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Abstract
Multichannel electroencephalogram (MCEEG) recordings generally result in
humongous volume of data that places constraint on space and time. Online
transmission of such data demands schemes rendering significant performance
with lesser computations. To compact such data, numerous compression
algorithms have been introduced in the literature. Heretofore single channel
algorithms when extended to multichannel applications do not accomplish
remarkable results. If achieved it generally results in higher computational cost.
Much of this chapter deals with the development of computationally simple
algorithms that aim to reduce the computational aspects without comprising on
the compression and decompression performance. Also, the amicability of this
implementation supporting efficient storage with low bandwidth is performed.
The objective of this chapter is to introduce some of the basic supporting concepts
for exploiting data representation redundancies that aid compression. Accord-
ingly, simple and novel compression schemes with its simulation comparison are
presented in this chapter. The potency of the direct domain compression model is
assessed in terms of compression ratio and reconstruction error between the
original and reconstructed dataset. A significant compression with substantially
low Percent Root-mean-square Difference (PRD) is accomplished by the novel
compression schemes, thereby upholding diagnostic information of EEG for
telemedicine applications with higher reconstruction accuracy and reduced
computational load.
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12.1 Introduction

EEG signal is a complex signal with both stochastic and deterministic properties. The
redundancies present in the EEG or any biomedical signal can be removed without
loss of signal quality and remain the basic principle supporting compression. In this
context there are three forms of compression algorithms, namely lossless, lossy, and
near lossless. For most critical clinical analysis of EEG, a lossless compression is the
best bet, but the degree of compression is too low such that there is no significant
reduction in storage space. Furthermore, most of such compression algorithms have
complex architecture. The next best choice is to construct a near lossless compression
system having higher compression with significant space saving. One critical factor
to consider in such algorithms is the quality of the decompressed signal. Different
quality parameters need to be defined like PSNR, PRD, and MSE, that will quantify
the level of distortion in the decompressed signal. In other words, the features in the
EEG should be retained such that any classification system can work properly
irrespective of whether the process is automated or manual.

Another perspective of signal compression is by removing unwanted signals like
noises and different forms of artifact from the EEG signal and then storing the clean
signal. Different parameters like PSNR can be employed to quantify the quality of
the denoised signal. Dimensionality reduction techniques fall under another class of
method that can reduce the size of the data that needs to be stored. The subsequent
section includes discussions on various time domain strategies and transform
domain and compressive sensing methods for compressing the biomedical signal.
Most of the methods are supported by coding schemes like Arithmetic, Huffman,
Lempel-Ziv, and Lempel-Ziv-Welch that are generally classified as lossless coders,
and other coders like SPIHT are EBCOT are lossy coders. These coders exploit the
redundancies in the data thereby contributing to data compression.

EEG compression is an active research area for more than a decade. Various
compression algorithms have been developed that are broadly classified into differ-
ent groups based on their operational mode to achieve either lossless, lossy or near
lossless compression. These are direct and transform mode based compression
schemes. In the direct mode the compression is achieved by exploiting redundancies
in the temporal or acquired domain itself. Whereas in transform mode, the compres-
sion is achieved by transforming the signal using various transforms and exploiting
the redundancies in the transformed domain. These generic compression modes
assist in data compression and specifically MCEEG compression. To further
enhance the prevailing compression methods, they can be combined together
resulting in next-generation compression algorithms.

The neural network-based predictor system of [22] defined the context of the
EEG signal, based on which the corresponding coefficients are entropy coded to
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achieve compression. The MCEEG compression scheme of [21] packed EEG data in
2D form and later processed them using 2D Integer Lifting Transform. The produced
coefficients were SPIHT coded along with the residue. Bazn-Prieto et al. [3]
employed Cosine Modulated Filter Banks to perform domain transformation. The
transformed coefficients were later quantized and entropy coded. A MCEEG com-
pression system described in [21] represents MCEEG signal using tensor represen-
tation on which 2D wavelet transform is performed followed by uniform
quantization and arithmetic coding of residues. This method tries to maintain an
upper bound on the distortion level. Dauwels et al. [7] extended the earlier version
using various tensor decomposition methods like SVD and PARAFAC along with
residual coding to limit the error introduced in the system.

The compression scheme of [20] initially performed PCA on the EEG data,
followed by Wavelet Packet Transform (WPT). The resulting high and low fre-
quency coefficients were coded using wavelet-based and fractal coding techniques,
respectively. These coded coefficients were finally entropy coded. Finally, genetic
algorithm-based optimization technique was employed for enhancing compression
performance. Lin et al. [18] combined dimensionality reduction methods such as the
PCA with ICA to compress the MCEEG data represented as a tensor, and the
resulting coefficients were then SPIHT coded.

The 1.5D compression algorithm of [24] employed 1D discrete wavelet transform
on the 2D MCEEG data followed by No List Set Partitioning in Hierarchical Trees
(NLSPIHT) coding. Another MCEEG compression algorithm by [4] employed Fast
Discrete Cosine Transform (FDCT) followed by lossy coding. A near lossless
MCEEG compressor by [11] used DCT and artificial neural network-based coder.
Another compression scheme from [10] performed DPCM on the EEG channels that
are then clustered using k-nearest neighbor (kNN). The resulting clusters were
entropy coded using arithmetic coders.

To achieve compression, the above methods rely on computationally intensive
progressive operations, limiting its use in real-time hardware critical applications.
Some algorithms like [4] claim to be computationally fast but with compromise in
either compression or distortion levels. So, prospective hardware-friendly compres-
sion scheme without significant signal deterioration needs to explored, such that the
signal can be used in diagnosis or related applications.

12.1.1 MCEEG Compression Methods

In this chapter the concept of introducing and exploiting the data representation
redundancies in the data for achieving compression is discussed. The proposed
Logarithmic Spatial Pseudo CODEC (LSPC) methodology negates the necessity
for domain transformation, for exploring redundancies, hence, leading to faster
computations. The methodology was tested on different database using various
performance parameters and discussed in subsequent sections. The proposed near
lossless compression model illustrated in Fig. 12.1 is a two-stage process where the
MCEEG signal is normalized using Translation Logarithmic (TL) block which is
subsequently coded in the Integer Fraction Coder (IFC).
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12.1.2 Encoding Process

The LSPC encoding process illustrated in Fig. 12.1 a commences with the organiza-
tion of MCEEG data in 2D form as represented in Eq. 12.1, where M and
N correspond to the number of channels and samples per channel, respectively.
Each of these sets is processed and stored as frames as illustrated in Fig. 12.2.

x ¼

X11 X12 . . . X1N

X21 X22 . . . X2N

: : :

: : :

XM1 XM2 . . . XMN

2
666666664

3
777777775

ð12:1Þ

To exploit the contribution of all samples and suit them for subsequent
processing, the data is pre-processed by the TL block by translation and logarithm
transformation. To ascertain the resulting normalized samples to be real and positive,

Fig. 12.1 Proposed LPSC system. (a) Encoder section. (b) Decoder section
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the MCEEG samples are translated by a factor f, which depends on the gain of the
employed MCEEG recorders, and the operation is defined in Eq. 12.2.

g xð Þ ¼ T xþ fð Þ ð12:2Þ
Natural logarithm is employed in the LSPC for normalization; while other bases

do not contribute to any significant improvement in compression and signal recov-
ery, hence are not discussed here. The normalization process is defined by Eq. 12.3.

h xð Þ ¼ ln g xð Þ ð12:3Þ
The normalized data h(x) is split into integer Ir(x) and fractional If (x) parts using

Eqs. 12.4 and 12.5, respectively.

Ir xð Þ ¼ h xð Þ ð12:4Þ

If xð Þ ¼ h xð Þ � Ir xð Þ ð12:5Þ
Ir(x) and If (x) are encoded separately using the IFC. Later, Ir(x) can be encoded

using any spatial coding schemes that exploit the redundancies introduced by the TL
transform. In the current architecture, Run Length Encoding (RLE) of [2] is
employed because of its simplicity in implementation. The encoded data is
represented as (D1, C1)(D2, C2) . . . (Di, Ci) . . . (Dn, Cn), where Di and Ci are the
ith distinct integer and their occurrence (count), respectively. As arithmetic and
Huffman coders introduce complexity in the system with only a marginal improve-
ment in compression, they are not considered suitable in the proposed architecture.

Subsequently, If (x) is encoded to an equivalent representation with error devia-
tion depending on the bit depth d of the base converter. First, the converter converts
If (x) to its equivalent binary stream b using Eq. 12.6, which is the generalized
relation for converting fractions to or from any base.

Fig. 12.2 Framing process in MCEEG compression
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b ¼ a0m�1 þ a1m�2 þ a2m�3 þ � � � þ akþ1m�k ð12:6Þ
where m is the base, k is the resolution, and a takes values 0, 1, . . ., m� 1. For
example, for converting the fraction to binary, m is 2, and a takes value of either 0 or
1.

Data representations for faster encoding and decoding emphasized by [17]
include methods like Variable Byte, Byte-Oriented Encoding, Binary Packing,
Binary Packing with Variable-Length Blocks, and Patched Coding. Such
representations are also useful in size reduction and faster access. A similar packing
strategy of the binary stream has been employed in this architecture.

For data representation in the proposed algorithm, the binary stream b from base
converter is reshaped and packed into groups of eight bits to form an integer
equivalent representation of the fractional data called Pseudo Integers (PI). This
representation supplemented with spatial coding technique helps the algorithm to
achieve compression.

12.1.3 Decoding Process

The decoder of the SPC system illustrated in Fig. 12.1b takes RLE encoded data and
PI as input. This is first processed by the Integer Fractional Decoder (IFD) wherein
the RLE data is unpacked by interpolating the coded integer Di by the parameter Ci

to obtain If (x0). Subsequently, the PI are binarized and reshaped according to the bit
depth value used for encoding, which is retrieved from MCEEG header. The
reshaped data is converted to fractional base using Eq. 12.6 to obtain If (x0). Both
processes are performed in parallel, thus reducing the decoding time. If (x0) is added
with Ir(x0) resulting in the reconstructed normalized signal I(x0); this operation is
represented in Eq. 12.7.

I x0ð Þ ¼ Ir x0ð Þ þ If x0ð Þ ð12:7Þ
Inverse transformation of I(x0) is processed by the Inverse Logarithmic Transla-

tion (ILT) block where an exponential operation defined by Eq. 12.8 is performed.

h x0ð Þ ¼ exp I x0ð Þ ð12:8Þ
Subsequently, the reconstructed MCEEG signal x0 is obtained by translating h(x0),

given by Eq. 12.9, where factor f is the same as that used in the encoder.

x0 ¼ T h x0ð Þ � fð Þ ð12:9Þ
Finally, the overall encoding and decoding performance of the LSPC on MCEEG

signals were observed using the publicly available EEG datasets namely Berlin BCI
Competitions [23], Swartz Center for Computational Neuroscience (SCCN) [5],
PhysioNet [6], UCI MLR UCI machine learning repository [19], DREAMS sleep
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spindles database [15], the Bern-Barcelona EEG database [16], European Epilepsy
Database [8], Child Mind Institute –Multimodal Resource for Studying Information
Processing in the Developing Brain (MIPDB) Database [9], DREAMER Database
[1], Stanford Research Data, and Australian Electroencephalography Database
(AED) [12].

All channels of the EEG data sets were taken for simulation, though increasing or
reducing the number of channels or samples per channel did not have any significant
impact on the degree of compression. To evaluate the efficacy of the proposed
scheme, few data sets have been chosen, labeled as data set 1 to 8, from each of
these standard databases illustrated in Table 12.1.

The database is made up of MCEEG recording of different subjects performing
various motor or imagery tasks, subjected to various constraints and stimuli. The
performance metrics used in this study are CR, LAE, PAE, MAE, PRD, and PSNR
[3] and are computed using Eqs. 12.10, 12.11, 12.12, 12.13, 12.14, and 12.15.

CR ¼ Bitsorig
Bitscomp

ð12:10Þ

Where, Compression Ratio (CR) represents the ratio of the number of bits of the
uncompressed or original signal to the number of bits of the compressed signal. The
terms Bitsorig and Bitscomp correspond to the number of bits of the uncompressed and
compressed signal, respectively. Apart from CR, the impact of distortion in the
decompressed EEG has a profound effect. Different quality indicators are used that
are able to quantify this distortion introduced by the compression system. As a single
indicator alone does not effectively quantify the distortions introduced, more than
one of such measures and their relations needs to be investigated.

Local Absolute Error (LAE) is the absolute difference between the actual and the
reconstructed value and is given in Eq. 12.11.

Table 12.1 MCEEG datasets employed for performance analysis

Dataset No. of channels
Sampling frequency
(in Hz) Dataset source

Resolution
(bits)

1 22 250 BCIC IV Set 2a 16

2 31 500 SCCN 16

3 64 256 UCI MLR 16

4 28 1000 BCIC II Set 4a 16

5 28 100 BCIC II Set 4b 16

6 64 240 BCIC III Set 2 16

7 64 1000 BCIC IV Set 1 16

8 64 80 Physionet 12

BCIC: Brain Computer Interface Competitions
SCCN: Swartz Center for Computational Neuroscience
UCI MLR: UCI Machine Learning Repository
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LAE ¼ abs Xori ið Þ � Xrec ið Þð Þ ð12:11Þ
The terms Xori(i) and Xrec(i) correspond to the actual data and the decompressed

data, respectively.
Peak Absolute Error (PAE) provides an indication of the maximum error occur-

ring in the reconstructed signal or it is the maximum of the absolute difference
between the actual and reconstructed value, given in Eq. 12.12.

PAE ¼ max abs Xori ið Þ � Xrec ið Þð Þð Þ ð12:12Þ
MeanAbsoluteError(MAE) is the mean of the maximum absolute error difference

between the actual and reconstructed signal and is given by Eq. 12.13

MAE ¼ max abs Xori ið Þ � Xrec ið Þð Þð Þ
N

ð12:13Þ

with N representing the data length
Percentage Root mean square Difference (PRD) given in Eq. 12.14 provides

information on the amount of error in the decompressed signal.

PRD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Xori ið Þ � Xrec ið Þ½ �2P
Xori ið Þ2

s
ð12:14Þ

Root Mean Square Error (RMSE) is the measure of the differences between actual
and the decompressed signal or in other words it is the square root of the average of
squared errors. It is sometimes referred to as RootMean Deviation(RMSD). As the
effect of the error is proportional to the value of squared error, it can be observed as
large variations in RMSD and can be computed using Eq. 12.15.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Xori ið Þ � Xrec ið Þ½ �2
n

r
ð12:15Þ

n – Total number of samples
Finally, Peak Signal to Noise Ratio (PSNR) is mathematically the ratio between

the maximum signal power to the noise power of the recovered signal and is
represented in Eq. 12.16.

PSNR ¼ 20 � log
max ðXoriÞ
RMSE

ð12:16Þ

Based on the above metrics, further analysis is presented below. At the onset, the
impact of logarithmic normalization is witnessed in Fig. 12.3. From Fig. 12.3b it can
be clearly observed that the data is within the range of 3 and 4, with only few values
lower than four.

An illustration of the original, reconstructed, and error signal at bit depths of 3, 4,
and 5 is shown in Fig. 12.4. The bit depth of five can be considered as an optimal
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choice as it gave almost similar and relatively good CR and distortion measures for
all the data sets, and this finding is validated in subsequent discussions. The coded
MCEEG is stored as frames as depicted in Fig. 12.2, having three fields MCEEG
Header, Integer Data, and Fraction Data.

Figure 12.5 illustrates the encoding of four samples of 2D MCEEG signals
represented by Distinct Integer, Integer Occurrence, and Pseudo Integers. The
normalization process is fully reversible. The reconstructed signal quality was
visually validated and quantified numerically using the LAE distortion parameter.
The maximum error in the reconstructed signal was in the order of 10�7 to 10�9.

12.1.4 Inferences from LSPC

The performance of the proposed algorithm for different data sets is illustrated in
Figs. 12.6, 12.7, and 12.8. The bit depth d of base converter contributes largely to
the compression as well as distortion in the recovered signal, as illustrated in
Fig. 12.6a–d.

Fig. 12.3 Illustration of logarithmic normalization

Fig. 12.4 Superimposed original, reconstructed, and residual error signals at a bit depth of 3, 4,
and 5
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The lower value of bit depth results in higher compression, with larger distortion
in the recovered or decompressed signal and vice versa. Hence, choice of optimal
value of bit depth depends on the acceptable amount of distortion in the
reconstructed signal. This value was found out with visual scoring along with
numerical values quantified by the distortion metrics PRD, RMSE, PAE, MAE,
and PSNR as elaborated in the subsequent paragraphs.

It was observed that at higher bit depths distortion is negligible and CR is
comparatively less. For example, from Figs. 12.6a, 12.7a, d, CR at a bit depth of
eight is nearly two, with PRD value very close to zero, and PSNR above 27 dB. The
performance of the algorithm at different sampling frequencies (100 Hz, 1000 Hz) is
almost the same as exemplified by the distortion indicators corresponding to data
sets 4 and 5 in the performance plots. Another observation is that the resolution of
the original data does play a significant role in determining the achievable CR. It can
be concluded that higher CR can be achieved at higher resolutions of the ADCs and
vice versa. This is a significant observation as currently available ADCs are
operating at higher resolutions than those employed in this study.

Distortion performance indicators vary among the data sets at the same bit depth.
PAE value indicates the largest difference between the original and reconstructed
signal. MAE, on the other hand, indicates the mean error in the reconstructed signal.
RMSE value, apart from being an error measure also serves as a performance
indicator of the outliers. There was a fourfold increase in the RMSE value and a
twofold increase in the PAE and MAE values for a successive reduction in bit depth.

For a bit depth of five, the acceptable average CR of 3.16 occurs at average MAE
value of 3.88. Moreover, from Fig. 12.8b, at the average value of MAE, the
maximum variation of PAE ranges from 10 to 15.

This provides an upper limit to the sample error at the current CR. Furthermore,
average PSNR of 23.07 dB and PRD of 1.39 are observed at the specified
CR. Hence, based on the visual scoring and critical inference from Fig. 12.6, 12.7,
and 12.8, it can be concluded that the optimal bit depth across different data sets can

Fig. 12.5 Sample MCEEG encoding process
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be taken as five, though in some data sets lower bit depths can also be considered
having similar distortion parameters.

Table 12.2 illustrates the encoding and decoding time of the proposed algorithm
for different number of channels and samples per channel. Computations were
performed on a computer having an Intel Core2Duo processor operating at
1.8 GHz with 2 GB RAM.

From Table 12.2, the average encoding and decoding times per sample can be
computed, which are 0.3 and 0.04 ms respectively. This is a clear indicator that the
algorithm is computationally simple and fast when compared to other progressive
computation algorithms. Use of public and common data sets is required for relative
performance analysis of novel compression algorithms. In this work, data sets 4, 7,
and 8 were used for performance comparison as they were the ones used in recent
compression algorithms discussed in [21, 4, 10]. The comparison is illustrated in
Table 12.3, taking PRD and PSNR as reference quality indicators.

The comparative results signify that the performance of the proposed method in
terms of compression and distortion is comparable with recent work but with a much
lower time complexity. The main highlight of the proposed algorithm is its simplic-
ity in compressing and decompressing the MCEEG data. Birvinskas et al. [4] claims
to be computationally light, but it is not superior to the proposed algorithm, as

Fig. 12.6 Performance of LSPC on different MCEEG datasets for varying bit depths
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observed from the table, in terms of compression and distortion parameters of the
reconstructed signal. Furthermore, the proposed algorithm outperforms [10] in terms
of CR, with minimal distortion in the decompressed signal.

Extension of the aforesaid LSPC is further done for introducing and exploiting
the data representation redundancies in the data for enhancing compression. The
LSPC system based on logarithm-based normalization produces random outliers in
the decompressed signal, due to the inherent nature of the logarithmic operation.

Fig. 12.7 LSPCs performance on different MCEEG datasets for varying CR

Fig. 12.8 LSPC analyzed using quantitative and qualitative metrics on diverse datasets
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Furthermore, an additional translation process is required in the LSPC to handle
negative samples, which requires the estimation of the maximum value, to guarantee
that the signals after translation lie above zero. To overcome the aforesaid issues
Min-Max normalization is used to replace the logarithm normalization. The scheme
was tested on different database using various performance parameters and is
discussed in subsequent sections.

12.2 MMSPC: Encoding Process

The modified scheme illustrated in Fig. 12.9 is able to achieve lossy to near lossless
compression by a two-stage process. The signal is initially normalized and subse-
quently coded using the Integer Fraction Coder (IFC). In the encoder of the
Min-Max Spatial Pseudo CODEC (MMSPC) system [14] illustrated in Fig. 12.9a,
the raw MCEEG data is arranged in a 2D structure as shown in Eq. 12.1, where
M and N correspond to the number of channels and samples per channel,
respectively.

Table 12.2 Computation time of the proposed scheme, for different sample sizes

No. of
channels

Number of samples per channel

800 400

Encoding time
(s)

Decoding time
(s)

Encoding time
(s)

Decoding time
(s)

10 3.38 0.23 2.06 0.1

20 6.03 0.58 3.37 0.23

30 8.58 1.09 4.74 0.39

40 11.26 1.76 6.02 0.58

50 13.76 2.56 7.28 0.82

60 16.48 3.52 8.67 1.1

61 16.87 3.63 8.64 1.1

Table 12.3 Relative performance analysis of LSPC

Data
set Algorithm CR PRD PSNR

Optimal
criteria

4 Fast DCT [4] 4 11.09 **** BinDCT

LSPC 4 2.86 21.44 Bit depth of 4

7 Wavelet image and volumetric coding
[21]

2.56 1.72 37.95 Wavelet-s/s/t

Clustering method [10] 2.67 **** **** DPCM-kNN

LSPC 3.20 4.43 23.63 Bit depth of 5

8 Wavelet image and volumetric coding
[21]

6.63 9.21 28.92 Wavelet-s/s/t

LSPC 3.89 2.43 20.32 Bit depth of 4

****The metric has not been evaluated in the algorithm
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To increase the computational stability and memory requirement and maintain the
contextual content, large sequence of MCEEG data are split into sets of maximum
1000 samples per channel, and each of these is processed and stored as frames as
illustrated in Fig. 12.2. The next step is to normalize the MCEEG data using Feature
Scaling (FS) that restricts the values between two arbitrary points a and b, and the
normalized value is represented as h(x) in Eq. 12.17

h xð Þ ¼ aþ X � Xminð Þ � b� að Þ
Xmax � Xmin

ð12:17Þ

where X is the sample data, and Xmin and Xmax are the minimum and maximum of
each channel. Size of Xmin and Xmax will beM� 1. a and b take on values 0 and 1 in
the proposed method. The normalized data h(x) is split into integer Ir(x) and
fractional If (x) parts using Eqs. 12.4 and 12.5 which are coded separately by the IFC.

Subsequently, Ir(x) can be encoded using any spatial coding schemes that exploit
the redundancies introduced by FS normalization. In the proposed system, Run
Length Encoding (RLE) is employed because of its simplicity in implementation.
The encoded data S presented in Eq. 12.18 is a sequence of codes representing a byte
and the number of times it occurs consecutively.

S ¼ ðD1,C1ÞðD2,C2Þ. . .ðDi,CiÞ. . .ðDn,CnÞ ð12:18Þ
where Di and Ci are the ith distinct integer and its occurrence, respectively. Alterna-
tively, arithmetic coders could have been employed instead of RLE, but the coding

Fig. 12.9 Proposed MMSPC system. (a) Encoder section. (b) Decoder section
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efficiency was only marginally better at the expense of a slightly higher computa-
tional complexity.

Next a two-stage process encodes If (x) and represents it by a novel PI represen-
tation. Initially a lossy process binarizes If (x) based on the required resolution k. A
base converter converts If (x) to its equivalent binary stream b using Eq. 12.6.

Subsequently, in the second stage is a lossless process, based on the concept of
data representation [17] for faster encoding and decoding is performed on the binary
stream. The binary stream b from base converter is reshaped and packed into groups
of eight bits to an equivalent PI representation. Outputs from the spatial coder and
pseudo coder constitute the compressed MCEEG, and the resulting data is stored as
frames as depicted in Fig. 12.2.

12.2.1 Decoding Process

The strength of the algorithm is its simple decoding architecture. In the decoder
depicted in Fig. 12.9b, the coded MCEEG comprising the header, integer, and
fractional data undergoes two processes, namely Spatial and Pseudo decoding, and
the unit is collectively grouped as the Integer Fractional Decoder (IFD). In the
Spatial Coder, the spatial coded data S is unpacked to obtain the integer part Ir(x0),
based on the attributes in Eq. 12.18, where the coded integer Di is repeated several
times defined by Ci. Simultaneously, in the Pseudo Coder, the pseudo integers are
binarized as normal unsigned integers. The binarized data is then reshaped with the
same bit depth value used in the encoder, the value of which is retrieved from the
corresponding header. This is followed by a fractional base conversion using
Eq. 12.6 to obtain If(x0). The recovered integer and fractional parts are combined
to reconstruct the normalized signal I(x0) presented in Eq. 12.7

Subsequently, inverse normalization of I(x0) defined by Eq. 12.19 results in
reconstructing the MCEEG signal x0.

x0 ¼ X min þ I x0ð Þ � að Þ � X max � X minð Þ
b� a

ð12:19Þ

where Xmin, Xmax, a, and b are values from the encoder.
Performance metrics on datasets that were discussed earlier for LSPC analysis are

extended here for investigating the effectiveness of MMSPC for MCEEG compres-
sion. The effect of Min-Max normalization is illustrated in Fig. 12.10. Accordingly,
the following observations were made:

It can be clearly observed that the data is now within the range of 0 and
1, depicting data representation redundancies. In Feature Scaling, normalization
arbitrary values of a and b can be taken. It was observed that for all the variations
of a, b other than a¼ 0 and b¼ 1 (Min-Max Normalization), the signal compression
and reconstruction quality reduces. The normalization process is fully reversible, and
the reconstructed signal follows the actual signal with visual validation. For numeri-
cal validation, Local Absolute Error (LAE) was computed, which is the deviation of
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the decompressed sample from the original and was found to be in the order of 10�8

to 10�9.
The performance of the compression algorithm at near optimal bit depths on the

different MCEEG datasets has been numerically quantified in Table 12.4.
From the table for better signal quality a bit depth of four is better than its lower

ranges, but results in lower CR, whereas lower bit depth of three provides a better
CR with marginal increase in signal distortion in some of the datasets. An illustration
of the original, decompressed and residual error signals at bit depths of 3, 4, and 5 is
illustrated in Fig. 12.11.

It can be observed from the plots that at bit depths greater than 4 the error in the
decompressed signal is significantly less. It can be observed that the algorithm is
invariant to the data representation format and the performance metrics are correlated
to the bit depth only. The choice of optimal bit depth is based on trade-off between
acceptable amount of distortion in the decompressed signal and CR. This value can
be found out with visual inspection along with numerical values of the distortion
metrics PRD, RMSE, PAE, MAE, and PSNR in Fig. 12.12.

Furthermore, Fig. 12.12a–d, justifies that the performance metrics of the
decompressed signal is highly correlated to the bit depth d. PRD provides an
indication on the amount of error in the decompressed signal. For different data
sets, at a bit depth of 3, the value varies from a minimum of 0.62 to a maximum of
12.01, while at a higher bit depth of 4, it varies from 0.15 to 2.98, indicating a higher
signal quality. PAE which indicates the maximum absolute difference between the
actual and decompressed sample varies from 11.73 to 61.02 at a bit depth of 3 and
from 6.12 to 21.52 at bit depth of 4. MAE which provides a measure of closeness of
the reconstructed sample varies from 3.15 to 9.93 and from 1.58 to 4.91 at bit depths
3 and 4, respectively. PSNR which is the ratio between the maximum signal power
and the noise power of the recovered signal varies from 18.55 to 23.18 dB at bit
depth of 3 and from 20.39 to 24.66 dB at bit depth of 4.

The distortion introduced in the decompressed signal depends on the bit depth or
resolution of the base converter. At lower bit depths, distortions tend to increase but
are complimented with larger signal compression. It can be observed from

Fig. 12.10 Illustration of different normalization techniques. (a) Original, (b) Min-Max
normalized, (c) logarithmic normalized
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Fig. 12.13a–d that the distortion parameters vary greatly among different data sets
for varying CRs. Performance of the distortion parameters other than CR is almost
the same for data sets 4 and 5, which are similar MCEEG signals with different
sampling rates (1000 Hz and 100 Hz). The performance in terms of CR for data set
5 is comparatively lower than data set 4 as there were only 50 samples per channel,
with the header information Xmin and Xmax having M� 1 samples occupying 4% of
the space. The header information for data set 4 with 500 samples per channel takes
only 0.4% of the space, leading to higher CR. For MCEEG signals having longer
duration, the overhead due to this header becomes insignificant.

The distortion introduced in the reconstructed signal depends on the bit depth or
resolution of the base converter. At lower bit depths, distortions tend to increase, but
are complimented with larger signal compression. It can be observed from
Fig. 12.13a–d, that the distortion parameters vary greatly among different data sets
for varying CRs. Figure 12.12a–d justify our initial theory that the performance
metrics of the reconstructed signal are highly correlated to the bit depth d.

The relation between PSNR and PAE with MAE is depicted in Fig. 12.14a–b
which can be used to decide on the choice of bit depth. From Fig. 12.14b the MAE
can vary between 2 and 4 for an acceptable PAE of 10, which corresponds to the

Table 12.4 Performance evaluation of the proposed scheme at different bit depth

Data set Min-Max normalization

Bit depth ¼ 4 Bit depth ¼ 3

CR PRD PSNR(dB) CR PRD PSNR(dB)

1 3.38 0.23 24.06 5.03 12.01 22.21

2 6.03 0.58 20.39 5.12 7.06 18.55

3 8.58 1.09 21.32 5.12 4.21 19.48

4 11.26 1.76 24.63 4.66 0.78 22.79

5 13.76 2.56 24.66 2.60 0.62 23.18

6 16.48 3.52 24.22 5.10 7.31 22.33

Fig. 12.11 Superimposed original, decompressed, and residual error signals at bit depth of three,
four and five. (a) Signal compression at bitdepth of 3. (b) Signal compression at bitdepth of 4.
(c) Signal compression at bitdepth of 5

12 Computational Mechanisms Supporting Multichannel EEG Compression 261



Fig. 12.12 Performance illustration of proposed scheme of MCEEG data sets for varying bit
depth. (a) Bit depth versus CR. (b) Bit depth versus PAE. (c) Bit depth versus MAE. (d) Bit depth
versus PSNR

Fig. 12.13 Performance illustration of proposed scheme of MCEEG data sets for varying CR. (a)
CR versus PRD. (b) CR versus PAE. (c) CR versus MAE. (d) CR versus PSNR
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maximum error amplitude. On correlating this range of MAE with bit depth from
Fig. 12.13c, an optimal bit depth can be set at 4, where the PAE is within 10 and
MAE is within 4 in most of the data sets.

A relative comparison between LSPC and the proposed MMSPC system is
illustrated in Figs. 12.15 and 12.16. It can be observed from the figures that
MMSPC is better than LSPC in all grounds with reference to both CR and the
degree of distortion introduced, with similar computational complexity of O(zN).

Table 12.5 illustrates the time required for the encoding and decoding operations
of MMSPC based on the variations in number of channels and samples per channel.
Similar to LSPC, MMSPC computations were also performed on Intel Core2Duo
system with two cores operating at 1.8 GHz, with 2 GB RAM. The average encoding
and decoding time per sample was found to be 0.3 and 0.04ms, respectively, thereby
strengthening the fact that the proposed algorithm is computationally fast.

Relative performance comparison of the proposed system with recent MCEEG
compression algorithms [7, 4, 11, 13] is illustrated in Table 12.6 which uses CR,
PRD, and computational complexity as measures.

CR of the proposed algorithm as observed from the table is greater when
compared with other algorithms. The distortion indicator PRD is the lowest for the
proposed algorithm suggesting that the proposed algorithm is less lossy than the
other methods. Another highlight of the proposed algorithm is that it is computa-
tionally much lighter than all other algorithms, with a complexity of O(zN), except
for [4, 13] which claim to be computationally simple with comparable complexity as
indicated in Table 12.6. But in both cases signal quality of the decompressed signal
is more deteriorated with larger values of PRD as illustrated in the Table 12.6. One
critical observation is that MMSPC performance is directly related to the bit resolu-
tion of the ADC, i.e., larger the bit resolution, the larger will be the CR with better
decompressed signal quality and vice versa. This factor led to a lower performance
of the algorithm for data set 8 which was recorded using a 12-bit ADC.

Fig. 12.14 Quantitative and qualitative analysis of MMSPC on different datasets
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12.2.2 Complexity Analysis

In this section, an approximate estimation of performance of the MMSPC & LSPC is
analyzed in terms of memory requirement and time complexity.

12.2.2.1 Memory Requirement Analysis

Lemma 1 Let S¼ s1, s2. . ., sn be sample space of length n, with each sample

represented by b bits. Then the total space B will be n� log 2b

n

Fig. 12.15 Relative performance comparison of LSPC and MMSPC system under different CR

Fig. 12.16 Relative performance comparison of LSPC and MMSPC system for different bit depth
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Proof Consider n distinct b bit resolution samples. By the rules of information
theory, the number of bits to represent the data is given by

B ¼ log
2b

n

 !
ð12:20Þ

This can be approximated using the property in combination to get the size of
n elements or samples

B ¼ n� log
2b

n
ð12:21Þ

Spatial Coder returns two values namely distinct integer and its occurrence count of
Ir defined in Eq. 12.3. The memory requirement of the coder is denoted by Bs

Lemma 2 For given n samples with b bits per sample, there exists c set of distinct
integers with size l bits per sample, such that 1� c� n, l< b then from Lemma 1 Bs

can be generalized by Eq.12.20 ,

Table 12.5 Computation time of MMSPC for different sample sizes

No. of
channels Number of samples per channel

800 400

Encoding time
(s)

Decoding time
(s)

Encoding time
(s)

Decoding time
(s)

10 3.16 0.21 1.97 0.1

20 5.98 0.54 3.25 0.21

30 8.03 1.02 4.54 0.32

40 11.07 1.46 6.00 0.55

50 13.55 2.41 7.17 0.78

60 16.28 3.33 8.26 1.09

61 16.11 3.25 8.61 1.05

Table 12.6 Relative performance comparison of the compression algorithms

Authors & year Dataset CR PRD Complexity

Dauwels et al. [7] 7& 8 4.59 5.46 O(3mN2)

Birvinskas et al. [4] 4 4 11.09 O(cN)

Hejrati et al. [11] 7 2.67 **** O(TKN)

Titus and Sudhakar [13] 1 to 6 3.61 8.73 O(zN)

MMSPC 1 to 7 6.78 5.33 O(zN)

**** The metric has not been evaluated in the algorithm
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Bs � 2� c� log
2l

c
ð12:22Þ

Pseudo Coder returns the integer representation of If defined in Eq. 12.4. Here the
data is binarized using d bits defined by bit depth, and the number of samples n is
taken such that product of d� n is divisible l the size of the integer. The memory
requirement of the coder denoted by Bp

Lemma 3 For a given n samples with b bits per sample, there exists n samples
represented by d bits per sample such that d< b then from Lemma 1 Bp can be
generalized by Eq.12.21 ,

Bp ¼ k � log
2l

k
ð12:23Þ

where k ¼ d�n
l

Lemma 4 Given Bs and Bp, the space requirements of spatial and pseudo coders,
respectively, the total space requirement for the proposed system Bt will be the sum
of Bs and Bp.

Proof Given Bs and Bp from Lemmas 2 and 3 Bt, the total space complexity of the
proposed algorithm is defined by Eq. 12.22.

Bt ¼ 2� c� log
2l

c
þ k � log

2l

k
ð12:24Þ

Lemma 5 Let B, Bt be the space requirements of the original and compressed
signal, then Bt<<B.

Proof Given B, Bt the space requirements from Lemmas 1 and 4 subject to the
conditions c� n, d< b and l< b, then

n� log
2b

n
>> 2� c� log

2l

c
þ d � n

l
� log

2l

d � n
l

ð12:25Þ

Time Complexity
Majority of EEG compression algorithms available in the literature commonly
employ PCA, Fast ICA, and compressed sensing to get an equivalent structure of
the actual data. To the best of our knowledge the lowest computational complexity
that can be attained by any MCEEG compression algorithm is above O(N2), where
N is the number of samples.
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Lemma 6 For a given sample space S, the complexity of the proposed system is O
(zN)

Proof Given N the number of samples per channel, M the number of channels, and
d the bit depth. The complexity of the system is O(NMd). As the number of channels
M and precision or bit depth d requirement are fixed, their contribution to the
complexity is minimal. Thus, the algorithm has a linear dependence with the number
of samples taken over a period with a complexity of O(zN), where z¼ d�M and
z << N.

12.3 Conclusion

The significance of this study is that it provides a computationally simple model for
compressing MCEEG signals. In the proposed LSPC system, the signal is
normalized using the TL transform and the resulting coefficients are coded using
IFC, ensuing in data compression. The proposed scheme achieved an average CR of
3.16 with a computational complexity of only O(zN) and average encoding and
decoding times per sample of 0.3 and 0.04 ms, respectively. This is reasonably better
than the other methods which rely on computationally intensive operations, to
achieve similar CR. Also, an extension of LSPC in the form of MMSPC is proposed.
Upon FS normalization, the normalized coefficients are coded in the IFC, resulting
in data compression. The proposed scheme was able to achieve an average CR of
3.54 for a decent average PSNR of 23.38 dB with a computational complexity of O
(zN) only. The average encoding and decoding time for the scheme per sample is 0.3
and 0.04 ms. The signal compression achieved is at par or reasonably better than the
other compression schemes employing computationally intensive operation. The
compression range is highly related to the recording resolution; more the resolution,
the better will be the compression, while maintaining better signal quality. More-
over, the distortion level indicators such as PRD, MAE, PAE, and PSNR showed
promising results to substantiate that the algorithm is suitable for MCEEG
compression.
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