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Abstract The goal of many machine learning algorithms is to adequately identify
the informative biomarkers in the biological samples useful for predicting disease
outcome. Several algorithms have been proposed to perform this task using
high-dimensional genomic messenger Ribonucleic Acid (mRNA) data.
High-dimensionality poses serious problem in statistical analysis in terms of
parameter estimation and inference. To address this problem, a powerful method
has been developed called Random forest. Random forest was able to tackle
high-dimensionality problem but it fails because it’s more of computer program
than a statistical learning method thus uncertainty in prediction cannot be quanti-
fied. In this paper, we develop Bayesian Random Forest (BRF) model for the
classification of high-dimensional mRNA data. Bayesian procedures are the
emerging solution to most applications of statistics in the recent time and in fact it
has the least error rate in theory. In addition, they give appealing results in terms of
parameter uncertainty, model uncertainty and data uncertainty. BRF model fitting
and inference were achieved via Metropolis-Hasting (MH) MCMC algorithm. The
model strength was illustrated using bake-off of 10 different mRNA cancer datasets.
Results from data calibration established appreciable supremacy over competing
methods.
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1 Introduction

The growth in computer applications have enhanced collection and analysis of big
datasets. Big datasets are often referred to as high-dimensional data in statistical
parlance. The difficulties faced while analyzing big datasets has led to development
of many statistical or machine learning procedures in the recent time [1]. In most
areas of research especially bioinformatics, it is usual to have relatively small
sample sized datasets collected on large number of features.

Random forests (RF), a tree based non-parametric method originally proposed
by [2] is one of the popular methods for handling high-dimensional data, mainly
because of its computational speed and high accuracy. Bayesian procedures are the
emerging solution to most applications of statistics in the recent time in fact it has
the least error rate in theory [3–6]. Chipman et al. [7] proposed Bayesian Additive
Regression Trees (BART) which is a probabilistic approach to sum of trees model.
However, BART is more of Bayesian approach to sum of trees model than to call it
a Bayesian random forest. Specifically, BART did not incorporate bootstrapping of
trees as in RF but a posterior distribution of trees. In addition, BART controls tree
depth by imposing restrictive priors on tree with large daughter nodes. BART uses
prior distribution specification as a pruning tool to avoid large trees [8]. Taddy et al.
[9] proposed Bayesian forest (BF) as a nonparametric Bayesian approach to RF.
They used posterior of trees instead of bootstrap of trees based on a nonparametric
Bayesian model using multinomial draws. BF tried to mimic RF by replacing the
bootstrapping procedure by [10] by its Bayesian counterpart (Bayesian Bootstrap,
[11]). This implies BF focuses on the data generating process of RF but not its
impurity measures.

Based on the aforementioned features of the Bayesian variation of Random
Forest (RF), we observed that none of the existing methods fully captures the
complete framework of RF and this affects their eventual results. Thus the goal of
this research is to develop a complete Bayesian approach to Random Forest (RF).
The method updates every aspect of RF using Bayesian reasoning. By way of
example, we considered the case of binary classification with high-dimensional
cancer datasets.

2 Decision Trees and Random Forests

Decisions trees is a class of methods under the broad Classification and Regression
Trees (CART). The response variable of interest determines the type of model, such
as decision trees if the response is categorical and regression trees if the response is
continuous. CART do not have any statistical model but a set of steps called
algorithm. CART modelling involves partitioning the feature space into M regions.

Formally, given training dataset yi; xi1; xi2; . . .; xip; i ¼ 1; 2; . . .; n
� �

, where yi is a
categorical outcome that assumes k ¼ 1; 2; . . .;K values and xi is the vector of
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features. CART algorithm automatically decides on the splitting variables and
splitting point. After, successful partitioning of the response to R1;R2; . . .;RM

regions, the closest form of model that CART assumes is;

y ¼
XM
m¼1

bmI x 2 Rmð Þ ð1Þ

where bm is a constant in region m. Estimating bm requires the computation of an
impurity function. For classification case, the commonly used impurity functions
are Misclassification Error Rate (MER), Gini Index, and deviance [12].

Random Forest (RF) update built CART trees in two steps; (i) bootstrapping the
training dataset J times to obtain a total of J trees (ii) Subsampling l\p features
without replacement at each split step in each j tree. Thus given a CART model

= b̂m : x 2 Rm

� �
, RF model is;

ŷ ¼
XJ
j¼1

=j b̂m : x 2 Rm

� �
ð2Þ

RF has two tuning parameters, the number of trees J and number of subsampled
features l. Breiman [2] suggested using at least J ¼ 200 and l ¼ ffiffiffi

p
p

for classifi-
cation task.

3 Bayesian Random Forests

Section 2 established the weakness of RF as the necessary tuning parameters are
not chosen by any probabilistic law. The approach is nothing but a trial and error
hence often referred to as black box method. A quick solution to avert trial and error
is to select the tuning parameters by cross validation but at the expense of com-
putation time. Therefore, the focus of this research is to modify RF forest by
updating the two steps in (2) via Bayesian approach. For the bootstrapping step, we
propose the Bayesian Simple Random Sampling With Replacement (BSRSWR)
described by the posterior distribution in (3);

P pja; bð Þ ¼ Cðnþ aþ bÞ
Cðaþ 1ÞCðbþ n� 1Þ p

a 1� pð Þbþ n; 0� p� 1 ð3Þ

where p is the probability of selecting any i 2 n in each j step, CðdÞ is the gamma
function evaluated at d, a is the prior expected number of times any i 2 n could be
selected and b is its complement. It’s clear that the density function in (3) is a

resemblance of Beta aþ 1; bþ n� 1ð Þ. A weighted CART tree = bbm : x 2 Rm

� �
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can be obtained using x ¼ Beta aþ 1; bþ n� 1ð Þ8i 2 n. Similarly, for the sub-
sampling of l\p steps, we propose Bayesian Simple Random Sampling Without
Replacement (BSRSWOR) with posterior density given in (4);

P V jh; l; p; S; Tð Þ ¼
SþV
Sþ 1

� �
T þ p� V
T þ l� h

� �
Sþ T þ pþ 1
Sþ T þ lþ 1

� � ; h� v� p� lþ h ð4Þ

where V is the number of relevant features whose posterior is sought, h is the
sample realization of relevant features, p is the total number of features, l is the
number of subsampled features as in RF, S is the prior number of relevant features
and T is the prior number of irrelevant features. If we denote the posterior density in
(4) as d, we can use d to obtain a weighted splitting procedure where each impurity
used at every splitting stage would be weighed by d: For a Gini index impurity, we
propose a weighted Gini index #;

# ¼
XK
k¼1

ð1� dÞbpmk 1� bpmkð Þ ð5Þ

where bpmk is the estimated class probability at each node m. The variable with
weight d ! 1, will correspond to variable with minimal unweighted Gini index and
therefore useful for further splitting step. If on the other hand d ! 0, implies the
variable is not useful and therefore expected to yield a maximal unweighted Gini
index. In this case, the proposed weighted Gini index returns the unweighted Gini
index so that the variable is dropped at the splitting stage.

4 Application to Cancer Datasets

In this section we illustrate the application of Bayesian Random Forest (BRF) on
published real data. We use the “bake-off,” approach of [7] to study the predictive
performance comparison of BRF with competing methods on 10 different real
cancer data sets. Table 1 presents the data set which is a subset of 22 datasets from
package “datamicroarray” in R [13]. For each of the 10 data sets, we created
10 independent train/test splits by randomly selecting 9=10 of the data as a training
set and the remaining 1=10 as a test set. Thus, 10� 10 ¼ 100 test/train splits were
created (Fig. 1).

Based on each training set, each method was then used to predict the corre-
sponding test set and evaluated on the basis of its predictive misclassification error
rate and accuracy. The competing methods used alongside with BRF include
Random Forest (RF), Bayesian Forest (BF), Gradient Boosting Machine
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(GBM) and Bayesian Additive Regression Trees (BART). Of all the five methods
compared, GBM is the only frequentist method and also a major competitor of RF
within the same classifier class [12].

5 Discussion and Conclusion

In this paper, we have established the weakness of RF and possible way to improve
by formulating a probabilistic approach to tree sampling and split selection. We
demonstrated the applicability of the method using 10 real cancer data sets. The
individual and overall results in Table 2 show that in almost all the data sets used
BRF accuracy is relative higher than its competitors. The result further shows that
in any datasets used, BRF accuracy is bounded below at RF accuracy. This implies

Table 1 The 10 datasets used in the bake-off and their associated dimensions

Cancer type n p

Colon Cancer 62 2000

Breast Cancer 1 168 2905

Lung Cancer 181 12533

Prostate Cancer 102 12600

Breast Cancer 2 49 7129

Leukemia Cancer 1 111 12625

Lymphoma Cancer 58 6817

CNS Tumor 60 7128

Myeloma Cancer 173 12625

Leukemia Cancer 2 50 10100
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Fig. 1 Boxplot of test misclassification error rate (MER) for the five methods over 100 train/test
partitions. BRF has the least MER with 25% of the MER equal zero. Also, the absence of outlying
point(s) in BRF indicate that it is more stable than its competitors
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that BRF accuracy will in most cases be higher than RF accuracy and at least RF
accuracy. Therefore, it can be concluded that the Bayesian weighing scheme
developed indeed correct the RF weakness.

Funding This work was supported by Universiti Tun Hussein Onn, Malaysia [grant numbers
Vot, U607].
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