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Abstract Productivity in agricultural ecosystems is often largely dependent on the
input of nitrogen fertilizers such as urea, nitrate, and ammonia, despite the high
financial costs and potential detrimental effects on the environment. Soil enrichment
with organic matter, such as plant compost, straw, or manure, can enhance soil
organic carbon and improve soil quality and increase aggregate stability, biological
activity, and microbial diversity, including nitrogen cycles. The abundance of the
nifH gene, thus nitrogen cycles, was found to be enhanced when organic fertilization
was used and correlated mainly to the availability of organic carbon, potentially due
to the presence of fuels required to run the energetically expensive nitrogen fixation
process. On the other hand, readily available ammonia and nitrate, which are often
associated with inorganic fertilization, tend to suppress the soil potential for nitrogen
fixation. The impacts of fertilizers on denitrifying microbial communities are com-
plex, due to the great diversity of the denitrifiers and the variation in their abundance
in different environments. However, in general, the use of organic fertilizers
increases denitrification potential and activity in soils when compared to inorganic
fertilization. This is particularly important for increasing the abundance of those
denitrifiers containing the nosZ genes and capable of the final step of the denitrifi-
cation process, removing the potent greenhouse gas nitrous oxide by its conversion
to dinitrogen. Bacterial and archaeal nitrifiers react differently to variations in soil
conditions and to different fertilization management strategies. It is important to note
that nitrogen fertilizers in access might turn into an ecosystem hazard where nitri-
fying microbes convert them to nitrate. This survey of the literature suggests that the
addition of organic matter to agricultural soils, even where inorganic nitrogen
fertilizers are used, enhances the soil potential for nitrogen cycling and soil
sustainability.
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Abbreviations

amoA Gene encoding the monooxygenase enzyme
amoA-arch Archaeal amoA gene
amoA-B Bacterial amoA gene
AOA Ammonia-oxidizing archaea
AOB Ammonia-oxidizing bacteria
ATP Adenosine triphosphate
Av N Available nitrogen (Kjeldahl method)
C Carbon
CO2 Carbon dioxide
DMPP 3,4-Dimethylpyrazole phosphate
IF Inorganic fertilization
N Nitrogen
N2 Dinitrogen gas
N2O Nitrous oxide
NH3 Ammonia
NH4

+ Ammonium ion
nifH Gene encoding the dinitrogenase reductase enzyme
nirK Gene encoding the copper-containing nitrite reductase enzyme
NirK Copper-containing nitrite reductase
nirS Gene encoding the cytochrome cd1 nitrite reductase enzyme
NirS Cytochrome cd1 nitrite reductase
NO Nitric oxide
NO2

� Nitrite
NO3

� Nitrate

1 Nitrogen Fertilization and Microbial Communities
in Agricultural Soils

Nitrogen (N) is a vital element for all forms of life including plants, with one to four
percent of the living material, including proteins, DNA, and RNA, being composed
of nitrogen (Woodmansee et al. 1978). Therefore, productivity in agricultural eco-
systems is often largely dependent on the input of N fertilizers. The high demand for
N in intensive cropping and other agricultural systems is generally met by the
addition of fertilizers, such as urea, nitrate, and ammonia, to the soil. However, the
effects that such agrochemicals have on soil function are largely unknown. In
general, the availability and productivity of agricultural soil is under threat, due to
greater urbanization and also intensified farming practices which utilize extensive
irrigation, increasing amounts of agrochemicals, and heavy machinery (Berry 1978;
Newman et al. 2015; Li et al. 2015). As these intensive agricultural practices result in
land degradation, it is increasingly necessary to identify or develop sustainable

378 L. Pereg and M. McMillan



cropping systems that result in large biomass yields and maintain or improve
ecosystem services (Orr et al. 2015), such as soil N cycling.

In agricultural systems, N is taken out from the ecosystem when plants and/or
animals are removed. Consequently, there is a need to constantly replace the N
supply in these farming systems. This is achieved through the widespread use of
N-containing fertilizers, despite the high financial costs and potential detrimental
effects on the environment (Ladha et al. 2005; Spiertz 2010). Manufacturing N
fertilizers from fossil fuels and transporting manures or other sewage-based fertil-
izers to agricultural areas are energetically expensive, especially when the amount of
fuel required is considered. These processes also result in the release of CO2 and
contribute to the pollution of water bodies through the leaching of nitrate and
generation of nitrous oxide, a potent greenhouse gas. These factors contribute to
the growing range of environmental concerns around the intensive farming practices
and the use of agrochemicals, such as soil compaction and erosion, overuse of land
for cropping or grazing, reductions in soil organic matter, depletion of water
supplies, and pollution of groundwater and surface waterways through agrochemical
runoff (Hirsch and Mauchline 2015). Agrochemical runs off, and soil degradation
can both contribute to eutrophication of aquatic habitats. Production practices that
result in degraded soil quality may then drive increased use of irrigation and
fertilization in an attempt to sustain soil productivity (Tilman et al. 2002; Zalidis
et al. 2002). This can, in turn, cause further damage to the soil while also increasing
the cost of crop production. While intensive arable farming and use of agrochemicals
might negatively impact soil chemical, physical, and biological properties (Caravaca
et al. 2002; Bellamy et al. 2005), the enrichment of soil with organic matter, such as
plant compost, straw, or manure, can enhance soil organic carbon (SOC) and
improve soil quality; increase aggregate stability, biological activity, and microbial
diversity (Johnston et al. 2009; Morugán-Coronado et al. 2015; Pérez-Piqueres et al.
2006; García-Orenes et al. 2010, 2013, 2016; Prosdocimi et al. 2016); as well as
reduce chemical input, increase plant productivity, and increase the sustainability of
organically managed agroecosystems (Macci et al. 2013).

Soil microbial communities are an important component of soil. The structure and
function of soil microbial communities vary depending on soil type, pH, tempera-
ture, plant cover and rotation, fertilization, tillage management, and water content
(Bossio et al. 1998; Saleh-Lakha et al. 2005; Jangid et al. 2008; de Vries et al. 2013;
Garbeva et al. 2008; Geisseler and Scow 2014; Quadros et al. 2012; Kibblewhite
et al. 2008; Geisseler et al. 2010). Agricultural land management strategies can
reduce the diversity and abundance of soil microorganisms and affect various soil
properties (Caravaca et al. 2002). For example, decreased availability of water
reduces soil organic C, altering the structure of soil microbial communities (Canarini
et al. 2016; Bastida et al. 2017). It is widely acknowledged that water availability is
essential for the maintenance of soil microbial communities. However, there is a lack
of information on how different water management practices impact soil microbial
communities (Bastida et al. 2008). In semiarid conditions, where water supplies are
limited, the addition of organic matter may support the development of soil micro-
bial communities and increase soil biodiversity (García-Orenes et al. 2010; Frenk
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et al. 2014; Wafula et al. 2015; Bastida et al. 2017). At the same time, maintaining
crop cover on the soil surface, and minimizing soil tillage, can improve the soil
physical structure, allowing improved water retention and maintenance of biological
activity (Morugán-Coronado et al. 2015). Agrochemicals, including herbicides,
fertilizers, fungicides, and insecticides, can affect the soil biota and the structure
and function of soil microbial communities and therefore have a significant impact
on soil quality (Imfeld and Vuilleumier 2012; Sofo et al. 2012). Soil microbial
communities are very sensitive to changes in the soil, including physical disruption
of the soil or changes in water or nutrient content. They can thus be considered as
possible indicators of variations in the soil environment and of soil quality (Zornoza
et al. 2009; Frenk et al. 2014).

An increased understanding of how agricultural management practices influence
the structure of soil microbial communities and their overall impact on soil health is
markedly important under semiarid conditions (García-Orenes et al. 2013). In
semiarid areas, environmental constraints result in the overexploitation of land for
food production, and these intensive farming practices result in a decline in soil
structure, soil fertility, and a loss of organic matter (Caravaca et al. 2002). Sustain-
able farming practices, including the application of organic matter to enrich the soil,
can enhance SOC and improve soil quality, as observed in arable agriculture
following the addition of animal manures (Johnston et al. 2009). Soil organic
amendments can also influence diverse soil microbial communities and enhance
soil fertility. Organic nutrient sources have been suggested to be beneficial for both
soil biodiversity and crop production, as they increase soil organic matter and
potentially lead to improvements in a number of soil biological and fertility indica-
tors, including soil aggregation, porosity, and water retention. In southern Spain, a
decline in soil organic matter content and an associated loss of soil fertility have been
observed as a result of intensive agriculture and the semiarid conditions (Caravaca
et al. 2002). In contrast to conventional agriculture in this region, the use of organic
amendments promotes the activity of soil microbial communities, increases micro-
bial biodiversity, and improves soil properties. For example, application of oat straw
to experimental plots on abandoned agricultural land led to soil restoration (García-
Orenes et al. 2010, 2013). Morugán-Coronado et al. (2015) found that management
practices including no-tillage, retention of vegetation cover, and application of
manure improved soil conditions and increased soil organic matter and soil aggre-
gate stability, leading to increased biological activity. The use of organic fertilization
in grapevine production has been trialed over the last 10 years in semiarid regions in
Spain. The use of organic amendments has resulted in improved soil quality indica-
tors, including an increase in soil microbial diversity and enhanced soil biological
activity, in comparison to traditional farming practices using chemical fertilization
(García-Orenes et al. 2016). Earlier, Pérez-Piqueres et al. (2006) reported that the use
of organic fertilizers, in the form of compost amendments, manure, and grapevine
prunings, promoted an increase in soil microbial activity, enhancing the fertility and
productivity of agricultural soils. Interestingly, Castañeda et al. (2015) found that
organic rather than conventional management resulted in similar communities in
grapevine soils to that of nearby forest in Chile, suggesting that the use of various
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types of organic amendments in agricultural soils would lead to sustaining soil
biological and functional diversity and contribute to conservation of agricultural
land. There has been a movement toward implementing organic fertilization systems
to help improve soil properties, thereby increasing the productivity of agricultural
land, and also allow for a reduction in agrochemical inputs, increasing the sustain-
ability of such agroecosystems (Macci et al. 2013).

2 Microbial Functions in Agricultural Soils: The Nitrogen
Cycle

Soil organisms undertake a large number of ecosystem services, such as nutrient
cycling. Microorganisms carry out N cycling (Fig. 1), which is one of the most
important soil functions (Fitter et al. 2005; Wallenstein and Vilgalys 2005; He et al.
2007). Several soil properties are related to mineralization and immobilization rates
of N in soils, including microbial biomass, enzymatic activity, soil respiration rate,
and microbial C and N contents (Alef et al. 1988; Hart et al. 1994; Tietema 1998;
Barrett and Burke 2000; Bengtsson et al. 2003).

Although our atmosphere is composed of around 78% N (inorganic form), this N
source is not available directly to plants and animals. The only organisms that can
access this N2 pool are bacteria and archaea that produce the enzyme nitrogenase.
Nitrogenase-producing organisms can reduce the triple bond in atmospheric N2 to
ammonia, converting N into a source which can then be used by other organisms
(Dixon and Kahn 2004; Wuebbles 2002). Thus, in nature, the major input of
available N into the biosphere is through diazotrophic N fixation by prokaryotes
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Fig. 1 Nitrogen cycling in
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(Fig. 1). Nitrogenase is the key enzyme in N fixation. The N-reductase subunit of
nitrogenase is encoded by the highly conserved gene nifH (Coelho et al. 2009). The
abundance of the nifH gene in an environmental sample gives an indication of the
potential for N fixation by bacteria (Coelho et al. 2009). Microbial assimilation of
inorganic N is critical for improving soil retention of N (Vinten et al. 2002; Tahovská
et al. 2013). Addition of N to the soil is often in forms unavailable for direct uptake
by plants, including urea (Witte 2011) or organically bound N in other fertilizers.
Therefore, microbial N cycling in soils is key in transforming these N sources into an
accessible form of N for plants (Fitter et al. 2005; Wallenstein and Vilgalys 2005; He
et al. 2010). In fertilized systems, the hydrolysis of urea, which results in the release
of ammonia and carbon dioxide (CO2), is a significant player in soil N balance. Urea
hydrolysis is catalyzed by the bacterial enzyme urease, with the urease alpha subunit
being encoded by ureC gene (Koper et al. 2004). The abundance of the ureC gene
can therefore also be used as an indicator for the presence of N cyclers. Since a large
portion of soil N is bound in organic matter in the form of proteins and other
N-containing macromolecules, mineralization starting with proteolysis is an impor-
tant step in the release of available N into the biosphere. Proteolysis is a rate-limiting
step in soil N cycling. Protease-encoding microbial communities can be studied by
quantifying genes encoding the alkaline (apr) and neutral (npr) metallopeptidase.
Using gene abundance assessment, Lori et al. (2018) found that organically managed
soils had a more stable N provisioning potential than conventional fertilized soils
under drought scenarios, probably facilitated by a distinct and more adaptive pro-
teolytic microbial community.

Nitrification and denitrification, involving ammonia oxidation and nitrate and
nitrite reduction to N2O and N2, respectively, are major components of the soil N
cycle (reviewed by Teixeira and Yergeau 2012). A variety of microbes decompose
organic N into NH4

+ (Zhou et al. 2012), and the preferred N form available for
plants, namely, NO3

�, is produced by nitrifying microorganisms, which oxidize
NH4

+ to NO2
� and then NO3

� (Horz et al. 2004; Fierer et al. 2012). Nitrification is
an aerobic process which begins with the oxidation of ammonia to nitrite. Nitrite
produced in this reaction is then further oxidized to nitrate by nitrite-oxidizing
bacteria. The oxidation of ammonia is often the rate-limiting step and is catalyzed
by the enzyme ammonia monooxygenase. The abundance of bacterial and archaeal
amoA genes, which encode the alpha (A) subunit of ammonia monooxygenase, can
be measured using molecular techniques and be used to estimate the soil’s potential
for nitrification. The relative contribution to nitrification by bacterial versus archaeal
ammonia oxidizers in soils and other ecosystems is still under debate (reviewed by
Teixeira and Yergeau 2012).

The N cycle is considered to be completed when denitrifying microorganism
reduces NO3

� to NO, N2O, and N2, returning N to the atmosphere (Braker et al.
1998; Houlton and Bai 2009). Denitrification is a complex anaerobic process
involving various enzymes that remove fixed N and convert it to other forms,
including gaseous N compounds. N cycling is therefore also important from several
other environmental perspectives, including controlling emission of the greenhouse
gas nitrous oxide (N2O). It has been estimated that approximately 5% of soil
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microbial biomass is denitrifying bacteria (Braker and Conrad 2011), which are
functionally diverse and belong to over 60 genera (Philippot 2006). The rate-limiting
step in denitrification is the reduction of nitrate (NO2

�) to nitric oxide (NO), which
distinguishes denitrifiers from other nitrate-reducing bacteria. This step is catalyzed
by the enzyme nitrate reductase. Denitrifiers may contain one of two functionally
and physiologically equivalent types of nitrite reductases: a Cu-containing enzyme
(encoded by nirK) and a cytochrome cd1 (encoded by nirS) (Philippot 2006; Zumft
1997). The size of denitrifying microbial communities has been correlated with
denitrification process rates (Throbäck et al. 2007; Hallin et al. 2009; Morales
et al. 2010; Szukics et al. 2010; Petersen et al. 2012; Wu et al. 2012; Butterbach-
Bahl et al. 2013). Another key reaction in the denitrification process is the reduction
of N2O to N2. This reaction is catalyzed by the enzyme nitrous oxide reductase,
encoded by the gene nosZ. The presence of the nosZ, a gene in the soil, may suggest
that the microbial community present can reduce N2O to N2 and influence the
balance of the two in the environment (Philippot 2006). Given that denitrifiers
account for a significant proportion of soil microbial communities, the response of
denitrifying microbes to agricultural management strategies is useful in assessing
trends in soil functioning. Community composition has been shown to vary with the
use of N and C fertilization (Hallin et al. 2009; Yin et al. 2014; Bastian et al. 2009),
crop production practices and cropland use (Reeve et al. 2010; Bissett et al. 2011), as
well as cover plant species (Bremer et al. 2007; Hai et al. 2009; Petersen et al. 2012).
Our ability to identify agricultural practices that enhance immobilization and trans-
formation of fertilizer N by soils requires an understanding of the impact agricultural
management practices, such as the application of N, have on N-cycling microbes.
Genes associated with the N cycle have been quantified and assessed in order to
elucidate the effects of soil properties and management practices, such as soil
geomorphology and land use (Colloff et al. 2008), pasture management (Wakelin
et al. 2009), N fertilizers (Okano et al. 2004; Cavagnaro et al. 2008), and tillage
(Cavagnaro et al. 2008), on the function of soil microbial communities. The main N-
cycling gene targets for molecular analysis of soil N-cycling potential include the
denitrification genes nirK, nirS, and nosZ, the nitrification amoA genes (in both
bacteria and archaea), and the N fixation gene nifH (reviewed in Teixeira and
Yergeau 2012).

3 Nitrogen-Cycling Communities in Soils Under Various
Fertilization Managements

3.1 Nitrogen Fixation

It may be anticipated that fertilizers containing N will have some impact on micro-
bial communities involved in N cycling, as it may remove any selection pressure for
the ability to carry out N2 fixation. However, the Rothamsted Broadbalk experiment,

Nitrogen-Cycling Communities in Organically Amended Versus. . . 383



which compared the effects of different N inputs over a 170-year period, showed no
significant effect on the diversity of the nitrogenase gene nifH, despite observed
changes in microbial community structure (Ogilvie et al. 2008). Nevertheless, other
studies have reported differences. A study conducted in south-east Australia, which
compared a number of different soil types and different land management practices,
indicated that land use had no influence on nifH gene abundance. Instead, the
primary factor influencing nifH abundance was the amount of microbial biomass
carbon (Hayden et al. 2010). In other Australian studies, the use of organic mulch as
a soil amendment increased the abundance of the nifH gene in cotton soils, and the
application of manure helped to maintain the level of nifH before and after crop
planting. In a Spanish study of grapevine soil, the abundance of the nifH gene was
significantly increased under treatment with organic fertilizers than when inorganic
fertilizer was used (Pereg et al. 2018). Morales et al. (2010) hypothesized that the
nifH gene, indicating the potential for N fixation, would be found at higher levels in
soils where leguminous plants were regularly grown. However, they found that the
nifH gene was more abundant in soil samples collected from forested sites, or soils
from sites used for successional planting, than it was in agricultural soils, including
those regularly planted with soybeans. These findings have been attributed to the
populations of free-living N fixers present in natural ecosystems. Pereg et al. (2018)
also observed that organic treatments which included either leguminous plants or
manure resulted in a similar abundance of the nifH gene, suggesting that factors
other than leguminous plant cover may account for the increased potential for N
fixation in organically managed systems when compared to traditional inorganic
fertilization practices. Also, in agreement with Morales et al. (2010), Pereg et al.
(2018) showed that the increased abundance of nifH under organic fertilization
regimes correlated strongly with available N (Av N, Kjeldahl method) and total
organic carbon (TOC) in grapevine soil. Pereg et al. (2018) suggested that the readily
available nitrate and ammonia in inorganic fertilizer may have suppressed the
abundance of N fixers, as indicated by the reduced abundance of nifH under
inorganic fertilization compared with soil treated with slowly released organic N
sources. Coelho et al. (2009) have also detected a reduction in free-living diazotroph
communities in soil with increasing levels of inorganic N fertilizer. High levels of
NH3 and NO3

� (available forms of N) found in inorganic fertilizers may repress the
synthesis and/or catalytic activity of the enzyme nitrogenase (Bisseling et al. 1978),
suppressing N fixation in soil treated with fertilizers and abolishing the competitive
advantage that diazotrophs may have in environments poor in available N. The
process of N fixation is energetically expensive and requires large amounts of
adenosine triphosphate (ATP) and reducing equivalents. Therefore, readily available
carbon (C) source is also essential for diazotrophs to fix N (Chan et al. 1994). Results
from Pereg et al. (2018) indicated that organic amendments that release organic N
and phosphorus gradually into the soil (García-Orenes et al. 2016) support the
conservation of N fixer communities in grapevine soils. This is in agreement with
earlier studies reporting that phosphorus fertilization stimulates N fixation in soils
(Reed et al. 2007) probably due to the high energy requirements of the N fixation
process. It should also be noted that other soil parameters will also influence the
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abundance and activity of N-cycling microbial communities. The seasonal dynamics
of these N-cycling communities are also tightly coupled with seasonal changes in
labile C and N pools, temperature, oxygen availability, soil compaction, and soil
moisture (Meng et al. 2017; Butterbach-Bahl et al. 2013; Rasche et al. 2010;
Menneer et al. 2004).

3.2 Nitrification

During nitrification, ammonia is converted to nitrite by ammonia oxidizers and then
to nitrate by nitrite oxidizers. Ammonia-oxidizing archaea (AOA) are considered to
be more abundant than ammonia-oxidizing bacteria (AOB) in the majority of soil
types (Leininger et al. 2006). However, it is not yet clear what the relative contri-
butions of these different groups are to soil nitrification and whether or not they can
be considered to be functionally interchangeable (Jia and Conrad 2009; Xia et al.
2011). The AOA require less energy and less ammonia than AOB and are therefore
likely to be more abundant than AOB in soils that are unfertilized and in natural soils
such as forest soils, despite having lower rates of ammonia oxidation than their
bacterial counterparts (Martens-Habbena et al. 2009; Tourna et al. 2011). However,
AOA has also been found to be more abundant in a variety of arable and agricultural
soils (Zhalnina et al. 2013). Acidic soils may also be more likely to support AOA
over AOB, as at low pH there is a shift toward ammonium over ammonia, which
limits substrate availability and growth of AOB (Hirsch and Mauchline 2015).
Although AOA has been found to dominate in arable soils at neutral pH, it appears
to be AOB that increase in numbers in response to the application of N. Nitrification
increases as N availability increases, and it is assumed that AOB are responsible for
these increases in nitrification (Hirsch and Mauchline 2015). Similarly, the size of
AOB communities, but not AOA, has been shown to increase with increased N
availability in farmed grasslands (Di et al. 2009) and in direct response to application
of animal manure (Wakelin et al. 2013), while in contrast, AOA was shown to
decline with increasing N in two different arable soils (Bates et al. 2010; Wessén
et al. 2011). In acidic soils, however, it is AOA that show a greater response to the
application of N fertilizers (Gubry-Rangin et al. 2010). This again reflects the
availability of ammonia as a substrate and the different pH optima for the two
groups: nitrification by AOB decreases at lower pH (below 7), while conversely,
nitrification by AOA decreases as soil pH increases (Hirsch and Mauchline 2015).
AOB fix C autotrophically, and ammonia is its only source of usable energy and
reductants. AOB isolated from acidic soils are often ureolytic, containing the urease
enzyme, and ureolytic AOB can grow at lower pH with urea as an ammonia and CO2

source (summarized in Koper et al. 2004), two ecologically important traits. Koper
et al. (2004) suggested that ureolytic AOB may have an advantage in soils receiving
animal wastes or urea fertilizers. The structure of AO microbial communities is also
influenced by pH: different groups of AOA and AOB have been found in arable soils
maintained at a range of pH from 4.5 to 7.5 (Nicol et al. 2008). The structure and
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function of these microbial communities seems to be influenced more by the soil
properties rather than by the land management strategies used (organic versus
conventional), which may explain why significant heterogeneity has been observed
in AOA and AOB abundance (Hirsch and Mauchline 2015).

In agreement with Wessén et al. (2010) and Zhang et al. (2010), a study by Pereg
et al. (2018) comparing organic versus inorganic grape production indicated that
amoA genes, involved in ammonium oxidation in both bacteria and archaea, were
affected differently by the fertilization practices. Abundance of the bacterial amoA
(amoA-B) gene was lowest in soils treated with organic fertilizer in the form of
prunings plus manure (OPM) yet higher in soil treated with prunings and legume
cover (OPL) and under inorganic fertilization (IF) (Pereg et al. 2018). IF (20 Kg ha�1

N annually) soil was treated with NH4NO3 containing NPK, whereas OPL (15 Kg
ha�1 N annually) was not treated with inorganic fertilizers. Nevertheless, there was a
greater abundance of amoA-B under both treatments than in OPM-treated (126 Kg
ha�1 N annually) soil. While NH3 is produced from degradation of the organic
matter in fresh manure, a large proportion of it might be lost by direct conversion
into NO3

� by heterotrophic nitrifiers or by volatilization (Maeda et al. 2011 and
references within). In contrast, archaeal amoA (amoA-arch) genes were evenly
distributed under all treatments, OPM, OPL, and IF, in grapevine soil (Pereg et al.
2018). In contrast to Leininger et al. (2006), Di et al. (2009), Hai et al. (2009), and
Pereg et al. (2018) found a higher abundance (approx. tenfold) of archaeal than
bacterial amoA in the soil. Hai et al. (2009) found an even distribution of AOA, but
not AOB, in tropical sorghum soils treated with manure or straw with or without urea
and, similar to Santoro et al. (2008), concluded that the AOA populations are more
stable than AOB populations. AOB and AOA were present in lower numbers in soils
treated with ammonium sulfate, compared to other soil treatments (Hallin et al.
2009). Interestingly, treatment with sewage sludge negatively impacted on the size
of the AOA communities, but not on the AOB communities. The results of this study
confirmed that fertilization regimes could affect not just the abundance of ammonia
oxidizers but also the AOB/AOA ratio (He et al. 2007). However, it is not yet clear
exactly which conditions favor the dominance of one or the other of the two types of
ammonia oxidizers, bacterial and archaeal. Zhang et al. (2017) observed significant
effects of pig manure as a fertilizer on nitrification activity and ammonia oxidizer
communities. Although in general AOA were obviously more abundant than AOB
(hundreds of times greater), it seemed that the AOB community was more sensitive
to the shifts in fertilization or soil heterogeneity. This study also found that other
factors, such as C- and N-related soil nutrients and enzyme activities, were important
factors in shaping AOA and AOB community structures (Hallin et al. 2009). Taken
together, these studies also suggest that variations in environmental conditions affect
bacterial communities more than their archaeal counterparts. Archaea were found to
oxidize ammonia and assimilate C in an agricultural soil, with different groups
carrying out either heterotrophic activity or autotrophic CO2 fixation (Pratscher
et al. 2011). Such heterogenicity in ammonia-oxidizing microbes could possibly
explain why bacterial and archaeal amoA abundance was independent of TOC in
grapevine soils as observed by Pereg et al. (2018) and in soils collected from
Australian cotton fields.
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To summarize, while nitrification takes place in most soils, in soils that are acidic
or nutrient-poor, AOA may be responsible for most nitrification, while AOB con-
tribute to a greater extent in neutral and fertilized soils. As a consequence, there may
be a delay between the application of fertilizers to nutrient-poor soils and an increase
in nitrification, until the AOB populations have the time to adjust and increase. AOA
and AOB also show different responses to inhibitors of nitrification. For example,
the inhibitor 3,4-dimethylpyrazole phosphate (DMPP) reduces size of AOB com-
munities, but does not impact AOA (Kleineidam et al. 2011); similarly, high levels
of sulfadiazine residues in pig manure inhibit growth of AOB to a much greater
extent than they inhibit AOA (Schauss et al. 2009). N fertilizers in access might turn
into an ecosystem hazard, where nitrifying microbes exist and convert available N to
nitrate. Excess of nitrate might leach into, and cause eutrophication of, aquifers,
groundwater, lakes, and estuaries (Vitousek et al. 1997; Galloway et al. 2008).

3.3 Denitrification

Denitrification is a useful ability for soil bacteria, allowing anaerobic respiration.
Many of the denitrifiers identified are facultative anaerobes, switching to denitrifi-
cation when soil becomes waterlogged and when organic matter and useable N are
readily available. Fungi that contain a mitochondrial gene similar to the bacterial-
type nitrite reductase gene can also be involved in denitrification (Kim et al. 2009).
Some factors, such as reduced oxygen availability, and changes in nitrate concen-
tration, that influence denitrification have been well-established. The addition of
manures and other organic fertilizers to soil tend to increase the activity of denitri-
fiers, relative to the use of inorganic fertilizers, but the impacts on the structure of
microbial denitrifier communities are less clear (Hallin et al. 2009; Philippot et al.
2007). Thompson et al. (2016) showed that the abundance of denitrifiers changed
differently than the total bacterial community of soils, suggesting that denitrifier
populations are regulated differently from the total bacterial community. However, a
long-term Swedish study comparing different fertilizer inputs found that overall
denitrification activity was correlated with the total bacterial biomass, with crop
yields, and with levels of the nosZ gene, which encodes the enzyme nitrous oxide
reductase (Hallin et al. 2009). In any case, the abundance, distribution, and diversity
of denitrifying microbes appear to be influenced by both soil conditions and man-
agement practices, and their activity can be assessed by reference to nir gene
abundances (Clark et al. 2012; Hallin et al. 2009).

The impacts of inorganic fertilizers on denitrifying microbial communities are
complex, due to the great diversity of denitrifiers themselves and the variation in
abundance in different environments (Hirsch and Mauchline 2015). However, in
general, it has been demonstrated that the use of organic fertilizers increases deni-
trification activity in soils when compared to inorganic fertilization (Philippot et al.
2007). The Cu-containing enzyme nitrite reductase nirK has been reported at higher
levels in arable soils and in soils that have been treated with increased N fertilizer
inputs (Philippot et al. 2007), while the alternative, nirS, has been found to be more
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abundant in intensively grazed pasture soils with increased soil ammonia levels
(Dandie et al. 2011). A study which compared various fertilization managements,
including unfertilized bare fallow, unfertilized plots with crop, and plots with crop
fertilized with calcium nitrate, ammonium sulfate, solid cattle manure, or sewage
sludge, found that the abundance of nitrate reducers (narG) and denitrifiers (nirS,
nosZ) were significantly lower in soils treated with sewage sludge than in the soils
treated with manure. The positive effects expected by the high organic inputs may
have been counteracted by the lower pH in the plots treated with sludge (pH 4.7)
compared to the manure-treated plots (pH 6.0) as well as by the higher heavy metal
content (Hallin et al. 2009; Bergkvist et al. 2003). Overall, the abundance of
denitrifiers was one to two orders of magnitude lower in soils treated with ammo-
nium sulfate, compared with the other treatments. This may also be explained by the
lower pH of the soil in these plots compared to the other treatments (Hallin et al.
2009). Other studies have also described the impact of fertilization strategy on
denitrifying communities. In Spanish grapevine soils, the abundance of genes
involved in denitrification (nirK, nirS, and nosZ) was found to be greater under
organic than under inorganic fertilization (Pereg et al. 2018). On the other hand,
Zhang et al. (2013) reported different responses of the various denitrification genes
(nirS, nirK, and nosZ) to different soil treatments. Clark et al. (2012) reported an
overall similar behavior of nosZ, nirK, and nirS, in soil from wheat fields, but found
that nirS was tenfold less common than the other genes. In contrast, Pereg et al.
(2018) found that nosZ was approximately fivefold less abundant than nirS in the
Spanish grapevine soil. Hallin et al. (2009) found nirS/nirK ratio in unfertilized bare
fallow soils to be three to ten times higher than in soil from plots with crops. Since
the reduction of nitrite by denitrifiers can be performed either by the cytochrome cd1
nitrite reductase (NirS) or by the copper-containing nitrite reductase (NirK), as
denitrifying bacteria possess only one form of the enzyme, these findings indicate
the habitat created by the presence or absence of plants will select for either NirS- or
NirK-type microbes. They suggested that NirS and NirK, although being function-
ally equivalent, are not ecologically redundant.

The gene nirS has been found to dominate over nirK in various natural environ-
ments, particularly in aquatic environments (Bothe et al. 2000; Nogales et al. 2002;
Prieme et al. 2002; Liu et al. 2003; Throbäck et al. 2004; Oakley et al. 2007;
Deslippe et al. 2014), as well as in cultured denitrifiers (Zumft 1997), and Thompson
et al. (2016) raised a concern about unspecific nirK amplification products in PCR
assays. Therefore, some researchers shifted their focus from studying both genes to
studies on nirS alone (Morales et al. 2010; Thompson et al. 2016). Nevertheless,
nirK is abundant in aerobic, oxygen-rich environments (Desnues et al. 2007; Knapp
et al. 2009), and an analysis of the nirK PCR primers developed by Henry et al.
(2004) and optimized by Pereg et al. (2018) confirmed their suitability for specific
nirK amplification from soil DNA. Therefore, Pereg et al. (2018) recommended
these primers for use in studies estimating the abundance of the denitrifying gene in
soil DNA.

Similar to Hallin et al. (2009), Pereg et al. (2018) showed that different N
fertilization usage could impact on the size of denitrifying microbial communities.
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An organic fertilizer, consisting of manure and plant residues with a relatively high
C:N ratio (approx. 80), and six times higher total amount of slow-release N than that
of inorganic fertilizer, increased denitrifier abundance in grapevine soils. In another
study, such a high C:N ratio was found to correlate with decreased N2O emissions
(Huang 2004). The final step in the N cycle is the reduction of nitrous oxide,
releasing N2 back to the atmosphere. This reaction is catalyzed by nitrous oxide
reductase, encoded by the nosZ gene, a gene present in the genomes of less than 70%
of known denitrifying microbes (Jones et al. 2008). Even when present the gene is
not always expressed, resulting in accumulation of N2O, an important greenhouse
gas. It has been reported recently that some microbial species only contain a
functional nosZ gene (Jones et al. 2013; Sanford et al. 2012), even though they
may not possess the other genes involved in the denitrification pathway. Indeed, the
abundance of the nosZ was higher in the grapevine soils using this organic fertilizer,
when compared to inorganic fertilization regimes (Pereg et al. 2018), suggesting a
higher abundance of denitrifiers with the ability to reduce N2O to N2 and the
potential to lower N2O emissions (Miller et al. 2008). Agricultural management
practices that encourage the growth of microorganisms with this functional nosZ
gene could be important and potentially allow for a reduction in greenhouse gas
emissions under conditions which make denitrification inevitable (Hirsch and
Mauchline 2015).

4 The Relationship Between Management Strategies
and N-Cycling Gene Abundance

One of the fundamental differences between inorganic fertilization and organic
matter supplementation is that the first boosts the soil with short-lived nitrate and
ammonia in relatively high concentrations, while the latter depends on the slower
breakdown of organic matter and thus provides a gradual supply of N and C to the
soil. This gradual release of available N and C improves various soil properties
(García-Orenes et al. 2016) and supports the maintenance of diazotrophic and
denitrifying communities (Pereg et al. 2018). The components of each soil treatment
can, therefore, have a significant influence on soil microbial communities. Hartmann
et al. (2015) found that systems not receiving manure harbored more dispersed and
functionally versatile microbial communities containing oligotrophic organisms that
possibly adapted to nutrient-poor environments. On the other hand, systems treated
with organic fertilizers harbored specific microbial guilds that degrade complex
organic compounds, for example, compost and manure (Hartmann et al. 2015). In
a study of Spanish grapevine soils, Pereg et al. (2018) found a significantly high
correlation between abundance of nifH and TOC, nosZ, or nirS. The correlation of
TOC with nifH was particularly high, possibly due to the relatively low available N
concentrations at any time in the soil, due to the slow release of available N from
organic matter. In contrast to the findings of Pereg et al. (2018) (for grapevine soil,
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Spain) and (for cotton in Australia), Morales et al. (2010) found a weak negative
correlation between the abundances of the nifH and nirS genes. The nirS gene
abundance was not correlated to organic C levels and did not exhibit the same
trend as nosZ (Morales et al. 2010). Hai et al. (2009) also found that there was an
increased abundance of nifH, but not of nirK/S, in tropical agricultural soils treated
with manure, when compared to untreated soil or soil treated with straw. Overall, N
fixation and denitrification are opposite reactions. However, some soil microbes are
capable of both N fixation and denitrification. For example, various rhizobia species
contain nifH and nirK (Bedmar et al. 2005), while some N-fixing strains of the
bacterium Azospirillum brasilense contain both nifH and cd1-type nir gene
(Danneberg et al. 1986). Therefore, it is not surprising that the abundance of nifH
and nirS/nirK/nosZ was found to be similar in grapevine soils under various condi-
tions as shown in Pereg et al. (2018). While nitrification is aerobic and denitrification
anaerobic, these processes can take place in different micro-niches in soil aggregates
and thus run simultaneously where both contribute to soil production of nitrous
oxide (Stevens et al. 1997).

Soil with a neutral or slightly basic pH is considered to be optimal for most
diazotrophs (Belnap 2001), and soil pH has been considered as a major factor
influencing microbial community structure in various studies worldwide (Fierer
and Jackson 2006; Noll and Wellinger 2008; Wakelin et al. 2008; Griffiths et al.
2011; Zhalnina et al. 2015). However, often in agricultural managed ecosystems,
farmers often manage their soils to achieve particular pH and other soil properties.
Therefore, it is not surprising that studies of agricultural soils, such as that carried out
in Pago Casa Gran, have shown there was no significant difference in the pH of soil
under organic or inorganic fertilization (García-Orenes et al. 2016), so this factor
cannot explain the differences observed in N cycler abundance (Pereg et al. 2018).
Similar results were observed in a study of Australian cotton soil indicating that
factors other than pH are major determinants of N-cycling microbial communities.
High NH4

+ availability and moderate pH favor nitrification in soils, whereas pH
close to neutral, high availability of nitrate (electron acceptor), and labile, energy-
rich C (Barnard et al. 2005) favor denitrification. There is obviously a great diversity
in soil microbial communities across different soils, under different environmental
and geographical locations. Moreover, diversity could also reflect temporal factors
and technical differences, which may compromise comparisons between studies.
When considering N fertilization strategies, higher N fixation than denitrification
would be beneficial in order to conserve the newly fixed N in the biosphere. Where
nifH and nir/nosZ genes are both abundant, it is the conditions in the soil that would
determine which genes will be fully expressed. Methods such as in situ enzymatic
activity, proteomics, and possibly transcriptomics could be employed to assess
which conditions in the soil niche would activate particular processes at any given
time and allow this to be taken into account when selecting land management
strategies.
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5 Conclusions

Despite the demonstrated negative environmental impacts, modern agricultural
practices, with high levels of agrochemical, mechanization, and modern high-
yielding crop varieties, such as cereal production, have increased the productivity
of agricultural land and allowed the earth to sustain an increasingly large human
population. Since 1700 the global population has increased by at least tenfold. It is
currently over seven billion and predicted to grow up to around nine billion people
by the year 2050 (Hirsch and Mauchline 2015). This continual population growth
places increasing pressure on land for food production. However, we also see
aggravated climate change in response to increased industrialization. Food security
and the need to feed a growing population must, therefore, be balanced against the
negative environmental impacts of intensive crop production (Hirsch and Mauchline
2015). Utilizing N in agricultural systems in ways that consider and help manage
microbial communities involved in the N cycle, notably using organic matter
supplementation, will play an essential role in ensuring sustainability.
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