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Stability Analysis of Explicit Skl
and Semi-implicit Euler Methods

for Solving Stochastic Delay Differential
Equations

Norhayati Rosli, Noor Amalina Nisa Ariffin, Yeak Su Hoe
and Arifah Bahar

Abstract This paper dealt with the stability analysis of explicit and semi implicit
Euler methods in approximating the solutions of linear stochastic delay differential
equations (SDDEs). It has been proved that the methods are convergent with strong
order 0.5 and are numerically stable in general mean square (GMS) and mean
square (MS) sense for certain conditions. A comparative study of the stability
explicit and semi implicit Euler methods in approximating the solutions of SDDEs
are performed to visualize the theoretical results. Numerical experiments are con-
ducted by applying both methods to linear SDDEs.
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1 Introduction

Most of the natural systems around us are subjected to the presence of delayed
feedback and are influenced by the uncontrolled environmental noise. For instance,
the growth of the cancer cells is non-instantaneous but responds only after some
time lag, r > 0. Cancer cells also subject to the uncontrolled factors such as blood
pressures variations and individual characteristics like genes and stress impacts [1].
The most suitable mathematical equations describing such system is stochastic
delay differential equations (SDDEs). In SDDEs, time delay and noisy behaviour
are incorporating to its deterministic counterpart. Due to the presence of both
effects, solving SDDEs is not an easy task. Analytical solutions of SDDEs are often
unavailable. Thus, numerical methods provide a way to solve problem. The
development of numerical methods for SDDEs is now among of the research
interest. Amongst of the recent works are [2—4]. They proposed explicit numerical
methods for solving SDDEs. The convergence and stability analysis of the
semi-implicit method for linear SDDEs has been presented in [5]. It is the aimed of
this paper to investigate the performance of explicit and semi-implicit Euler
methods in approximating the solution of SDDEs. This paper is arranged as fol-
lows; Sect. 2 presents the mean-square stability properties of explicit and semi
implicit Euler methods. Numerical experiment is conducted in Sect. 3. Concluding
remarks are given in Sect. 4.

2 Stochastic Delay Differential Equations

Consider SDDEs of Ito form

dX(l) :f(X(l)7X(l—V))dt+g(X(l),X(l—r))dW(l)7 re [—}"7T] (1)
X(r) = ®(¢), t€[-r,0

where {W, : t € R} is a standard Wiener process with Wy = 0 and the increments
W) — W(s) ~ NO,t—5),0 <s <t f:RxR—-R, g:RxR—-R are
drift and diffusion functions, respectively and ®(¢) is an initial function defined on
interval [—r, 0] which is F, — measurable and right continuous, Ell®|? < oo,
where |®ll  sup |D(s)| D(r) does not depends on W(¢) and r > 0 is a positive fixed

—r<s<0

delay. Linear SDDEs is written by

dX(t) = [aX(t) + bX (¢t — 1)|dt + [c¢X(¢) +dX(t — 1)|dW(t), t€ [-r,T]

X(t) =1+t te€[-r0] @
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2.1 Euler Scheme for SDDEs

Let consider

Xn+l - Xn + [OC((ZXIH—I + erH— l—m) + (1 - OC) (aXn + bXn—m)]h

3
+ (X, + dX_ ) AW, (3)

where o is a parameter with 0 < o < 1 and & > O satisfies r = mh, for positive
integer, m and f,=nh. X, is an approximate solution to X(z,). If
t, < 0, X, =®(,. The increment AW, = W(t,.,1) — W(t,) are independent and
normally distributed with mean zero and variance, Ar.

A method is said to be explicit if « = 0, hence we have

Xoi1 =X, + (aXy + Xy + (cX,, + dX_ ) AW, (4)

A semi-implicit Euler scheme is given by (2) for O < a0 < 1.

2.2 Convergence and Mean Square Stability of Euler
Scheme

The following results are cited from [5].

Theorem 1 ([5]) Assume that aho. < 1. The numerical solution produced by (3) is
convergent to the exact solution of (1) in the mean square sense with order of 0.5,
i.e. there exists a positive constant C such that

1
max (E(sn)z)2 <Ch ash—0 (5)

1<n<N
where €, = X(t,) — X, is defined as a global error.
Lemma 1 ([5]) If
a< —|b\—lc2 (6)
2
then the solution of (2) is mean square stable, that is

lim E|X(1)]*= 0 (7)

1—00
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Definition 1 ([5]) Under condition (6) a numerical method is said to be general
mean square stable (GMS), if there exists hg(a,b,c,d) > 0, such that any application
of the method to problem (1) generates numerical approximations, X,, which satisfy

lim E|X,|*=0 (8)
n—oo

for every stepsize h = =-.

Definition 2 ([5]) Under condition (6) a numerical method is said to be mean
square stable (MS), if there exists hy(a,b,c,d) > 0, such that any application of the
method to problem (1) generates numerical approximations, X,, which satisfy

lim E|X,|’=0 (9)
for all h € (0,hg(a,b,c,d)) with h = .
Theorem 2 ([5]) Under condition (6) and let

_ lal+1p] | 2a+20b] + (e + a))®
2lal 2|al(|al +1b])

(10)

If K < 0, then for all o € [0, 1], the Euler method (3) is GMS stable. If K > 0,
then for o € (K, 1], the Euler method (3) is GMS stable and for o € [0, K], it is

MS-stable and hy(a,b,c,d) = min{h’h "}, where I = max{h  h}, h' =

1 — mind L —(2a+2lb\+(\vl+|d\)2} _ —(2a+2p|+ (|c| + |d])*
max{‘a| ,]’lz} and h; = mm{la‘7 1))’ , hy = @t 1)’ .

3 Numerical Experiments

Let consider linear SDDE (2) with sets of coefficients are given in Table 1.

By Theorem 2, SDDE (2) is GMS-stable for set of coefficients C1 if
0.1693 < o < 1 and it is MS-stable for 0 < o < 0.1693. For C2, a linear SDDE
(2) is GMS-stable for 0 < o« < 1 when & € (0,1.250). For C3, the solution
obtained is GMS-stable for o € (0,1] and it is MS-stable if & = 0 when & € (0,1.0).

Table 1 Coefficients of linear SDDEs and the corresponding values of K and kg

Coefficients a b c d K ho(a,b,c,d)
Cl -2 0.2 0.5 0.0 0.1693 0.6921
C2 -0.8 0.2 0.2 0.2 —0.0250 1.2500
C3 -1.0 0.2 0.2 0.2 0.0000 1.0000
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Theoretically, it shows that a set of coefficients C1 produce unstable solution if the
explicit Euler method is applied, but it is GMS-stable and MS-stable for
semi-implicit method under certain values of «. Moreover, the solution is
GMS-unstable for o < 0.1693. Linear SDDE generates from C2 is GMS-stable for
both methods. Linear SDDE generates from C3 is MS-stable for both methods and
GMS-unstable for explicit method. The theoretical results are confirmed by
applying explicit Euler method (4) and semi implicit (3) with fixed parameter « = 0,
0.1 and 1.0. Table 2 shows the corresponding methods for each o.

In Figs. 1, 2 and 3, the stepsize is fixed to h = % and the parameter o is changed
according to Table 2.

Table 2 Explicit and semi-implicit Euler methods

o Method Formula

0 Explicit X1 = X, + (aX,, + bX,,,)h + (cX,, + dX,,.,) AW,

0.1 Semi-implicit Xy+1 =X, +[0.1(aXy 11 + Xy 1-m) +0.9(aX,, + bXy—) |1
+ (X + dX ) AW,

1.0 Semi-implicit X1 = X, + @Xoe1 + DXt + (X, + dX, ) AW,

Explicit Euler Method
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Fig. 1 Simulation result for C1 with fixed stepsize 7 =  for « = 0, 0.1 and 1.0
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Explicit Euler Method
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Fig. 2 Simulation result for C2 with fixed stepsize h = L for « = 0, 0.1 and 1.0

For o = 0 and 0.1, the simulated results for C2 are mean-square unstable. This
indicates that for small values of « (when the method is reduced to explicit scheme)
the results become unstable for C2. However, for C1 and C3, the results tend to
negative values for o = 0 and 0.1, hence indicates instability of the solution.
However, the simulated result produced by semi-implicit method with o = 1.0
possess the stability in mean-square for C1, C2 and C3.
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Explicit Euler Method
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Fig. 3 Simulation result for C3 with fixed stepsize h = ; for « = 0, 0.1 and 1.0

4 Conclusions

It can be concluded that the stability of explicit and semi-implicit methods are
influenced by the values of hand «. Small values of aproduce instable results
compare than large value of « (for a = 1.0).
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