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Abstract Capital market investment is a growing stream of the economic literature.
It has been a prime concern of a large number of investors belonging to different clus-
ters or income groups for two reasons mainly. First, the construction of a portfolio,
which deals with the selection of the stocks. Second, the formulation of an appropri-
ate investment strategy, which calls for minimizing the risk while maximization of
the return, i.e., optimization of the constructed portfolio. Following the broad frame-
work as suggested in the seminal work of Markowitz [1], this research attempts to
address the issue of portfolio optimization based on risk and return parameters while
dynamically allocating the weights to the constituent stocks. In the first part of this
study, k-means clustering is applied to a heterogeneous sample of 53 number of
stocks enlisted with the NSE during the year 2012–2017. The purpose is to classify
the stocks in three categories (such as low stock price, medium stock price, and high
stock price) based on their monthly closing return. In the second phase, this study
focuses on finding out the distribution of weights among the stocks belonging to
the portfolio by using the generalized reduced gradient (GRG) method under the
dynamic environment. Finally, this study attempts to validate the results by applying
perception mapping. We have found eight stocks in the cluster of low stock price
which is the sample studied in this research. We have observed that dynamic allo-
cation of weights led to minimization of risk and the finding is validated through a
perceptual map.

Keywords Portfolio · Nonlinear optimization · K-means clustering · Generalized
reduced gradient method

S. Gupta (B) · G. Bandyopadhyay
Department of Management Studies, NIT Durgapur, Durgapur, India
e-mail: sg.17ms1101@phd.nitdgp.ac.in

G. Bandyopadhyay
e-mail: gautam.bandyopadhyay@dms.nitdgp.ac.in

S. Biswas
Calcutta Business School, Calcutta, India

A. Upadhyay
NSHM Business School, Durgapur, India

© Springer Nature Singapore Pte Ltd. 2019
H. S. Saini et al. (eds.), Innovations in Computer Science
and Engineering, Lecture Notes in Networks and Systems 74,
https://doi.org/10.1007/978-981-13-7082-3_50

437

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7082-3_50&domain=pdf
mailto:sg.17ms1101@phd.nitdgp.ac.in
mailto:gautam.bandyopadhyay@dms.nitdgp.ac.in
https://doi.org/10.1007/978-981-13-7082-3_50


438 S. Gupta et al.

1 Introduction

The construction of the optimal portfolio plays a critical role behind any investment
decision as it is premised on the concept of maximization of the return on invest-
ment. It is imperative to contemplate on the selection of appropriate stocks in the
right proportion for constructing a portfolio with an objective to increase return while
minimizing risk. The essence of effective portfolio management lies in optimum uti-
lization of the capital in terms of allocation of the stocks constituting the portfolio
and balancing the same taking risk-return trade-off into account, since risk tolerance
level and expectation of return vary from investor to investor. Stated in this field,
Markowitz’s mean–variance approach [1] is considered to be the first systematic
attempt to formulate a diversified investment decision with an objective of ensuring
high return at low-risk level [2, 3]. In tune with this work, Tobin [4] postulated the
concept of efficient frontier and capital market line, wherein the author argued for the
persistence of the portfolio structure irrespective of risk tolerance level at a consistent
expectation level; only relative proportions of stocks change otherwise. Extending
the work, Markowitz [5] introduced expected return–semi-variance based analysis
which considers both the extremes while determining the efficiency of the portfolio.
Sharpe [6, 7] further worked on Markowitz’s analysis and noted that optimal port-
folio (among all efficient portfolios) depends on expected return and risk preference
of the investors. These classical approaches paved the way to the modern portfolio
theory (MPT). MPT aims to maximize the expected return of the portfolio at a given
risk level or minimizing portfolio risk at a given return by optimally allocating the
total available fund to different assets [8]. However, while forming the portfolio, it is
essential to consider the influence of the assets on each other, i.e., only on the basis
of individual stock performance one cannot form a portfolio [9]. In effect, the distri-
bution of the returns decides effective optimization of the portfolio. In the context of
portfolio management, a risk is perceived as the total risk of a portfolio which has
two components; systematic risk ormarket risk and unsystematic risk or diversifiable
risk. By prudent stock selection and distribution of appropriate weightage for them
within a portfolio, unsystematic risk can be reduced to a considerable extent [10].

In line with the seminal work of Markowitz [1], over the years, several studies
have been made on portfolio selection and optimization. There has been a growing
stream of alternative methods suggested by several researchers and practitioners in
the stated field. Examples include artificial neural network [11], genetic algorithm
[12], particle swarm optimization [13], simulated annealing [14], ensemble [15],
decision tree [16], clustering [17], multi-criteria decision-making approach [18] to
name a few. It is evident from these researches that in order to optimize the portfolio
and correctly predict its return, selection of the right number of right stocks in the
right proportion is of paramount importance. There has been a plethora of research
conducted onportfolio selection using unsupervised learningmethods like clustering.
Clustering finds its importance in pattern identification, classification, and detection
of an anomaly while selecting stocks to form a portfolio. Further, it is useful in
finding interrelationship or co-movements of the stocks [19]. Although hierarchical
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clustering is a dominant method in this regard, k-means clustering and C-means
clustering have also drawn significant attraction of the researchers [20].

In this study, the authors have used k-means clustering for segregating 53 het-
erogeneous companies with different sectors enlisted with the NSE during the year
2012–2017 on the basis of monthly stock return (60 months) into three distinct clus-
ters; low stock price (LSP), mid stock price (MSP), and high stock price (HSP) in
order to construct a portfolio. Further, GRG method has been used to optimize the
constructed portfolio of the stocks belonging to the MSP cluster through dynamic
allocation of the weights to different stocks with an objective to minimize risk while
maximizing return. The rest of this paper is organized as follows. In Sect. 2, data and
methodology are discussed. Section 3 presents the findings. Finally, Sect. 4 concludes
the paper while highlighting some of the implications and future scope.

2 Data and Methodology

The broad objective of this study is to find out the distribution of the stocks under the
portfolio ensuring maximum return at minimum risk. It requires appropriate weight
assignment to individual stocks forming the portfolio.

2.1 Sample

The sample for this study consists of 53 numbers of heterogeneous companies with
different sectors enlisted with the National Stock Exchange (NSE), India through
convenience sampling (refer Table 1). The study period is the year 2012–2017. The
data were collected from the published secondary database. Monthly returns of those
stocks for 60months have been considered for analysis. In order to calculate monthly
returns in case of the Index or Stock (since the data collected is month wise), we
have used the formula Ln(P1/P0), Ln(P2/P1) and so on since the behavior of data is
continuous. After clustering, we have worked on MSP cluster.

2.2 Methods

In this study, a three-stage approach has been followed. First, k-means clustering,
an unsupervised learning technique has been applied in order to classify the stocks
based on themonthly returns for constructing the portfolio; second,GRG, a nonlinear
optimization technique has been selected for deciding weights for the stocks with
an objective to minimize risk while maximizing return. Finally, we have applied
perception mapping using mean and standard deviation of the monthly returns of the
stocks belong to MSP.
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Table 1 Stocks under the study (primary level)

Sector(s) Companies Total

Automobile AMARA RAJA BATT; MRF; TVS MOTOR; TATA MOTORS;
HERO MOTOCORP; BAJAJ AUTO; MARUTI SUZUKI;
BHARAT FORGE; M&M; ASHOK LEYLAND

10

Banking CANARA BANK; SBI; BANK OF BARODA; HDFC BANK;
YES BANK; INDUSIND BANK; PNB; FEDERAL BANK

8

Oil and
natural gas

IOCL; GAIL; RIL; NTPC; ONGC; BPCL 6

FMCG
sector

ITC; HUL; GODREJ CP; MARICO; COLPAL; DABUR; P&G;
GSK CP; EMAMI LTD; GODREJ IND

10

Food and
beverages

MCDOWELL; TATA GLOBAL; UBL; UB (H) L;
BRITANNIA; JUBILANT FOODWORKS

6

IT/ITes KPIT TECH; HCL TECH; INFOSYS; WIPRO; TCS; TECH
MAHINDRA; MINDTREE; OFSS

8

Others TATA ELXSI; RIL INFRA; HIND PETRO (HPCL); POWER
GRID CORP; TATA POWER

5

Grand total 53

The expected return on a portfolio is computed as follows:

E
(
Rp

) =
N∑

i=1

wi E(Ri ) (1)

where

E(Rp) the expected return on the portfolio
N the number of Index or stocks in the portfolio
wi the proportion of the portfolio invested in Index or ith Stock
E(Ri) the expected return on ith Stock.

The risk is calculated as follows:

σ2
p = (wA)

2σ2
A + (wB)

2σ2
B + 2wAwB σA,B (2)

where σp: Standard deviation of the portfolio; σA and σB: Standard deviation of the
stocks A and B; wA and wB: Weights assigned to the stocks A and B.

K-means Clustering. It is a type of unsupervised learning, which distribute the
unlabeled data into a specific number of groups or clusters (represented by the vari-
able K) on the basis of feature similarity. Each such cluster is represented by its
centroid which is a collection of feature values pertaining to that cluster. This algo-
rithm takes a set of “m” number of data points in “n” dimensions into “K” num-
ber of clusters through an iterative process. The objective is to minimize within-
cluster sum of squares [21]. It starts with an initial estimate of clusters wherein a
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particular data point xj(where, j = 1, 2, . . . m) is allocated to a particular cluster
ci(where, i = 1, 2, . . . k) depending on the squared Euclidean distance between the
data point and the centroid of the respective cluster. The points which find their dis-
tances with respect to the centroid of a particular cluster minimum are assigned to
that particular cluster. Then, the process recomputes all the centroids and again finds
the distances of all the data points with respect to each newly constructed centroids
for assigning the data points to newly formed clusters. This process repeats itself
until limiting condition is reached, i.e., either there is no change of clusters by the
data points (i.e., within a particular cluster all data points are homogeneous) or within
group sum of squares are minimized or the prefixed maximum number of iterations
is conducted.

Generalized Reduced Gradient Method (GRG). This is a general version of
the reduced gradient method, which solves optimization problems with nonlinear
constraints and arbitrary bounds. The method is described as follows as explained
by Lasdon et al. [22].

The structure of general nonlinear problem is given by

Minimize f0(X) (3)

subject to the constraints gi(X) = 0;where, i = 1, 2, . . .m (4)

Where, and lj ≤ Xj ≤ uj;where, j = 1, 2, . . . n (5)

Here, u j and l j indicate the upper boundary and lower boundary, respectively,
where, u j > l j assumingm< n in order to avoid infeasibility of the solution or unique
solution. The above forms are general since inequality constraints get transformed to
equalities by adding slack variables. Following this, for solving the problem, basic
variables (m) get expressed in terms of remaining nonbasic (n-m) variables. If X̄
denotes a feasible solution point and Y be the vector representing basic variables and
Z be the vector of nonbasic variables on X, then after partitioning, Eqs. (4) and (5)
can be written as

X = (Y,Z), X̄ = (
Ȳ, Z̄

)
(6)

gi(Y,Z) = 0 (7)

Here, it is assumed that both the objective and constraint functions are differen-
tiable. The transformed objective function is given as

F(Z) = f(Y(Z),Z) (8)

Accordingly, the nonlinear problem is transformed at least for Z close to Z̄ , to a
reduced problem given by
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Minimize F(Z) (9)

Subject to l′ ≤ Z ≤ u′ (10)

The GRG method actually solves the original problem as stated above by solving
Eqs. (9) and (10). This study addresses a nonlinear problem since in our study, it has
been observed that the monthly rate of return is having quadratic and cubic nature.
Hence, the data suits the applicability of GRG method in our case.

3 Results and Discussions

Table 2 describes the distribution of the stocks (Table 1) into three defined clusters
such as LSP, MSP, and HSP.

In our study, we have selected MSP for further analysis since in LSP cluster we
have 44 companies which make the portfolio too stretched for a common investor.
Also, HSP cluster shows opposite nature and therefore, it has not been considered.
Also, LSP signifies comparatively prematured or poor performance at the market
and HSP indicates a bit saturated performance and comparatively less growth. We
have considered to form a portfolio based on the stocks belonging to theMSP cluster.
Table 3 lists out the stocks under study along with their monthly expected rate of
return and standard deviations.

Table 2 Number of
companies in each cluster

Cluster No. of companies

LSP 44

MSP 8

HSP 1

Total 53

Table 3 Stocks under MSP cluster

Hero
Moto-
corp

Bajaj
Auto

Maruti
Suzuki

Britannia P&G GSK
CP

TCS OFSS

Monthly
expected
rate of
return
(AVROR)

0.01148 0.00746 0.03127 0.03742 0.02045 0.00902 0.01276 0.00364

Standard
devia-
tion
(SD)

0.06651 0.06602 0.08861 0.07129 0.05079 0.07688 0.06413 0.05535
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Table 4 Normality test

Hero
Moto-
corp

Bajaj
Auto

Maruti
Suzuki

Britannia P&G GSK
CP

TCS OFSS

Kolmogorov-
Smirnov
Z

0.760 0.427 0.762 0.461 0.510 0.986 0.740 0.430

Asymp. Sig.
(two-tailed)

0.610 0.993 0.607 0.984 0.957 0.285 0.644 0.993

Table 5 Correlation matrix

Hero
Moto-
corp

Bajaj
Auto

Maruti
Suzuki

Britannia P&G GSK
CP

TCS OFSS

Hero
Moto-
corp

1

Bajaj
Auto

0.541032 1

Maruti
Suzuki

0.371683 0.420821 1

Britannia 0.251049 0.325695 0.203601 1

P&G 0.016686 0.066044 0.287807 0.271632 1

GSK
CP

0.076709 0.056452 0.244738 0.50983 0.374539 1

TCS 0.207421 −0.00987 −0.16676 0.082849 0.04115 0.185365 1

OFSS 0.210708 0.342858 0.312976 0.184763 0.171558 0.129388 0.257402 1

Further, we have performed a normality test (refer Table 4) in order to comply
with the conditions of Markowitz [1]. It is seen from the result that the rate of returns
of the stocks satisfies normality condition.

In order to understand whether diversification is possible among the stocks,
we have conducted a correlation analysis (refer Table 5). The determinant value
(0.16548) obtained from the correlation matrix suggests that the stocks under the
portfolio can be diversified. Hence, it is a problem of dynamic allocation of weights
among the stocks.

Table 6 shows the variance (diagonal values) and covariance (off-diagonal values)
analysis for determining risk.

Table 7 shows the weights of the stocks calculated dynamically using GRG
method. The optimum risk of the portfolio under study is 0.11%as calculated through
the GRG method.

For validation purpose, we have performed perception mapping (refer Fig. 1).
Table 8 shows the combined values of AVROR and SD. These two values are calcu-
lated as follows:
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Fig. 1 Perceptual map

Table 8 Combined AVROR
and SD

CAR 0.0166888

CSD 0.0692789

CombinedAVROR(CAR) = Average(AVROR) (11)

Combined SD(CSD) =
√∑(

d2
i + SD2

i

)

n
; (12)

where

di Average return for ith Stock-CAR; i = 1, 2, …n.

Further, we have used the values of CAR and CSD to construct a perceptual map,
wherein the axes are shifted from the origin to the point having CAR andCSD values.
This results into generation of four new quadrants representing (High Return, High
SD), (High SD, Low Return), (Low SD, High Return), and (Low SD, Low Return),
respectively.

It is seen from the above figure that only P&G falls in the third quadrant, which
characterizes high growth and low risk. It suggests that out of the stocks considered
for the study, P&G stands alone, matched with the stated requirements. Therefore, it
is logical to state that the earlier findings are being validated by the perceptual map.
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4 Conclusion

In this study, we have attempted to assign optimal weights to the individual stocks
constituting a portfolio in a dynamic environment. In order to select a portfolio, we
have applied k-means clustering on a heterogeneous set of stocks listed in the NSE
which are selected based on convenient sampling. Next, we have used a nonlinear
optimization technique such as GRG for allocating weights with an objective to
minimize the risk while maximizing the return. Allocation of the weights to the
individual stocks forming the portfolio is having a significant impact on return on
investment from the same. Further, in order to validate the results, a perception
mapping of stocks under study has been performed which commensurate the earlier
findings. This study is unique in the sense that initially, it started with unsupervised
learning, but in the process, it came up with the bridging effect of unsupervised
learning to a supervised learning validating all the way. This study may further be
extended to analyze the clusters in the same way other than MSP for investigating
any relation with the present one. Further, sector-wise portfolio performance may
also be assessed for a comparative analysis in a dynamic and uncertain environment.
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