
Chapter 9
Crowd-Based Methodology of Software
Development in the Internet Era

Huaimin Wang, Gang Yin, Tao Wang and Yue Yu

Abstract In today’s Internet era, software has infiltrated all aspects of people’s
lives, the trend of software-defined everything is essentially unstoppable. The classi-
cal methodologies in software engineering are expected to produce software at a low
cost andwith strong functionality by guiding the development process using industri-
alizationmethods and principles. However, as the complexity of software application
scenarios and operating environments continues to increase, especially in the Internet
era, prominent bottlenecks remain in improving the efficiency and quality of soft-
ware development. Compared to the engineering methods, open source can attract
tens of thousands of contributors to participate in the software creation process. This
methodology is more deferential to each developer’s individuality and aims to create
a liberal, diverse, and democratic environment, thus stimulating the enthusiasm and
creative inspiration of contributors on a large scale and ultimately generating greater
collective wisdom. But the challenges in the diversification of individual interest
concerns, the unevenness of contribution capabilities, and the unpredictable results
of group collaboration make it unable to fully fulfill the tasks of clear and organized
softwaremanufacturing. In this chapter, we propose a crowd-basedmethodology that
integrates the software creation process into the softwaremanufacturing process, link
a small-scale but well-organized core teamwith self-organized but large-scale crowd
contributors, and transform a software opus to products in a timely fashion. Based
on the crowd-based methodology , we design and implement the TRUSTIE environ-

H. Wang (B) · G. Yin · T. Wang · Y. Yu
National Laboratory for Parallel and Distributed Processing, School of Computer,
National University of Defense Technology, Changsha, China
e-mail: hmwang@nudt.edu.cn

G. Yin
e-mail: yingang@nudt.edu.cn

T. Wang
e-mail: taowang2005@nudt.edu.cn

Y. Yu
e-mail: yuyue@nudt.edu.cn

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_9

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_9&domain=pdf
mailto:hmwang@nudt.edu.cn
mailto:yingang@nudt.edu.cn
mailto:taowang2005@nudt.edu.cn
mailto:yuyue@nudt.edu.cn
https://doi.org/10.1007/978-981-13-7099-1_9


136 H. Wang et al.

ment to support the construction of software ecosystem. We illustrate the framework
and key technologies and present typical application practices in both proprietary
companies and online communities.

9.1 Introduction

—“I have a good business idea, but need a programmer to implement it!”

The hottest buzzword in information technology today is “software-defined”,
spanning from software-defined networking (SDN), software-defined storage (SDS),
and software-defined data center (SDDC), which are part of a broader trend that peo-
ple might call software-defined everything. Looking around the world, the total mar-
ket capitalization of the top five Internet companies, i.e., Apple, Amazon, Microsoft,
Google, and Facebook, has exceeded 3700 billion U.S. dollars1 in 2018.Mechanical
Turk, AlphaGo, and other breakthrough products have been invented by those com-
panies, directly driving the innovation development of global technology. Software
technology is widely combined with the urgent needs of traditional industries to cre-
ate extremely innovative business services to facilitate our daily life. For example,
when software meets the transportation, Uber is created; when it meets the catering
industry, Yelp is created; when it can be embedded in tangible products, many smart
hardware products are created, e.g., Google Glass and iWatch. It may be hard for
people today to imagine how uncomfortable will be with no software support in their
lives. Similar to the books that carry the text civilization using written language in
the past, various kinds of software have become a new expression of information
civilization in the Internet era.

Definitely, we do not expect that a consummate solution and methodology for
software development can be found overnight. With respect to the development of
computer hardware technology, until today, no software development methodology
can promote software evolution at the same speed (i.e., the development of hard-
ware capabilities is in line with the growth of Moore’s Law [1, 2], while software
technology cannot be guaranteed.

Case of ARM Ecosystem. The ARM ecosystem deeply integrates software with
hardware. In contrast to Intel’s ecosystem which has accumulated its own sophisti-
cated software platforms, the main problem of the construction of ARM ecosystem
is how to transform and optimize various kinds of open source and commercial
software to be better compatible with the ARM hardware in a high efficiency and
quality way, assisting the relating companies in the ARM community in delivering
their products to the market rapidly. However, the transformation and optimization
processes cover almost all software stacks, including the operating system, database,
web applications, and the infrastructures for cloud computing and big data, which
are beyond the capability of traditional methodologies in software engineering.

1https://www.statista.com/statistics/277483/market-value-of-the-largest-internet-companies-
worldwide/.

https://www.statista.com/statistics/277483/market-value-of-the-largest-internet-companies-worldwide/


9 Crowd-Based Methodology of Software … 137

To address the software challenges in the Internet age, we propose crowd-
based software development methodology and its supporting environment called
TRUSTIE. Our main idea is based on the linking viewpoint, i.e., effectively linking
different types of development activities and different types of development collab-
orators to improve the innovation efficiency of the software ecosystem and reduce
the cost, thereby optimizing the business patterns of all stakeholders. The remain-
der of this chapter is organized as follows: Sect. 9.2 introduces the methodology
of TRUSTIE and the key concepts underlying the crowd-based software develop-
ment methodology. Section 9.3 presents the framework and typical algorithms in
TRUSTIE, as well as the related support platform and tools. Section 9.4 describes
the application of TRUSTIE.

9.2 The TRUSTIE Methodology

In this section, we illustrate the classical methodology of software engineering, open
source, and the main idea of crowd-based software development methodology.

9.2.1 Software Engineering and Software Manufacturing

Themain question in software engineering is how to continuously improve the devel-
opment efficiency and software quality. Since the 1960s, software practitioners have
noted that strong challenges have arisen from the backward mode of software pro-
duction. To address the “software crisis” [3], the concept of “software engineering”
[4] was proposed. Practitioners aimed to implement systematic mechanisms to man-
age software developers and development activities in the form of a “project”. This
strategy is expected to produce software at a low cost and with strong functionality
and high quality by guiding the software development process using industrializa-
tion methods and principles. In this concept, there is no essential difference between
software development and industrial activities, e.g., automobile manufacturing, gar-
ment production, and building construction. Both of these broad fields are expected
to achieve increased efficiency through strict and precise task decomposition and
personnel organization.

Under the guidance of this classic concept of software engineering, the academic
and industrial communities have conducted continuous exploration and research
on various aspects, e.g., development methodology, project management, and soft-
ware architecture. These communities have proposed a series of classic methodolo-
gies, e.g., the waterfall model [5], the constructive cost model (COCOMO) [6], and
component-based software engineering (CBSE) [7]. The most representative and
comprehensive methodology is exemplified in the software product lines [8], which
can be summarized in the following three steps: (1) extracting the public structure
and characteristics of specific fields or similar products through domain engineering



138 H. Wang et al.

induction; (2) organizing developers to write code and assemble modules by formu-
lating detailed and strict production plans based on standardized reusable software
assets and the software development life cycle; and (3) building a batch of software
products that meet the needs of specific markets.

In brief, we summarize the software development processes organized by the
industrialization solutions as SoftwareManufacturing, in which the outcome is the
software product or production-ready software. These approaches are very effective
in organizing software development activities with relatively clear and stable targets.
Over the years, such approaches have directly supported the smooth advancement of
a series of technology-intensive projects, e.g., projects in the aerospace and aviation
fields.

However, as the complexity of software application scenarios and operating envi-
ronments continues to increase, the challenge of “no silver bullet” [9] has become
increasingly prominent. Especially in the Internet era, software stakeholders have
changed from small-scale specific groups to large-scale, dynamic, and open Internet
users, leading to the recognition that the software development process is no longer
composed of activities with clear and stable targets. For example, in an open environ-
ment, the requirements of large-scale groups cannot be frozen, i.e., the demands of
users are dynamic. Additionally, in a complex scenario, software testing cannot fully
cover the restricted search space, i.e., the test target is not clear. The software workers
who are struggling on the software production line have also not escaped the chal-
lenges encountered by Chaplin’s character in the film Modern Times. Even though
the overall labor importation and workload of the software workers are maximized,
prominent bottlenecks remain in improving the efficiency and quality.

9.2.2 Open Source and Software Creation

During the period over which other engineering methods have struggled for promi-
nence, OSS has achieved remarkable success after decades of vigorous development.
From the early operating systems of BSD and Linux to today’s smartphone operat-
ing systems (Android), application container engines (Docker), and deep learning
frameworks (TensorFlow), many high-quality OSS has gained more market share
than similar commercial software [10].

Excellent open-source projects can attract tens of thousands of developers to
participate in their development, which represents strong productivity in industrial
production. For example, the Linux kernel has more than 400,000 contributors [11],
while the total number of employees of Microsoft’s multinational technology com-
pany is only approximately 110,000. In the world of open source, the philosophy of
democracy attracts different types of public contributors to continuously contribute
to OSS projects that interest them. The efficient reputation propagation effect moti-
vates top universities and scientific research institutions to release the latest scientific
research results to society in a timely manner. Further, unlimited potential innova-
tion hasmotivatedmore andmore software companies [12, 13] to achieve high-speed



9 Crowd-Based Methodology of Software … 139

growth through the model of open-source development accompanied by a service
payment.

Relative to the standardized and strongly organized engineering methods, the
open-source method is more deferential to each developer’s individuality and aims
to create a liberal, diverse, and democratic environment [14], thus stimulating the
enthusiasm and creative inspiration of contributors on a large scale and ultimately
generating greater collective wisdom [15]. We call the OSS development process
Software Creation, which is very similar to the process of creating artwork. There-
fore, we refer to the software artifacts created during the creative process as the soft-
ware opus, which is akin toworks of art. On the one hand, in the context of ambiguous
open issues (e.g., the requirement elicitation for innovative software), some unex-
pected solutions or so-called “killer applications” can be generated from the software
creation process because of the inspirations of individuals or the swarm intelligence
of crowd. On the other hand, challenges in the diversification of individual interest
concerns, the unevenness of contribution capabilities, and the unpredictable results
of group collaboration make this process unable to fully fulfill the tasks of clear and
organized software production.

9.2.3 Crowd-Based Methodology

In today’s Internet era, software has infiltrated all aspects of people’s lives, and the
wave of Software-Defined Everything (SDE) is essentially unstoppable. The unremit-
ting progress made in the areas of engineering methods and open-source method-
ologies has made people see the daylight of fundamentally breaking through the
bottleneck faced by software development, as discussed in Brooks’s “The Mythical
Man-Month” in 1975. When we rethink all kinds of software development activi-
ties, the concepts of “software manufacturing” and “software creation” are thought-
provoking. If we compare software development to automotive manufacturing, the
engineering methodology represented by the software production activities is sim-
ilar to the assembly line for Ford or Toyota automobiles. This process splits the
phase of atomization of software development activities (e.g., in the waterfall model,
the life cycle of software development is divided into six basic activities: planning,
demand analysis, software design, programming, software testing, and operation
and maintenance). Through advanced production and management processes (e.g.,
the organizational model of the company), software development has grown from a
small, personal programming workshop (PROG workshop) to a large group that can
support hundreds or even thousands of large-scale collaborations (software bloc).

However, operating software in a virtual space is not identical to other labor-
intensive industrial products, e.g., automobiles. When the technical barriers to the
underlying infrastructure (e.g., storage or CPU speed) are broken, the large-scale
mass production and transmission costs of mature software products are almost zero
(e.g., copying CDs or hard disks). Consequently, in the field of software develop-
ment, the advantages of scalable replication, the most significant improvement in



140 H. Wang et al.

Fig. 9.1 The crowd-based
methodology model

industrial production efficiency, have been greatly reduced. As the demand for new
software features continues to grow, the bottlenecks faced by software developers
are increasingly focused on software creation and the transition from creation to
production.

At this point, the high degree of decomposition of the development process and
the isolation in the collaboration of the development groups have not only failed to
improve the efficiency of software creation but also limited the scope of software
creation to a certain extent. In contrast, the open-source method, at the other end
of the scale, can fully create the atmosphere and environment needed for software
creation activities. For popular OSS, the development process seems to be similar to
global car enthusiasts participating in the design of a certain concept car, which is an
extremely effective strategy for innovation. However, open source has always been
organized by loose mechanisms, which has led to a large number of metaphorical
open-source concept cars unable to smoothly exit the software “Utopia” on time.

Building on the progress of previous innovators, we suggest that immediate reme-
dies to software development barriers can be found in the above two types of pro-
cesses, i.e., software manufacturing and software creation. Currently, developers are
seeking an intermediate path between these two processes, e.g., the Agile develop-
ment evolved gradually from the engineeringmethod and theDevOps booming in the
open-source world. From our perspective, the new software development methodol-
ogy should integrate the software creation process into the software manufacturing
process, and link a small-scale but well-organized core team with self-organized but
large-scale crowd contributors.

When the goals are not clear, the “core” coordinates the “crowd” to achieve cre-
ative work efficiently, and after the goal is finalized, the “core” organizes the “crowd”
to produce software products or transform a software opus to products in a timely
fashion. We call this method the crowd-based methodology of software develop-
ment. The essence of this crowd-based methodology consists of three essential and
interconnected elements: crowd collaboration, open resource sharing, and continuous
evaluation, as shown in Fig. 9.1.



9 Crowd-Based Methodology of Software … 141

9.3 Key Technologies of Crowd-Based Methodology

In this section, we present the key technologies of crowd-based methodology in
TRUSTIE, including crowd collaboration, open resource sharing, and continuous
evaluation.

9.3.1 Crowd Collaboration

Crowd collaboration in an open-source ecosystem is based on the onion structure
[16]. For a project team, such a structure consists of a small but strongly organized
core team and a large scale but unorganized peripheral contributors. To keep the
onion structure productive, various aspects are involved, including collaboration
between developers, the connection of developers and development tasks, and the
management of the development process. Figure 9.2 shows that multiple potential
collaboration approaches exist among developers, such as @-mention and follow in
GitHub. The developers can submit pull requests (PRs) or commits for collaboration
between developers and development tasks.All of these approaches together promote
collaboration in the deployment process.

Collaboration between developers. Many studies have proposed that social media
tools can promote collaboration among developers, which is beneficial to software
development. We used a mixed method, i.e., combining qualitative and quantitative
analysis, to provide an in-depth understanding of how@-mention is used in GitHub
issues and its role in assisting software development. Our statistical results indicate
that @-mention attracts more participants and tends to be used to address more chal-
lenging issues. @-mention favors the solution of issues by enlarging the visibility of
issues and facilitating developer collaboration. Our study also builds an @-network,

Fig. 9.2 Model of crowd
collaboration in distributed
software development



142 H. Wang et al.

Fig. 9.3 @-network (left) and follow-network (right) in GitHub

as shown in Fig. 9.3 based on the @-mention database we extracted. Through the
@-network, we investigate the evolution of the process over time and prove that
we have the potential to mine the relationships and characteristics of developers by
exploiting knowledge from the @-network.

The social coding paradigm has reshaped the distributed software development
with surprising speed in recent years. GitHub, a remarkable social coding commu-
nity, has attracted a huge number of developers in a short time. Various types of social
network are formed based on social activities among developers. To determine why
this new paradigm can achieve such great success in attracting external develop-
ers and how they are connected in such a massive community, we first compare
the growth curves of projects and users in GitHub in three traditional OSS com-
munities to explore the differences between their growth modes. We find explosive
growth in the number of users in GitHub and introduce the diffusion of innovation
theory to illustrate the intrinsic sociological basis of this phenomenon. Second, we
construct follow-networks, as shown in Fig. 9.3, according to the follow behaviors
among developers in GitHub. Finally, we present four typical social behavior pat-
terns bymining follow-networks containing the independence pattern, group pattern,
star pattern, and hub pattern. This study can provide several instructions for crowd
collaboration to newcomers. Based on the typical behavior patterns, the community
manager can design corresponding assistive tools for developers.

Connecting developers and tasks. The PR is the primary model for collabora-
tive code contribution and aggregation between the core team and peripheral crowds
in GitHub. To maintain the quality of software projects, PR review is an essential
part of distributed software development. Assigning new PRs to appropriate review-
ers makes the review process more effective, which can reduce the time between
the submission of a PR and its actual review. However, the reviewer assignment
is then organized manually in GitHub. To reduce this cost, we propose a reviewer
recommender to predict highly relevant reviewers of incoming PRs. By combining



9 Crowd-Based Methodology of Software … 143

information retrieval with social network analysis, our approach takes full advantage
of the textual semantic of PRs and the social relations of developers. We implement
an online system to show how the reviewer recommender helps project managers
find potential reviewers from crowds. Our approach can reach a precision of 74%
for top-1 recommendation and a recall of 71% for top-10 recommendations.

The continuous participation and contribution of the crowd are key factors for the
success of open-source projects. However, given the massive number of competitors,
it is difficult for a project to attract enough contributors by just passively waiting
for enthusiasts to join in. Instead, the project should actively seek gifted develop-
ers. Most current studies have mainly focused on recommending experts inside a
repository for some specific development tasks. To solve this problem, we propose
the novel approach ConRec to recommend potential contributors across the entire
open-source community for given projects. This approach leverages the developers’
historical activities in projects to analyze their technical interests and technical con-
nections with others. Thereafter, it combines a collaborative filtering algorithm with
a text-matching algorithm to recommend proper developers. We conducted exten-
sive experiments related to 5995 open-source projects and 2,938,620 developers in
GitHub. The results show that the proposed algorithm can recommend contributors
to open-source projects with the best performance of 63% in accuracy and solve the
cold start problem as well.

Development process management. As an important approach in DevOps, con-
tinuous deployment aims to automate the delivery and deployment of a software
product following any changes to its code. If properly implemented, continuous
deployment, together with other automation steps implemented in the development
process, can bring numerous benefits, including higher control and flexibility over
release schedules, lower risks, fewer defects, and the easier onboarding of new devel-
opers. We conducted a mixed-method study to shed light on developers’ experiences
and expectations with continuous deployment workflows. Starting from a survey,
we explore the motivations, specific workflows, needs, and barriers with continuous
deployment.Wefind two prominentworkflows based on the automated build features
on Docker Hub or continuous integration services, with different trade-offs.

9.3.2 Open Resource Sharing

OSS community ecosystems (OCEs) can be seen as a complex network of resources
from around the open-source community, including related open source projects,
open source products, open source organizations, open-source developers, and users.
OCEs have accumulated massive resources, and new resources are constantly being
generated. These resources come in a variety of forms, including software artifacts
(e.g., code snippets, and libraries), development documents (e.g., bug reports, design
specifications), and behavioral data (e.g., review discussions, social communica-
tions). Open-source developers try to share these resources with the whole ecosys-
tem as much as possible to obtain feedback (including criticism) and increase the



144 H. Wang et al.

Fig. 9.4 Open resource-sharing pipeline

Fig. 9.5 Structure and types of collected OCE data

reuse rate of these resources. As shown in Fig. 9.4, to facilitate this process and fully
explore the value of these resources, we propose an open resource-sharing pipeline
consisting of three steps: open resource aggregation, open resource organization, and
open resource reuse.

Open resource aggregation. As shown in Fig. 9.5, diverse resources such as
software artifacts, historical process data, issue reports, and feature requests are
produced and distributed dispersedly over various communitieswith the development
of OCEs. To automatically and continuously aggregate such massive and diverse
resources, we designed an aggregation system of high robustness, efficiency, and
flexibility. The aggregation system consists of two processes: resource acquisition
and resource bridging.

Resource acquisition. We use official APIs provided by open-source communi-
ties and web crawlers to obtain raw resources. Data crawling usually contains two
interdependent processes, that is, crawling the raw web pages and extracting their
attributes.However, direct extraction after crawling is not a suitable choice for rapidly
changing and growing OCEs. To make the aggregation system acquire high quality



9 Crowd-Based Methodology of Software … 145

and complete data, the system is designed with three stages: raw resource crawling,
structured information extraction, and final data verification. These three stages are
connected by the data flow and decoupled from the message queue and database.
Their working state and interaction record are stored in case of exception or errors.
Under this design, we can simply improve and restart any individual broken module
without affecting and restarting other running modules.

Moreover, due to the various types of resources existing in OCEs, we make the
aggregation system dynamically modifiable with external configuration files, which
define the rules to generate initial page links, extraction templates, and verification
specifications, among other possibilities. This approach provides a plugin-based fea-
ture to adapt to the resource diversity, and the only effort required to include a new
type of resource is simply to write a new configure file; the source code remains
unchanged. In summary, we have collected a broad variety of OCE resources of a
wide range of types. The collected data currently cover nearly 20 well-known open-
source sites, containing more than 14.2 million projects and 14.62 million posts.

Resource bridging. In spite of the diversity of OCE resources, open resources
mainly exist in two types of communities: collaborative development communities
(e.g., GitHub, Oschina) and knowledge-sharing communities (e.g., Stack Overflow,
CSDN). The former resource type contains structured software artifacts, while the
latter mostly contains textual posts. These two types of communities complement
each other, and bridging them can expand the application value of OCE resources.
While the bridging can be seen as a classification of posts to software projects, a
conventional supervised ML-based classification algorithm cannot be applied due
to the lack of training sets. Therefore, we use a text-matching method to solve this
problem. We first extract the common attributes from different sources and define
a uniform structure for each type of community. Two sets of resources are then
integrated: posts and projects. Given a post, its title, tags, and content are matched
with the name of a project, and each type of match is assigned a separate score.
Finally, the match score between a post and a project is taken as the sum of these
separate match scores with different weights.

Open resource organization. It is important to understand the collected resources
before we can truly use them. An appropriate model and organization of open
resources can lead to efficient and effective application.

Categorization-oriented organization. Categorization is considered to be an effi-
cient way to manage information from large-scale data repositories. This approach
clusters resources according to their topics and is quite useful for browsing and
retrieving resources with similar functions. We propose a hierarchical repository of
software features, which is an ideal technique to categorize software resources to
support resource organization with flexible granularity. First, we extract a massive
number of feature descriptions from online software profiles and mine their hid-
den semantic structure by a probabilistic topic model. Then, we present an improved
agglomerative hierarchical clustering algorithm, seamlessly integrated with the topic
model, to build the feature ontology.

Tagging is another popular and powerful mechanism for categorizing resources.
To uncover the hidden semantics among tags, we attempt to induce an ontology-



146 H. Wang et al.

like taxonomy from tags. Specifically, we propose an agglomerative hierarchical
clustering framework that relies only on how similar any two tags are. We enhance
our framework by integrating it with a topic model to capture thematic correlations
among tags. However, a severe problem for the current tagging systems in OCE is tag
insufficiency. Consequently, we propose tag recommendation based on a semantic
graph (TRG), a novel approach to discover and enrich tags of OSS. First, we propose
a semantic graph to model the semantic correlations between tags and the words in
software descriptions. Then, based on this graph, we design an effective algorithm
to recommend tags for software.

Link-oriented organization. Although the two types of open-source communi-
ties emphasize different aspects of OCEs, they are highly correlated and mutually
complementary because they overlap with each other by containing shared partic-
ipants and issues. To mine the potential value in the two types of communities, it
is necessary to reveal the associations between them and link them for knowledge
sharing. For example, to explore hidden links between Android Issue Tracker and
Stack Overflow, we focus on two factors: text similarity and temporal correlation.
Intuitively, two related threads in different communities are more likely to have sim-
ilar descriptions and discussion texts and arise in the same short period of time,
which can be seen as a type of temporal locality. Based on this intuitive result, we
propose an approach that combines semantic similarity with the temporal locality to
link correlated threads across communities.

Moreover, social coding facilitates the sharing of ideas within and between
projects in an OCE. Bug fixing and triaging, in particular, are aided by linking
issues in one project to potentially related issues within it or in other projects in the
ecosystem. We present a mixed-method study of the relationship between the prac-
tice of issue linking and issue resolution in the Rails OCE. Using a qualitative study
of issue linking, we identify a discrete set of linking outcomes together with their
coarse-grained effects on issue resolution. We use these findings to guide our quan-
titative modeling study of patterns in developer linking within and across projects,
from a large-scale dataset of issues in Rails and its satellite projects. We find that
Rails OCE developers tend to contribute most of their work within the ecosystem but
that the distribution of the work across projects varies. Furthermore, using models of
issue resolution latency, when controlled for various attributes, we find no evidence
that linking across projects retards issue resolution.

Open resource reuse. Open-source resources are generated by the crowd; in turn,
they serve the crowd and link the ecosystem. The most common way to reuse shared
resources is by searching or recommendation.

Crowd-based search. Global open-source resources have become an Internet-
scale repository that provides abundant resources for software reuse. However, how
to locate the desired resource efficiently and accurately from such a large amount is
a challenging problem. To solve this problem, we propose a prototype search engine
that leverages the crowdwisdom to optimize the search result ranking. The number of
times a software project was discussed by the crowd in various communities reflects
its influence, and we treat the crowd discussions as an important ranking factor.
For a user query that is formulated to find reusable software resources, we consider



9 Crowd-Based Methodology of Software … 147

the semantic similarities between the query, the indexed resources and the crowd
discussion popularity of the resources, and we compute a combined ranking score.
Finally, we return the resources that obtain the highest combined ranking score.

Multifeature-based recommendation. Due to the transparency and openness of
OCEs, a large number of external contributors are attracted to open-source develop-
ment. The massive numbers of developers are driven by an interest in participating in
specific development tasks. They have different personality traits, educational back-
grounds, and expertise levels. Therefore, a personalized recommendation service
may be helpful to reduce developers’ time and effort in reusing proper and interesting
projects. Therefore, we also propose an active recommendation approach to recom-
mend resources for developers based on multidimensional features. We model the
potential correlations between developers and open-source projects from three dif-
ferent dimensions: the popularity of projects, technical dependency among projects,
and social association among developers. We aggregate the three dimensions of fea-
tures with a linear combination and a learning-to-rank approach. Subsequently, the
aggregated score is used to rank and recommend the top-K candidates.

9.3.3 Continuous Evaluation

The trustworthy software has attracted public attention in the area of software quality.
Among the classic automation methods and engineering methods, software quality
assurance is mainly achieved through formal verification and software testing. These
methods have high costs and are mainly used for objective quality analysis. How-
ever, these methods ignore the subjective evaluation of contributors in crowd-based
development activities, which presents challenges in adapting these methods to the
continuous evaluation of software with changing requirements.

In an open-source ecosystem, a large amount of process data is produced through
software development, which presents a large scale, diverse types, rapid growth, and
rich content of big data. There are rich subjective feedbacks such as user requirements
and evaluations. The process data, which form a complete chain of evidence from the
requirement specification to the software code, constitute a new and important source
of evidence for the analysis of software trustworthiness. Facing the new changes of
an open-source ecosystem, we conduct evaluation works for projects, development
tasks, developers, and issues.

Evaluation of resources. The amount of software in the open-source ecosystem
is increasing more and more rapidly. Such a huge amount of OSS makes the rapid
evaluation of software a necessary skill for developers. However, conventional meth-
ods have high costs and sometimes conflict with developer experience. We present a
method to evaluate projects based on crowd feedback. To achieve this goal, we first
combine all software information from different communities and then bridge them
with posts from StackOverflow, which provides feedback regarding the software. In
the process of connecting software production communities, we filter the duplica-
tive projects, build a list of software and integrate all of their information. Then, we



148 H. Wang et al.

bridge software with posts from StackOverflow, and we link feedback with software
by keywords and other descriptions. Finally, we evaluate the popularity of software
by the number of linked posts, view count, and up-vote scores of these posts.

Evaluation of project. The integration and automation of the software develop-
ment process have been key concerns in software engineering.Weuse large, historical
data on process metrics and outcomes of GitHub projects to discern the effects of one
specific innovation in process automation: continuous integration. We explore the
impact of CI on software quality and the productivity of teams. We gather research
metrics from three dimensions that are known to affect the rate of growth of projects’
source base and the quality thereof: (a) the project attribute dimension (e.g., the
project age, the project size, and whether the project uses CI), (b) the project popu-
larity dimension (e.g., the number of forks and stars), and (c) the project development
activity dimension (e.g., the numbers of opened issues and PRs and the numbers of
merged and rejected PRs). By controlling for several known factors that affect the
productivity and quality, we aim to discern the effects of CI. Then, we use multiple
regression modeling to describe the relationship between a set of explanatory vari-
ables (predictors, e.g., usage of CI) and a response (outcome, e.g., number of bugs
reported per unit time). Our findings clearly show the benefits of CI: more PRs get
processed. Moreover, this increased productivity does not appear to be gained at the
expense of quality.

Moreover, the open-source ecosystem presents extreme openness for developers
to contribute, such as reporting issues. The extremeopenness poses a severe challenge
for the core team in project maintenance. Illustrated by the case of the issue tracker
system (ITS), in large-scale projects, many undesirable and vague issue reports are
submitted by external contributors (e.g., asking questions) because of their reluctance
to spend adequate time to read and comprehend the contribution guidelines, which
provide details on reporting an issue in a high-quality way and the type of issue
that the project prefers to address. Thus, issue evaluation is a labor-intensive and
time-consuming task for project managers. Furthermore, the core team members
have to provide rapid responses and resolve the incoming issues in time to sustain
the passion of external contributors. To help managers quickly evaluate whether
the issue reports are a bug or not, we present a two-stage classifier framework to
combine textual summary information and developer information that uses automatic
classification techniques. The first stage extracts the probability of bug-prone and
perplexity information of sentences for each issue from the free text, and in the
second stage, some structured features about contributors who submit issue reports
are provided, which can be expected to improve the performance of classification.

Evaluation of developers. Currently, more developers are adopting collaborative
development models (e.g., pull-based model) in OCEs. The openness and conve-
nience of such collaborative models reduce the contribution entries and promote
developer enthusiasm. However, in a large OCE, the high volume of incoming con-
tributions poses a severe challenge to project integrators who must review the con-
tributions’ quality. We first explore which factors affect the contribution evaluation
latency in GitHub. We extract four indicators from the perspective of personal rela-
tions, namely, the submitter’s success rate, whether the submitter is an integrator, the



9 Crowd-Based Methodology of Software … 149

strength of social connection and the total number of GitHub developers following
the submitter. Using regression modeling on sampled data, we find that these fac-
tors, including the submitter’s track record, reputation, and social connection with
project members, are highly significant. Contributions submitted by the core team
members and contributors with more followers, more ties to project integrators, and
higher previous PR success rates are associated with shorter evaluation latencies. In
other words, open-source projects prefer a useful contribution from a well known
and trusted contributor.

Furthermore, we aim to recommend appropriate reviewers to reduce the time
between the submission of a contribution and its actual review. The two key concepts
of our approach focus on the textual semantic of contributions and the social relations
of contributors.

• The expertise of a reviewer can be learned from the reviewer’s PR-commenting
history. For a newly received PR, the developers who have commented on similar
PRs frequently in the past are suitable candidates to review the new one.

• Common interests among developers can be measured by social relations between
contributors and reviewers in historical PRs. Developers who share more com-
mon interests with the contributor are appropriate reviewers of that contributor’s
incoming PRs.

As a result, we first propose a novel approach to construct comment networks by
mining historical comment traces. Based on the comment network and information
retrieval technologies, we predict highly relevant reviewers for incoming PRs.

9.4 TRUSTIE Environment

Based on the crowd methodology and the key technologies, we designed and imple-
mented TRUSTIE (Trustworthy software tools and Integration Environment) to
support the modeling and construction of an open-source ecosystem. In this section,
we give a brief instruction of the TRUSTIE architecture, and then present the typical
support for ecosystem construction.

9.4.1 TRUSTIE Architecture

The core goal of TRUSTIE is to help form an open-source community ecosystem
that connects diverse stakeholders to collaborate together in a community for contin-
uous innovation and benefit. To this end, we built the TRUSTIE platform, which is
composed of three levels: the data management infrastructure, the key technologies
and mechanisms, and subsystems and services. The detailed architecture is shown
in Fig. 9.6.



150 H. Wang et al.

Fig. 9.6 Continuous evaluation of developers, projects and resources

Data management infrastructure: The construction and evolution of an open-
source ecosystem is a data-driven process that also generates rich data. The data
management infrastructure is in charge of data storage and providing a data access
interface for upper levels. From the view of the source, there are mainly two types
of data: the first is the data generated in the TRUSTIE community, such as project
development data and user feedback, which are critical for guiding the construction
and evolution of the OSS community ecosystem, and the second is the data collected
from the Internet, such as the open-source application community and development
community data, which provide reusable resources and empirical guidance.

Key technologies. The crowd-based methodology is the core and essence of
TRUSTIE, which is supported by three groups of key technologies. Crowd collab-
oration technologies help extend the emphasis from only “professional-developer-
centered” to “diverse-crowd-driven” and connect the small core team with large
peripheral crowds for effective collaboration. Open resource-sharing technologies
help transfer the “fragmented and disorderly” raw resources to “aggregated and
ordered” ones and promote the effectiveness of resource sharing in and among
teams.Continuous evaluation technologies transfer the traditional “static and single-
dimension” analysis to the “dynamic and multidimensional” measure and evaluate
the entities in the ecosystem continuously.



9 Crowd-Based Methodology of Software … 151

Systems and services. Driven by the key technologies, TRUSTIE was used to
design and implement three subsystems that focus on various aspects of OCE con-
struction and evolution. The crowd-based learning platform focuses on the profes-
sional development of developers in the ecosystem. This platform provides channels
to introduce the incoming crowds and resources in the OSS community into a tradi-
tional classroom and to connect curriculum learning with standard project practices
to help individuals develop their skills and prompt them to engage in OCE. The open
resource-sharing platform collects and introduces Internet-scale external resources
to the enclosed organizations and provides various channels such as resource retrieval
and recommendation for effective resource sharing in and among teams. The crowd-
based collaborative development system designs and embeds various mechanisms
and services such as a development forum, processmanagement, and code evaluation
to connect the core team and peripheral crowds for software development.

9.4.2 Typical Support for Ecosystem Construction

The key factor for the construction and evolution of the OSS community ecosys-
tem is “connection”. The essence of crowd methodology is also “connection”. This
methodology emphasizes three types of connections and transformations: (1) con-
necting the peripheral crowds with the core team; (2) connecting crowd creation with
business production activities; and (3) transforming the opuses created by crowds to
the products managed by the core team. Figure 9.7 presents typical examples of the
TRUSTIE support for such connections.

Connection between the core teamand peripheral crowds: TRUSTIE incorporates
various channels for connecting the core team and peripheral crowds. For example,

Fig. 9.7 TRUSTIE architecture



152 H. Wang et al.

the discussion module is embedded in all three subsystems, which provides a con-
venient way for participants to communicate and form a micro-community. The
task assignment mechanism connects them through tasks, and the resource-sharing
mechanism connects them through resources.

Connection and transformation between creation and production: TRUSTIE
opens both the project source code and the development process to the core team
and peripheral crowds, providing corresponding mechanisms to connect the crowds’
creation with business production. The crowds can express their requirements or
comments (innovation) freely in TRUSTIE, and the core team can then be inspired
to arrange corresponding tasks in the development plan (task). The crowds with nec-
essary skills can also realize the innovations into source code (innovation realization)
and submit the results to the core team, and the core team can merge the crowds’
contributions into the product after reviews, or they can assign the task to the proper
developer to implement (task implementation). The crowds can obtain and experi-
ence the product and share their feedback (use and feedback), and a large amount of
feedback provides valuable evidence to rank and recommend reusable resources for
software production.

Connection and transformation between opus and product: The outcome of crowd
creation can be viewed as a type of opus that is inspiration-driven, and the outcome
of business production is a type of product that is market-requirement-oriented.
In the process of the connection and transformation between crowd creation and
business production, opuses such as crowd innovation, code snippets, and feedback
are connected and transformed into corresponding products such as development
tasks, product code and reusable resources.

9.5 Application Scenarios

There have been many successful applications and practices based on crowd-based
methodology, demonstrating the effectiveness of this approach. We briefly introduce
two typical cases: practices in software companies and practices in online commu-
nities.

9.5.1 Practices in Software Companies

Neusoft is oneof the leading IT solution and service providers inChina.This company
facesmany challenges in increasing productivity due to its large volumeof employees
such as the reuse of company assets, cross-team collaboration, shortening of the
development cycle, reduction of costs, and reduction of defect rates.

To consolidate the Neusoft production platform, we provide a new software
development environment named TRUSTIE CDE that is based on the crowd-based
methodology. This platform takes advantage of themechanisms of the crowdmethod:



9 Crowd-Based Methodology of Software … 153

Table 9.1 Practical examination of the enhanced platform

Exp. scale Exp. domain Reuse rate Collaboration
efficiency

Rate of defect
reduce

Exp. 1 • 300 persons
• 507 man
months

• 8 projects

Application
software
A: Health
insurance
B: Health
information

↑70% ↑65% ↓31.5% for A
↓35.4% for B

Exp. 2 • 100 persons
• 6 projects

Application
software
Tax

↑20% ↑45.69% ↓20%

Exp. 3 • 400 persons
• 60 months

Application
software
Navigation

↑121
components in
11 categories

↑63.64% ↓18.7%

Exp. 4 • 261 persons
• 6 projects
• 12 months

Application
software
E-Government

326 software
resources

↑41% for
design
↑24.5% for
coding

↓17.2% for
requirement
↓17.8% for
design
↓16.9% for
coding

Exp. 5 • Millions of
LOC in
projects

• 36 months

Infrastructure
software
Cloud
computing

↑20% ↑30% ↓25%

the large-scale sharing of assets, cross-team collaboration, flexible production lines,
and user feedback tracking. These mechanisms integrate collective wisdom to help
the core teams in Neusoft make effective decisions. Several experiments have been
conducted on more than 20 large software projects to examine the effect of the new
platform. As shown in Table 9.1, we find that the crowd methodology can signifi-
cantly improve the reuse rate, collaboration efficiency, and software quality in these
projects.

9.5.2 Practices in Online Communities

Based on the crowd methodology, TRUSTIE fosters prosperous online communities
centered around open sharing and collaborative development, as shown in Fig. 9.8.
This framework has become a well-known software development and innovation
ecosystem in China.

Currently, there are more than 3,900,000 projects and 14,200,000 posts in
resource-sharing services, as shown in Fig. 9.9a. The data are collected from the
most popular open-source communities and knowledge-sharing communities all over



154 H. Wang et al.

Fig. 9.8 Three types of connections and transformation in TRUSTIE

the world. TRUSTIE analyses and connects the large-scale data entities in different
communities and then provides searching, evaluation and ranking services for OSS.
Also, there are more than 52,000 users, 6800 repositories, and 2100 online software-
engineering-related classes hosted in TRUSTIE. The typical user interface of a code
repository is shown in Fig. 9.9(b).

9.6 Conclusion

In the Internet era, our daily lives have been redefined by software-driven technolo-
gies. Driven by massive decentralized crowds, OSS has achieved unprecedented
success without strict centralized control. We study the core mechanisms behind the
rapid development of OSS comprehensively and compare its development patterns
with those of traditional software engineering approaches.Wepropose a crowd-based
methodology to bridge the two paradigms of engineering and crowd wisdom meth-
ods, which enables crowd-oriented collaboration among internal development teams
and external crowds by combining software innovation and software manufacturing.

The crowd-based methodology consists of three important components: crowd
collaboration, open resource sharing, and continuous evaluation. Based on the crowd-
based methodology, we built the TRUSTIE environment, which embeds multiple
technologies and mechanisms to support the modeling and construction of the OSS
community ecosystem. Over nearly ten years of evolution, TRUSTIE has enabled the
formation of three typical and interconnected communities for crowd learning, open
sharing, and collaborative development. The practices in software companies and



9 Crowd-Based Methodology of Software … 155

(a) Open sharing community

(b) Collaborative development community

Fig. 9.9 The online communities in TRUSTIE. a Open sharing community. b Collaborative devel-
opment community



156 H. Wang et al.

communities show that the crowd-based methodology and the TRUSTIE environ-
ment can strongly support ecosystemmodeling and construction andbring substantial
benefits to practical research institutions and business enterprises.

References

1. G.E. Moore, Cramming more components onto integrated circuits. IEEE Solid-State Circuits
Soc. Newsl. 20.3, 33–35 (2006). Reprinted from Electronics, vol. 38, no 8, pp. 114 ff, 19 Apr
1965

2. G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85
(1998)

3. P. Naur, R. Brian (eds.), Software engineering: Report on a conference sponsored by the NATO
SCIENCE COMMITTEE, Garmisch, Germany, 7th to 11th October 1968. Nato (1969)

4. R.S. Pressman, Software Engineering: A Practitioner’s Approach (Palgrave Macmillan, Lon-
don, 2005)

5. W.W. Royce, Managing the development of large software systems: concepts and techniques,
in Proceedings of the 9th International Conference on Software Engineering (IEEE Computer
Society Press, 1987)

6. B.W. Boehm, Software Engineering Economics, vol. 197 (Prentice-Hall, Englewood Cliffs
(NJ), 1981)

7. R. Niekamp, Software Component Architecture (Gestión de Congresos-CIMNE/Institute for
Scientific Computing, TU Braunschweig, 2005)

8. P. Clements, N. Linda, Software Product Lines (Addison-Wesley, Boston, 2002)
9. F. Brooks, H.J. Kugler, No Silver Bullet (1987)
10. B.D. Software, N. Bridge, Future of Open Source Survey Results (2015)
11. M. Zhou, Q. Chen, A. Mockus, F. Wu, On the scalability of Linux kernel maintainers’ work,

in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering and
(ESEC/FSE 2017) (ACM, New York, NY, USA, 2017), pp. 27–37

12. M. Zhou, A. Mockus, X. Ma, L. Zhang, H. Mei, Inflow and retention in OSS communities
with commercial involvement: a case study of three hybrid projects. ACM Trans. Softw. Eng.
Methodol. (TOSEM) 25(2), 13 (2016)

13. E. Kalliamvakou, D. Damian, K. Blincoe et al., Open source-style collaborative development
practices in commercial projects using GitHub, in ICSE (2015), pp. 574–585

14. D. Rushkoff, Open Source Democracy: How Online Communication is Changing Offline Pol-
itics, vol. 10753 (Demos, 2003)

15. J. Surowiecki, Thewisdomof crowds:why themany are smarter than the fewand howcollective
wisdom shapes business. Economies, Societies and Nations 296 (2004)

16. Y.W. Ye, K. Kishida, Toward an understanding of the motivation of open source software
developers, in Proceedings of 25th International Conference on Software Engineering (2003),
pp. 419–429


	9 Crowd-Based Methodology of Software Development in the Internet Era
	9.1 Introduction
	9.2 The TRUSTIE Methodology
	9.2.1 Software Engineering and Software Manufacturing
	9.2.2 Open Source and Software Creation
	9.2.3 Crowd-Based Methodology

	9.3 Key Technologies of Crowd-Based Methodology
	9.3.1 Crowd Collaboration
	9.3.2 Open Resource Sharing
	9.3.3 Continuous Evaluation

	9.4 TRUSTIE Environment
	9.4.1 TRUSTIE Architecture
	9.4.2 Typical Support for Ecosystem Construction

	9.5 Application Scenarios
	9.5.1 Practices in Software Companies
	9.5.2 Practices in Online Communities

	9.6 Conclusion
	References




