
Towards Engineering
Free/Libre Open
Source Software
(FLOSS) Ecosystems
for Impact and
Sustainability

Brian Fitzgerald · Audris Mockus ·
Minghui Zhou Editors

Communications
of NII Shonan Meetings

Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact
and Sustainability

Brian Fitzgerald • Audris Mockus •

Minghui Zhou
Editors

Towards Engineering
Free/Libre Open Source
Software (FLOSS)
Ecosystems for Impact
and Sustainability
Communications of NII Shonan Meetings

123

Editors
Brian Fitzgerald
University of Limerick
Limerick, Ireland

Audris Mockus
University of Tennessee at Knoxville
Knoxville, USA

Minghui Zhou
Peking University
Beijing, China

ISBN 978-981-13-7098-4 ISBN 978-981-13-7099-1 (eBook)
https://doi.org/10.1007/978-981-13-7099-1

© Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-13-7099-1

Preface

Free/libre open source (FLOSS) ecosystems such as the Linux kernel have had a
tremendous impact on computing and society and have captured the attention of
businesses, researchers, and policy-makers. Millions of participants, from inde-
pendent volunteers to those representing companies or government organizations,
have created and maintained massive numbers of software projects, ranging from
individual scratch space or classroom assignments to critical infrastructure projects
such as the Linux Kernel, OpenStack, Docker, or Android. The spectrum and scale
of FLOSS has substantially expanded in recent years, as has its popularity. The
combination of distributed version control and social media features has created
“transparent” environments that facilitate the scaling up of the ecosystems to mil-
lions of repositories and developers [1]. Despite the substantial amount of research
on FLOSS in disciplines such as software development, organizational science,
management, and social science, it remains unclear how and why FLOSS
ecosystems form, how they achieve their impact, or how they sustain themselves.
The open nature of these communities and the associated vast collections of
operational data represent a tantalizing possibility to discover the mechanisms by
which such ecosystems form and operate. Achieving such understanding would
inform approaches to structuring future open-source communities, and could reveal
ways to nudge the behavior of individuals and groups involved toward greater
sustainability of FLOSS ecosystems.

Research on FLOSS phenomena has been ongoing for almost two decades. From
an economic perspective, the most common topics involve motivation and organi-
zation: Why do the participants in FLOSS contribute without material compensation
usually, and how do such apparently unstructured and distributed organizations
survive and succeed? Early research focused on understanding the nature of FLOSS
development practice and the reasons underpinning FLOSS success [2, 3], the study
of user innovation [4, 5], and the motivation of participants [6, 7]. A great deal of
effort has been devoted to investigating communities, e.g., the strategies and pro-
cesses by which newcomers join [8].

v

The nature of group and ecosystem sustainability has also been investigated. For
example, how a sustainable group evolves [9], how online communities should
encourage commitment [10], how successful FLOSS project participants progres-
sively enroll a network of human and material allies to support their efforts [11],
how the congruence of values between the individual and their organization affects
turnover [12], and what impact the initial willingness and project environment have
on newcomers’ long-term participation [13, 14].

As commercial participation in FLOSS has become common, the question of
how to combine FLOSS practice with commercial practice has received more
attention. For example, how the new phenomenon (OSS 2.0) is significantly dif-
ferent from its FLOSS antecedent is discussed in [15]. Borrowing FLOSS style
project structure, many organizations are embracing a global sourcing strategy
which has been termed open sourcing [16]. Successful hybrid projects have been
studied to help understand how to improve upon existing software development
practice. The motivation of commercial participation has also been extensively
studied, see, e.g., [17, 18, 19, 20]. Various business strategies have been identified
and analyzed in, e.g., [21, 22, 23, 24]. The impact that commercial participation has
on communities is also being studied currently [25, 26]. The FLOSS phenomenon
has also served as a proof-of-concept which has led to interest in initiatives such as
inner source [27] and crowdsourcing [28, 29].

The importance of FLOSS ecosystems, and the general lack of understanding on
how they function, was the impetus for our Shonan meeting in June of 2017. The
specific questions prominent researchers were asked to discuss include the
following:

1. How does an ecosystem form? How do different stakeholders work together to
form a community that develops and maintains valuable and freely available
software, and how does an ecosystem with millions of repositories and devel-
opers operate given the lack of centralized planning?

2. How is the ecosystem organized? How do the teams cooperate to resolve the
issues (workflow), and what are the typical relationships between the code and
the team?

3. How does the ecosystem evolve in response to the environment as technology
and needs evolve over time?

4. What distinguishes ecosystems that sustain themselves from ecosystems that
disappear? How can an ecosystem be sustained? Under what circumstances
should it be sustained?

5. How do newcomers learn the protocols and practices of an ecosystem? How
would they sustain the ecosystem? What is the relationship between people
sustainability and ecosystem sustainability?

6. What kinds of research methods might be utilized (e.g., which qualitative and
quantitative methods) to achieve research goals?

vi Preface

The results of the meeting are presented in the remaining chapters of this book.
As FLOSS is a complex phenomenon, we first need to develop ways to measure it.
Being able to measure relevant aspects of the ecosystem is critical to being able to
quantify and understand how it operates.

“When you can measure what you are speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory kind.”—Lord Kelvin

To that extent, a critical role is played by networks of code flow, knowledge flow,
and the technical dependencies. Measurement is further complicated by the volume,
complexity, low quality, and rapidly changing data. The chapters in this book
outline the general strategies of addressing some of these major challenges.

Once the measurement framework is established, we can build and, based on
empirical measurements, falsify theories of FLOSS ecosystem. Perhaps, the most
fundamental aspect of such ecosystems is related to software production: why
developers contribute their code and are others willing to appropriate it? Early work
on open source suggested that developers produce code for their own use, and
hence sharing it is an incidental no-cost activity. Production in the present capitalist
economy is, on the other hand, of dual purpose with more focus on the exchange
value of goods.

“For two-fold is the use of every object…. The one is peculiar to the object as such, the
other is not, as a sandal which may be worn, and is also exchangeable. Both are uses of the
sandal, for even he who exchanges the sandal for the money or food he is in want of, makes
use of the sandal as a sandal. But not in its natural way. For it has not been made for the
sake of being exchanged.”

This fundamental property of any object (including software) suggests that the
purely noneconomic explanation is lacking in depth and exchange should be
important aspect of software production in addition to its use value (for personal
use). Most of the code is designed to do very specific things and is not replaceable
by other code (unlike, for example, commodities such as grain or metal): how do
developers establish its exchange value? “Exchange,” Aristotle says, “cannot take
place without equality, and equality not without commensurability.1” The later
research on open source argued that what is being “exchanged” is a reputation that
brings with it the ability for the reputation owner to make decisions and to influence
others. They also point out that the reputation ultimately results in material out-
comes, such as employment. Since FLOSS is heavily supported by corporations, it
would probably be naive, therefore, to think that producing use value is the primary
(or even a significant) driver of FLOSS development effort. This suggests that the
exchange value of FLOSS software can be quantified as the amount of labor
invested in producing the aspects of software that are useful to others: in other
words, it is a social construct by nature. It is, obviously, not the actual amount of
time a specific developer has invested in it, but depends on the productivity of that
developer and ability of others to implement similar functionality, but it still can be

1Aristotle,“De Rep.” l. i. c. 9.

Preface vii

quantified by these uniform units of labor derived from the actual time spent and
capabilities of the implementer. As such, more direct ways to monetize such labor
are being deployed in practice, such as Patreon, which enables fans and sponsors to
give ongoing support to creators, and License Zero which requires commercial
users to pay for a commercial license after 90 days. Furthermore, facilitators of
exchange of such labor to material goods are facilitated by platforms such as
Tidelift, which touts itself as a market for FLOSS developers building a sustainable
business around their projects, or Open Collective, which provides tools and
mechanisms for “collectives” to receive and spend money in a democratic and
transparent way. The chapter on ecosystem microeconomics proposes an approach
to conduct research on this, apparently novel, form of production, while chapters on
licensing discuss details of protecting the resulting intellectual capital.

To function and survive, ecosystems need to attract people, get them onboarded
and retain them. This necessitates evolving mechanisms for adapting to internal and
external changes that pose risks. The chapters on the lifeblood of FLOSS ecosys-
tems discuss possibilities for attracting, onboarding, and retaining contributors (and
users), and eventually the death of ecosystems.

In the final two chapters, a variety of problems ranging from practical questions
of how the government might engage in support of FLOSS ecosystems to
methodology and implementation of building FLOSS collaboration platform in
China are discussed.

Limerick, Ireland Brian Fitzgerald
Knoxville, USA Audris Mockus
Beijing, China Minghui Zhou

References

1. J. Herbsleb, C. Kstner, C. Bogart, Intelligently transparent software ecosystems. IEEE Softw.
33(1), 89–96 (2016)

2. A. Mockus, R.F. Fielding, J. Herbsleb, A case study of open source development: the Apache
server, in 22nd International Conference on Software Engineering, Limerick, Ireland, 4–11
June 2000, pp. 263–272. [Online]. Available: http://dl.acm.org/authorize?2580

3. B. Fitzgerald, Has open source a future?, in Perspectives on Free and Open Source Software,
eds. J. Feller, B. Fitzgerald, S. Hissam, K. Lakhani (MIT Press, Cambridge, 2005),
pp. 121–140

4. E. von Hippel, G. von Krogh, Open source software and the private-collective innovation
model: issues for organization science. Organ. Sci. 14(2), 209–223 (2003)

5. B. Fitzgerald, Open source software implementation: anatomy of success and failure. Int.
J. Open Source Softw. Processes 1(1), 1–19 (2009)

6. G. von Krogh, S. Haefliger, S. Spaeth, M. Wallin, Open source software: what we know (and
do not know) about motivations to contribute, in DRUID Conference 2008, the University of
Gothenburg research seminar, and the Open and User Innovation Workshop 2008 at Harvard
Business School (2008)

viii Preface

http://dl.acm.org/authorize?2580

7. J.A. Roberts, I.-H. Hann, S.A. Slaughter, Understanding the motivations, participation, and
performance of open source software developers: a longitudinal study of the apache projects.
Manage. Sci. 52(7), 984–999 (2006)

8. G. von Krogh, S. Spaeth, K.R. Lakhani, Community, joining, and specialization in open
source software innovation: a case study. Res. Policy 32(7), 1217–1241 (2003)

9. S. O’Mahony, F. Ferraro, The emergence of governance in an open source community. Acad.
Manage. J. 50(5), 1079–1106 (2007)

10. R.E. Kraut, P. Resnick, Building Successful Online Communities: Evidence-Based Social
Design (MIT Press, Cambridge, MA, 2012)

11. N. Ducheneaut, Socialization in an open source software community: a socio-technical
analysis. J. Comput. Support. Collaborative Work 32, 323–368 (2005)

12. B.J. Hoffman, D.J. Woehr, A quantitative review of the relationship between person orga-
nization fit and behavioral outcomes. J. Vocat. Behav. 68(3), 389–399 (2006). [Online].
Available: http://www.sciencedirect.com/science/article/pii/S000187910500103X

13. M. Zhou, A. Mockus, Does the initial environment impact the future of developers? in ICSE
2011, Honolulu, Hawaii, 21–28 May 2011, pp. 271–280. [Online]. Available: http://dl.acm.
org/authorize?414944

14. M. Zhou, A. Mockus, Who will stay in the floss community? modeling participant’s initial
behavior. IEEE Trans. Softw. Eng. 41(1), 82–99 (2015)

15. B. Fitzgerald, The transformation of open source software. MIS Q. 30(3), 587–598 (2006)
16. P.J. Agerfalk, B. Fitzgerald, Outsourcing to an unknown workforce: exploring opensourcing

as a global sourcing strategy. MIS Q. 32(2), 385–409 (2008). [Online]. Available: http://dl.
acm.org/citation.cfm?id=2017366.2017375

17. A. Bonaccorsi, C. Rossi, Comparing motivations of individual programmers and firms to take
part in the open source movement: from community to business. Knowl. Technol. Policy 18
(4), 40–64 (2006)

18. K. Crowston, K. Wei, J. Howison, A. Wiggins, Free/libre open source software development:
what we know and what we do not know. ACM Comput. Surv. 44, 02/2012 (2012)

19. P. Capek, S. Frank, S. Gerdt, D. Shields, A history of IBM’s open-source involvement and
strategy. IBM Syst. J. 44(2), 249–257 (2005)

20. J. Henkel, Selective revealing in open innovation processes: the case of embedded linux. Res.
Policy 35, 953–969 (2006)

21. A. Bonaccorsi, S. Giannangeli, C. Rossi, Entry strategies under competing standards: hybrid
business models in the open source software industry. Manage. Sci. 52(7), 1085–1098 (2006)

22. N. Munga, T. Fogwill, Q. Williams, The adoption of open source software in business
models: a red hat and IBM case study, in The 2009 Annual Research Conference of the South
African Institute of Computer Scientists and Information Technologists, October 2009

23. L. Dahlander, M. Magnusson, How do firms make use of open source communities? Long
Range Plann. 41(6), 629–649 (2008). [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0024630108000836

24. P. Wagstrom, J. Herbsleb, R. Kraut, A. Mockus, The impact of commercial organizations on
volunteer participation in an online community, in Academy of Management Annual Meeting,
Montreal, CA, 6–10 August 2010

25. X. Ma, M. Zhou, D. Riehle, How commercial involvement affects open source projects: three
case studies on issue reporting. Sci. China Inf. Sci. 56(8), pp. 1–13 (2013)

26. M. Zhou, A. Mockus, X. Ma, L. Zhang, H. Mei, Inflow and retention in OSS communities
with commercial involvement: a case study of three hybrids. ACM Trans. Softw. Eng.
Methodol (TOSEM) (2016)

27. K. Stol, P. Avgeriou, M. Babar, Y. Lucas, B. Fitzgerald, Key factors for adopting inner
source. ACM Trans. Softw. Eng. Methodol. 23(2)

Preface ix

http://www.sciencedirect.com/science/article/pii/S000187910500103X
http://dl.acm.org/authorize?414944
http://dl.acm.org/authorize?414944
http://dl.acm.org/citation.cfm?id=2017366.2017375
http://dl.acm.org/citation.cfm?id=2017366.2017375
http://www.sciencedirect.com/science/article/pii/S0024630108000836
http://www.sciencedirect.com/science/article/pii/S0024630108000836

28. K. Stol, B. Fitzgerald, Twos company, threes a crowd: a case study of crowdsourcing software
development, in Proceedings of International Conference on Software Engineering, 2014

29. K. Stol, B. Caglayan, B. Fitzgerald, Competition-based crowdsourcing software development:
a multi-method study from a customer perspective. IEEE Trans. Softw. Eng. (2018). https://
doi.org/10.1109/tse.2017.2774297

x Preface

https://doi.org/10.1109/tse.2017.2774297
https://doi.org/10.1109/tse.2017.2774297

Contents

1 A Methodology for Measuring FLOSS Ecosystems 1
Sadika Amreen, Bogdan Bichescu, Randy Bradley, Tapajit Dey,
Yuxing Ma, Audris Mockus, Sara Mousavi and Russell Zaretzki

2 Mining Data to Profile Communication in FLOSS Communities . . . 31
Barbara Russo, Juergen Tragust and Xiaofeng Wang

3 A Preliminary Theory for Open-Source Ecosystem
Microeconomics . 49
Nicolas Jullien, Klaas-Jan Stol and James D. Herbsleb

4 Open-Source Ecosystems and Their Need for a Legal
Framework . 69
Daniel M. German

5 Open-Source License Compliance in Software Supply Chains 83
Dirk Riehle and Nikolay Harutyunyan

6 The Life and Death of Software Ecosystems 97
Raula Gaikovina Kula and Gregorio Robles

7 Onboarding and Retaining of Contributors in FLOSS
Ecosystem . 107
Minghui Zhou

8 A Free and Libre Open Source Software (FLOSS) Initiative
for a Sustainable Deployment in Oman . 119
Hadj Bourdoucen, Ahmed Al Maashri, Mohamed Ould-Khaoua,
Mohamed Sarrab, Mahdi Amiri-Kordestani, Fahad Al Saidi
and Khalil Al Maawali

9 Crowd-Based Methodology of Software Development
in the Internet Era . 135
Huaimin Wang, Gang Yin, Tao Wang and Yue Yu

xi

Chapter 1
A Methodology for Measuring FLOSS
Ecosystems

Sadika Amreen, Bogdan Bichescu, Randy Bradley, Tapajit Dey,
Yuxing Ma, Audris Mockus, Sara Mousavi and Russell Zaretzki

Abstract FLOSS ecosystem as a whole is a critical component of world’s comput-
ing infrastructure, yet not well understood. In order to understand it well, we need to
measure it first. We, therefore, aim to provide a framework for measuring key aspects
of the entire FLOSS ecosystem.We first consider the FLOSS ecosystem through lens
of a supply chain. The concept of supply chain is the existence of series of inter-
connected parties/affiliates each contributing unique elements and expertise so as
to ensure a final solution is accessible to all interested parties. This perspective has
been extremely successful in helping allowing companies to cope with multifaceted
risks caused by the distributed decision-making in their supply chains, especially
as they have become more global. Software ecosystems, similarly, represent dis-
tributed decisions in supply chains of code and author contributions, suggesting that
relationships among projects, developers, and source code have to be measured. We
then describe a massive measurement infrastructure involving discovery, extraction,
cleaning, correction, and augmentation of publicly available open-source data from
version control systems and other sources. We then illustrate how the key relation-
ships among the nodes representing developers, projects, changes, and files can be
accurately measured, how to handle absence of measures for user base in version
control data, and, finally, illustrate how such measurement infrastructure can be used
to increase knowledge resilience in FLOSS.

S. Amreen · T. Dey · Y. Ma · A. Mockus (B) · S. Mousavi
Department of Electrical Engineering and Computer Science, University of Tennessee,
Knoxville, TN 37996, USA
e-mail: audris@utk.edu

B. Bichescu · R. Bradley · R. Zaretzki
Haslam College of Business, University of Tennessee, Knoxville,
TN 37996, USA
e-mail: bbichescu@utk.edu

R. Bradley
e-mail: rbradley@utk.edu

R. Zaretzki
e-mail: rzaretzk@utk.edu

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_1&domain=pdf
mailto:audris@utk.edu
mailto:bbichescu@utk.edu
mailto:rbradley@utk.edu
mailto:rzaretzk@utk.edu
https://doi.org/10.1007/978-981-13-7099-1_1

2 S. Amreen et al.

1.1 Introduction

Open source is, perhaps, the least understood among the revolutionary inventions of
the humankind. This is, perhaps, not very surprising because just two decades ago it
was a mere curiosity, yet now, with its exponential growth, it has reached all corners
of the society. This lack of understanding, however, is not excusable because much
of the societies critical infrastructure and the ability to innovate depend on the heath
of Free/Libre and Open Source Software (FLOSS).

Here, we attempt to alleviate this gap in understanding by proposing a measure-
ment infrastructure capable of encompassing the entire FLOSS ecosystem in the
large. To do that, we start from introducing conceptual framework of supply chains
and adapting it to the unique features of the FLOSS ecosystem. In particular, we
define software supply chain as the collection of developers and software projects
producing new versions of the source code. This supply chain analogy provides us
with key concepts of the abstract network involving nodes that represent developers,
changes, projects, and files. The production process involves creating new versions
of files via atomic increments that deliver specific value (commits). We then proceed
to operationalize these and additional concepts from bottom-up, i.e., from publicly
available atomic records representing code changes.

The process of collecting and extracting this public data is involved due to lack
of a single global registry of all FLOSS projects, the need to extract data from git
database, need to store a petabyte of the data, and the need to convert it into a form
so that the necessary measures could be calculated.

Before we can engage in the construction of the supply chain relationships, we
need accurate identification of developers and projects and the relationships among
them. Developers’ identities are often misspelled, while projects may represent tem-
porary forks of other projects. Both issues need to be addressed. Once the basic data
has been cleaned and corrected in this way, we can engage in estimation of direct
relationships that involve five basic types as given below:

• Authorship links file(s) modified with the author and includes basic data in a
commit: date and commit message.

• Version history links changes (and, therefore, versions of a file) through a parent–
child relationship with each commit having zero or more parent commits.

• Static dependence links source code files via package use or call-flow dependen-
cies.

• Project inclusion links projects (VCS repositories) with changes and all versions
of files contained therein.

• Code copy dependencies identify instances of code between specific versions of
files and, in conjunction with version history, can be used to create Universal
Version History that breaks project boundaries.

In combination, these dependencies induce additional networks, for example, the
knowledge flowgraph of developers connected trough files theymodify in succession
or upstream/downstream collaboration graph linking developers working on projects
that have static dependencies.

1 A Methodology for Measuring FLOSS Ecosystems 3

Once the data for software supply chains is produced, the types of attributes that
are directly available are limited and we, typically, need to augment basic data with
quantities that may reside in other data sources, for example, responsiveness that
resides in projects’ issue trackers or Q&A websites, or may be entirely unavailable,
for example, the number of end users and, therefore, has to be obtained frommodels.

Finally, we illustrate how the constructed measurements can be used to increase
resilience of the FLOSS ecosystem to the knowledge loss by assigning observers or
maintainers to the strategically selected projects or source code files.

The remainder of this chapter is organized as follows: In Sect. 1.2, the definition
of FLOSS supply chains and general approaches used to optimize FLOSS supply
chains’ network are provided. In Sect. 1.3, the process of collecting and storing
data from software projects hosted on various open-source platforms is described.
Section 1.4 composed the data extraction process, storage, and cleaning through
disambiguating author identities. Section 1.5 depicts operationalization of software
supply chain by constructing code reuse, knowledge flow, and dependency networks.
In Sect. 1.6, we provide a redundancy-based approach to have more maintainers
responsible for in-danger-files to reduce the knowledge loss in the FLOSS ecosystem.

1.2 Supply Chains in FLOSS

The key output of software development activity is the source code. Therefore, soft-
ware development is reflected in the way the source code is created and modified.
Although various individual and groups of projects have been well studied, it only
gives partial results and conclusions on the propagation and reuse of source code in
the large. As in traditional supply chains, the developers in FLOSS make individual
decisions with some cooperative action, and hence the analytical findings from tra-
ditional supply chains may help in FLOSS. Second, we have a complicated network
of technical dependencies with code and knowledge flows akin to traditional supply
chains, making the analogies less complicated. Third, the emerging phenomena, for
example, the lack of transparency and visibility, appear to be as, or more, important
in FLOSS as in traditional supply chains. Fourth, unlike traditional supply chains,
FLOSS has very detailed information about the production and dependencies. We,
therefore, hope that detailed data with supply chain analytical framework may bring
transformative insights not just for FLOSS supply chains, but for all supply chains
generally. We, therefore, would like to systematically analyze the entire network
among all the repositories on all source forges, revealing upstream to downstream
relations, the flow of code, and the flow of knowledge within and among projects.

4 S. Amreen et al.

1.2.1 Defining FLOSS Supply Network

La Londe et al. proposed a supply chain as a set of firms that pass materials for-
ward [20], Lambert et al. define a supply chain as the alignment of firms that brings
products or services tomarket [21], Christopher [8] described supply chain as the net-
work of organizations that are involved, through upstream and downstream linkages,
in the different processes and activities that produce value in the form of products
and services delivered to the ultimate consumer. A common comprehension is that
the supply chain is a set of three or more companies directly linked by one or more
of the upstream or downstream flows of products, services, finance, and information
from a source to a customer.

As software product developers increasingly depend on external suppliers, supply
chains emerge, as in other industries. Upstream suppliers provide assets downstream
to as more complex products emerge. As open-source software proliferates, devel-
opers of new software tend to build on top of mature projects or packages with only
a small amount of modifications, which leads to the emergence of software supply
chain in OSS.

A supply chain with individual developers and groups (software projects or pack-
ages) representing “companies” producing new versions of the source code (e.g.,
files, modules, frameworks, or entire distributions). The upstream and downstream
flows from projects to end users is represented by the dependencies and sharing of
the source code and by the contributions via patches, issues, and exchange of infor-
mation. This is our definition of software supply chain. Supply chains lead to two
important concepts.

Visibility is information that developers have about the inputs, processes, sources,
and practices used to bring the product to consumers/market. This includes complete
supply chain visibility including traceability for the entire supply chain. Visibility
is, generally, inwardly/developer focused. Visibility refers to how far you can see
upward beyond direct upstream, i.e., how many layers of dependency you can see
from a software in supply chain.

Transparency is information that developers sharewith their consumers about the
inputs, processes, sources, and practices used to bring the product to the consumer. It
is more outwardly focused/from the consumer perspective than visibility. Howmuch
each the developer or project is providing publicly (including the ability to interpret
that information by others) is a form of transparency.

1.2.2 Notation Used for FLOSS Supply Network

In traditional supply chain, producers are considered as nodes of a graph and the
flow of information or materials as links. Based on the definition of software supply
chain and the ability to measure it, we use the following notation for key concepts
of software supply chain throughout the chapter:

1 A Methodology for Measuring FLOSS Ecosystems 5

1. A Node is a

• Developer—an individual producer will be denoted as d. Developer author
commits c with each commit having a single author d = A(c).

• A version of a file—a component work/information inserted into a project
will be denoted as fv ∈ p. File versions are produced by commits with each
commit producing zero or more file versions.

• Project—a group of commits (a composition of work by individual develop-
ers) in the same repository, it will be denoted as p = {c : c ∈ p}. Since each
commit produces a set of file versions, a project is also associated with all
these file versions: p = { fv : fv ∈ c, c ∈ p} and all authors of the commits.

2. There are different types of links

• A technical dependence (upstream/downstream project ld(p1, p2)).
• Code flow file, i.e., file that has been copied in the past but is now being
maintained in parallel lc(f, f 1) : ∃ f 1, vi , v j such that f 1v j = fvi .

• Authorship: la(d, f) : ∃c such that d = A(c) ∧ fv ∈ c.

1.3 Computing Infrastructure for Measuring FLOSS
Supply Chains

FLOSS projects are not only scattered around the world, but they also tend to be
scattered around the web, hence, in order to collect data for measurement we need to
discover where the relevant data sources are located [27, 28]. Historically, a variety
of version control and issue tracking tools were used, but many of the projects can
be now found on a few large platforms like GitHub, BitBucket, SourceForge, and
GitLab and most projects have converged to Git as their version control system.

1.3.1 Discovery

While many projects have moved to (or at least are mirrored on) the main forges such
as GitHub, a sizable number of projects are hosted on other forges. The number of
such forges is not small. Some of these do not have stable APIs and the rest requires a
unique API to discover all public projects on that forge. This makes the task of gath-
ering information from these forges fairly challenging. However, although collecting
information from these sources require slightly different approaches (which makes
it difficult to use one single script for mining), the task itself is not complicated and
the only result required is the list of git URLs that could be used to mirror the data as
described below. This makes the task an excellent candidate for crowdsourcing [25,
28]. Table 1.1 (from [25]) lists the active forges and an estimate of howmany projects
are hosted in each of them at the time of the study.

6 S. Amreen et al.

Table 1.1 Active forges (other than GitHub and BitBucket) with public repositories [25]

Forge name Forge URL API Search method Repositories
retrieved

CloudForge cloudforge.com Private API Google search 42

SourceForge sourceforge.net REST API Google search 48,000–50,000

launchpad launchpad.net API API 36,860

Assembla assembla.com/home No Google search about 70,000

CodePlex codeplex.com REST API Google search 100,000

Savannah savannah.gnu.org No Google search 3613

CCPForge ccpforge.cse.rl.ac.uk/gf No Google search 126

Jenkins ci.jenkins-ci.org REST API API 106,336

Repository
Hosting

Respositoryhosting.com No Google search <88

KForge pythonhosted.org/kforge API python.org
search

81,000

Phabricator phabricator.org Conduit
API

API about 10,000

Fedorahosted fedorahosted.org/web No Google search 914

JavaForge javaforge.com No Google search 7672

Kiln fogcreek.com/kiln No Google search 43

SVNRepository SVNRepository.com No Google search 15

Pikacode pikacode.com No Google search 2

Planio plan.io No Google search 26

GNA! gna.org No Google search 1326

JoomlaCode joomlacode.org/gf REST API Google search 971

tuxfamily tuxfamily.org No Google search 209

pastebin pastebin.com No Google search about 1800

GitLab gitlab.com No Google search about 57,000

Eclipse eclipse.org/home/index.php No Google search 214

Turnkey GNU turnkeylinux.org/all No Google search 100

JavaNet home.java.net/projects/alpha No Google search 1583

Stash atlassian.com/software/
bitbucket/server

REST API API 5400

Transifex transifex.com No Google search 5400

Tigris tigris.org No Google search 678

Apart from discovering open-source projects from forges that host VCS, software
projects information can also be found in themetadata of popular Linux distributions.
In particular [28], Gentoo, Debian, Slackware, OpenSuse, and RedHat distributions
and package repositories such as rpmforge provided a list of popular packages.More-
over, there are directories of open-source projects that list home pageURLs and other
information about the projects. RawMeat (no longer in operation) and Free Software

1 A Methodology for Measuring FLOSS Ecosystems 7

Foundation were two prominent examples of such directories. While they do not
host VCSs or even provide URLs to a VCS, they do provide pointers to source code
snapshots in tarballs and project home pages.

1.3.2 Retrieval, Extraction, and Schema for Analytics

Source code changes in software projects are recorded in a version control system
(VCS). Git is presently the most common version control system, sometimes with
historic data imported from SVN or other VCS used in the past. Code changes are
typically organized into commits that make changes to one or more source code files.
Git repositories hosted on open-source platforms can be retrieved by cloning them
(functionality provided by git clone –mirror) to local servers.

The retrieved git database stores the full history of changes/commits made to
a project. A Git commit records author, commit time, a pointer to the projects’ file
system, a pointer to the parent change, and the text of the commit message. Internally,
the Git database has three primary types of objects: commits, trees, and blobs. Each
object is represented by its sha1 value that can be used as a key to find its content. The
content of a blob object is a content of a specific version of a file. The content of a
tree object is a folder in a file system represented by the list of sha1s for the blobs and
the trees (subfolders) contained in it. A commit contains sha1 for the corresponding
tree, a list of parent commit sha1s, an author id, a committer id, a commit timestamp,
and the commit message.

We extract git objects from each project and store them in the common database.
This reduces the amount of storage needed approximately 100 times (which is an
average number of projects a git object belongs to) and allows us to conduct analysis
of the relationships. We have 2.8B blobs, 3.1B trees, and 0.8B commits collected
from 40 million projects.

Git is not a system that stores data in away thatmakes analysis easy.We, therefore,
reorganize and restructure it in an efficient way to facilitate various analytics related
to the above-described concepts of software supply chain. The data must be stored in
a way that allows fast and efficient data lookup for billions of objects. An appropriate
structure for that is a hashtable or a key-value database optimized to retrieve fast by
exact value of a key. For example, in order to retrieve all commitsmadeby adeveloper,
the developer ID is stored as the key and the list of commits authored by the developer
is stored as the value associated with that key. Another example is the link between
a commit and files modified by the commit. This is accomplished by comparing the
tree (and all subtrees) of the commit with the tree of the parent commit. The new
blobs created indicate new fvs. Since the complete tree and subtrees can be fairly
large, the operation is computationally nontrivial and, because such relationships are
commonly needed, is worth precomputing.

We compared the performance of several key-value databases and found that
TokyoCabinet to be the most competitive one in terms of trade-offs between speed
and storage needs. We break the keys by part of their sha1 into up to 128 different

8 S. Amreen et al.

Fig. 1.1 Data retrieval diagram

databases to facilitate parallel (hadoop-like) processing when we need to iterate over
the entire database and to reduce the size of each individual database. These key-value
maps are constructed to map developers to authored commits and files, commits to
projects (and back), commits to their children commits, blobs created (and back to
commit), and other lookup tables needed to construct the software supply chain.

The overall diagram of the data workflow is shown in Fig. 1.1. The calendar time
goes down, while the data layers from raw to analytics go from left to right.

1.4 Correction and Augmentation

Operational data extracted from software repositories [31] often contain incorrect
and missing values. For example, and most importantly, primary author id, a key
field for many analyses, often suffers from errors such as multiple or erroneous
spellings, identity changes that occur over time, group identities, and other issues.
These problems arise because primary author information in a Git commit (which we
study here) depends on an entry specifying username and email in a Git configuration
file for the specific computer a developer is using at the moment. Once the Git
commit is recorded, it is immutable like other Git objects and cannot be changed.
Once a developer pushes their commits from the local to remote repository, that
author information remains. A developer may have multiple laptops, workstations,
and work on various servers, and it is possible and, in fact, likely, that on at least one
of these computers the Git configuration file has a different spelling of their name
and email. It is also not uncommon to see the commits done under an organizational
alias, thus obscuring the identity of the author.

Since developers serve as nodes in the supply chain network, it is of paramount
importance to determine developer identities accurately. Erroneous data in developer

1 A Methodology for Measuring FLOSS Ecosystems 9

identifiers can result in amisrepresented network undermining the value of construct-
ing an OSS supply chain network. These issues have been recognized in software
engineering [2, 12] and beyond [9]. However, identity resolution to identify actual
developers based on data from software repositories is nontrivial mainly due to

1. Lackof ground truth—absenceof validatedmaps from the recorded to actual iden-
tities. Similar disambiguation approaches have been applied on census data [9]
or patent data [44], whereby over 150,000 samples of ground truth data were
available.

2. Data Volume—millions of developer identities in hundreds of millions of code
commits.

To avoid these challenges, studies in the software engineering field tend to focus
on individual projects or groups of projects where the number of IDs that need to
be disambiguated is small enough for manual validation. Most traditional record
matching techniques use string similarity of identifiers (typically login credentials),
i.e., name, username, and email similarity. A broad spectrum of approaches ranging
from direct string comparisons of name and email [2, 43] to supervised learning
based on string similarity [44] have been used to solve the identity problem in the
past. However, such methods do not resolve all issues that are particular to data
generated by version control systems. Therefore, in order to propose solutions or to
tailor existing identity resolution approaches, we need a better understanding of the
nature of the errors associated with the records related to developer identity.

1.4.1 Problems with the Data

We inspected the collection of more than nine million author strings collected from
over 500M Git commits and looked at random subsets of author IDs to understand
how or why these errors occur. We identified these errors and broadly categorized
them into the following three kinds—synonyms, homonyms, and missing data and
determined the common reasons causing errors to be injected into the system.

1. Synonyms: These kinds of errors are introduced when a person uses different
strings for names, user names, or email addresses. For example, “utsav dusad
<utsavdusad@gmail.com>” and “utsavdusad <utsavdusad@gmail.com>” are
identified as synonyms.
Spelling mistakes such as “Paul Luse<paul.e.luse@intel.com>” and “paul luse
<paul.e.luse@itnel.com>” are also classified as synonyms, as “itnel” is likely
to be a misspelling of “intel”. Developers may change their name over time, for
example, after marriage, creating a synonym.

2. Homonyms: Homonym errors are introduced when multiple people use the same
organizational email address. For example, the Id “saper <saper@saper.info>”
may be used bymultiple entities in the organization. For example “MarcinCieslak

10 S. Amreen et al.

<saper@saper.info>” is an entity who may have committed under the above
organizational alias.
Template credentials from tools is another source that might introduce homonym
errors in the data as someusersmaynot enter values for nameand/or an email field.
For example, “Your Name<vponomaryov@mirantis.com>” which may belong
to author “vponomaryov<vponomaryov@mirantis.com>”. Sometimesdevelop-
ers do not want their identities or their email address to be seen, resulting in inten-
tionally anonymous name, such as JohnDoe or email, such as devnull@localhost.

3. Missing Data: Errors are also introduced when a user leaves the name or email
field empty, for example, “chrisw <unknown>”.

A look at the most common, names and user names shows that many of them
were unlikely to be names of individuals. For example, the most frequent names in
the dataset such as “nobody”, “root”, and “Administrator” are a result of homonym
errors as shown in Table 1.2.

1.4.2 Disambiguation Approach

Traditional record linkage methodology and identity linking in software [2] split
identity strings into several parts. Our approach splits the information in the author
string into several fields representing the structure of that string and defines similarity
metrics for all author pairs. We also incorporate the term frequency measure for each
of the attributes in a pair. Finally, we add similarity between behavioral fingerprints
for all pairs of authors in the dataset.

1. AuthorDistances Based on String Similarity: Each author string is stored in the
following format—“name <email>”, e.g., “Hong Hui Xiao
<xiaohhui@cn.ibm.com>”. For our analysis, we define the following attributes
for each user:

a. Author: String as extracted from source as shown in the example above.
b. Name: String up to the space before the first “<”.
c. Email: String within the “<>” brackets.
d. First name: String up to the first space, “+”, “−”, “_”, “,”, “.” and camel

case encountered in the name field.
e. Last name: String after the last space, “+”, “−”, “_”, “,”, “.” and camel case

encountered in the name field.
f. User name: String up to the “@” character in the email field.

Additionally, we introduce a field “inverse first name”, whereby the last name
of the author is assigned to this attribute. In the case where there is a string
without any delimiting character in the name field, the first name and last name
are replicated. For example, bharaththiruveedula <bharath_ves@hotmail.com>

would have “bharaththiruveedula” replicated in the first, last, and the name field.

1 A Methodology for Measuring FLOSS Ecosystems 11

Ta
bl
e
1.
2

D
at
a
ov
er
vi
ew

:t
he

10
m
os
tf
re
qu
en
tn

am
es

an
d
em

ai
ls

N
am

e
C
ou
nt

Fi
rs
tn

am
e

C
ou
nt

L
as
tn

am
e

C
ou
nt

E
m
ai
l

C
ou
nt

U
se
r
na
m
e

C
ou
nt

un
kn
ow

n
14
08
59

un
kn
ow

n
14
08
75

un
kn
ow

n
14
08
65

<
bl
an
k>

16
75
2

ro
ot

72
65
5

ro
ot

66
90
5

ro
ot

66
99
5

ro
ot

67
00
4

no
ne
@
no
ne

95
76

no
bo
dy

35
57
4

no
bo
dy

35
14
1

D
av
id

45
09
1

no
bo
dy

35
14
1

de
vn
ul
l@

lo
ca
lh
os
t

81
08

gi
th
ub

19
77
8

U
bu
nt
u

18
43
1

M
ic
ha
el

40
19
9

U
bu
nt
u

18
56
0

st
ud
en
t@

ep
ic
od
us
.c
om

59
14

ub
un
tu

18
68
3

(n
o
au
th
or
)

69
34

no
bo
dy

35
14
2

L
ee

10
82
6

un
kn
ow

n
35
18

in
fo

18
63
4

no
de
m
cu
-c
us
to
m
-b
ui
ld

60
73

D
an
ie
l

34
88
9

W
an
g

10
64
1

yo
u@

ex
am

pl
e.
co
m

25
96

<
bl
an
k>

17
82
6

A
le
x

56
02

C
hr
is

29
16
7

C
he
n

97
92

an
yb
od
y@

em
ac
sw

ik
i.o

rg
25
18

m
e

14
31
2

Sy
st
em

ad
m
in
is
tr
at
or

42
16

A
le
x

28
41
0

Sm
ith

97
22

=
13
71

ad
m
in

12
61
2

A
dm

in
is
tr
at
or

41
98

A
nd
re
w

26
01
6

A
dm

in
is
tr
at
or

86
68

U
nk
no
w
n

12
45

m
ai
l

11
25
3

<
bl
an
k
>

41
85

Jo
hn

25
88
2

U
se
r

86
22

no
re
pl
y

91
3

no
ne

11
00
4

12 S. Amreen et al.

In order tomeasure the distance between strings, we tested two commonmeasures
of string similarity, the Levenshtein score and the Jaro–Winkler score [47]. Our
experiments indicated that the Jaro–Winkler similarity produces scores that are
more reflective of actual similarity as verified by human experts than the Leven-
shtein score. Therefore, we implemented the Jaro–Winkler score as the measure
of similarity throughout the rest of this study.
The Jaro Similarity is defined as

sim j =
⎧
⎨

⎩

0, if m = 0
1

3

(
m

|s1| + m

|s2| + m − t

m

)

otherwise

where si is the length of string i, m is the number of matching characters, and t is
half the number of transpositions.
The Jaro–Winkler similarity modifies the Jaro similarity so that differences at the
beginning of the string have more significance than differences at the end. It is
defined as

simw = sim j + lp(1 − sim j)

where l is the length of a common prefix at the start of the string up to a maximum
of four characters and p (<=0.25) is a scaling factor for how much the score is
adjusted upward for having common prefixes.

2. Author Distance Based on String Frequency: We count the number of occur-
rences of the attributes for each author as defined in Sect. 1.4.2, i.e., name, first
name, last name, user name, and email for our dataset. We calculate the similarity
between author pairs, authors a1 and a2, for each of these attributes as follows:

fsim =
⎧
⎨

⎩

log10
1

fa1 × fa2
if a1 and a2 are valid

−10 otherwise

We generate a list of 200 common strings of names, first names, last names,
usernames, and emails from the larger dataset of 9.4M authors (the first 10 shown
in Table 1.2) and manually remove names that appear to be legitimate, i.e., Lee,
Chen, Chris, Daniel, etc. We set string frequency similarity of a pair of name or
first name or last name or username to −10 if at least one element of the pair
belongs a string identified as not legitimate. This was done in order to let the
learning algorithm recognize the difference between the highly frequent strings
and strings that are not useful as author identifiers. We found that the value for
other highly frequent terms was significantly greater than −10.

3. Author Distances Based on Fingerprints: There are four additional distance
measures we incorporate into our study which address the behavioral attributes of
authors: (1) Author similarity based on files touched, when two authors identities
have modified the same files there is a greater chance that they represent the same
entity. (2) Author similarity based on time zone, two author identities committing

1 A Methodology for Measuring FLOSS Ecosystems 13

in the same time zone indicate geographic proximity and, therefore, a higher
similarity weight is given. (3) Author similarity based on text, similarity in style
of text between two author identities may indicate that they are the same physical
entity. (4) Gender incorporating gender information helps us distinguish between
highly similar author identity strings. Quantitative operationalizations are given
below:

a. Author similarity based on files touched: Each file is weighted using the
number of authors who has modified it. The file weight is defined as the
inverse of the number of distinct authors who have modified that file. The
pairwise similarity between authors, a1 and a2, is derived by summing over
the weights of the files touched by both authors. A similar metric was found
to work well finding instances of succession (when one developer takes over
the work of another developer) [29]. In this metric, we consider only the first
100 common authors for a given file.

f ile_weight (W f) = 1

A f
,where A = |a1, . . . , an|

ada1a2 =
na1a2∑

i=1

W fi ,where na1a2 = | fa1 ∩ fa2 |

b. Author similarity based on time zone: We discovered 300 distinct time-
zone strings from the commits and created a “author by time zone” matrix
that had the count of commits by an author in a given time zone. All time
zones that had less than two entries were eliminated from further study. Each
author is therefore assigned a normalized time-zone vector (with 139 time
zones) that represents the pattern of his commits. Similar to the previous
metric, we weighted each time zone by the inverse number of authors who
committed at least once in that time zone. We multiply each author’s time-
zone vector by the weight of the time zone. We define author i’s time-zone
vector as

ai = Cai .
1

AT
,

Here, Cai is the vector representing the commits of an author i in the different
time zones and AT is the vector representing the number of authors in the
different time zones. The pairwise similarity metric between author a1 and
author a2 is calculated as follows:

t zda1a2 = cos_sim(a1, a2)

where a1 and a2 are the authors’ respective vectors.

14 S. Amreen et al.

Fig. 1.2 Concept of the disambiguation process

c. Text similarity:We use the Gensim’s 1 implementation of the Doc2Vec [22]
algorithm to generate vectors that embed the semantics and style of the
commits messages of each author. All commit messages for each individual
who contributed at least once to one of theOpenStack projects were gathered
from the collection described above and a Doc2Vec model was built. We
obtained a 200-dimensional vector for each of the 16,007 authors in our
dataset and calculated cosine similarity to find pairwise similarity between
authors.

d2va1a2 = cos_sim(a1, a2)

d. Gender Similarity: We obtain the gender of the users as either Male,
Female, or Undetermined. The similarity between author pairs are deter-
mined as follows:

gsa1a2 =

⎧
⎪⎨

⎪⎩

0.5, if Ga1 or Ga2 = Undetermined

1, if Ga1 = Ga2

0, if Ga1 �= Ga2

where Gi represents the gender of author i.

4. Data Correction: The data correction process can be divided into three broad
phases as shown in Fig. 1.2.

a. Define predictors—In this phase, we compute the string similarity, fre-
quency similarity, and behavioral similarity. We use functions from the
RecordLinkage library [41] to compute Jaro–Winkler similarities of the
defined attributes (name, first name, last name, email, username). We com-

1https://radimrehurek.com/gensim/index.html.

https://radimrehurek.com/gensim/index.html

1 A Methodology for Measuring FLOSS Ecosystems 15

pute string similarity between a pair of authors’ name, first name, last name,
username, email, and the first author’s first name to the second author’s last
name (we refer to this as the inverse first name). Based on our preliminary
analysis, we found many instances of developers using their names in both
orders. In addition to the string similarities based on these fields, we also
include the term frequency metric, as is commonly done in record matching
literature. The high-frequency values tend to carry less discriminative power
than infrequent email addresses or names. Finally, we include three finger-
printmetrics—author similarity based on files touched, time-zone similarity,
and commit log text similarity. This resulting matrix data is used as an input
to the next phase, the active learning process.

b. Active learning—This phase uses a preliminary classifier to extract a small
set from large collection of data and generate labels for further classification.
Supervised classification requires ground truth data. As noted earlier, it is
extremely time-consuming and error prone to produce a large set ofmanually
classified data to serve as an input for a supervised classifier. Moreover,
identifying a small subset of instances so that the classifier would produce
accurate results on the remainder of the data is also challenging. A concept
called Active Learning [40] using a preliminary classifier helps us extract a
small set of author pairs that is viable for manual labeling, from the set of
over 256M author pairs. To design the preliminary classifier, we partition
the data into ten parts and fit bootstrap aggregation (bagging) models on
three different combinations of nine parts and predict on one of the ten
parts. Each classifier learns from manually classified pairs and outputs links
or non-links for each author pair in the prediction set. The three classifiers
trained on different training subsets yield slightly different predictions (links
and non-links for each pair). The mismatch between predictions of two
such classifiers indicates instances where the classifier has large uncertainty
(confusion regions). We conducted a probabilistic manual classification on
the cases in the confusion region of the classifier and extracted pairs where
links were assigned with full confidence, i.e., probability = 1. Each pair
was updated manually to include a canonical label chosen from among the
existing author identities that had a proper name and email address. This
produces a preliminary set of training data for supervised classification.

c. Classification—In this phase, we discuss supervised classification suitable
for disambiguation, transitive closure applied on classifier output, extraction
of clusters to correct, and disaggregation of wrongly clustered individuals.
Once the labeled dataset is created, we use it to train random forest models
which are commonly used in record matching literature. A 10-fold cross-
validation using this method produced high precision and recall scores for
the classifier. The final predictor involves a transitive closure on the pairwise

16 S. Amreen et al.

links obtained from the classifier.2 The result of the transitive closure is a set
of connected components with each cluster representing a single physical
entity. Once the clusters are obtained, we consider all clusters containing 10
or more elements since a significant portion of such clusters had multiple
developers grouped into a single component. The resulting 20 clusters—44
elements in the largest and 10 elements in the smallest cluster among these—
were then manually inspected and grouped. This manual effort included the
assessment of name, username, and email similarity, projects they worked
on, as well as looking up individual’s profiles online if names/emails were
not sufficient to assign them to a cluster with adequate confidence.

1.4.3 Handling Missing Data

In addition to the bad and/or incorrect data, the observational data collected for the
different software ecosystems often do not have observations for all the relevant vari-
ables [31, 48]. Generally, the missing data problem focuses on cases where a few
observation values are missing for an otherwise observed variable [24], however,
when talking about missing data in this context, we have to take into consideration
cases where a number of variables might be completely unobserved as well. For
example, if we are trying to measure the popularity of a particular project in an
ecosystem, the best possible measure would be the number of active users. However,
the number of active users is a quantity very hard to measure in practice, and the
second-best measure, the number of downloads, is typically not tracked very accu-
rately for most FLOSS software. At this point, our choices are to either find a proxy
measure for the popularity of a project or find a way to estimate the unobserved
variables.

As for the proxy measures, there are a few options, e.g., the number of stars/
watchers/forks for a GitHub project [16, 37, 45], however, although these measures
should closely correlate with the actual popularity of the product, sometimes anal-
yses done using these measures could end up finding some relationship that is an
artifact related to that particular measure, and is not reflective of the actual popularity.
Because these metrics are easily manipulated, they may also be deliberately biased
and not representative.

Amore appealing option, therefore, is to estimate the missing observations. In the
more common case of missing data estimation, only a few observations are missing
for a variable, and the estimation can be done by means of partial/full imputation
and/or interpolation or extrapolation [24]. However, when a variable is completely
unobserved for a dataset, such techniques cannot be used. In such a scenario, a set
of alternative methods are useful, as listed below:

2We found that more accurate predictors can be obtained by training the learner only on thematched
pairs, since the transitive closure typically results in some pairs that are extremely dissimilar, leading
the learner to learn from them and predict many more false positives.

1 A Methodology for Measuring FLOSS Ecosystems 17

• Factor analysis [11, 13, 26]: If we have measures for a set of variables that are
likely to be affected by a common set of unobserved variables, we can perform
a method called factor analysis on the observed variables to extract an estimate
for the missing unobserved “factors”. This method, however, depends on both a
parametric probability model and assumes a particular relationship between the
unobserved variables and the multivariate observation.
With regard to the example of measuring the popularity (i.e., number of users) of
a project, if we have measurements for a set of variables (hypothetically) directly
affected by the number of users (e.g., number of crashes, downloads, or even forks
or stars for a GitHub project), we can extract the maximum likelihood factors from
those variables (e.g., by using the factanal function in R3), which, under the
assumption that each observation is the sum of a linear combination of the under-
lying missing factors and a Gaussian noise component, should give an accurate
estimate of the number of users.

• Prediction: If the scenario is such that the values of a variable are available only
in certain situations, a predictive model can be used for estimating the unobserved
variable. For example, the number of users for a particular software might be
available only for a specific subset of releases. In this case,wemayuse the complete
observations for releases where the data is observed to train a model (e.g., linear
regression model or Random Forest) that can be used to predict the number users
in cases where this quantity is not observed.

• Hidden node detection using graphical models: If a graphical model is used for
modeling the interrelationship among the variables, an unobserved variable might
be represented by a hidden node in the graph and can be estimated using data from
the variables that have connections to the hidden node [15, 17, 35]. Factor analysis
may be viewed as a special case of this type of analysis.
In order to measure the number of users for a software in this method, we first need
to construct a graphical model of dependence among all of the observed variables.
Two strategies are usually used to define the structure: (1) the graph represents
dependencies obtained from domain experts or (2) the graphmay initially be based
on prior distributions about the parameters of the overall model. The data is then
used to calculate the posterior distribution and to make inference. The second
approach makes minimal a priori assumptions about the model and focuses on the
search for the best graphical representation for a given dataset (structure learning).
This is an NP-hard problem [7], but a number of different heuristic structure
learning algorithms are available [42].
After the model is constructed, one or more hidden nodes can be added to it.
The standard approach is adding one node at a time and optimizing its placement
by optimizing the network score (generally BIC score in such situations) at each
step [4, 14].
Graphical models have several advantages over regression models. To be pre-
cise, regression analysis is a very simple graphical model allowing one directed
link from each independent variable to dependent variable. Therefore, the more

3https://www.statmethods.net/advstats/factor.html.

https://www.statmethods.net/advstats/factor.html

18 S. Amreen et al.

general approach of graphical models can help with multicollinearity (which is
a common problem in the software due to many of the observed variables being
highly correlated) by linking independent variables.

1.5 Code and Knowledge Flow and Technical Dependencies

The most fundamental part of software supply chain or ecosystem is the networks of
dependencies and code or knowledge flows. The dependency network is based on
technical dependencies. These can be subdivided into several types. For example, a
runtime dependency requires a library from another package to be available when
the program is run. Package dependencies in Debian are an example of such rela-
tionship. A different type of dependency is build dependency, where a set of tools
and include files may be needed in order to compile and build a package. Optional
dependencies usually denote the potential extension in the functionality of a program
if that dependency is satisfied. The code flow network represents the source code
copying. The knowledge flow network represents implicit exchange of information
as developers modify source code in sequence. A senior developer ds creates (or
modifies) a set of source code files. Another developer d j modifies a subset of these
files, thus having to understand design decisions made by ds . This mentor–follower
knowledge flow can be quantified [29].

1.5.1 Constructing Technical Dependencies

As discussed above, different types of technical dependencies exist. Major types are
dependencies required to run software and dependencies required to build software.
Each dependency may need to be obtained differently for projects that are inside
package managers such as deb or npm (and, thus, have metadata in the package
manager that explicitly specifies the dependencies) and projects outside package
managers, where dependencies can only be extracted based on the actual content of
the code, configuration, and build scripts.

Dependencies within a specific package manager are recorded when a new
package is added into package manager or its dependencies change. For example,
the dependency information for packages hosted on NPM can be extracted from
PACKGE.json file and is also stored in the NPM registry.

Different package managers may have different standards of defining dependen-
cies, e.g., NPM has five types of dependencies: dependencies, devDependencies,
peerDependencies, bundledDependencies, and optionalDependencies, while pack-
ages in RCRANalso have five (but not equivalent) types: depends, imports, suggests,
linkingto, and enhances. Defining standards for the categorization of dependencies
that are generally applicable to all package managers may not be possible.

1 A Methodology for Measuring FLOSS Ecosystems 19

We illustrate the procedures of constructing the dependency network by exploring
R CRAN ecosystem. R package can be scraped fromRCRAN official website which
contains approximately 11K packages. We used data from METACRAN4 which
provides the latest R CRAN metadata containing the dependency information. As
we have mentioned in the introduction, there are five types of dependency keywords
in R CRAN and we considered “imports” and “depends” as dependency, because
packages listed in “imports” must be installed in advance and “depends”5 is the old
name for “imports”.

By creating a link from individual package to each dependency in its “imports”
and “depends”,we construct a dependency network forRCRAN inFig. 1.3. Packages
with degree less than 20 are removed which ends up with 421 (1.9%) nodes and 3235
(6.6%) edges in Fig. 1.3. Node size is proportional to its betweenness centrality value
and the color is based on modularization algorithm6 of gephi. In Fig. 1.3, numerous
dependency links are revealed among popular R CRAN packages. In particular,
“ggplot2”, “Hmisc”, “reshape2”, “stringr”, and “Rcpp” are core packages based on
betweenness centrality.

Unfortunately, projects that are not a part of the registries of package managers
may have no metadata that allows easy identification of dependencies. Since such
projects represent a bulk of projects, the dependencies need to be extracted directly
from the source/configuration/build code. For example, import statements in Java or
Python, use statements in Perl, include statement in C, or, as is the case for our study,
library statements for the R-language.

Below is an example workflow to determine dependencies for all R files in all
projects:

1. Identify all R-language files by extension (.r or .R) in the complete list of all
files in the file-to-commit map described above.

2. For each filename use filename-to-blob (file versions) map to obtain the content
for all versions of the R-language files obtained in Step 1.

3. Analyze the resulting set of blobs to find a statement indicating an install or a
use of a package:
• install\.packages\(.*"PACKAGE".*\)
• library\(.*[\"’]*?PACKAGE[\"’]*?.*\)
• require\(.*[\"’]*?PACKAGE[\"’]*?.*\)

4. Use blob-to-commit map to obtain all commits that produced these blobs and
then use the commit to determine the date that the blob was created.

5. Use commit-to-project map to gather all projects that installed the relevant set
of packages.

A similar approach can be applied to other languages and technologies with suit-
able modification in the dependency extraction procedures, since different package

4METACRAN is a collection of services around the CRAN repository of R packages. https://www.
r-pkg.org/about.
5Prior to the rollout of namespaces in R 2.14.0, Depends was the only way to “depend” on another
package. Now, despite the name, you should almost always use Imports, not Depends.
6https://github.com/gephi/gephi/wiki/Modularity.

https://www.r-pkg.org/about
https://www.r-pkg.org/about
https://github.com/gephi/gephi/wiki/Modularity

20 S. Amreen et al.

Fig. 1.3 R CRAN dependency network

managers, different languages, or different frameworks might require alternative
approaches to identify dependencies or the instances of use. Dependencies can typi-
cally be detected in a programming language or build system-dependentmanner [39].
For example, the dependency information of a Python source file is listed in import
statement; dependency information of a C project is listed in header files; package
dependency in Debian can be extracted by apt-cache depends package-name.

1.5.2 Constructing Code Flow Networks

In FLOSS, the code sharing is possible and welcome, unlike in proprietary software
and is, perhaps, one of the key advantages that brings rapid innovation with new
projects building from components or copied code of existing projects.

1 A Methodology for Measuring FLOSS Ecosystems 21

Code flowhas been extensively investigated, albeit at a smaller scale. To determine
instances of code flow several approaches may be taken as given below:

• Compare the strings representing the content of a source code file in the potential
source and the potential destination [1, 18, 19].

• Compare the strings representing the file name and the path [5, 6, 50].

Here, we illustrate the first approach as it is largely language independent and
allows detection for code and non-code flows. When two files have a matching
content, i.e., ∃v1, v2 : f 1v1 = f 2v2 and f 1 and f 2 are files from distinct projects, it is
not unreasonable to assume that f 1v1 and f 2v2 were not created independently but the
code was copied. This applies if the unit of code is not an entire file, but only a part
of file. From the theoretical perspective, we may produce false links (links where
code flow does not exist, i.e., the content of both files was created independently of
each other) and also miss links where information does flow, as in cases where the
copied code was modified substantially before being committed to the repository.

We, therefore, need to quantify and minimize both of these potential errors.
Whether we look at the file content or file pathname, the erroneous links may be
introduced if the two linked strings are similar (or the same) purely by chance and
the information was never shared. If we assume the string to be a random sequence of
characters, the chance that two strings of length n would match purely by chance is
m−n wherem is the size of alphabet.We can easily eliminate false matches (make the
chance of such matches negligibly small) by ensuring that the string is of nontrivial
length. For example, a random string with ten characters (from alphabet of 26 letters)
would match by chance with probability lower than 10−14. By considering links that
are based on strings exceeding such length we can ensure a very low probability of
false matches.

Unfortunately, the strings representing file content and file pathnames are not
random for a variety of reasons [6, 27, 50], which are as follows:

• file depth in a project is not randomly distributed (usually file depth varies between
2 to 5),

• filenames are not always related to file content, e.g., foo,
• some filenames are quite common among projects, e.g., main.c,
• the content may be generated by a tool, and therefore anyone using a tool will have
exactly the same content, and

• the template may have been used and only small parts of the template have been
modified.

We, therefore, have to add additional ways of eliminating false links from the supply
chain network through other means. For example, by identifying the reasons for
false positives and removing links that are similar to the identified reasons for false
positives.

Once the presence of the link is established, the next question involves the direction
of the code flow.File creation timemay serve such purpose. For Case 1, if the creation
time of file fi precedes that of f j the direction of flow should, in general, go from p1

22 S. Amreen et al.

to p2. For Case 2, if the matching version of file fi (vi) was created prior to f j (v j),
the direction of flow should go from p1 to p2.

The rationale for such approach would be that if a file F is first created in Project
A and then copied to Project B, the creation time of file F in Project A is prior than
that in Project B, the Project B is likely to be downstream to Project A because file
F was supplied to Project B from Project A. It is possible that in some cases the
primary maintenance of file F may be transferred to Project B and Project A gets
updates of file F from Project B, but such instances could be detected by a more
in-depth analysis of version history of file F in both projects [5].

A detailed procedure to illustrate the constructing code flow network is discussed
next.

1.5.2.1 Code Flow Network for ember.js

Front-side web framework ember.js has been attracting many contributors over sev-
eral years, which makes it suitable to illustrate how complicated code flow network
may be.

To create the codeflownetwork,wefirst collect all file names f andfile versions fv
in the form of their SHA1 digests from emberjs/ember.js project (E). We use project-
To-filename map to obtain files A = f ∈ E and project-To-blob map to obtain the
file versions B = fv ∈ E . For each file in A, we then use filename-To-project map to
find all other projects that contain this file name. Similarly, for each fv ∈ B, we use
blob-To-project map to find all other projects that contain this blob. This procedure
creates links from E to all projects that share a filename or a blob.

These initial links contain numerous false positives and need to be filtered. Links
created by file names that start with a period are often created by IDE tools or
programming language/script, so they should be removed as they do represent code
transfer from one project to another. It represents not code flow, but dependence on
the tool.

Links that are created by forked projects of Emberjs/ember.js also need to be
removedbecause they are a part ofEmberjs/ember.js project.GitHub forks are created
primarily to be able to contribute to the main project via pull requests, not to start a
new project. Again, these projects represent private branches and do represent code
flow but at a finer granularity than we consider at the moment.

In addition to the traditional definition of a forked project where the development
is done in parallel with no intention to merge projects, the repository of the code for
Ubuntu/Debian distribution does represent an example of downstream development
done in order to maintain compatibility among the projects collected into a single
distribution.

Once false positives are eliminated, 54 projects have code flow to project from
ember.js. To understand the patterns of code flow, we categorized these projects into
different groups as follows:

1 A Methodology for Measuring FLOSS Ecosystems 23

• Build tools: rake—makefile for Ruby on Rails.
• Testing: qunit—a testing framework.
• Runtime: jQuery—a JavaScript library.
• Framework: epf—emberjs Persistence Foundation.
• Prior incarnations: SproutCore/Amber.js—early name for the emberjs project.
• Hard forks: innoarch/bricks.ui—a hard fork of emberjs that was then developed
as a separate project.

• Tutorials: cookbooks/nodjs—early code examples.
• Package manager: package.json—a file for NPM package manager.

As we can see, these types of code flow have different causes: tools, libraries and
frameworks, hard forks, documentation templates, and distribution templates. Each
type of code flow appears, therefore, to represent different phenomena and needs to
be identified and investigated separately.

1.5.3 Constructing Knowledge Flow Networks

Developer knowledge varies from developer to developer and depends on what they
have worked on [10, 32]. A unit of work can be considered as experience atom [32]
and approximated by developers’ modifications to the source code. Each time a
developer makes a change to a file, they have first to understand the design decisions
that went to the code they modify and, at the same time, their modification (be it
a code fix or additional functionality) implements their knowledge in the way the
change is designed and implemented. Thus, the knowledge of earlier developers,
through code, flows to developers who modify the code later. This observation can
facilitate linking of developers through the timing of the changes they make on
files modified in common. Using notation introduced above, let ds, d j denote two
developers. Let Fds ,d j be a set of files modified by both developers. Let S2 be the
strength of expertise transferred. Let N f ds be the number of changes developer ds
made to file f (changes are made and counted through commits). Let FC(f, ds)
denote the time when developer ds made his/her first change to file f . Then, the
challenge of measuring the strength of knowledge flow from senior developer to
his/her subsequent developers can be approximated via the following expression [29]:

S2(ds, d j) =
∑

f :
⎧
⎨

⎩

f ∈ Fds ,d j

FC(f, d j) > FC(f, ds)

N f ds + N f d j
∑

i N f di

(1.1)

The formula can be interpreted as follows: the strength of expertise flow from
developer ds to developer d j is based on the sum of their contribution ratio to files in
which developer ds’s first change is earlier than developer d j ’s. Files changed mostly
by others where the two developers had contributed little would not contribute much

24 S. Amreen et al.

Fig. 1.4 Knowledge flow network for Emberjs

to the measure, but files where at least one developer made significant fraction of
changes would contribute a lot.

For example, knowledge flow network in a popular web front-side framework—
emberjs is shown in Fig. 1.4. The node size is proportional to its betweenness cen-
trality value and the color is based on modularization algorithm7 of gephi. Note that
several labels have been adjusted to fit the page size. The most productive devel-
opers are annotated via their name and email. More information on ember.js can
be found in 1.5.2.1. In Fig. 1.4, there are several big clusters of developers centered
around each core developer. More specifically, “Peter Wagenet” and “Robert Jack-
son” are leading developers with vast number of successors. Clusters are linked by
shared followers although the density of such links is low, indicating that majority
of developers in ember.js tend to follow the work of a single-core developer.

7https://github.com/gephi/gephi/wiki/Modularity.

https://github.com/gephi/gephi/wiki/Modularity

1 A Methodology for Measuring FLOSS Ecosystems 25

1.6 Example Application: Increasing Knowledge
Redundancy

As developers who author source code become experts for that code, what happens
if they, for some reason, stop maintaining the project? Fixing bugs or adding func-
tionality to such code will become harder and fault prone [3, 29, 30, 34]. If an
organization can identify the files that are likely to be left with no maintainer in the
future, it may choose to assign their employees as additional maintainers to reduce
the risk. It would seem that increasing the number (redundancy) of maintainers may
reduce the risk. It may be possible to increase this knowledge redundancy by borrow-
ing ideas from data redundancy. Erasure codes are forward error corrections codes
used to prevent stored data from being lost by increasing data redundancy [36, 46].
Many improvements on erasure codes have been studied over the years [23, 33]. The
main idea of the erasure codes is that the data of size B is divided into k segments
and then the k segments are further converted into n segments such that n = k + m,
where m is the amount of redundancy added to the original data. As a result, up to
m segment failures can be tolerated.

Adding redundancy to the existing knowledge for each file can help mitigate the
risk of lost knowledge resulting from developer turnover [38, 49]. Let us denote files
as f , assigned maintainers asm, and original developers as d. Let us assume that we
have I files, J developers, and Z backup maintainers.

We represent developer d j and file fi relationship as a developer matrix

Ddj fi =
{
1 i f d j maintains fi
0 otherwise

}

For illustration, we include an example below, where developer d1 is responsible for
file f1 but is not responsible for file f2. Then, M is

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f1 f2 f3 · · · f I
d1 : 1 0 1 · · · 1
d2 : 0 1 1 · · · 0

...

dJ : 0 0 1 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Then, the number of developers responsible for file fi is the sum of the column
corresponding to file fi , which in the example above, assuming d3-d(J−1) are not
maintaining any files, is

R =
[

f1 f2 f3 · · · f I
1 1 3 · · · 1

]

We refer to this vector R as knowledge redundancy.
Once the risky files (with low knowledge redundancy) are identified, the next step

in our risk-mitigation approach is to assign the files at risk to backupmaintainers. Let

26 S. Amreen et al.

us define a threshold t that represents the maximum number of files that each backup
maintainer is capable of being responsible for. We also define r as the minimum
amount of redundancy that can be tolerated. Similar to matrix M above, we construct
matrix M ′ for the backup maintainers, in which each row is a vector representing the
files that the corresponding backup maintainer is responsible for.

M ′ =

⎡

⎢
⎢
⎢
⎣

f1 f2 f3 · · · f I
m1 : 1 1 0 · · · 1

...

mZ : 0 1 1 · · · 1

⎤

⎥
⎥
⎥
⎦

Files with fewer than r developers need one or more backup maintainers, but the
sum of each row of M ′ cannot exceed the maintainer capacity threshold t . We first
calculate the number of file/maintainer slots that need to be assigned to the backup
maintainers. That number is slots = r I − ∑

i=1...I min(Ri , r). Obviously, we need
at least max(r − mini ri , slots/t) maintainers. To minimize the number of backup
maintainers, we can always target the current maintainers to be responsible for some
of the files that they are not currently in charge of, or count on volunteers.

The problem of optimally assigning files to backup maintainers can be cast as a
mathematical integer program. Below is a possible formulation that can be solved
with readily available solvers such as CPLEX or Gurobi.

maximize
I∑

i=1

Ri

subject to
J∑

i=1

M[i][j] +
Z∑

z=1

M ′[z][j] ≥ r, j = 1, . . . , I

and
I∑

i=1

M ′[z][i] ≤ t, z = 1, . . . , Z

We can refine the objective to minimize the average or maximum risk resulting
from discontinued contribution r developers together by adding conditions that are
based on the structural properties of M . Using this approach, it is possible to increase
the knowledge redundancy of each file to at least r (e.g., some file might already
have more that r maintainers).

1.7 Conclusions

The ability to understand software ecosystems is limited by the ability to measure
the relevant properties of these ecosystems and the conceptual framework needed
to do the measurement. Many of the modeling or intervention techniques described

1 A Methodology for Measuring FLOSS Ecosystems 27

in this book need a sound measurement framework. We have argued for the need to
look at FLOSS from a global perspective and through the supply chain conceptual
framework. We describe a concrete way to obtain highly detailed data of the entire
FLOSS ecosystem, described ways to clean, correct, and augment basic version
control data with metrics needed to produce knowledge and code flow networks and
createmodels that, through increasedvisibility, canhelp developers andorganizations
make better decisions resulting in a healthy and productive FLOSS ecosystem.

References

1. I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier, Clone detection using abstract syntax
trees, in 1998Proceedings of International Conference on SoftwareMaintenance (IEEE, 1998),
pp. 368–377

2. C. Bird, A. Gourley, P. Devanbu, M. Gertz, A. Swaminathan, Mining email social networks, in
Proceedings of the 2006 International Workshop on Mining Software Repositories, MSR ’06
(ACM, New York, NY, USA, 2006), pp. 137–143

3. C. Bird, N. Nagappan, P. Devanbu, H. Gall, B. Murphy, Putting it all together: using socio-
technical networks to predict failures, in 17th International Symposium on Software Reliability
Engineering (ISSRE 09), Bengaluru-Mysuru, India, 2009

4. W.L. Buntine, Operations for learning with graphical models. J. Artif. Intell. Res. 2, 159–225
(1994)

5. H.-F. Chang, A. Mockus, Constructing universal version history, in ICSE’06 Workshop on
Mining Software Repositories, Shanghai, China, 22–23 May 2006, pp. 76–79

6. H.-F. Chang, A. Mockus, Evaluation of source code copy detection methods on FreeBSD, in
5th Working Conference on Mining Software Repositories, ACM Press, 10–11 May 2008

7. D.M. Chickering, Learning bayesian networks is np-complete. Learn. Data: Artif. Intell. Stat.
V 112, 121–130 (1996)

8. M.L.Christopher,Logistics and SupplyChainManagement (PitmanPublishing, London, 1992)
9. W.W. Cohen, P. Ravikumar, S.E. Fienberg, A comparison of string metrics for matching names

and records, in KDD Workshop on Data Cleaning and Object Consolidation, 2003
10. T. Fritz, G.C. Murphy, E. Murphy-Hill, J. Ou, E. Hill, Degree-of-knowledge: modeling a

developer’s knowledge of code. ACMTrans. Softw. Eng.Methodol. (TOSEM) 23(2), 14 (2014)
11. B. Fruchter, Introduction to Factor Analysis (Princeton, New York, 1954)
12. D. German, A. Mockus, Automating the measurement of open source projects, in Proceedings

of the 3rd Workshop on Open Source Software Engineering, 2003, pp. 63–67
13. R.L. Gorsuch, Common factor analysis versus component analysis: some well and little known

facts. Multivar. Behav. Res. 25(1), 33–39 (1990)
14. D. Heckerman, A tutorial on learning with bayesian networks. Microsoft Research, 1995
15. K. Hornik, F. Leisch, A. Zeileis, Jags: a program for analysis of bayesian graphical models

using gibbs sampling, in Proceedings of DSC, vol. 2, 2003, pp. 1–1
16. O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, A. Wierzbicki, Github projects. quality

analysis of open-source software, in International Conference on Social Informatics (Springer,
Berlin, 2014), pp. 80–94

17. M.I. Jordan, Learning in Graphical Models, vol. 89 (Springer Science & Business Media,
Berlin, 1998)

18. T.Kamiya, S.Kusumoto,K. Inoue, Ccfinder: amultilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw. Eng. 28(7), 654–670 (2002)

19. M. Kim, V. Sazawal, D. Notkin, G. Murphy, An empirical study of code clone genealogies, in
ACM SIGSOFT Software Engineering Notes, vol. 30, (ACM, 2005), pp. 187–196

28 S. Amreen et al.

20. B.J. La Londe, J.M. Masters, Emerging logistics strategies: blueprints for the next century. Int.
J. Phys. Distrib. Logist. Manag. 24(7), 35–47 (1994)

21. D.M. Lambert, J.R. Stock, L.M. Ellram, Fundamentals of Logistics Management (McGraw-
Hill/Irwin, New York, 1998)

22. Q. Le, T. Mikolov, Distributed representation of sentences and documents, in Proceedings of
the 31st International Conference on Machine Learning, vol. 32 (JMLR, Beijing, China, 2014)

23. J. Li, X. Tang, C. Tian, A generic transformation to enable optimal repair in mds codes for
distributed storage systems. IEEE Trans. Inf. Theory 64(9), 6257–6267 (2018)

24. R.J.A. Little, D.B. Rubin, Statistical Analysis with Missing Data (Wiley, New Jersey, 2014)
25. Y. Ma, T. Dey, J.M. Smith, N. Wilder, A. Mockus, Crowdsourcing the discovery of software

repositories in an educational environment. PeerJ Preprints, 4:e2551v1
26. R.P. McDonald, Factor Analysis and Related Methods (Psychology Press, London, 2014)
27. A.Mockus. Large-scale code reuse in open source software, in ICSE’07 InternationalWorkshop

on Emerging Trends in FLOSS Research and Development, Minneapolis, Minnesota, 21 May
2007

28. A. Mockus, Amassing and indexing a large sample of version control systems: towards the
census of public source code history, in 6th IEEE Working Conference on Mining Software
Repositories, 16–17 May 2009

29. A. Mockus, Succession: measuring transfer of code and developer productivity, in 2009 Inter-
national Conference on Software Engineering, ACM Press, Vancouver, CA, 12–22 May 2009

30. A.Mockus,Organizational volatility and its effects on software defects, inACMSIGSOFT/FSE,
Santa Fe, New Mexico, 7–11 November 2010, pp. 117–126

31. A. Mockus, Engineering big data solutions, in ICSE’14 FOSE, 2014, pp. 85–99
32. A. Mockus, J. Herbsleb, Expertise browser: a quantitative approach to identifying expertise, in

2002 International Conference on Software Engineering, ACM Press, Orlando, Florida, 19–25
May 2002, pp. 503–512

33. S. Mousavi, T. Zhou, C, Tian, Delayed parity generation in mds storage codes, in 2018 IEEE
International Symposium on Information Theory (ISIT) (IEEE, 2018), pp. 1889–1893

34. N. Nagappan, B. Murphy, V.R. Basili, The influence of organizational structure on software
quality: an empirical case study, in ICSE 2008, 2008, pp. 521–530

35. J. Pearl, Bayesian networks. Department of Statistics, UCLA, 2011
36. K.V. Rashmi, N.S. Shah, P. Vijay Kumar, Optimal exact-regenerating codes for distributed

storage at theMSR andMBRpoints via a product-matrix construction. IEEETrans. Inf. Theory
57(8), 5227–5239 (2011)

37. B. Ray, D. Posnett, V. Filkov, P. Devanbu, A large scale study of programming languages and
code quality in Github, in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ACM, 2014), pp. 155–165

38. P. Rigby, Y.C. Zhu, S.M. Donadelli, A. Mockus, Quantifying and mitigating turnover-induced
knowledge loss: case studies of chrome and a project at avaya, in ICSE’16 (ACM, Austin,
Texas, 2016), pp. 1006–1016

39. A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, Z. Su, Detecting code clones in binary
executables, in Proceedings of the Eighteenth International Symposium on Software Testing
and Analysis (ACM, 2009), pp. 117–128

40. S. Sarawagi, A. Bhamidipaty, Interactive deduplication using active learning, in Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’02 (ACM, New York, NY, USA, 2002), pp. 269–278

41. M. Sariyar, A. Borg, The recordlinkage package: detecting errors in data. R J. 2(1), 61–67
(2010)

42. M. Scutari, Learning bayesian networks in r, an example in systems biology (2013), http://
www.bnlearn.com/about/slides/slides-useRconf13.pdf

43. G. Silvestri, J. Yang, A. Bozzon, A. Tagarelli, Linking accounts across social networks: the
case of stackoverflow, github and twitter, in International Workshop on Knowledge Discovery
on the Web, 2015, pp. 41–52

http://www.bnlearn.com/about/slides/slides-useRconf13.pdf
http://www.bnlearn.com/about/slides/slides-useRconf13.pdf

1 A Methodology for Measuring FLOSS Ecosystems 29

44. S.L. Ventura, R. Nugent, E.R.H. Fuchs, Seeing the non-starts: (some) sources of bias in past
disambiguation approaches and a new public tool leveraging labeled records. Res. Policy 44(9),
1672–1701 (2015)

45. R. Vlas, W. Robinson, C. Vlas, Evolutionary software requirements factors and their effect on
open source project attractiveness, 2017

46. S.B. Wicker, V.K. Bhargava, Reed-Solomon Codes and their Applications (Wiley, New Jersey,
1999)

47. W.E. Winkler, Overview of record linkage and current research directions. Technical report,
Bureau of the census, 2006

48. Q. Zheng, A.Mockus, M. Zhou, Amethod to identify and correct problematic software activity
data: exploiting capacity constraints and data redundancies, inESEC/FSE’15 (ACM, Bergamo,
Italy, 2015), pp. 637–648

49. M. Zhou, A. Mockus, Developer fluency: achieving true mastery in software projects, in ACM
SIGSOFT/FSE, Santa Fe, New Mexico, 7–11 November 2010, pp. 137–146

50. J. Zhu, M. Zhou, A. Mockus, The relationship between folder use and the number of forks: a
case study on github repositories, in ESEM, Torino, Italy, 2014, pp. 30:1–30:4

Chapter 2
Mining Data to Profile Communication
in FLOSS Communities

Barbara Russo, Juergen Tragust and Xiaofeng Wang

Abstract FLOSS projects generate big data of different types, produced throughout
the development process, which is a valuable source of information on the process,
product, and the organization of FLOSS projects. However, the information such data
carries may sometimes be incomplete or become soon obsolete. To exemplify the
potential and the limits of mining data from FLOSS projects, this chapter presents a
study on how to mine social media data from an open-source community (e.g., how
to reconstruct conversation of several developers), to make sense of their communi-
cation structure (e.g., use measures of social network analysis to model developers’
communication), and surface the social networks that matter but are hidden under-
neath the large amount of data (e.g., unveil developers’ roles and competencies). In
the study, twitter data related to the Drupal Core project was mined, including both
data on developer twitter accounts as well as tweets from these accounts. Online con-
versations among the Drupal Core developers were reconstructed from the mined
data, and analyzed using both descriptive statistics and social network analysis. Our
study demonstrates a concrete approach of investigating and surfacing hidden social
networks that really matter to an open-source community, which may lead to the
improvement of online communication practices used by the community.

2.1 Data Produced by FLOSS Ecosystems

FLOSS projects generate big data of different types (e.g., social media) produced
all through the development process. Such data is a valuable source of information
on the process, product, and the organization of FLOSS projects. The information it
carries can be exploited to describe or predict properties of a FLOSS project and its
ecosystem.

Unfortunately, the information such data carries may sometimes be incomplete
or become soon obsolete.

B. Russo (B) · J. Tragust · X. Wang
Free University of Bozen, Bolzano, Italy
e-mail: Barbara.Russo@unibz.it

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_2

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_2&domain=pdf
mailto:Barbara.Russo@unibz.it
https://doi.org/10.1007/978-981-13-7099-1_2

32 B. Russo et al.

Incomplete data may be due to unobservable or unaccessible phenomenon for
the specific project. For example, not all data in developers’ chats can be publicly
accessible [1]. And obsolescence of datamay be caused by fast evolution of practices,
technologies, or development needs in a FLOSS project.

Projects developed within FLOSS ecosystems have a great advantage in this
respect. Partial data of a specific FLOSS project may be completed or gathered
from other projects of the same ecosystem and then used to build tools and support
practices for the benefit of all projects in the ecosystem. For example, data stored in
code repositories can be exploited to recommend developers in their tasks (e.g., [2]).

To exemplify the potential and the limits of mining data from FLOSS ecosystems,
this chapter illustrates a study on how to mine social media data from an open-
source community (e.g., how to reconstruct conversation of several developers),
make sense of their communication structure (e.g., use measures of social analysis
to model developers’ communication), and surface the social networks that matter
but are hidden underneath the large amount of data (e.g., unveil developers’ roles
and competencies).

2.2 Unveil Social Networks that Matter: An Analysis
of the Twitter Conversations Among Drupal Core
Developers

2.2.1 Background and Related Work

Effective communication is a key success factor for open-source software develop-
ment communities. Given the distributed nature of these communities, online com-
munication channels play a key role in the communication of community members,
which in turn impact software development activities. One of the important social
media venues where communication happens is Twitter. Launched in 2006, Twitter
has become more and more popular over the years. Researchers from different fields
have been investigating the Twitter phenomenon. The social and public nature of
Twitter resonates well with the open nature of FLOSS communities.

The early studies of Twitter find that, apart from information sharing and news
notification, interaction is also an important aspect of Twitter usage. The majority
of the studies of interaction on Twitter focus on the “following” relationship of
Twitter, such as [3]. However, as Huberman et al. [4] argue, the linked structures of
social networks do not reveal actual interactions among people. While the standard
definition of a social network embodies the notion of all the people with whom one
shares a social relationship, in reality people interact with very few of those listed
as part of their network. One important reason behind this fact is that attention is a
scarce resource in the age of the web. Scarcity of attention and the daily rhythms of
life and work make people default to interacting only with those interested users.

2 Mining Data to Profile Communication in FLOSS Communities 33

One type of interactions that may reveal the social network that matters to com-
munity members is conversation on Twitter. Java et al. [5] in their study back in
2007 already show that conversation is a major user intention on Twitter, in addi-
tion to information sharing and news notification. Actually in the early days since
there was no direct way for people to comment or reply to their friends’ tweets,
early adopters started using the “@” symbol followed by a username for replies.
Twitter officially added “@reply” in 2010. Honey and Herring [6] examine Twit-
ter communications focusing especially on the role attached to the “@” sign, and
discover that most conversations are built up of three to five messages involving
two people with obtaining responses in less than 30 minutes. In the work of Bruns
[7], public Twitter conversations concerning a specific #hashtag were retrieved first.
Then, the @reply tweets were further extracted. After all @replies were extracted
from the whole data, a simplistic social network was constructed to visualize the
@reply network existing between participating users. The author remarks that this
work serves further more detailed studies in the visualization of @reply tweets in
Twitter #hashtag communities.

Ritter et al. [8] establish in their paper an approach to modeling dialog acts.
The authors have examined an amount of 1.3 million Twitter conversations taken
from the Twitter public timeline, and applied a filter on posts without a reply tweet
and on non-English conversations. They built two models to discover dialog acts
in an unsupervised manner—a conversational model, and a conversation and topic
model. In another work, based on about 40million reply tweet pairs posted to Twitter
between September 2008 and February 2009, Bliss et al. [9] construct and examine
the revealed social network structure from the reciprocal reply tweets and dynamics
over the time scales of days,weeks, andmonths.Their particular focus is to investigate
patterns of sentiment expression in these reply tweets. The data they collected was
from general Twitter users that they had access to during the given study period, not
from a specific community. The study used the social network analysis approach to
construct the social networks based on the reply tweets. It looked at the pairs of reply
tweets that were reciprocal (which means the two Twitter users replied to each other
through tweets) and built the directed network of Twitter users using these pairs.

In brief, the conversational aspect of Twitter is not sufficiently studied, let alone
in the open-source software development context. This is the knowledge gap that our
work intends to fill up. Before we present our approach to analyze Twitter conversa-
tions among open-source community members, we need to briefly introduce the key
social network analysis concepts relevant to this study.

2.2.2 Social Network Analysis and Key Concepts

A social network is a network of relationships, which connects social actors such
as individuals or organizations. This social network can be used to investigate the
structure of whole social entities. To study such networks, social network analysis is

34 B. Russo et al.

used. The key concepts from social network analysis that are relevant to this study
come from the following three main categories:

1. Network cohesion—characterization of a network’s structure. It includes the fol-
lowing key parameters:

Reciprocity Can be calculated only in directed graphs. It is the number of
relations which are reciprocated (i.e., there is an edge in both directions)
divided by the total number of relations in the network.

Network density A network’s density is the ratio of the number of edges in
the network over the total number of possible edges between all pairs of
nodes. Through this value, the connection of the network can be revealed.

Network clustering coefficient A node’s clustering coefficient is the density
of its neighborhood (i.e., the network consisting only of this node and all
other nodes directly connected to it).

Diameter/Average distance The longest shortest path (distance) between any
two nodes in a network is called the network’s diameter. It indicates how
long it will take at most to reach any node in the network (sparser networks
will generally have greater diameters). The average of all shortest paths in a
network is also interesting because it indicates how far apart any two nodes
will be on average (average distance).

2. Key players—who are the key/central nodes in the network. It includes the fol-
lowing key parameters:

Degree centrality/In-degree centrality/Out-degree centrality The in- or out-
degree of a node is the number of links that lead into or out of the node. Useful
in assessing which nodes are central.

Closeness centrality The mean length of all shortest paths from a node to all
other nodes in the network (i.e., how many hops on average it takes to reach
every other node).

Betweenness centrality The number of shortest paths that pass through a
node divided by all shortest paths in the network.

Eigenvector centrality A node’s eigenvector centrality is proportional to the
sum of the eigenvector centralities of all nodes directly connected to it. (This
is similar to how Google ranks web pages: links from highly linked to pages
count more).

3. Tie Strength—adding weights to edges helps to identify strong or weak ties in a
network.

2.2.3 Research Approach

The open-source community chosen to be studied is the Drupal community. Drupal
is one popular open-source content management system (CMS) which powers more
than 1 million websites and the engine behind 12% of the web’s top 100,000 most

2 Mining Data to Profile Communication in FLOSS Communities 35

trafficked websites which use a CMS. Drupal has more than 15 years of history. The
community involves more than 35,000 globally distributed developers (by the time
of the data collection in April 2014). Twitter has been used both by the community
collectively and by the developers individually since 2007. This makes the Drupal
community an appropriate case to study. More specifically, we focus on the Drupal
Core Project. In the Drupal community, the term “core” means anything outside of
the “sites” folder of a Drupal installation. It is the stock element of Drupal. This
focus allows us to draw a boundary of the study due to the large amount of data that
needed to be dealt with.

2.2.3.1 Data Collection Process

The main data collection activity required by this study is to collect Twitter con-
versations among Drupal Core developers. Figure 2.1 illustrates the data collection
process. It can be divided into two major steps: (1) tweets trawling and (2) conver-
sation reconstructing.

Tweets Trawling The first step of tweets trawling was to obtain the list of Twitter
accounts that belong to the contributors of the Drupal Core project. We found the list
of Drupal Core contributors on the Drupal website in which all the committers were
listed. The number of committers retrieved at the time of our study (April 2014) was
93. The retrieval of their Twitter accounts included the following action points:

Fig. 2.1 The data collection process

36 B. Russo et al.

1. At the same webpage where we obtained the list of Drupal Core committers,
each committer’s Drupal name is a link to his or her Drupal profile page. Many
developers include their Twitter account information in the “Twitter url” field.

2. If the field is empty in the profile page of a developer, his Drupal name or IRC
(Internet Relay Chat) nickname will be used as a search keyword on Twitter
website. If such a Twitter account with Drupal name exists, the description of
the account and timeline tweets will be further inspected to make sure that the
account owner is a Drupal Core developer, using personal information listed in
the profile as references, e.g., full name, gender, country, Linkedin profile.

3. If the search with a Drupal name does not yield any result, we use the full name
(whenever it is available on the profile) as the search keyword and repeat the same
inspection process described in Step 2 to decide if the Twitter account belongs to
a Drupal Core developer.

As the result, we have retrieved 78 Twitter accounts that belong to 78 Drupal Core
developers.

The second stepwas to retrieve the data about these Twitter accounts, including the
user name of a Twitter account, the description of the account given by the user, the
geographic location of the user, the date when the account was created, the number
of followers, the number of followees, and the number of tweets.

The third step was to retrieve all the tweets from these accounts. The number of
contributor Twitter accounts was reduced to 76 after this step, since one developer
has 0 tweet, and the other set the profile private thus did not allow public access to
its tweets.

In order to retrieve all data in a batch mode, we used the twitteR package via the
statistical data-mining tool R (www.r-project.org) to interact with Twitter API. At
the time of our study, the Twitter API limits the number of retrieved tweets to 3,200
maximum per account.

ConversationReconstructing To rebuild the structures of the conversations from
the retrieved tweets turned out to be not as straightforward as we wished. Since our
study focus was on the interactions among the Drupal Core contributors, we were
interested in the conversations that involve at least two Drupal Core contributors. To
be able to reconstruct the conversations correctly, we needed to have all the tweets
from all the 76 developers to start with. This could not be done for the whole period
that these developers started using Twitter. Since all the tweets were dated back from
the data collection day (16-04-2014), we decided the time range of the conversations
that we investigated should be between the shortest timeline we retrieved from the
Drupal Core contributors, to be sure the tweets from all the developers are considered
within the time frame. Based on this observation, we identified the time range from
November 27, 2013 to April 16, 2014. The number of tweets from the Drupal Core
developers that fall in this time range is 14,676 among which the tweets that are reply
to other tweets count 9,123, around 62.2% of the collected tweets.

The tweets fromDrupal Core developers alone are not sufficient. In a conversation
that involves the community members, the users who are not from the same commu-
nity may also be involved, due to the public nature of Twitter. If the tweets from these

www.r-project.org

2 Mining Data to Profile Communication in FLOSS Communities 37

noncommunity members are on the path of a conversational branch or as the head
of a conversation that involves the community members, they need to be retrieved
in order to properly reconstruct this branch or the conversation. The tweets that we
should retrieve are those that are in the paths or the heads of the conversations. After
this step, the number of tweets expanded to 18,162, among which the reply tweets
are increased to 9,950.

After we have collected all the needed tweets in one place, we reconstructed
the conversations in a top-down manner, starting from the head tweet (a tweet that
has replies but is not a reply to another tweet), using R scripts we programmed.
Initially, we have reconstructed 4200 conversations. After excluding those that only
one Drupal developer is involved, we obtained a final set of 658 conversations that
satisfy the condition of including at least two Drupal Core developers. This set of
conversations is taken to the data analysis step.

One point worth noting is that most reconstructed conversations are partial of the
whole conversations.Aconversation canhavemore thanonebranch at any level. If the
branch does not involve any Drupal Core developer that branch is not reconstructed
using our approach, because we have no way to know who are those non-Drupal
developers involved, and the information on a tweet provided by Twitter API does
not allow to identify the downstream tweets, only upstream ones. For this reason,
a reconstructed conversation tree using our approach can be only a part of a whole
conversation that happens on Twitter. However, due to the focus of the approach is to
investigate the conversations happening among community members, this partiality
is not an issue.

2.2.3.2 Data Analysis Process

The analysis of the Twitter conversations is also divided into two main steps: (1)
describing Twitter conversations and (2) constructing and analyzing social networks
based on Twitter conversations.

Describing Twitter Conversations There are certain attributes of a conversation
that can be defined and the values of which should be captured, to have a proper
overview of the conversations happening on Twitter.

We proposed the following attributes:

• The number of tweets in a conversation.
• The number of users involved in a conversation.
• The number of team members involved in a conversation.
• The depth of a conversation, which is defined as the longest branch of the tree.
• The starting time of a conversation.
• The duration of a conversation.
• The category of a conversation, which can be

– general, which is not directed to anyone;

38 B. Russo et al.

– direct public, which is directed to a specific person but can be seen by all the
followers of the initiating person; and

– direct private, which is directed to a specific person and only can be seen by the
followers who also follow that person.

• The initiator of the conversation, which can be either a team member or a person
outside the team.

Constructing andAnalyzing Social Networks based onTwitterConversation,
and conduct further analysis of the formed social networks, to better understand the
dynamic interactions among the Drupal Core developers via Twitter. We constructed
the following two social networks drawing upon the conversations:

– Weighted, undirected network: We linked two contributors if they were involved
in at least one conversation, even though they may not directly converse using
“@reply”. The weight of their linkage is decided by the number of same conver-
sations they were involved.

– Weighted, directed network: We linked two contributors if only they have directly
conversed via tweets using “@reply”. In this case, the linkage is directional from
the contributorwho replied to the onewhose tweetwas being replied to. Theweight
of their linkage is decided by the times that this direct reply happens. Note that
in this case, the linkage between two contributors can be bidirectional; however,
each direction has its own weight.

To make better sense of the two social networks, we also constructed the third
social network based on the following relationship between the developers. The
following relationship is the basis upon which the conversations can happen, and
therefore it serves as a baseline to compare the two social networks drawing upon the
conversations. The social network based on the following relationship is unweighted
because the following relationship does not bear anyweight.However, it is directional
from the contributor who follows to the one who is being followed. The following
relationship can be reciprocal which means that the two contributors follow each
other.

The social network attributes that are meaningful to examine for the three social
networks including the measurements of network cohesion (reciprocity, network
density, network diameter and average distance, and average coefficient), and the
key players (degree, closeness, betweenness as well as eigenvector centrality). Table
2.1 shows what these concepts can mean in terms of the constructed social networks.

Gephi is the main tool we used to analyze the three social networks and obtain the
values of the listed properties. Since Gephi does not provide functions to calculate
reciprocity, we used UCINET to obtain the reciprocity values of the three networks.

At the end of this step, we also compared the roles of the Drupal Core developers
played in these social networks to the roles they played in the development in terms
of their commits to the project.

2 Mining Data to Profile Communication in FLOSS Communities 39

Table 2.1 Interpretation of social network analysis concepts in terms of twitter conversations

Social network
properties

Weighted, nondirected
conversation network

Weighted, directed
conversation network

Unweighted, directed
following network

Reciprocity (not applicable) The ratio of
bidirectional
conversations over the
total direct
conversations

The ratio of reciprocal
following relationships
among all following
relationships

Network density How often developers
are involved in the
same conversations

How often developers
directly converse with
each other

How often developers
are following one
another

Network clustering
coefficient

Existence of
subgroups of
developers who
converse together

Existence of
subgroups of
developers who
directly converse

Existence of
subgroups of
developers who follow
each other

Diameter/Average
distance

The maximal/average
steps needed for two
developers to be in the
same conversation

The maximal/average
steps needed for two
developers to have a
direct conversation

The maximal/Average
steps needed for two
developers to follow
one another

Degree
centrality/In-degree
centrality/Out-degree
centrality

The number of
developers with whom
a given developer is
involved in the same
conversations

In-degree centrality:
the number of
developers that
directly reply to a
given developer
Out-degree centrality:
the number of
developers that a given
developer directly
replies to

In-degree centrality:
the number of
developers that follow
a given developer
Out-degree centrality:
the number of
developers that a given
developer follows

Closeness centrality How fast a developer
can involve everyone
else in a conversation

How fast a developer
can have a direct
conversation with
everyone else

How fast a developer
can have a following
relationship with
everyone else

Betweenness
centrality

How likely a developer
is the bridge for two
other developers to
have a conversation

How likely a
developer is the bridge
for two other
developers to have a
direct conversation

How likely a
developer is the bridge
for two other
developers to have a
following relation

Eigenvector centrality How well a developer
interacts with the other
active developers in
terms of conversation

How well a developer
directly converse with
the other active
developers in terms of
direct conversation

How well a developer
follows/is followed by
other well
following/followed
developers

Tie strength Which pairs are most
often involved in the
same conversations

Which pairs are most
often converse directly

(not applicable)

40 B. Russo et al.

2.2.4 Unveil the Social Networks that Matter

Observations on the 78 Twitter Accounts of the Drupal Core Users
The Drupal Core developers are distributed mainly in America and Europe. Among
the 78 Twitter accounts studied, the earliest one was opened on October 7, 2006, and
the latest was on June 8, 2013. The majority of the accounts were opened in 2008
and 2009, as shown in Fig. 2.2.

The conversational tweets from the Drupal Core developers during the studied
period are 9,123, about 62.2% of the total tweets they tweeted during the same
period. This shows that Twitter is heavily used for the conversational purpose by the
Drupal Core developers. The number of conversations by month is shown in Fig. 2.3.
It can be seen that the number of conversations happening over the time does not
vary a lot. 619 out of 658 conversations started as public and to general audience.
In comparison, very few conversations (39) started by addressing a specific Twitter
user directly. Among these direct conversations, 34 are private and 5 are intended
to be heard by a wider audience. Table 2.2 shows the descriptive statistics of the
conversations that Drupal developers have on Twitter in terms of number of people
involved, number of tweets, and duration of the conversations.

Fig. 2.2 Twitter accounts
opening per year

2 Mining Data to Profile Communication in FLOSS Communities 41

Fig. 2.3 Number of
conversations per month

Table 2.2 Descriptive statistics of the studied conversations

Statistics NoT Depth NoU NoDC Duration

min 2 2 2 2 24

max 53 42 10 6 2664440

range 51 40 8 4 2664416

median 4 3 3 2 6475.5

mean 5.45 4.07 3.18 2.29 41605.70

std.dev 5.09 3.24 1.31 0.68 189073.56

It can be seen based on the statistics reported in Table 2.2 that the majority of
the conversations involving the Drupal Core developers are short in terms of both
the Number of Tweets and Duration. The mean of NoT is 5.45, and most often there
are only two tweets exchanged. The mean of the Duration is 6475.5 s (less than two
hours). Meanwhile, the mean of the Depth of the conversations is 4.07. The majority
of them have Depth of 2 only. This can mean that the conversations on Twitter are
mainly quick chats. However, it is noticeable that there are some exceptions. The
longest conversation has in total 53 tweets, the depth of which is 33. It involves
six Twitter users, among them two Drupal Core developers. The conversation lasted
more than 20 hours. The topic of the conversation is not related to the Drupal Core
project, but general discussion on free speech. In contrast, the deepest conversation
has 42 levels. It is also the second longest conversation and includes 52 tweets in
total. Seven Twitter users including 3 Drupal Core developers were involved. It went
on for more than 23 hours. Similarly, the topic is general about the differences in
cultures.

42 B. Russo et al.

Fig. 2.4 Social network formed by following relationship

Table 2.2 also shows that the conversations are mainly dialogs since most often
only two Drupal Core Developers were involved. The largest number of Drupal Core
Developers involved in a conversation is 6, while 10 is the largest number of Twitter
users involved in one conversation. We inspected the six conversations that involved
the most Drupal Core developers. Two of them are related to Drupal Core project
or software development, the rest are all social in nature, either about marriage,
or being a parent. However, these are the social chatters somehow related to the
community. The two conversations that involved most Twitter users (10) however
have only 2 Drupal Core developers involved, respectively, and therefore these seem
the interactions in a wider social context.

Figure 2.4 shows the following network as a comparison to the two networks that
were constructed based on the studied conversations, which are shown in Figs. 2.5
and 2.6, one is weighted, undirected network while the other is weighted, directed.
The nodes of larger size and darker color are the ones that havemore links and located

2 Mining Data to Profile Communication in FLOSS Communities 43

Fig. 2.5 Social network formed by conversations that Drupal Core developers are involved in

in the center of the diagrams. Since the following relationship is the basis for which
conversations happen, the two conversation networks actually highlight the linkages
in the following network through which more active interactions happen. It can be
seen that the nodes in the center of following relationship are also in the center of the
two conversation networks, even though the exact sizes and shades of these nodes
change across the diagrams.

A more accurate comparison of the three networks in terms of relevant network
properties is shown in Table 2.3. The number of nodes that are involved in the
conversations we examined is 51, 65.38% of those who have Twitter accounts. 48
developers have directly talked to one another using “@reply” of Twitter feature
during the period we have studied. In average, a developer has been involved in the
same conversations with more than eight other developers. The average frequency
of being involved in conversations with the same developer is higher than three. In
contrast, the average number of directly conversed developers is less than five. The
average frequency of directly interacting with the same developer is nearly three.

44 B. Russo et al.

Fig. 2.6 Social Network formed by direct Conversations among Drupal Core Developers

In comparison to the dense following network (network density equals to 0.23),
the two conversation networks are sparser (0.11 and 0.06, respectively). This is
consistentwithwhat visually shows inFigs. 2.5 and 2.6. Thismeans that the following
relationship is a better connected network than the two conversation networks.

However, it is surprising to see that the reciprocity of the direct conversation
network is higher than that of the following network, both dyad based and edgewise.
Itmeans that the developersmore often reciprocate a reply tweet that addresses to him
or her than reciprocate a following action from other developers. The three networks
have similar diameter value (3 and 4), which means that it takes at most 3 or 4 steps
from one node to any other nodes in the network. Therefore, even though the two
conversation networks are sparser than the following network in terms of number of
edges and average degrees. They are equally dense in terms of reachability between
nodes. Similarly, the values of the average path length of the three networks are close
too, as shown in Table 2.3.

2 Mining Data to Profile Communication in FLOSS Communities 45

Table 2.3 The property valules of the three social networks under the study

Network Properties Weighted, nondirected
conversation network

Weighted, directed
conversation network

Unweighted, directed
following network

Number (percentage)
of nodes connected

51 (65.38%) 48 (61.54%) 70 (89.74%)

Number of edges 333 369 1365

Average degree 8.54 4.73 17.5

Average weighted
degree

29.26 14.04 —

Network density 0.11 0.06 0.23

Reciprocity — 0.53
(Dyad-based)/0.69
(Arc-based)

0.34
(Dyad-based)/0.51
(Arc-based)

Network diameter 3 4 4

Average path length 1.80 2.10 1.78

Average clustering
coefficient

0.78 0.49 0.45

In addition, the average clustering coefficient of weighted undirected network
indicates that the same subgroup of developers tends to be involved in the same
conversations. Given the relatively high average clustering coefficient and the short
average path length, the undirected conversation network might have the properties
of a small world. In comparison, the tendency of direct conversation with the same
subgroup of developers is not as obvious. It is more evenly spread out, similar to the
following relationship.

We also closely examined the key players in the three networks in terms of degree
centrality, closeness centrality, betweenness centrality, eigenvector centrality, and tie
strength. A similar set of developers appear as the key players in conversations in
terms of the number of developers they interact through conversations (degree cen-
trality), their closeness to all other developers, their potential bridging roles between
subgroup of developers, and how well they interact with other people who are also
active in conversations. The same pattern can be observed also in the key players of
the following network, even though they are slightly different set of developers in
contrast to those of conversation networks.

We also examined the Drupal profiles of the key players in these networks in
terms of their activity and contribution to the Drupal Core project and overall Drupal
community. It turned out that they are also core developers and top code committers in
the community. The developers who appear to be at the peripheral of the development
are also not active in the conversations with other developers on Twitter. There are
just very few exceptions that developers are active in one arena but barely visible in
the other.

46 B. Russo et al.

2.3 Conclusion

The study presented in this chapter investigated conversations of open-source soft-
ware developers on Twitter and as a special case the Drupal Core project, as an
example of mining social media data to surface hidden communication structures in
FLOSS communities. Twitter was launched in 2006 and has become more and more
popular over the years. The general user intention consists of conversing, sharing
information, and news awareness. Because of its popularity and growing commu-
nity, many researchers have investigated in the Twitter phenomenon. These studies
vary in nature, from the usage of Twitter in software development communities to
the social network analysis and reconstructing @reply conversations. However, the
conversational aspect of Twitter in an open-source software development context is
not sufficiently studied. This study attempted to provide an approach to enable a bet-
ter understanding of how communication happens within an open-source software
development community, and as a special case the Drupal Core Project.

Following the research approach presented in the chapter, researchers and practi-
tioners, in both open-source and commercial area, can investigate and surface hidden
social networks that really matter to a community, and improve the communication
practices used by the community based on what can be learned through analyzing
these communication structures and contents. For example, the future work can con-
duct content analysis to get a more qualitative understanding of what issues they
actually converse about. In addtion, our study looked at a very small time range.
Having an extended data collection, consisting of a longer time period, would lead
to a more detailed result. Also, longitudinal studies of the evolution of conversation
networks can be conducted, to understand if and how the communication behav-
iors and habits of developers change over the time. Last but now least, since the
whole process of the data collection, reconstruction of the conversations, and the
building of the social networks was highly manual and took a lot of effort, it would
be a welcomed improvement if the process could be automated. In our study, we
used TwitteR, Gephi, and UCINET; however, it would be intriguing to see how this
approach could be expanded by using other tools that allow automation.

References

1. L. Zou, W.W. Song, Lda-tm: A two-step approach to twitter topic data clustering, in 2016 IEEE
International Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (2016), pp.
342–347

2. L. Villarroel, G. Bavota, B. Russo, R. Oliveto, M.D. Penta, Release planning of mobile apps
based on user reviews, in Proceedings of the 38th International Conference on Software Engi-
neering, ICSE 2016, Austin, TX, USA, 14–22 May (2016), pp. 14–24, http://doi.acm.org/10.
1145/2884781.2884818

3. E. Baumer, A. Leis, Minimalists and Zealots: Genres of participation in following on Twitter,
in CHI 2010 Workshop on Microblogging: What and How Can We Learn From It? (2010)

http://doi.acm.org/10.1145/2884781.2884818
http://doi.acm.org/10.1145/2884781.2884818

2 Mining Data to Profile Communication in FLOSS Communities 47

4. B.A. Huberman, D.M. Romero, F. Wu, Social networks that matter: Twitter under the micro-
scope. SSRN Electron. J. (2008), http://ssrn.com/paper=1313405

5. A. Java, X. Song, T. Finin, B. Tseng,Whywe Twitter: understanding the microblogging effect in
user intentions and communities, in Joint 9th WEBKDD and 1st SNA-KDDWorkshop 07 (2007),
http://workshops.socialnetworkanalysis.info/websnakdd2007/papers/submission_21.pdf

6. C. Honeycutt, S.C. Herring, Beyond microblogging: conversation and collaboration via Twitter,
in Proceedings of the 42nd Annual Hawaii International Conference on System Sciences, HICSS
(2009)

7. A. Bruns, How long is a tweet? mapping dynamic conversation networks on twitter using Gawk
and Gephi. Inf. Commun. Soc. 15(9), 1323–1351 (2012)

8. A. Ritter, C. Cherry, B. Dolan, Unsupervised modeling of twitter conversations, The 2010
Annual Conference of the North American Chapter of the Association for Computational
Linguistics (2010), pp. 172–180, http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&
an=16885300, http://dl.acm.org/citation.cfm?id=1858019

9. C.A. Bliss, I.M. Kloumann, K.D. Harris, C.M. Danforth, P.S. Dodds, Twitter reciprocal reply
networks exhibit assortativity with respect to happiness. J. Comput. Sci. 3(5), 388–397 (2012)

http://ssrn.com/paper=1313405
http://workshops.socialnetworkanalysis.info/websnakdd2007/papers/submission_21.pdf
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=16885300
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=16885300
http://dl.acm.org/citation.cfm?id=1858019

Chapter 3
A Preliminary Theory for Open-Source
Ecosystem Microeconomics

Nicolas Jullien, Klaas-Jan Stol and James D. Herbsleb

Abstract While there has been substantial empirical work identifying factors that
influence the contribution to, and use of open-source software, we have as yet lit-
tle theory that identifies the key constructs and relationships that would allow us to
explain and predict how open-source ecosystems function. The absence of ecosystem
theory is particularly alarming as open-source software works its way more broadly
and deeply into the economy. The problem facing policymakers is how to provide
support and resources when needed, without distorting decision-making, demotivat-
ing volunteers, serving special interests at the expense of others, and maintaining the
communities that take on and guide the work. What is needed is a clearly articulated
and empirically validated theory of open-source ecosystems. This chapter provides
a sketch of such a theory in the form of a set of propositions, which may form the
foundation for future empirical work.

3.1 Introduction

Markets play a key organizing role in most economic systems. Understanding how
markets work is critical for effective economic policy. It identifies the levers that
policymakers can manipulate to achieve desired effects. Microeconomics uses con-
structs such as supply and demand, allocation of resources, and equilibria to build

N. Jullien (B)
LEGO-M@rsouin, IMT Atlantique, Brest, France
e-mail: Nicolas.Jullien@imt-atlantique.fr

K.-J. Stol
Lero—the Irish Software Research Centre, School of Computer Science and Information
Technology, University College Cork, Cork, Republic of Ireland
e-mail: k.stol@cs.ucc.ie

J. D. Herbsleb
Institute for Software Research, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA
e-mail: jdh@cs.cmu.edu

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_3&domain=pdf
mailto:Nicolas.Jullien@imt-atlantique.fr
mailto:k.stol@cs.ucc.ie
mailto:jdh@cs.cmu.edu
https://doi.org/10.1007/978-981-13-7099-1_3

50 N. Jullien et al.

models that explain and predict key phenomena such as price setting and the flow
of resources to various producers. It allows policymakers to identify market fail-
ures, identify abuse of monopoly positions, and other undesirable phenomena and
provides a theory that points to policy decisions that can have a beneficial impact,
minimizing harmful side effects that result in suboptimal outcomes.

Open-source ecosystems perform functions analogous to those performed bymar-
kets, but they do so without price signals, revenue streams, monetary returns, or
other key theoretical mechanisms that are the stock in trade of economists modeling
markets. While there has been substantial empirical work identifying factors that
influence the contribution to, and use of open-source software [17], we have as yet
little theory that identifies the key constructs and relationships that would allow us
to explain and predict how open-source ecosystems function.

The absence of ecosystem theory is particularly alarming as open-source soft-
ware works its way more broadly and deeply into the economy. As pointed out in
a recent report by Eghbal [18], open-source ecosystems are becoming critical dig-
ital infrastructure underpinning the publicly and privately produced computational
resources we rely on. And it is increasingly apparent that this infrastructure is often
neglected and under-resourced, with negative consequences ranging from slowed
product development to critical security flaws1 and propagation of defects and ver-
sion incompatibilities.

The problem facing policymakers is how to provide support and resources when
needed,without distorting decision-making, demotivating volunteers, serving special
interests at the expense of others, and maintaining the communities that take on and
guide the work. Inappropriate application of resources, for example, could extend
the life of a project that should be allowed to decline and be replaced. Adding paid
developers to a project could demotivate other volunteers, and reduce the intrinsic
motivation of those who are compensated, reducing future contributions. If support
is provided to move in a particular technical direction, it could give rise to conflict
and potential fragmentation of the community. Interventions that do not respect the
logic and underlying principles and relationships of open-source ecosystems could
easily cause more harm than good, and weaken the very ecosystems it is designed to
help.

What is needed is a clearly articulated and empirically validated theory of open-
source ecosystems. Such a theory should:

• Explain why, how, and when key resources—primarily the work of
developers—are attracted to or depart from a project or an ecosystem.

• Explain why, how, and when projects and ecosystems move through a life cycle,
from initiation, growth, maturity, and decline and death.

• Explain how decisions about use are made, and how the cumulatively influence
the socio-technical position of a project within an ecosystem, and the relations of
ecosystems to each other.

1For example: https://en.wikipedia.org/wiki/Heartbleed.

https://en.wikipedia.org/wiki/Heartbleed

3 A Preliminary Theory for Open-Source Ecosystem Microeconomics 51

The remainder of this chapter provides a sketch of such a theory in the form of a set
of propositions, which may form the foundation for future empirical work.

3.2 The Three Stages of an Open-Source Project

The Stanford economist Paul David identified three factors that influence growth and
sustainability of FLOSS projects [16], factors, which define three phases in an open-
source project life: first, projects will not be able to enter Phase 2 without achieving
sufficient community commitment. In Phase 2, the rate of innovation through the
addition of new features will ensure growth to Phase 3. In this phase, existential
threats emerge through the problem of maintainability, which may be exacerbated
by contributor fatigue as key maintainers may leave the project, leaving the project’s
future in jeopardy.

This three-phased idea is a familiar concept in software system development,
adoption, and also in project staffing. Software development follows an S-curve
process in terms of efficiency, or productivity, called the Rayleigh–Norden curve
[41]. In Phase 1, investments have to be made to develop the foundations of the
project, while the production of features might be slow, but the number of people
may stay low. After a point, the project enters Phase 2, which is the development
phase during which many features are added and the total size of the team may
increase. During this phase, the level of productivity tends to be high. After some
time, when most of the needs have been addressed, the project enters Phase 3, which
is characterized by a decrease in the efficiency of the allocation of resources, and a
need to decrease the size of the team affected to the project. Koch [32] showed that
this three-phase evolution in terms of software production applies to open source as
well.

As open source has traditionally been a voluntary-based movement [35], this is
not a surprise either as it also echoes the analyses on people’s engagement into a
collective action [37, 42], or an “action taken together by a group of people whose
goal is to enhance their status and achieve a common objective” (Wikipedia quoting
Encyclopædia Britannica). As explained by Marwell and Oliver [37], motivations
and engagement of participants vary, and this explains what happens in these phases
in terms of involvement. The first phase attracts only those people who have a high
interest in the project, and a low cost of involvement. After some point, and this is
especially true for software, increasing returns to adoption start to matter, making
more and more interesting to adopt the solution, and attracting new and more diverse
actors [6, 15]. Finally, when the project matures, development of new functionality
often slows downs and it moves into a mode that could be characterized as “mainte-
nance,” which we call Phase 3. Evidence suggests that as projects age, they struggle
to recruit and retain newcomers [54]. This decrease in the growth in participants
may simply be the result of, or a signal that, the project has entered a mature phase
in which it needs fewer additions and thus fewer contributors [23]. Their organiza-
tion is said to become increasingly bureaucratic [8]. This is not necessarily a bad

52 N. Jullien et al.

thing: as Heckathorn explained (ibid), this bureaucracy makes entry more difficult
(more expensive) for newcomers, and thus decrease the number of people willing to
participate in such a project.

However, this can lead to the death or downfall of the project. If too many peo-
ple leave too rapidly, if the project’s technical or administrative structure makes it
increasingly harder to integrate new features, or if, on the contrary, too many people
stay for too few things to do, there is an increasing risk of conflicts and inefficient
allocation of efforts. Actually, a project’s decline, or “death” can occur at any phase
of the project, if nobody contributes in the first phase, if growth is not properly man-
aged in Phase 2, or, as stated above, if maturity turns into decay too soon or too
quickly.

We detail the ecosystemic challenges of each phase in the remaining sections of
this chapter.

3.3 Phase 1: The User-Innovator Phase

The first phase is the one which has attracted probably the most and certainly the
earliest research. According to Von Hippel, beyond any motivations, the core of
the incentive framework for people to get involved in the early stage of an open-
source project is the “private collective” innovation model or the “user-as-innovator
principle” [36, 53]: as users directly benefit from the innovation they produce, they
have an incentive to produce it, and as they can expect add-on, feedback, or cumulative
innovation on their own proposition, they have an incentive to freely share it. Jullien
andRoudaut [29] described the difficulties to succeed for projectswhen the producers
were not its users.

As a consequence, to evaluate the chance of success of an open-source project in
Phase 1, we must focus first on incentives of individual users; developers have to get
involved, and, second, the technical and organizational structures that lead them to
stay. But first of all, the question is why people or organizations would initiate an
open-source project.

Early-stage FLOSS projects can be classified into three categories. The first cate-
gory represents the “traditional” FLOSS project, started by one or a few individuals
to “scratch an itch” [43]. The causes for such itches are various: technical issues that
“bother” expert programmers who decide to develop a solution, dissatisfaction with
existing proposals, or a lack of existing solutions altogether. Other software solutions
may be controlled by a company and lead to market inefficiency (e.g., overpriced
products, too little innovation, poor user support, or poor product compatibility). A
key characteristic of this type of FLOSS project is that they are solutions developed
by individuals to solve a personal computing problem. Examples are widespread,
with the Linux kernel perhaps the best known and most successful example. A key
challenge for many of these projects is to attract a developer community—most
projects have only small developer communities [11].

3 A Preliminary Theory for Open-Source Ecosystem Microeconomics 53

The second category of FLOSS projects is formerly proprietary software that
has been open sourced, such as Netscape’s web browser [1]. The reasons for open
sourcing may vary; one reason is that a company no longer wants to spend resources
on maintaining the software [52]. Another reason is to increase market share, which
will also change the business model around the product (e.g., services around the
product) [20, 39]. Another reason might be that a company seeks collaboration in the
development of complementary assets [30]. Here again, one of the key challenges
for the open sourcing company is to generate enough interest in the project that it
attracts contributors.

The third category is that of the so-called “planned” FLOSS projects, typically
driven by one or a consortium of companies. One well-known and recent example of
this is OpenStack, which was planned by a large consortium of companies, and the
goal for the companies involved is to create an industrial standard (or an industrial
public good).2 The challenges are those of the creation of an open standard, especially
in the balance of the participants’ incentive to support the creation of such a standard,
and their interest in curving it toward their owngoal. For this type of projects, the issue
of raising initial investment of resources does not loom large; instead, such projects
face organizational challenges such as project governance, which also characterize
projects in Phase 2.

The first phase of the model presented (see Fig. 3.1 S-Curve) illustrates how
successful FLOSS projects have an initial stage of growth. Whether or not a FLOSS
project will attract sufficient momentum in terms of users and developers (i.e., its
popularity) depends on many factors. First, projects in what we have described as
Phase 1 attract only those developers who have a very strong interest in the project,
or in Raymond’s terms [43], those developers that share the same “itch to scratch.”
These developers typically face low “cost” in participating; for example, they have
sufficient time to engage in the project, and they have a significant level of expertise
that is required to participate in an early stage of the project when the foundations
are laid out. This leads us to pose the following proposition.

Proposition 3.1 Early-stage FLOSS projects attract developers that perceive the
project to be of very high personal value (i.e., it solves a personal problem), and
who have low entry barriers to participate (i.e., highly skilled, strong motivation,
sufficient time to participate).

As a FLOSS project is maturing and exhibits a basic feature set beyond the foun-
dations of a project, the project increasingly offers value to stakeholders other than
the initial developers who were simply scratching an itch. A more diverse group of
stakeholders starts to become interested, including companies who may see business
opportunities by leveraging the FLOSS asset for product development, or for devel-
oping services around the product. For example, Red Hat is a company (founded
in 1993, two years after Linux version 0.0.1 was released) that built an extensive
set of services around several very successful FLOSS projects, including the Linux

2The literature on standards is very extensive and well beyond the scope of this chapter. We refer
interested readers to Swann’s literature review [50].

54 N. Jullien et al.

Fig. 3.1 A Diffusion
S-Curve (adapted from [45])

operating system and JBoss. This led Red Hat to become the first one-billion dollar
open-source company in 2012, and its growth has sustained quite significantly in the
years since. The process of maturation—that is, the recognition that a project has
real potential—may lead to the attraction of additional developers and users, who
are perhaps less skilled, or have less spare time available, but who are nevertheless
highly motivated to contribute to a project that they are excited about.

Proposition 3.2 Early-stage FLOSS projects that offer value beyond “personal
interest” will attract a more diverse group of stakeholders than the initial devel-
opers.

There is also a set of socio-technical factors that influence the attraction of new
developers to a project, which is a measure of a project’s popularity. In terms of tech-
nical factors, the implementation technologies may attract, but also deter developers.
Modern technologies are typically perceived to be more interesting, not only due to
developers’ desire and interest to learn those new technologies, but also to improve
future job opportunities. Projects that are based on old technologies which are no
longer in favor (e.g., Fortran, COBOL) are unlikely to attract today’s generation
of developers who are likely more interested in modern web technologies such as
JavaScript (incl. Node.js) and Python. Thus, we offer the following proposition.

Proposition 3.3 The popularity of an early-stage FLOSS project depends on the
popularity of the technology the project is written in.

There are few analyses of why companies decide to open source one of its software
sinceÅgerfalk andFitzgerald [1] defined the term, as “outsourcing a formally internal
software to unknown people.” Companies have to adjust in order to be able to collab-
orate efficiently with communities beyond their organizational boundaries (see, for
example, Schaarschmidt et al. [47]). Shaikh and Cornford [48] have since reaffirmed
the fact that embracing an open-source strategy means embracing an open-source

3 A Preliminary Theory for Open-Source Ecosystem Microeconomics 55

Table 3.1 When outsourcing an internally produced component and how

Central for the core business of the company?

Low importance Business-critical

Potential of further
evolution of the software

Low Orphan software Key component, software
as a product or service, or
internal (closed)
maintenance

High Cooperative development
software

solution, open-sourced or
not depending on the
strategic consequences of
open sourcing the
component

organization, and building trust and cooperative mechanisms with the developers.
In exchange, the company, in addition to outsourcing the cost of maintaining and
expanding the software can recruit competent and committed developers more easily.

However, there is still a need for a better understanding of the link between internal
and external organization, andof the consequences of openingup and collaboratewith
potential competitors, in other words, to create a sustainable open-source ecosystem,
or what we refer to here as Phase 2.

Proposition 3.4 Projects that offer considerable potential business value will attract
corporate investment if the project’s value proposition is compatible with the com-
pany’s strategy.

It is worth noting, first, that not all the open-sourced software projects are aimed at
creating value for companies. The traditional outsourcing strategy concerns external-
izing complementary assets to specialized companies in order to decrease the total
cost of ownership. (We refer to Lacity et al. [34] for a review of the literature on IT
outsourcing).

If a component does not have a great potential to evolve further, it is unlikely
to attract any new developers, and, if it is key for the business of the company, it is
unlikely to be open-sourced [52]. If there is a potential, it is not sure that the company
would want to invest its employees’ time and money in developing a community. On
the other hand, if a component is business critical, outsourcing may lead to too much
leak toward its competitor (ibid). These simple considerations lead to Table 3.1,
which summarizes the opportunity for outsourcing (and open sourcing).

Proposition 3.5 If a software component is not critical for the core business of a
company, and has a potential of evolution, the company will favor an open-source
strategy to share the cost of development.

Proposition 3.6 If a software component is critical for the core business of a com-
pany, and has a high potential of evolution, an open-source strategy will be considered
if and only if the technical structure of the software allows the company to keep some

56 N. Jullien et al.

strategic components closed while open-sourcing the standard part to benefit from
the innovative dynamic of the community.

As appealing this analysis can be, the case of an open sourcing strategy raises many
questions. For example, how can we evaluate the minimum population of skilled
developers that is required for the open sourcing strategy to be considered, so as to
be able to expect a community to emerge? What does a dynamic of evolution means,
is being dynamic enough for a company to prevent competitors from forking and
“capturing” the developer community, and the clients? How big should a population
of potential clients be for this strategy to be economically sustainable? And, of
course, coming back to the howto, for both the core and the complementary asset
strategy, how to advertise this open-sourcing to the first contributors, in order to
jump-start the ecosystem? What guarantees should a company provide, and how
should it structure and publish the software source code to facilitate the entry of
new developers? What is the cost of sustaining and supporting a community, and
what should a company “control” themselves, and which aspects can be left to self-
organizing communities, so that project management and leadership can emerge
among a core of initial community developers?

To conclude this section, we can say that if the open-source licenses can be seen,
in that perspective, as a new element in the companies’ strategic portfolio to manage
their relations with a software service provider, it would benefit from more research
from fields such as strategic management and information systems regarding the
parameters to take into account and the measure of these parameters in the business
and financial evaluation of an open-source strategy.

If the early-stage software reaches some point of minimum viability, technically
and in terms of adoption by a sufficiently large user-base, its adoption by a more
general audience may start to grow. To put it in a more global framework, technology
adoption, and in Roger’s [45] perspective, the end of Phase 1 is characterized by
going beyond the core developers team, and even to the early adopters, who if not
developing directly, can give feedback, express new needs, but ask also for new
support services, such as user-support mailing lists [33] to start reaching the early
majority of the “simple” users.

This signals that a project has entered Phase 2, and in this “growth” stage, both
the adoption rate and development efforts grow as the utility of the minimally viable
product is recognized. We discuss Phase 2 next.

3.4 Phase 2: Blossoming or Fading

As adoption grows, development resources tend to flow into the project, for several
distinct reasons. Volunteers are drawn by the increasing visibility and reputation-
enhancing potential of contributions to the project. Companies are drawn by the high
potential, but not yet fully realized, of the project for their business–at this relatively
early stage, companies may be able to exert some level of control and shape the

3 A Preliminary Theory for Open-Source Ecosystem Microeconomics 57

future of the project. Since the product has demonstrated its utility but is not yet
feature complete, companies invest a portion of their development resources to build
the functionality they need.

Proposition 3.7 Projects that have a sound initial foundation (i.e., the project has
commercial potential and represents significant value to users) will attract more
developers who may have less time and skills than the original core developers,
leading to an increased development velocity of the project.

As the actors in the community diversify, their goals may diverge, too. As the project
grows, the difficulty tomaintain a technical coherencemay also grow, as the difficulty
for newcomers to contribute to the code.

How to deal with the management of stakeholders’ different points of view, with
the growing complexity of the code and of the organization, how to turn a technical
success into a diffusion success, how to make the participation of the companies in
the development economically sustainable are some of the main challenges of this
phase, and will be discussed this section.

The challenge for projects at that stage is to build the governance structures, the
technical infrastructure to allow each to concentrate on their own subject of interest
in the project, and everybody to coordinate, so that the diverse range of interests turn
into a broader project rather than a battlefield characterized by internal conflicts.

The design of the project into clearly defined modular components is key here, for
economic reasons, as it facilitates and decreases the cost of producing new knowl-
edge [4], making entry easier for a new competitor, which, as traditional standard
economics pointed out, “needs only to produce a single better component, which can
then hook up the market range of complementary components, than if each innovator
must develop an entire system” [19]. It is also key from a software engineering [2]
and organizational point of view, as it is very difficult for teams to work efficiently
with too many people. In an early study of the Apache web server project, Mockus
et al. [38] hypothesized that open-source projects’ core teams tend to consist of no
more than 15 persons, for accessibility and managerial purpose [2].

Proposition 3.8 Sustainable open-source projects are those which succeed in (1)
structuring their architecture and their organization around modules managed by
small teams; (2) orchestrating the coordination of the different modules/teams.

But what exactly characterizes a good open-source module team; which are the key
qualities of good open-source contributors are questions that remain a topic of debate.
Team assemblymechanisms can determine team performance [21], especially in cre-
ative teams such as those engaged in building knowledge commons (Hess andOstrom
2006). Open-source contributor evaluation often relies on the idea of meritocracy,
where developers are evaluated based on the quality and quantity of their contribu-
tions, which leads to recognition by peers [26]. However, meritocratic cultures have
been demonstrated to deliver biased observations (Castilla and Bernard [10], and
FLOSS communities have been specifically criticized for this shortcoming [40, 44].

58 N. Jullien et al.

Table 3.2 Relevant characteristics to identify a good open-source contributor (from [3])

Problematic contributor Good contributor

Communication skills (signal
over noise ratio)

Too much noise/not enough
information

Is good at providing the right
level of information

Commitment to the project Unmotivated/passive in
seeking answers

Is motivated and does a
thorough job

Working with others Tends to find fault with others Is generally trusting, patient
with people

Pressure and stress related
managing capacity

Gets nervous\stressed easily
(ex.: when things do not go as
expected, when there are
delays or due deliverables)

Is relaxed, handles stress,
technical limitations,
setbacks well

Creativity Not very creative in terms of
solutions

Has an active imagination,
proposes creative
ideas/solutions

Quantity of code contributed Few lines of code An impressive quantity of
code

Quality of code contributed Tends to provide incomplete
or inferior solutions

Produces efficient and
well-written code, without
disturbing other parts of the
code

Global picture: understands
the tools/technology/domain,
processes behind the project

Low, does not understand
beyond the talks/the modules
addressed

Understands the technical
and nontechnical
fundamentals of the project

Documentation and testing Does not document/test the
code produced, or does so in
a way not understandable by
others

Documents/test well and
clearly the code produced

Contribution on other aspects
than code (new features, bug
description)

Does not contribute beyond
code production

Very active in proposing new
features, tracking and
documenting bugs, etc

In fact, as for other virtual teams [21], social skills in conjunction with leadership
behavior affect teammotivation and performance, too. Stuart andGossin [49] demon-
strated how contributors’ performance is sensitive to trust and good communication
within the team. And, as for any social group, Carillo et al. [9] insisted on the impor-
tance of socialization, i.e., the capacity of the open-source organization to teach the
rules to newcomers, for them to become good, valuable contributors. Finally, Bar-
comb et al. [3], showed that even a limited number of open-source project managers
may agree on the set of relevant characteristics to identify good open-source con-
tributors, they vary in which actual characteristics they use in practice to evaluate
different contributors. Even when the different managers use the same attributes,
there may be disagreement on the relative importance of these attributes. (Tables 3.2,
3.3)

3 A Preliminary Theory for Open-Source Ecosystem Microeconomics 59

Table 3.3 Summary of research questions and propositions for future research on open-source
ecosystems

Phase 1: Early Stage

Research Questions Our Propositions

How to recruit sufficient
and highly skilled
developers to ensure
successful progress to
Stage 2?

Early-stage FLOSS projects attract developers that perceive the
project to be of very high personal value (i.e., it solves a personal
problem), and who have low entry barriers to participate (i.e.,
highly skilled, strong motivation, sufficient time to participate)
Early-stage FLOSS projects that offer value beyond “personal
interest” will attract a more diverse group of stakeholders than the
initial developers
The popularity of an early-stage FLOSS project depends on the
popularity of the technology the project is written in
Projects that offer considerable potential business value will attract
corporate investment if the project’s value proposition is
compatible with the company’s strategy

When and how
open-sourcing an in-house
software component

If a software component is not critical for the core business of a
company, and has a potential of evolution, the company will favor
an open-source strategy to share the cost of development
If a software component is critical for the core business of a
company, and has a high potential of evolution, an open-source
strategy will be considered if and only if the technical structure of
the software allows the company to keep some strategic
components closed while open-sourcing the standard part to
benefit from the innovative dynamic of the community

Phase 2: Growth

Research Questions Our Propositions

How to design a
sustainable project

Sustainable open-source projects are those which succeed in
1. Structuring their architecture and their organization around

modules managed by small teams
2. Orchestrating the coordination of the different modules/teams

What is an efficient
teaming and efficient
management at module
level as well as at project
level

Team composition and skills required may vary according to
1. The technical characteristics and difficulties of the project
2. The psychological profile of the team leader
If modularity and delegation of responsibility is key at the project
level, the organization of this delegation and the level of
centralization will vary according to
1. The technical dependencies of the modules
2. The psychological and professional profile of the project leader

Corporate investment in
open-source production

The more central the role of an open-source project in a company’s
business (i.e., a core asset), the more a company will contribute
Projects that are “stable” (i.e., little development efforts beyond
basic maintenance) tend not to attract corporate investment

(continued)

60 N. Jullien et al.

Table 3.3 (continued)

Phase 1: Early Stage

Research Questions Our Propositions

Phase 3: Maturity and beyond

Research Questions Our Propositions

When does a project enter
in a mature phase?

Projects that are stable in terms of number of features
added/removed will lose developers over time as there is a
decreasing amount of work left on the project
Mature FLOSS projects tend to become more bureaucratic and
rigid in terms of processes and procedures, making harder for
newcomers to get involved
The continuance of external perturbations leads to continued
project activity, even when there is no improvement in terms of
functionalities

Evolution of participation Companies that no longer perceive a project to be of business value
will stop investing in that project
A project’s core members are the last to leave (they are the most
attached to the project), and the peripheral ones the first

Decline or death of a
project

If a project becomes too bureaucratic while lacking innovation,
participants may “voice,” but those who resent this most are not
those who have decision-making power (i.e., core members), or
those with business interests (i.e., companies)
If a project accepts that it has to reorganize to regain
innovativeness, those who have invested the most (core members
and companies) will be the most committed to participate in this
reorganization
Aging projects that suffer from technical and organizational legacy,
may be better of being “reinvented” through a new project started
from scratch than trying to reorganize the old project

There is a need to develop a better understanding of teaming processes and
module-team management as well as ways to articulate project management in such
contexts.

Proposition 3.9 Team composition and skills required may vary according to the
technical characteristics and difficulties of the project, but also according to the
psychological profile of the team leader.

Proposition 3.10 If modularity and delegation of responsibility are key at project
level, the organization of this delegation and the level of centralization will vary
according to the technical dependencies of the modules, but also according to the
psychological and professional profile of the project leader.

This paradoxical situation in which commercial business relies on the existence and
durability of non-market activities questions industrial economics. This is clearly
related to “competition” questions [7]. As in any cooperative agreement devoted
to technology or knowledge development, agents put assets together in a “pre-
competitive” phase and share the products of their efforts before coming back to

3 A Preliminary Theory for Open-Source Ecosystem Microeconomics 61

competition [5, 12]. On the contrary, a FLOSS project is an open game in which the
list of players is not bounded ex-ante by a cooperative agreement and whose product
is a public good that cannot be privately appropriated by the players. This corresponds
closely to the formation of a consortium for the production of a standard.3

But there is still a need for a better understanding of the link between open-source
firms’ business models and their investment in the production of open source, when
they are at the origin of the project, as said in the previous section, but also when
they start contributing to an already existing project. For example, Dahlander and
Wallin [14] showed that firms strategically sponsor individuals who occupy a central
position in a community, in order to better access distributed skills and aiming to
control the direction of development of the related projects. But not all companies
invest so much, and this does not explain why and when companies develop an
open-source-based business model. Based on the concept of “dynamic capabilities”
developed by Teece et al. [51], Jullien and Zimmermann [27, 28] proposed that
when a software project is evolving rapidly in terms of features and development,
and when there are sufficiently skilled users to propose contributions, an open-source
strategymay be valid. The key idea is that a companymay be able to propose services
based on the management of this evolution (support on an official version, ad hoc
developments, and assistance to users, or, a so-called “3A” strategy: Insurance (which
spells “Assurance” in French), Assistance, Adaptation to users’ needs). In that case, a
companymust control the dynamic asset which is the development community—and
this requires a deep involvement in the development of the product as well as in the
community. When a product is of less importance to a software company, it may be
considered as a complementary asset, and thus, the goal of the company may be to
create a consortium to co-develop this component.

Proposition 3.11 The more central the role of an open-source project in a company’s
business (i.e., a core asset), the more a company will contribute.

Proposition 3.12 Projects that are “stable” (i.e., little development efforts beyond
basic maintenance) tend not to attract corporate investment.

But how should firms organize themselves to capture the feedback from commu-
nities? Ågerfalk and Fitzgerald [1] observed that to preserve the coexistence and
cooperation of two types of organizations that are based on distant albeit not contra-
dictory rationales, firms must, in a nutshell:

• Not seek to dominate and control process.
• Provide professional management and business expertise.
• Help establish an open and trusted ecosystem.

3What we mean is that a player offers a standard by developing a software, the other players can
adopt and contribute to the development. This “unilateral” adoption is usually called “bandwagon”
in the literature on standards (see, for instance Farrell et Saloner, 1985). See Bessen (2002) and
Baldwin and Clark [2] for a theoretical analysis of the impact of OSS code architecture on the
efficiency of libre development. The latter argues that FLOSS may be seen as a new development
“institution” (p. 35 and later).

62 N. Jullien et al.

They view such interaction as osmotic rather than parasitic [13], as the firm’s
resources reinforce communities’ sustainability. But, being able to benefit from the
cooperation with an open-source project requires internal reorganization, to allow
the internal developers to devote a part of their time to these projects, but also to
promote cooperative development culture.

As discussed above, companies exert control on open-source communities by
getting involved in open-source communities [20]. Companies do this through spon-
sorship of selected community members, but they can also do this by having their
own developers contribute to open-source projects [46]. A key question is how com-
panies can measure the return on investment of such activity, and how can companies
manage the involvement of their in-house developers in open-source communities?
Is such involvement guided by a strategic purpose only (as the employees represent
the investment of the firm into project), or are other considerations at play, such as
the training of employees, the negotiation of some compensations (perks) to attract
high profile developers? On the other hand, are open-source participants using their
involvement to signal their high profile to potential employers?

Other questions still are related to legal consequences of “collective production.”
In this context, the rise of open-source foundations is a key development. Such
foundations are legal entities that represent an open-source project. They can also
be used as an institutional tool to manage the strategic evolution of a project; one
example of this is the OpenStack project.

The projects that succeed in Phase 2 can last for years, and even decades (Linux
was first released in 1991 and is still actively developed). From one single project,
they expand to other projects and markets, and may even create a whole ecosystem
of intertwined projects—the so-called LAMP stack is an example of this (Linux,
Apache, MySQL, and Perl/Python/PHP, and today also Ruby). The governance of
these projects can become increasingly complex, and some new layers appear to
deal with it, and with the multiplicity of projects, such as the foundation system,
which can handle the legal representation of the projects, as well as their long term
governance.

Proposition 3.13 Projects that become part of a common technology stack will sus-
tain their activity and level of maturity as long as the technology stack as a whole
can sustain its activity and level of maturity.

3.5 Phase 3: Maturity and Beyond

When discussing the maturity phase of open-source projects, it is useful to be able to
decide whether a project is in fact in its maturity phase. A number of indicators may
point to this, for example, a declining or stable number of contributors, contributions,
or new features that are added to the project.

3 A Preliminary Theory for Open-Source Ecosystem Microeconomics 63

Proposition 3.14 Projects that are stable in terms of the number of features
added/removed will lose developers over time as there is a decreasing amount of
work left on the project.

Evidence suggests that as they age, projects find it harder to recruit and retain new-
comers [54], and their organization is said to become increasingly bureaucratic [8].
In that respect, these online open projects appear to follow a trend common to tradi-
tional organizations, i.e., a natural tendency toward structural inertia when they get
bigger, leading to a growing difficulty to adapt [22].

Proposition 3.15 Mature FLOSS projects tend to become more bureaucratic and
rigid in terms of processes and procedures.

At the same time, as discussed briefly above, the maturity of a project and its ecosys-
tem may suggest that less feature development is needed, which leads to a reduction
of the number of involved contributors. While companies may be attracted to new
and emerging projects, as they perceive business opportunities the reverse is true
as well. Once companies perceive a decline in business value, companies may drop
support altogether, for example, stopping sponsorship or the support of developers
to work on the project.

Proposition 3.16 Companies that no longer perceive a project to be of business
value will stop investing in that project.

But even among these mature projects, some projects, with the Linux kernel being a
prime example (over 25 years old) remain attractive to new developers while others,
such as Apache, see decreased participation, but without full demise as some level
of maintenance activity is still needed. It remains an open question as to whether
this variety is simply due to external dynamics (e.g., technology changes including
hardware developments that require projects to constantly adapt itself, as is the case
for the Linux kernel).

Proposition 3.17 The continuance of external perturbations leads to continued
project activity, even when there is no improvement in terms of functionalities.

Perhaps, are certain governance structuresmore appropriate or amenable than others?
Perhaps certain ecosystems aremore resilient; if so, how, andwhy?Canprojects cease
due to increased bureaucracy, and what are some of the consequences for developers
and the projects’ users? Does formal institutionalization of open-source projects (i.e.,
the creation of foundations) lead to a higher rate of survival?

In other words, how do organizations deal with what Hirschman [25] called the
exit, voice, and loyalty phenomenon. When participants in an organization (we con-
sider open-source projects as a type of organization) perceive a decrease in quality or
benefit to the member, they can either exit (withdraw, quit a job, emigrate, stop par-
ticipating), or they can voice (attempt to repair or improve it, express their complaint,
or propose changes). The literature stresses the difficulty with the exit strategy in the
case of a company, or a country: it is a type of “point of no return” behavior, implying

64 N. Jullien et al.

that beyond the fear of losing a job and the salary that comes with it, the fact that
employees (or citizens) do not believe in the possible improvement of the situation.
Sentimental attachment to the institution maymake this belief and the resulting deci-
sion to leave even harder. This situation is different for open-source projects, because
contributors may join and leave the community freely and more easily. Community
members could temporarily leave a community during a “cooling down” period. For
individual (voluntary) contributors there are no direct consequences, such as the loss
of a salary, which means there are lower barriers to the exit strategy, and thus indi-
vidual contributors may be less willing to negotiate a solution. While contributors’
reputation might be at stake (depending on whether they left due to a conflict, for
example), for companies coming and going as they pleasewould jeopardize their rep-
utation and credibility significantly; rejoining a community after a company pulled
out may be very difficult. When companies that play a key role in an open-source
community leave, the project’s sustainability may be jeopardized.

This analysis could suggest also that:

Proposition 3.18 A project’s core members are the last to abandon a project (they
are the most attached to the project), and the peripheral ones the first.

So, in a nutshell, while in a regular organization (a firm), people may be over loyal
(they won’t voice when they see a problem, afraid of losing their position), but if
they do, they will be very committed to finding a solution; in open-source projects,
people will probably voice earlier, but also put less effort in finding a solution (and
fork or joint a competitive project instead). At the same time, it is not sure that the
core members are the best to see the problems and to fix them (to voice). Companies
may will voice, but not too much (and possibly not enough), for they may fear to be
seen a willingness to take the control; they may be also more committed to find a
solutions, for the project they have invested in to survive

Proposition 3.19 If a project becomes too bureaucratic while lacking innovation,
participants may “voice,” but those who resent this most are not those who have
decision-making power (i.e., core members), or those with business interests (i.e.,
companies).

Proposition 3.20 If a project accepts that it has to reorganize to regain innovative-
ness, those who have invested the most (core members and companies) will be the
most committed to participate in this reorganization.

However, it is not clear whether this is what happens in reality. Who voices against
the slowdown and proposes solution? If the only developers remaining are those
hired by companies, will they be sufficiently motivated to sustain a project? Is it wise
for companies to stay involved in such projects from a strategic perspective? What
might be some indicators that “predict” such downfall or decline in projects? (Some
examples of this could include a decrease in quality or slowdown in bug fixes, etc.)
Studies that address contributor behavior, their positions or roles within the project
or community, and by drawing careful comparisons with behavior in previous phases
may lead to fruitful insights that can help us better understand how to manage these
issues.

3 A Preliminary Theory for Open-Source Ecosystem Microeconomics 65

3.6 Conclusion

Most research on open-source software tends to focus on individual software projects,
ignoring the complex interactions between the various types of actors listed above,
or what is called in this book an open-source ecosystem. Open-source ecosystems
are complex networks of different types of actors at different levels of granularity,
including open-source projects that rely on other open-source projects, companies
who either start new, or invest in existing open-source projects, open-source com-
munities as collections of developers, and of course individual voluntary developers.

Despite two decades of research on open-source software, there is very little
theory that helps to explain how open-source ecosystems “work,” evolve, sustain,
and decline. There is a considerable body of knowledge on the phenomenon of open
source, but much of it is disconnected and has ignored the relationships between
different open-source projects and between projects and companies. Studies tend to
adopt the sample strategy (either developers or projects) or the field study strategy
focusing on specific projects, but there is a distinct lack on open-source ecosystems
that study the interactions and dependencies between projects. Given the increasing
level of interest of companies in open-source projects, and also the fact that many
companies are built and, indeed, enabled by open-source projects, we believe this is
a very significant gap in our knowledge base that urgently requires further research,
because this will help to better understand the sustainability of open-source projects
and their entire ecosystems.

In this chapter, we have made an initial attempt to develop such a theory of open-
source ecosystem “microeconomics,” which aims to explain the various forces and
behaviors that actors exhibit in open-source ecosystems. This initial theory is by no
means complete, nor do we have evidence to support our propositions. However,
it does help to structure the phenomenon of open-source ecosystems, drawing on a
three-phased model from the so-called S-curve model, and to formulate propositions
regarding where and what is to be studied. This three-phased structure to explain the
life cycle of open-source projects helps to better understand the chronology of the
various challenges that projects face. It also helps to explore the role that companies
play in each phase. Furthermore, the structure helps to identify open questions for
future research (see Table 3.3).

Finally, the death of a project, and even of an ecosystem, may not be the end
of the story [31]. Its technology may survive very long, but it can also generate
new ideas, and a part of the developers involved in this former project may use the
knowledge they acquired to start something new. For example, the decline of the
Geronimo project (a Java/OSGi server runtime environment) seems to have seeded
the development of the TomEE project by former Geronimo developers, still within
the Apache Foundation projects [55].

Proposition 3.21 Aging projects that suffer from technical and organizational
legacy, may be better of being “reinvented” through a new project started from
scratch than trying to reorganize the old project.

66 N. Jullien et al.

Acknowledgments This work was supported, in part, by Science Foundation Ireland grant
15/SIRG/3293 and 13/RC/2094 and co-funded under the European Regional Development Fund
through the Southern and Eastern Regional Operational Programme to Lero—the Irish Software
Research Centre (www.lero.ie).

References

1. P.J. Ågerfalk, B. Fitzgerald, outsourcing to an unknown workforce: exploring opensourcing as
a global sourcing strategy. MIS Q. 32, 385–400 (2008)

2. C.Y. Baldwin, K.B. Clark, The architecture of participation: does code architecture mitigate
free riding in the open source development model? Manage. Sci. 52(7) 1116–1127 (2006)

3. A. Barcomb, N. Jullien, P. Meyer, A.L. Olteanu, Integrating managerial preferences into the
qualitativemulti-criteria evaluationof teammembers, inCases based on Multiple Criteria Deci-
sion Making/Aiding methods: Building and Solving Decision Models with Computer Imple-
mentations ed. by S Huber (2018)

4. J. Bessen, Open Source Software: Free Provision of Complex Public Goods. Rapport, Research
on Innovation (2005)

5. S. Bhattacharya, S. Guriev, Patents vs. trade secrets: knowledge licensing and spillover. J. Econ.
Assoc. 4(6), 1112−1147 (2006)

6. A. Bonaccorsi, C. Rossi,Why open source software can succeed. Res. Policy 32(7), 1243–1258
(2003)

7. A. Brandenburger, B. Nalebuff, Co-Opetition. (Currency Doubleday, 1996)
8. B. Butler, E. Joyce, J. Pike, Don’t look now, but we’ve created a bureaucracy: the nature and

roles of policies and rules in Wikipedia, in Proceedings of The Twenty-Sixth Annual Sigchi
Conference On Human Factors in Computing Systems (ACM, 2008), pp. 1101−1110

9. K. Carillo, S. Huff, B. Chawner, What makes a good contributor? Understanding contributor
behaviorwithin largeFree/Open source software projects–a socializationperspective. J. Strateg.
Inf. Syst. (2017)

10. E.J. Castilla, S. Benard, The paradox of meritocracy in organizations. Admin. Sci. Q. 55(4),
543–676 (2010)

11. S. Comino, F.M. Manenti, M.L. Parisi, From planning to mature: on the success of open source
projects. Res. Policy 36, 1575–1586 (2007)

12. J. Crémer, C. d’Aspremont, L.A. Gérard-Varet, Incentives and the existence of pareto-optimal
revelation mechanisms. J. Econ. Theory 51(2), 233–254 (1990)

13. L. Dahlander, M.G. Magnusson, Relationships between open source software companies and
communities: observations from nordic firms. Res. Policy 34, 481–493 (2005)

14. L. Dahlander, M.W. Wallin, A man on the inside: unlocking communities as complementary
assets. Res. Policy 35(8), 1243−1259 (2006)

15. J. Dalle, N. Jullien, ‘Libre’ software: turning fads into institutions? Res. Policy 32(1), 1−11
(2003)

16. P. David, A multi-dimensional view of the “sustainability” of free & open source software
development, in OSS Watch Conference on Open Source and Sustainability (Sa|d Business
School, Oxford, 2006), pp. 10−12

17. J. Dedrick, J. West, An exploratory study into open source platform adoption, in Proceedings
of the 37th Annual Hawaii International Conference on System Sciences (HICSS) (2004)

18. N. Eghbal, Roads and Bridges: The Unseen Labor Behind Our Digital Infrastructure (2016).
Accessed from https://www.fordfoundation.org

19. J. Farrell, Standardization and intellectual property. Jurimetr. J. 30, 35 (1989)
20. M. Germonprez, J.E. Kendall, K.E. Kendall, L. Mathiassen, B.W. Young, B. Warner, A theory

of responsive design: a field study of corporate engagement with open source communities.
Inf. Syst. Res. 28(1), 64–83 (2017)

http://www.lero.ie
https://www.fordfoundation.org

3 A Preliminary Theory for Open-Source Ecosystem Microeconomics 67

21. R. Guimera, B. Uzzi, J. Spiro, L.A.N. Amaral, Team assembly mechanisms determine collab-
oration network structure and team performance. Science 308(5722), 697–702 (2005)

22. M.T. Hannan, J. Freeman, Structural inertia and organizational change, Am. Soc. Rev. 49(2),
149−164 (1984)

23. D.D. Heckathorn, The dynamics and dilemmas of collective action. Am. Soc. Rev. 61(2),
278−307 (1996)

24. C. Hess, E. Ostrom, Introduction: an overview of the knowledge commons, inUnderstanding
Knowledge as a Commons: From Theory to Practice, ed. by C. Hess, E. Ostrom (MIT Press,
2007)

25. A.O. Hirschman, Exit, Voice, and Loyalty: Responses to Decline in Firms, Organizations, and
States, vol. 25 (Harvard University Press, Cambridge, 1970)

26. C. Jensen, W. Scacchi, Role migration and advancement processes in ossd projects: a com-
parative case study, in 29th International Conference on Software Engineering (ICSE’07),
Minneapolis, MN, USA, pp. 364−374 (2007)

27. N. Jullien, J.B. Zimmermann, FLOSS firms, users and communities: a viable match? J. Innov.
Econ. Manag. 1, 31–53 (2011)

28. N. Jullien, J.B. Zimmermann, FLOSS in an industrial economics perspective. Revue
d’économie industrielle 136(4), 39–64 (2011)

29. Jullien, K. Roudaut, Can Open Source projects succeed when the producers are not users?
Lessons from the data processing field. Manag. Int./Int. Manag./Gestiòn Int. 16, 113−127
(2012)

30. J.E. Kendall, K.E. Kendall, M. Germonprez, Game theory and open source contribution: ratio-
nale behind corporate participation in open source software development. J. Organ. Comput.
Electron. Commer. 26 (4), 323−343 (2016)

31. J. Khondhu, A. Capiluppi, K.J. Stol, Is it all lost? A study of inactive open source projects, in
Proceedings of IFIP International Conference on Open Source Systems (2013), pp. 61−79

32. S. Koch, Organisation of work in open source projects: expended effort and efficiency. Revue
d’économie industrielle 136, 17–38 (2011)

33. B. Kogut, A. Metiu, Open source software development and distributed innovation. Oxf. Rev.
Econ. Policy 17(2), 248–264 (2001)

34. M.C. Lacity, S.A. Khan, L.P. Willcocks, A review of the IT outsourcing literature: Insights for
practice. J. Strateg. Inf. Syst. 18(3), 130–146 (2009)

35. K. Lakhani, R. Wolf, Why hackers do what they do: understanding motivation and effort in
free/open source software projects, in Perspectives on Free and Open Source Software, ed. by
J. Feller, B. Fitzgerald, S. Hissam, K.R. Lakhani (MIT Press, Cambridge, 2005)

36. K. Lakhani, E. von Hippel, How open source software works: free user to user assistance. Res.
Policy 32(6), 923−943 (2003)

37. G. Marwell, P. Oliver, The Critical Mass in Collective Action (Cambridge University Press,
Cambridge, 1993). Discusses user as producer involvement into a project (a collective action)

38. A. Mockus, R.T. Fielding, J. Herbsleb, A case study of open source software development: the
Apache server, in Proceedings of the 22nd International Conference on Software Engineering
(ACM, 2000, June), pp. 263–272

39. L.Morgan, J. Feller, P. Finnegan, Exploring value networks: theorising the creation and capture
of value with open source software. Eur. J. Inf. Syst. 22, 569–588 (2013)

40. D. Nafus, ‘Patches don’t have gender’: what is not open in open source software. New Media
Soc. 14(4), 669–683 (2012)

41. P.V. Norden, On the anatomy of development projects. IRE Trans. Eng. Manag. 7(1), 34–42
(1960)

42. P. Oliver, G. Marwell, R. Teixeira, A theory of the critical mass. I. Interdependence, group
heterogeneity, and the production of collective action. Am. J. Soc. 91(3), 522−556 (1985)

43. E.S. Raymond, The Cathedral and the Bazaar (O’Reilly Media, Sebastopol, 2001)
44. J. Reagle, “Free as in sexist?” Free culture and the gender gap. First Monday 18(1) (2012)
45. E.M. Rogers, New Product Adoption and Diffusion. J. Consum. Res. 2(4), 290–301 (1976)

68 N. Jullien et al.

46. M. Schaarschmidt, K.J. Stol, Company soldiers and gone-natives: role conflict and career ambi-
tion among firm-employed open source developers, in Proceedings of the 39th International
Conference on Information Systems (San Francisco, USA)

47. M. Schaarschmidt, G. Walsh, H.F.O. von Kortzfleisch, How do firms influence open source
software communities? A framework and empirical analysis of different governance modes.
Inf. Organ. 25, 99–114 (2015)

48. M. Shaikh, T. Cornford, ‘Letting go of control’ to embrace open source: implications for
company and community, in Proceedings of IEEE Hawaii International Conference on System
Sciences (HICSS) (2010)

49. K.J. Stewart, S. Gosain, The impact of ideology on effectiveness in open source software
development teams. MIS Q. 30(2), 291−314 (2006)

50. G.P. Swann, The economics of standardization (University of Manchester, Manchester, 2000)
51. D.J. Teece, G. Pisano, A. Shuen, Dynamic capabilities and strategic management. Strateg.

Manag. J. 18, 509−533 (1997)
52. F. Van der Linden, B. Lundell, P. Marttiin, Commodification of industrial software: a case for

open source. IEEE Softw. 26(4), 77−83 (2009)
53. E. von Hippel, G. von Krogh, Open source software and the “private-collective” innovation

model: issues for organization science. Organ. Sci. 14(2), 209−223 (2003)
54. G. Von Krogh, S. Spaeth, K.R. Lakhani, Community, joining, and specialization in open source

software innovation: a case study. Res. Policy 32(7), 1217–1241 (2003)
55. M. Zhou, A. Mockus, X. Ma, L. Zhang, M. Hong, Inflow and retention in oss communities

with commercial involvement: a case study of three hybrid projects. ACM Trans. Softw. Eng.
Methodol. 25(2), 13 (2016)

Chapter 4
Open-Source Ecosystems and Their Need
for a Legal Framework

Daniel M. German

Abstract Open source cannot exist without open-source licenses. Themain purpose
of an open-source license is to grant a set of rights to the users of the software (such
as running the software or creating derivative works from it). There exist many open-
source licenses today, each with its own set of rights and conditions. Each of these
licenses creates a social contract between the licensors of the software (usually its
creators) and its users, and become the legal foundation upon which the ecosystem
around the software system is created. This article describes how open source, their
ecosystems, and their licenses are intimately related, and how the evolution of one
affects the evolution of the others. Over time, open-source licenses are being created
to adapt to the needs of open-source ecosystems and to adapt to changes in the legal
environment too.

4.1 Introduction

The simplest—and most effective—definition of open-source software is software
that is licensed under an open-source license. This definition shifts the definition
from the technical domain to the legal one, but more importantly, emphasizes that
without open-source licenses there would be no open-source software. The Open
Source Initiative (OSI) defined the characteristics that an open-source license should
have [9], and has approved 82 licenses as open source [8]. Nonetheless, many other
licenses exist that arguably satisfy the requirements defined by OSI (such as the
License of Ruby, and the Do What the Fuck You Want To Public License) [4, 22].

The ecosystem of open source is very large and it is not a single monolithic entity.
This ecosystem is composed, amongothers, of themany (smaller) ecosystems that are
created around each of the different open-source software systems. In these smaller
ecosystems, their members participate with the expectation of gaining one or more
benefits in return. These benefits might be, among others, ethical (the good feeling of

D. M. German (B)
University of Victoria, Victoria, Canada
e-mail: dmg@turingmachine.org

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_4

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_4&domain=pdf
mailto:dmg@turingmachine.org
https://doi.org/10.1007/978-981-13-7099-1_4

70 D. M. German

helping others), educational (experience gained in the use of certain technologies),
or pecuniary (direct or indirect revenue derived from participating in the ecosystem).

The license of an open-source system lays the foundation on top of which ecosys-
tems of open-source systems are created. It explains how the users can benefit (or
not) from development, use, and exploitation of the software system. For some, par-
ticipating in a particular ecosystem might also be an ideological act, which in some
cases might be emphasized by the text of the license (for example, the preamble
of the General Public License–GPL—addresses political issues beyond intellectual
property law). For others, it does not matter how the software is used (the Do What
the FuckYouWant To Public License—WTFPL—states that the copyright owners of
the system have no interest on what others do with the software, but want to keep its
copyright—rather than place the software in the public domain). Netscape, when it
open sourced its Navigator, found that no license satisfied its need, as a corporation,
for potential commercial exploitation and created its own license, the Netscape Pub-
lic License. This license, and its derivatives—the different versions of the Mozilla
Public License—explicitly define what commercial use is.

The following sections make the argument that licenses and open-source ecosys-
tems are symbiotic: one cannot exist without the other. The ecosystem is created
around a license; however, as the ecosystem evolves, it creates the need to adapt its
license to its new needs of the ecosystem. However, licenses are often not enough,
and ecosystems need to complement them with a proper organization (a founda-
tion), whose purpose is to create a framework in which the different entities of the
ecosystem can collaborate together to further the success of the software system.

4.2 Building an Ecosystem of Users and Developers: The
Need for a License

Open software ecosystems can be traced back to the early days of computing.Accord-
ing to the Wikipedia [29], early users of computers shared software and collaborated
in its improvement as if it was in the public domain. Computers were shipped with
the source code of their operating systems, allowing users to debug it, customize it,
and improve it.

One important moment in the history of open-source licensing was the early
days of Emacs, the customizable editor, one of the oldest open-source software
applications still in use today. Emacs was created by Richard Stallman in 1975 [16,
17]. As of 1981, the (very informal) license of Emacs read:

[Emacs] is distributed on a basis of communal sharing, which means that all improvements
must be given back to be incorporated and distributed.

The success of Emacs prompted many to port it to other platforms and to create
new implementations from scratch. One of these ports was the first implementations
of Emacs for Unix, written by James Gosling (creator of Java) [18]. Originally,
Gosling allowed others to redistribute and modify his implementation. By then an

4 Open-Source Ecosystems and Their Need for a Legal Framework 71

ecosystemof users and developers existed,whose goalwas to keep improvingEmacs.
Stallman argues that a major part of the success of Emacs was the feedback loop
between users and developers and that Emacs was the first extensible editor, allowing
users to become developers of extensions to the editor [16]. Gosling was an eager
member of this Emacs community; according to Stallman [16]: “[Gosling] wrote
in a manual that he called the program Emacs hoping that others in the community
would improve it until it was worthy of that name.”

Stallman reused some of Gosling’s code in his own port of Emacs for Unix, GNU
Emacs (the first project released by theGNUProject) [27]. However, in 1983Gosling
sold the rights to his code to Unipress. Immediately after, Unipress asked Stallman to
stop using any code from Gosling’s Emacs (Stallman complied). A major outcome
of these events was Stallman’s realization that, in order to guarantee the spirit of
communal work that he envisioned, he had to draft a proper copyright license for
Emacs. This license became theGNUEmacs Public License and it evolved to become
the GNU General Public License, published in 1988.

4.3 A Software System, Its Licensing, and Its Ecosystem

It can be argued that any software system creates an ecosystem around it. At its
minimum, the ecosystem is composed of the developer (or developers) and its users.
Larger ecosystems are composed of many different types of actors. For example, it
might include intermediaries (such as the store where the users acquire the software),
entities providing training and support, developers who might create plug-ins to
improve the features of the software, and many different types of users. In this
context, an ecosystemmight also include a place for exchange of knowledge or ideas
(e.g., a tag in StackOverfloworQuora, or amailing list), and amarket (where services
and products are exchanged for some type of consideration).

A user requires a license to be able to use the software system. Theremight also be
a fee associated in the acquisition of such license. This license imposes some rights
and obligations, usually related to copyright law. At the minimum it will allow the
user to run the program, often with specific constraints. It might restrict its use for
certain purposes,1 limit the number of users that can run it, or the number of times it
can be run, or limit the period of time when the software can be run. In some cases,
the license might even impose limitations on the output of the software, even if the
output involves the user. For example, it is not uncommon for licenses to forbid the
use of the software to create a competing product (such as BitKeeper, the version
control system used by Linux in the early 2000s did; similarly, the license of Bison,
a compiler of compilers developed by the Free Software Foundation, imposes some
limitations on its use for the creation of compilers of compilers).

However, a license—particularly an open-source license–can also widely expand
the rights of how the software can be used that otherwise are forbidden by copyright

1For example, some licenses do not allow the software to be run for benchmarking purposes.

72 D. M. German

law. For example, the right to run the software for any purpose, the right to create
copies of the software and distribute them for free or for a fee, the right to resell or
give away the software, the right to create derivative works, etc.

In essence, the license determines a basic set of rules under which the actors in
the ecosystem can participate. For example, an entity interested in providing training
for the software must be able to acquire a license that allows it to run the software for
such purpose. A developer interested in improving the software requires a license that
allows such improvements, either as plug-ins (this would also require an architecture
that supports this feature) or by modifying the underlying software.

Contracts are often the legal mechanism used to grant a license to a user (their
most common type is known as End-User Agreement). Another legal mechanism
is pure copyright licenses, that do not require a legal agreement between the two
parties (such as the license one acquires when one buys an album or a movie). Other
contracts that apply to the softwaremight not be related to howusers use the software,
but how other actors can participate in the ecosystem. For example, a retailer might
have a contract that guarantees it to be the exclusive entity that can market and sell
the software system.

4.4 GPL and Free Software: Software by the Users to the
Users

The ecosystem that Richard Stallman envisioned in his GNUManifesto [13] is sum-
marized in the Four Freedoms of Free Software, which are the cornerstone of his
movement: the freedom to run the program as you wish, the freedom to study how
the program works (access to the source code), the freedom to redistribute copies,
and the freedom to modify the program and redistribute copies of modified program.
“Roughly it means the users have the freedom to run, copy, distribute, study, change
and improve the software.” [21]. Free Software is software that guarantees its users
these four freedoms.

Stallman had described how for-profit entities had started to make it difficult to
improve and share software [14]. In his view, software is by the users for the users.
In [23], he writes: “we designed the GNU General Public License (GNU GPL) to
release [the GNU Project software systems] under a license designed specifically to
protect freedom for all users of a program.” Hence, the GPL lays the legal foundation
in which an ecosystem can guarantee that software will be Free Software, and that
userswill retain their four freedoms.Users (and developers) flocked to this ecosystem
and its success is without question.

When Linus Torvalds released his first version of Linux, he was concerned with
issues similar to those that had affected Stallman: he was worried that for-profit
entities would unfairly benefit from his software without remunerating his work.
The first release of Linux (version 0.01, 1991) comes with an ad hoc license created
byLinus requiring that any redistribution (in full or in part) shouldmake all the source

4 Open-Source Ecosystems and Their Need for a Legal Framework 73

code available, copyright notices should be left intact, and no fee can be charged for
redistribution [32]. Linus starts the creation of a kernel as an effort of a user, to the
users, in a similar manner than Stallman had started the GNU Project before him
(Linus benefited tremendously from the GNU Project: he included many of the GNU
tools along with his kernel, so users could use his kernel). Linus soon realized the
benefits of joining the ecosystem created by the FSF, and in 1992 changed the license
of Linux to the GPL-2: “Making Linux GPL’d was definitely the best thing I ever
did” [35].

At first sight, Free Software might be intended to alienate for-profit entities.
Cygnus Solutions was one of the first participants of this type to join this ecosys-
tem (it merged with RedHat in 2000). According to its founder, Michael Tiemann,
the FSF ecosystem created a business opportunity [31]: “companies that provided
commercial services (customizations, enhancements, bug fixes, support) based on
that [Free] [S]oftware could capitalize on the economies of scale and broad appeal
of this new kind of software.” Cygnus Solutions took advantage of this opportunity
and became, by 1998, the largest open-source company in the world [31].

For-profit entities were welcome to join the ecosystem, as long as their participa-
tion keeps the Free Software guarantee to its users (i.e., it follows its license). While
they are able to sell copies of software they create, others can then copy them many
times again without having to pay an extra fee. In other words, they can only expect
to profit from the first sell, but the ecosystem welcomes their participation in sell-
ing services around free software. Today, most Free Software reaches users through
for-profit entities who sell it as part of hardware devices (TVs, routers, embedded
devices, all using Android or, Linux) or as distributions of GNU/Linux (RedHat,
Ubuntu, Suse). Even Apple’s OS X distributes a large collection of Free Software.

4.5 The Academic Licenses: Do as you Wish

An early realization of Stallman is that his employment precluded his ability to
create Free Software. In most jurisdictions, in the absence of any other agreement,
the employer is the owner of the intellectual property created by the employee. This
was one of the reasons that he quit MIT in 1984 [13].

Others were faced with similar challenges: how to create software that could be
shared and enhanced by others, without the constraints that intellectual property
law imposed? The solution came in the form of academic licenses, that allow the
copyright holder (usually an academic institution) to relinquish most intellectual
property rights to the software.

One of the oldest of these licenses is the MIT/X11. In the 1980s, MIT researchers
were working on the creation of a GUI interface for Unix computers called X-
Window System (X, for short). The project, called Athena, was jointly sponsored by
DEC, IBM, andMIT. Both IBM and DEC built Unix computers at the time and were
fighting with each other for a share of the Unix marketplace; however, they realized
that working together to create a GUI for Unix they could increase the size of the

74 D. M. German

market—which, in the long term, would benefit both companies. Athena created
an ecosystem in which academics and for-profit participants worked together with a
common goal. It is likely thatMIT researchers, DEC and IBMwanted to benefit from
any software being developed, but at the same time foster an ecosystem in which
others (individuals and organizations)would feelwelcome to collaborate in its further
development. The solution was to draft a license that allowed anybody to do anything
they wished with the software—that was otherwise forbidden by copyright law—as
long as the copyright notices in the files were not removed. This license became
known as MIT/X11, and today is one of the most popular open-source licenses.

Researchers at University of California, Berkeley had a similar challenge while
developing a new version of Unix called the Berkeley Software Distribution (BSD).
The academic operating systems community (specially the Unix community) was
being encumbered by intellectual property issues that limited their ability to share
and enhance the works of others. In 1988, Version 4.3BSD-Tahoe of BSD is released
under a license that is likely derived from the MIT/X11. Its main difference is the
restriction that the name of the University (the copyright holder) “may not be used
to endorse or promote products derived from this software without specific prior
written permission” [26]. This license would eventually become the BSD-4, and
further derived into the BSD-3 and BSD-2 licenses.

These licenses, the MIT/X11 and the BSD-4, create ecosystems where the soft-
ware is for anybody to use, for whatever purpose. They welcome for-profit organi-
zations who do not need to feel restricted in the way they participate in the system.
These organizations could take the software, further modified it and sell it, without
any requirement to share the improvements or profits.

The MIT/X11 and BSD-4 licenses influenced the University of Illinois/NCSA
Open Source License (UIUC) that was used in the HTTP server that NCSA (located
at the University of Illinois) was developing. This license was likely one of the major
reasons that this server became popular and—arguably—-partially responsible for
the success of the World Wide Web. Such was the success in the creation of an
ecosystem around httpd, that its development was taken over by its users, creating
in 1995 the Apache HTTP Server,2 the most successful Web server to date [5]. The
creation of Apache HTTP Server was possible because the license of NCSA’s http
server allowed it.

4.6 The Other IPs: Trademarks and Patents

As the success of Apache HTTP Server continued, it developers noted the need to
protect its name. This is likely among the reasons they changed its license and release
the Server under the Apache License version 1.0 (and later, version 1.1). The main
difference between the adapted BSD license (fromwhich it is derived) is the addition

2It is often mentioned that its name is short for “A PATCHy sErver” in reference to its origins as a
set of patches on top of the NCSA server.

4 Open-Source Ecosystems and Their Need for a Legal Framework 75

of the following clause that protects the name of the software system (present in both
versions of the license):

Products derived from this software may not be called “Apache” nor may “Apache” appear
in their names without prior written permission of the Apache Group.

It appears that one of the advantages of the permissiveness of the original Apache
License was also its disadvantage: it allowed members of the ecosystem to commer-
cialize the software system, even under the Apache name, creating confusion among
other participants of the ecosystem. Avoiding this type of confusion is one of the
major goals of trademarks.3

IBM, as a leader in the field, was also starting to experiment with this nascent
method to develop and distribute software. However, IBM did not embrace any of the
licenses at the time and decided to create its own, the IBM Public License (IPL). The
main differences of this license with respect to its predecessors are: placing liability
not on the creator of the software but on the distributor, and the addition of clauses
that specifically address patents. The software that used this license had little impact,
but the IPL became the predecessor of the Common Public License (CPL) that later
evolved into the Eclipse Public License (EPL).

4.7 Open Source: The Need to Create a Larger Ecosystem

The proliferation of licenses for these open projects was creating barriers for col-
laboration between their corresponding ecosystems, even though they had similar
goals in mind: to collaborate in the development of software where the source code
could be openly shared, enhanced, and redistributed (with or without enhancements).
Furthermore, many of these licenses were considered incompatible with each other
(e.g., the original BSD-4 license and all GPL versions are incompatible) restricting
the potential sharing of software between the different ecosystems [2]. Nonetheless,
new ecosystems were being created around these software projects (and their ecosys-
tems), such as Linux distributions—most notably Debian. Debian’s goal has been to
create a Free Software operating system. One of the major challenges that Debian
faced was the evaluation of different licenses to determine if they were Free Software
(this process is documented in the Debian Free Software Guidelines [20]). Debian is
one of the first to try to harmonize different software products under the umbrella of
Free Software. By doing this, it enlarges the ecosystem by integrating Free Software
developed under difference licenses,

In 1999, the Open Source Initiative (OSI) is created with two major goals in
mind [7]. The first is to define a new term, Open Source, that formalizes many of
the goals of the communities around these open collaboration systems; this goal is
accomplished with the Open Source Definition, a set of 10 requirements that a soft-
ware license must have to be called Open Source (these requirements are derived

3This need to protect the name of Apache was one of the major motivators for the creation of the
Apache Software Foundation [1].

76 D. M. German

from the Debian Free Software Guidelines). The second is the creation of a certi-
fication process by which licenses can be approved to be called Open Source. The
term Open Source was also created to “distinguish it from the philosophically—and
politically-focused label ‘Free Software.’ [7] and to incorporate under its umbrella
licenses that were not considered to be Free Software, but that satisfied the basic
requirements of open collaboration (such as the BSD-4 or the EPL). The term Open
Source unifies all the communities behind each of the projects that use any of the
OSI-approved licenses under a larger ecosystem: the Open-Source community.

The success of Open Source prompted the interest of for-profit organizations
to participate in the Open-Source ecosystems—and to benefit from them. License
compliance has become a necessity for these organizations; they want to make sure
that, if they use Open Source, they do it in the correct way—first and foremost—by
satisfying the requirements that the licenses of the software they use. License com-
pliance has become an important concern for those using Open Source (specially
when the goal is to make profit). This has lead to the creation of for-profit organi-
zations that assist others in license compliance (Black Duck is today the leader in
this area) and community efforts to create resources to educate developer and orga-
nizations on best practices. For example, the Linux Foundation has been sponsoring
efforts toward license compliance, such as the Software Package Data Exchange
format—SPDX, whose goal is to standardize how licensing information should be
shared between organizations using Open-Source software [12] and the Open Com-
pliance Program [25], whose goal is to educate and help developers and companies
to properly comply with license requirements.

Other organizations were created by the authors of Open-Source software with the
explicit goal of guaranteeing that those using the software comply with its license.
Themost important beingGPLViolations, whose goal is to raise awareness regarding
infringement of GPLed software, and to assist developers in the enforcement of their
copyrights [34].

4.8 The Foundations: The Need to Go Beyond the License

In 1985, the Free Software Foundation is formed to create a legal structure around
its software [28]. It holds the copyright of a major portion of the software developed
by the FSF, accepts donations to continue its development, and is the steward of the
GPL family of licenses.

Apache HTTP Server became so successful at creating an ecosystem around it,
that it required a formalizedway to organize its users. In 1999, theApacheFoundation
is established. Four of its most important reasons for existence are [1]: to provide
hardware and business support to the community of developers, to serve as a legal
entity that can receive donations, to shield members from potential legal risks, and
to protect the Apache trademark.

Over the years, many other foundations have been created. Some by individuals
for the individuals (e.g., GNOME Foundation, the Software Freedom Conservancy),

4 Open-Source Ecosystems and Their Need for a Legal Framework 77

others by for-profit companies interested in creating an independent entity to anchor
the growing ecosystem (e.g., KDE e.V., the Eclipse Foundation), and finally, as
a consortium of for-profit organizations to collaboratively foster the ecosystem’s
development (e.g., The Linux Foundation, the OpenStack Foundation).

While the bylaws of each of these organizations differ, they all have one feature in
common: they become the center of activity around the software system (or systems),
and by extension, the center of their corresponding ecosystems.

Some foundations also create a strong set of rules that determine how other soft-
ware systems join the ecosystem. For example, both, the Apache Foundation and the
Open Stack Foundation have strong rules in terms of how a new software system
can become part of its ecosystem. This includes what license is should have (e.g.,
Apache Foundation only accepts software systems that use the Apache License or a
license compatible with it [19]).

4.9 License Evolution: The Need to Adapt to the
Environment

As time passes by, the license used by a software system becomes inadequate to
address the needs of its ecosystem, specially those of its main contributors and
users. For example, the GNU GCC compiler, one of the first Free Software projects,
generates binaries that need an implementation of the C standard library to run.
Without this library, C programs are not very useful. The GCC project faced two
alternatives: write its own C Standard library, or generate code that could have been
linked to somebody else’s C Standard library. The second alternative as impractical:
it would have eroded the freedoms of its users, since it would have made GNU
GCC dependent on acquiring a license to such C Standard library (there was no Free
Software implementation at the time). The first alternative meant that this library
would have been licensed under the GPL too. If the license of the library was the
GPL, then any binary compiled against it would have to be licensed under the GPL
too. Effectively, GNU GCC would only be usable to build Free Software. This issue
raised interesting ethical concerns: should Free software be only used to create Free
Software only? or, should the person who runs the software have the freedom to
create binaries under a different license? It became obvious that for GNU GCC to
succeed (and it did succeed) users should be allowed to do anything they wanted with
the binaries they created. The ecosystem for GNU GCC needed to grow beyond the
restrictions imposed by the GPL. According to Richard Stallman, “using the GPL
for [the GCC C Standard library] would have driven proprietary software developers
to use another [compiler]” [15].

The solution was the creation of the Library General Public License (today known
as the Lesser General Public License–LGPL). The LGPL is primarily designed to
be used by a library, and it allows a program that links to such library to have any
license. The LPGL tries to achieve a balance between the goals of Free Software

78 D. M. German

(the library cannot be modified without making these modifications Free Software)
and the needs of proprietary software (to create software that they can license—and
sell—as its owner pleases.

There are many other instances in which licenses have evolved due to the needs
of its users. One of the major motivations for the creation of the GPL-3 was the need
to address patents. The Apache License 1.1 removes the main advertising clause,
present in version 1.0, something that made it difficult to commercialize products
based upon it. The IBM Public License evolved into the Common Public License
because of the need to remove IBM from the license text, hence making the license
usable by others.

As mentioned before, licenses, when incompatible between each other, foster
isolation of their ecosystems. The original BSD-4 license is incompatible with the
GPL family of licenses. Software developed under this license cannot be combined
into derivative works under the GPL license. The Mozilla Public License version
1 and the Eclipse Public License are also incompatible with the GPL. Even worse
is that some licenses are incompatible with licenses in their same family. Software
licensed under the GPL-2 is incompatible with software licensed under the GPL-3.4

However, if the goal of Open Source is to create software that can be shared,
enhanced, and further distributed, license incompatibilities have become a barrier
between communities, sometimes in ironic ways: any organization can enhance and
further distribute code under the BSD-4 and license the results under a restrictive
license, yet a software project licensed under the GPL cannot do it. License compat-
ibility has been one of the major reasons licenses have been updated. For example,
the Mozilla Public License 2.0 added clauses that explicitly address compatibility
with the GPL family of licenses.

4.10 Fairness: Rules on How to Collaborate

Any ecosystem is expected to have internal struggles between its participants, and
open-source ecosystems are not an exception. This struggle is, perhaps, one of the
major contributors to its natural evolution and adaption—without it, it might simply
cease to exist.

The FSF has been, since its conception, concerned with keeping the entire copy-
right of its most important software systems. This guarantees the FSF the ability to
relicense the software in anyway its sees fit (usually, by changing the license to a new
version of the GPL). Contributors to FSF’s software are requested to transfer their
copyright of their improvements; otherwise these improvements will not be incorpo-
rated. This position has lead to split of ecosystems. When some Emacs developers

4This is the reason why the Free Software Foundation recommends that software be licensed under
the General Public License version 3 or any further version; this way, when a new version of the
license is published, software can be relicensed under the new version, making it unnecessary for
the new version to be compatible with the older one.

4 Open-Source Ecosystems and Their Need for a Legal Framework 79

were not willing (or capable, since their copyrights were sometimes owned by their
employers) they created XEmacs, dividing the Emacs community and its ecosystem
[30]. See [6] for a study of the motivations of developers to fork, which includes
licensing issues.

In other ecosystems, the struggles have been around control. For example, the
Gnome Project was very concerned that for-profit organizations could hijack the
project from its users. The main body responsible for making decisions is the Board
of Directors of the Gnome Foundation. The bylaws of the Gnome Foundation state
that no “organization, corporation or similar entity, or any affiliate of shall hold
more than 40% of the Board [of Directors] seats” [24]. Other ecosystems, primarily
those created by for-profit organizations, see it differently and give more power to
specific entities. For example, the Open Stack Foundation categorizes members into
three types: individuals, Platinum (further divided into Class A and B), and Gold.
Platinummembers,which have to pay higher fees thanGoldmembers, receive certain
privileges in return (each Platinum member can appoint a member for the Board of
Directors, while Goldmembers are represented by persons who are voted whom they
vote for [10]).

The difference between the structure and organization of the Board of Directors
of these foundations highlights the typical struggles of distributive fairness found in
any collaborative environment. Distributive fairness is concernedwith how resources
should be allocated to each member of a system (see [3] for a description of fairness
within the scope of software engineering). On one hand, a system can strive for
equality: eachmember should have the same benefits as any othermember, regardless
of its amount of participation (asGnomedoes,where any contributor can be amember
of the foundation and be elected to its Board of Directors–the Gnome Foundation
bylaws define the process and minimum requirements to achieve membership). On
the other hand, a system can strive for equity: each member receives a benefit from
the system that is proportional to its participation (as Open Stack does, where does
who contribute more—Platinum members, who pay a membership of 500k US$,
compared to Gold members who pay at most 200k US$ [11]—receive more benefits
from the system, in this case their ability to control the project’s direction). It is not
clear if one system is better than the other, but it certainly affects the decision-making
process of their corresponding ecosystems.

Another important type of fairness is interactional fairness. Interactional fairness
is concerned with the interpersonal treatment of people in a system. It reflects the
degree to which people are treated with politeness, dignity, and respect. While merit
has been seen as the main factor that determined membership and status in an Open-
Source ecosystem, it became clear that it was necessary to create rules that defined
how people were to treat others. As described by Tourani et al., each ecosystem
addresses this issue in a different way: “the phrasing of a code of conduct, enforce-
ment mechanisms used, scope and other properties vary depending on the code of
conduct and [its] community” [33].

80 D. M. German

The rise of the foundations around open-source systems, the decision processes
and the code of conduct rules that these projects select demonstrates that the
licenses—a prerequisite of an Open-Source ecosystem—are not necessarily suffi-
cient to guarantee the successful collaboration of its members.

4.11 Conclusion

The license of an Open-Source system becomes the legal framework that outlines the
rights and responsibilities of the ecosystem participants. Without an Open-Source
license, and Open-Source system cannot exist, nor its ecosystem. With the pass of
time, the needs of the main stakeholders of the ecosystem evolve, which might force
a change in its license.

The creation of a foundation is a major landmark in the evolution of an ecosystem.
It legally formalizes the relationship between the different members of the ecosys-
tem, and its decision process. The bylaws of a foundation (a legal document itself)
complement the license of its system. A foundation is capable of changing the license
of the system (and often changes it) in response to the needs of its members.

Projects have also complemented the rules of participation with rules of conduct.
These rules might not be legally enforceable, but give the ecosystem the ability to
expel a noncompliant member.

The nature of any social ecosystem requires rules that outline its members partici-
pate, collaborate, and benefit from it. Ecosystems haveflourished around open-source
systems because their licenses have created the social contract that guarantees that
the needs of its members are satisfied. Andwhen licenses have stopped doing this, the
ecosystems find ways to adjust, because, after all, an ecosystem’s goal is to continue
flourishing.

References

1. Apache Software Foundation, Frequently asked questions (2017), http://apache.org/
foundation/faq.html

2. D.M. German, A.E. Hassan, License integration patterns: addressing license mismatches in
component-based development, in 31st International Conference on Software Engineering,
ICSE 2009 (16–24 May 2009 Vancouver, Canada, Proceedings), pp. 188–198

3. D.M. German, G. Robles, G. Poo-Caamaño, X. Yang, H. Iida, K. Inoue, “Was my contribution
fairly reviewed?”: a framework to study the perception of fairness in modern code reviews,
in Proceedings of the 40th International Conference on Software Engineering, ICSE 2018
(Gothenburg, Sweden, 27 May–03 June, 2018), pp. 523–534

4. R.M. Meloca, G. Pinto, L. Baiser, M. Mattos, I. Polato, I.S. Wiese, D.M. German, Understand-
ing the usage, impact, and adoption of non-osi approved licenses, in Proceedings of the 15th
International Conference on Mining Software Repositories, MSR 2018 (Gothenburg, Sweden,
28–29 May 2018)

http://apache.org/foundation/faq.html
http://apache.org/foundation/faq.html

4 Open-Source Ecosystems and Their Need for a Legal Framework 81

5. Netcraft Inc. July 2017 Web Server Survey (2017), https://news.netcraft.com/archives/2017/
07/20/july-2017-web-server-survey.html, July 2017

6. L. Nyman, T. Mikkonen, To fork or not to fork: fork motivations in sourceforge projects, in
Open Source Systems: Grounding Research: 7th IFIP WG 2.13 International Conference, OSS
2011, Salvador, Brazil, 6–7 Oct 2011. Proceedings, ed. by S.A. Hissam, B. Russo, M.G. de
Mendonça Neto, F. Kon (Springer, Berlin, Heidelberg, 2011), pp. 259–268

7. Open Source Initiative, History of the OSI (1998), https://opensource.org/history
8. Open Source Initiative, Licenses by name (1998), https://opensource.org/licenses/alphabetical
9. Open Source Initiative, The Open Source Definition (1998), https://opensource.org/osd
10. Open Stack Foundation, Bylaws of the OpenStack Foundation (2014), https://www.openstack.

org/legal/bylaws-of-the-openstack-foundation/
11. Open Stack Foundation, Proposed Budget and Funding Structure (2017), https://wiki.

openstack.org/wiki/Governance/Foundation/Funding
12. SPDX Working Group, About The Software Package Data Exchange SPDX (2017), https://

spdx.org/
13. R. Stallman, The GNU Manifesto. Dr. Dobb’s Journal of Software Tools (1985), http://www.

drdobbs.com/open-source/the-gnu-manifesto/222200498, Sep 1985
14. R. Stallman, The GNU Operating System and the Free Software Movement, Open Sources:

Voices from the Open Source Revolution, 1st edn. (O’Reilly, Sebastopol, Jan 1999)
15. R. Stallman, Why you shouldn’t use the Lesser GPL for your next library (2017), https://www.

gnu.org/licenses/why-not-lgpl.en.html
16. R.M. Stallman, Emacs: The extensible, customizable, self-documenting display editor, Tech-

nical report (Massachusetts Institute of Technology, Cambridge, 1979)
17. R.M. Stallman, Emacs the extensible, customizable self-documenting display editor, in Pro-

ceedings of the ACM SIGPLAN SIGOA Symposium on Text Manipulation (ACM, New York,
USA, 1981), pp. 147–156

18. L.-C.A. Ta, The History of the GPL (2001), https://www.free-soft.org/gpl_history/, July 2001
19. The Apache Software Foundation, Incubation Policy (2017), http://incubator.apache.org/

incubation/Incubation_Policy.html
20. TheDebianProject.DebianSocialContract version 1.0 (1997), https://www.debian.org/social_

contract.1.0, July 1997
21. The Free Software Foundation, What is free software? (2016), https://www.gnu.org/

philosophy/free-sw.en.html
22. The Free Software Foundation, Various Licenses and Comments about Them (2017), https://

www.gnu.org/licenses/license-list.en.html
23. The Free Software Foundation, Why Open Source misses the point of Free Software (2017),

https://www.gnu.org/philosophy/open-source-misses-the-point.en.html
24. The GNOME Foundation, Bylaws of GNOME Foundation as of April 5, 2002, https://www.

gnome.org/wp-content/uploads/2012/02/bylaws.pdf, Apr 2002
25. The Linux Foundation, About the Open Compliance Program (2017), https://compliance.

linuxfoundation.org/about-open-compliance-program
26. The Wikipedia Foundation, Berkeley software distribution (2017), https://en.wikipedia.org/

wiki/Berkeley_Software_Distribution
27. The Wikipedia Foundation, Emacs (2017), https://en.wikipedia.org/wiki/Emacs
28. The Wikipedia Foundation. Free Software Foundation (2017), https://en.wikipedia.org/wiki/

Free_Software_Foundation
29. The Wikipedia Foundation, History of free and open-source software (2017), https://en.

wikipedia.org/wiki/History_of_free_and_open-source_software
30. The Wikipedia Foundation, Xemcas (2017), https://en.wikipedia.org/wiki/XEmacs
31. M. Tiemann, Future of Cygnus Solutions—An Entrepreneur’s Account, Open Sources: Voices

from the Open Source Revolution, 1st edn. (O’Reilly, Sebastopol, Jan 1999)
32. L. Torvalds, Linux version 0.01 (1991), http://ftp.funet.fi/pub/linux/historical/kernel/old-

versions/RELNOTES-0.01, Aug 1991

https://news.netcraft.com/archives/2017/07/20/july-2017-web-server-survey.html
https://news.netcraft.com/archives/2017/07/20/july-2017-web-server-survey.html
https://opensource.org/history
https://opensource.org/licenses/alphabetical
https://opensource.org/osd
https://www.openstack.org/legal/bylaws-of-the-openstack-foundation/
https://www.openstack.org/legal/bylaws-of-the-openstack-foundation/
https://wiki.openstack.org/wiki/Governance/Foundation/Funding
https://wiki.openstack.org/wiki/Governance/Foundation/Funding
https://spdx.org/
https://spdx.org/
http://www.drdobbs.com/open-source/the-gnu-manifesto/222200498
http://www.drdobbs.com/open-source/the-gnu-manifesto/222200498
https://www.gnu.org/licenses/why-not-lgpl.en.html
https://www.gnu.org/licenses/why-not-lgpl.en.html
https://www.free-soft.org/gpl_history/
http://incubator.apache.org/incubation/Incubation_Policy.html
http://incubator.apache.org/incubation/Incubation_Policy.html
https://www.debian.org/social_contract.1.0
https://www.debian.org/social_contract.1.0
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/licenses/license-list.en.html
https://www.gnu.org/licenses/license-list.en.html
https://www.gnu.org/philosophy/open-source-misses-the-point.en.html
https://www.gnome.org/wp-content/uploads/2012/02/bylaws.pdf
https://www.gnome.org/wp-content/uploads/2012/02/bylaws.pdf
https://compliance.linuxfoundation.org/about-open-compliance-program
https://compliance.linuxfoundation.org/about-open-compliance-program
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/wiki/Free_Software_Foundation
https://en.wikipedia.org/wiki/Free_Software_Foundation
https://en.wikipedia.org/wiki/History_of_free_and_open-source_software
https://en.wikipedia.org/wiki/History_of_free_and_open-source_software
https://en.wikipedia.org/wiki/XEmacs
http://ftp.funet.fi/pub/linux/historical/kernel/old-versions/RELNOTES-0.01
http://ftp.funet.fi/pub/linux/historical/kernel/old-versions/RELNOTES-0.01

82 D. M. German

33. P. Tourani, B. Adams, A. Serebrenik, Code of conduct in open source projects, in 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineering (SANER)
(2017), pp. 24–33

34. A. Vance, The defenders of free software. The New York Times (2010), http://www.nytimes.
com/2010/09/26/business/26ping.html, Sept 25 2010

35. H. Yamagata, The Pragmatist of Free Software: Linus Torvalds Interview. Tokyo Linux Users
Group (1997)

http://www.nytimes.com/2010/09/26/business/26ping.html
http://www.nytimes.com/2010/09/26/business/26ping.html

Chapter 5
Open-Source License Compliance
in Software Supply Chains

Dirk Riehle and Nikolay Harutyunyan

Abstract Almost all software products today include open-source components.
However, the obligations that open-source licenses put on their users can be difficult
or undesirable to comply with [14, 20, 25]. As a consequence, software vendors and
related companies need to govern the process by which open-source components are
included in their products [7, 21]. A key process of such open-source governance is
license clearance, that is, the process by which a company decides whether a par-
ticular component’s license is acceptable for use in its products [4, 15, 19]. In this
article, we discuss this process, review the challenges it poses to software vendors,
and provide unanswered research questions that result from it.

5.1 License Compliance

A legally
1
valid software product complies with the licenses of all the open-source

components included in the product [19].Anopen-source license provides rights such
as free (as in cost) use of the software in exchange for the fulfillment of obligations
[14, 21]. Failure to meet these obligations leads to a legally invalid product. Some of
these obligations could lead to intellectual property (IP) loss for the software vendor
[14, 18, 20, 25].

1This article is a follow-up to the NII Shonan Meeting on “Towards Engineering Free/Libre Open
Source Software (FLOSS) Ecosystems for Impact and Sustainability” where the first author was
tasked with summarizing research questions in the domain of open-source license clearance and
software supply chain management.

D. Riehle (B) · N. Harutyunyan
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
e-mail: dirk@riehle.org
URL: http://osr.cs.fau.de

N. Harutyunyan
e-mail: nikolay.harutyunyan@fau.de

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_5

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_5&domain=pdf
mailto:dirk@riehle.org
http://osr.cs.fau.de
mailto:nikolay.harutyunyan@fau.de
https://doi.org/10.1007/978-981-13-7099-1_5

84 D. Riehle and N. Harutyunyan

5.1.1 License Obligations

Consider the following three example obligations [7, 18]:

• License file provision. The most common obligation is to provide the license file
of each open-source component that comes with the product.

• Copyright notice provision.Another common obligation is to provide all copyright
notices from all files of each open-source component.

• Offer to provide source code (Copyleft2). The Copyleft obligation is to either
provide the product source code outright or to make a written offer to provide it
upon request.

Some obligations are easy to comply with and some are not. Some obligations are
unproblematic and some are highly undesirable from the intellectual property (IP)
perspective of the vendor [13, 17, 25].

We therefore classify license obligations into three main types as follows:

• Unproblematic (easy to comply with and unproblematic from an IP perspective).
An example is the license file provision.

• Difficult-to-comply-with (difficult to comply with, but unproblematic from an IP
perspective). An example is the complete copyright notice provision.

• Undesirable (from an IP perspective). For many, but not all, business models, an
example is the obligation to provide source code outright or to offer to provide the
source code.

5.1.1.1 Potentially Difficult-to-Comply-with License Obligations

Whether an obligation is easy to comply with or not depends on various issues. For
example, with improved tools, some obligations that are difficult to comply with
today may become easy to comply with in the future.

Consider the case of the obligation to provide all copyright notices from all files of
the original open-source code. In theory, if all files were available and with adequate
tool support, it would be possible to compile a document with all copyright notices.

However, this is based on the premise that the origin of every line of source code
is known and has been documented. There is no guarantee for this. Developers easily
and often copy code from the web and may have pasted code from one component
into another without properly documenting it. Without such documentation, it is
nearly impossible to determine the original source and therefore nearly impossible
to comply with its license obligations.

2Free Software Foundation, What Is Copyleft? at https://www.gnu.org/licenses/copyleft.en.html.

https://www.gnu.org/licenses/copyleft.en.html

5 Open-Source License Compliance … 85

5.1.1.2 Potentially Undesirable License Obligations

Whether a particular obligation is undesirable from the perspective of a vendor
depends on the vendor’s intellectual property strategy, which in turn depends on
its business model. A traditional closed-source vendor, for example, deriving signif-
icant revenue from license fees, may not want to be forced to license out their IP
because of a Copyleft obligation [1].

Examples of license obligations often considered undesirable are as follows:

• Written offer to provide source code (Copyleft). If this clause triggers, the vendor
has to provide the source code outright or to provide the source code upon request
under the Copyleft license [3, 13], thereby losing exclusive usage rights, among
other downsides.

• Patent retaliation clause. This clause, if triggered, usually withdraws the right
to use the open-source component or the patent or both and thereby renders the
product legally invalid, if the vendor enforces patent rights against someone else
(the specifics depend on the license).

• Lack of patent grant. Some older licenses do not include a patent grant [17, 28].
Thus, any use of the open-source component in a product exposes the vendor
to a potential patent enforcement action by a patent holder who contributed an
implementation of the patent to the open-source component.

A firm that is earning its living by providing services and support for open-source
componentsmay notworry aboutCopyleft but rather develop all software in the open.
Depending on the warranties and indemnification the firm provides to its customers,
however, it may worry about other issues like lack of patent grants.

5.1.2 License Strategy

A rational software vendor can only accept components with unproblematic licenses
into their products.

If the vendor were to accept a difficult-to-comply-with license, it might not be able
to comply with the obligations and therefore end up with a legally invalid product.
This opens the door for the original copyright holders to sue the vendor for license
violation [1]. The Software Freedom Conservancy, a not-for-profit foundation, funds
such lawsuits with the goal of enforcing license compliance. Also, developers exist,
who pursue such a strategy for personal enrichment [19]; the details of the legal
strategies are not of concern here.

If the vendor were to accept an undesirable obligation, the vendor might face a
situation in which recipients of the software product insist on the vendor complying
with the obligation. The vendor might decide to comply and face the consequences,
for example, loss of exclusive rights to the intellectual property it created, or the ven-
dor might decide to fight the request in court, leading to legal costs, lost management
attention, and loss of reputation, among other downsides [19].

86 D. Riehle and N. Harutyunyan

As a consequence, a software vendor needs to make sure that only open-source
components with unproblematic licenses are used in a product. This specific process
of clearing a suggested open-source component for use in a product is the license
clearance process [4, 15, 19]. License clearance is part of open-source governance,
which is part of overall product governance.

5.2 Product Governance

Product governance is the governance of all involved parties, their roles, and respon-
sibilities, as well as their processes and practices over the course of the product’s
life. It is mostly a product management task, but also involves engineering man-
agement and software architecture. Open-source governance is that part of product
governance that is concerned with the use of, contribution to, and leadership of
open-source software projects as they are relevant to the vendor’s product.

Open-source license clearance is one process of open-source governance, and the
main concern of this article. However, to understand license clearance, we first need
to understand the complexity of software products and how open-source software
makes it into a product.

5.2.1 Product Architecture

Software products andmost software components are built from other software com-
ponents. As a consequence, a software product can be viewed as a graph of intercon-
nected software components and fragments. The properties of the constituent parts
of a product and their relationships are all relevant to product governance and need
to be modeled precisely. Capturing this information is a precondition for achieving
license compliance [8, 9], that is, correctly fulfilling all the obligations that the use
of open-source components puts onto the software vendor.

5.2.1.1 The Component Graph

Figure 5.1 illustrates the architecture of a product as a code component graph. The
final product is shown at the top, and it depends on (incorporates and uses) various
other components. These other components may have been developed by the vendor
or they may have been sourced from a third party. Closed-source vendors and open-
source projects are both viable sources of third-party components.

Example properties of interest for a given code component include the following:

• its license(s),
• any known vulnerabilities, or

5 Open-Source License Compliance … 87

Fig. 5.1 The architecture of an example product from the code component perspective

• its export restrictions [22], for example, due to cryptography algorithms.

An important view of the code architecture ismanagement domains, which cluster
components by their managers, that is, closed-source vendors or open-source project
communities. A management domain corresponds with the traditional notion of a
(possibly multicomponent) third-party code component. Typically, but not always,
those who manage such a domain also own the copyright.

Figure 5.2 illustrates these management domains. Components of the same man-
agement domain usually, but not necessarily, have the same license. For example,
the OpenJDK project, delivers many components, but most importantly the core run-
time library needed by any Java application. This large library aggregates many other
components of varying but compatible open-source licenses.

5.2.1.2 Component Relationships

Viewing a product’s code architecture as a graph of interdependent components
requires engineering managers, software architects, and developers to be clear not
only about which components to use (the nodes) but also to be clear as to how they
relate (the edges). This is particularly important, if the component relationship crosses
from one domain into another. From a license compliance perspective, understand-
ing the component and fragment relationships is critical to making good decisions
during the license clearance process. Depending on the type of relationship, license
obligations may or may not apply [5].

Examples of relationship types are as follows:

88 D. Riehle and N. Harutyunyan

Fig. 5.2 The code architecture of Fig. 5.1 scoped by management domains

• the statically imported library,
• the dynamically loaded library, and
• the web services call.

Also, copying code from the web or other places and pasting it into a software
component introduces a dependency of the component onto some other party’s intel-
lectual property. Search engines, discussion forums, and question–answer websites
for programmers make copying and pasting code easy today and it constitutes a fre-
quent occurrence. Product governance policies may prevent this for closed-source
code, but open-source projects typically do not have such provisions in place.

5.2.1.3 Code Architecture Model

Traditional modeling tools for software architecture do not support management
domain views of code component architectures. Such a view, however, is often pro-
vided by tool vendors specializing in license compliance.

Still, most vendors, if they track the code component architecture for license com-
pliance purposes at all, maintain a spreadsheet with the components, their licenses,
and other metadata. From this spreadsheet, the so-called bill of materials, license
compliance artifacts like license texts, and copyright notice compilations can be
generated.

In theory, any component could provide its metadata so that build tools could
collect all relevant information and build the bill of materials automatically [9].

5 Open-Source License Compliance … 89

Sadly, this is not being done widely. As a consequence, most companies maintain a
product’s bill of materials by hand.

5.2.2 Make or Buy Decisions

From a software vendor’s perspective, most components will be sourced from third
parties, where third-party providers can be other companies or open-source projects.
Free (as in cost) open-source software is a great value proposition for software
startups, but even established software vendors benefit from the cost reduction of
using high-quality components for free [2].

The main decision, whether to make or buy a particular software component for
use as part of a product, is a product management decision. The driving criterion is
whether the software component will in any way support the competitive differenti-
ation of the product in the marketplace or not. If the component is not competitively
differentiating, it should probably be sourced from a third party.

If no such component exists, the company may have to develop the component
itself, but typically should do so as an open-source component to harness the benefits
that an engaged open-source community can bring [10, 23, 24]. These benefits are
as follows:

• maturing the component faster,
• helping recruiting new and competent employees, and
• improving employee loyalty.

5.2.3 The Software Supply Chain

Software vendors need to look at their product’s code component architecture and
their sourcing of not competitively differentiating components as a form of soft-
ware supply chain management. They need to evaluate third parties as suppliers of
components toward sustainability, quality, and costs, among other criteria.

Third-party suppliers can be commercial companies or open-source projects.
Companies may be providing closed-source components or they may be provid-
ing open-source components with additional (to-pay-for) services like warranties or
support.

The supply chain viewof a code component architecture naturally leads to supplier
tiers, with the first tier of suppliers having a direct relationship with the vendor, and
tiers further removed having an indirect relationshipwith the vendor. Still, the actions
of tier 2 or higher suppliers directly impact the vendor’s product [26]. Figure 5.3
illustrates the tier-view of the code component architecture.

A direct relationship with a supplier allows a vendor to enforce their license strat-
egy. For example, in a contract with a closed-source supplier, the vendor may be able

90 D. Riehle and N. Harutyunyan

Fig. 5.3 The supply chain perspective of the code component architecture of an example product

to specify that only unproblematic open source be used. Or, when choosing an open-
source component, the vendor may select only components with an unproblematic
license.

However, contracts or declarations do not necessarily guarantee that reality con-
forms to them.

For example, a commercial suppliermay promise, by contract, that no open source
is used in their products. However, they may fail to enforce proper governance pro-
cesses that ensure that developers do not copy open-source code or include open-
source components in their components. Delivered as a binary, it may be difficult for
the vendor to determine whether the supplier is meeting its contractual obligations.

Also, the declared license of an open-source component may not necessarily be
the real license of the component. Developers may have copied code from elsewhere
that forces a license change, but may have failed to declare it. Or, some licenses
conflict with each other, leading to software that cannot be used legally [5]. While
the source code is available for analysis, determining any such license violation or
confusion is not trivial.

Tiers 2 and higher may present the same problems to their next lower tier, com-
pounding the effect on the vendor as the final user of the software.

As a consequence, many lawyers believe that little legally valid software is left
on the market. They assume that so much copying and pasting has taken place that
all software has been tainted. Without knowing what is in their software, a vendor
cannot be license compliant, and hence cannot ship a legally valid product.

The difficulty of determining unwanted code goes both ways: The vendor may
find it difficult to determine, but so does the original copyright holder, who might

5 Open-Source License Compliance … 91

have standing to sue. This mitigates the risks expressed through this otherwise bleak
assessment.

5.2.4 Complete and Correct Bills of Materials

To be able to make an informed decision and to ensure license compliance, a vendor
therefore needs to receive or develop a complete and correct bill of materials for a
supplied component. Both industry and open-source communities have woken up to
this challenge and are trying to address it.

The first step is to have a standard format for a bill of materials that expresses
what is included in a component. For this, the Linux Foundation has sponsored the
creation of the Software Package Data Exchange (SPDX) standard [27] and tools for
processing the standard [19].

SPDX is rapidly evolving. SPDXcompliant documents provide information about
what is contained within a software package, including the license information of a
contained component, who created the component, its version, etc.

A bill of materials also needs to be complete and correct. To this end, any open-
source project needs to exercise good open-source governance. Guidelines of varying
quality exist on the web [6, 12].

The Open Chain Project of the Linux Foundation is trying to address this problem
by providing guidance to software vendors and open-source projects on how to have
good open-source governance [16].

5.3 License Clearance

License clearance is short for license clearance process. It is the process of reviewing
and deciding upon requests to include third-party components, in particular, open-
source components, in products. Typically, this process is part of the overall open-
source governance and compliance efforts of a company [7, 9, 14, 19, 25].

5.3.1 Process Preconditions

The license clearance process has to have, at a minimum, the following three key
components [7, 19]:

• A responsible person. Someone needs to be tasked with the license clearance
process. This person or post also needs to be known for being responsible for this
process, and managers and developers need to have been educated to go to this
person with any license clearance questions they may have.

92 D. Riehle and N. Harutyunyan

• A decision strategy. The responsible person needs to know how to decide on a
request to include an open-source component in a vendor’s product. For this, they
need the license strategy and all necessary expertise. They may have to work with
additional experts, for example, the vendor’s legal counsel.

• Escalation powers. Finally, the responsible person needs the power to enforce its
decisions, typically by escalating a denied inclusion request that is getting ignored
through the legal department to higher managerial levels in the company.

Vendors with state-of-the-art processes typically will have established some
sort of open-source program office or open-source competence center, whose
responsibilities include open-source governance, and hence the license clearance
process [7, 11, 19].

5.3.2 The Clearance Process

The clearance process itself can get complicated, but does not have to. We have
identified the following common best practices (in no particular order):

• Blacklists and white lists. With some licenses, the decision can be made quickly
and independently of context. For example, the AGPLv3 license is typically not
acceptable and should be blacklisted, while the Apache License 2.0 is typically
unproblematic and can be white listed [9, 19].

• Planned integration in products. Sometimes, the context determines whether a
particular component can be used. Depending on the embedding of the component
in the product, unwanted obligations may not apply, in case of which the use of
the component is unproblematic [5, 9].
To make this decision, a model of the product architecture, as described in the
previous section, is needed. A software architect needs to maintain the model
to demonstrate to the license clearance process owner that the desired use of a
component is unproblematic.

• Review of license conflicts. Some licenses conflict with each other, and hence the
components of these licenses cannot be used in the same product [5]. Using the
model of the product architecture that we introduced, the process owner can check
for such conflicts.

• Component repository. For efficiency reasons, the vendormaymaintain an internal
repository of component versions that have previously been accepted for inclusion
in products. This is an advanced form of white listing, making the use of open-
source components a self-service process.
Since security vulnerabilities may not be known at the time of including a compo-
nent in the repository, all white-listed components need to be monitored for newly
discovered vulnerabilities and reevaluated in the light of any new information.
A side effect of providing a component repository is enhanced security. Develop-
ers should use components from the internal repository rather than a public one,
reducing the attack surface for anyone trying to harm the vendor’s products.

5 Open-Source License Compliance … 93

• Component tracking. Components in products need to be tracked. The first step
is to maintain the product architecture model. The second step is to continuously
review new information about the components embedded in the vendor’s products.

New information may be problems with the license, new known vulnerabilities,
or increased legal activities for the component. The vendor needs to react to such
information, for example, by removing a component or upgrading the product to a
new version of the component.

5.4 Research Questions

The base of any license clearance is a complete and correct product architecture
model. To build this model, the following challenges need to be mastered:

• How to receive a complete and correct bill of materials for an open-source com-
ponent?

– How to represent this bill of material?
– How to automatically generate the bill of material from project artifacts?
– How to identify post-facto that code has been copied into a component from
elsewhere?

• How to motivate an open-source project community to clean up its code?

– How to motivate an open-source project community to create a bill of material?
– How to motivate an open-source project community to apply good open-source
governance?

• How to represent and work effectively with the product architecture model?

– How to automatically generate complete and correct license compliance arti-
facts?

With a complete and correct product architecture model in place, the following
challenges can be addressed:

• How to determine whether a particular license combination is legally valid?

– How to completely and correctly model license obligations and their combina-
tion?

Finally, the vendor faces the challenge of ensuring the model conforms to the
source code, which is summarized below:

• How to ensure developers follow a proper license clearance process?

– How to make the license clearance process known and understood?
– How to ensure developers take the license clearance process serious?
– How to make the license clearance process effective and not a burden?

94 D. Riehle and N. Harutyunyan

Acknowledgements We would like to thank our colleagues Daniel German and Matti Rossi for
the discussions and collaboration at the 2017 workshop on FLOSS ecosystems at Shonan Village,
Japan. We also would like to thankMaximilian Capraro, Shane Coughlan, Michael Dorner, Monika
Schnizer, and Axel Teichert for their feedback on this article.

References

1. B.W. Carver, Share and share alike: understanding and enforcing open source and free software
licenses. Berkeley Technol. Law J. 443–481 (2005)

2. B. Fitzgerald, The transformation of open source software. MIS Q. 587–598 (2006)
3. Free Software Foundation (2007). GNU General Public License: Version 3, 2007, at http://

www.gnu.org/licenses/gpl.html
4. D. German, M. Di Penta, A method for open source license compliance of java applications.

IEEE Softw. 29(3), 58–63 (2012)
5. D.M. German, A.E. Hassan, License integration patterns: addressing license mismatches in

component-based development. in Proceedings of the 31st International Conference on Soft-
ware Engineering. IEEE Computer Society (2009), pp. 188–198

6. GitHub (2017). Open source guides at https://opensource.guide/
7. I. Haddad, Open Source Compliance in the Enterprise (The Linux Foundation, San Francisco,

2016)
8. M. Helmreich, D. Riehle, Geschäftsrisiken und Governance von Open-Source in Softwarepro-

dukten, in Praxis der Wirtschaftsinformatik (HMD 283), 49. Jahrgang (2012), pp. 17–25
9. A. Hemel, S. Coughlan, Practical GPL Compliance (Linux Foundation, San Francisco, 2017),

pp. 43–47
10. J. Henkel, Open source software from commercial firms–tools, complements, and collective

invention. Z. Für Betr.Swirtschaft 4, 1–23 (2004)
11. Hewlett-PackardDevelopmentCompanyL.P. (2007).Best practices in open source governance.

White paper
12. C. Jensen, W. Scacchi, Governance in open source software development projects: a compar-

ative multi-level analysis. Open Source Software: New Horizons (2010) pp. 130–142
13. D.M. Kennedy, A primer on open source licensing legal issues: copyright, copyleft and copy-

future. Louis Univ. Public Law Rev. 20, 345 (2001)
14. A.M.S. Laurent, Understanding Open Source and Free Software Licensing: Guide to Navigat-

ing Licensing Issues in Existing & New Software. (O’Reilly Media Inc, Sebastopol, 2004)
15. C. Link, Patterns for the commercial use of open source: legal and licensing aspects, in Pro-

ceedings of the 15th European Conference on Pattern Languages of Programs, ACM, (2010),
p. 7

16. Linux Foundation (2017). The open chain project at https://www.openchainproject.org/
17. R.J. Mann, The commercialization of open source software: do property rights still matter?.

The University of Texas School of Law. Law and Economics Research Paper No. 58 (2005)
18. D. McGowan, Legal implications of open-source software. U. Ill. L. Rev. 241 (2001)
19. H.J. Meeker, Open (Source) for Business: A Practical Guide to Open Source Software Licens-

ing, 2nd ed. (CreateSpace Independent Publishing Platform, Scotts Valley, 2017)
20. H.J. Meeker, The open source alternative: understanding risks and leveraging opportunities.

(Wiley, New York, 2008)
21. C.H. Nadan, Open source licensing: virus or virtue. Tex. Intellect. Prop. Law J. 10, 349 (2001)
22. H.E. Pearson, Open source licenses: Open source—the death of proprietary systems?. Comput.

Law Secur. Rev. 16(3), 151–156 (2000)
23. D. Riehle, The commercial open source business model. Value Creation in E-Business Man-

agement (2009), pp. 18–30

http://www.gnu.org/licenses/gpl.html
https://opensource.guide/
https://www.openchainproject.org/

5 Open-Source License Compliance … 95

24. D. Riehle, The economic motivation of open source software: stakeholder perspectives. Com-
puter 40(4) (2007)

25. C. Ruffin, C. Ebert, Using open source software in product development: a primer. IEEE Softw.
21(1), 82–86 (2004)

26. H. Schöttle, U. Steger, Managing open source software in the corporate environment. Comput.
Law Rev. Int. 16(1), 1–7 (2015)

27. K. Stewart, P. Odence, E. Rockett, Software package data exchange (SPDX) specification. Int.
Free. Open Source Softw. Law Rev. 2(2), 191–196 (2011)

28. S. Zhu, Patent rights under FOSS licensing schemes. Shidler J. Law Commer. Technol. 4, 4–13
(2007)

Chapter 6
The Life and Death of Software
Ecosystems

Raula Gaikovina Kula and Gregorio Robles

Abstract Software ecosystems have gained a lot of attention in recent times. Indus-
try and developers gather around technologies and collaborate to their advancement;
when the boundaries of such an effort go beyond certain amount of projects, we
are witnessing the appearance of Free/Libre and Open Source Software (FLOSS)
ecosystems. In this chapter, we explore two aspects that contribute to a healthy
ecosystem, related to the attraction (and detraction) and the death of ecosystems. To
function and survive, ecosystems need to attract people, get them onboarded, and
retain them. In Section One, we explore possibilities with provocative research ques-
tions for attracting and detracting contributors (and users): the lifeblood of FLOSS
ecosystems. Then, in the Section Two, we focus on the death of systems, exploring
some presumed to be dead systems and their state in the afterlife.

6.1 Attractors (and Detractors) to FLOSS Projects

A contributing component to the sustainability (i.e., life) of a FLOSS project is its
ability to attract new development. Although keeping current contributors is equally
important, projects risk failure if they are unable to attract a healthy amount of
new developers to provide rejuvenation and aid in project evolution, especially in
response to ever-changing external forces (i.e., impactful events, new technologies,
vulnerabilities, and rivals) that affect FLOSS projects. In this section, we discuss
(1) the different forces of attraction (and detraction) that influence contributors to
participate in specific projects, (2) the effect of these forces at the ecosystem level, and

Raula is the main contributor of attractors and detractors (i.e., life) to FLOSS Projects
Gregorio is the main contributor for the death of ecosystems

R. G. Kula (B)
Nara Institute of Science and Technology, Ikoma, Japan
e-mail: raula-k@is.naist.jp

G. Robles
Universidad Rey Juan Carlos, Móstoles, Spain
e-mail: grex@gsyc.urjc.es

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_6

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_6&domain=pdf
mailto:raula-k@is.naist.jp
mailto:grex@gsyc.urjc.es
https://doi.org/10.1007/978-981-13-7099-1_6

98 R. G. Kula and G. Robles

finally present (3) three provocative research questions to further our understanding
of attracting contributors to a project.

6.1.1 Forces of Attraction (and Detraction)

We classify known forces of attraction as either motivation related, environmen-
tal, or a combination of the two. Internal project-driven campaigns usually revolve
around marketing strategies to attract developers. A study by Storey et al. [7] showed
that communities of FLOSS projects are shaped through social and communication
channels (sometimes referred to as social coding). Recently, Aniche et al. [2] con-
firmed that news channels also play an important role in shaping and sharing knowl-
edge among developers. Hence, owners of projects could boost their social presence
through participation on recent topics from news aggregators such as reddit,1

Hacker News2 and slashdot.3 For instance, a project may employ new or
well-known or recognizable trademarks that are trending in the news. Social media
outlets and other communication channels can be leveraged to improve project attrac-
tiveness (i.e., innovative posts on Q&A forums such as StackOverflow4 and
social media endorsements and collaborations through twitter or facebook).
Recently, analytical indicators of project health or fitness are aimed at increasing
the appeal of a project. In detail, the emergence of online collaboration platforms
GitHub, GitLab, and BitBucket, with specific features such as pull requests,
forks, and stars depict the fitness of a project.

Othermotivations are driven by external forces. Hata et al. [5] used game theory to
identify three strategies that is likely to incite contributions. The authors suggest that
improving the code writing mechanisms (i.e., wikis, official webpage, contributing
and coding guidelines, and using multi-language formats). Second, in terms of mon-
etary incentives, sites such as bountysource website5 allow developers to be hired as
bounty hunters to fix specialized bugs in a project. Finally, the impact of innovations
such as social coding, introduced by online collaborations of GitHub has attracted
attention of developers. A lesser explicit form of motivations is driven by a third
party with their own interests. For instance, a company may allocate employees or
provide monetary incentives to support (i.e., keep alive) a project of interest. This
is especially in cases where a third party is interested in stimulating further feature
development of an existing product that they are invested in.

Failingprojects provide insights into someenvironmental forces that detract devel-
opers from making contributions. A study by Coelho and Valente [3] found the fol-
lowing reasons for failing projects: usurped by competitor, obsolete project, lack

1https://www.reddit.com.
2https://news.ycombinator.com.
3https://slashdot.org.
4https://stackoverflow.com.
5https://www.bountysource.com/.

https://www.reddit.com
https://news.ycombinator.com
https://slashdot.org
https://stackoverflow.com
https://www.bountysource.com/

6 The Life and Death of Software Ecosystems 99

of time and interest, outdated technologies, low maintainability, conflicts among
developers, legal problems, and acquisition. To mitigate these detractors, the authors
propose three strategies to rejuvenate contributions in failing FLOSS projects. First,
projects are encouraged to improve their stability bymoving toward an organization
account instead of a personal account. Second, failing projects are encouraged to
transfer the project to newmaintainers. This is especially needed if the current main-
tainers’ activity has been deteriorating over time. Finally, the project is encouraged to
accept new core developers. This organizational factor aims to rejuvenate and ignite
fresh ideas, giving new life to the project.

6.1.2 Forces at the Ecosystem Level

To date, existing works performed their analysis in respect to individual projects. At
a higher level of abstraction, there exists cases where the forces of attraction (and
detractions) in several projects in an ecosystem are triggered by a common event.
For instance, several studies [1, 4, 6] investigated the eventful case of the JavaScript
“left-pad” incident (see [8]), where removal of a trivial library package caused
major breakages in thousands of projects including notable JavaScript frameworks
like babel and react.

Other examples of impactful events at the ecosystem level include responses to
wide-spreading high-risk security vulnerabilities (i.e., ShellShock,
Heartbleed, and Poodle), rivaling technologies (i.e., battles between competing
frameworks for specific programming domains such as PHP6 and JavaScript7) and
inadequacies in the current situation. As an example, current inadequacies could be
realized when a change inmanagement occurs (i.e., such as change of themiddleman
in InnerSource8). Changes in management (i.e., especially the single movement of
a key contributor) may set off a chain series of attract and distraction forces that
leave behind a rippling effect across the ecosystem. We theorize that these forces
impact ecosystem sustainability, especially if affected projects act as hubs within
that ecosystem.

6A blog post for 2018 best PHP frameworks at https://coderseye.com/best-php-frameworks-for-
web-developers/.
7A blog that shows the trend changes between rival JavaScript frameworkshttps://stackoverflow.
blog/2018/01/11/brutal-lifecycle-javascript-frameworks/.
8InnerSource takes the lessons learned from developing FLOSS and applies them to the way com-
panies develop software internally. Taken from https://paypal.github.io/InnerSourceCommons/.

https://coderseye.com/best-php-frameworks-for-web-developers/
https://coderseye.com/best-php-frameworks-for-web-developers/
https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/
https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/
https://paypal.github.io/InnerSourceCommons/

100 R. G. Kula and G. Robles

6.1.3 Provocative Research Questions

To conclude this section, we formulate a set of provocative research questions to
further our understanding of attraction and detraction forces:

• What are the strengths and successes of known attractor strategies to FLOSS
projects? We have identified many attraction forces. Understanding the strength
and success of these different attractors will assist us to treat projects that may be
suffering with attracting new contributors to their projects.

• How often are these attractor strategies practiced in the real world and in
respect todifferent ecosystems? It is unknown towhat extent and the frequencyby
which these strategies are practiced by practitioners in recent times. Furthermore,
we are unclear of the environmental and ecosystem conditions required to sustain
these attraction forces.

• What are the implications and impact of these forces of attraction at the
ecosystem level?We theorize that attraction forces may impact the overall ecosys-
tem. However, it is unclear the extent bywhich these forces of attractionmay affect
the sustainability of the overall ecosystem itself.

6.2 On the Death of Ecosystems

Software ecosystems have gained a lot of attention in recent times. Industry and
developers gather around technologies and collaborate to their advancement; when
the boundaries of such efforts gobeyond certain amount of projects,we arewitnessing
the appearance of a software ecosystem. Software ecosystems are complex in nature,
as many stakeholders are involved. There are for sure key people (e.g., Guido van
Rossum in Python) and projects (such as MySQL in the MySQL ecosystem), but
activity follows a decentralized pattern, more in the fashion of stigmergic process as
known, for instance, from colonies of ants.

In this section, we want to focus on the death of software ecosystems. While
it is known that many FLOSS projects are discontinued, to the knowledge of the
authors we have not found any research on the topic of software ecosystems. We
define as the death of a project as having no activity in it for a long period as done in
other research works. So, a dead software ecosystems have would have no activity. It
should be noted that other definitions of death could be proposed. One may think of
having no users, a loss of interest in the software industry, a decrease in developers,
developer interest, etc.

On the other hand, we are not looking after projects, which are defined (i.e., they
have a goal) and concrete software solution that has an organizational and logistic
structure (a known website, repository, mailing list, etc.). Software ecosystems are
built of many projects, which coordinate themselves (or not) but that have a relation-
ship that is in general technological (although other types of ecosystems such as the
(entire) Apache ecosystem orchestrates around collaboration).

6 The Life and Death of Software Ecosystems 101

6.2.1 Research Questions

Current research literature has so far focused mainly on successful FLOSS systems,
to see how they are articulated and organized, in order to derive lessons learned out
of these. Our method will be exploratory and based on case studies. Specifically, we
want to address following RQs:

• RQ1.What do we know of dead ecosystems?
We want to approach our study based on real cases of ecosystems that were so in
the past, but that are now inactive. So, as a first step, we performed an unstructured
search for dead ecosystems, by asking participants in the workshop and then by
looking in the web (mainly in the webpages of its projects and in Wikipedia) for
more information. The output of this research question is a list of dead ecosystems
on which the subsequent RQs will be addressed.

• RQ2.Why are these ecosystems dead?
Once we have identified dead ecosystems in RQ1, we would like to dig into the
reasons why these have become inactive. In this regard, we would like to see if the
cause of the inactivity can be technology (e.g., becoming an outdated technology),
economic (e.g., failure of funding), legal (i.e., patent or license issues), among
others. As input of information, we will use Google searches on the Internet.

• RQ3.What can we learn from dead ecosystems?
Once we have identified dead ecosystems (RQ1) and have further information into
what causes are behind its death (RQ2), our goal is to see if we can extract major
insight into the topic. The final goal is, of course, to help software ecosystems to
stay “healthy”.

6.2.2 Findings

Based on research questions in the prior section, in this section, we discuss and
present the findings of each research question.

6.2.2.1 RQ1 What Do We Know of Dead Ecosystems?

During the seminar in Shonan, participants were asked informally regarding open
ecosystems that have been discontinued. After much discussion, as shown in
Table6.1, the following dead systems arose from the discussions.

Control Versioning System (CVS)

CVS is a version control system, an important component of Source Configuration
Management (SCM).9 Using it, you can record the history of sources files and docu-

9Website is at https://www.nongnu.org/cvs/.

https://www.nongnu.org/cvs/

102 R. G. Kula and G. Robles

Table 6.1 Summary of the studied dead ecosystems

System name Brief description Discontinued date

Concurrent Versioning System (CVS) version control May, 2008

FireFoxOS mobile operating system Dec, 2015

Apache Geronimo application server May, 2013

Maemo mobile development
platform

Feb, 2010

ments. The last version of CVS was published in 2008 (see http://savannah.nongnu.
org/news/?group=cvs).

FirefoxOS

Firefox OS was a mobile operating system, based on HTML5 and the Linux kernel,
available for several platforms. It was developed by Mozilla Corporation under the
support of other companies and a large community of volunteers from around the
world. The operating system was designed to allow HTML5 applications to commu-
nicate directly with device hardware using JavaScript and Open Web APIs.10

In December 2015, Mozilla announced it would stop development of new Firefox
OS smartphones and in September 2016 announced the end of development.

Apache Geronimo

Apache Geronimo11 is a FLOSS application server developed by the Apache
Software Foundation and distributed under the Apache license. IBM announced
on May 14, 2013 that it would withdraw and discontinue support of Apache
Geronimo (see http://www-01.ibm.com/common/ssi/rep_ca/1/897/ENUS913-081/
ENUS913-081.PDF). This was also communicated through their website and mail-
ing lists.

Maemo

Maemo12 is a development platform for handheld devices based on debian
GNU / Linux. Maemo is mostly based on open-source code and has been devel-
oped by Maemo Devices within Nokia in collaboration with many FLOSS projects
such as the Linux kernel, Debian, and GNOME.

At the Mobile World Congress 2010, Intel and Nokia announced that they would
unite their Linux-based platforms into a single product called MeeGo. The Linux
Foundation canceled MeeGo in September 2011 in favor of Tizen. An emerging
Finnish company, Jolla, took Mer, a successor based on the MeeGo community, and
created a new operating system: Sailfish OS, and launched a new smartphone at the
end of 2013.

10Although an official website is not found, the blog of one of the key engineers is an example of
its existence https://medium.com/@bfrancis/the-story-of-firefox-os-cb5bf796e8fb.
11Website available at http://geronimo.apache.org/.
12Website available at http://maemo.org/intro/.

http://savannah.nongnu.org/news/?group=cvs
http://savannah.nongnu.org/news/?group=cvs
http://www-01.ibm.com/common/ssi/rep_ca/1/897/ENUS913-081/ENUS913-081.PDF
http://www-01.ibm.com/common/ssi/rep_ca/1/897/ENUS913-081/ENUS913-081.PDF
https://medium.com/@bfrancis/the-story-of-firefox-os-cb5bf796e8fb
http://geronimo.apache.org/
http://maemo.org/intro/

6 The Life and Death of Software Ecosystems 103

Table 6.2 Emergent projects after the death of the ecosystem

System name Example emergent projects

Concurrent Versioning System (CVS) CVSNT

FireFoxOS Panasonic variant, H5OS, KaiOS, Jio

Apache Geronimo Tomcat, EJB, Derby

Maemo MeeGo, Tizan, Mer

6.2.2.2 RQ2 Why are these Ecosystems Dead?

We have investigated what happened to the projects presented in RQ1, to see if there
is any continuation. In this regard, we investigate whether or not the original project
is still alive, and if there have been any forks (i.e., others have taken the source
code base and have evolved the software independently). As shown in Table6.2, new
projects emerged in the aftermath of the dying ecosystem.

CVS

Although the CVS project was discontinued, we find that due to the development of
the Microsoft Windows, Linux, Solaris, HPUX, I5os, and Mac OS X ports, evidence
shows that CVS has split off into a separate project named CVSNT,13 which is under
current, active development (i.e., the latest update as of writing was April 2018).

FirefoxOS

After the discontinuation of Firefox OS, several variants of the OS have emerged.
Panasonic will continue to develop the operating system for use in their Smart TVs,
which runsMyHome Screen, powered by the Firefox OS. Acadine Technologies has
derived their H5OS from Firefox OS as well. Li Gong, the founder of the company,
has overseen the development of FirefoxOSwhile serving as president of theMozilla
Corporation. Alcatel OneTouch GO FLIP uses a fork called KaiOS.14 In addition, in
July 2017, it was reported that Indian telecom operator Jio would be launching new
feature phone with OS derived from Firefox OS and the apps are purely in HTML5
and CSS.

Apache Geronimo

The development of Apache Geronimo ceased around 2013, after its 3.0.1 release,
when IBM and Oracle stopped to support the project in favor of their own technolo-
gies. Geronimo is not a single technology, but is the sum of many components, like
Apache Tomcat,15 Apache EJB,16 Apache Derby,17 among others. Many of these

13Website available at https://www.march-hare.com/cvspro/.
14Website at https://www.kaiostech.com/.
15Website as http://tomcat.apache.org/.
16Website at http://tomee.apache.org/tomcat-ejb.html.
17Website at https://db.apache.org/derby/.

https://www.march-hare.com/cvspro/
https://www.kaiostech.com/
http://tomcat.apache.org/
http://tomee.apache.org/tomcat-ejb.html
https://db.apache.org/derby/

104 R. G. Kula and G. Robles

components are used in the implementation components of other frameworks as can
be seen fromhttp://arjan-tijms.omnifaces.org/2014/05/implementation-components
-used-by.html.

Maemo

In February 2010, the Maemo project from Nokia merged with Moblin to create
the MeeGo mobile software platform under the umbrella of the Linux Foundation.
However, theMaemo community continued to be active inMaemo. That is the reason
whyNokia transferred theMaemo ownership first to the Hildon Foundation, and then
to a German association called Maemo Community e.V. The last general assembly
of this association has been in October 2017.

MeeGo18 was canceled in September 2011, although a community-driven suc-
cessor called Mer19 was formed that. A Finnish start-up, Jolla, chose in 2013 Mer
as the basis of the Sailfish OS operating system for their Jolla Phone smartphones.
Another Mer derivative called Nemo Mobile is also currently developed actively.

6.2.2.3 RQ3 What Can We Learn From Dead Ecosystems?

There is little to learn from dead ecosystems, because software ecosystems, at least
those that are FLOSS, do not die! In our quest for dead ecosystems, what we have
found are that ecosystems that have been abandoned have evolved (if not completely,
at least partially) with a given name. This means that organizations and names are
the ones that may disappear, but the technology can be found years later in other
projects and developments. There are two main factors that may concur to explain
this situation as follows:

1. Forks originating from the dead ecosystem. The first one is the right to fork
that exists (and is used) in FLOSS development. Although forking (i.e., splitting
the community by taking the technology under a new name) is historically not
welcome in the FLOSS community, it is understood in certain contexts. One of
these situations is when the project is abandoned.

2. Technological advancements. The second one is related to the development of
technologies. This requires time,much human labor and ismaintenance intensive.
A software is not only its development and its community. It is as well the number
of tests and maturity that it has achieved. Successful FLOSS ecosystems have
invested a large amount of effort in becoming mature. Even if its key players
lose their interest in the technology and the community seems to shrink, there is
always the source code, that is, result of that effort. In addition, the investment
in time and learning of other technologies results in inertia by those who are
familiar with the technology. With ecosystems that have a large community, the
probabilities of even a minor part of this community still interested in continuing
with development is very high.

18A variant of MeeGo is Tizen https://www.tizen.org/.
19Website as http://www.merproject.org/.

http://arjan-tijms.omnifaces.org/2014/05/implementation-components-used-by.html
http://arjan-tijms.omnifaces.org/2014/05/implementation-components-used-by.html
https://www.tizen.org/
http://www.merproject.org/

6 The Life and Death of Software Ecosystems 105

6.2.3 Conclusions

FLOSS ecosystems are still too young to draw conclusions fromour investigation, but
as far as we have analyzed we have not found any (well-known) FLOSS ecosystem
that can be considered dead (i.e., completely abandoned). For one or the other reason,
the original software has evolved into other systems and communities and still serves,
even if the importance of the project is not the one that used to be.

A lesson learned from our analysis is that if organizations want sustainability of a
technology or application, they should strive for the ecosystem way. This is a lesson
that could be of interest for consortia, public bodies, and companies wanting to set
a standard. The network effects of developing a long-lasting software ecosystem are
the probability that at least a small portion of the community keeps it alive. We have
seen that this is the case from outdated technologies (like CVS) to hardware-linked
software (such as Maemo).

As there is a growing interest of corporations in FLOSS, such as the one that can
be found in OpenStack, OW2,WebKit, among others, we are sure that the future will
allow to have further examples of ecosystems and analyze how they evolve, even
when their main promoters abandon.

References

1. R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, E. Shihab, Why do developers use trivial
packages? an empirical case study on npm, in Proceedings of the 11th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE’17) (2017)

2. M. Aniche, C. Treude, I. Steinmacher, I. Wiese, G. Pinto, M.A. Storey et al., How modern
news aggregators help development communities shape and share knowledge, in International
Conference on Software Engineering (ICSE18) (2018)

3. J. Coelho, M.T. Valente, Why modern open source projects fail, in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering ESEC/FSE 2017 (ACM, New York,
USA, 2017). pp. 186–196

4. A. Decan, T. Mens, M. Claes, An empirical comparison of dependency issues in OSS packaging
ecosystems, in 2017 IEEE 24th International Conference on Sofware Analysis, Evolution and
Reengineering (SANER), IEEE (2017). pp. 2–12

5. H. Hata, T. Todo, S. Onoue, K. Matsumoto, Characteristics of sustainable oss projects: a theo-
retical and empirical study. in 2015 IEEE/ACM 8th International Workshop on Cooperative and
Human Aspects of Software Engineering (2015). pp. 15–21

6. R. Kikas, G. Gousios, M. Dumas, D. Pfahl, Structure and evolution of package dependency
networks. in Proceedings of the 14th International Conference onMining Software Repositories
MSR ’17 (IEEE Press, Piscataway, NJ, USA, 2017). pp. 102–112

7. M.A. Storey, A. Zagalsky, F.F. Filho, L. Singer, D.M. German, How social and communication
channels shape and challenge a participatory culture in software development. IEEE Trans.
Softw. Eng. 43(2), 185–204 (2017). Feb

8. The npm Blog – kik, left-pad, and npm (2018), http://blog.npmjs.org/post/141577284765/kik-
left-pad-and-npm. Accessed 31 Jan 2018

http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm

Chapter 7
Onboarding and Retaining of
Contributors in FLOSS Ecosystem

Minghui Zhou

Abstract There is a saying that the type of developers that an ecosystem *wants*
do not have trouble getting involved. They are good at finding tasks and issuing pull
requests. The type of developers that needs hand-holding—you do not want them
joining your project/ecosystem due to their lack of skill. This might be true for a
popular project like the Linux kernel which never worried attracting new develop-
ers. The (difficult) process of working around to get (a patch) in for a contributor
is a process of getting the right people for the community. However, many other
projects/ecosystem, e.g., GNOME, do not have many people who desperately want
to work for them. And they have many to-do tasks. Projects even as popular as the
Linux kernel are often in the need of resources. Moreover, the tasks in an ecosystem
are quite different, what if the community just wants people who are able to review
English documents? We may be able to train them well with a good design. In sum-
mary, there might be something we could do to help people with willingness (and
no right skills yet) to get to the right track needed by ecosystems.

7.1 Onboarding

7.1.1 Background

The start of participation in a FLOSS ecosystem is fraught with difficulties [23, 31],
as the new contributors may not be familiar with project’s practices and norms and
the existing participants have to rely on the scant information in a bug report or
a comment made by the newcomer to judge the competence and reliability of the

M. Zhou (B)
Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Peking University, Beijing 100871, China
e-mail: zhmh@pku.edu.cn

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_7

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_7&domain=pdf
mailto:zhmh@pku.edu.cn
https://doi.org/10.1007/978-981-13-7099-1_7

108 M. Zhou

1

1

1

1

1

1 1 1

Growth of Linux kernel

Calendar year

N
um

be
r

0
10

00
20

00
30

00
40

00

2009 2010 2011 2012 2013 2014 2015 2016

2

2 2 2

2

2

2 2

3

3

3

3 3
3

3
3

4
4

4
4

4
4

4

4
5

5
5

5
5

5 5
5

1
2
3
4
5

#commits/16
#authors/1
#files/16
#maintainers/0.3
#joiners/0.7

Fig. 7.1 Evolution of the Linux kernel over time

new contributor. Figure7.1 shows the evolution of the Linux kernel over time.1 In
particular, the number of joiners decreases in recent years while the amount of work
represented by files, commits, and authors which the community needs to take care
of keeps growing. Getting a newbie on board in an ecosystem may be much more
complicated than in a traditional project, because an ecosystem often has different
projects and these projects often have interdependencies and require more learning.
Moreover, the complexity of an ecosystem grows over time substantially, e.g., the
Linux kernel has grown from 10.2 thousand lines of code in 1991 (version 0.01) to
22.3 million lines of code in 2016 (version 4.9), and from several authors to more
than 2000 authors [27]. However, the nature of learning for individuals is the same,
what differs may lie on the scale and content of learning.

The research questions which are critical to onboarding include the following:

1. Howdonewcomers learn? It involveswhat they need to learn and how to learn. For
example, except the programming skills, they need to learn a methodology they
did not invent and they need to learn how to communicate with the community.
It also involves intermediaries (e.g., tools) that help to transfer knowledge and
facilitate learning. How to learn? For example, learn by doing, or learn from
experts or artifacts.

2. How do existing participants learn? The existing participants in the community
are often busy with various tasks. Even if they want to spend effort on nurturing
newcomers, they may not know what is needed for the newcomers due to the
knowledge gap between them and newcomers—though they may naturally edu-
cate newcomers in the process of resolving problems (while newcomers learn by
doing).

1The calculation is based on the data retrieved from the mainline repository of Linux kernel main-
tained by Linus Torvalds: http://www.git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git.

http://www.git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
http://www.git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

7 Onboarding and Retaining of Contributors in FLOSS Ecosystem 109

3. What would be a goodway to structure a community/ecosystem to get newcomers
onboarding? For example, an often adopted policy is to have a division ofmodules
and tasks. So newbies could focus their effort on easiermodules or tasks—anoften
mentioned barrier faced by newcomers is that they do not know where to start.

These questions sketch an ecosystem-learning-focused agenda that needs to address
the outlined challenges. Several important aspects that require extensive attention
are discussed below.

7.1.2 Communication

The new developer population needs to learn the norms that enable them into the
ecosystem. However, the culture of a long-lived ecosystem is difficult to understand.
How to communicate with the community to acquire skills and knowledge that are
needed to proceed in the ecosystem is a critical challenge in onboarding.

Newbies may acquire the skills and knowledge embodied in the community by
directly interacting with master members (by reading their code and by asking them
questions) [14]. The communication betweennewcomers and experts of a community
is a two-way communication. On the one hand, newbies need to spend effort to learn
basic norms and practices of the community by themselves (before asking questions);
otherwise, the experts in the community may “get grumpy” because many simple
mistakes are made over and over again, as described by one Linux kernel maintainer:
“...you can answer a lot of questions like this for yourself very easily, simply by
reading the source code.”2 As discovered by Steinmacher et al. [18], not needed
pull requests are among the most common cause for code nonacceptance in FLOSS
projects—because the newbies often submit “superseded/duplicated pull-requests”.

On the other hand, experts may not be able to understand the confusion of newbies
and may not communicate with them in an efficient way. There is a well-understood
construct of the “zone of proximal development” [24], which describes the case
where experts are not usually effective at training or teaching novices. The gap is
too wide, the assumptions of what is known, too great. For example, Steinmacher
et al. [17] found that one of the social barriers for people to contribute is “receiving
answers with too advanced/complex contents.” Therefore, people who are closer in
experience level to newbiesmay bemore effective at helping newbies learn practices.
Due to the variation of new participants by nature, experts also need to learn how to
communicate with different kinds of newbies.

In other words, for newcomers, it is important to understand how to do their
homework and how to communicate with experts if necessary; and for experts, it
is important to understand the (technical and social) needs of newcomers and make
their nurturing effort worthwhile. Therefore, better communicating practices and
mechanisms could be designed or adopted to help onboarding.

2https://github.com/gregkh/presentation-linuxmaintainer/blob/master/maintainer.pdf.

https://github.com/gregkh/presentation-linuxmaintainer/blob/master/maintainer.pdf

110 M. Zhou

Moreover, experts inside the community may not have time to handle newbies.
There is a need for intermediarieswhosemain purpose is to communicatewith others.
An idea of SocialMechanism of Interaction introduced by Schmidt et al., emphasizes
the role of product itself in supporting the articulation of the distributed activities of
multiple actors [15]. Not only codebase [6], but also bug report forms [3] are means
by which the articulation work of the project, and therefore the communication can
be carried out. Sometimes, the artifacts like MR/change repositories might be the
only possible mechanism for developers to communicate [33], for example, in the
offshoring or trans-generation scenarios (like a long-lived FLOSS system), since
there may be no traditional opportunities to communicate in many situations, and a
new generation of developers may be unable to communicate with original creators
who have retired or died a long time ago.

To improve communication through these social mechanisms (and many others
that are not discussed here), more investigations are needed, involving how and why
these mechanisms work or do not work, particularly for newcomers, and what could
be improved.

7.1.3 Division of Tasks and Modularization

Segregation of tasks at the architecture level is valuable to a community for a variety
of reasons. The tasks that are core could be reserved for experts; it also enables a
dispersion of less risky code tasks toward newer contributors which may help to
facilitate the onboarding process. In particular, for ecosystems that have evolved for
decades, the scale and complexity of the software system is way too complicated for
a newbie to master, let alone to revise the code. However, if the tasks can be well
divided, the newbies may be able to start from the easy tasks, e.g., ones that have no
or few dependencies on the other parts of the system, and get on board quickly.

Though the tasks suitable for newbies have been rarely addressed explicitly, the
division of labor and distribution of tasks is a common theme in the FLOSS lit-
erature. Researchers, e.g., Ducheneaut [7], characterized a community as a series
of concentric circles; each circle is occupied by people playing a particular role in
the development process. The core team accomplishes central tasks and oversees
the community [1, 13, 27]. Peripheral roles, e.g., triagers, are found to be good
at filtering invalid issues and as accurate as developers in filling in missing issue
attributes [26]. These peripheral roles may suit newbies who are not familiar with
code yet, as suggested by many FLOSS communities.

Modularization is adopted in software projects for the convenience of separating
tasks. In particular, for a long-lived ecosystem, it is extremely difficult for any new-
comer to join the development. A well-modularized architecture might help with
that. For example, the key to the success of the Linux is its modularity according to
its creator [20]. Inside the system, the combination of modules has a structured hier-
archy of dependence relations, but modules entering at the same level of the system
can be developed independently from each other [1]. Therefore, different modules

7 Onboarding and Retaining of Contributors in FLOSS Ecosystem 111

could evolve according to its own nature and some parts that require minimal interac-
tion with other developers may fit newbies. In the Linux kernel, after more than two
decades of evolution, the core modules like mm (memory management) appear to
have becomemature and very few newbies could participate in the development [27].
The peripheral modules like drivers keep growing to satisfy various needs of hard-
ware manufacturers. “In order to support many independent devices and therefore
many independent authors, it is important to make the subsystem extensible, so each
hardware device driver is implemented as a separate (sub-)module that supports a
common interface.”3 As a result, the tasks of driver development are often considered
to represent lower entry barrier for newcomers.4 However, modularization is often
aspirational, and different projects and organizations are in different points along this
continuum. This could be examined from existing software repositories and build
processes.

In practice, a variety of FLOSS projects/ecosystems post the possible tasks they
perceive that would be suitable for newbies to work on in the project page. For exam-
ple, the Linux community has KernelNewbies which “is all about sharing knowledge
and experience” for newbies.5 Mozilla has a website called Bugs Ahoy that allows
people to search through all of Mozilla’s bug reports to find the ones that are most
relevant to their areas of interest, for example, newbies could choose to display only
“simple bugs”.6 Further investigation on how the roles are separated and how the
tasks are distributed among the roles in large-scale FLOSS ecosystems are needed.
It could certainly help onboarding in addition to many other benefits, for example,
it helps to understand the governance of a community.

7.1.4 Learning of Experts

What is known about experts is important not because all learners are expected to
become experts, but because the knowledge of expertise provides valuable insights
into what the results of effective learning look like [2]. Understanding how experts
learn and how they develop knowledge structure may provide ways to help newbies.

First, we need to understand the project/ecosystem practice trajectories that
experts take. The issues include how a developer starts from a novice (a newcomer)
and becomes an expert (a core teammember), how she grows her expertise, and what
kind of expertise she has to master (and in what order) to become central [29]. Some
studies have been conducted about how the developers grow their strength in terms of
task difficulty and task centrality [28], but much broader and deeper investigation is
needed, for example, of what leads to that trajectory. Further, an ecosystem requires

3linux.org/threads/the-linux-kernel-the-source-code.4204/.
4https://www.linux.com/news/software/linux-kernel/804403-three-ways-for-beginners-to-
contribute-to-the-linux-kernel/eudyptula-challenge.org.
5https://kernelnewbies.org/.
6https://www.joshmatthews.net/bugsahoy/?simple=1.

https://www.linux.com/news/software/linux-kernel/804403-three-ways-for-beginners-to-contribute-to-the-linux-kernel/eudyptula-challenge.org
https://www.linux.com/news/software/linux-kernel/804403-three-ways-for-beginners-to-contribute-to-the-linux-kernel/eudyptula-challenge.org
https://kernelnewbies.org/
https://www.joshmatthews.net/bugsahoy/?simple=1

112 M. Zhou

different kinds of participants who have different skills, it is important to separate
their skills and trajectories (if it is possible) so people would know which trajectory
to take based on their own preferences and skills.

Second, knowing how learners develop coherent structures of information has
been particularly useful to understand the nature of organized knowledge that under-
lies effective comprehension and thinking. For example, the difference between
seniors and novices, might lie in the ability to combine and apply what is learned to
performmore complex activities creatively and in new situations [28]. Psychologists
tried to aid software engineering through programmer selection testing since the
1950s. For example, McKeithan et al. [12] observed that experts are able to remem-
ber language commands based on their position in the structure of the language.
Novices, not having an adequate mental representation of the language structure,
often use mnemonic tricks to remember command names. Curtis [4] considered the
performance of someone tackling a complicated programming task to be related to
the richness of their knowledge about the problem area. However, the initial attempt
had failed poorly, not because the principles and technologies of psychology were
not up to the task, but because the psychologists failed to adequately model the men-
tal and behavioral aspects of programming before selecting tests to measure it [4].
Learning theory can now account for how learners acquire skills to search a problem
space and then use these general strategies in many problem-solving situations.

Overall, a better understanding of the programmer knowledge base, and why
and how the programmer learn could help prepare newbies more efficiently. Differ-
ent communities/organizations may have different cultures that suit how people get
involved, empirical studies on existing ecosystems could benefit us in this regard.

7.2 Retaining

7.2.1 Background

It is critical for ecosystems to retain participants (who have become familiar with
ecosystem practices and norms and have worked and established rapport with other
participants), because people with multiyear participation in a project (or ecosystem
at a higher level) tends to accomplish more and more important tasks, to provide
greater value to the community than others, and are critical to the long-term viability
of the community [16, 28, 30, 32]. While it is challenging to attract people, it is
even more challenging to retain them. For example, Shah [16] found that a need for
software-related improvements drives the initial participation, but only a small subset
hobbyists remain involved. We found that only 3.6% of Gnome and 0.9% of Mozilla
joiners would stay with the ecosystem for at least 3 years [32]. Figure7.2 shows that
the conversion of new joiners to long-term contributors who would stay with the

7 Onboarding and Retaining of Contributors in FLOSS Ecosystem 113

2000 2002 2004 2006 2008

0.
0

0.
2

0.
4

0.
6

Year

C
on

ve
rs

io
n

Gnome: conversion to LTCs
Mozilla: conversion to LTCs
Gnome: Average
Mozilla: Average

Fig. 7.2 Conversion of new joiners to long-term contributors (LTCs)

ecosystem for at least 3 years has been decreasing inMozilla and GNOME.7 It raises
challenges that ecosystems must take seriously in order to survive and sustain.

The research questions which are critical to retaining include the following:

1. Why do people leave or stay?
2. What kind of people/expertise is needed (to stay long) by an ecosystem?
3. What could be designed in a community to retain contributors?

These questions motivate the following two important aspects that relate to retain-
ing participants in an ecosystem.

7.2.2 Spectrum of Contributors

An ecosystem prospers with diverse contributions from diverse contributors.
Ducheneaut [7] presented a pattern with core developers in the center, surrounded
by the maintainers, often responsible for one or more subcomponents (modules) of a
project. Around these are patchers (who fix bugs), bug reporters, documenters, and,
finally, the users of the software.

In the spectrum of contributors, it is important for an ecosystem to know what
kind of people it needs to retain, or what kind of people are needed to stay long for
the survivability and sustainability of the ecosystem. This requires an understanding
about the distribution of expertise needed in an ecosystem which is much more
complicated than that of a single project due to the complicateddependencies between
projects. For example, Wang et al. [25] proposed a novel view about the types of
contributors needed in software development. They view software development as a
combination of activities that require creation and activities that follow the routine

7The calculation is based on the data retrieved in [32].

114 M. Zhou

manufacturing processes. Different activities call for different types of developers
who need to be inspired and retained by different strategies.

Developer’s expertise could be considered from various aspects. For exam-
ple, the difficulty and centrality of tasks represent expertise or competence in a
project/ecosystem, people who could accomplish central tasks are extremely valu-
able to sustain long-lived projects [28]. For example, Vasilescu et al. [21] showed
that tenure diversity improves a team’s productivity and turnover rate, which sug-
gests that all levels of tenure are essential and what is critical might be how to keep
a balance.

The spectrumof contributors required by an ecosystemcould be explained through
the media of people making contributions. The contributing media include mailing
list, issue tracking system, version control system, question & answer websites, etc.
These channels nurture different expertises required by an ecosystem in different
ways. For example, the majority of the tasks of a senior QA in the issue tracking
system of Mozilla is “going through the NEW/UNCONFIRMED pile of bugs con-
tributed from outside sources (i.e., non-Netscape-paid employees)”.8 The respon-
sibility of a maintainer in the Linux kernel is to “review patches from submitters
(and then accept or reject it), handle questions from both developers and users about
things related to the subsystem (usually bug reports)”.9 Both experienced QA and
maintainers are critical to the sustainability of ecosystems but may require different
skill sets, and therefore different methods to train and retain.

On the other hand, people come to join an ecosystem with different motivations
and only a small fraction of themhave the possibility to stay long. Some peoplewould
be simply one-time contributors, because they never attempt to stay no matter how
attractive the ecosystem is. For example, some users run into problems when using
Firefox, theymay come to report the bugs (which are also important contributions for
the software) and never come back. Some people may stay for long simply because
that is their job. For example, in the Linux kernel some maintainers work for years
maintaining drivers from companies such as Intel. Therefore, people who could be
retained may occupy a small proportion of contributors. In order to understand how
to retain them, this group of people needs to be located and carefully investigated.
For example, the nature of the initial behavior of this group (e.g., the tasks they start
may represent the motivation they have) and why they leave or stay.

7.2.3 Forces of Retaining

In order to sustain a community, it is important to understand what factors/
mechanisms might be at play to achieve that goal. The most influential factor to
affect participation might be the motivation of a developer. In particular, FLOSS
developers are likely to be motivated and involved in the project for fundamentally

8http://weblogs.mozillazine.org/stephend/.
9http://www.kroah.com/log/linux/what_greg_does.html.

http://weblogs.mozillazine.org/stephend/
http://www.kroah.com/log/linux/what_greg_does.html

7 Onboarding and Retaining of Contributors in FLOSS Ecosystem 115

different reasons. For example, Lakhani et al. [11] suggested that enjoyment-based
intrinsic motivation is the strongest and most pervasive driver, with user need, intel-
lectual stimulation derived from writing code, and improving programming skills
being the top motivators for project participation (which may or may not suit sus-
taining). Nakakoji et al. [14] found that the willingness to get involved determines
the role played by a FLOSS member in the community. We found that joiners who
are more willing to contribute more than double their odds of becoming a long-term
contributor [31].

The relationship between individuals and their environment might affect retention
and have been extensively studied in the organizational literature. For example, the
extent to which an individual’s values are consistent with those revealed in his or
her organization/environment was found to yield significant effects on a variety of
attitudinal outcomes like job satisfaction and organizational commitment, and behav-
ioral outcomes like job performance and turnover [8, 10, 22]. Similarly, in FLOSS
projects, identity-based and bond-based commitments are found important for con-
tributor retention [9]. If developers shared the beliefs and norms of the community,
they engaged more in the effort related to the community [5, 19]. An ecosystem is
combined with different cultures, the Linux Foundation, for example, does not have
“a way” that all projects are compelled to follow, which makes retention even more
challenging.

The macro-environment of an ecosystem, such as relatively sociality [30], user
base (of the product), commercial support [27], and the popularity of the technology,
has a substantial impact on the sustaining of contributors (and even the sustainability
of the ecosystem itself). It is important to understand to what extent these factors play
their roles and what is left for the community to tailor to retain valuable contributors.

Overall, the retention (or sustainability) of FLOSS participants is determined
by a variety of factors, ranging from individual motivation to interaction between
individuals and their environment. Further investigation may lie in the deeper under-
standing and quantification of the impact of various factors in large-scale ecosystems,
and therefore helping to build mechanisms that could help retain participants.

Acknowledgements This work is supported by the National key research and development pro-
gram Grant 2018YFB10044200, and the National Natural Science Foundation of China Grants
61432001 and 61825201.

References

1. C.R. Andrea Bonaccorsi, Why open source software can succeed. Res. Policy 32, 1243–1258
(2003)

2. J. Bransford, A. Brown, R. Cocking, How People Learn: Brain, Mind, Experience and School
(National Academy Press, Washington, 2003)

3. P. Carstensen, The bug report form (1994), http://cscw.dk/schmidt/papers/comic_d3.2.pdf
4. B. Curtis, Fifteen years of psychology in software engineering: individual differences & cog-

nitive science, in ICSE’84 (1984), pp. 97–106

http://cscw.dk/schmidt/papers/comic_d3.2.pdf

116 M. Zhou

5. S. Daniel, L. Maruping, M. Cataldo, J. Herbsleb, When cultures clash: participation in open
source communities and its implications for organizational commitment, in ICIS 2011 Pro-
ceedings (7 Dec 2011), page Paper 7

6. C. de Souza, J. Froehlich, P. Dourish, Seeking the source: software source code as a social and
technical artifact, in GROUP ’05: Proceedings of the 2005 International ACM SIGGROUP
Conference on Supporting Group Work (ACM, New York, USA, 2005), pp. 197–206

7. N.Ducheneaut, Socialization in anopen source software community: a socio-technical analysis.
Comput. Support. Coop. Work (CSCW) 14(4), 323–368 (2005)

8. B.J. Hoffman, D.J. Woehr, A quantitative review of the relationship between person-
organization fit and behavioral outcomes. J. Vocat. Behav. 68(3), 389–399 (2006)

9. R.E. Kraut, P. Resnick, Building Successful Online Communities: Evidence-Based Social
Design (MIT Press, Cambridge, 2012)

10. A.L. KRISTOF-BROWN, R.D. ZIMMERMAN, E.C. JOHNSON, Consequences of individu-
als’ fit at work: a meta-analysis of person-job, person-organization, person-group, and person-
supervisor fit. Pers. Psychol. 58(2), 281–342 (2005)

11. K. Lakhani, R. Wolf, Why Hackers Do What They Do: Understanding Motivation and Effort
in Free/Open Source Software Projects (MIT Press, Cambridge, 2005)

12. K. McKeithen, J. Reitman, H. Rueter, S. Hirtle, Knowledge organization and skill differences
in computer programmers. Cogn. Psychol. 13, 307–325 (1981)

13. A. Mockus, R.F. Fielding, J. Herbsleb, A case study of open source development: the Apache
server, in 22nd International Conference on Software Engineering (Limerick, Ireland, 4–11
June 2000), pp. 263–272

14. K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, Y. Ye, Evolution patterns of open-source
software systems and communities, in IWPSE ’02: Proceedings of the International Workshop
on Principles of Software Evolution (Orlando, FL, 19–20 May 2002), pp. 76–85

15. K. Schmidt, C. Simone, Coordination mechanisms: towards a conceptual foundation of CSCW
systems design. J. Collab. Comput. 5, 155–200 (1996)

16. S.K. Shah, Motivation, governance, and the viability of hybrid forms in open source software
development. Manag. Sci. 52(7), 1000–1014 (2006). July

17. I. Steinmacher, T. Conte, M.A. Gerosa, D. Redmiles, Social barriers faced by newcomers
placing their first contribution in open source software projects, in Proceedings of the 18th
ACM Conference on Computer Supported Cooperative Work & Social Computing, CSCW ’15
(ACM, New York, USA, 2015), pp. 1379–1392

18. I. Steinmacher, G. Pinto, I.S. Wiese, M.A. Gerosa, Almost there: a study on quasi-contributors
in open source software projects, in Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18 (ACM, New York, USA, 2018), pp. 256–266

19. K.J. Stewart, S. Gosain, The impact of ideology on effectiveness in open source software
development teams. MIS Q. 30(2), 291–314 (2006)

20. L. Torvalds, The linux edge. Commun. ACM 42(4), 38–39 (1999). Apr
21. B. Vasilescu, D. Posnett, B. Ray, M.G. van den Brand, A. Serebrenik, P. Devanbu, V. Filkov,

Gender and tenure diversity in github teams, in Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems (ACM, 2015), pp. 3789–3798

22. M.L. Verquer, T.A. Beehr, S.H. Wagner, A meta-analysis of relations between person-
organization fit and work attitudes. J. Vocat. Behav. 63(3), 473–489 (2003)

23. G. von Krogh, S. Spaeth, K.R. Lakhani, Community, joining, and specialization in open source
software innovation: a case study. Res. Policy 32(7), 1217–1241 (2003). July

24. L. Vygotsky, Interaction between learning and development. Read. Dev. Child. 23(3), 34–41
(1978)

25. H.Wang, G. Yin, X. Li, X. Li, TRUSTIE: A Software Development Platform for Crowdsourcing
(Springer, Berlin, 2015)

26. J. Xie, M. Zhou, A. Mockus, Impact of triage: a study of mozilla and gnome, in ESEM 2013
(Baltimore, Maryland, USA, 10–11 Oct 2013), pp. 247–250

27. M. Zhou, Q. Chen, A. Mockus, F. Wu, On the scalability of linux kernel maintainers’ work,
in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017 (ACM, New York, USA, 2017), pp. 27–37

7 Onboarding and Retaining of Contributors in FLOSS Ecosystem 117

28. M. Zhou, A. Mockus, Developer fluency: achieving true mastery in software projects, in ACM
SIGSOFT / FSE (Santa Fe, New Mexico, 7–11 Nov 2010), pp. 137–146

29. M. Zhou, A. Mockus, Growth of newcomer competence: challenges of globalization, in
FSE/SDP Workshop on the Future of Software Engineering Research (Santa Fe, New Mexico,
7–8 Nov 2010), pp. 442–447

30. M. Zhou, A. Mockus, Does the initial environment impact the future of developers?, in ICSE
2011 (Honolulu, Hawaii, 21–28 May 2011), pp. 271–280

31. M. Zhou, A. Mockus, What make long term contributors: willingness and opportunity in OSS
community, in ICSE 2012 (Zürich, Switzerland, 2012), pp. 518–528

32. M. Zhou, A. Mockus, Who will stay in the floss community? modeling participant’s initial
behavior. IEEE Trans. Softw. Eng. 41(1), 82–99 (2015). Jan

33. M. Zhou, A. Mockus, D. Weiss, Learning in offshored and legacy software projects: how prod-
uct structure shapes organization, in ICSEWorkshop on Socio-Technical Congruence (Vancou-
ver, Canada, 19 May 2009)

Chapter 8
A Free and Libre Open Source Software
(FLOSS) Initiative for a Sustainable
Deployment in Oman

Hadj Bourdoucen, Ahmed Al Maashri, Mohamed Ould-Khaoua,
Mohamed Sarrab, Mahdi Amiri-Kordestani, Fahad Al Saidi
and Khalil Al Maawali

Abstract Many countries worldwide are strongly encouraging and supporting the
adoption of FLOSS in public and private sectors. This has fueled the rapid deploy-
ment of FLOSS solutions in numerous industrial sectors due to the benefits offered
by FLOSS. These benefits include a high potential for job creation through local
software customization, the growth of local SME’s and IT skills, vendor lock-in
prevention, improved security, and reduced licensing, installation and running costs.
The trend was extending to other areas such as consumer associations, chamber of
commerce, stock exchange, management associations, and nongovernmental orga-
nizations that are showing an increasing interest in many countries for FLOSS adop-
tion. The Information Technology Authority (ITA) in Oman is the main enabler of
FLOSS deployment in the public and private sectors. ITA has done considerable
efforts in conjunction with a number of public and academic institutions, such as
Sultan Qaboos University (SQU) and other higher educational institutions over the
past few years in the FLOSS awareness, infrastructure, and capacity building fronts.
However, to ensure the continuity and sustainability of the ongoing efforts, a roadmap
for a sustainable FLOSS deployment for the public and private sectors is essential.
The establishment of this roadmap for a sustainable deployment in the next 5 years
was done based on an extensive study of the international FLOSS plans, the analysis
of local FLOSS status in the public and private sectors through surveys and inter-
views, in addition to the views exchanged with a number of well-known international
experts in the FLOSS community. Five deployment domains were identified in the

H. Bourdoucen (B) · A. Al Maashri
Electrical and Computer Engineering Department, College of Engineering,
Sultan Qaboos University, Al Khod, P. O. Box 33, Muscat PC 123, Oman
e-mail: hadj@squ.edu.om

M. Sarrab · M. Amiri-Kordestani
CIRC, Sultan Qaboos University, Muscat, Oman

F. Al Saidi · K. Al Maawali
Information Technology Authority (ITA), Seeb, Oman

M. Ould-Khaoua
Department of Informatics, Saad Dahlab University, Blida, Algeria

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_8

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_8&domain=pdf
mailto:hadj@squ.edu.om
https://doi.org/10.1007/978-981-13-7099-1_8

120 H. Bourdoucen et al.

roadmap with a number of initiatives for each domain that will be driven by a Center
of Excellence (CoE) to assure the sustainability of the deployment. The CoE has a
number of objectives to achieve; namely, transfer of technology, raising awareness on
FLOSS in public and private sectors, promoting and implementing FLOSS solutions,
formulating policies and guidelines, developing educational and training materials,
conducting and supporting R&D in FLOSS, and working to optimize the overall cost
of software licensing in Oman. Different models of this center were discussed and
a realistic model was suggested for the implementation in Oman. It is proposed that
the center should be funded by a Consortium of ministries.

8.1 Introduction

Manygovernments have policies that encourageFLOSSadoption. For instance, some
policies mandate public agencies to use FLOSS software while others are in the pro-
cess of forming general advice on preferable software.While proprietary software has
its own international developers and supporters, adopting FLOSS motivates local IT
companies to provide software services like technical support, training, customiza-
tion, and development. In other words, adopting FLOSS often creates benefits for
the local software industry, job creation (through entrepreneurship), capacity build-
ings, vendor lock-in, and localization for business culture and requirements. Such
localization is beneficial for local capacity building sustainability and establishing a
knowledge base grounded in indigenous resources that address local needs. Along
with the benefits of localization are advantages that come from widening the scope
for the creation and use of Arabic software. From an economic point of view, local-
ization would expand the market for the country’s software designers who would be
able to sell and produce Arabized products, not only to the local market but also to
all other Arabic speaking countries. From a social perspective, expanding the use
of specialized Arabic content software would allow for a greater margin of knowl-
edge accessibility to the region with implications on the educational, creative, and
human capital development. Such software would allow for the creation, cataloging,
and organization of Arab-based content and knowledge. This, in turn, would allow
countries in the Arab region, and most importantly Oman, to harness its own creative
abilities for change and development.

Furthermore, in the near future, we will see how open source unlock the potential
of a new generation of technologies—the Internet of Things (IoT), big data, and
cloud computing—that would create multibillion dollars in value. Whether it is a
web browser, a web server, or even a platform, FLOSS based technologies, and
solutions have dominated the market share during the last few years. This dominance
is expected to continue to grow in the future. Robustness, reliability, security, and
performance are some of the reasons why websites and servers have been furnished
with FLOSS solutions. Additionally, the world is witnessing a shift toward cloud
computing andmobile devices. This future trendwill boost the dominance of FLOSS,
as it is leading the innovation in this domain.

8 A Free and Libre Open Source Software (FLOSS) Initiative … 121

FLOSS has proven to be an extremely valuable tool for accelerating research in
various fields of IT and engineering in order to address the needs of society in the
future.Many scholars use FLOSS platforms to conduct research in CloudComputing
(openstack.org), Big Data (Hadoop & Spark), and IoT (Kaa & Linux RTOS).

It is essential for preparing a roadmap for a sustainable deployment to examine
different FLOSSexperiences of other countries to draw lessons thatwill guideFLOSS
deployment roadmap in Oman. While countries share the same interest in FLOSS
benefits, every nation has its own culture and background that influence the approach
of deploying FLOSS.

The USA, for instance, is considered as one of the pioneers in FLOSS growth
and deployment. NASA is one of the organizations that recognized the benefits of
adopting FLOSS, including increased software quality, reduced development costs,
faster development cycles, and reduced barriers to public–private collaboration [1–3].
One can observe that FLOSS deployment at the USA was successful for three main
reasons: Strong R&D contribution from academia and research units; Policies have
been devised to help in the adoption of FLOSS at governmental organizations; a
sustainable ecosystem was created with a well-defined demand and supply chain.

In contrast, France has established an e-government agency by the PrimeMinistry.
This agency has strongly recommended the implementation and encouragement of
FLOSS and open standards. This has led to a wide deployment of FLOSS, mainly in
the public sector. Currently, France is considered as the largest example of a public
administration using open source on workstations [4, 5]. France’s motivation behind
FLOSS adoption was mainly to become independent from proprietary software and
to achieve savings in software licensing costs.

Germany has started early with FLOSS initiatives and has been successful in
both the deployment of FLOSS and the adoption of open standards. One of the
benefits of this deployment was cost saving [6]. It is worth noting that there was a
strong contribution from universities, research units, and the community toward the
sustainability of FLOSS deployment.

On the other hand, Malaysia’s success [7–12] is attributed to a number of reasons
mainly, Establishment of FLOSS Center of Excellence, Launch of important Pilot
Projects, Tripartite Collaboration towards FLOSS ecosystem, Creation of Critical
Mass of FLOSSdemand and supply, Assurance of real Transfer of Technology (ToT),
Establishment of sustainable communities, Formulation of policies to facilitate the
adoption of FLOSS, and Establishment of a “Knowledge Sharing Bank”. The Iranian
experience with FLOSS has targeted localization and a number of research studies
have helped in FLOSS deployment in Iran [13].

Brazil [14, 15] has promoted FLOSS to ensure that citizens have the right to
access public services regardless of the platform they wish to use. In addition, Brazil
was able to save over $120 million per year by switching to FLOSS. Furthermore,
the Brazilian government sought to create business initiatives and opportunities to
bring technology to the poor. Therefore, Brazil success is attributed mainly to the
provision of the policy, laws, sufficient funds, strong support, and R&D projects.

On the other hand, South Africa was one of the countries that faced a few chal-
lenges in the FLOSS deployment plan. In fact, the slow progress of South Africa

122 H. Bourdoucen et al.

in FLOSS deployment could be attributed to the following such as lack of adequate
planning, lack of a realistic implementation strategy, lack of awareness, and lack of
guidance and support.

It appeared from the analysis of the above experiences that sustainability and
consistency of FLOSS deployment require securing funds to finance its projects and
initiatives.

8.2 Status of FLOSS in Oman

To study the local status in Oman, two surveys have been developed. The first inves-
tigates the degree at which FLOSS solutions are being utilized in governmental
organizations and prominent private organizations. We refer to this survey as the
“User Demand Survey”, or UDS. The second survey probes the readiness and will-
ingness of the local Small & Medium Enterprises (SMEs) to develop and support
FLOSS solutions. We refer to this survey as the “Development & Support Survey”,
or (DSS). This section presents a summary of these two surveys, how each survey
was conducted, the process of handling responses, and some of the challenges faced
while conducting them.

The adoption of FLOSS inOman has been successful in both the public and private
sectors. The ITA, for example, took a leading role in FLOSS capacity building by
running short courses and workshops for training and certification. In addition, the
ITA has developed the OeGAF initiative [16, 17] to (1) provide timely and secure
access to essential information, (2) enable smooth integration of government services,
and (3) improve the efficiency of service delivery. The initiative recommends the use
of file formats that are publicly available. This is crucial to prevent vendor lock-in and
to keep documents free of any particular technology or solution. On another front, the
ITA has launched the G-Cloud [18], which is built using FLOSS solutions. Another
program that was successfully launched by ITA is the SaS program for incubating
ICT businesses.

Another example is the experience at Sultan Qaboos University (SQU). The uni-
versity is using the FLOSS solution “Moodle” as a Learning Management System.
Additionally, the curriculum of the Electrical & Computer Engineering program at
the university includes many topics that deal with FLOSS philosophy and develop-
ment.

In the public sector, the Ministry of Education has made outstanding break-
throughs in the curriculum by introducing FLOSS applications and development
environments. Similarly, the Ministry of Health has built a comprehensive solution
for healthcare facility management called Al-Shifa [19], which was developed using
many FLOSS solutions. Furthermore, the Ministry of Commerce and Industry had
launched the online service Invest Easy [20] using FLOSS solutions. Lastly, theRoyal
OmanPolice is also usingFLOSS solutions to develop 80%of its online services [21].

The use of FLOSS is not limited to the public sector only. In fact, many private
companies use FLOSS, Rafed is one example [22].

8 A Free and Libre Open Source Software (FLOSS) Initiative … 123

8.2.1 User Demand Survey (UDS)

The goal of the UDS survey is to determine the extent of FLOSS usage, awareness,
perception, and the potential for FLOSS adoption in the future. As a result, the survey
responses would allow the team to answer the two following questions:

1. “How can organizations and educational institutions adopt FLOSS solutions?”
2. “What are the necessary measures to exploit the benefits of FLOSS solutions?”

The questions in the UDS survey are grouped into five categories:

i. Thefirst category tests the participants’ knowledgeof theFLOSSphilosophy and
benefits. The questions were designed in a way to explore how each participant
perceives FLOSS, and whether he or she had any exposure to FLOSS solutions
in the past.

ii. The second category helps in understanding the requirements of these organi-
zations in terms of their demand for software solutions. This category asks the
participant to identify all software solutions (both FLOSS and PS) that are being
used in the organization. Knowing which FLOSS solutions are used allows us to
measure the current demand for developing FLOSS-customized solutions and
the support for existing ones. On the other hand, knowing about PS solutions is
useful in determining which application domains could be potentially replaced
by FLOSS alternatives in the near future.

iii. The third category of questions is concerned with the type of software licenses
that are procured by the organizations. Some of the software licenses come
in a package that includes installation of software, support and maintenance,
and even training the employees on using the software. Other types of licenses
include either software installation or support. Knowing the most commonly
used type helps in making proper recommendations to SMEs when providing
licensing packages to the target market.
In addition, this category enquires about the allocated budget for purchasing
software, and how that amount is split across installation charges, support, and
training. Unfortunately, most of the participants opted not to answer this ques-
tion. Therefore, the results are not reported.

iv. The fourth category investigates how satisfied are these organizations with the
software solutions that are currently used. Satisfaction is measured through
inquiring about the reliability of the software, vulnerability to attacks, and lack
of certain features that are deemed necessary by the participants.

v. The fifth and last category attempts to measure the readiness and willingness of
the participants to adopt FLOSS solutions in their respective organizations. The
participants are queried about the challenges—that they think—are discouraging
their respective organizations from adopting FLOSS solutions. Furthermore, the
participants are asked to indicate if their colleagues are ready and willing to use
FLOSS solutions.

The survey was conducted by approaching the participants directly through face-
to-face interviews, by phone, or through online surveys.

124 H. Bourdoucen et al.

The results of the UDS survey have pointed out that FLOSS solutions are mainly
used by IT specialists at data centers (servers and database platforms), and rarely
used on personal computers by non-IT individuals.

Figures 8.1 and 8.2 show interesting findings (among other results). Figure 8.1
shows that there is a huge reliance on software vendors in order to customize the
solutions to meet the requirements of the organization. Migrating to FLOSS might
minimize this reliance, leading to an overall reduction in software cost. Similarly,
Fig. 8.2 shows that participants are lacking a few features (e.g., the ability to modify
the code, better protection of data privacy, and more reliable software), which can
be easily acquired when moving to FLOSS. Note that the choices made by the
participants are predefined categories in the survey itself.

A large population of the surveyed organizations has reported low system perfor-
mance and frequent software crashes in their computing systems. FLOSS alternatives
can be offered to these organizations to improve the performance and increase the
stability and reliability of their systems.

On the other hand, Fig. 8.3 reports the challenges associatedwith FLOSS adoption
as reported by the participants. Accordingly, a few countermeasures need to be taken
to overcome such challenges:

(1) More support in terms of capacity building and resources to encourage organi-
zations to adopt FLOSS.

(2) A clear and succinct plan to migrate to FLOSS and integrate it into existing
systems without disrupting the operations of the organization.

(3) Provide more specialized training to support FLOSS solutions.

Based to the reported size of IT staff in the participating organizations, training
these individuals is manageable since the number is relatively small (approx. 80% of
these organizations employ less than 50 IT support staff). In addition, the variation in
the size of IT staff shows that the survey has targeted organizations with different IT
support size, which means that the responses are representative of smaller and larger
organizations. This could mean that the survey is actually a good representation of
the demand in Oman.

Fig. 8.1 Types of technical
support that the organization
receives for software
solutions. [105 Responses]

79%

60%

46%

11%

Assistance in
installaƟon

Support in
customizing SW

Training
employees

No support is
received

8 A Free and Libre Open Source Software (FLOSS) Initiative … 125

70% 68% 65%

52%
45%

2%

Ability to modify & customize SW More reliable soŌware

BeƩer protecƟon of data privacy More affordable SW

Ability to synchronize data to cloud Others

Fig. 8.2 Additional services that the participants would like to have in the software solutions that
they use. [105 Responses]

76%

56%

43% 39%

9%
2%

Lack of skills and resources Lack of experts in FOSS training

IntegraƟon into exisƟng infrastructure Lack of organizaƟon's interest

No real financial benefit Others

Fig. 8.3 Challenges associated with FLOSS adoption. [102 Responses]

8.2.2 Development and Support Survey (DSS)

The UDS survey measures the potential demand for FLOSS solutions. This demand
must be adequately fulfilledwith the proper supply. In this context, the FLOSS supply
is represented by software development and customization,maintenance and support,
and training. Without these components, it is unlikely that the FLOSS deployment
would succeed.

The Development & Support Survey (DSS) was designed to measure the current
supply of FLOSS solutions. In addition, the responses to the survey have provided
us with an estimate of the future supply of FLOSS solutions. The results from the
survey would allow us to identify the shortcomings in the current and future supply.

126 H. Bourdoucen et al.

Therefore, the necessary measures can be devised in order to rectify these shortcom-
ings.

The survey targets software development and support companies in Oman, as
they constitute the main source of the “supply”. The main question that this survey
is trying to answer is “Can software companies in Oman provide/support FLOSS
solutions adequately and in a sustainable manner?”

The questions in the DSS survey were structured as follows:

i. The first set of questions help in gathering general information about the com-
pany, such as the company’s main specialization and how long has it been in
business. In addition, this set enquires about the size of the company in terms
of a total number of employees and the number of software developers. These
questions help in understanding the capacity of the company and its ability to
deliver adequate support whenever needed.

ii. The next set of questions asks the participant to identify all application domains
that the company has provided and supported in the past. The questions require
the participants to choose all the solutions—both FLOSS and PS—that the
company has developed in the past. Answers to these questions would help
in measuring the existing support for FLOSS solutions. At the same time, the
responses will give a clear picture of where the FLOSS support is either lacking
or insufficient for current and future demands.

iii. The third set of questions tries to identify the licensing types that the companies
provide. This would confirm if the licensing schemes provided by these com-
panies are in line with the licenses already adopted and used by the government
and industry.

iv. The fourth set of questions enquires about the company’s own experience in
developingFLOSS solutions.More importantly, one specific question asks about
the challenges that may prohibit the company from using FLOSS in developing
solutions for various application domains. The responses to this set of questions
help in recognizing the difficulties associated with FLOSS development, and
therefore, paving the way for suggesting reasonable measures to overcome such
hurdles.

v. The last question in the survey requests the participants to describe their business
vision, plans, and growth strategy in the future. The answers are a vital indicator
to whether or not these companies are considering FLOSS in their future plans.

From the data analysis, it is noted that most of the existing SMEs are specialized
in software development and provision of services training and different types of
support (Questions set ii). However, when it comes to the company’s staff size most
of them consist of less than 10 employees andmost of SMEs have less than 5 software
developers (Questions set me). It is vital to support these SMEs through initiatives
that allow them to grow in size to be able tomeet themarket’s demand. In addition, the
results show that SMEs have good coverage of their support to application domains.
This is important in order to fulfill a market that varies in its needs and requirements.
However, initiatives need to be devised to encourage these enterprises to reduce their
dependency on PS solutions and adopt FLOSS.

8 A Free and Libre Open Source Software (FLOSS) Initiative … 127

64%

48%

45%

37%License only

License w/ maintenance

License w/ training

License w/ technical support

Fig. 8.4 Types of software license purchased by organizations. [103 Responses]

77%

63%

51%

40%

License w/ technical support

License w/ maintenance

License w/ training

License w/o training, maintenance, or support

Fig. 8.5 Types of software offered by SMEs. [58 Responses]

In terms of licensing, one can detect the resemblance in trend when comparing
Figs. 8.4 and 8.5. This means that the license schemes that SMEs provide are in line
with what organizations acquire.

It is worth noting that the majority of surveyed enterprises have no previous
experience with FLOSS development (only 28% of the respondents have developed
FLOSS solutions). The results also revealed that business opportunities (70% of the
responses), technical assistance, and human resources (42% of the responses) are
the main challenges in adopting FLOSS for product development. To create business
opportunities, there has to be a shift in the demand to lean toward FLOSS solutions.
Similarly, and as discussed before, more initiatives and support need to be provided
to SMEs to encourage them to expand their reliance on FLOSS.

8.3 Proposal for Sustainable FLOSS Deployment Roadmap

This section summarizes the main components of the sustainable FLOSS deploy-
ment roadmap in Oman for the next five years [23, 24]. The components of the
roadmap resulted from (1) an extensive and comprehensive study of the interna-

128 H. Bourdoucen et al.

Vision

Mission

Contribute to Job
creation in ICT

sector

Develop Oman’s Intellectual
Property (IP) and

innovation

Develop skills and
talent pool

Contribute to establishment
of SMEs in ICT sector

Develop and grow
ICT industry

Create sustainable
local FLOSS
community

Lay the cornerstone of self-
reliance and independence from

software vendors’ lock-in

Create entrepreneurship and innovation opportunities in ICT.
Emphasize software security and independence.
Increase commercialization and industry adoption of products and solutions based
on FLOSS technologies.
Contribute in developing ICT knowledge society

Reinforcement
of FLOSS

awareness in
educational and

public
establishments

Capitalize on
human

resource
development in

the FLOSS
technologies

Adoption of
FLOSS in
public and

private sectors

Development of
FLOSS industry

and business
through

entrepreneurship
programs and

fostering
innovation

Propose and
provide

support in
formulating

FLOSS policies
and regulations

Initiatives

D
om

ai
ns

O
bj

ec
tiv

es

To leverage Information and Communication FLOSS Technologies to enhance government
services, enrich businesses, and empower individuals to contribute towards the transformation
of the Sultanate of Oman into a sustainable, independent Knowledge Society.

Fig. 8.6 FLOSS deployment roadmap framework for the next five years

tional experience, (2) the analysis of the local FLOSS status in Oman mined from
the conducted surveys and interviews with different local ICT professionals, and (3)
the exchange of views with external experts. This roadmap consists of a number of
initiatives that resulted from the vision, mission, and objectives of the deployment
plan. These initiatives were classified into a set of five strategic domains constrained
by realistic timeframes (Refer to Fig. 8.6 for the 5-year FLOSS deployment roadmap
framework).

In order to achieve the abovementioned objectives indicated in the figure, a gov-
erning body that sustains, drives, and monitors the implementation of the strategic

8 A Free and Libre Open Source Software (FLOSS) Initiative … 129

domains needs to be established first. This body can be established under the name
of “FLOSS Center of Excellence (FLOSS-CoE)”.

In addition, we have identified five strategic domains. These strategic domains
constitute the basis of the FLOSS deployment roadmap for the coming five years.

These five domains are (refer to Fig. 8.6):

(1) Reinforcement of FLOSS awareness in educational and public establishments.
(2) Capitalize on human resource development in FLOSS technologies.
(3) Adoption of FLOSS in the public and private sectors.
(4) Development of FLOSS industry and business through entrepreneurship pro-

grams and fostering innovation.
(5) Propose and provide support in formulating FLOSS policies and regulations.

8.3.1 FLOSS Center of Excellence

A strategic direction toward a sustainable FLOSS deployment in the public organiza-
tions and private sector is to establish a FLOSS Center of Excellence (FLOSS-CoE).
This center would serve as a national reference for leading, guiding, and assisting
government organizations with deploying FLOSS solutions. In addition, the Cen-
ter will undertake R&D; where it provides direction in the development and use of
FLOSS through information, expertise, and physical infrastructure. Furthermore, it
will facilitate collaboration among public sector, higher education providers, indus-
try/business communities, and even play a leading role in the increase of human
capital development in Oman. Our confidence in the success of FLOSS-CoE is stem-
ming from the fact that many similar FLOSS centers of excellence were implemented
successfully around the world.

The main objectives of FLOSS-CoE are

• Raise awareness on FLOSS importance in public and private sectors and the soci-
ety.

• Promote and implement FLOSS solutions in the public and private sectors.
• Increase the usage of FLOSS in the public and private sectors.
• Formulate policies and guidelines.
• Develop educational/trainingmaterials and coordinatewith concerned institutions.
• Support forming FLOSS communities in industries, government, and educational
sector.

• Conduct and support R&D in FLOSS.
• Work on projects for the public and private sectors.
• Reduce the overall cost of software licensing.

The main goals of the various experiences of FLOSS-CoE implementations were
to lead FLOSS initiatives, promote FLOSS, coordinate R&D, support community,
and service business in general. Generally, the center of excellence is managed by a
director or board of directors from a number of private and public organizations. Its
scope varies widely according to the countries’ visions and objectives.

130 H. Bourdoucen et al.

8.3.2 COE Operation and Funding

As for its operation and funding, a number ofmodelswere adopted in theworld. Some
models opt for governmental operation and funding, through one or a consortium of
few ministries. Some others opt for full control by the private sector.

However, in some cases, a combination of government and private sector may
exist. In this case, a number of different combinations also exist. However, every
adopted model is selected based on the local environment and objectives of FLOSS
Plans for every country.

The establishment of FLOSS-CoE has many benefits to Oman, and therefore, the
model to be adopted needs to respond to the requirements and the objectives of the
5-year plan initiative.

A non-exhaustive list of FLOSS-CoE benefits to Oman are

• Advance learning and innovation skills in ICT and national capacity building.
• Improve security and preserve sovereignty from both strategical and technological
aspects.

• Increase technology operational support and customization.
• Improve market place competition.
• Reduce licensing costs.
• Reduce vendor lock-in.
• Improve knowledge of new ICT technologies and applications.
• Improve information access/social exchange with society.
• Contribute to improving the national impact on the worldwide community.
• Contribute to improving the leading role of the Sultanate of Oman in ICT.
• Contribute to strengthening the position of Oman regionally and globally.

A number of different models for the center of excellence were established world-
wide. However, based on the study and the constraints in the local environment, it
was recommended to establish a FLOSS-CoE to be funded fully (or partially) by the
government (refer to Fig. 8.7 for the model structure). This model fits better the local
environment and responds to sustainable roadmap requirements.

The suggested model will most likely succeed in its mission for the following
reasons:

• It will endure less government bureaucracy and less business influence in operating
CoE.

• It will have independent management to play an efficient role in achieving objec-
tives.

• It will benefit and strengthen R&D in existing universities, colleges, and research
units.

• It will be able to provide technical support in FLOSS for public and private sectors.
• It will facilitate the collaboration between public sector, academia and research
units, and business communities.

• It will foster a local FLOSS Industry.
• It will support the creation and sustainability of FLOSS community.

8 A Free and Libre Open Source Software (FLOSS) Initiative … 131

Fig. 8.7 FLOSS-COE
funded by a number of
ministries

FLOSS-COE

(Enabling
Environment)

Government

(user
community)

R&D
Community

(Universities)

Business
Community

(SMEs)

Demand &
SupplyDemand &

Supply

Commercialization

• It will assess the extent to which the objectives have been actually achieved (zero
measurements will be performed when CoE is established; annual measurements
will be performed and reported to the board).

• It will assure effective FLOSS Transfer of Technology (ToT).
• It will host management that includes diversified competencies to achieve FLOSS-
CoE objectives.

• It will provide training, capacity building, and projects to bring up proficient people
in FLOSS for development and support of products.

• It will reduce the overall license cost.

A proposed governance model for the FLOSS-CoE is presented in Fig. 8.8. In this
case, CoE will be funded by a few ministries, as its scope and benefits cover many
sectors that are distributed at different national levels. It is recommended to involve
a number of ministries and the Supreme Council of Planning in its funding and
governance. The ministries that are proposed to be involved are Ministry of Higher
Education, Ministry of Education, Ministry of Manpower, Ministry of Transport and
Telecommunications, and the Ministry of Finance.

The board of the FLOSS-CoE will consist of the main stakeholders of the FLOSS
initiative, which might include members from:

• Government agencies (Information Technology Authority, Supreme Council of
Planning, Tender board, State Audit Institution, Public Authority for Small and
Medium Enterprises Development)

• FLOSS industry (e.g., leading local ICT companies)
• Private sector (Banks, funds, venture capitalists, and financiers)
• Academic institutions (SQU, MoE, MoHE, and Other educational institutions)
• FLOSS communities (e.g., leading national and international FLOSS vocalists,
proponents, developers, forums, experts, etc.).

The FLOSS-CoE board might be assigned the following tasks:

132 H. Bourdoucen et al.

Fig. 8.8 FLOSS-CoE
suggested governance
model. Funding from few
Ministries (e.g., MHE, MoE
and MoMp, MoTC, MoCI,
SCP, MF, …)

FLOSS-COE

(Enabling
Environment)

R&D
Community

(Universities)

Business
Community

(SMEs)

Board of Directors

CoE Director

• Promote FLOSS industry and business opportunities.
• Approve policies, guidelines, legislation, governance, and standards.
• Publish recommendations and guidelines for the use of FLOSS and best practices.
• Provide advice on FLOSS deployment plans in a given agency and private sector.
• Support FLOSS in entrepreneurship and education programs through incentives.
• Provide coordination and collaboration management/leadership and orchestration
by facilitating requests.

• Suggest FLOSS future research directors and strategic projects at national level.

The CoE staff tasks are (but not limited to the following):

• Create FLOSS awareness.
• Formulate policies and guidelines and facilitate FLOSS certification standards and
programs.

• Conduct and coordinate FLOSS training for advanced and accelerated skills devel-
opment.

• Maintain knowledge bank for sharing information and expertise.
• Provide technical support processes, systems/human resources, R&D, and testing
facilities.

• Provide information, expertise, and physical infrastructure to support FLOSS
deployment.

• Host the FLOSS portal in terms of news, report, case studies, forum for the FLOSS
community, and projects.

Both the FLOSS board and the FLOSS staff will provide advice on FLOSS status,
feedback, assurance of quality, record local obstacles, and publicize future direction
of the initiative to the private sector, civil society, and government.

8 A Free and Libre Open Source Software (FLOSS) Initiative … 133

Given that the ultimate goal of the FLOSS initiative in Oman is to achieve self-
reliance and sustainability of the FLOSS economy, the demand for FLOSS needs
to be fulfilled. The public sector represents one of the major user communities in
Oman. On the other hand, the private sector needs to engage with the FLOSS indus-
try/business community that supplies FLOSS in order to accelerate FLOSS adoption.
This initially requires the establishment of a number of communities; namely, the
public/private sectors using FLOSS and industry/business community producing
FLOSS solutions/services. FLOSS communities by means of smart partnership with
private/public sectors can achieve self-reliance.

8.4 Conclusion

The sustainable deployment roadmap for the next five years, which is presented in
this article, is a result of an extensive and comprehensive study of the international
experience, the analysis of the local FLOSS status inOmanmined from the conducted
surveys, and the interviews with different local ICT professionals.

This roadmap will lay the foundations for launching and developing the local
FLOSS Industry. This evolving industry will contribute to attaining the major objec-
tives of the government, which are centered on job creation, diversification of Oman
economy to reduce the current dependency on oil and providing opportunities to
increase the GDP per capita. This will also contribute toward building a sustainable
knowledge-based economy and bridge digital divides in the Omani society.

The main remarks and findings of the study can be summarized in the following:

• The importance of FLOSS in many aspects, economical, business, security, self-
reliance, and educational issues. A number of examples from around the world
were presented to support this.

• The status of FLOSS inOman,whichwas done for the very first time,will provide a
relative basis to monitor the future deployment process of FLOSS in the Sultanate.

• Being the major driver for any FLOSS deployment initiative, a number of CoE
models were presented. A realistic model is suggested for implementation in
Oman.

• Five deployment domainsweremethodically identifiedwith a number of initiatives
to achieve the set objectives to be driven by the Center of Excellence.

References

1. Open Source Summit 2011, NASA, https://www.nasa.gov/open/source/
2. Open Source Software, NASA, https://code.nasa.gov/
3. GitHub, NASA, https://github.com/nasa

https://www.nasa.gov/open/source/
https://code.nasa.gov/
https://github.com/nasa

134 H. Bourdoucen et al.

4. Open Standards and ITIL Lead to Open Source’, France’s Gendarmerie tells Korean ICT min-
istry, joinup, https://joinup.ec.europa.eu/community/osor/news/open-standards-and-itil-lead-
open-source-frances-gendarmerie-tells-korean-ict-mi

5. French Gendarmerie, Open source desktop lowers TCO by 40%, joinup, https://joinup.ec.
europa.eu/news/french-gendarmerie-open-sou

6. How Munich rejected Steve Ballmer and kicked Microsoft out of the city, Nick
Heath, http://www.techrepublic.com/article/how-munich-rejected-steve-ballmer-and-kicked-
microsoft-out-of-the-city/

7. K. Chamili, Y. Yah Jusoh, J.H. Yahaya, N. Che pa, Selection criteria for open source software
adoption in Malaysia. Asian Trans. Basic Appl. Sci. 02(02) (2012). ATBAS ISSN: 2221-4291

8. Malaysian Public Sector Open Source Software Initiative, Open Source Software
(OSS)—Implementation Guidelines (2008), http://opensource.mampu.gov.my

9. Malaysian Public Sector Open Source Software Initiative, The Malaysian Government Inter-
operability Framework for OSS (MyGIFOSS) (2008), http://opensource.mampu.gov.my

10. Malaysian Public Sector Open Source Software Initiative,Web Application Guidelines (2008),
http://opensource.mampu.gov.my

11. Malaysian Public Sector Open Source Software Initiative, OSS Reference Architecture (2008),
http://opensource.mampu.gov.my

12. N. Binti Mohd Zahri, Open Source: ambitious, comprehensive transformation agenda: the
Malaysian Public Sector OSS Initiative. Presented at the Free and Open Source (FOSC 2013)
Conference, Sultan Qaboos University, Muscat, Sultanate of Oman, 18–19 Feb 2013

13. Xamin Server, http://xamin.ir/
14. E.E. Kim, F/OSS adoption in Brazil: the growth of a national strategy (2005), http://www.

blueoxen.com/research/0000P/
15. M.Mannila, Free andOpen Source software: approaches in Brazil andArgentina (2005), http://

www.uta.fi/hyper/julkaisut/b/mannila-2005.pdf
16. Oman—Government Architecture Framework, Information technology authority, http://www.

ita.gov.om/ITAPortal/Pages/Page.aspx?NID=559&PID=1848&LID=96
17. OeGAF, IRM structures and standards, information technology authority, http://www.ita.gov.

om/ITAPortal/Data/ImgGallery/FID201111195657406/POSTER-3-IRM.pdfX
18. Oman Government Cloud (G-Cloud), Information technology authority, https://www.ita.gov.

om/g-cloud/G-Cloud.aspx
19. Al-Shifa System Oman e-Government Services Portal, http://www.oman.om/wps/wcm/

connect/2a19ffae-ade0-428b-9f7c-b30bdd874882/Al%2BShifa_MoH.pdf?MOD=AJPERES
20. Invest Easy, Invest Easy Portal, Ministry of Commerce & Industry, https://www.business.gov.

om/wps/portal/ecr/about/faq/general
21. Private Communication, Wadee Al-Lawati, IT Projects Manage, Royal Oman Police
22. Rafed Group, http://rafedgroup.com/en/
23. H. Bourdoucen, M. Ould-Khaoua, A. Al Maashri, M. Sarrab, M. Amiri-Kordestani, Free and

Open Source Software (FOSS) initiative: a proposal for deployment roadmap. A report sub-
mitted to the Information Technology Authority (ITA), Nov 2015

24. A. Al Maashri, H. Bourdoucen, M. Ould-Khaoua, M. Sarrab, M. Amiri-Kordestani, F. Al-
Abri, H.F. Al Lawati, F. Al Saidi, K. Al Maawali, The long and inevitable road to FOSS
deployment in Oman: opportunities, challenges, and caveats, in 3rd Free and Open Source
Software Conference (FOSSC), 14–15 Feb 2017 (Invited Talk)

https://joinup.ec.europa.eu/community/osor/news/open-standards-and-itil-lead-open-source-frances-gendarmerie-tells-korean-ict-mi
https://joinup.ec.europa.eu/news/french-gendarmerie-open-sou
http://www.techrepublic.com/article/how-munich-rejected-steve-ballmer-and-kicked-microsoft-out-of-the-city/
http://opensource.mampu.gov.my
http://opensource.mampu.gov.my
http://opensource.mampu.gov.my
http://opensource.mampu.gov.my
http://xamin.ir/
http://www.blueoxen.com/research/0000P/
http://www.uta.fi/hyper/julkaisut/b/mannila-2005.pdf
http://www.ita.gov.om/ITAPortal/Pages/Page.aspx?NID=559&PID=1848&LID=96
http://www.ita.gov.om/ITAPortal/Data/ImgGallery/FID201111195657406/POSTER-3-IRM.pdfX
https://www.ita.gov.om/g-cloud/G-Cloud.aspx
http://www.oman.om/wps/wcm/connect/2a19ffae-ade0-428b-9f7c-b30bdd874882/Al%252BShifa_MoH.pdf%3fMOD%3dAJPERES
https://www.business.gov.om/wps/portal/ecr/about/faq/general
http://rafedgroup.com/en/

Chapter 9
Crowd-Based Methodology of Software
Development in the Internet Era

Huaimin Wang, Gang Yin, Tao Wang and Yue Yu

Abstract In today’s Internet era, software has infiltrated all aspects of people’s
lives, the trend of software-defined everything is essentially unstoppable. The classi-
cal methodologies in software engineering are expected to produce software at a low
cost andwith strong functionality by guiding the development process using industri-
alizationmethods and principles. However, as the complexity of software application
scenarios and operating environments continues to increase, especially in the Internet
era, prominent bottlenecks remain in improving the efficiency and quality of soft-
ware development. Compared to the engineering methods, open source can attract
tens of thousands of contributors to participate in the software creation process. This
methodology is more deferential to each developer’s individuality and aims to create
a liberal, diverse, and democratic environment, thus stimulating the enthusiasm and
creative inspiration of contributors on a large scale and ultimately generating greater
collective wisdom. But the challenges in the diversification of individual interest
concerns, the unevenness of contribution capabilities, and the unpredictable results
of group collaboration make it unable to fully fulfill the tasks of clear and organized
softwaremanufacturing. In this chapter, we propose a crowd-basedmethodology that
integrates the software creation process into the softwaremanufacturing process, link
a small-scale but well-organized core teamwith self-organized but large-scale crowd
contributors, and transform a software opus to products in a timely fashion. Based
on the crowd-based methodology , we design and implement the TRUSTIE environ-

H. Wang (B) · G. Yin · T. Wang · Y. Yu
National Laboratory for Parallel and Distributed Processing, School of Computer,
National University of Defense Technology, Changsha, China
e-mail: hmwang@nudt.edu.cn

G. Yin
e-mail: yingang@nudt.edu.cn

T. Wang
e-mail: taowang2005@nudt.edu.cn

Y. Yu
e-mail: yuyue@nudt.edu.cn

© Springer Nature Singapore Pte Ltd. 2019
B. Fitzgerald et al. (eds.), Towards Engineering Free/Libre Open Source
Software (FLOSS) Ecosystems for Impact and Sustainability,
https://doi.org/10.1007/978-981-13-7099-1_9

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7099-1_9&domain=pdf
mailto:hmwang@nudt.edu.cn
mailto:yingang@nudt.edu.cn
mailto:taowang2005@nudt.edu.cn
mailto:yuyue@nudt.edu.cn
https://doi.org/10.1007/978-981-13-7099-1_9

136 H. Wang et al.

ment to support the construction of software ecosystem. We illustrate the framework
and key technologies and present typical application practices in both proprietary
companies and online communities.

9.1 Introduction

—“I have a good business idea, but need a programmer to implement it!”

The hottest buzzword in information technology today is “software-defined”,
spanning from software-defined networking (SDN), software-defined storage (SDS),
and software-defined data center (SDDC), which are part of a broader trend that peo-
ple might call software-defined everything. Looking around the world, the total mar-
ket capitalization of the top five Internet companies, i.e., Apple, Amazon, Microsoft,
Google, and Facebook, has exceeded 3700 billion U.S. dollars1 in 2018.Mechanical
Turk, AlphaGo, and other breakthrough products have been invented by those com-
panies, directly driving the innovation development of global technology. Software
technology is widely combined with the urgent needs of traditional industries to cre-
ate extremely innovative business services to facilitate our daily life. For example,
when software meets the transportation, Uber is created; when it meets the catering
industry, Yelp is created; when it can be embedded in tangible products, many smart
hardware products are created, e.g., Google Glass and iWatch. It may be hard for
people today to imagine how uncomfortable will be with no software support in their
lives. Similar to the books that carry the text civilization using written language in
the past, various kinds of software have become a new expression of information
civilization in the Internet era.

Definitely, we do not expect that a consummate solution and methodology for
software development can be found overnight. With respect to the development of
computer hardware technology, until today, no software development methodology
can promote software evolution at the same speed (i.e., the development of hard-
ware capabilities is in line with the growth of Moore’s Law [1, 2], while software
technology cannot be guaranteed.

Case of ARM Ecosystem. The ARM ecosystem deeply integrates software with
hardware. In contrast to Intel’s ecosystem which has accumulated its own sophisti-
cated software platforms, the main problem of the construction of ARM ecosystem
is how to transform and optimize various kinds of open source and commercial
software to be better compatible with the ARM hardware in a high efficiency and
quality way, assisting the relating companies in the ARM community in delivering
their products to the market rapidly. However, the transformation and optimization
processes cover almost all software stacks, including the operating system, database,
web applications, and the infrastructures for cloud computing and big data, which
are beyond the capability of traditional methodologies in software engineering.

1https://www.statista.com/statistics/277483/market-value-of-the-largest-internet-companies-
worldwide/.

https://www.statista.com/statistics/277483/market-value-of-the-largest-internet-companies-worldwide/

9 Crowd-Based Methodology of Software … 137

To address the software challenges in the Internet age, we propose crowd-
based software development methodology and its supporting environment called
TRUSTIE. Our main idea is based on the linking viewpoint, i.e., effectively linking
different types of development activities and different types of development collab-
orators to improve the innovation efficiency of the software ecosystem and reduce
the cost, thereby optimizing the business patterns of all stakeholders. The remain-
der of this chapter is organized as follows: Sect. 9.2 introduces the methodology
of TRUSTIE and the key concepts underlying the crowd-based software develop-
ment methodology. Section 9.3 presents the framework and typical algorithms in
TRUSTIE, as well as the related support platform and tools. Section 9.4 describes
the application of TRUSTIE.

9.2 The TRUSTIE Methodology

In this section, we illustrate the classical methodology of software engineering, open
source, and the main idea of crowd-based software development methodology.

9.2.1 Software Engineering and Software Manufacturing

Themain question in software engineering is how to continuously improve the devel-
opment efficiency and software quality. Since the 1960s, software practitioners have
noted that strong challenges have arisen from the backward mode of software pro-
duction. To address the “software crisis” [3], the concept of “software engineering”
[4] was proposed. Practitioners aimed to implement systematic mechanisms to man-
age software developers and development activities in the form of a “project”. This
strategy is expected to produce software at a low cost and with strong functionality
and high quality by guiding the software development process using industrializa-
tion methods and principles. In this concept, there is no essential difference between
software development and industrial activities, e.g., automobile manufacturing, gar-
ment production, and building construction. Both of these broad fields are expected
to achieve increased efficiency through strict and precise task decomposition and
personnel organization.

Under the guidance of this classic concept of software engineering, the academic
and industrial communities have conducted continuous exploration and research
on various aspects, e.g., development methodology, project management, and soft-
ware architecture. These communities have proposed a series of classic methodolo-
gies, e.g., the waterfall model [5], the constructive cost model (COCOMO) [6], and
component-based software engineering (CBSE) [7]. The most representative and
comprehensive methodology is exemplified in the software product lines [8], which
can be summarized in the following three steps: (1) extracting the public structure
and characteristics of specific fields or similar products through domain engineering

138 H. Wang et al.

induction; (2) organizing developers to write code and assemble modules by formu-
lating detailed and strict production plans based on standardized reusable software
assets and the software development life cycle; and (3) building a batch of software
products that meet the needs of specific markets.

In brief, we summarize the software development processes organized by the
industrialization solutions as SoftwareManufacturing, in which the outcome is the
software product or production-ready software. These approaches are very effective
in organizing software development activities with relatively clear and stable targets.
Over the years, such approaches have directly supported the smooth advancement of
a series of technology-intensive projects, e.g., projects in the aerospace and aviation
fields.

However, as the complexity of software application scenarios and operating envi-
ronments continues to increase, the challenge of “no silver bullet” [9] has become
increasingly prominent. Especially in the Internet era, software stakeholders have
changed from small-scale specific groups to large-scale, dynamic, and open Internet
users, leading to the recognition that the software development process is no longer
composed of activities with clear and stable targets. For example, in an open environ-
ment, the requirements of large-scale groups cannot be frozen, i.e., the demands of
users are dynamic. Additionally, in a complex scenario, software testing cannot fully
cover the restricted search space, i.e., the test target is not clear. The software workers
who are struggling on the software production line have also not escaped the chal-
lenges encountered by Chaplin’s character in the film Modern Times. Even though
the overall labor importation and workload of the software workers are maximized,
prominent bottlenecks remain in improving the efficiency and quality.

9.2.2 Open Source and Software Creation

During the period over which other engineering methods have struggled for promi-
nence, OSS has achieved remarkable success after decades of vigorous development.
From the early operating systems of BSD and Linux to today’s smartphone operat-
ing systems (Android), application container engines (Docker), and deep learning
frameworks (TensorFlow), many high-quality OSS has gained more market share
than similar commercial software [10].

Excellent open-source projects can attract tens of thousands of developers to
participate in their development, which represents strong productivity in industrial
production. For example, the Linux kernel has more than 400,000 contributors [11],
while the total number of employees of Microsoft’s multinational technology com-
pany is only approximately 110,000. In the world of open source, the philosophy of
democracy attracts different types of public contributors to continuously contribute
to OSS projects that interest them. The efficient reputation propagation effect moti-
vates top universities and scientific research institutions to release the latest scientific
research results to society in a timely manner. Further, unlimited potential innova-
tion hasmotivatedmore andmore software companies [12, 13] to achieve high-speed

9 Crowd-Based Methodology of Software … 139

growth through the model of open-source development accompanied by a service
payment.

Relative to the standardized and strongly organized engineering methods, the
open-source method is more deferential to each developer’s individuality and aims
to create a liberal, diverse, and democratic environment [14], thus stimulating the
enthusiasm and creative inspiration of contributors on a large scale and ultimately
generating greater collective wisdom [15]. We call the OSS development process
Software Creation, which is very similar to the process of creating artwork. There-
fore, we refer to the software artifacts created during the creative process as the soft-
ware opus, which is akin toworks of art. On the one hand, in the context of ambiguous
open issues (e.g., the requirement elicitation for innovative software), some unex-
pected solutions or so-called “killer applications” can be generated from the software
creation process because of the inspirations of individuals or the swarm intelligence
of crowd. On the other hand, challenges in the diversification of individual interest
concerns, the unevenness of contribution capabilities, and the unpredictable results
of group collaboration make this process unable to fully fulfill the tasks of clear and
organized software production.

9.2.3 Crowd-Based Methodology

In today’s Internet era, software has infiltrated all aspects of people’s lives, and the
wave of Software-Defined Everything (SDE) is essentially unstoppable. The unremit-
ting progress made in the areas of engineering methods and open-source method-
ologies has made people see the daylight of fundamentally breaking through the
bottleneck faced by software development, as discussed in Brooks’s “The Mythical
Man-Month” in 1975. When we rethink all kinds of software development activi-
ties, the concepts of “software manufacturing” and “software creation” are thought-
provoking. If we compare software development to automotive manufacturing, the
engineering methodology represented by the software production activities is sim-
ilar to the assembly line for Ford or Toyota automobiles. This process splits the
phase of atomization of software development activities (e.g., in the waterfall model,
the life cycle of software development is divided into six basic activities: planning,
demand analysis, software design, programming, software testing, and operation
and maintenance). Through advanced production and management processes (e.g.,
the organizational model of the company), software development has grown from a
small, personal programming workshop (PROG workshop) to a large group that can
support hundreds or even thousands of large-scale collaborations (software bloc).

However, operating software in a virtual space is not identical to other labor-
intensive industrial products, e.g., automobiles. When the technical barriers to the
underlying infrastructure (e.g., storage or CPU speed) are broken, the large-scale
mass production and transmission costs of mature software products are almost zero
(e.g., copying CDs or hard disks). Consequently, in the field of software develop-
ment, the advantages of scalable replication, the most significant improvement in

140 H. Wang et al.

Fig. 9.1 The crowd-based
methodology model

industrial production efficiency, have been greatly reduced. As the demand for new
software features continues to grow, the bottlenecks faced by software developers
are increasingly focused on software creation and the transition from creation to
production.

At this point, the high degree of decomposition of the development process and
the isolation in the collaboration of the development groups have not only failed to
improve the efficiency of software creation but also limited the scope of software
creation to a certain extent. In contrast, the open-source method, at the other end
of the scale, can fully create the atmosphere and environment needed for software
creation activities. For popular OSS, the development process seems to be similar to
global car enthusiasts participating in the design of a certain concept car, which is an
extremely effective strategy for innovation. However, open source has always been
organized by loose mechanisms, which has led to a large number of metaphorical
open-source concept cars unable to smoothly exit the software “Utopia” on time.

Building on the progress of previous innovators, we suggest that immediate reme-
dies to software development barriers can be found in the above two types of pro-
cesses, i.e., software manufacturing and software creation. Currently, developers are
seeking an intermediate path between these two processes, e.g., the Agile develop-
ment evolved gradually from the engineeringmethod and theDevOps booming in the
open-source world. From our perspective, the new software development methodol-
ogy should integrate the software creation process into the software manufacturing
process, and link a small-scale but well-organized core team with self-organized but
large-scale crowd contributors.

When the goals are not clear, the “core” coordinates the “crowd” to achieve cre-
ative work efficiently, and after the goal is finalized, the “core” organizes the “crowd”
to produce software products or transform a software opus to products in a timely
fashion. We call this method the crowd-based methodology of software develop-
ment. The essence of this crowd-based methodology consists of three essential and
interconnected elements: crowd collaboration, open resource sharing, and continuous
evaluation, as shown in Fig. 9.1.

9 Crowd-Based Methodology of Software … 141

9.3 Key Technologies of Crowd-Based Methodology

In this section, we present the key technologies of crowd-based methodology in
TRUSTIE, including crowd collaboration, open resource sharing, and continuous
evaluation.

9.3.1 Crowd Collaboration

Crowd collaboration in an open-source ecosystem is based on the onion structure
[16]. For a project team, such a structure consists of a small but strongly organized
core team and a large scale but unorganized peripheral contributors. To keep the
onion structure productive, various aspects are involved, including collaboration
between developers, the connection of developers and development tasks, and the
management of the development process. Figure 9.2 shows that multiple potential
collaboration approaches exist among developers, such as @-mention and follow in
GitHub. The developers can submit pull requests (PRs) or commits for collaboration
between developers and development tasks.All of these approaches together promote
collaboration in the deployment process.

Collaboration between developers. Many studies have proposed that social media
tools can promote collaboration among developers, which is beneficial to software
development. We used a mixed method, i.e., combining qualitative and quantitative
analysis, to provide an in-depth understanding of how@-mention is used in GitHub
issues and its role in assisting software development. Our statistical results indicate
that @-mention attracts more participants and tends to be used to address more chal-
lenging issues. @-mention favors the solution of issues by enlarging the visibility of
issues and facilitating developer collaboration. Our study also builds an @-network,

Fig. 9.2 Model of crowd
collaboration in distributed
software development

142 H. Wang et al.

Fig. 9.3 @-network (left) and follow-network (right) in GitHub

as shown in Fig. 9.3 based on the @-mention database we extracted. Through the
@-network, we investigate the evolution of the process over time and prove that
we have the potential to mine the relationships and characteristics of developers by
exploiting knowledge from the @-network.

The social coding paradigm has reshaped the distributed software development
with surprising speed in recent years. GitHub, a remarkable social coding commu-
nity, has attracted a huge number of developers in a short time. Various types of social
network are formed based on social activities among developers. To determine why
this new paradigm can achieve such great success in attracting external develop-
ers and how they are connected in such a massive community, we first compare
the growth curves of projects and users in GitHub in three traditional OSS com-
munities to explore the differences between their growth modes. We find explosive
growth in the number of users in GitHub and introduce the diffusion of innovation
theory to illustrate the intrinsic sociological basis of this phenomenon. Second, we
construct follow-networks, as shown in Fig. 9.3, according to the follow behaviors
among developers in GitHub. Finally, we present four typical social behavior pat-
terns bymining follow-networks containing the independence pattern, group pattern,
star pattern, and hub pattern. This study can provide several instructions for crowd
collaboration to newcomers. Based on the typical behavior patterns, the community
manager can design corresponding assistive tools for developers.

Connecting developers and tasks. The PR is the primary model for collabora-
tive code contribution and aggregation between the core team and peripheral crowds
in GitHub. To maintain the quality of software projects, PR review is an essential
part of distributed software development. Assigning new PRs to appropriate review-
ers makes the review process more effective, which can reduce the time between
the submission of a PR and its actual review. However, the reviewer assignment
is then organized manually in GitHub. To reduce this cost, we propose a reviewer
recommender to predict highly relevant reviewers of incoming PRs. By combining

9 Crowd-Based Methodology of Software … 143

information retrieval with social network analysis, our approach takes full advantage
of the textual semantic of PRs and the social relations of developers. We implement
an online system to show how the reviewer recommender helps project managers
find potential reviewers from crowds. Our approach can reach a precision of 74%
for top-1 recommendation and a recall of 71% for top-10 recommendations.

The continuous participation and contribution of the crowd are key factors for the
success of open-source projects. However, given the massive number of competitors,
it is difficult for a project to attract enough contributors by just passively waiting
for enthusiasts to join in. Instead, the project should actively seek gifted develop-
ers. Most current studies have mainly focused on recommending experts inside a
repository for some specific development tasks. To solve this problem, we propose
the novel approach ConRec to recommend potential contributors across the entire
open-source community for given projects. This approach leverages the developers’
historical activities in projects to analyze their technical interests and technical con-
nections with others. Thereafter, it combines a collaborative filtering algorithm with
a text-matching algorithm to recommend proper developers. We conducted exten-
sive experiments related to 5995 open-source projects and 2,938,620 developers in
GitHub. The results show that the proposed algorithm can recommend contributors
to open-source projects with the best performance of 63% in accuracy and solve the
cold start problem as well.

Development process management. As an important approach in DevOps, con-
tinuous deployment aims to automate the delivery and deployment of a software
product following any changes to its code. If properly implemented, continuous
deployment, together with other automation steps implemented in the development
process, can bring numerous benefits, including higher control and flexibility over
release schedules, lower risks, fewer defects, and the easier onboarding of new devel-
opers. We conducted a mixed-method study to shed light on developers’ experiences
and expectations with continuous deployment workflows. Starting from a survey,
we explore the motivations, specific workflows, needs, and barriers with continuous
deployment.Wefind two prominentworkflows based on the automated build features
on Docker Hub or continuous integration services, with different trade-offs.

9.3.2 Open Resource Sharing

OSS community ecosystems (OCEs) can be seen as a complex network of resources
from around the open-source community, including related open source projects,
open source products, open source organizations, open-source developers, and users.
OCEs have accumulated massive resources, and new resources are constantly being
generated. These resources come in a variety of forms, including software artifacts
(e.g., code snippets, and libraries), development documents (e.g., bug reports, design
specifications), and behavioral data (e.g., review discussions, social communica-
tions). Open-source developers try to share these resources with the whole ecosys-
tem as much as possible to obtain feedback (including criticism) and increase the

144 H. Wang et al.

Fig. 9.4 Open resource-sharing pipeline

Fig. 9.5 Structure and types of collected OCE data

reuse rate of these resources. As shown in Fig. 9.4, to facilitate this process and fully
explore the value of these resources, we propose an open resource-sharing pipeline
consisting of three steps: open resource aggregation, open resource organization, and
open resource reuse.

Open resource aggregation. As shown in Fig. 9.5, diverse resources such as
software artifacts, historical process data, issue reports, and feature requests are
produced and distributed dispersedly over various communitieswith the development
of OCEs. To automatically and continuously aggregate such massive and diverse
resources, we designed an aggregation system of high robustness, efficiency, and
flexibility. The aggregation system consists of two processes: resource acquisition
and resource bridging.

Resource acquisition. We use official APIs provided by open-source communi-
ties and web crawlers to obtain raw resources. Data crawling usually contains two
interdependent processes, that is, crawling the raw web pages and extracting their
attributes.However, direct extraction after crawling is not a suitable choice for rapidly
changing and growing OCEs. To make the aggregation system acquire high quality

9 Crowd-Based Methodology of Software … 145

and complete data, the system is designed with three stages: raw resource crawling,
structured information extraction, and final data verification. These three stages are
connected by the data flow and decoupled from the message queue and database.
Their working state and interaction record are stored in case of exception or errors.
Under this design, we can simply improve and restart any individual broken module
without affecting and restarting other running modules.

Moreover, due to the various types of resources existing in OCEs, we make the
aggregation system dynamically modifiable with external configuration files, which
define the rules to generate initial page links, extraction templates, and verification
specifications, among other possibilities. This approach provides a plugin-based fea-
ture to adapt to the resource diversity, and the only effort required to include a new
type of resource is simply to write a new configure file; the source code remains
unchanged. In summary, we have collected a broad variety of OCE resources of a
wide range of types. The collected data currently cover nearly 20 well-known open-
source sites, containing more than 14.2 million projects and 14.62 million posts.

Resource bridging. In spite of the diversity of OCE resources, open resources
mainly exist in two types of communities: collaborative development communities
(e.g., GitHub, Oschina) and knowledge-sharing communities (e.g., Stack Overflow,
CSDN). The former resource type contains structured software artifacts, while the
latter mostly contains textual posts. These two types of communities complement
each other, and bridging them can expand the application value of OCE resources.
While the bridging can be seen as a classification of posts to software projects, a
conventional supervised ML-based classification algorithm cannot be applied due
to the lack of training sets. Therefore, we use a text-matching method to solve this
problem. We first extract the common attributes from different sources and define
a uniform structure for each type of community. Two sets of resources are then
integrated: posts and projects. Given a post, its title, tags, and content are matched
with the name of a project, and each type of match is assigned a separate score.
Finally, the match score between a post and a project is taken as the sum of these
separate match scores with different weights.

Open resource organization. It is important to understand the collected resources
before we can truly use them. An appropriate model and organization of open
resources can lead to efficient and effective application.

Categorization-oriented organization. Categorization is considered to be an effi-
cient way to manage information from large-scale data repositories. This approach
clusters resources according to their topics and is quite useful for browsing and
retrieving resources with similar functions. We propose a hierarchical repository of
software features, which is an ideal technique to categorize software resources to
support resource organization with flexible granularity. First, we extract a massive
number of feature descriptions from online software profiles and mine their hid-
den semantic structure by a probabilistic topic model. Then, we present an improved
agglomerative hierarchical clustering algorithm, seamlessly integrated with the topic
model, to build the feature ontology.

Tagging is another popular and powerful mechanism for categorizing resources.
To uncover the hidden semantics among tags, we attempt to induce an ontology-

146 H. Wang et al.

like taxonomy from tags. Specifically, we propose an agglomerative hierarchical
clustering framework that relies only on how similar any two tags are. We enhance
our framework by integrating it with a topic model to capture thematic correlations
among tags. However, a severe problem for the current tagging systems in OCE is tag
insufficiency. Consequently, we propose tag recommendation based on a semantic
graph (TRG), a novel approach to discover and enrich tags of OSS. First, we propose
a semantic graph to model the semantic correlations between tags and the words in
software descriptions. Then, based on this graph, we design an effective algorithm
to recommend tags for software.

Link-oriented organization. Although the two types of open-source communi-
ties emphasize different aspects of OCEs, they are highly correlated and mutually
complementary because they overlap with each other by containing shared partic-
ipants and issues. To mine the potential value in the two types of communities, it
is necessary to reveal the associations between them and link them for knowledge
sharing. For example, to explore hidden links between Android Issue Tracker and
Stack Overflow, we focus on two factors: text similarity and temporal correlation.
Intuitively, two related threads in different communities are more likely to have sim-
ilar descriptions and discussion texts and arise in the same short period of time,
which can be seen as a type of temporal locality. Based on this intuitive result, we
propose an approach that combines semantic similarity with the temporal locality to
link correlated threads across communities.

Moreover, social coding facilitates the sharing of ideas within and between
projects in an OCE. Bug fixing and triaging, in particular, are aided by linking
issues in one project to potentially related issues within it or in other projects in the
ecosystem. We present a mixed-method study of the relationship between the prac-
tice of issue linking and issue resolution in the Rails OCE. Using a qualitative study
of issue linking, we identify a discrete set of linking outcomes together with their
coarse-grained effects on issue resolution. We use these findings to guide our quan-
titative modeling study of patterns in developer linking within and across projects,
from a large-scale dataset of issues in Rails and its satellite projects. We find that
Rails OCE developers tend to contribute most of their work within the ecosystem but
that the distribution of the work across projects varies. Furthermore, using models of
issue resolution latency, when controlled for various attributes, we find no evidence
that linking across projects retards issue resolution.

Open resource reuse. Open-source resources are generated by the crowd; in turn,
they serve the crowd and link the ecosystem. The most common way to reuse shared
resources is by searching or recommendation.

Crowd-based search. Global open-source resources have become an Internet-
scale repository that provides abundant resources for software reuse. However, how
to locate the desired resource efficiently and accurately from such a large amount is
a challenging problem. To solve this problem, we propose a prototype search engine
that leverages the crowdwisdom to optimize the search result ranking. The number of
times a software project was discussed by the crowd in various communities reflects
its influence, and we treat the crowd discussions as an important ranking factor.
For a user query that is formulated to find reusable software resources, we consider

9 Crowd-Based Methodology of Software … 147

the semantic similarities between the query, the indexed resources and the crowd
discussion popularity of the resources, and we compute a combined ranking score.
Finally, we return the resources that obtain the highest combined ranking score.

Multifeature-based recommendation. Due to the transparency and openness of
OCEs, a large number of external contributors are attracted to open-source develop-
ment. The massive numbers of developers are driven by an interest in participating in
specific development tasks. They have different personality traits, educational back-
grounds, and expertise levels. Therefore, a personalized recommendation service
may be helpful to reduce developers’ time and effort in reusing proper and interesting
projects. Therefore, we also propose an active recommendation approach to recom-
mend resources for developers based on multidimensional features. We model the
potential correlations between developers and open-source projects from three dif-
ferent dimensions: the popularity of projects, technical dependency among projects,
and social association among developers. We aggregate the three dimensions of fea-
tures with a linear combination and a learning-to-rank approach. Subsequently, the
aggregated score is used to rank and recommend the top-K candidates.

9.3.3 Continuous Evaluation

The trustworthy software has attracted public attention in the area of software quality.
Among the classic automation methods and engineering methods, software quality
assurance is mainly achieved through formal verification and software testing. These
methods have high costs and are mainly used for objective quality analysis. How-
ever, these methods ignore the subjective evaluation of contributors in crowd-based
development activities, which presents challenges in adapting these methods to the
continuous evaluation of software with changing requirements.

In an open-source ecosystem, a large amount of process data is produced through
software development, which presents a large scale, diverse types, rapid growth, and
rich content of big data. There are rich subjective feedbacks such as user requirements
and evaluations. The process data, which form a complete chain of evidence from the
requirement specification to the software code, constitute a new and important source
of evidence for the analysis of software trustworthiness. Facing the new changes of
an open-source ecosystem, we conduct evaluation works for projects, development
tasks, developers, and issues.

Evaluation of resources. The amount of software in the open-source ecosystem
is increasing more and more rapidly. Such a huge amount of OSS makes the rapid
evaluation of software a necessary skill for developers. However, conventional meth-
ods have high costs and sometimes conflict with developer experience. We present a
method to evaluate projects based on crowd feedback. To achieve this goal, we first
combine all software information from different communities and then bridge them
with posts from StackOverflow, which provides feedback regarding the software. In
the process of connecting software production communities, we filter the duplica-
tive projects, build a list of software and integrate all of their information. Then, we

148 H. Wang et al.

bridge software with posts from StackOverflow, and we link feedback with software
by keywords and other descriptions. Finally, we evaluate the popularity of software
by the number of linked posts, view count, and up-vote scores of these posts.

Evaluation of project. The integration and automation of the software develop-
ment process have been key concerns in software engineering.Weuse large, historical
data on process metrics and outcomes of GitHub projects to discern the effects of one
specific innovation in process automation: continuous integration. We explore the
impact of CI on software quality and the productivity of teams. We gather research
metrics from three dimensions that are known to affect the rate of growth of projects’
source base and the quality thereof: (a) the project attribute dimension (e.g., the
project age, the project size, and whether the project uses CI), (b) the project popu-
larity dimension (e.g., the number of forks and stars), and (c) the project development
activity dimension (e.g., the numbers of opened issues and PRs and the numbers of
merged and rejected PRs). By controlling for several known factors that affect the
productivity and quality, we aim to discern the effects of CI. Then, we use multiple
regression modeling to describe the relationship between a set of explanatory vari-
ables (predictors, e.g., usage of CI) and a response (outcome, e.g., number of bugs
reported per unit time). Our findings clearly show the benefits of CI: more PRs get
processed. Moreover, this increased productivity does not appear to be gained at the
expense of quality.

Moreover, the open-source ecosystem presents extreme openness for developers
to contribute, such as reporting issues. The extremeopenness poses a severe challenge
for the core team in project maintenance. Illustrated by the case of the issue tracker
system (ITS), in large-scale projects, many undesirable and vague issue reports are
submitted by external contributors (e.g., asking questions) because of their reluctance
to spend adequate time to read and comprehend the contribution guidelines, which
provide details on reporting an issue in a high-quality way and the type of issue
that the project prefers to address. Thus, issue evaluation is a labor-intensive and
time-consuming task for project managers. Furthermore, the core team members
have to provide rapid responses and resolve the incoming issues in time to sustain
the passion of external contributors. To help managers quickly evaluate whether
the issue reports are a bug or not, we present a two-stage classifier framework to
combine textual summary information and developer information that uses automatic
classification techniques. The first stage extracts the probability of bug-prone and
perplexity information of sentences for each issue from the free text, and in the
second stage, some structured features about contributors who submit issue reports
are provided, which can be expected to improve the performance of classification.

Evaluation of developers. Currently, more developers are adopting collaborative
development models (e.g., pull-based model) in OCEs. The openness and conve-
nience of such collaborative models reduce the contribution entries and promote
developer enthusiasm. However, in a large OCE, the high volume of incoming con-
tributions poses a severe challenge to project integrators who must review the con-
tributions’ quality. We first explore which factors affect the contribution evaluation
latency in GitHub. We extract four indicators from the perspective of personal rela-
tions, namely, the submitter’s success rate, whether the submitter is an integrator, the

9 Crowd-Based Methodology of Software … 149

strength of social connection and the total number of GitHub developers following
the submitter. Using regression modeling on sampled data, we find that these fac-
tors, including the submitter’s track record, reputation, and social connection with
project members, are highly significant. Contributions submitted by the core team
members and contributors with more followers, more ties to project integrators, and
higher previous PR success rates are associated with shorter evaluation latencies. In
other words, open-source projects prefer a useful contribution from a well known
and trusted contributor.

Furthermore, we aim to recommend appropriate reviewers to reduce the time
between the submission of a contribution and its actual review. The two key concepts
of our approach focus on the textual semantic of contributions and the social relations
of contributors.

• The expertise of a reviewer can be learned from the reviewer’s PR-commenting
history. For a newly received PR, the developers who have commented on similar
PRs frequently in the past are suitable candidates to review the new one.

• Common interests among developers can be measured by social relations between
contributors and reviewers in historical PRs. Developers who share more com-
mon interests with the contributor are appropriate reviewers of that contributor’s
incoming PRs.

As a result, we first propose a novel approach to construct comment networks by
mining historical comment traces. Based on the comment network and information
retrieval technologies, we predict highly relevant reviewers for incoming PRs.

9.4 TRUSTIE Environment

Based on the crowd methodology and the key technologies, we designed and imple-
mented TRUSTIE (Trustworthy software tools and Integration Environment) to
support the modeling and construction of an open-source ecosystem. In this section,
we give a brief instruction of the TRUSTIE architecture, and then present the typical
support for ecosystem construction.

9.4.1 TRUSTIE Architecture

The core goal of TRUSTIE is to help form an open-source community ecosystem
that connects diverse stakeholders to collaborate together in a community for contin-
uous innovation and benefit. To this end, we built the TRUSTIE platform, which is
composed of three levels: the data management infrastructure, the key technologies
and mechanisms, and subsystems and services. The detailed architecture is shown
in Fig. 9.6.

150 H. Wang et al.

Fig. 9.6 Continuous evaluation of developers, projects and resources

Data management infrastructure: The construction and evolution of an open-
source ecosystem is a data-driven process that also generates rich data. The data
management infrastructure is in charge of data storage and providing a data access
interface for upper levels. From the view of the source, there are mainly two types
of data: the first is the data generated in the TRUSTIE community, such as project
development data and user feedback, which are critical for guiding the construction
and evolution of the OSS community ecosystem, and the second is the data collected
from the Internet, such as the open-source application community and development
community data, which provide reusable resources and empirical guidance.

Key technologies. The crowd-based methodology is the core and essence of
TRUSTIE, which is supported by three groups of key technologies. Crowd collab-
oration technologies help extend the emphasis from only “professional-developer-
centered” to “diverse-crowd-driven” and connect the small core team with large
peripheral crowds for effective collaboration. Open resource-sharing technologies
help transfer the “fragmented and disorderly” raw resources to “aggregated and
ordered” ones and promote the effectiveness of resource sharing in and among
teams.Continuous evaluation technologies transfer the traditional “static and single-
dimension” analysis to the “dynamic and multidimensional” measure and evaluate
the entities in the ecosystem continuously.

9 Crowd-Based Methodology of Software … 151

Systems and services. Driven by the key technologies, TRUSTIE was used to
design and implement three subsystems that focus on various aspects of OCE con-
struction and evolution. The crowd-based learning platform focuses on the profes-
sional development of developers in the ecosystem. This platform provides channels
to introduce the incoming crowds and resources in the OSS community into a tradi-
tional classroom and to connect curriculum learning with standard project practices
to help individuals develop their skills and prompt them to engage in OCE. The open
resource-sharing platform collects and introduces Internet-scale external resources
to the enclosed organizations and provides various channels such as resource retrieval
and recommendation for effective resource sharing in and among teams. The crowd-
based collaborative development system designs and embeds various mechanisms
and services such as a development forum, processmanagement, and code evaluation
to connect the core team and peripheral crowds for software development.

9.4.2 Typical Support for Ecosystem Construction

The key factor for the construction and evolution of the OSS community ecosys-
tem is “connection”. The essence of crowd methodology is also “connection”. This
methodology emphasizes three types of connections and transformations: (1) con-
necting the peripheral crowds with the core team; (2) connecting crowd creation with
business production activities; and (3) transforming the opuses created by crowds to
the products managed by the core team. Figure 9.7 presents typical examples of the
TRUSTIE support for such connections.

Connection between the core teamand peripheral crowds: TRUSTIE incorporates
various channels for connecting the core team and peripheral crowds. For example,

Fig. 9.7 TRUSTIE architecture

152 H. Wang et al.

the discussion module is embedded in all three subsystems, which provides a con-
venient way for participants to communicate and form a micro-community. The
task assignment mechanism connects them through tasks, and the resource-sharing
mechanism connects them through resources.

Connection and transformation between creation and production: TRUSTIE
opens both the project source code and the development process to the core team
and peripheral crowds, providing corresponding mechanisms to connect the crowds’
creation with business production. The crowds can express their requirements or
comments (innovation) freely in TRUSTIE, and the core team can then be inspired
to arrange corresponding tasks in the development plan (task). The crowds with nec-
essary skills can also realize the innovations into source code (innovation realization)
and submit the results to the core team, and the core team can merge the crowds’
contributions into the product after reviews, or they can assign the task to the proper
developer to implement (task implementation). The crowds can obtain and experi-
ence the product and share their feedback (use and feedback), and a large amount of
feedback provides valuable evidence to rank and recommend reusable resources for
software production.

Connection and transformation between opus and product: The outcome of crowd
creation can be viewed as a type of opus that is inspiration-driven, and the outcome
of business production is a type of product that is market-requirement-oriented.
In the process of the connection and transformation between crowd creation and
business production, opuses such as crowd innovation, code snippets, and feedback
are connected and transformed into corresponding products such as development
tasks, product code and reusable resources.

9.5 Application Scenarios

There have been many successful applications and practices based on crowd-based
methodology, demonstrating the effectiveness of this approach. We briefly introduce
two typical cases: practices in software companies and practices in online commu-
nities.

9.5.1 Practices in Software Companies

Neusoft is oneof the leading IT solution and service providers inChina.This company
facesmany challenges in increasing productivity due to its large volumeof employees
such as the reuse of company assets, cross-team collaboration, shortening of the
development cycle, reduction of costs, and reduction of defect rates.

To consolidate the Neusoft production platform, we provide a new software
development environment named TRUSTIE CDE that is based on the crowd-based
methodology. This platform takes advantage of themechanisms of the crowdmethod:

9 Crowd-Based Methodology of Software … 153

Table 9.1 Practical examination of the enhanced platform

Exp. scale Exp. domain Reuse rate Collaboration
efficiency

Rate of defect
reduce

Exp. 1 • 300 persons
• 507 man
months

• 8 projects

Application
software
A: Health
insurance
B: Health
information

↑70% ↑65% ↓31.5% for A
↓35.4% for B

Exp. 2 • 100 persons
• 6 projects

Application
software
Tax

↑20% ↑45.69% ↓20%

Exp. 3 • 400 persons
• 60 months

Application
software
Navigation

↑121
components in
11 categories

↑63.64% ↓18.7%

Exp. 4 • 261 persons
• 6 projects
• 12 months

Application
software
E-Government

326 software
resources

↑41% for
design
↑24.5% for
coding

↓17.2% for
requirement
↓17.8% for
design
↓16.9% for
coding

Exp. 5 • Millions of
LOC in
projects

• 36 months

Infrastructure
software
Cloud
computing

↑20% ↑30% ↓25%

the large-scale sharing of assets, cross-team collaboration, flexible production lines,
and user feedback tracking. These mechanisms integrate collective wisdom to help
the core teams in Neusoft make effective decisions. Several experiments have been
conducted on more than 20 large software projects to examine the effect of the new
platform. As shown in Table 9.1, we find that the crowd methodology can signifi-
cantly improve the reuse rate, collaboration efficiency, and software quality in these
projects.

9.5.2 Practices in Online Communities

Based on the crowd methodology, TRUSTIE fosters prosperous online communities
centered around open sharing and collaborative development, as shown in Fig. 9.8.
This framework has become a well-known software development and innovation
ecosystem in China.

Currently, there are more than 3,900,000 projects and 14,200,000 posts in
resource-sharing services, as shown in Fig. 9.9a. The data are collected from the
most popular open-source communities and knowledge-sharing communities all over

154 H. Wang et al.

Fig. 9.8 Three types of connections and transformation in TRUSTIE

the world. TRUSTIE analyses and connects the large-scale data entities in different
communities and then provides searching, evaluation and ranking services for OSS.
Also, there are more than 52,000 users, 6800 repositories, and 2100 online software-
engineering-related classes hosted in TRUSTIE. The typical user interface of a code
repository is shown in Fig. 9.9(b).

9.6 Conclusion

In the Internet era, our daily lives have been redefined by software-driven technolo-
gies. Driven by massive decentralized crowds, OSS has achieved unprecedented
success without strict centralized control. We study the core mechanisms behind the
rapid development of OSS comprehensively and compare its development patterns
with those of traditional software engineering approaches.Wepropose a crowd-based
methodology to bridge the two paradigms of engineering and crowd wisdom meth-
ods, which enables crowd-oriented collaboration among internal development teams
and external crowds by combining software innovation and software manufacturing.

The crowd-based methodology consists of three important components: crowd
collaboration, open resource sharing, and continuous evaluation. Based on the crowd-
based methodology, we built the TRUSTIE environment, which embeds multiple
technologies and mechanisms to support the modeling and construction of the OSS
community ecosystem. Over nearly ten years of evolution, TRUSTIE has enabled the
formation of three typical and interconnected communities for crowd learning, open
sharing, and collaborative development. The practices in software companies and

9 Crowd-Based Methodology of Software … 155

(a) Open sharing community

(b) Collaborative development community

Fig. 9.9 The online communities in TRUSTIE. a Open sharing community. b Collaborative devel-
opment community

156 H. Wang et al.

communities show that the crowd-based methodology and the TRUSTIE environ-
ment can strongly support ecosystemmodeling and construction andbring substantial
benefits to practical research institutions and business enterprises.

References

1. G.E. Moore, Cramming more components onto integrated circuits. IEEE Solid-State Circuits
Soc. Newsl. 20.3, 33–35 (2006). Reprinted from Electronics, vol. 38, no 8, pp. 114 ff, 19 Apr
1965

2. G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85
(1998)

3. P. Naur, R. Brian (eds.), Software engineering: Report on a conference sponsored by the NATO
SCIENCE COMMITTEE, Garmisch, Germany, 7th to 11th October 1968. Nato (1969)

4. R.S. Pressman, Software Engineering: A Practitioner’s Approach (Palgrave Macmillan, Lon-
don, 2005)

5. W.W. Royce, Managing the development of large software systems: concepts and techniques,
in Proceedings of the 9th International Conference on Software Engineering (IEEE Computer
Society Press, 1987)

6. B.W. Boehm, Software Engineering Economics, vol. 197 (Prentice-Hall, Englewood Cliffs
(NJ), 1981)

7. R. Niekamp, Software Component Architecture (Gestión de Congresos-CIMNE/Institute for
Scientific Computing, TU Braunschweig, 2005)

8. P. Clements, N. Linda, Software Product Lines (Addison-Wesley, Boston, 2002)
9. F. Brooks, H.J. Kugler, No Silver Bullet (1987)
10. B.D. Software, N. Bridge, Future of Open Source Survey Results (2015)
11. M. Zhou, Q. Chen, A. Mockus, F. Wu, On the scalability of Linux kernel maintainers’ work,

in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering and
(ESEC/FSE 2017) (ACM, New York, NY, USA, 2017), pp. 27–37

12. M. Zhou, A. Mockus, X. Ma, L. Zhang, H. Mei, Inflow and retention in OSS communities
with commercial involvement: a case study of three hybrid projects. ACM Trans. Softw. Eng.
Methodol. (TOSEM) 25(2), 13 (2016)

13. E. Kalliamvakou, D. Damian, K. Blincoe et al., Open source-style collaborative development
practices in commercial projects using GitHub, in ICSE (2015), pp. 574–585

14. D. Rushkoff, Open Source Democracy: How Online Communication is Changing Offline Pol-
itics, vol. 10753 (Demos, 2003)

15. J. Surowiecki, Thewisdomof crowds:why themany are smarter than the fewand howcollective
wisdom shapes business. Economies, Societies and Nations 296 (2004)

16. Y.W. Ye, K. Kishida, Toward an understanding of the motivation of open source software
developers, in Proceedings of 25th International Conference on Software Engineering (2003),
pp. 419–429

	Preface
	References

	Contents
	1 A Methodology for Measuring FLOSS Ecosystems
	1.1 Introduction
	1.2 Supply Chains in FLOSS
	1.2.1 Defining FLOSS Supply Network
	1.2.2 Notation Used for FLOSS Supply Network

	1.3 Computing Infrastructure for Measuring FLOSS Supply Chains
	1.3.1 Discovery
	1.3.2 Retrieval, Extraction, and Schema for Analytics

	1.4 Correction and Augmentation
	1.4.1 Problems with the Data
	1.4.2 Disambiguation Approach
	1.4.3 Handling Missing Data

	1.5 Code and Knowledge Flow and Technical Dependencies
	1.5.1 Constructing Technical Dependencies
	1.5.2 Constructing Code Flow Networks
	1.5.3 Constructing Knowledge Flow Networks

	1.6 Example Application: Increasing Knowledge Redundancy
	1.7 Conclusions
	References

	2 Mining Data to Profile Communication in FLOSS Communities
	2.1 Data Produced by FLOSS Ecosystems
	2.2 Unveil Social Networks that Matter: An Analysis of the Twitter Conversations Among Drupal Core Developers
	2.2.1 Background and Related Work
	2.2.2 Social Network Analysis and Key Concepts
	2.2.3 Research Approach
	2.2.4 Unveil the Social Networks that Matter

	2.3 Conclusion
	References

	3 A Preliminary Theory for Open-Source Ecosystem Microeconomics
	3.1 Introduction
	3.2 The Three Stages of an Open-Source Project
	3.3 Phase 1: The User-Innovator Phase
	3.4 Phase 2: Blossoming or Fading
	3.5 Phase 3: Maturity and Beyond
	3.6 Conclusion
	References

	4 Open-Source Ecosystems and Their Need for a Legal Framework
	4.1 Introduction
	4.2 Building an Ecosystem of Users and Developers: The Need for a License
	4.3 A Software System, Its Licensing, and Its Ecosystem
	4.4 GPL and Free Software: Software by the Users to the Users
	4.5 The Academic Licenses: Do as you Wish
	4.6 The Other IPs: Trademarks and Patents
	4.7 Open Source: The Need to Create a Larger Ecosystem
	4.8 The Foundations: The Need to Go Beyond the License
	4.9 License Evolution: The Need to Adapt to the Environment
	4.10 Fairness: Rules on How to Collaborate
	4.11 Conclusion
	References

	5 Open-Source License Compliance in Software Supply Chains
	5.1 License Compliance
	5.1.1 License Obligations
	5.1.2 License Strategy

	5.2 Product Governance
	5.2.1 Product Architecture
	5.2.2 Make or Buy Decisions
	5.2.3 The Software Supply Chain
	5.2.4 Complete and Correct Bills of Materials

	5.3 License Clearance
	5.3.1 Process Preconditions
	5.3.2 The Clearance Process

	5.4 Research Questions
	References

	6 The Life and Death of Software Ecosystems
	6.1 Attractors (and Detractors) to FLOSS Projects
	6.1.1 Forces of Attraction (and Detraction)
	6.1.2 Forces at the Ecosystem Level
	6.1.3 Provocative Research Questions

	6.2 On the Death of Ecosystems
	6.2.1 Research Questions
	6.2.2 Findings
	6.2.3 Conclusions

	References

	7 Onboarding and Retaining of Contributors in FLOSS Ecosystem
	7.1 Onboarding
	7.1.1 Background
	7.1.2 Communication
	7.1.3 Division of Tasks and Modularization
	7.1.4 Learning of Experts

	7.2 Retaining
	7.2.1 Background
	7.2.2 Spectrum of Contributors
	7.2.3 Forces of Retaining

	References

	8 A Free and Libre Open Source Software (FLOSS) Initiative for a Sustainable Deployment in Oman
	8.1 Introduction
	8.2 Status of FLOSS in Oman
	8.2.1 User Demand Survey (UDS)
	8.2.2 Development and Support Survey (DSS)

	8.3 Proposal for Sustainable FLOSS Deployment Roadmap
	8.3.1 FLOSS Center of Excellence
	8.3.2 COE Operation and Funding

	8.4 Conclusion
	References

	9 Crowd-Based Methodology of Software Development in the Internet Era
	9.1 Introduction
	9.2 The TRUSTIE Methodology
	9.2.1 Software Engineering and Software Manufacturing
	9.2.2 Open Source and Software Creation
	9.2.3 Crowd-Based Methodology

	9.3 Key Technologies of Crowd-Based Methodology
	9.3.1 Crowd Collaboration
	9.3.2 Open Resource Sharing
	9.3.3 Continuous Evaluation

	9.4 TRUSTIE Environment
	9.4.1 TRUSTIE Architecture
	9.4.2 Typical Support for Ecosystem Construction

	9.5 Application Scenarios
	9.5.1 Practices in Software Companies
	9.5.2 Practices in Online Communities

	9.6 Conclusion
	References

