× 4× 34
, nearly

In terms of decimal fractions this works out to
√
2 = 1.4142156 . . . . According

to modern calculation
√
2 = 1.414213 . . . , so that the Hindu approximation

is correct up to the fifth place of decimals, the sixth place being too large.

Vedic Mathematics: The deceptive title of Swamiji’s book
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There have been many speculations as to how the value of
√
2 was deter-

mined in that early time to such a high degree of approximation. The Kerala
mathematician Nīlakaṇṭha (ad 1500) was of the opinion that Baudhāyana
assumed each side of a square to consist of 12 units. Thus the square of its
diagonal was equal to 2× 122. Now

2× 122 = 288 = 289− 1 = 172 − 1.

Therefore,
12
√
2 =

√
172 − 1 = 17− 2

2× 17
, nearly.

Hence √
2 = 1 +

1

3
+

1

3× 4
− 1

3× 4× 34
, nearly.

The same hypothesis has been suggested by G. Thibaut (Śulba-sūtras, pp.
13ff). Several other methods have been given by B. Datta and others.

Another similar result is
√
3 = 1 +

2

3
+

1

3× 5
− 1

3× 5× 52
, nearly,

whose derivation, as suggested by Nīlakaṇṭha, is as follows:
√
3 =

1

15

√
3× 152,

=
1

15

√
262 − 1,

=
1

15

(
26− 1

2× 26

)
, nearly,

= 1 +
2

3
+

1

3× 5
− 1

3× 5× 52
, nearly.



A note on the Rājamṛgāṅka of Bhoja
published by the Adyar Library ∗

K. Madhava Krishna Kumar Śarma of the Adyar Library published (1940)
the “reconstructed” Sanskrit text of a calendrical work of Indian astronomy
under the title: the Rājamṛgāṅka of Bhoja. The published text comprises
two chapters: (1) Madhyamādhikāra, dealing with the mean motion of the
planets in 34 stanzas, and (2) Spaṣṭādhikāra, dealing with the true motion
of the planets in 52 stanzas. There are two additional stanzas bearing the
name of the astronomer Rāma appended after the second chapter which for
obvious reason do not form part of the text. The text is followed by three
astronomical tables.
There is no chapter dealing with eclipses and the heliacal rising of the

planets, etc., and the book ends rather abruptly. The last stanza of the Rāja-
mṛgāṅka, viz.,

इ ुव प तवृ व त -
पद ेन स ु ना ।
ीभोजेन कृतं मृगा  -

करणं ो त वद ीतये ॥
which Dīkṣita quoted from a manuscript of that work consulted by him does
not occur in Śarma’s edition.1 Three and a half other stanzas quoted by
Dīkṣita from the same work do occur in his edition but there is remarkable
difference of reading as can be seen by comparison:2

Dīkṣita’s version Śarma’s version

न ा ी संयु ा न ा संयु ा
भजे ा ा भानु भः । भजे ा ा भानु भः ।
शाका ान वन ं तु शका ानव श य -
भाजका ेषमु ृजे ॥१७॥ भाजका मु ृजे ॥१६॥

तयोर ं श ा ं तयोर ं गु णतं
बीजं ल ा दकं पृथ । दशभ ं व ल काः ।

* K. S. Shukla, Gaṇita, Vol. 5, No. 2 (1954), pp. 149–151.
1See Dīkṣita, S. B., Bhāratīya Jyotiṣaśāstra, Second edition (1931), p. 238.
2The difference in the numbering of the verses is also notable.
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Dīkṣita’s version Śarma’s version

भः शरैभुवा ैः भः शरैभुवा ैः
बाणै थ भर भः ॥१८॥ बाणै थ भर भः ॥१७॥

केन यमलेनैवं ा यमा गु णतं
गु मक दषु मा । बीजा क दषु मा ।

ं शी े धरासूनौ ं शी े धरासूनौ
सूयपु ऽेपरे ृण ॥१९॥ म े पाते परे ृण ॥१८॥

शकः प ा वेदोनः शका ृ ता वेदोना
ष भ ोऽयन शकाः ॥२५॥ ष ा ा अयन शकाः ॥२४॥

Āmarāja, son of Mahādeva, who lived at Ānandapura about 150 years after
Bhoja, in his commentary on the Khaṇḍakhādyaka3 of Brahmagupta, quotes
the following four passages from the Rājamṛgāṅka but none of them occurs in
Śarma’s edition:

1. धनणगैः सह शोः फला ोदयासु भः ।
हता ा शकला ासुफलैः ुः सूयव हाः ॥

2. भम फलोपेतं पदमा ं तीयक ।
च ाध ं फलं नवभा ं तृतीयक ॥
तत तुथ च ा ं पदा न तम ले ॥

3. म मयोरै ं द लतं म सं क ।
म युतेरध ाय म फलं हे ॥
ीकरणयो े च त ा फलं ततः ।

त ैव ेवमसकृदवशेषा ु ट हाः ॥
4. ब ाधन समं य या ा भवं धनुः ।

त दन ेऽक या छाया वषुव साै ॥
The above-mentioned discrepancies in Śarma’s edition create strong suspi-

cion regarding its authenticity. There is reason to suspect that it is not the
original and full text of the Rājamṛgāṅka but an abridged edition of that work
by some later writer as is indicated by the second stanza of the first chapter
wherein the author says:

We give out the essence of the Rājamṛgāṅka for the computation
of the planets.4

3This commentary was edited by Babua Misra and published by the Calcutta University
in 1925.

4 ूमो राजमृगा सारं स ै सु ना ।



Review of Rājamṛgāṅka of Bhojarāja ∗

The Rājamṛgāṅka ascribed to the Paramāra king Bhoja of Dhar is the earli-
est karaṇa (“hand-book of astronomy”) based on the teachings of the Brāhma-
sphuṭasiddhānta of Brahmagupta. It also incorporates at places teachings of
the Sūryasiddhānta, the Romakasiddhānta, the Khaṇḍakhādyaka of Brahma-
gupta, the Śiṣyadhīvṛddhida of Lalla, the Laghumānasa of Mañjula, and other
earlier works.
K. Madhava Krishna Sarma had earlier edited this work on the basis of

the Adyar Library manuscript (shelf no. 8. D. 42). It contained 2 chapters
only and was regarded as incomplete as 4 passages quoted from this work by
Āmarāja in his commentary on the Khaṇḍakhādyaka were not found to occur
in it.
David Pingree has now brought out a new edition giving the full text of this

work on the basis of two manuscripts designated as F and G by him, the former
acquired from the Bhandarkar Oriental Institute, Poona, and the latter from
the Rajasthan Oriental Research Institute, Jodhpur. It contains 8 chapters
dealing with mean motion, true motion, the three problems, rising and setting,
elevation of Moon’s horns, lunar eclipse, solar eclipse, and conjunction of
planets.
Chapter 1 begins with the benediction ी गणेशाय नमः which really does not

come from the pen of Bhojarāja and should have been given in the appara-
tus. The editor has missed to see that vs. 6c is out of place (being a scribal
repetition of vs. 9c). The correct version of vs. 6cd should have been

र ववारा दकः स ा ल ाम ायमाेदया as in mss. A, C, D,

or

भवेदक दः स ा ो ल ाय तपनोदये as in ms. D.

He has also missed to note that in framing the Ahargaṇa rule, 2 has been
added to the Caitrādi ahargaṇa, so the epoch of the work is not sunrise of
Tuesday, February 23, ad 1042 as stated by him in his introduction to the
work, but 2 days earlier i.e., sunrise of Sunday, February 21, ad 1042 as
stated by S. B. Dikshit in his Bhāratīya Jyotiṣaśāstra. Sunday sunrise has
* K. S. Shukla, Gaṇita Bhāratī, Vol. 14, Nos. 1–4 (1992), pp. 91–93 (The text Rā-
jamṛgāṅka was edited by David Pingree; Aligarh Oriental Series, No. 7, Viveka Pub-
lications, Aligarh, 1987. Pages, 70).
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been clearly mentioned in the manuscripts. It is surprising that Prof. Pingree
has missed to see it. There is also an error in vs. 15 where शाका ादव श ं is
printed in place of शाका ानव श ं.
Vs. 7 of chap. 1 is based on a table but the table is missing. Vss. 7–8, 17–

18, 20–21, 28–30, and 32–33 of chap. 2, as well as vss. 35 and 45–46 of chap. 3
too are based on tables but these tables are also missing. These tables did
occur in mss. B, H, and I but have been omitted by the editor. This has
rendered the text incomplete and obscure at those places.
In vs. 12 of chap. 3, दनपाताेनं should be read as दनयातोनं. In vs. 5 of chap. 4,

सा यम े त should be read as साऽपम े त. In vs. 61 of chap. 4, प े त should
be read as वय े त as in Romakasiddhānta (ix. 16); similarly वशाखा म॰ in
vs. 63 should be read as वशाखा भ॰ and प मे in vs. 64 as प मा.

Vs. 6 of chap. 3 has not been edited carefully. Two rules are stated there,
not one as supposed by the editor. Thus, instead of

त ा े घुदलाक े न े भा ु तः ॥
there should be

त ा े घुदलेऽक े न े भा ुती ॥
In vs. 60ab of chap. 4, ऽभी धीव सं ता conveys no meaning. This hemistich

should really be read as follows:

अप व नकटे भेऽ धाव सं ता ।
as in ms. G. अ धाव सं ता means अ ाव सं ता. It may be mentioned that
Aṣṭāvakra is the name of a well known Indian sage (ṛṣi).

Variations in mss. designated as A, B, C, D, and E, each containing 2
chapters only, have been given in the Appendix, the manuscript used by Sarma
being designated as D. Tables contained in mss. B, H, and I have been briefly
described (not given in full) towards the end of the work.
The whole editing is based on collation and not much care has been taken

to rectify the text and make it free from errors.
The four passages quoted by Āmarāja which did not occur in Sarma’s edi-

tion do not occur in Prof. Pingree’s edition also, although similarity is noted
in one case. Manuscripts of this work existing in the libraries at Ahmedabad,
Baroda (343), Jaipur, Jesalmere, Poona, and Udayapur have not been con-
sulted. They might give some clue regarding the missing verses and reveal
something new.
Prof. Pingree must be congratulated for bringing out the present edition

for the benefit of scholars working in the field of Indian mathematics and
astronomy.



Review of Karaṇaratna of Devācārya ∗

The present work is a very welcome addition to the series of works by which
Prof. Shukla has sought to expand the available literature of Sanskrit astron-
omy. He has previously given scholars the work of Bhāskara, I, including his
commentary on the Āryabhaṭīya, and also an edition of the Sūryasiddhānta.
The present text is that of a short karaṇa, that is, handy set of astronom-
ical formulae, in which the mean longitudes are referred to some epoch set
around the time of composition, and expressed in terms of ordinary calendri-
cal quantities, the Śaka year, tithis of current month, etc. The Karaṇaratna
is known uniquely from a MS transcribed in ad 1097, from a palm leaf MS
in Malayalam character. The date of composition would appear to be ca. ad
689, that at least being the epoch of the formulae. He also argues from vari-
ous circumstances that the author, who is not known from any other source,
was a southerner. Another work, which deals only with “Mahāpāta in the
Karaṇaratna”, is reproduced here also from two MSS in the Government Ori-
ental Library, Mysore. This is an eclectic collection of verses, many of them
decidedly later than ad 689, and which occasionally contradict the main work.
Apart from the name given to it, it seems to have no connection at all with
the karaṇa.
Prof. Shukla provides a full translation, together with an analysis of many

of the technical details. Here and there I have had to disagree with some
of the analysis, as I explain below. Shukla’s explanation of basic technical
notions is much less helpful than one would like, so that anyone unversed in
the use of the calendrical terms, avama, avamaśeṣa, and the like, for example,
will have to turn elsewhere.

The long introduction draws attention to all the unusual and important
features, including: the calculation of solar and lunar longitudes in terms of
the omitted lunar days (avama); the occurrence of three systems of corrections
to the mean longitudes; the incorporation of a model of precession known
hitherto from Āmarāja; a particularly detailed treatment of eclipses.
The opening verses provide the rules for determining the ahargaṇa and the

mean longitudes of Sun, Moon, and planets. The epoch of the karaṇa is
* Raymond P. Mercier, Gaṇita Bhāratī, Vol. 4, Nos. 3–4 (1982), pp. 141–146 (The text
Karaṇaratna was critically edited and translated into English with explanatory and crit-
ical notes and comments, etc., by Kripa Shankar Shukla, and got published as Hindu
Astronomical and Mathematical Texts Series No. 5, Department of Mathematics and
Astronomy, Lucknow University, 1979. Pages xii + 126).
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Table 1

Āryabhaṭīya Karaṇaratna verse

Sun 335; 57, 7 336; 2, 18 i, 9–10, 15
(335; 58, 36) emended

Moon 347; 7, 34 347; 12, 4 i, 11
(347; 8, 22) emended

apogee 203; 6, 59 203; 1, 5 i, 12, 14–15
node 276; 34, 52 276; 34, 20 i, 13, 14–15
Mars 0; 47, 40 0; 47, 10 vii, 2
Mercury 48; 58, 2 48; 57, 14 vii, 3
Jupiter 192; 3, 9 192; 3, 0 vii, 4
Venus 265; 7, 7 265; 6, 38 vii, 5
Saturn 208; 58, 51 208; 58, 48 vii, 6

Sunrise 1st Caitra Śaka 511, separated by 1384306 days from the Kaliyuga;
the Latin date is ad 689 Feb 26 (Julian date 1972772). This precise date is
clearly established by Shukla in his commentary to i, 5–8. This epoch can
hardly have been chosen for astronomical reasons. It may be contrasted, for
example, with the epoch ad 638 March 21 of an earlier karaṇa known from
calendrical usage in South East Asia. There was a total solar eclipse visible
in central India on that date, very near to the time of the Spring Equinox.

This epoch is situated a fraction of a day later than the moment of the mean
new Moon; the interval, called avamaśeṣa, is 644

692 tithis, or 644
703 days. Since the

formulae of the karaṇa for the mean Sun, Moon, lunar apogee, lunar node,
are given in terms of the lunar date, this value 644 of the avamaśeṣa must be
used when determining those mean values at the epoch from these formulae.
This point has been overlooked by Shukla, who is led consequently to propose
a number of unnecessary emendations to the constant terms in the formulae.

The mean longitudes are intended to follow the Āryabhaṭīya, as indicated
in i, 2, and one can see from Table 1 that this is achieved, at the time of the
epoch, within one minute of arc in most cases.

In calculating from the karaṇa I have included none of the emendations
which Shukla proposes, but have changed his reading in the case of the node,
as noted below.
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Notes on the formulae

Sun

There is certainly a need for some emendation of the parameter 699, which is
given in i, 10a as navanandarasa. This parameter is used in the expression

(ahargaṇa − avama)
(
1 +

1

699

)
which contributes to the degrees of the mean Sun. The value strictly implied
by the Āryabhaṭīya is 656.56 . . . , a point quite overlooked by Shukla. If 699
were replaced by 657 (with no other change), the mean Sun and Moon at
epoch would be closer to the calculated values, as seen in the above table.

Moon’s apogee

The text of i, 12,

28 yuta naṣṭadinaṃ 7-guṇamātma 968-aṃśayutam bhāgās taccandrocce
. . .

should be rendered

to the avama days add 28, multiply by 7, increase the result by
1

968 , to obtain the degrees of the Moon’s apogee, . . .

The complete formula is then

apogee = (avama + 28)

(
7 +

7

968

)
+ 0; 24 +

[
1

99
− 1

(120× 60)

]
avamaśeṣa.

At epoch, when avama = 0, avamaśeṣa = 644, this gives 203; 1, 5.
Shukla’s rendering, which may be expressed as(

7 +
7

968

)
avama + 28 + . . .

is taken by him to agree with the Āryabhaṭīya, but he has made a large error
in calculating from the latter: at the top of p. 11, 67580434614 should be
675844491014.

Moon’s node

Shukla’s calculation from the Āryabhaṭīya has two errors; for 13484806 read
1384306, for 193 read 205. He has, as in all the previous formulae, omitted to
take the avamaśeṣa at epoch as 644, and so wrongly proposes to emend the
19 minutes of the formula (i, 13b) to 193.

Review of Karaṇaratna of Devācārya
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When we come to the equations of Sun, Moon, and planets, we find that
the Āryabhaṭīya has been followed quite strictly as regards the dimensions of
the epicycles, but that two small differences are to be noted as regards the
scheme of calculation. Firstly, the lunar equation is reduced by 1

27 times the
solar equation, a curious correction which is found also in the Khaṇḍakhādyaka.
Secondly, the four–fold procedure in the calculation of the planetary equations
is the same here for both the inner and outer planets, the same indeed as that
used by the Āryabhaṭīya for the outer planets; in the case of the inner planets,
the Āryabhaṭīya uses a shorter three–fold procedure.
It is interesting that the declination, ascension, and lunar latitude are given

for 10◦ steps of the longitude. In the Āryabhaṭīya these functions are given
for steps of 30◦, but according to Bhāskara II (in his commentary to his
Grahagaṇita, Spaṣṭādhikāra, v. 65), Āryabhaṭa calculated ascensions in steps
of 10◦. Bhāskara’s remark has been wrongly understood to refer to the author
of the Mahāsiddhānta, a work which we know now to be of the fifteenth century
([1], p. 161).† The attribution in this karaṇa therefore supports the view that
Āryabhaṭa had, in some work now lost, calculated ascensions in steps of 10◦.

The verses i, 16–21 describe three different systems of corrections to the
mean longitudes of the Āryabhaṭīya. Two of these are already known, and have
been studied by Billard ([1], p. 136 seq.) who has applied his delicate method
of analysis to them. Their presence here may raise some problem of dating
the karaṇa, or more reasonably, shows that it is composite in character, for
Billard has shown that these systems could not be earlier than about ad 800.
The first system (i, 16–8), which Shukla calls śakābda, gives a system known
from the Grahacāranibandhana-saṃgraha (anon., 9th century), verses 17–22,
and from a number of later sources. In fact these verses contain two systems,
which Billard denotes A (v. 19–22) and B (v. 17–8), and in the karaṇa we
have the lunar corrections from A, and the planetary corrections from B.
The system was designed with great skill in such a way as to be accurate
over the period ad 500–900, approximately; its construction is certainly to be
dated towards the end of the ninth century. The second system (i, 19) which
Shukla calls kalpa (following a reference to it by Parameśvara) is hitherto
unknown. It involves, in practical terms, the addition of certain constants
to the mean motions. For the mean Moon, for example, one subtracts 13

8064

degrees per yuga elapsed from the beginning of the kalpa; this amounts to
27.75× 13

8064 ≈ 0.74 degrees at the Kaliyuga. I have examined the deviations,
according to Billard’s method, and do not find that they point cogently to any
well defined date of observation. It may be that some of this text is corrupt.
The third system (i, 20–1), which Shukla calls manuyuga, is known already

† Otherwise Mahāsiddhānta (of Āryabhaṭa II) is usually assigned the date circa 950 ad.
—Editor (RCG)
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from the commentary on the Laghubhāskarīya by Śaṅkaranārāyaṇa (ad 869).
It is applied like the kalpa correction, amounting in practical terms to the
addition of certain constants, Billard’s analysis points clearly to a composite
character, with an eventual completion ca. ad 820.
In i, 36 there is given a model of accession and recession which is of consid-

erable interest. The argument of this motion is

A =
360t

7380

where the time t is measured in years from Kaliyuga. The difficulty is that of
deciding whether to take the ayanāṃśa as

−arcsin (sin 24 sinA)

as Shukla wishes, or as

−24

90
bhuja (A) = −24

90
arcsin (sinA).

The difficult text is

tadoh (ed. sic) krāntijaliptikā ṛṇadhanaṃ syād

which must be compared with two other closely similar accounts. Āmarāja
gives, as Shukla notes, in his commentary to the Khaṇḍakhādyaka iii, 11, the
very same model, but without any reference to the sine function,

3179 yuk śākāt 7380 hṛtāt bhagaṇādeḥ krāntibhāgā ṛṇasvaṃ saumya-
dakṣiṇāḥ.

This is no longer, at least explicitly, a model of accession and recession, but
simply a model of uniformly increasing precession, but at the same rate. Here
krāntibhāgā can only mean ‘divided by 24’, with krānti being used as a word
numeral.
In the Mahāsiddhānta (i, 11 and iii, 13) there is defined a model of accession

and recession very nearly identical to this, but now expressed by a rather
corrupt text,

ayanagrahadoḥ krāntijyācāpaṃ kendravaddhanarṇa syāt

which might be thought to descend from the text of our karaṇa.
The rate of motion is 46.83 seconds per annum, or 46.25 according to the

Mahāsiddhānta. This rate occurs in two other sources. In Bhāskara’s com-
mentary to the Āryabhaṭīya, which has been edited also by Shukla in 1976, we
are told that according to the Romaka school, there was a model of accession
and recession which may be expressed as

bhuja (A)

Review of Karaṇaratna of Devācārya
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where A increased at the rate 180× 137
1894110 degrees per annum, that is 46.87

seconds p.a. Here unfortunately the zero point is not given. Further, as I have
noted elsewhere [3], the comparison of the sidereal and tropical motions of the
Sun in the Babylonian system A yields a rate of precession equal to 46.875
seconds p.a. It is certainly hard to avoid the conclusion that this well defined
Indian usage, associated with the Romaka school, is historically related to
much older material.
The relation to Hellenistic astronomy appears in another way, for this model

given by Devācārya and Āmarāja, and indeed also the rather different one
given in the later Sūryasiddhānta (iii, 9–12), both agree at the time of Hip-
parchus (ca. ad 126), when the ayanāṃśa ≑ −9; 20. These models of pre-
cession therefore, as I have discussed at length elsewhere [2], are intended to
relate tropical longitudes of the time of Hipparchus to the sidereal longitudes
measured from the head of Revatī.
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A note on Raymond P. Mercier’s review of
“Karaṇaratna of Devācārya”∗

Certain views expressed by Mercier have been discussed in this short note:

1 Curious lunar correction

Early Hindu astronomers have applied four corrections to mean longitude for
mean sunrise at Laṅkā to get true longitude for true sunrise at the local place:

i Deśāntara (“Correction for local longitude”)

ii Bhujāphala (“Equation of the centre”)

iii Bhujāntara (“Correction for Sun’s Bhujāphala”)

iv Cara (“Correction for Sun’s ascensional difference”)

In the opinion of Mercier the Bhujāntara correction in the case of the Moon,
stated in Karaṇaratna, i. 26, is a curious correction. As stated above this
correction is a usual one and has been applied to the longitude of a planet
(including the Sun and Moon) by all Hindu astronomers. Karaṇaratna, like
Khaṇḍakhādyaka, states it in its abridged form but it is stated in general form
in all Hindu siddhāntas including Sūryasiddhānta. Commenting on the rule
of Sūryasiddhānta (ii, 46), Rev. E. Burgess remarks:

By this rule, allowance is made for that part of the equation of
time, or of the difference between mean and apparent solar time,
which is due to the difference between the Sun’s mean and true
places.

It is not understandable what prompted Mercier to call it a “curious” correc-
tion.

2 Āryabhaṭa II’s date

Bhāskara II has referred to Āryabhaṭa in connection with the ascensions of
the “decans” (i.e., 10◦ steps of longitude). Since these ascensions of the de-
cans exist in the Mahāsiddhānta (iv. 40–41) of Āryabhaṭa II, it was inferred
* K. S. Shukla, Gaṇita-Bhāratī, Vol. 6, Nos. 1–4 (1984), pp. 25–28.
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by S. B. Dikshit, S. Dvivedi and others that Āryabhaṭa II was anterior to
Bhāskara II (1150 ad) and his date was tentatively fixed at 950 ad. David
Pingree, too, on the same ground, has put him between 950 ad and 1150
ad. Mercier does not agree with all this. He asserts that Bhāskara II in that
passage refers to Āryabhaṭa I and not to Āryabhaṭa II and in support of this
view he says that Devācārya, the author of Karaṇaratna, who is a follower
of Āryabhaṭa I, states the ascensions for 10◦ steps of longitude; but where,
he does not say. Mercier’s assertion that Devācārya states ascensions for 10◦
steps of longitude is wrong. Actually Devācārya, like Āryabhaṭa I, gives ascen-
sions for 30◦ steps of longitude. See Karaṇaratna, iv. 6. Mercier’s conclusion
is therefore untenable.

3 Śakābda, Manuyuga, and Kalpa corrections

These three corrections were devised and used by the astronomers of Kerala
Pradesh in South India. According to K. V. Sarma, an authority on Kerala
astronomy, the Śakābda correction was devised by Haridatta who introduced
the Parahita system of astronomy in Kerala in 683 ad. This is affirmed by
the Malayalam and Sanskrit works on astronomy written in Kerala. This
correction, says Mercier, was designed with great skill in such a way as to
be accurate over the period ad 500–900. If it is so, how does it follow, as
asserted by Mercier, that “its construction is certainly to be dated towards the
end of the ninth century”? The Manuyuga correction occurs in Karaṇaratna
and in Śaṅkaranārāyaṇa’s commentary (869 ad) on the Laghubhāskarīya of
Bhāskara I. Regarding the origin of this correction, Śaṅkaranārāyaṇa remarks:

Another madhyama-saṃskāra (viz. Manuyuga correction) too was
devised by Āryabhaṭa himself—this is what some (scholars) say.

It means that this correction was old and Śaṅkaranārāyaṇa was unaware of
its origin. It it were devised in 820 ad as Mercier seems to think, this fact
must have been known to Śaṅkaranārāyaṇa or at least to his teacher Govinda
who lived about that time. This date is contradicted also by its occurrence in
Karaṇaratna. The Kalpa correction has been stated in Karaṇaratna alone. It
does not occur in any other work. The Manuyuga and Kalpa corrections are
indeed old, certainly older than Devācārya. They do not seem to have gained
any popularity, and were never used after the ninth century ad.

4 Ayanacalana or movement of the solstices or
equinoxes

As regards the ayanacalana the Hindu astronomers are divided. Some follow
the theory of oscillatory motion, while others the theory of progressive back-
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ward motion. Devācārya is a follower of the theory of oscillatory motion and
takes 24◦ as the amplitude of oscillation. According to Sūryasiddhānta (iii. 9–
10), which follows the same theory, the amplitude of oscillation is 27◦. But,
unlike Sūryasiddhānta which gives the amount of ayanacalana in the form

3

10
(bhuja A) (1)

Karaṇaratna gives it in the form

arc (sin 24◦ sin bhuja A), (2)

where A is the longitude of an imaginary body called the Ayanagraha.
There is no doubt that Karaṇaratna states it in the form (2). For the

Sanskrit text “taddoḥkrāntijaliptikāḥ” undoubtedly means “The minutes cor-
responding to the declination derived from the bhuja of those (degrees of the
longitude of the Ayanagraha).” Evidently the author of Karaṇaratna has used
the proportion

R sin 90◦ : R sin 24◦ :: R sin(bhuja A) : R sin(ayanacalana)

instead of the proportion

90◦ : 24◦ :: bhuja A : ayanacalana

used by Sūryasiddhānta.
The theory of oscillation is indeed incorrect but sometimes it gives a fairly

good rate of ayanacalana. According to Sūryasiddhānta, for example, it is 54′′
per annum.
Mercier’s suggestion that the word “krāntibhāgāḥ” in the verse quoted by

Āmarāja can only mean “divided by 24”, besides being irrelevant to the con-
text, is against the interpretation of Āmarāja who explains the verse as follows:

Add 3179 to the (current) Śaka year and then divide by 7380: the
result in involutions etc. is (the longitude of) the Ayanagraha. The
degrees in the arc of the declination derived from that (longitude)
are called the degrees of ayanāṃśa.

Exactly similar rule has been given by Āryabhaṭa II in his Mahāsiddhānta
(iii. 13). Sudhākara Dvivedi and S. R. Sharma who have explained and trans-
lated Mahāsiddhānta did not see any flaw in the text giving that rule and have
interpreted it as it should be. But to Mercier that text seems to be corrupt,
because it does not state the ayanacalana in the form stated in Sūryasiddhānta.
The fact is that both forms (1) and (2) are found to occur in Hindu works.
It is, however, true that both forms are based on wrong hypotheses. Apart
from that, the rule quoted by Āmarāja and that stated in Mahāsiddhānta give
rather low rates of ayanacalana.
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5 Sun’s longitude

The formula for the Sun’s longitude stated in Karaṇaratna as pointed out by
Mercier is indeed gross. The Sanskrit text was however correct and there was
no reason to alter it. So it was kept as found in the manuscript. Likewise
keeping the divisor 699 intact and following the rationale intended by the
author of Karaṇaratna the Sun’s longitude was derived in the form

(A− 24− avama days) degrees

+
(A− 33− avama days− avamaśeṣa)

699
degrees+ avamaśeṣa

2730 mins. (3)

denoting the omitted days corresponding to ahargaṇa A by

avama days+ avamaśeṣa
703

. (4)

There was no need of the avamaśeṣa for the epoch, although it could be
introduced by adding to (4) the expression

avamaśeṣa for epoch− 644

703

(equivalent to zero).
Mercier has suggested that the correct expression for the Sun’s longitude

should be

(A− 23− avama days) degrees

+
(A− 32− avama days− avamaśeṣa)

657
degrees+ avamaśeṣa

1960 mins. . (5)

There can be no objection to this because the divisor 657 is certainly better
than 699, but it must be noted that the number 1960 does not agree with 657.
Moreover, if form (5) is taken the Sun’s longitude at epoch comes out to be
equal to 11 signs 5◦58′36′′ (as calculated by Mercier himself) which exceeds
the value obtained from Āryabhaṭa I’s constants by 1′29′′. If however, form
(3) is taken, the Sun’s longitude at epoch comes out to be (−24 33

999 ) degrees or
(−24◦2′50′′) or 11 signs 5◦57′10′′ which is only 3′′ in excess over that obtained
from Āryabhaṭa I’s constants.
Thanks are indeed due to Mercier for pointing out numerical errors in the

case of Moon’s apogee and ascending node.



The yuga of the Yavanajātaka: David
Pingree’s text and translation reviewed ∗

Introduction

The Yavanajātaka written by Sphujidhvaja Yavaneśvara in the third century
ad was edited and translated into English by Prof. David Pingree in 1978.
The last chapter (Ch. 79) of this work is called Horāvidhi and deals with
luni-solar astronomy on the basis of a period of 165 years called yuga and
the synodic motion of the planets. The text is marred by faulty editing, the
incorrect readings being adopted and the correct ones given in the apparatus
criticus, with the result that the translation is incorrect at places and the
meaning really intended by the author is lost.
The object of the present paper is to study this chapter so as to bring out

the meaning really intended by the author. The paper will be confined to the
study of the yuga of the Yavanajātaka and its various constituents. In the
process the relevant passages and their translation as given by Prof. Pingree
will be reviewed and modified.

1 Time-measures

Verses 28–29 of Ch. 79 of the Yavanajātaka give a table of time-measures.
Pingree’s text and translation run thus:

यः पलाः ुः कुडवाेऽ म
त ा डका ं व रेकष ।
ताः ष ल ा प च ना डका ा
भव ष ु नशा मेण ॥२८॥
कला नमेषा शता दशाेना
व ः कला ंश [च] ना डका तु ।
ना डक ु थताे मु ता

मान माणा द व ध स ाै ॥२९॥
trayaḥ palāḥ syuḥ kuḍavo’ṣṭamaśca
tannāḍikākhyaṃ vidurekaṣaṣṭim |

* K. S. Shukla, Indian Journal of History of Science, Vol. 24, No. 4 (1989), pp. 211–223.
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tāḥ ṣaṣṭiliptāpi ca nāḍikākhyā
bhavanti ṣaṣṭirdyuniśā krameṇa ||28||
kalā nimeṣāṣṭaśatā daśonā
viduḥ kalāstriṃśa |ca| nāḍikā tu |
dvināḍikastu prathito muhūrto
mānapramāṇādividhiprasiddhau ||29||

A kuḍava is 3 1
8 palas, and 61 kuḍavas equal 1 nāḍikā. The nāḍikās

are also each divided into 60 liptās (“minutes”); there are 60
nāḍikās in a nychthemeron. One kalā equals 790 (?) nimeṣas, one
nāḍikā 30 kalās, and one muhūrta 2 nāḍikās in the accomplishment
of the rules relating to measures and standards.

Remarks

(1) We find that according to this translation one nāḍikā is equal to 30 kalās,
whereas in the formulation of the rules stated in vss. 11, 12, and 13 one
muhūrta (“a period of 2 nāḍikās”) is taken equal to 20 kalās, and in verse 31
also one kalā has been used in the sense of 1

10 of a nāḍikā or 1
20 of a muhūrta.

This discrepancy is due to adoption of the incorrect reading “kalāstriṃśa |ca|”
(in vs. 29b) in place of the correct reading “kalāstā daśa” which has been
given in the apparatus criticus. Restoring the correct reading in place of the
incorrect one, we find that the text gives the following table:

3 1
8 palas = 1 kuḍava

61 kuḍavas = 1 nāḍikā
60 liptās = 1 nāḍikā
60 nāḍikās = 1 nychthemeron
790 nimeṣas = 1 kalā
10 kalās = 1 nāḍikā
2 nāḍikās = 1 muhūrta (or kṣaṇa).

Likewise

20 kalās = 1 muhūrta
30 muhūrtas = 1 nychthemeron.

It is these two relations that have been used in verses 11, 12, and 13. The
same relations were given by Suśruta1 and Parāśara.2

1See Suśruta-saṃhitā; Sutrasthāna, ch. vi. 4.
2See Bṛhat-saṃhitā with Bhattotpala’s commentary, Sudhakara Dvivedi’s edition, p. 24,
lines 3–5.
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(2) It is noteworthy that according to the Vedāṅga-jyautiṣa3 too,

3
1

8
palas = 1 kuḍava,

and 61 kuḍavas = 1 nāḍikā.

But there
1 nāḍikā = 10

1

20
kalās.

It seems that Sphujidhvaja Yavaneśvara has taken

1 nāḍikā = 10 kalās

to avoid fractions, or he has followed Suśruta or Parāśara.

2 Tithis in the yuga

Verse 6 gives the number of tithis in the yuga (“a period of 165 years”). Pin-
gree’s text and translation run thus:

मेण च ः यवृ ल -
थ तुम न वधानबीजः ।

ष का े शते सह ं
तेष युगे ब युुता न ष च ॥६॥
krameṇa candraḥ kṣayavṛddhilakṣya-
stithiścaturmānavidhānabījaḥ |
ṣaṭpañcakāgre dviśate sahasraṃ
teṣāṃ yuge binduyutāni ṣat ca ||6||
The Moon is to be characterised by waning and waxing in order.
The tithi possesses the seed of the principles of the four (systems
of time-) measurement. There are 60,265 (days) in a yuga.

Remarks

The last sentence of this translation is wrong. The number 60,265 as well
as its designation as “days” both are incorrect. The word ṣaṭpañcaka means
6 × 5 i.e. 30, not 65; and the word “teṣāṃ” refers to tithis, not to civil days.
Moreover, the number of civil days in a yuga is 60,272, not 60,265. See below.
The second half of the text really gives the number of tithis in the yuga,

not the number of civil days in the yuga as supposed by Pingree. The error
is due to faulty editing of the text. The adoption of the incorrect readings
“◦kāgre dviśate” and “bindu” in place of the correct readings “◦kāgrā dviśatī ”

3See Yājuṣa-jyautiṣa, vs. 24.
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and “viddhya”, respectively has spoiled the text. It is noteworthy that the
correct readings are given in the apparatus.
The correct reading of the text is:

मेण च यवृ ल -
थ तुम न वधानबीजः ।

ष का ा शती सह ं
तेष युगे व युता न ष च ॥६॥
krameṇa candrakṣayavṛddhilaksya-
stithiścaturmānavidhānabījaḥ |
ṣaṭpañcakāgrā dviśatī sahasraṃ
teṣāṃ yuge viddhyayutāni ṣaṭ ca ||6||
The tithi, which is the indicator of the gradual waning or waxing
of the Moon, is the seed of the principles of the four (systems of
time-) measurement. Know that there are 60000 plus 1000 plus
200 and 6× 5 (i.e. 61,230) of them (in a yuga).

That is,
one yuga = 61230 tithis,

or 2041 synodic months, as stated in vss. 9 and 20 c–d.

3 Civil days in the yuga

Verse 7 gives the number of civil days in the yuga. Pingree’s text and trans-
lation run thus:

ंश ु त दनरा मु ं
सूयादया कालबुधा दा ः ।
तेष शते े शदकेका े
ष खायुता कयुगं वद ॥७॥
triṃśanmuhūrtam dinarātramuktaṃ
sūryodayāt kālabudhāstadāhuḥ |
teṣām śate dve triśadekakāgre
ṣaṭ khāyutānyarkayugaṃ vadanti ||7||
A nychthemeron is said to consist of 30 muhūrtas; experts on time
say that it beings with sunrise. They say that a yuga of the Sun
consists of 61,230 (tithis).

Remarks

The second sentence of this translation, though mathematically correct, is not
the correct translation of the second half of the text. The number 61330 and
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its designation as “tithis” both are wrong. The word “triśat” means 300, not
30; and it is difficult to interpret “ekakāgre ṣaṭ khāyutani” as meaning 61000.
Also, the word “teṣāṃ” refers to nychthemera or civil days, not to tithis.

The second half of the verse really gives the number of civil days in a yuga,
not the number of tithis in a yuga as supposed by Pingree. The error is
due to the faulty editing of the text. The adoption of the incorrect readings
“triśadekakāgre” and “ṣaṭ khā◦” in place of the correct readings “trikṛdaṣṭakā-
gre” and “ṣaṭkā◦” respectively has marred the text. It is noteworthy that the
correct readings are given in the apparatus.
The correct reading of the text is:

ंश ु त दनरा मु ं
सूयादया कालबुधा दा ः ।
तेष शते े कृद का े
ष ायुता कयुगं वद ॥७॥
triṃśanmuhūrtaṃ dinarātramuktaṃ
sūryodayāt kālabudhāstadāhuḥ |
teṣāṃ śate dve trikṛdaṣṭakāgre
ṣaṭkāyutānyarkayugaṃ vadanti ||7||

A nychthemeron (civil day) is said to consist of 30 muhūrtas; ex-
perts on time say that it begins with sunrise. They say that a
yuga of the Sun consists of 60000 plus 200 plus 32 × 8 (i.e. 60,272)
of them (i.e. civil days).

That is,

one yuga = 60272 civil days.

The word “trikṛt” means 32 i.e. 9, and the word “trikṛdaṣṭaka” 32 × 8 i.e. 72.

Further remarks on vss. 6 and 7

Pingree is aware of the fact that the second half of vs. 6 should contain the
number of tithis in a yuga and the second half of vs. 7 the number of civil days
in a yuga, but his text has landed him in trouble and he remarks: “A more
logical order might be achieved by interchanging 6 c–d with 7 c–d.” He also
complains about Sphujidhvaja Yavaneśvara’s way of expressing numbers in
verse: “The extreme clumsiness with which Sphujidhvaja expresses numbers
is a reflection of the fact that a satisfactory and consistent method of versifying
them had not yet been devised in the late third century.” But these remarks
are uncalled for, as it is all due to the faulty edited text.
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4 Civil days in a solar year

Verse 34 gives the number of civil days in a solar year. Pingree’s text and
translation run thus:

सप ष ं शतं दनान
नूं भ ं तु दन शकाना ।
ूनं शताध दनकृ मा ा

यया भवग स वता भुन ॥३४॥
sapañcaṣaṣṭiṃ triśataṃ dinānāṃ
dyūnaṃ dvibhinnaṃ tu dināṃśakānām |
tryunaṃ śatārdhaṃ dinakṛtsamā syād
yayā bhavargaṃ savitā bhunakti ||34||

A year of the Sun consists of 365 days and 14; 47 sixtieths (amśas)
of a day, in which the Sun traverses the signs.

Remarks

This translation is incorrect, because “14; 47 sixtieths” does not yield the value
of the solar year according to Sphujidhvaja. For, according to this translation

one solar year = 6, 5; 14, 47 days,

whereas according to Sphujidhvaja

one solar year = 6, 5; 17, 5, 27, 16 days.

The error is due to the adoption of the incorrect reading “dyūnaṃ dvibhinnaṃ”
in place of the correct reading “yugādvibhinnaṃ” given in the apparatus.
The correct reading of the text is:

सप ष ं शतं दनान
युगा भ ं तु दन शकाना ।

ूनं शताध दनकृ मा ा
यया भवग स वता भुन ॥३४॥
sapañcaṣaṣṭiṃ triśataṃ dinānāṃ
yugādvibhinnaṃ tu dināṃśakānāṃ |
tryūnaṃ śatārdhaṃ dinakṛtsamā syād
yayā bhavargaṃ savitā bhunakti ||34||

A yuga of the Sun consists of 365 days and a fraction of a day
equal to fifty minus three divided by (the number of years in) a
yuga, in which the Sun traverses the signs.
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That is,

one solar year = 365 +
50− 3

165
civil days

=
60272

165
civil days.

This result confirms the statement of vs. 7 that there are 60,272 days in a
yuga (consisting of 165 years).

5 Civil days in a solar month

Verse 11 defines a civil month and gives the number of civil days etc. in a
solar month. Pingree’s text and translation run thus:

ंश नाः सावनमास आक-
ै व श ा दश भमु तः ।

कलाचतु े ण च प ष ै-
शकै गुणै तु भः ॥११॥

triṃśaddināḥ sāvanamāsa ārka-
stryagrairviśiṣṭā daśabhirmuhūrtaiḥ |
kalācatuṣkeṇa ca pañcaṣaṭkai-
stryagryāṃśakaiśca dviguṇaiscaturbhiḥ ||11||
A civil month equals 30 days, a solar month equals (a civil month)
plus 13 muhūrtas and 4 kalās and 56 thirds and 2 fourths.

Remarks

Here the text is correct4 but the translation incorrect. For, “pañcaṣaṭka”
means 5 × 6 i.e. 30, not 56; also “tryagryāmśaka” does not mean third, nor
“catur” fourth. Moreover, according to this translation,

one solar month = 30; 26, 9, 52, 4 days

whereas, according to Sphujidhvaja,

one solar month = 30; 26, 25, 27, 16 days.

The correct translation is:

A civil month equals 30 days, a solar month is greater (than that)
by 10+3 muhūrtas, 4 kalās, and 2×4

5×6+3 of a kalā.

4Read ◦rviśisto in place of ◦rviśiṣṭā.
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Thus,

one solar month = 30 days+ 13 muhūrtas + 4
8

33
kalās

=
60272

1980
civil days,

because 20 kalās = 1 muhūrta and 30 muhūrtas = 1 civil day.
This result also confirms the statement of vs. 7 that there are 60272 civil

days in a yuga.

6 Civil days in a synodic month

Verse 12 gives the number of civil days etc. in a synodic month. Pingree’s
text and translation run thus:

अ ु ष कमेकहीनं
णा काै ाै कला वहीनाै |

कलालवाः स शतं व द ः
समास भ ः श शनः स मासः ॥१२॥
ahnastu ṣaṭpañcakamekahīnaṃ
kṣaṇāṣṭakau dvau dvikalāvihīnau |
kalālavāḥ sapta śataṃ vidiṣṭaḥ
samāsabhinnaḥ śaśinaḥ sa māsaḥ ||12||
A (synodic) month of the Moon, which ends with a conjunction,
consists of 29 days and 32 kṣaṇas minus 4 kalās and 107 sixtieths
of a kalā.

Remarks

This translation is based on misinterpretation of the text and does not accord
to the teaching of Sphujidhvaja. For, according to this translation,

one synodic month = 30; 3, 55, 34 days,

whereas according to Sphujidhvaja.

one synodic month = 29; 31, 50, 14, 24 days.

The error is really due to the adoption of the incorrect readings “ahnastu”,
“śataṃ vidiṣṭaḥ”, and “samāsabhinnaḥ” in place of the correct readings “ah-
nāṃ tu”, “śatī dviṣaṣtā”, and “svamāsabhinnā” respectively which are given
in the apparatus.
Thus, the correct reading of the text is:
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अ तु ष कमेकहीनं
णा काै ाै कला वहीनाै ।

कलालवाः स शती ष ा
मास भ ा श शनः स मासः ॥१२॥

ahnāṃ tu ṣaṭpañcakamekahīnaṃ
kṣaṇāṣṭakau dvau dvikalāvihīnau |
kalālavāḥ saptaśatī dviṣaṣṭā
svamāsabhinnā śaśinaḥ sa māsaḥ ||12||
6 × 5 − 1 days, 2 × 8 kṣaṇas (muhūrtas) minus 2 kalās, and a
fraction of a kalā equal to 762 divided by (the number of) its
own (i.e. synodic) months (in a yuga): this is (the length of) the
(synodic) month of the Moon.

That is,

one synodic month = 29 days+ (16 muhūrtas − 2 kalās) + 762

2041
kalā,

because there are 2041 synodic months in a yuga, = 60272
2041 civil days, because

20 kalās = 1 muhūrta and 30 muhūrtas = 1 civil day.
This again confirms that there are 60272 civil days in a yuga.

7 Civil days in a sidereal month

Verse 13 gives the length of a sidereal month in terms of civil days, etc. Pin-
gree’s text and translation run thus:

आ ु कृ गुण ु कृ
णाः णाध च कला त ः ।

कल शकान च स का ं
शतं वभ ाे द लतैः समासैः ॥१३॥
ārkṣastu kṛttrirdviguṇastu kṛcca
kṣaṇāḥ kṣaṇārdhaṃ ca kalāśca tisraḥ |
kalāṃśakānāṃ ca trisaptakāgraṃ
śataṃ vibhakto dalitaiḥ samāsaiḥ ||13||
A sidereal month consists of 27 days plus 8 1

2 kṣaṇas and 3 kalās
and 137 sixtieths of a kalā: it is separated by half-conjunctions(?).

Remarks

The first line of the text is corrupt and the translation is arbitrary and wrong.
“Trisaptaka” does not mean 37; it means 3×7 or 21. It is difficult to understand
how the first line has been interpreted in that way.
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According to the above translation,

one sidereal month = 27; 17, 10, 34 days

whereas, according to Sphujidhvaja,

one sidereal month = 27; 19, 18, 39 days.

The correct text is:

आ कृ गुण कृ
णाः णाध च कला त ः ।

कल शकान च स का ं
शतं वभ ं द लतैः मासैः ॥१३॥
ārkṣastrikṛttrirdyugaṇastrikṛcca
kṣaṇāḥ kṣaṇārdhaṃ ca kalāśca tisraḥ |
kalāmśakānāṃ ca trisaptakāgram
śataṃ vibhaktaṃ dalitaiḥ svamāsaiḥ ||13||
A sidereal month consists of 32×3 days, 32 kṣaṇas (muhūrtas) plus
half a kṣaṇa, 3 kalās plus a fraction of a kalā equal to 121 divided
by half (the number) of its own (i.e. sidereal) months (in a yuga).

That is,

one sidereal month = 27 days+ 9
1

2
muhūrtas + 3

121

1103
kalās,

because there are 2206 sidereal months (or Moon’s revolutions) in a yuga,

=
60272

2206
civil days,

because 20 kalās = 1 muhūrta and 30 muhūrtas = 1 civil day.
This is true because there are 60272 civil days and 2206 sidereal months in

a yuga.

8 Intercalary days in a solar year

Verse 19(a–c) gives the number of intercalary days in a solar year and the
number of intercalary months in a given number of solar years. Pingree’s text
and translation run thus:

एकादशैकाद[श] भागयु ा
युगा ता ा वहता वभ ।
ष केना धकमासका े
… … … ॥१९॥
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ekādaśaikāda[śa] bhāgayuktyā
yugādgatābdān vihatān vibhajya |
ṣaṭpañcakenādhikamāsakāste
… … … ||19||

The number of years which have passed of the yuga is to be mul-
tiplied by 11; 11 and divided by 30: (the result is the number of
lapsed) intercalary months.

Remarks

The text is correct with one exception that there should be “yutya” in place of
“yuktyā” in the first line. But the translation is erroneous because the number
11; 11 (denoting 11 11

60 ) is wrong. There are 11 1
11 intercalary days in a solar

year, not 11 11
60 . The correct translation is:

The number of years which have passed of the yuga, multiplied by
11 1

11 and divided by 30 gives the number of intercalary months (in
that period).

This is true because there being 1980 solar months and 2041 synodic months
in a yuga, there are 61 intercalary months in a yuga. Likewise there are 61×30

165

or 11 1
11 intercalary days in a year.

9 Omitted tithis in a yuga

Verse 5 given length of a tithi in terms of civil days, the length of a civil day
in terms of tithis, and the number of omitted tithis in a yuga, Pingree’s text
and translation run thus:

दनं चतुः ष लवाेनमा -
थं ष मह ु सव ।

ष भागं नव तः सह ं
युगे ृतूनामप शत ॥५॥
dinaṃ catuḥṣaṣṭilavonamāhu-
stithiṃ praṣaṣṭyantyamahastu sarvam |
dviṣaṣṭibhāgaṃ navatiḥ sahasraṃ
yuge tvṛtūnāmapaśuddhaśatam ||5||

They say that a tithi equals a day minus 1
64 th, but that every day

equals a tithi plus 1
60 th. In a yuga there are 990 seasons (ṛtu),

(each) consisting of 62 (tithis).
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Remarks

1. This translation is incorrect, because

(i) if one tithi consists of 1− 1
64 civil day, a civil day cannot be equal to

1 + 1
60 tithis; and

(ii) if there 990 seasons in a yuga and 62 tithis in a season, there must be
990 × 62 or 61380 tithis in a yuga. but according to vs. 6 there are
only 61230 tithis in a yuga.

2. The text given by Pingree is faulty, because he has adopted the incorrect
reading “dviṣaṣtibhāgaṃ navatiḥ” in place of the correct reading “triṣaṣtib-
hāgena yutam” and the incorrect reading “tvṛtūnāmapaśuddhaśatam” in
place of the correct reading “’vamānāmapasaptaṣaṭkam”. Partially correct
readings occur in the apparatus.

3. The correct reading of the text is:

दनं चतुः ष लवाेनमा -
थं ष मह ु सव ।

ष भागेन युतं सह ं
युगेऽवमानामपस ष ॥५॥
dinaṃ catuḥṣaṣṭilavonamāhu-
stithiṃ praṣaṣṭyantyamahastu sarvam |
triṣaṣṭībhāgena yutaṃ sahasraṃ
yuge’vamānāmapasaptaṣaṭkam ||5||

They say that a tithi is equal to a day minus 1
64 of a day, correct

up to the sixtieth of a sixtieth (of a day, i.e. up to vighaṭīs), and
a day equals a whole tithi plus 1

63 of a tithi. The number of
omitted tithis in a yuga is equal to 1000 minus 42 (i.e. 958).

This can be easily proved to be true. For, in a yuga

(i) no. of tithis = 61230, and no. of civil days = 60272. Therefore,

one tithi = 60272

61230
= 1− 1

64
civil day,

and
one civil day =

61230

60272
= 1 +

1

63
tithis.

Both the results are correct upto vighaṭīs.

(ii) no. of omitted tithis = tithis - civil days = 61230− 60272 = 958.
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10 Conclusion

From the above discussion, we conclude that the yuga defined in the Yavana-
jātaka contains:

Solar years = 165

Solar months = 165× 12 = 1980

Solar days = 165× 360 = 59400

Civil days = 60272

Synodic months = 2041

Intercalary months = synodic months− solar months
= 2041− 1980 = 61 (vide vs. 10)

Synodic days or tithis = 2041× 30 = 61230

Omitted tithis = tithis − civil days
= 61230− 60272 = 958

Sidereal months
(or Moon’s revolutions) = synodic months− Sun’s revolutions

= 2041− 165 = 2206

Risings of asterisms
(or Earth’s rotations) = civil days+ Sun’s revolutions

= 60272 + 165 = 60437

Risings of the Sun = risings of asterisms− Sun’s revolutions
= 60437− 165 = 60272 (vide vs. 8)

Risings of the Moon = risings of asterisms−Moon’s revs.
= 60437− 2206 = 58231 (vide vs. 8)

Solar year = 6, 5; 17, 5, 27, 16 days
Sun’s mean daily motion = 0; 59, 7, 55, 28 degrees

Synodic month = 29; 31, 50, 14, 24 days
Sidereal month = 27; 19, 18, 39 days.

According to Sūryasiddhānta:

Solar year = 6, 5; 15, 31, 3 days
Sun’s mean daily motion = 0; 59, 8, 10, 10 degrees

Synodic month = 29; 31, 50 days
Sidereal month = 27; 19, 18 days.



Review of Vaṭeśvarasiddhānta and Gola of
Vaṭeśvara ∗

It’s a long and complicated text. I have read every line, and compared it
with the manuscript readings conveniently given in the appendix. Prof. Shukla
has demonstrated enormous acuity and ingenuity in editing the work; it puts
to shame the old, partial edition by Ram Swarup Sharma and Mukund Mishra
(who, however, anticipate many of Shukla’s restorations, for which their work
should have been acknowledged).
I would not, however, have gone as far as Shukla often does in re-writing

the manuscripts or even inventing whole verses. This kind of editing strikes
me as a distortion of the evidence, one based on the notion that the author
could not have made the mistakes that the manuscript readings imply. I
believe it would be better, however, to leave the manuscript readings which
follow Vaṭeśvara’s solid knowledge of grammar and prosody even when he
may present a mathematically imprecise formula; the correct formula belongs
in a commentary. I enclose some proposals I would make for returning the
text to a state closer to that justified by the manuscript readings, including
a number of passages where the meter or the grammar demands a reading
different from Shukla’s. The text is also marred by frequent occurrences of -

for - ◌ः स, or of - ◌ः for - , and other inconsistencies of external sandhi (it
is the inconsistency which is disturbing, and not following the general practice
of the manuscript). In many cases also alegores inserted into the text are not
enclosed by [ ] as was intended. I have not noted these slips since they would
occupy many more pages, and can be corrected by any careful reader.
It was a good idea to present the full text of the principal manuscript below

the edited texts; more convenient, and useful, perhaps, would have been a
facsimile in a separate volume of that manuscript. The reader cannot be
sure what errors may have crept into the complicated presentation of the
manuscript’s readings. So far as I can see, manuscript B was used in only two
places—V I, 27a–28b and VII 1, 9–11. In the latter case, the line numbers in
the apparatus for Ms. A are incorrectly placed, and the statements about Ms.
B are inconsistent. Since Ms. B appears to have been the manuscript used by

* David Pingree, Indian Journal of History of Science, Vol. 26, No, 1 (1991), pp. 115–122
(The text Vaṭeśvarasiddhānta and Gola of Vaṭeśvara, was critically edited with English
translation and commentary by K. S. Shukla, Part I: Sanskrit text, Part II: English
translation and comments, Indian National Science Academy, New Delhi, 1985–1986).
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Sharma and Miśra, one wonders whether or not some of their odder readings
depend on that manuscript. Not enough is said of it to be able to answer this
question.
A reproduction of Ms. A would also allow the reader to examine Govinda’s

contribution (it is surprising that Shukla seems nowhere to refer to his impor-
tant article in Gaṇita 23 for 1972) and to reconstruct the original location in
the manuscript and the order of the verses in the so-called Gola; this is not
possible from the scanty information offered in pp. xxi and 302 of vol. I. I do
not find Shukla’s arguments for attributing this Gola to Vaṭeśvara (Vol. 2, p.
liii) entirely convincing. Incidentally, there is a manuscript of a Karaṇasāra
that may be Vaṭeśvara’s at Kotah, it deserves to be investigated.
I have not worked through all of the English translation. What I have

seen, of course, represents Shukla’s heavily emended (or re-written) text, and
therefore present Vaṭeśvara in a “better” light than the manuscript evidence
really suggests. It would easily be possible to employ English terms for many
of the terms that now appear in transliterated Sanskrit; the practice of using
transliterations tends to keep this technical material inaccessible to histori-
ans of science who do not know Sanskrit and thereby defeats the purpose
of a translation. Many of these English equivalents are given in the glossary
appended to Vol. 1; they should be incorporated into the translation in Vol. 2.
If I have been critical of Shukla’s work, it is only because I believe that

some aspects of his editorial and translating policy do not conform to general
practice. But I greatly admire his extraordinary ability to wrest sense from the
frequently garbled text of the manuscripts at his disposal, and the brilliance
of many of his emendations is overwhelming. I congratulate him on his fine
achievement, and the Academy for having undertaken to publish his book.

Review of Vaṭeśvarasiddhānta and Gola of Vaṭeśvara



Appendix

I 1

9. क तुं
13. all other planet names in genitive; so also should be ravija. The emended

text has it in vocative; Though hyper metric, keep र वज भुज ◦

14. ख should mean only one number, i.e., 0. Read रा शका ◦

I 2

1. Ms’s ा न◦ं correct
2. Read ह instead of ◦

3. Keep ◦मासका युगे
7. Read ◦ रा instead of ◦ हा

I 3

5. Possibly दनै रवेः ो व भा जत ◦

14. Need one add 14b, or simply understand 12c? 15b could also be omitted
and the verses renumbered.

13 = 13a–b, 14a, 14c
14 = 14d, 15a + 15c–d

16. Keep ◦वेदरसरामका (रामक = राम)
22. यातावमे ु दनरा शर प श ा यु ाेऽयुताेऽवमगणः. . . In यु ाे नतावम◦ं, tāv is both

the dual ending and ta + av, the beginning of avama. Should one not
keep एवं. . . र व रुा शर ाे ताे

24. ◦ व ता◦ instead of ◦भ जता◦

I 4

1. पयया दगगनेट,
3. ◦ व त ◦

17. च ः
24. अ धका ◦ं

26. पयया द ु ः
I 4

30. First line (30 a−b) rule for finding lapsed avamas according to Ms:
युगावम ाे गुणः हो तृ - वासरानापहरे दनाैघतः
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37. भू दनै च◦

41. ◦दया
42. ग [ त] ै [कै] को ा◦
43. हा [ न]?
44. यु तर रं

I 5

3. वारा ा
13. सा चेह ग दतव समा धप
16. वधवषनाथः
21. ै ह◦
25. I would not attempt to introduce a completely fabricated verse into

the text; the information belongs in the commentary, but Vaṭeśvara’s
Sanskrit is irrecoverable.

into the restoration at the rest of the verse?

42. ◦ भव◦

46. The Ms. clearly implies the reading = ा मासयाेगा ा ानाेम स◦

47. The end is: मासा धपा न [पः]
48. ◦गुणैन ◦

54. भूुढं◦?? What is this word?
57. ा मेासा र व [यु ] अताऽशै . . .

after 59, two lines omitted, which seen to imply something like

गत दवसा होजैगु णता भा जता म ? ग यु त वधुव गत [ ]ु वयु-
युगपराे गुणः

I can’t explain the above; but it must be the basis of a reconstruction,
not simply ignored.

I 5

60. Keep दयें
63. हण व व े ?
73. ◦[भागा]े
74. ◦ नहतच दवसे ः

81d. ल ो ु [ग] णाे गुराे ु चै ादःे
83. चतु े ा यैु [मी] वष [प] तः ा
87. स [कलाः] वहीना वा दवसाः
88. जीवा ा ावमघ टका हता खनग ताः ◦ ीव [व] षताे
90. ◦इ वुेद◦ै
91. ◦हता , ◦महःप त◦

Should this not be retained? And the test corrupt pāda incorporated
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94. ◦भा जता[ ै]वा ?
95. ◦ भजवा ◦?
96. ◦ता डता ैवा
97. भुजगोयुगै◦
98. नव भभ गः
100. नभकु◦

105. ुल ◦

114. अ धशे़षा खगुण◦

115. गृहा ाै ो व ौ
116. ◦फलेने ◦

120. ताशश ाण

I 6

9. गुपाताः? खगपाताः?

I 7

3. खा गय ◦

18. बुध सतचलक ा याेजन[◌ा न] युगा षे?ु
20. ◦सुता रः शनै◦

I 8

3. ◦कृत शर द ◦

7–8. जगुः ाे ॥ फलयाेजनं . . .
after II a half-verse omitted. It is corrupt, but should not simply be
omitted.

13. पूवम[ुद]या रदलेन वासरा दः

I 9

11. इ हमव◦

20. हा[ ] समा धपं सावन दवसेश

I 10

1. शा लवम ये ऽहं
11. अो ारा दन◦
28. शा स ते
29. ◦र त टं
44. क तं
46. ग णत गाेलाना
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93. ◦ भज [वा] गणाद भागवचलो [क] ? ◦ भजवगणाद भागवचलो ? ◦ भज वगणा ?
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II 1

8. नगकृतनखा न
16. त थयुगरामा
25. रसेषवा◦े सागरा
28. ◦ दश ◦च ाः
36. र वपु ाः = 2?
47. बाणा भुजा नवा याे
53. स ंशा ाः?
58. ा राहत

69–70. apparatus भु गण rest of line in 70 a–b वसुगुणाे
text of 70: [ल ः ाधस ुणो]

85. भु ा क◦

102. धनुदले धनु ते1
1ed. Or धनुहते? Original unclear.

II 3

8. परफलं
11. ◦हता2 त म े respecting the manuscript. Correction belongs in com-

mentary.
14. [चरणे]
16. remove च

II 4

3. जीवाथैव◦

5. remove च
10. ◦शाे धता ृजू ण
13. ◦ जनैजगुभ गैः

II 5

11. ा
15. ा फल ाकृ त न ामा ः कु टलकाे टः
21. ◦ ेवमूनः ना

II 6

7. भा जताः
12. कंतु
15. वैधृ तमेवं
20. वधेयाः
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26. restoration denotes widely from Ms.
35. ◦युताे नत ः ◦ ल ा भ ैव

II 7

5. हग तं क[र]णा धकृ स?
13. स णत ु ट
14. हः ृ

III 1

32. Restoration very far from ..

III 2

13. keep ा ावल े
2ed. Or ता? Original unclear.

14. keep उ मल ा े मा लल भगुण ववरे वा
15. चाे मपलल [क] े ः
16. चाे मपलल कमाै वके

III 5

9. पलभानृतला ास [ ] त ा
14. ◦भ[ वा त] ा

III 7

8. ु ाधृ त
9. चराध ा
11. ा पल गुणव[धाे ल ु ाव]धा ाे वा
12. In reading closer to Ms., and so preferable
17. ◦धृ त[कृ ा] वा भ ः
18. पलभा ा गुण भूगुनैगु णता
19. [अ का] धृ तह तगुणै ◦? तैह रैभ े
23. ु ा त◦

25. खेद तः
26. चाे व व

III 8

3. द[न ा] ा च
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III 9

2. काे ट ा चाे ा
15. नरा [भव ]
19. सौ ै ऽ ै

22–23. restoration should be closer to Ms.
35. फल वयुगुद समेताे
36. very far from Ms.
37. It seems to have substituted the agrā for the caradala

कु ा ा द वणा ा गुणघाताे वा ◦घाताे ऽ ा गुणयाे
46. remove [ ]

III 10

1. ऽकभूजा ◦

12. ◦ व व तेने ◦

26. ◦पलभा त[◌ाः]
30. It has गुण instead of अ (which, in any case, is masculine against

the feminine अ ा earlier in the verse). Why should be not be in error?
31. What of the Ms’s two lines between 31 a–b and 31 c–d?
39. मूलं
40. यथा भवे ेयाै

III 11

4. साै ा याेग ◦ सूय उ रगाेलगे
6. ◦दा ा ावा ा
8. र वभुज जनमाै ाेव[व व]धा
9. समनरः
15. पलभ
17. भ े तेन क[णन]?
18. े [ ा] गुण◦ remove वा
19. ◦नृतल[वध]
21. remove समना
25. ◦भुज दनाध◦

30. वाककृ त◦ (वा at end of स)
31. सं ेप[तो] नताे ताै

III 12

4. चे युजा या
7. वा गुण◦

12. समनरकु ा◦
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III 13

7. ल गुणत ृ तवधा
10. भाकण ा ाेवधेन मुाै वका ादतः
26. ग तीनाे मृगादःे ◦भष
27. remove य ◦स े ऽक

III 14

5. रेखाय तु
11. छाया मावशेष◦ै

14. नव त[ म]तखा े

III 15

1. ◦सं ा श ाथमु
3. वे दशाे ऽयमभा[ ] पलैया वा ु त व मणा[ ]
6. ◦तमाेिरजाभ
7. गणको[ ]मः
14. व च सुत कृत मः
24. तमाेराै
26. कथय त [तथा] ◦

27. [ती गाै त]वहगे
35. ततसहशसेव

IV

1. ◦याे हणे
2. ककण आ ः
13. सुरेषु त
21. ◦दला ेपकेन
23. त मरे मुानयाेः
28. ◦ वयुता समेता ु टा
32. त छा ादकमान◦
33. ा ाहकामान भेदक
35. ◦ त थय याता Not necessary
41. हः

VI

1. व माे
7. त मा ?
9. another line lost, of which तयाेव is the end
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11. यु ाे ल ा ं
20. भवे नसं कं

V 1

26. Note that pādas b + c interchanged
27. ◦मूल व तो?
28. यताे ऽ था
30. वणयाे मसाे ?ु

V 2

2. वधाेिरताे ऽ ा?
6. [ ह वा]?

V 3

7. ाह ाहकं — to avoid छा ादक◦

V 4

5. ते ः
31. उ तेजसो न[दी ] तै ा

V 5

4. Should not print [ त ु] since it is not intended to be part of the text
5. तदलच कलाः

V 6

3. व ृणक संयुते

V 7

4. छा ादकं? (meter wrong)

VI

5. गुणः ेप◦

10. समा दक ॠणं
11. त णं
16. ा वमाै
24. श ा जताः खष तृा
25. [ तरे]ष?

Review of Vaṭeśvarasiddhānta and Gola of Vaṭeśvara



742

26. ऽ [तरे]षु?
VII 11

1. र वच भुज शकै वधाेः
2. तेजसाेव रा ?े
4. सकृ

VII 1

13. च मणे[न]
34. ु तिर ेनापवतनं येषा
40. युतेमूल
41. ादनु ग

VIII 2

5. व े ऽ ाै
8. द श
13. सा भ जत
19. यवृ ी
23. न क[◌ा ] सदा

28d. तुिर त ये मेण ते॥
Gola I

7. ल कातु

II

8. First pāda in Ms. not used

III

14. ◦कुजा र ा[क]।
15. य िरजे

IV

2. एण◦

5. ाे ाे
6. ु टखेः
8. या ाे रे [गत]
15. ये चराधानसंयुताः ा कुजे समुदय
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