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Abstract
Secondary metabolites such as polyphenols are naturally existing compounds 
which are especially found in fruits, vegetables, cereals, and various other bever-
ages. These defensive bio-active compounds possess broad range of biological 
activities in providing treatment against various diseases. Increased dietary intake 
of polyphenols has been reported to lower the risk of chronic diseases, where, oxi-
dative stress is the main causative factor. Oxidative stress can cause oxidative dam-
age to biological macromolecules such as proteins, nucleic acids, and lipids. They 
play a vital role in the pathogenesis of aging and other degenerative diseases. 
Humans possess potent antioxidant defense mechanisms to combat with the altered 
redox balance which results from excessive generation of free radicals produced 
during increased oxidative stress. The mechanism by which they exert beneficial 
effects includes scavenging of reactive oxygen species (ROS), blocking of ROS 
production, and sequestering of transition metals and antioxidant mechanisms 
which are produced endogenously and supplied through diet, which is exogenous. 
Dietary polyphenols have attracted increased attention for study against various 
disease mechanisms because of their potent antioxidant, antiaging, anticancer, 
anti-inflammation, neuroprotective, and cardiovascular protection activities. Even 
though various biological properties of polyphenols have been elucidated, the 
potent mechanism by which these compounds act in providing beneficial effects in 
human health against various diseases still needs to be explored. The absorption 
efficacy of these compounds should be taken into consideration while using in 
clinical applications. Knowledge of mechanism of action and bioavailability might 
increase the understanding of biological activity of polyphenols within target tis-
sues. This chapter has emphasized the classification of dietary polyphenolics and 
bioavailability along with their beneficial mechanism of action in treating various 
diseases. The chapter will certainly throw limelight in making use of dietary poly-
phenols as an effective treatment regimen in prevention against various diseases.
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14.1	 �Introduction

Polyphenols are the secondary plant metabolites and rich bio-active compounds. 
Polyphenols possess one or more benzene rings that bear numerous hydroxyl groups 
(Del Rio et  al. 2013). They are the richest source of antioxidants which are 
immensely available in our daily diet. The sources of polyphenols are present 
widely in foods and beverages of plant origin which include legumes, spices, fruits, 
vegetables, coffee, nuts, olive oil, wine, green tea, and cocoa (Bonita et al. 2007; 
Vallverdú-Queralt et al. 2015; Talhaoui et al. 2016). The color, odor, flavor, bitter-
ness, acidity, and oxidative stability could be attributed to the characteristic feature 
of the polyphenols present in the diet. The antioxidants present in polyphenols delay 
the oxidation of low-density lipoprotein which is the underlying mechanism that 
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takes place in atherosclerosis. Numerous epidemiological studies suggest that long-
term consumption of dietary polyphenolics could provide hepatoprotection and pro-
tective action against development of cardiovascular diseases, osteoporosis, asthma, 
neuroprotection, diabetes, and cancers and even aging (Baião et al. 2017) (Fig. 14.1). 
Various forms of oxidants and free radicals are involved in the pathogenesis of 
numerous chronic diseases. Dietary sources of polyphenols have received greater 
attention nowadays because of their beneficial effects against broad range of pathol-
ogies in various tissues with different efficacies and bio-availabilities. Hence, this 
chapter focuses on the dietary consumption of polyphenolics, their bioavailability 
together with their beneficial effects in human disease and health.

14.2	 �Chemistry and Classification of Secondary Polyphenols

Polyphenolic compounds have at least one aromatic ring attached with one or more 
hydroxyl groups. These compounds range usually from small molecules to complex 
polymeric structures (Velderrain-Rodríguez et al. 2014). The natural polyphenols 
exist typically in conjugation with organic acids and sugars and can be divided into 
five major classes depending on the chemical structure which are as follows: pheno-
lic acids, flavonoids, stilbenes, lignans, and other polyphenols. The classification 

Fig. 14.1  Beneficial role of polyphenols in human health
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and major sources of polyphenols are presented in Table 14.1. The major classes of 
polyphenols are phenolic acids and flavonoids which account for about 30% and 
60%, respectively (Neveu et  al. 2010). Some of the major polyphenol chemical 
structures are represented in Fig. 14.2 and discussed below. Phenolic acids have 

Table 14.1  Major classes of polyphenols and their available food sources

Major 
classes Subclasses Examples Sources References
Phenolic 
acids

Hydroxybenzoic 
acid

Ellagic acid, 
gallic acid

Pomegranate, 
grapes, berries, 
walnuts, chocolate, 
wine, and green 
tea

Manach et al. 
(2004) and Del 
Rio et al. (2013)

Hydroxycinnamic 
acid

Coumaric acid, 
caffeic acid, 
ferulic acid, 
chlorogenic acid

Coffee, cereal, and 
grains

Guasch-Ferré 
et al. (2017)

Lignans – Sesamin, 
diglucoside

Flaxseeds, sesame Kiso (2004) and 
Kong et al. (2009)

Stilbenes – Resveratrol, 
pterostilbene, 
piceatannol

Grapes, berries, 
red wine

Soleas et al. 
(1997), Haminiuk 
et al. (2012), and 
Guasch-Ferré 
et al. (2017)

Flavonoids Anthocyanins Delphinidin, 
Pelargonidin, 
cyanidin, 
malvidin

Berries, grapes, 
cherries, plums, 
and pomegranate

Brouillard et al. 
(1997), Es-Safi 
et al. (2002), and 
Guasch-Ferré 
et al. (2017)

Flavanols EGCG, EGC, 
ECG, 
procyanidins

Apples, pear, 
legumes, tea, 
cocoa, and wine

Arts et al. (2000a, 
b) and Rasmussen 
et al. (2005)

Flavanones Hesperidin, 
naringenin

Citrus fruits Leuzzi et al. 
(2000) and 
Proteggente et al. 
(2003)

Flavones Apigenin, 
chrysin, luteolin

Parsley, celery, 
orange, onions, 
tea, honey, spices

Leuzzi et al. 
(2000) and Godos 
et al. (2017)

Flavonols Quercetin, 
kaempferol, 
myricetin, 
isorhamnetin, 
galangin

Berries, apples, 
broccoli, beans, 
and tea

Godos et al. 
(2017), Guasch-
Ferré et al. 
(2017), and 
Williamson 
(2017)

Isoflavones Genistein, 
daidzein

Soya beans and 
other legumes

Reinli and Block 
(1996), Liggins 
et al. (2000), and 
Guasch-Ferré 
et al. (2017)
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simple structures with the presence of additional carboxyl group which is linked to 
the aromatic ring of the compound. The subclasses of phenolic acids are benzoic 
and cinnamic acids with seven and nine carbon atoms, respectively. Benzoic acid is 
further subdivided into gallic and vanillic acid. Cinnamic acid is further categorized 
into ferulic acid and chlorogenic acid (Neveu et al. 2010).

Flavonoids comprise of two aromatic rings with 15-carbon units which are 
bridged via 3-carbon. The subcategories of flavonoids (i.e., C6-C3-C6) include fla-
vones, anthocyanidins, flavanols, flavanones, flavonols, and isoflavones (Tsao 
2010). Flavonoids naturally occur in the form of glycosides. The occurrence of fla-
vonols is abundant in nature except in algae and fungi. Most common forms of fla-
vonols are kaempferol, quercetin, myricetin, and isorhamnetin. They conjugate and 

Fig. 14.2  Chemical structure of some major polyphenols
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occur in the form of glycosides. Flavones are structurally like flavonols which lack 
oxygenation at C-3 position. The subclasses of flavones are apigenin, chrysin, and 
luteolin. Flavones are substituted possibly by hydroxylation, alkylation, glycosyl-
ation, and methylation. The B-ring of isoflavones occurs naturally at C-3 position 
rather than C-2 position. The isoflavones, such as daidzein and genistein, occur in 
the form of aglycones (Del Rio et  al. 2013). Flavanones occur as derivatives of 
hydroxylation, methylation, and glycosylation. The available flavanones are narin-
genin and hesperetin, which presents a chiral center at second carbon position and 
lacks double bond. The most common forms of anthocyanidins include delphinidin, 
pelargonidin, cyanidin, and malvidin which occur in the form of aglycones. They 
conjugate with organic acids and sugars and generate varying colors of anthocya-
nins that range from orange to blue and red to purple which appear in flowers and 
fruits (Jaganath and Crozier 2011).

Flavanols occurs in the form of glycosides. They form the complex group of 
flavonoids that ranges from simple monomeric forms to complex polymeric proan-
thocyanidins. They are also referred to as condensed tannins. High levels of flava-
nols are present in green tea which are abundant in nature. The main constituents of 
green tea include epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate 
(ECG), and epigallocatechin-3-gallate (EGCG) (Rahmani et al. 2015). Apart from 
phenolic acids and flavonoids, stilbenes and lignans have also attracted increased 
attention because of its multifaceted health benefits in human. Stilbenes have 
14-carbon backbone and occur from simpler to complex structures. Resveratrol, 
pterostilbene, and piceatannol are the subclasses of stilbenes. Lignans occur natu-
rally in bound forms mostly in flaxseeds and sesame. In addition to this, curcumin 
is a natural antioxidant from turmeric (Zhang et al. 2012).

14.3	 �Distribution and Content of Polyphenols

The plant polyphenolics present at cellular, tissue, and subcellular levels lack uni-
formity. Soluble forms of phenolics are located within cell vacuoles of plants, 
whereas insoluble forms of phenolics are present in cell walls (Nayak et al. 2015). 
The insoluble forms of polyphenols form covalent bonds with pectin, cellulose, and 
other cell wall substances which account for 20–60% when compared to soluble 
forms. Insoluble-bound phenolic forms are mainly available in cereals such as black 
rice, maize, wheat, corn, and barley (Chandrasekara and Shahidi 2010; Rakli et al. 
2012; Li et al. 2014; Alshikh et al. 2015; Chen et al. 2015; Nayak et al. 2015). They 
are also available in legumes which include lentils, cranberry beans, mung bean, 
pinto bean, black bean, kidney bean, cowpea, and chickpea (Gutiérrez-Uribe et al. 
2010; Pajak et al. 2014; Verardo et al. 2015). They are also present in major source 
of oil seeds such as sunflower seeds and rapeseed meal. Apart from major oil seeds, 
Moringa seed flour, soya bean, and flaxseed were also studied (Min et  al. 2012; 
Singh et al. 2013; Beejmohun et al. 2007). Bound phenolics are also present in fruit 
seeds which include blueberry seed meals, blackberry, and black raspberry (Ayoub 
et al. 2016).
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Polyphenols are present in varying amounts in fruits, vegetables, and cereals. In 
most of the cases, they are present in complex mixtures of polyphenols (Álvarez 
et al. 2016). Higher content of polyphenols is in the outer layers of plants than in the 
inner layers (Anwei et al. 2013). The factors which affect the content of plant poly-
phenols include ripeness during the harvest period, storage, and processing. 
Environmental factors such as rainfall, exposure to sun, and the type of the soil also 
influence the polyphenol content of the plants (Kårlund et al. 2014). Ripening of the 
fruit increases the concentration of anthocyanins; however other polyphenolic con-
tent tends to decrease. Decrease in concentration of phenolic acids were observed 
after infection (Parr and Bolwell 2000). Storage is also considered to be an impor-
tant factor which also affect the polyphenol content via oxidation. Oxidation results 
in quality changes and color of foods (Bharate 2014). Storage of flour also causes 
reduction of polyphenolic content in wheat flour by about 70% (Avramiuc 2015). 
Storage in cold has very little effect on the polyphenol content of fruits and vegeta-
bles but results in subsequent loss of antioxidant capacity (Galani et  al. 2017). 
Cooking results in major effect on polyphenols content by about 80% in tomatoes 
and 75% in onions (Palermo et al. 2014). The quercetin content in onions and toma-
toes were reduced to about 30% in frying and 65% after cooking (Crozier et al. 
1997).

14.4	 �Bioavailability of Polyphenols

The bioavailability refers to the quantity of the polyphenol that is absorbed and 
metabolized through biological pathways (D’Archivio et al. 2010). The polyphe-
nols will be mostly available in the food in the form of glycosides and esters which 
are not absorbed in its natural form (Manach et al. 2004). The polyphenolic com-
pounds are hydrolyzed by the enzymes of the intestine or by the gut microflora. 
Absorption results in modifications of polyphenols in the intestine and in later 
stages in the liver via glucuronidation, sulfation, and methylation reactions.

Polyphenols are usually absorbed in the gastrointestinal tract, whereas some of 
the polyphenols are absorbed in the intestine. pH changes in the lumen results in 
decomposition of polyphenols during digestion. The oligomeric forms are unstable 
in both acidic and alkaline pH. Monomeric and oligomeric forms were stable even 
at pH 7 in the intestine, but at pH 7.4, the dimeric forms are degraded. Catechin after 
incubation for 2 h at pH 7.5 was stable, and about 30% of epicatechin was degraded 
(Zhu et al. 2002). Except flavanols, other flavonoids exist in its glycosylated forms 
(D’Archivio et al. 2010). Glycosides usually enters the intestine, from which, only 
aglycones are absorbed. Flavonoids such as quercetin are usually absorbed at gas-
tric level, whereas anthocyanins are absorbed in the stomach (Crespy et al. 2002). 
The main species present in plasma are various forms of catechins which are 
excreted in urine (Actis-Goretta et al. 2012).

Glucosides are transported by the sodium-dependent glucose transporter 
(SGLT1) which is hydrolyzed by cytosolic enzyme β-glucosidase. Nevertheless, the 
absorption rate of isoflavones is not clear (Farrell et al. 2013). Proanthocyanidins 
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are high molecular weight compounds with polymeric structure. This nature limits 
their absorption in the gut, and the oligomeric forms unlikely get absorbed in the 
small intestine (D’Archivio et al. 2007). Ingestion of free form of hydroxycinnamic 
acids results in increased absorption in the small intestine; however, esterified forms 
impair their rate of absorption (Clifford 2000). Majority of polyphenol absorption 
takes place in the gastrointestinal tract and intestine, but some polyphenols are not 
absorbed at these sites. Such kinds of polyphenols enter the colon and get hydro-
lyzed by the gut microflora into aglycones which further gets metabolized into aro-
matic acids. The metabolites of the polyphenols in the blood bind to albumin which 
plays a vital role in bioavailability of polyphenols. Binding affinity of polyphenols 
depends on their chemical structure (Latruffe et al. 2014). Tissue accumulation of 
polyphenols plays a vital role in exerting beneficial effects in the target sites (Kim 
et al. 2014). Derivatives of polyphenols such as conjugates are excreted via bile and 
monosulfates via urine (Crespy et al. 2003). The percentage of excretion of flava-
nones is higher with the decreasing order of isoflavones and flavonols. Thus, the 
potent beneficial effects of polyphenols rely on the intake and its availability at the 
target site (D’Archivio et al. 2007).

Numerous factors influence the rate of absorption which include chemical struc-
ture, fat content, and solubility. Absorption rate of the metabolites is determined by 
the chemical structure of the polyphenolic compound rather than its concentration 
(Cermak et al. 2003; Cifuentes-Gomez et al. 2015; Guo and Bruno 2015). The post-
prandial concentration of the polyphenols in the blood is usually less than 1 micro-
molar, whereas in the gut the concentration will be greater than 10- to 100-fold (Kay 
et al. 2009). Modified forms of polyphenolic compounds reaching the blood and 
tissues create difficulty in identifying and analyzing their potent effects (Natsume 
et al. 2003).

14.5	 �Therapeutic Potential of Polyphenols in Treating 
Human Diseases

Polyphenols or phenolic compounds display broad range of medicinal properties 
such as antioxidant, anti-inflammatory, antibacterial, neuroprotective, cardioprotec-
tive, and hepatoprotective action (Yildrim et  al. 2017). Phenolic acids have also 
attracted attention in cosmetic industry as ingredients for application. 
Hydroxycinnamic acids and its derivatives are used in various applications, because 
of their antioxidant, anti-inflammatory, antimicrobial, anti-collagenase, and ultra-
violet (UV) protective effects. Ferulic (FA) and caffeic acids (CA), which are avail-
able commercially, exert anti-collagenase and protective effect against UV-induced 
skin diseases (Taofiq et al. 2017).

Vegetables are the primary sources of polyphenols which have benefits for 
human health and disease prevention (Holst and Williamson 2008). Literature evi-
dences suggest that diets rich in fruits and vegetables are closely correlated with 
decrease in chronic disease risk, which includes CVD, certain cancers, and neuro-
degenerative diseases (Vauzour et  al. 2010). Polyphenols can be considered as a 
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potent antioxidant compounds which itself explains their basic underlying mecha-
nistic action in various disease processes. Flavonoids also possess antioxidant 
capacity, which scavenges free forms of hydroxyl and negative oxygen ions 
(Eghbaliferiz and Iranshahi 2016). Polyphenolic compounds should have enough 
absorption rate, and the required concentration must reach the bloodstream to dis-
play its beneficial effects (Scheepens et al. 2010). Decreased consumption of bio-
active compounds results in increased production of reactive oxygen species (ROS) 
that ultimately results in increased oxidative stress. Excessive generation of ROS 
creates damage in cellular macromolecules such as DNA, lipids, and proteins which 
opens the gateway for developing the risk of chronic diseases (Clifford et al. 2015). 
However, the mechanistic approach of dietary polyphenols is not quite simple, 
which involves more complex biological interactions involving multiple molecular 
pathways, and much more progress has been made in this area over the decades. 
Antioxidant nature does not create an impact in the biological activity of polyphe-
nols; instead the action depends on the bioavailability of the compound at the target-
specific site (Williamson 2017).

In this section, we have discussed on the role of polyphenols and their possible 
mechanistic role in preventing/treating various chronic human diseases such as 
aging, cancer, diabetes, inflammation, and cardiovascular, neurodegenerative, and 
hepatic diseases in detail.

14.5.1	 �Antioxidant Property and Mechanism of Action

Human metabolic system generates excessive ROS as by-products of various meta-
bolic reactions. Mitochondria are the major ROS production site. Increased free 
radical production results in damage to macromolecules such as protein, nucleic 
acids, and lipids (Cherubini et  al. 2005). ROS is the vital contributor of many 
chronic diseases in humans which include cancer, cardiovascular diseases, neurode-
generative diseases, and other age-related diseases. Our human body contains anti-
oxidant defense mechanism to counteract the oxidative damage. Phenolic acids can 
counteract the damage induced by ROS through scavenging of free radicals. It also 
upregulates the heme oxygenase/biliverdin reductase (HO/BVR) system and other 
antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) 
through which it scavenges free radicals.

FA has been extensively studied for its cardioprotective action (Roy et  al. 
2013). SOD and CAT activities are increased in the heart and pancreatic tissue of 
diabetic rats by FA treatment in a time- and dose-dependent manner (Alam et al. 
2013). Antioxidant property of protocatechuic acid (PCA) can be measured using 
antioxidant, scavenging, and chelating activity. PCA exhibits antioxidant nature 
which could be attributed to the free radical quenching and metal chelating action 
(Li et al. 2011).

Vanillic acid (VA) when administered at 100 mg/kg can reduce lipid peroxida-
tion (LPO) and increase the antioxidant activity of CAT, glutathione peroxidase 
(GPx), reduced glutathione (GSH), and SOD in nephrotoxicity-induced rats (Sindhu 
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et al. 2015). Gallic acid (GA) pretreatment was shown to mitigate both nephrotoxic-
ity and hepatotoxicity by causing reduction in lipid peroxide levels, and it restores 
the activities of antioxidant enzymes (Nabavi et al. 2013a; Nabavi et al. 2013b).

The polyphenols from grape seed extract when administered for short term dis-
played that the extract is bioavailable, and it binds to serum lipid fraction and thus 
reduces lipid peroxidation (Garcia-Alonso et al. 2006). Subjects when administered 
with tablets containing grape seed extract for 12-week period showed significant 
reduction in LDL cholesterol levels to a basal level. This experiment suggested that 
the grape seed extract has exerted its effect in minimizing LDL oxidation (Sano 
et  al. 2007). The polyphenolic compounds of olives are hydroxytyrosols which 
show antioxidant effects by reducing the markers of oxidative damage and the levels 
of oxidized LDL in plasma (Raederstorff 2009). Ingestion of green tea polyphenols 
also showed significant antioxidant activity by quenching the free radicals and mini-
mizing oxidized LDL levels (Pecorari et al. 2010). Consumption of nuts such as 
almonds or walnuts was shown to increase the concentration of polyphenols’ anti-
oxidant capacity and decrease the level of lipid peroxides in plasma (Torabian et al. 
2009). Anthocyanins possess various bioactivities such as antioxidant, antitumor, 
free radical scavenging, antiatherosclerosis, antidiabetic, and antiallergic activities 
(Deng et al. 2013).

Phenolic acids display antioxidant property not only by scavenging free radicals 
but also by strengthening the antioxidant defense mechanism. Nuclear factor ery-
throid 2 (NFE2)-related factor 2 (Nrf2) is the transcription factor which regulates 
the antioxidant enzymes by ARE (antioxidant response elements) present in the 
promoter region (Wasserman and Fahl 1997). PCA can induce the activation of 
antioxidant enzymes such as glutathione reductase (GR) and GPx via activation of 
Nrf2 which is mediated through Janus kinase (JNK)-mediated phosphorylation 
(Varì et al. 2011). It can also improve the cellular antioxidant system through induc-
tion of antiapoptotic mechanism. Phenolic acids can increase the liver antioxidant 
levels, and it also activates various antioxidant enzymes of the liver (Varì et  al. 
2015). Other phenolics such as GA, gentisic acid, coumaric acid, and FA were 
shown to upregulate the transcriptional activity of Nrf2, and it induces mRNA tran-
scripts in the liver (Yeh and Yen 2006).

14.5.2	 �Antiaging Property and Mechanism of Action

Aging is well-defined as the accumulation of varied lethal changes that occur in 
cells and tissues with the advancement of age, which are liable to the higher risks of 
diseases and demise (Tosato et al. 2007). In other words, aging is a complex process 
that involves multiple factors, such as the accumulation of molecular errors due to 
genomic and epigenetic interactions, environmental, hereditary, and stochastic 
(Rodríguez-Rodero et al. 2011). These factors lead to the gradual weakening of the 
cell functions. Aging usually manifests postmaturity stage of an individual and trig-
gers to frailty and death. With progress of age, the optimal health condition, immu-
nity, strength, and all physiological activities progressively start to deteriorate, for 
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example, the decline of thoroughgoing heart, lung, and kidney functions, the low-
ered secretion of sexual hormones, skin wrinkling, etc. (Rodríguez-Rodero et al. 
2011). Though the specific biological and cellular mechanisms accountable for the 
process of aging are not well-known, several theories have been proposed, and 
among them cell damages due to oxidative stress or free radicals are highly accepted 
(De and Ghosh 2017; Stefanatos and Sanz 2018; Viña et al. 2018). Some of the other 
reasons for the aging include noninfectious chronic inflammation triggered due to 
amplified secretion of adipokine and cytokines, fatty acid metabolism alterations, 
tissue insulin resistance, buildup of end products of cellular metabolisms, loss of 
postmitotic cells, and the deterioration in cells structure and function (De and Ghosh 
2017).

Antioxidants are known to inhibit free radicals and thus safeguard cells from 
oxidative damages. In recent times, awareness in correlating a diet to aging is grow-
ing widely and is well-acknowledged. Researchers have shown that dietary calorie 
restriction and consuming natural antioxidants prolong life duration in a number of 
aging models. Though oxygen is vital to aerobic animals, and acts as electron accep-
tor in mitochondria, it is injurious for the reason that it can constantly produce reac-
tive oxygen species (ROS), which are alleged for initiating the aging process. 
However, organisms have the capabilities to eliminate these ROS in cells via an 
antioxidant defensive system that constitutes a series of enzymes, i.e., catalase 
(CAT), superoxide dismutase (SOD), glutathione reductase (GR), and glutathione 
peroxidase (GPx) (Peng et al. 2014). Moreover, natural plant foods possess phyto-
compounds with anti-inflammatory and antioxidant activities and hence are believed 
to function as antiaging compounds. Some of the dietary antioxidants include ascor-
bic acid (vitamin C), vitamin A, α-tocopherol, polyphenols, and flavonoids. Thus, 
consuming such diet rich in antioxidant phytochemicals found in fruits and vegeta-
bles can effectively scavenge ROS and therefore hypothetically extend the life span 
of organisms.

Polyphenols are shown to ameliorate the adverse effects of the aging process. 
Anthocyanins (subset of the flavonoids), commonly occurring in darkly colored 
fruits, namely, berries, apples, grapes, and grape seeds, are proved to possess effec-
tive antioxidant and anti-inflammatory properties. Also, they are known to suppress 
the oxidative degradation of lipids and several inflammatory mediators, including 
cyclooxygenase (COX)-1 and COX-2 (Seeram et al. 2003). The extracts of spinach, 
blueberries, and strawberries contain great amounts of flavonoids and are reported 
to exhibit superior antioxidant activity. A study showed that a regular supplementa-
tion of diet containing strawberry or blueberries to aged rats for about 8  weeks 
showed the reversal of the age-associated structural and functional deficits in brain 
and behavior. Further, the authors claimed that polyphenolic compounds occurring 
in berry fruits might exercise their positive effects through lowering oxidative stress 
and neuroinflammation. Also, they may alter the signals that are involved in neuro-
nal communication, plasticity, neuroprotective stress shock proteins, calcium buff-
ering ability, and stress signaling pathways (Shukitt-Hale et  al. 2008). Likewise, 
catechins found in tea were shown to have a strong antiaging property. Studies have 
stated that the onset of aging can be delayed by a regular consumption of green-tea 
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rich in catechins (Rizvi and Maurya 2008). Food polyphenolic compounds are 
reported to protect the aging brain since they have the capability to cross the blood-
brain barrier (BBB) (Pandey and Rizvi 2009). In a recent study, researchers have 
hypothesized that dietary polyphenols cross the BBB to reach brain cells and modu-
late microglia-intermediated inflammation via modulation of the nuclear factor 
(NF)-κB pathway and exert neuroprotection (Figueira et  al. 2017). Resveratrol 
(grape polyphenol) along with caloric restriction (CR) can effectively prevent aging 
process through inhibiting apoptosis and senescence and reestablishing cognitive 
injury and oxidative damages. In addition, they upregulate telomerase activity and 
enhance the expression of longevity-associated gene silencing information regula-
tor (SIRT1), forkhead box 3a, active regulator of SIRT1, and Hu antigen R (Li et al. 
2017; Sarubbo et al. 2018). Likewise, resveratrol is reported to target the sirtuin 
class of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases, mainly 
SIRT1, which is responsible for health and longevity (Markus and Morris 2008). 
Further, it increases insulin sensitivity and AMP-activated protein kinase and per-
oxisome proliferator-activated receptor-c coactivator 1a (PGC-1a) activity but 
decreases the expression of insulin-like growth factor 1. Further, experimental evi-
dences suggest that resveratrol activates forkhead box O (FOXO), which controls 
the expression of genes contributing for both longevity and stress resistance (Barger 
et al. 2008). Similarly, Li et al. (2017) reported that resveratrol and its derivative, 
pterostilbene, exhibit antiaging properties through modulating inflammation, oxida-
tive damage, telomere attrition, and cell senescence. Though not completely agreed, 
evidences suggest that polyphenols derived from blueberries may improve the spa-
tial memory efficiency by acting on the dentate gyrus, a hippocampal subregion 
principally sensitive to the effects of aging (Burke and Barnes 2006; Janle et al. 
2010; Vauzour 2012). Several polyphenols, quercetin, rosmarinic acid, and caffeic 
acid, were shown to activate stress-related genes and augment the antioxidative 
capability and the lifetime of Caenorhabditis elegans (Pietsch et  al. 2011). 
Polyphenols, such as epigallocatechin gallate, quercetin, and curcumin, protect 
cells against agents that suppress autophagy. They act on targets involved in the 
AMP-activated protein kinase (AMPK) or mammalian target of rapamycin (mTOR), 
phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and 
protein kinase B (Akt) signaling pathways showing different effects on the autoph-
agy (Gurău et al. 2018).The polyphenols, quercetin and curcumin, were shown to 
boost the longevity in flies, yeast, and mice (Pietsch et al. 2009; Liao et al. 2011; 
Gurău et al. 2018).

14.5.3	 �Antidiabetic Property and Mechanism of Action

Diabetes also referred as diabetes mellitus is a chronic condition caused due to fail-
ure in the regulation of blood glucose levels in the body. Diabetes and obesity have 
become a major challenge to the global healthcare. Over the past few decades, 
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diabetes incidence has significantly doubled. In the USA alone, nearly 30 million 
people are being diagnosed with this condition. The most prevalent form of diabetes 
is the type 2 diabetes (95%) (Wu et al. 2014a). In type 1 diabetes, the immune sys-
tem of a patient destroys the pancreatic cells to produce the insulin. Type 2 diabetes 
is due to numerous causes such as genetics, heredity, lifestyle, or a combination of 
these factors leading to insulin resistance, i.e., one’s body fails to use insulin. 
However, diabetes causes differ based on the genetic makeup, ethnicity, family his-
tory, health factors, and environmental conditions (Asmat et al. 2016). Some of the 
medical complications of diabetic patients include advancements of retinopathy, 
i.e., affecting eyes and loss of sight, nephropathy, i.e., the disturbances in renal func-
tions, foot ulcers, sexual dysfunctions, and many more (Pandey and Rizvi 2009).

Several investigations have revealed the role of plant polyphenols to possess the 
antidiabetic effects. For example, tea catechins were shown to exhibit antidiabetic 
activity. Polyphenols act as antidiabetic agents via different mechanisms, compris-
ing the inhibition of glucose absorption/uptake in the intestine or its peripheral tis-
sues (Rizvi and Zaid 2001; Rizvi et al. 2005). The most widely examined polyphenols 
in clinical trials include flavanols, anthocyanins, catechins, isoflavones, and their 
chief food sources, such as cocoa, chocolate, red wine, green tea, berries, etc. 
Polyphenols occurring in coffee, tea, guava, whortleberry, propolis, olive oil, choco-
late, grape seed, and red wine are reported to exhibit antidiabetic effects in type 2 
diabetic patients through increasing glucose metabolism, reducing insulin resis-
tance, and improving vascular function. Further, it is evident from human studies 
that polyphenols consumed through diet exert useful effects on the improvement of 
insulin resistance and such interrelated diabetes risk factors, such as oxidative stress 
and inflammation (Scalbert et al. 2005; Guasch-Ferré et al. 2017). The diacetylated 
anthocyanins at a dosage of 10 mg/kg diet inhibited α-glucosidase activity in the gut 
and proved their hypoglycemic activity. Likewise, catechin at a dosage of 50 mg/kg 
diet or more significantly inhibited the activity of α-amylase and sucrase in rats and 
controlled blood glucose level (Matsui et al. 2002; Pandey and Rizvi 2009). In few 
studies, S-Glut-1-mediated intestinal transport of glucose was noticed when ani-
mals were treated with individual polyphenols, such as (−)epicatechin, (−)epigal-
locatechin, (+)catechin, epicatechin gallate, and isoflavones (Matsui et al. 2001). As 
reported by Chen et al. (2007), resveratrol treatment effectively reduced the secre-
tion of insulin and prolonged the start of insulin resistance. According to the authors, 
the inhibition of voltage-dependent K(+) channels in pancreatic beta cells could be 
the possible mechanism of action mediated by resveratrol. Flavonoids can modulate 
insulin secretion via more than a few pathways, such as inhibition of glucose trans-
port, upregulatory activities of glucose absorption, triggering glucose-stimulated 
insulin secretions, and renewal of insulin secretion ability. Thus, major subclasses 
such as flavonols, flavan-3-ols, flavones, flavanones, flavan-3,4-diols, anthocyani-
dins, dihydroflavonols, chalcones, coumarins, aurones, etc. can be used in treating 
diabetic patients (Soares et al. 2017).
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14.5.4	 �Anticancer Property and Mechanism of Action

Cancer is the leading cause of human death in recent times around the globe. The 
major reasons are attributed to our behavioral and nutritional risks, low fruits and 
vegetables intake, more consumption of tobacco and alcohol, lack of physical activ-
ity, and many more (Kumar et  al. 2018a; Akhtar and Swamy 2018). Nearly, 8.8 
million deaths noticed in 2015 were due to different types of cancers. Also, it is 
estimated that about one out of six deaths globally is because of cancers. It is a 
multi-disease, and its development involves different stages, such as initiation, ele-
vation, and progression (Akhtar and Swamy 2018; Ravichandra et al. 2018). Diet-
based polyphenols are reported to disturb and modulate manifold biochemical 
functions, mechanisms, and pathways that lead to cause cancer (Niedzwiecki et al. 
2016). Plant-based polyphenols exhibit anticarcinogenic activities through the inhi-
bition of cancer cell growth and metastasis and trigger anti-inflammatory properties 
in addition to the induction of apoptotic process. Further, they regulate/enhance the 
body’s immunity and shield normal cells against various damages due to free radi-
cals (Niedzwiecki et al. 2016; Narayanaswamy and Swamy 2018). However, poly-
phenol dosage against cancers should be carefully selected and handled cautiously 
(Zhou et al. 2016).

The compound, curcumin, found in the rhizomes of turmeric (Curcuma longa) 
possesses many health benefits, and exhibits different biological properties, includ-
ing antioxidant, anti-inflammatory, anticancer properties, etc. (Klinger and Mittal 
2018). It has been experimentally proven both in in vivo and in vitro different cancer 
models that curcumin effectively inhibits tumor growth by preventing cell prolifera-
tion and angiogenesis, blocking cell cycle progress in cancerous cells, and inducing 
apoptosis (Anand et  al. 2008; Niedzwiecki et  al. 2016). A variety of anticancer 
mechanisms of curcumin are being recorded. For example, curcumin was shown to 
suppress pancreatic adenocarcinoma proliferation by inhibiting gene products regu-
lated by NF-ĸB pathways, such as cyclin D1, C-Myc, apoptosis protein 1 (AP1), 
Bcl2, cyclooxygenase-2 (COX-2), matrix metalloproteinases (MMPs), and vascular 
endothelial growth factor (VEGF) (Kunnumakkara et  al. 2007). Other studies in 
lung cancer models have evidenced that curcumin affects via mechanisms that 
involve the suppression of signal transducer and activator of transcription-3 (STAT-
3) pathways (Alexandrow et al. 2012). Further, curcumin interacts with the arachi-
donic acid pathway and prevents the development and growth of prostate cancer. 
Moreover, it was shown to exhibit in  vivo anti-angiogenic properties in various 
prostate cancer models (Ng et al. 2006). In colon cancer models, it interacts with 
vitamin D receptors and enhances cancer growth and progression (Bartik et  al. 
2010). Several review papers have documented that curcumin is potential against 
different types of cancers, including colon, breast, pancreatic, prostate, lung, head, 
neck squamous cell carcinoma, etc. (Ravindran et  al. 2009; Gupta et  al. 2013; 
Shanmugam et  al. 2015; Niedzwiecki et  al. 2016; Narayanaswamy and Swamy 
2018). Likewise, resveratrol functions as anti-carcinogenetic activity by controlling 
signal transduction pathways, controlling cell cycle, cell growth, metastasis, inflam-
matory responses, apoptotic activities, and angiogenesis (Udenigwe et al. 2008). In 
vivo studies also have shown that resveratrol effectively prevent or control skin, 
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gastrointestinal, and colorectal cancers. The mechanisms of actions included the 
prevention of metastasis, angiogenesis, and the promotion of apoptotic activities 
(Devipriya et  al. 2006; Bishayee 2009; Kukreja et  al. 2014; Niedzwiecki et  al. 
2016). Quercetin reduces cancer progression via antioxidant properties (Gibellini 
et al. 2011; Ekström et al. 2011). Various other mechanisms of anticancer activity of 
quercetin is by protecting cells via anti-inflammatory activities and preventing oxi-
dative stress damage and modulating the growth of tumorous cells by hindering cell 
division and cell cycle progression, and through the induction of apoptotic process 
(Mu et al. 2007; Jeong et al. 2009; Kumar et al. 2018b; Afrin et al. 2018). Researches 
have demonstrated that catechins, EGC, EGCG, and ECG, found in tea plants pos-
sess cancer-preventive capabilities by inhibiting cell proliferation and inducing 
apoptosis (Fujiki et al. 1999). Likewise, catechin-rich green tea extract modulates 
cancer cell growth and development, angiogenesis, and metastasis, inducing apop-
tosis, suppressing NF-κB pathway activation, downregulating tumor growth factor-α 
(TGF-α), upregulating TGF-β2, and upregulating the expression of p53, p21, and 
Bax (BCL2-associated X) proteins (Gupta et al. 2004; Khan et al. 2006; Harakeh 
et al. 2008; Kürbitz et al. 2011; Rady et al. 2017; Sharma et al. 2018; Saeki et al. 
2018). Thus, polyphenols that are abundantly found in dietary sources are a great 
promise for treating cancers, particularly in view of their safety aspects.

14.5.5	 �Anti-inflammatory Property and Mechanism of Action

Apart from the antioxidant property of the polyphenols, they also exert various 
effects on cell signaling pathways related to inflammation which very well explains 
their beneficial activities on inflammation and endothelial function. Chronic inflam-
mation is the most vital factor for development of various diseases in humans which 
include obesity, cardiovascular diseases, aging, neurodegenerative diseases, and 
type 2 diabetes. Anti-inflammatory efficacy of polyphenols has been studied exten-
sively both in vivo and in vitro. Supplementation of berry juice has been reported to 
decrease the interleukin-12 (IL-12) and overall inflammation score (Kolehmainen 
et al. 2012), and it has also improved the endothelial function in patients with meta-
bolic syndrome (MetS) (Stull et al. 2015).

Berry juice supplementation has impact on the levels of inflammatory markers 
such as C-reactive protein (CRP) (Basu et al. 2010a; Johnson et al. 2015), tumor 
necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1 (Stull et al. 
2010), IL-6 (Basu et al. 2011), intercellular adhesion molecule (ICAM)-1, vascular 
adhesion molecule-1 (VCAM-1), and adiponectin (Basu et al. 2010b). Treatment 
with hydrocaffeic acid showed significant decrease in the expression of cytokines 
such as IL-8, IL-1β, and TNF-α. Its treatment was also shown to cause significant 
reduction in malondialdehyde (MDA) levels and oxidative damage in distal colon 
(Larrosa et al. 2009). The virgin olive oil with high polyphenol content showed bet-
ter protective effect against inflammation when compared to oils rich in oleic acid 
and polyunsaturated fatty acids (Martínez-Domínguez et al. 2001).

Green tea polyphenol consumption display decreases in the levels of proinflam-
matory cytokines and inflammatory markers in mice which are exposed to UVB 
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(Meeran et al. 2009). Catechins present in green tea exert anti-inflammatory effects 
through various mechanisms which include variation in the isoforms of nitric oxide 
synthase (NOS) (Sutherland et al. 2006). Hibiscus sabdariffa extracted polyphenols 
exhibit potent in vivo and in vitro anti-inflammatory property. It also displays anti-
inflammatory action in RAW264.7 cells both on prostaglandin E-2 and nitrite. 
Lipopolysaccharide (LPO)-induced rats when treated with polyphenols show sig-
nificant reduction in the aspartate aminotransferase and alanine levels in serum. 
Significant reduction in lipid peroxidation together with decrease in the lesions of 
liver and increase in the activity of the glutathione and CAT were observed in the rat 
liver (Kao et al. 2009). Polyphenolic extracts from the quince peel was shown to 
decrease the macrophage secretion of the chemokine IL-8 and proinflammatory 
cytokine such as TNF-α in a dose-dependent manner. On the other side, it was found 
that it could increase the level of IL-1β, an anti-inflammatory cytokine. Extract from 
quince polyphenols was shown to inhibit the activation of p38 mitogen-activated 
protein kinase (p38MAPK), AKT, and NF-κB (nuclear factor kappa B) which con-
firms the potent inflammatory efficacy (Essafi-Benkhadir et al. 2012). Quince peel 
is an abundant source of flavonoids which makes it a potent anti-inflammatory 
agent, and it is also used in various topical applications (Kim et al. 1998). Flavonoid 
compound, quercetin activates the inflammatory signaling pathway and reduces the 
atherosclerosis risk (Kostyuk et al. 2011). Grapes contain resveratrol, the rich poly-
phenolic compound which reduces the inflammation via activation of transcription 
factors, blocks the activation of proinflammatory cytokines, and overwhelms the 
expression of inflammatory genes. Thus, the grapes and its products can signifi-
cantly reduce the chronic inflammation which is mediated by obesity (Fu et  al. 
2011; Chuang and McIntosh 2011).

Inhibition of the enzymes such as cyclooxygenase (COX) and phospholipase A2 
(PLA2) which generate eicosanoids is one of the anti-inflammatory mechanisms that 
plays a vital role (Kim et al. 2004). Polyphenols can modulate the gene expression 
and activity of the enzyme COX-2 in various types of cells (Luceri et al. 2002). Nitric 
oxide (NO), a key antithrombotic intravascular factor, is responsible for maintaining 
the vascular health. Polyphenols can inhibit the release of NO through suppression of 
the NO enzyme expression and their activity (Stangl et al. 2007). Expressions of the 
cytokines are also modulated by polyphenols. NF-κB plays an important role in the 
stress, proliferative, apoptotic, and inflammatory processes, and its inhibition could 
be beneficial in the treatment of inflammatory disorders (Karin et al. 2004). NF-κB 
plays its role together with the assistance of MAPK. The MAPK pathway is modu-
lated by polyphenols by acting on the downstream effectors and activation cascade 
(Soobrattee et al. 2005). Literature evidences together suggest that the polyphenols 
can modulate the immune system and it is a potent anti-inflammatory agent.

14.5.6	 �Cardioprotective Property and Mechanism of Action

Cardiovascular disease (CVD) is a multifactorial and chronic disease which involves 
wide range of environmental and genetic factors that play a vital role in stages of the 
disease. Environmental factors include physical inactivity, high-saturated-fat diets, 
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and smoking which increase the CVD risk (Ambrose and Barua 2004; Tanasescu 
et al. 2002). Numerous studies have reported the reduced incidence of CVD after 
consumption of polyphenols (Nardini et al. 2007). Oxidative stress and hyperlipid-
emia are the major risk factors for the development of atherosclerosis which can be 
minimized by the consumption of polyphenols (Vita 2005). The dietary polyphe-
nols can reduce the thrombosis risk which is the main causative factor for the devel-
opment of ischemic heart disease, myocardial infarction, and others (Singh et al. 
2008a; Santhakumar et al. 2014). Literature evidences suggest that the CVD inci-
dence is relatively low in Mediterranean population who consume diets which are 
rich in polyphenols such as fruits, green vegetables, fish, and particularly red wine 
(Nadtochiy and Redman 2011; Khurana et al. 2013). Several experimental studies 
have reported that consumption of mild or moderate quantity of red wine can reduce 
the morbidity and mortality that results from coronary heart disease (Sato et  al. 
2002). Red wine contains the polyphenolic antioxidants such as proanthocyanidins 
and resveratrol which is responsible for exerting its cardioprotective action. 
Resveratrol occurs in abundance in wine and grapes (Deng et al. 2012).

Cardiovascular health depends on the normal function of NO which is essential 
for vasorelaxation. Significant reduction in the NO levels directly predisposes the 
individuals to the risk of developing cardiovascular diseases. Reduction in NO lev-
els occurs when there is decrease in the endothelial nitric oxide synthase (eNOS) 
expression, which in turn might decrease due to ROS degradation (Cai and Harrison 
2000). Significant contributors of ROS are xanthine oxidase, mitochondrial enzymes 
such as NADH/NADPH oxidase, and others (Paravicini and Touyz 2008). Study 
from human umbilical cord cells shows that resveratrol can increase eNOS expres-
sion and thereby can increase the production of NO (Wallerath et al. 2002). It has 
been also reported to be protective against cardiac reperfusion/ischemia, and treat-
ment with resveratrol significantly improved the size of the infarct and left ventricu-
lar function of the rat hearts. In cultured cardiac tissue of rat, resveratrol decreased 
ROS production and improved the mitochondrial membrane potential. Resveratrol 
can increase Na+ and Ca2+ concentrations in cardiac tissue of H2O2-exposed rats 
(Thuc et  al. 2012). Sirtuin 1 (SIRT1) has potential regulatory role with several 
coactivators and transcription factors such as NO production, hypoxia-inducible 
factor alpha (Hif-2α), and forkhead box O that play a critical role in cardioprotec-
tion (Mattagajasingh et al. 2007; Wong and Woodcock 2009; Dioum et al. 2009). 
Resveratrol was also reported to have impact on the SIRT1-mediated deacetylation 
that inhibits potent mechanisms linked with myocardial infarction (Rajamohan 
et al. 2009).

Atherosclerosis is an inflammatory disease which develops mainly in the medium 
size arteries. It appears in an asymptomatic manner for longer periods and once 
become active results in chronic conditions such as unstable angina, myocardial 
infarction, and unexpected cardiac arrest (Vita 2005). Inhibition of LDL oxidation 
is the key regulatory event in atherosclerosis development which is possible by con-
sumption of polyphenols (Aviram et al. 2000). Other mechanisms are antiplatelet, 
antioxidant, and anti-inflammatory properties together with increasing HDL levels 
which altogether contribute to the reduction of atheromatous plaques (García-
Lafuente et al. 2009). Therapies targeted with antioxidants have gained increased 
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attention because of their ability in minimizing the harmful effects caused by 
ROS. Angiotensin II (Ang II), statins, and vitamins C and E were used extensively 
in combination with other drugs for minimizing oxidative stress, and in addition the 
polyphenols display protective effects in patients with cardiovascular diseases.

Atherosclerosis development can be prevented by reducing LDL oxidation and 
cholesterol levels, safeguarding endothelium, and limiting the synthesis of adhesion 
molecules and proinflammatory cytokines (Hamilton et  al. 2004; Habauzit and 
Morand 2012). Polyphenols are reported to target specific sites to exert its beneficial 
effects that include NO, eNOS, and inflammatory molecules such as IL-6, IL-8, 
TNF-α, VCAM-1, and ICAM-1, and it also modulates and alters signaling pathways 
such as NF-κB, MAP38 kinase, SIRT1, and others (Vita 2005; Stangl et al. 2007; 
Pandey and Rizvi 2009; Basu et al. 2010a, b). Quercetin can inhibit metalloprotein-
ase 1 (MMP-1) expression and thereby can disrupt the atherosclerotic plaques. Tea 
catechins can slow down or inhibit the smooth muscle cell proliferation which is 
responsible for formation of atheromatous plaques. Antithrombotic effect is exerted 
by polyphenols via inhibition of platelet aggregation. Polyphenols from tea can also 
lower blood pressure which may be mediated via antioxidant activity. Resveratrol 
inhibits platelet aggregation via COX-1 inhibition. Resveratrol also acts as vasore-
laxant by enhancing NO signaling (García-Lafuente et  al. 2009). Cardiovascular 
health benefits of polyphenols depend on the level and bioavailability of nitric oxide 
at endothelium (Appeldoorn et al. 2009; Schmitt and Dirsch 2009). Consumption of 
polyphenols such as coffee, black tea, grape juice, and cocoa is closely related to the 
inhibition of platelet aggregation (Freedman et al. 2001).

14.5.7	 �Neuroprotective Property and Mechanism of Action

Alzheimer’s disease (AD), Parkinson’s disease (PD), and stroke are the neurode-
generative disorders which represent major diseases of clinical importance and cre-
ate economic burden all over the world. Numerous genetic, molecular, and dietary 
factors are the vital contributors for the progression of neurodegenerative diseases 
(Hung et al. 2010; Ross and Tabizi 2011; Olesen et al. 2012; Albarracin et al. 2012). 
Elevated concentration of cytokines such as IL-6, TNF-α, transforming growth fac-
tor beta (TGF-β), IL-18, and IL-12 in the blood contributes to the proinflammatory 
response in the pathology of AD (Swardfager et al. 2010). Multiple sclerosis (MS) 
is a neurodegenerative disease which is characterized by chronic inflammation and 
demyelination of neurons (Dutta and Trapp 2012). Symptoms of MS are fatigue, 
muscle weakness, motor changes, and vision changes (Ziemssen 2011). Major 
mediators of neuroinflammation in MS include chemokines such as IL-17, chemo-
kine (C-C motif) ligand 20 (CCL20), and CCL17 (Łyszczarz et al. 2011). Stroke is 
also a pathological condition accompanied by disease of the immune system and 
inflammation (Luheshi et al. 2011). Stroke is also accompanied by inflammatory 
cytokines like IL-6, TNF-α, and IL-1. NF-κB, the transcription factor, plays an 
important regulatory role in cell survival and inflammation (Tuttolomondo et  al. 
2008). In cerebral ischemia, activation of NF-κB results in cell death (Zhang et al. 
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2005). PD, like other neurodegenerative diseases, results in increased levels of pro-
inflammatory cytokines such as TNFα, IL-8, IL-1β, interferon gamma (IFNγ), 
CCL-5, and monocyte chemoattractant protein-1 (MCP-1) (Menza et al. 2010).

Neuroprotection refers to protection of nerve cells from dying which involves the 
treatment with polyphenols. Extensive array of natural compounds from plants are 
of critical importance and attracted research interest. Phenolic acids might act as 
beneficial compound because of their potent free radical scavenging, antioxidant, 
and antiapoptotic effect. Hydroxycinnamic acids, such as chlorogenic acid (CGA) 
and PCA are closely associated with anti-Alzheimer’s property (Oboh et al. 2013). 
FA when it is glycosylated with chitosan nanoparticle (FA-GC) has been shown to 
restore the spinal cord injury. Glutamate-induced excitotoxicity in the primary neu-
rons can be protected via administration of these nanoparticles. The nanoparticles 
can significantly cause locomotor function recovery in spinal cord of contusion 
injury rat models. Treatment with the nanoparticle resulted in significant reduction 
in inflammation, cavity volume, and astrogliosis (Wu et al. 2014b). PCA signifi-
cantly decreases the levels of inflammatory cytokines such as IL-6, IL-8, IL-1β, and 
TNF-α and thereby improves the cognitive deficits in AD-affected animals. In ani-
mal model of PD, curcumin exerts potent anti-inflammatory property via reduction 
of TNF-α and IL-6 (Yu et al. 2016). EGCG has potent anti-myeloid property and it 
acts as β-sheet breaker, thereby resulting in neuroprotective characteristics 
(Boyanapalli and Tony Kong 2015). EGCG can cross the blood-brain barrier (BBB), 
and thereby it shows protective effect against oxidative stress-induced cell death in 
cortical neurons (Pogacnik et al. 2016). The mechanism by which EGCG can exert 
protective action includes Bax inhibition and translocation of cytochrome c and 
modulates mitochondrial functions (Lee et al. 2015).

Beneficial effects of curcumin result from numerous epigenetic modulation that 
includes DNA methyltransferase inhibition, regulation of microRNAs, and regula-
tion of modifications in histone such as histone deacetylases (HDACs) and histone 
acetyltransferases (Boyanapalli and Tony Kong 2015). EGCG protects neurodegen-
erative diseases via protecting the entry of toxic substances inside the BBB through 
epigenetic regulation of NF-κB (Liu et al. 2016). Resveratrol have been reported to 
be protective against β-amyloid-induced toxicity in Alzheimer’s disease model via 
SIRT1 activation (Markus and Morris 2008). Polyphenol consumption such as veg-
etables and fruits for at least 3 weeks can slow down the Alzheimer’s disease pro-
gression (Singh et  al. 2008b). Green tea polyphenols exert protective effect and 
reduce the risk of Parkinson’s disease in animal models induced by MPTP 
(N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). Protective action of EGCG can be 
activated by several signaling pathways such as MAPK which are essential for cell 
survival (Rossi et al. 2008). The protective ability of EGCG in PD might be due to 
its metal chelating, antioxidant, and detoxifying property. FA displays anti-
inflammatory and antioxidant property which proves it to be protective against AD 
(Aquilano et al. 2008). Neuroprotective efficacy of resveratrol against brain isch-
emia is mediated through Akt/PI3K pathway wherein it downregulates cAMP 
response element-binding protein (CREB) and glycogen synthase kinase-3 
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(GSK-3β) (Simao et al. 2012). Ischemia is also protected by baicalein via PI3K/Akt 
pathway (Liu et al. 2010).

Dietary polyphenols and flavonoids display their potent neuroprotective effects 
through NF-κB pathway. Quercetin, kaempferol, apigenin, and luteolin were 
reported to downregulate NF-κB pathway which eventually results in inhibition of 
Aβ (amyloid beta) 1-42 and Aβ1-40 (Paris et al. 2011). Memory impairment in rats 
can be restored by soybean isoflavone by modulating NF-κB expression (Ding et al. 
2011). Beta amyloid-induced neuroinflammation can be inhibited by baicalein and 
resveratrol that involves NF-κB downregulation (Xue et al. 2010; Capiralla et al. 
2012). Silymarin from milk thistle protects against cerebral ischemia via inhibition 
of NF-κB and signal transducer and activators of transcription (STAT-1) pathway 
(Hou et al. 2010). Administration of quercetin, catechin hydrate, and fisetin signifi-
cantly protects rats against hypoxia-induced damage and oxidative stress via inhibi-
tion of NF-κB, TNF-α, and IL-1β (Patir et al. 2012; Ashafaq et al. 2012; Gelderblom 
et al. 2012).

Peroxisome proliferator-activated receptor gamma (PPAR gamma) plays an 
important role in cerebral ischemia. Baicalein was shown to inhibit the PPAR 
expression via inhibition of its translocation to nucleus (Xu et al. 2010). In hypoxia 
model, the resveratrol can inhibit the MMP-9 expression through modulation of 
PPAR alpha expression (Cheng et al. 2009). Epicatechin and resveratrol were found 
to protect neurons of the brain against oxidative stress and stroke through upregula-
tion of Nrf2 pathway and heme oxygenase-1 (HO-1) enzyme expression and down-
regulation of caspase-3 (Shah et al. 2010; Ren et al. 2011a). Besides Nrf2 and HO-1 
expression, resveratrol can protect against ischemic injury through downregulation 
of mRNA expression of hypoxia-inducible factors-1α (HIF-1α).

Upon oxidative stress, in PC12 cells, resveratrol upregulates Bcl-2, antiapop-
totic protein, and downregulates Bax expression, thereby preventing apoptosis of 
the neurons (Agrawal et al. 2011). Ischemic injury in mice was protected by lutein 
which enhanced Bcl-2 levels and downregulated pancreatic ER kinase (PERK) (Li 
et al. 2012). Baicalein also prevented apoptosis via inhibiting cytochrome c release 
into cytosol and ensuing apoptosis (Liu et al. 2010). Red wine polyphenols combat 
oxidative stress through modulation of GPx levels (Fernández-Pachón et al. 2009). 
EGCG can lower inflammation by reducing JNK and AP-1 transcription (Cavet 
et  al. 2011). Modulation of JNK expression has been proved to be protective 
against AD as its activation can result in tau hyperphosphorylation and pathogen-
esis of beta amyloid formation (Ploia et al. 2011). Glycoside exerts neuroprotec-
tion through PI3K and MAPK pathway (Nones et  al. 2011). In astrocytes, 
resveratrol and curcumin display neuroprotective effects by increasing NADPH 
quinone oxidoreductase (NQO1) through Nrf2 pathway (Erlank et  al. 2011). 
Etiology and pathogenesis of neurodegenerative diseases such as PD, AD, and MS 
involve various mechanisms. These disorders can be treated using novel therapeu-
tic strategies at specific target of proteins and genes which could be beneficial 
(Bhullar and Rupasinghe 2013).
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14.5.8	 �Hepatoprotective Property and Mechanism of Action

Hepatic pathologies range from steatosis, hepatitis cirrhosis, finally to hepatocellu-
lar carcinoma (HCC) which represent as leading cause of death all over the world. 
The causative factors are hepatitis virus infections, alcohol abuse, and metabolic 
syndrome (Li et al. 2015). The pathological processes which finally contribute to 
liver diseases are lipid peroxidation, disruption of immune system, inflammation, 
and oxidative stress (Li et al. 2016). The liver being the central organ for metabo-
lism plays a major role in detoxification. The toxic damages can occur because of 
various pathological mechanisms such as oxidative stress, cytochrome P450 dys-
function, dysfunction of mitochondria, and inflammation (Malaguarnera et  al. 
2012). The mechanisms underlying the pathological conditions involve reducing 
inflammation by MAPK inactivation, NF-κB signaling, improving antioxidant 
defense systems through Nrf2/cytochrome P450 2E1 (CYP2E1) expression, and 
inhibiting apoptosis via regulation of Bcl-2 protein/inhibiting caspase activation/
protein kinase B (PKB) expression. Carbon tetrachloride-induced hepatotoxicity 
was shown to be protected by a natural flavonoid quercetin through its anti-
inflammatory and antioxidant mechanisms. The mechanism of quercetin action 
might be attributed to the activation of toll-like receptor 4 (TLR4), phosphorylation 
of MAPK, inhibition of TLR2, and NF-κB inactivation which might have resulted 
in the reduction of inflammatory cytokines expression in the liver (Ma et al. 2015).

A well-known flavonoid, baicalein, has been reported to be protective against 
acetaminophen (AAP)-induced liver injury, and it acts via downregulation of ERK 
signaling pathway (Liao et al. 2017). Polyphenol extract of Hibiscus sabdariffa L. 
protects against AAP-induced steatosis of the liver which is mediated by reduced 
Bax, Bid, p-JNK, and apoptosis-inducing factor (AIF) expression (Lee et al. 2012). 
Curcumin protects liver against LPO-induced injury in rats where it acts by improv-
ing antioxidant status, reducing the levels of liver enzymes in serum, and inhibiting 
P38/JNK activation. It has also been reported to cause reduction in serum cytokine 
levels of IL-1β, IL-6, and TNF-α, and it inhibits the CREB and PI3K/AKT signaling 
pathways. Thus, this proves the efficacy of curcumin as a potent candidate for treat-
ment of liver failure (Zhong et  al. 2016). Resveratrol significantly protects liver 
against thioacetamide (TAA)-induced injury. In such cases, it was shown to inhibit 
oxidative stress and inflammation through downregulation of CYP2E1 and NF-κB 
expression. It also promotes apoptosis via upregulation of caspase-3 (Seif El-Din 
et al. 2016).

Exposure to alcohol either acute or chronic results in fatty liver. The conse-
quences of alcohol exposure are mitochondrial dysfunction, increased ROS produc-
tion, oxidative stress, and hepatic steatosis (Louvet and Mathurin 2015). 
Proanthocyanidins can protect the liver in alcohol-induced liver damage. It acts by 
downregulating the genes which are involved in inflammation such as IL-1β, TNF-
α, and IL-6 (Wang et al. 2015a). Alcoholic liver disease is usually associated with 
increased deposition of iron which turns out to be fatal (Milic et al. 2016). EGCG 
was shown to be potent against iron overload because of its well- known iron chelat-
ing activity. It was shown to inhibit both intake and absorption of iron, thereby 
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reducing the iron levels in both serum and liver (Ren et al. 2011b). The major pro-
cesses which are involved in the development of nonalcoholic fatty liver disease are 
accumulation of fat in the liver, injury of cells, and insulin resistance. Polyphenols 
with potent beneficial role in multiple signaling pathways and antioxidant and anti-
inflammatory properties are considered as a promising treatment option for NAFLD 
(Van De Wier et al. 2017). The pathways involved under these conditions are Janus 
kinase/signal transducers and activators of transcription (JAK/STAT), NF-κB, 
AMPK, PPARs, PI3K/AKT, and TLR. Numerous polyphenols act through multi-
tude of pathways in protection against NAFLD (Michelotti et al. 2013).

In insulin resistance and type 2 diabetes mellitus mice, kaempferol was found to 
significantly reduce the inflammatory cytokine levels, and it also inhibited the phos-
phorylation of insulin receptor substrate-1 (IRS-1) with concomitant reduction of 
NF-κB levels in cytoplasm and nucleus (Luo et  al. 2015). In NAFLD, quercetin 
exerts its activity via NF-κB pathway inhibition (Porras et al. 2017). Polyphenols 
such as apple and cocoa show their beneficial effects in NAFLD through targeting 
of MAPK pathway (Xu et al. 2015; Cordero-Herrera et al. 2015). Increased expres-
sion of PPARα in liver is closely associated with transport of free fatty acids, 
β-oxidation, inhibition of CRP, and NF-κB expression, thereby reducing inflamma-
tion (Zeng et al. 2014). Several polyphenols were reported to upregulate the gene or 
protein expression of PPARα (Medjakovic et  al. 2010; Jia et  al. 2013). Another 
transcription factor which serves as a potent candidate for treatment of NAFLD is 
SREBP (sterol response element-binding protein)-1c. Upregulated expression of 
SREBP-1c has been reported to promote the steatosis progression (Zeng et  al. 
2014). Genistein, rutin, and luteolin can downregulate SREBP-1c protein or gene 
expression, thereby playing a critical role in inhibiting steatosis progression (Shin 
et al. 2007; Liu et al. 2011; Wu et al. 2011).

The metabolic role of AMPK is to regulate the fatty acid metabolism via stimu-
lating the biosynthesis of fatty acids (Zeng et al. 2014). Accumulation of lipid in the 
liver and insulin resistance are the major pathogenic mechanisms of AMPK in 
NAFLD (Van De Wier et al. 2017). Polyphenols of major importance such as cur-
cumin and resveratrol protect hepatocytes from injury via activation of AMPK sig-
naling pathway (Jimenez-Flores et al. 2014; Choi et al. 2014).

Various classes of polyphenols are reported to have potent apoptotic and antipro-
liferative activities which act via multiple pathways (Mutalib et al. 2016; Li et al. 
2018). Hesperidin induces apoptosis in HepG2 cells through downregulation of 
Bcl-2 and upregulation of Bax via both extrinsic and intrinsic mechanisms. GA and 
CGAs are also capable of inducing apoptosis in hepatic cells via induction of endo-
plasmic stress. Baicalein induces apoptosis in HepG2 cells via blocking/inhibition 
of mTOR pathway or MEK-ERK signaling pathway (Liang et al. 2012; Wang et al. 
2015b). EGCG, a well-known green tea polyphenol, induces apoptosis in various 
hepatic cell lines through NF-κB inactivation, downregulation of PI3K/AKT path-
way and Bcl-2, and upregulating Bax (Nishikawa et al. 2006; Shimizu et al. 2008; 
Shen et al. 2014). Hesperidin and naringenin have been studied extensively both 
in vivo and in vitro, and these have been reported to inhibit metastasis of liver can-
cer cells. The mechanism of action of these flavanones are inhibition of NF-κB and 
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AP-1 and downregulation of MMP-9 expression. Theaflavins block metastasis of 
liver cancer cells via blockage of STAT-3 pathway (Li et al. 2018). Curcumin and 
EGCG also blocks the progression of liver cancer to HCC via modulating the carci-
nogenic process involved (Sur et al. 2016; Afrin et al. 2017).

14.6	 �Conclusions and Future Prospects

The beneficial role of polyphenols may be attributed to their antioxidant, free radi-
cal scavenging, and metal chelating action and their ability to upregulate or down-
regulate the activity of various enzymes or proteins involved in multiple signaling 
pathways. The biological action of polyphenols depends on the availability of those 
compounds with necessary concentration at the target site after ingestion. Even 
exposure to high polyphenol concentration can result in negative effects including 
DNA damage, and increased ROS generation creates increased oxidative stress 
resulting in damage to macromolecules, such as DNA, protein, and nucleic acids. 
This might result in stimulating chronic inflammation which is the root cause for 
majority of human diseases. Antidiabetic nature of polyphenols is based on their 
modulatory effect on signaling pathways wherein they reduce oxidative stress, 
apoptosis, insulin resistance, and inflammation, promote/enhance insulin secretion, 
and upregulate proliferation of β-cells of the pancreas and they also promote GLUT4 
translocation via AMPK and PI3K/AKT pathways (Vinayagam and Xu 2015).

Anticancer properties of polyphenols have been studied extensively in EGCG, 
curcumin, resveratrol, and anthocyanins. Their mechanism of action involves mod-
ulation of cellular signaling pathway which is associated with proliferation, differ-
entiation, survival, detoxification, metastasis, and immune responses. Besides these 
properties the dosage of polyphenols for cancer treatment should be handled in a 
cautious manner. Diets rich in polyphenols such as fruits and vegetables can reduce 
the risk of cardiovascular diseases and mortality rate. Literature evidences in vitro 
and in vivo suggest that treatment with polyphenols can counteract increased ROS 
generation and influence signaling pathways which are associated with human dis-
ease pathologies. Polyphenols can alter the lipid levels; inhibit LDL oxidation, 
platelet aggregation, and lipid peroxidation; reduce atherosclerotic lesion; improve 
endothelium; and minimize blood pressure in cardiovascular complications. Besides 
consumption of single polyphenols, studies suggest that combination of polyphe-
nols might work in the betterment of human health (Wersching 2011).

Oxidative stress, inflammation, and vascular dysfunction are the major contribu-
tors of neurological disorders. They are also associated with various other environ-
mental and genetic factors. Polyphenol consumption might serve as a beneficial 
therapeutic strategy in protection against neurodegenerative diseases (Vauzour 2017). 
Treatment of liver diseases by polyphenols involves regulations at multiple sites such 
as inflammation and ER stress and alteration of lipid metabolism, immune response, 
insulin resistance, and oxidative stress. The key regulatory factors which are involved 
in the beneficial action of polyphenols have been summarized (Table 14.2). However, 
the pharmacological and therapeutic properties of polyphenols need to be still 
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Table 14.2  Key regulatory factors involved in the beneficial action of polyphenols

Role of 
polyphenols Key regulatory factors References
Antioxidant Upregulation of CAT, SOD, 

and GPx activity
Inhibition of LPO and ROS 
generation

Wasserman and Fahl (1997), Azzi et al. 
(2004), Choi et al. (2012), Sindhu et al. 
(2015), Schottker et al. (2015), and Shen 
et al. (2017)

Antiaging Upregulation of antioxidant 
enzymes, sirtuins, AMPK, and 
PGC-1α expression

Markus and Morris (2008), Barger et al. 
(2008), Li et al. (2017), and Gurău et al. 
(2018)

Antidiabetic Inhibition of glucose 
absorption/uptake in the 
intestine or its peripheral 
tissues
Increasing glucose metabolism, 
reducing insulin resistance, 
improving vascular function

Rizvi and Zaid (2001), Rizvi et al. 
(2005), Scalbert et al. (2005), and 
Guasch-Ferré et al. (2017)

Anticancer Upregulation of Bax, caspase-3 
and caspase-9, p21, p53, and 
TGF-β expression
Downregulation of TGF-α, 
Bcl-2, STAT-3, PI3K/AKT, 
COX-2, MMP, VEGF, Myc, 
and NF-κB expression
Controls signal transduction 
pathways, cell cycle, cell 
growth, metastasis, 
inflammatory responses, 
apoptotic activities, and 
angiogenesis

Guptaet al. 2004, Khan et al. (2006), 
Kunnumakkara et al. (2007), Udenigwe 
et al. (2008), Harakeh et al. (2008), 
Kürbitz et al. (2011), Alexandrow et al. 
(2012), Rady et al. (2017), Sharma et al. 
(2018), and Saeki et al. (2018)

Anti-
inflammation

Downregulation of IL-1β, 
IL-12, IL-6, TNF-α, NF-κB, 
iNOS, COX-2, ICAM-1, 
VCAM-1 and AKT, NF-κB, 
NO, and p38MAPK expression

Luceri et al. (2002), Stangl et al. (2007), 
Basu et al. (2010b), Basu et al. (2011), 
Larrosa et al. (2009), and Essafi-
Benkhadir et al. (2012)

Cardioprotective Upregulates eNOS expression, 
NO production, and improves 
HDL level
Inhibition of COX-1
Downregulates MMP-1 
expression and decrease LDL 
level
Modulates and alters signaling 
pathways such as NF-κB, 
MAP38 kinase, SIRT1, and 
others

Wallerath et al. (2002), Vita (2005), 
Stangl et al. (2007), García-Lafuente 
et al. (2009), Pandey and Rizvi (2009), 
and Basu et al. (2010a, b)

(continued)

R. Ravindran et al.



337

elucidated in humans. Randomized clinical trials should be undertaken to establish 
their potent benefits and their usage among human diseases. The administration route 
for polyphenols should be standardized to attain proper absorption and bioavailability. 
Even though translational research regarding polyphenols is challenging, improving 
bioavailability via standardization of administration route could help in betterment. 
Besides their beneficial role, certain polyphenols have carcinogenic and other side 
effects which might increase the disease risk. Analysis of safe dosage concentration of 
polyphenols should be performed to overcome the toxicity risk. In future, studies on 
bioavailability and absorption kinetics of polyphenols should be performed to find 
specific target site and as a whole to reduce the economic burden of chronic disease 
outburst and to ensure the future population toward healthier environment. The out-
comes of these studies should provide specific dietary recommendations of polyphe-
nols in preventing against chronic diseases, and it should serve as an effective treatment 
approach against chronic diseases.
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