
Chapter 5
Open-Source License Compliance
in Software Supply Chains

Dirk Riehle and Nikolay Harutyunyan

Abstract Almost all software products today include open-source components.
However, the obligations that open-source licenses put on their users can be difficult
or undesirable to comply with [14, 20, 25]. As a consequence, software vendors and
related companies need to govern the process by which open-source components are
included in their products [7, 21]. A key process of such open-source governance is
license clearance, that is, the process by which a company decides whether a par-
ticular component’s license is acceptable for use in its products [4, 15, 19]. In this
article, we discuss this process, review the challenges it poses to software vendors,
and provide unanswered research questions that result from it.

5.1 License Compliance

A legally
1
valid software product complies with the licenses of all the open-source

components included in the product [19].Anopen-source license provides rights such
as free (as in cost) use of the software in exchange for the fulfillment of obligations
[14, 21]. Failure to meet these obligations leads to a legally invalid product. Some of
these obligations could lead to intellectual property (IP) loss for the software vendor
[14, 18, 20, 25].

1This article is a follow-up to the NII Shonan Meeting on “Towards Engineering Free/Libre Open
Source Software (FLOSS) Ecosystems for Impact and Sustainability” where the first author was
tasked with summarizing research questions in the domain of open-source license clearance and
software supply chain management.

D. Riehle (B) · N. Harutyunyan
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
e-mail: dirk@riehle.org
URL: http://osr.cs.fau.de

N. Harutyunyan
e-mail: nikolay.harutyunyan@fau.de

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_5

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_5&domain=pdf
mailto:dirk@riehle.org
http://osr.cs.fau.de
mailto:nikolay.harutyunyan@fau.de
https://doi.org/10.1007/978-981-13-7099-1_5


84 D. Riehle and N. Harutyunyan

5.1.1 License Obligations

Consider the following three example obligations [7, 18]:

• License file provision. The most common obligation is to provide the license file
of each open-source component that comes with the product.

• Copyright notice provision.Another common obligation is to provide all copyright
notices from all files of each open-source component.

• Offer to provide source code (Copyleft2). The Copyleft obligation is to either
provide the product source code outright or to make a written offer to provide it
upon request.

Some obligations are easy to comply with and some are not. Some obligations are
unproblematic and some are highly undesirable from the intellectual property (IP)
perspective of the vendor [13, 17, 25].

We therefore classify license obligations into three main types as follows:

• Unproblematic (easy to comply with and unproblematic from an IP perspective).
An example is the license file provision.

• Difficult-to-comply-with (difficult to comply with, but unproblematic from an IP
perspective). An example is the complete copyright notice provision.

• Undesirable (from an IP perspective). For many, but not all, business models, an
example is the obligation to provide source code outright or to offer to provide the
source code.

5.1.1.1 Potentially Difficult-to-Comply-with License Obligations

Whether an obligation is easy to comply with or not depends on various issues. For
example, with improved tools, some obligations that are difficult to comply with
today may become easy to comply with in the future.

Consider the case of the obligation to provide all copyright notices from all files of
the original open-source code. In theory, if all files were available and with adequate
tool support, it would be possible to compile a document with all copyright notices.

However, this is based on the premise that the origin of every line of source code
is known and has been documented. There is no guarantee for this. Developers easily
and often copy code from the web and may have pasted code from one component
into another without properly documenting it. Without such documentation, it is
nearly impossible to determine the original source and therefore nearly impossible
to comply with its license obligations.

2Free Software Foundation, What Is Copyleft? at https://www.gnu.org/licenses/copyleft.en.html.

https://www.gnu.org/licenses/copyleft.en.html


5 Open-Source License Compliance … 85

5.1.1.2 Potentially Undesirable License Obligations

Whether a particular obligation is undesirable from the perspective of a vendor
depends on the vendor’s intellectual property strategy, which in turn depends on
its business model. A traditional closed-source vendor, for example, deriving signif-
icant revenue from license fees, may not want to be forced to license out their IP
because of a Copyleft obligation [1].

Examples of license obligations often considered undesirable are as follows:

• Written offer to provide source code (Copyleft). If this clause triggers, the vendor
has to provide the source code outright or to provide the source code upon request
under the Copyleft license [3, 13], thereby losing exclusive usage rights, among
other downsides.

• Patent retaliation clause. This clause, if triggered, usually withdraws the right
to use the open-source component or the patent or both and thereby renders the
product legally invalid, if the vendor enforces patent rights against someone else
(the specifics depend on the license).

• Lack of patent grant. Some older licenses do not include a patent grant [17, 28].
Thus, any use of the open-source component in a product exposes the vendor
to a potential patent enforcement action by a patent holder who contributed an
implementation of the patent to the open-source component.

A firm that is earning its living by providing services and support for open-source
componentsmay notworry aboutCopyleft but rather develop all software in the open.
Depending on the warranties and indemnification the firm provides to its customers,
however, it may worry about other issues like lack of patent grants.

5.1.2 License Strategy

A rational software vendor can only accept components with unproblematic licenses
into their products.

If the vendor were to accept a difficult-to-comply-with license, it might not be able
to comply with the obligations and therefore end up with a legally invalid product.
This opens the door for the original copyright holders to sue the vendor for license
violation [1]. The Software Freedom Conservancy, a not-for-profit foundation, funds
such lawsuits with the goal of enforcing license compliance. Also, developers exist,
who pursue such a strategy for personal enrichment [19]; the details of the legal
strategies are not of concern here.

If the vendor were to accept an undesirable obligation, the vendor might face a
situation in which recipients of the software product insist on the vendor complying
with the obligation. The vendor might decide to comply and face the consequences,
for example, loss of exclusive rights to the intellectual property it created, or the ven-
dor might decide to fight the request in court, leading to legal costs, lost management
attention, and loss of reputation, among other downsides [19].



86 D. Riehle and N. Harutyunyan

As a consequence, a software vendor needs to make sure that only open-source
components with unproblematic licenses are used in a product. This specific process
of clearing a suggested open-source component for use in a product is the license
clearance process [4, 15, 19]. License clearance is part of open-source governance,
which is part of overall product governance.

5.2 Product Governance

Product governance is the governance of all involved parties, their roles, and respon-
sibilities, as well as their processes and practices over the course of the product’s
life. It is mostly a product management task, but also involves engineering man-
agement and software architecture. Open-source governance is that part of product
governance that is concerned with the use of, contribution to, and leadership of
open-source software projects as they are relevant to the vendor’s product.

Open-source license clearance is one process of open-source governance, and the
main concern of this article. However, to understand license clearance, we first need
to understand the complexity of software products and how open-source software
makes it into a product.

5.2.1 Product Architecture

Software products andmost software components are built from other software com-
ponents. As a consequence, a software product can be viewed as a graph of intercon-
nected software components and fragments. The properties of the constituent parts
of a product and their relationships are all relevant to product governance and need
to be modeled precisely. Capturing this information is a precondition for achieving
license compliance [8, 9], that is, correctly fulfilling all the obligations that the use
of open-source components puts onto the software vendor.

5.2.1.1 The Component Graph

Figure 5.1 illustrates the architecture of a product as a code component graph. The
final product is shown at the top, and it depends on (incorporates and uses) various
other components. These other components may have been developed by the vendor
or they may have been sourced from a third party. Closed-source vendors and open-
source projects are both viable sources of third-party components.

Example properties of interest for a given code component include the following:

• its license(s),
• any known vulnerabilities, or



5 Open-Source License Compliance … 87

Fig. 5.1 The architecture of an example product from the code component perspective

• its export restrictions [22], for example, due to cryptography algorithms.

An important view of the code architecture ismanagement domains, which cluster
components by their managers, that is, closed-source vendors or open-source project
communities. A management domain corresponds with the traditional notion of a
(possibly multicomponent) third-party code component. Typically, but not always,
those who manage such a domain also own the copyright.

Figure 5.2 illustrates these management domains. Components of the same man-
agement domain usually, but not necessarily, have the same license. For example,
the OpenJDK project, delivers many components, but most importantly the core run-
time library needed by any Java application. This large library aggregates many other
components of varying but compatible open-source licenses.

5.2.1.2 Component Relationships

Viewing a product’s code architecture as a graph of interdependent components
requires engineering managers, software architects, and developers to be clear not
only about which components to use (the nodes) but also to be clear as to how they
relate (the edges). This is particularly important, if the component relationship crosses
from one domain into another. From a license compliance perspective, understand-
ing the component and fragment relationships is critical to making good decisions
during the license clearance process. Depending on the type of relationship, license
obligations may or may not apply [5].

Examples of relationship types are as follows:



88 D. Riehle and N. Harutyunyan

Fig. 5.2 The code architecture of Fig. 5.1 scoped by management domains

• the statically imported library,
• the dynamically loaded library, and
• the web services call.

Also, copying code from the web or other places and pasting it into a software
component introduces a dependency of the component onto some other party’s intel-
lectual property. Search engines, discussion forums, and question–answer websites
for programmers make copying and pasting code easy today and it constitutes a fre-
quent occurrence. Product governance policies may prevent this for closed-source
code, but open-source projects typically do not have such provisions in place.

5.2.1.3 Code Architecture Model

Traditional modeling tools for software architecture do not support management
domain views of code component architectures. Such a view, however, is often pro-
vided by tool vendors specializing in license compliance.

Still, most vendors, if they track the code component architecture for license com-
pliance purposes at all, maintain a spreadsheet with the components, their licenses,
and other metadata. From this spreadsheet, the so-called bill of materials, license
compliance artifacts like license texts, and copyright notice compilations can be
generated.

In theory, any component could provide its metadata so that build tools could
collect all relevant information and build the bill of materials automatically [9].



5 Open-Source License Compliance … 89

Sadly, this is not being done widely. As a consequence, most companies maintain a
product’s bill of materials by hand.

5.2.2 Make or Buy Decisions

From a software vendor’s perspective, most components will be sourced from third
parties, where third-party providers can be other companies or open-source projects.
Free (as in cost) open-source software is a great value proposition for software
startups, but even established software vendors benefit from the cost reduction of
using high-quality components for free [2].

The main decision, whether to make or buy a particular software component for
use as part of a product, is a product management decision. The driving criterion is
whether the software component will in any way support the competitive differenti-
ation of the product in the marketplace or not. If the component is not competitively
differentiating, it should probably be sourced from a third party.

If no such component exists, the company may have to develop the component
itself, but typically should do so as an open-source component to harness the benefits
that an engaged open-source community can bring [10, 23, 24]. These benefits are
as follows:

• maturing the component faster,
• helping recruiting new and competent employees, and
• improving employee loyalty.

5.2.3 The Software Supply Chain

Software vendors need to look at their product’s code component architecture and
their sourcing of not competitively differentiating components as a form of soft-
ware supply chain management. They need to evaluate third parties as suppliers of
components toward sustainability, quality, and costs, among other criteria.

Third-party suppliers can be commercial companies or open-source projects.
Companies may be providing closed-source components or they may be provid-
ing open-source components with additional (to-pay-for) services like warranties or
support.

The supply chain viewof a code component architecture naturally leads to supplier
tiers, with the first tier of suppliers having a direct relationship with the vendor, and
tiers further removed having an indirect relationshipwith the vendor. Still, the actions
of tier 2 or higher suppliers directly impact the vendor’s product [26]. Figure 5.3
illustrates the tier-view of the code component architecture.

A direct relationship with a supplier allows a vendor to enforce their license strat-
egy. For example, in a contract with a closed-source supplier, the vendor may be able



90 D. Riehle and N. Harutyunyan

Fig. 5.3 The supply chain perspective of the code component architecture of an example product

to specify that only unproblematic open source be used. Or, when choosing an open-
source component, the vendor may select only components with an unproblematic
license.

However, contracts or declarations do not necessarily guarantee that reality con-
forms to them.

For example, a commercial suppliermay promise, by contract, that no open source
is used in their products. However, they may fail to enforce proper governance pro-
cesses that ensure that developers do not copy open-source code or include open-
source components in their components. Delivered as a binary, it may be difficult for
the vendor to determine whether the supplier is meeting its contractual obligations.

Also, the declared license of an open-source component may not necessarily be
the real license of the component. Developers may have copied code from elsewhere
that forces a license change, but may have failed to declare it. Or, some licenses
conflict with each other, leading to software that cannot be used legally [5]. While
the source code is available for analysis, determining any such license violation or
confusion is not trivial.

Tiers 2 and higher may present the same problems to their next lower tier, com-
pounding the effect on the vendor as the final user of the software.

As a consequence, many lawyers believe that little legally valid software is left
on the market. They assume that so much copying and pasting has taken place that
all software has been tainted. Without knowing what is in their software, a vendor
cannot be license compliant, and hence cannot ship a legally valid product.

The difficulty of determining unwanted code goes both ways: The vendor may
find it difficult to determine, but so does the original copyright holder, who might



5 Open-Source License Compliance … 91

have standing to sue. This mitigates the risks expressed through this otherwise bleak
assessment.

5.2.4 Complete and Correct Bills of Materials

To be able to make an informed decision and to ensure license compliance, a vendor
therefore needs to receive or develop a complete and correct bill of materials for a
supplied component. Both industry and open-source communities have woken up to
this challenge and are trying to address it.

The first step is to have a standard format for a bill of materials that expresses
what is included in a component. For this, the Linux Foundation has sponsored the
creation of the Software Package Data Exchange (SPDX) standard [27] and tools for
processing the standard [19].

SPDX is rapidly evolving. SPDXcompliant documents provide information about
what is contained within a software package, including the license information of a
contained component, who created the component, its version, etc.

A bill of materials also needs to be complete and correct. To this end, any open-
source project needs to exercise good open-source governance. Guidelines of varying
quality exist on the web [6, 12].

The Open Chain Project of the Linux Foundation is trying to address this problem
by providing guidance to software vendors and open-source projects on how to have
good open-source governance [16].

5.3 License Clearance

License clearance is short for license clearance process. It is the process of reviewing
and deciding upon requests to include third-party components, in particular, open-
source components, in products. Typically, this process is part of the overall open-
source governance and compliance efforts of a company [7, 9, 14, 19, 25].

5.3.1 Process Preconditions

The license clearance process has to have, at a minimum, the following three key
components [7, 19]:

• A responsible person. Someone needs to be tasked with the license clearance
process. This person or post also needs to be known for being responsible for this
process, and managers and developers need to have been educated to go to this
person with any license clearance questions they may have.



92 D. Riehle and N. Harutyunyan

• A decision strategy. The responsible person needs to know how to decide on a
request to include an open-source component in a vendor’s product. For this, they
need the license strategy and all necessary expertise. They may have to work with
additional experts, for example, the vendor’s legal counsel.

• Escalation powers. Finally, the responsible person needs the power to enforce its
decisions, typically by escalating a denied inclusion request that is getting ignored
through the legal department to higher managerial levels in the company.

Vendors with state-of-the-art processes typically will have established some
sort of open-source program office or open-source competence center, whose
responsibilities include open-source governance, and hence the license clearance
process [7, 11, 19].

5.3.2 The Clearance Process

The clearance process itself can get complicated, but does not have to. We have
identified the following common best practices (in no particular order):

• Blacklists and white lists. With some licenses, the decision can be made quickly
and independently of context. For example, the AGPLv3 license is typically not
acceptable and should be blacklisted, while the Apache License 2.0 is typically
unproblematic and can be white listed [9, 19].

• Planned integration in products. Sometimes, the context determines whether a
particular component can be used. Depending on the embedding of the component
in the product, unwanted obligations may not apply, in case of which the use of
the component is unproblematic [5, 9].
To make this decision, a model of the product architecture, as described in the
previous section, is needed. A software architect needs to maintain the model
to demonstrate to the license clearance process owner that the desired use of a
component is unproblematic.

• Review of license conflicts. Some licenses conflict with each other, and hence the
components of these licenses cannot be used in the same product [5]. Using the
model of the product architecture that we introduced, the process owner can check
for such conflicts.

• Component repository. For efficiency reasons, the vendormaymaintain an internal
repository of component versions that have previously been accepted for inclusion
in products. This is an advanced form of white listing, making the use of open-
source components a self-service process.
Since security vulnerabilities may not be known at the time of including a compo-
nent in the repository, all white-listed components need to be monitored for newly
discovered vulnerabilities and reevaluated in the light of any new information.
A side effect of providing a component repository is enhanced security. Develop-
ers should use components from the internal repository rather than a public one,
reducing the attack surface for anyone trying to harm the vendor’s products.



5 Open-Source License Compliance … 93

• Component tracking. Components in products need to be tracked. The first step
is to maintain the product architecture model. The second step is to continuously
review new information about the components embedded in the vendor’s products.

New information may be problems with the license, new known vulnerabilities,
or increased legal activities for the component. The vendor needs to react to such
information, for example, by removing a component or upgrading the product to a
new version of the component.

5.4 Research Questions

The base of any license clearance is a complete and correct product architecture
model. To build this model, the following challenges need to be mastered:

• How to receive a complete and correct bill of materials for an open-source com-
ponent?

– How to represent this bill of material?
– How to automatically generate the bill of material from project artifacts?
– How to identify post-facto that code has been copied into a component from
elsewhere?

• How to motivate an open-source project community to clean up its code?

– How to motivate an open-source project community to create a bill of material?
– How to motivate an open-source project community to apply good open-source
governance?

• How to represent and work effectively with the product architecture model?

– How to automatically generate complete and correct license compliance arti-
facts?

With a complete and correct product architecture model in place, the following
challenges can be addressed:

• How to determine whether a particular license combination is legally valid?

– How to completely and correctly model license obligations and their combina-
tion?

Finally, the vendor faces the challenge of ensuring the model conforms to the
source code, which is summarized below:

• How to ensure developers follow a proper license clearance process?

– How to make the license clearance process known and understood?
– How to ensure developers take the license clearance process serious?
– How to make the license clearance process effective and not a burden?



94 D. Riehle and N. Harutyunyan

Acknowledgements We would like to thank our colleagues Daniel German and Matti Rossi for
the discussions and collaboration at the 2017 workshop on FLOSS ecosystems at Shonan Village,
Japan. We also would like to thankMaximilian Capraro, Shane Coughlan, Michael Dorner, Monika
Schnizer, and Axel Teichert for their feedback on this article.

References

1. B.W. Carver, Share and share alike: understanding and enforcing open source and free software
licenses. Berkeley Technol. Law J. 443–481 (2005)

2. B. Fitzgerald, The transformation of open source software. MIS Q. 587–598 (2006)
3. Free Software Foundation (2007). GNU General Public License: Version 3, 2007, at http://

www.gnu.org/licenses/gpl.html
4. D. German, M. Di Penta, A method for open source license compliance of java applications.

IEEE Softw. 29(3), 58–63 (2012)
5. D.M. German, A.E. Hassan, License integration patterns: addressing license mismatches in

component-based development. in Proceedings of the 31st International Conference on Soft-
ware Engineering. IEEE Computer Society (2009), pp. 188–198

6. GitHub (2017). Open source guides at https://opensource.guide/
7. I. Haddad, Open Source Compliance in the Enterprise (The Linux Foundation, San Francisco,

2016)
8. M. Helmreich, D. Riehle, Geschäftsrisiken und Governance von Open-Source in Softwarepro-

dukten, in Praxis der Wirtschaftsinformatik (HMD 283), 49. Jahrgang (2012), pp. 17–25
9. A. Hemel, S. Coughlan, Practical GPL Compliance (Linux Foundation, San Francisco, 2017),

pp. 43–47
10. J. Henkel, Open source software from commercial firms–tools, complements, and collective

invention. Z. Für Betr.Swirtschaft 4, 1–23 (2004)
11. Hewlett-PackardDevelopmentCompanyL.P. (2007).Best practices in open source governance.

White paper
12. C. Jensen, W. Scacchi, Governance in open source software development projects: a compar-

ative multi-level analysis. Open Source Software: New Horizons (2010) pp. 130–142
13. D.M. Kennedy, A primer on open source licensing legal issues: copyright, copyleft and copy-

future. Louis Univ. Public Law Rev. 20, 345 (2001)
14. A.M.S. Laurent, Understanding Open Source and Free Software Licensing: Guide to Navigat-

ing Licensing Issues in Existing & New Software. (O’Reilly Media Inc, Sebastopol, 2004)
15. C. Link, Patterns for the commercial use of open source: legal and licensing aspects, in Pro-

ceedings of the 15th European Conference on Pattern Languages of Programs, ACM, (2010),
p. 7

16. Linux Foundation (2017). The open chain project at https://www.openchainproject.org/
17. R.J. Mann, The commercialization of open source software: do property rights still matter?.

The University of Texas School of Law. Law and Economics Research Paper No. 58 (2005)
18. D. McGowan, Legal implications of open-source software. U. Ill. L. Rev. 241 (2001)
19. H.J. Meeker, Open (Source) for Business: A Practical Guide to Open Source Software Licens-

ing, 2nd ed. (CreateSpace Independent Publishing Platform, Scotts Valley, 2017)
20. H.J. Meeker, The open source alternative: understanding risks and leveraging opportunities.

(Wiley, New York, 2008)
21. C.H. Nadan, Open source licensing: virus or virtue. Tex. Intellect. Prop. Law J. 10, 349 (2001)
22. H.E. Pearson, Open source licenses: Open source—the death of proprietary systems?. Comput.

Law Secur. Rev. 16(3), 151–156 (2000)
23. D. Riehle, The commercial open source business model. Value Creation in E-Business Man-

agement (2009), pp. 18–30

http://www.gnu.org/licenses/gpl.html
https://opensource.guide/
https://www.openchainproject.org/


5 Open-Source License Compliance … 95

24. D. Riehle, The economic motivation of open source software: stakeholder perspectives. Com-
puter 40(4) (2007)

25. C. Ruffin, C. Ebert, Using open source software in product development: a primer. IEEE Softw.
21(1), 82–86 (2004)

26. H. Schöttle, U. Steger, Managing open source software in the corporate environment. Comput.
Law Rev. Int. 16(1), 1–7 (2015)

27. K. Stewart, P. Odence, E. Rockett, Software package data exchange (SPDX) specification. Int.
Free. Open Source Softw. Law Rev. 2(2), 191–196 (2011)

28. S. Zhu, Patent rights under FOSS licensing schemes. Shidler J. Law Commer. Technol. 4, 4–13
(2007)


	5 Open-Source License Compliance in Software Supply Chains
	5.1 License Compliance
	5.1.1 License Obligations
	5.1.2 License Strategy

	5.2 Product Governance
	5.2.1 Product Architecture
	5.2.2 Make or Buy Decisions
	5.2.3 The Software Supply Chain
	5.2.4 Complete and Correct Bills of Materials

	5.3 License Clearance
	5.3.1 Process Preconditions
	5.3.2 The Clearance Process

	5.4 Research Questions
	References




