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Abstract In a valuation domain (V, M), every nonzero finitely generated ideal J
is principal and so, in particular, J = J t ; hence, the maximal ideal M is a t-ideal.
Therefore, the t-local domains (i.e., the local domains, with maximal ideal being a
t-ideal) are “cousins” of valuation domains, but, as we will see in detail, not so close.
Indeed, for instance, a localization of a t-local domain is not necessarily t-local, but
of course a localization of a valuation domain is a valuation domain. So it is natural to
ask under what conditions is a t-local domain a valuation domain? The main purpose
of the present paper is to address this question, surveying in part previous work by
various authors containing useful properties for applying them to our goal.

1 Introduction

We begin by reviewing the notion of a t-local domain.
Let D be an integral domain with quotient field K , let F(D) be the set of

nonzero fractional ideals of D, and let f (D) be the set of all nonzero finitely gen-
erated D-submodules of K (obviously, f (D) ⊆ F(D)). For E ∈ F(D), let E−1 :=
{x ∈ K | xE ⊆ D}. The functions on F(D) defined by E �→ Ev := (E−1)−1 and
E �→ Et := ⋃{Fv | 0 �= F are a finitely generated subideal of E}, called, respec-
tively, the v-operation and the t-operation on the integral domain D, come under the
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umbrella of star operations (briefly recalled in Sect. 2), discussed in Sects. 32 and
34 of [18], where the reader can find proofs of the basic statements made here about
the v-, t- and, more generally, the star operations.

Recall that a nonzero fractional ideal E of D is a v-ideal, or a divisorial ideal
(resp., a t-ideal), if E = Ev (resp., E = Et ) and a v-ideal (resp., a t-ideal) of finite
type if E = Ev = Fv (resp., E = Et = Ft ) for some finitely generated F ∈ f (D)

and, obviously, F ⊆ E . Next, the t-operation is a star operation of finite type on the
integral domain D, in the sense that E ∈ F(D) is a t-ideal if and only if for each
finitely generated nonzero subideal F of E we have Fv = Ft ⊆ E and it is easy to
see that if F is principal Fv = F = Ft .

An integral ideal of D maximal with respect to being an integral t-ideal is called a
maximal t-ideal of D and it is always a prime ideal. We denote byMaxt (D) the set of
all the maximal t-ideals of D. This set is nonempty, since every t-ideal is contained
in a maximal t-ideal, thanks to the definition of the t-operation and to Zorn’s Lemma.
An integral domain is called a t-local domain if it is local and its maximal ideal is a
t-ideal.

The purpose of this article is to survey the notion indicating what t-local domains
are, where they may or may not be found and what their uses are.

Thefirst example of a t-local domain that comes tomind is a valuation domain, i.e.,
a local domain (V, M) in which every nonzero finitely generated ideal is principal.
In this case, we can say that for each F ∈ f (V ) with F ⊆ M we have F = (a) ∈ M
and so Ft = (a)t = (a) ⊆ M . But, of course, t-local domains aremuchmore general
than that.We can, for example, show that if P is a height one prime ideal of an integral
domain D, then DP is a t-local domain. We can show, as we will in more generality,
that if M = pD is a prime ideal generated by a prime element of a domain D then
M is a maximal t-ideal and DM is a t-local domain. However, we cannot just take a
prime t-ideal P of D and claim that DP is a t-local domain, as there are examples
of some domains D with prime t-ideals P such that DP is not a t-local domain. In
Sect. 2, we discuss cases of prime t-ideals P with DP a t-local domain and cases of
domains that have prime t-ideals P with DP non-t-local, indicating also that if D is
t-local then, for some multiplicative set S of D, DS the ring of fractions may not be
a t-local domain.

Now localization may not always produce t-local domains, but there are elements
of a special kind whose presence in a domain D ensures that D is a t-local domain.
In Sect. 3, we record the results related to the fact that the presence of a nonzero
nonunit comparable element (definition recalled later) in an integral domain Dmakes
D into a t-local domain. The related results include, for instance, (1) the effects the
presence of a nonzero nonunit comparable element on different kinds of domains,
(2) the presence of a nonzero comparable element in some domainswouldmake them
into valuation domains, if D is Noetherian then the presence of a nonzero nonunit
comparable element in D makes D a DVR (= discrete valuation ring), and (3) a
t-local domain may not have a comparable element, and so on, the list continues.

Citing Krull, Cohn [10] showed that D is a valuation domain if and only if D is a
Bézout domain and a local domain. (In fact, in this result “Bézout” can be replaced by
“Prüfer”; here D is Bézout—respectively, Prüfer—if every nonzero finitely generated
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ideal of D is principal—respectively, invertible.) In Sect. 4, we show that D is a
valuation domain if and only if D is a GCD domain and a t-local domain, and point
out that if, in the above statement, we replace “GCD domain” by “PvMD” the result
would still be a characterization of a valuation domain (here, D is a PvMD, if for
each pair 0 �= a, b ∈ D we have ((a, b) (a)∩(b)

ab )t = D). But of course we do not stop
here, we point to situations where recognizing the fact that the domain in question
is a t-local domain makes proving that it is a valuation domain easier.

Section 5 has to do with “applications” which are essentially more efficient proofs
of known results.We follow the studyof the ring calledShannon’s quadratic extension
in [27] and point out that it is indeed a t-local domain, thus providing a shorter, more
efficient proof of Theorem 6.2 of [27].We also point to examples of maximal t-ideals
Q in a particular domain D such that DQ is not t-local.

2 Background Results and t-Local Domains

We start with proving some important preliminary results. But, for that, we need
to recall the formal definition of a star operation. A star operation on D is a map
∗ : F(D) → F(D), E �→ E∗, such that, for all x ∈ K , x �= 0, and for all E, F ∈
F(D), the following properties hold:

(∗1) (xD)∗ = xD;
(∗2) E ⊆ F implies E∗ ⊆ F∗;
(∗3) E ⊆ E∗ and E∗∗ := (E∗)∗ = E∗;

[18, Sect. 32].
If ∗ is a star operation on D, then we can consider a map ∗f : F(D) → F(D)

defined, for each E ∈ F(D), as follows:

E∗f := ⋃{F∗ | F ∈ f (D) and F ⊆ E}.
It is easy to see that ∗f is a star operation on D, called the finite-type star operation
associated to ∗ (or the star operation of finite type associated to ∗). A star operation
∗ is called a finite-type star operation (or, star operation of finite type) if ∗ = ∗f . It
is easy to see that (∗f)f = ∗f (that is, ∗f is of finite type).

If ∗1 and ∗2 are two star operations on D, we say that ∗1 ≤ ∗2 if E∗1 ⊆ E∗2 ,
for each E ∈ F(D), equivalently, if (E∗1)∗2 = E∗2 = (E∗2)∗1 , for each E ∈ F(D).
Obviously, for each star operation ∗, we have ∗f ≤ ∗. Clearly, vf = t . Let dD (or,
simply, d) be the identity star operation on D. Clearly, d ≤ ∗ and, moreover, ∗ ≤ v,
for all star operations ∗ on D [18, Theorem 34.1(4)].

Recall that an integral domain D is called a Prüfer v-multiplication domain (for
short, PvMD), if every nonzero finitely generated F ∈ f (D) is t-invertible, i.e.,
(FF−1)t = D. Obviously, every Prüfer domain is a PvMD. It is well known (see,
Griffin [22, Theorem 5]) that D is a PvMD if and only if DQ is a valuation domain,
for each maximal (or, equivalently, prime) t-ideal Q of D.

Any unexplained terminology is straightforward, well accepted, and usually
comes from [33] or [18].
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Lemma 2.1 (Hedstrom–Houston [25, Proposition 1.1]) Let ∗ be a star operation on
an integral domain D and let ∗f be the finite-type star operation on D canonically
associated with ∗. If P is a minimal prime ideal over a ∗f -ideal of D, then P is a
∗f -ideal.

Proof Let J be a finitely generated (integral) ideal contained in P , the conclusion
will follow if we show that J ∗ ⊆ P . Since P is minimal over some (integral) ideal
I , with I = I ∗f , then rad(I DP) = PDP and, since J is finitely generated, there
exists an integer m ≥ 1 such that JmDP ⊆ I DP . Therefore, for some s ∈ D \ P ,
s Jm ⊆ I . Thus, s(J ∗)m ⊆ s(Jm)∗ = s(Jm)

∗f ⊆ I ∗f = I ⊆ P , and so J ∗ ⊆ P , since
s /∈ P . �

The next step is to apply this lemma for obtaining some sufficient conditions for a
local domain to be a t-local domain (recall that an integral domain is a t-local domain
if it is local and its maximal ideal is a t-ideal).

Remark 2.2 (1) Note that if D is an integral domain such that Maxt (D) contains
only one element, then D is necessarily a t-local domain (and conversely). If not, let
M be the unique t-maximal ideal of D and N be a maximal ideal of D with N �= M .
Let x ∈ N \ M , clearly, the t-ideal xD must be contained in some t-maximal ideal.
In the present situation xD should be contained in M and this is a contradiction.

(2) Note that if D is a local domain with divisorial maximal ideal, then clearly
D is t-local. The converse is not true: take, for instance, a valuation domain with
nonprincipal maximal ideal (e.g., a 1-dimensional non-discrete valuation domain).

(3) In an integral domain D, the set of maximal divisorial ideals, Maxv(D), might
be empty (e.g., take a 1-dimensional valuation domain with nonprincipal maximal
ideal). However, if Maxv(D) �= ∅, a maximal divisorial ideal is a prime t-ideal, but
it might be a nonmaximal t-ideal (for explicit examples see [17], where the problem
of when a maximal divisorial ideal is a maximal t-ideal is investigated).

Corollary 2.3 Let D be a local domain with maximal ideal M. Then, D is t-local
in each of the following situations:

(1) The maximal ideal M is minimal over (i.e., is the radical of) an integral t-ideal
of D.

(2) The maximal ideal M is an associated prime over a principal ideal of D (i.e.,
there exist a ∈ D and b ∈ D \ aD such that M is minimal over (aD :D bD)).

(3) The maximal ideal M is minimal over (i.e., is the radical of ) a principal ideal
of D.

(4) The maximal ideal M is principal.
(5) The integral domain D is 1-dimensional.

Proof (1) is a straightforward consequence of Lemma 2.1. (2) and (3) are obvious
from (1), because a proper ideal of the type (aD :D bD) and a principal ideal are
both t-ideals. (4) is trivial consequence of (3). Finally, (5) follows from the fact that,
in this case, the maximal ideal is a minimal prime over every nonzero (principal)
ideal contained in it. �
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Proposition 2.4 If (D, M) is a local domain and the prime ideals of D are
comparable in pairs, i.e., Spec(D) is linearly ordered under inclusion, then D is
t-local.

Proof Let I = (x1, x2, . . . , xn) be a nonzero proper finitely generated ideal of D and
let P be a minimal prime of I . The prime spectrum Spec(D) being linearly ordered
forces P to be unique. Now let, for each i = 1, 2, . . . , n, P(xi ) be the minimal
prime of the principal ideal (xi ). Again, by the linearity of order of Spec(D), for
some 1 ≤ k ≤ n, P(xk) ⊆ P(x j ) for all j �= k. So P(xk) ⊇ I and so P(xk) ⊇ P .
But as xk ∈ P , P(xk) ⊆ P . Whence every proper nonzero finitely generated ideal of
D is contained in a prime ideal of D that is minimal over a principal ideal and, hence,
P is a t-ideal, by Corollary 2.3(1). Thus, I v = I t ⊆ P ⊆ M . Since I is arbitrary as
a finitely generated proper ideal of D, M is a t-ideal. �

Remark 2.5 Note that, mutatis mutandis, from the proof of the previous proposition,
if Spec(D) is linearly ordered under inclusion, we do not deduce only that D is
t-local, but also that every prime ideal of D is a t-ideal (see also [32, Theorem
3.19]).

It is known that if J is a t-ideal of a ring of fractions DS of an integral domain
D with respect to a multiplicative subset S of D, then J ∩ D is a t-ideal of D
[32, Lemma 3.17(1)]. However, I being a t-ideal of the integral domain D does not
imply, in general, that I DS is a t-ideal of DS , even though I DS ∩ D is a t-ideal of
D [32, Lemma 3.17(2)]. In particular, as Example 2.6 will show, the prime t-ideals
may have a “bad behavior”, that is, if P is a prime t-ideal of D then PDS may not
be a prime t-ideal for some multiplicative set S disjoint with P .

The authors of [39] were led to this conclusion seeing an example given by
Heinzer and Ohm [29] of an essential domain (i.e., an integral domain D = ⋂

DP

where P ranges over prime ideals of D such that DP is a valuation domain) that is not
a PvMD. The reason for this conclusion came from the following observation. For
each maximal ideal M of the Heinzer–Ohm example D, DM is a unique factorization
domain, meaning the Heinzer–Ohm example is a locally GCD domain. Now, if for
each maximal t-ideal Q, QDQ were a prime t-ideal of DQ , and then DQ would be a
t-local domain and a GCD domain. But, as we shall see in Proposition 5.2, a t-local
GCD domain is a valuation domain. So, we would have DQ a valuation domain, for
every maximal t-ideal Q of D, making D a PvMD. Therefore, since in this example
D is not a PvMD, QDQ might not be a t-ideal, for some maximal t-ideal Q of D.
Indeed, an integral domain D which is locally a PvMD is a PvMD if and only if
QDQ is a t-ideal for every maximal t-ideal Q of D.

In [51], a prime (t-ideal) P in an integral domain D was called well behaved if
PDP is a prime t-ideal of DP . We say that an integral domain D is well behaved if
every prime (t-ideal) of D is well behaved. In [51], M. Zafrullah characterized well-
behaved domains and showed that most of the known domains, including PvMDs,
are well behaved. Furthermore, in the same paper, there is also an example of an
integral domain D such that every Q ∈ Maxt (D) is well behaved, but D is not well
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behaved. This example is obtained by a pullback construction, as briefly recalled
below (for the details of the proofs see [51]).

Example 2.6 Let (V, M) be a valuation domain with dim(V ) ≥ 2 and let P be a
nonzero nonmaximal prime ideal of V , set D := V + XVP [X ]. In [51, Lemma 2.3,
2.4, and Proposition 2.5], it is proved that

Maxt (D) = { f D | f ∈ D, f is a prime element of D such that f (0) ∈ V \ M} ∪ {N },

where N := { f ∈ D | f (0) ∈ M} = M + XVP [X ] is a maximal ideal of D.
By the previous description of Maxt (D), it is not hard to see that, for each

Q ∈ Maxt (D), QDQ is a maximal t-ideal of DQ . Now, we consider the prime
ideal P := P + XVP [X ] of D. Since P = ⋂{aV | a ∈ M \ P}, a direct verifi-
cation shows that P = ⋂{aD | a ∈ M \ P}. Thus P is a v-ideal and, in particu-
lar, a t-ideal of D. However, after observing that P ∩ (V \ P) = ∅, and so DP =
(V + XVP [X ])P+XVP [X ] = (VP [X ])PVP [X ] and PVP [X ] = PVP + XVP [X ], it can
be shown that PDP = PVP [X ]PVP [X ] is not a t-ideal of DP.

By the previous observations and example, for each P ∈ Spec(D), if DP is a
t-local domain, then P is a t-prime ideal of D; on the other hand, if a prime ideal P
is a t-ideal of D, it is not true, in general, that DP is a t-local domain. We give next
some sufficient conditions for the localizations of an integral domain to be t-local
domains.

Proposition 2.7 Let D be an integral domain.

(1) If Q is an associated prime ideal over a principal ideal of D, then DQ is a t-local
domain.

(2) If Q ∈ Maxt (D) and Q is a potent ideal (i.e., it contains a nonzero finitely
generated ideal that is not contained in any other maximal t-ideal), then DQ is
a t-local domain.

(3) If D has the finite t-character (i.e., every nonzero nonunit element of D belongs
to at most a finite number of maximal t-ideals), then DQ is a t-local domain, for
each Q ∈ Maxt (D).

Proof (1) Since Q is minimal over a t-ideal of D of the type (aD :D bD), QDQ

is minimal over the ideal (aD :D bD)DQ = (aDQ :DQ bDQ), which is a t-ideal of
DQ , and thus QDQ is a t-ideal of DQ (Corollary 2.3(2)).

(2)was proven in [3, Theorem1.1(1)] and (3) follows from (2), since eachmaximal
t-ideal in an integral domain with finite t-character is potent [3, Theorem 1.1(2)]. �

Remark 2.8 Recall that a prime t-ideal P of an integral domain D is said to
be a t-sharp ideal if

⋂{DQ | Q ∈ Maxt (D), P � Q} � DP [31, Sect. 3]. For a
PvMD, it is known that a prime t-ideal P is t-sharp if and only if it is potent
[31, Proposition 3.1].

If D has the finite t-character, then every maximal t-ideal is well behaved
(Proposition 2.7(3)). It was observed in [3, Example 3.9] that the integral domain D,
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described in Example 2.6, has the finite t-character and so even an integral domain
with the finite t-character might not be well behaved.We provide next another exam-
ple of an integral domain which happens to be t-local (and so, trivially, with the finite
t-character) and it is not well behaved (see, also, [3, Remark 3.2(2)]).

Example 2.9 Let D1 := Z(p) and so D1 is a rank 1 discrete valuation domain of the
field of rational numbers K1 := Q, with maximal principal ideal N1 := pZ(p).

Let D2 := Q[[X,Y ]] be the power series ring in two variables with coefficients
in the field Q. Clearly, D2 is an integrally closed local Noetherian 2-dimensional
integral domain with maximal ideal N2 := (X,Y )Q[[X,Y ]] and field of quotients
K2 := Q((X,Y )). Let D3 = K2[[Z ]] = Q((X,Y ))[[Z ]]; D3 is a rank 1 discrete valua-
tion domain of the field K3 := K2((Z)), with maximal ideal N3 := ZK2[[Z ]]. Set

D := D1 + N2 + N3 = Z(p) + (X,Y )Q[[X,Y ]] + ZQ((X,Y ))[[Z ]] .

Clearly, D ⊂ T := D2 + N3 = Q[[X,Y ]] + ZQ((X,Y ))[[Z ]] ⊂ D3 = K2 + N3 =
Q((X,Y ))[[Z ]]. By well-known properties of rings arising from pullback construc-
tions, it is not hard to see that the following hold:

(1) T is a 3-dimensional local ring with maximal ideal Q := N2 + N3 and the
localizations of T at each one of its infinitely many prime ideals of height 2 is
a rank 2 discrete valuation domain.

(2) T has unique prime ideal of height 1, that is, N3. More precisely, N3 is a
common prime ideal of T and D3 and N3 = (T : D3), since N3 is the maximal
ideal of the local domain D3; therefore, N3 is a t-ideal (in fact, a v-ideal) of T .
Furthermore, TN3 = D3 is a rank 1 discrete valuation domain.

(3) D is a 4-dimensional local domain, with maximal ideal M := N1 + N2 + N3.
(4) M is a t-ideal (in fact, a v-ideal) of D, since M = pD, and so D is a t-local

domain.
(5) Q = N2 + N3 = ⋂{pnD | n ≥ 0} is the unique prime of height 3 in D and it

is a t-ideal (in fact, a v-ideal) of D, since Q is a common ideal of D and T
and, since it is the maximal ideal of T , Q = (D : T ).

(6) For each one of the infinitely many height 2 prime ideals P of D, there exist a
unique prime ideal P ′ of T such that P ′ ∩ D = P and the canonical embedding
homomorphism DP ⊆ TP ′ is an isomorphism; thus DP is a rank 2 discrete
valuation domain.

(7) Set S := {pn | n ≥ 0}, clearly S is a multiplicative set of D and DS = Q +
N2 + N3 = Q + (X,Y )Q[[X, Y ]] + ZQ((X,Y ))[[Z ]] = DQ = T .

(8) QDS = QDQ = QT = Q is not a t-ideal of DQ = T , since the elements
X,Y ∈ QDQ = Q are v-coprime (note that, if F is a nonzero finitely generated
ideal in a t-ideal I , then Fv ⊆ I ).

(9) By the previous properties, it follows that T is a local, but not t-local, PvMD,
since the localization at all its nonzero nonmaximal prime ideals is a valua-
tion domain and its maximal ideal Q is not a t-ideal of T . Moreover, T is not
completely integrally closed and so it is not a Krull domain, since its com-
plete integral closure is D3, because N3 = (T : D3). T does not have the finite
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t-character, since each nonzero element inside its unique height 1 prime (t-
)ideal N3 is contained in all the infinitely many maximal t-ideals, which are all
its prime ideals of height 2.

(10) Every nonzero prime ideal of D is a t-ideal and all of them are well behaved,
except Q, its unique prime of height 3 (which is a t-ideal of D, but it is not a
t-ideal in DQ = T ).

The following result was proved by Anderson et al. in [3, Proposition 1.12(1)].

Proposition 2.10 Let D be a t-local domain, then the following hold:

(1) Every t-invertible ideal (i.e., an ideal I such that (I I−1)t = D) is principal.
(2) If I is an ideal of D such that (I n)t = D for some n ≥ 2, then I is principal.

Proof (1) If I be a t-invertible ideal of D then I I−1 is in no maximal t-ideals
of D and this implies that I I−1DQ = DQ for every Q ∈ Maxt (D). In this special
situation, Maxt (D) = Max(D) = {M}, where M is the only maximal ideal of the
t-local domain D. Thus, I is invertible in a local domain and hence it is principal.

(2) In this situation, I is t-invertible, hence, the conclusion follows from (1). �

Note that the set TI(D) of all the fractional t-invertible t-ideals of an integral
domain D is a group with respect to the operation I ·t J := (I J )t , having as subgroup
the set Princ(D) of all nonzero fractional principal ideals of D. The quotient
group Clt (D) := TI(D)/Princ(D) is called the t-class group of D. The previous
Proposition 2.10 can be also stated by saying that if D is a t-local domain then
Clt (D) = 0.

3 t-Local Domains and Local DW-Domains

A nonzero ideal J of an integral domain D is called a Glaz–Vasconcelos ideal (for
short, a GV -ideal) if J is finitely generated and J−1 = D. The set of
Glaz–Vasconcelos ideals of D is denoted by GV(D) [21]. Given a nonzero frac-
tional ideal E of D, the w-closure of E is the fractional ideal Ew := {x ∈ K |
x J ⊆ E, for some J ∈ GV(D)}. A nonzero fractional ideal E is called a w-ideal
if E = Ew. The w-operation was introduced by Wang–McCasland in [46].

It is well known that w, like v, t , and the identity operation d are examples of
star operations (respectively, w, like t , and d are examples of star operations of
finite type) [25, Proposition 3.2] and also that d ≤ w ≤ t ≤ v, this means that,
for each E ∈ F(D), we have the following inclusions Ed := E ⊆ Ew ⊆ Et ⊆ Ev .
Furthermore, for each E ∈ F(D), Ew = ⋂{EDQ | Q ∈ Maxt (D)} and the set of
maximal w-ideals of D, Maxw(D), coincide with the set of maximal t-ideals of D,
Maxt (D) [44].

It is natural to ask what is the relation between a t-local domain and a w-local
domain, i.e., a local domain such that its maximal ideal is aw-ideal. A t-local domain
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is necessarily a w-local domain, since d ≤ w ≤ t and conversely, since as observed
above, Maxw(D) = Maxt (D). We will show that something more is true, that is, in
a t-local domain, every nonzero ideal is a w-ideal. For showing this, we need some
preliminaries.

Recall that a DW-domain is an integral domain D such that d = w, i.e., for each
nonzero fractional ideal E of D, E = Ew; this is equivalent to requiring that every
nonzero (integral) finitely generated ideal of D is a w-ideal. The following result is
due to Wang [45, Proposition 1.3] (see also Mimouni [38, Proposition 2.2]).

Proposition 3.1 Let D be an integral domain. The following are equivalent:

(i) D is a DW-domain.
(ii) Every nonzero prime ideal of D is a w-ideal.
(iii) Every maximal ideal of D is a w-ideal.
(iv) Every maximal ideal of D is a t-ideal.
(v) GV(D) = {D}.
Proof Obviously, (i)⇒(ii)⇒(iii).

(iii)⇒(iv) is a consequence of the fact that Maxw(D) = Maxt (D).
(iv)⇒(v) Let J ∈ GV(D) and J � D. Let M ∈ Maxt (D) such that J ⊆ M , then

D = J v = J t ⊆ Mt = M , which is a contradiction.
(v)⇒(i) Let I be a nonzero ideal of D and let 0 �= x ∈ Iw then, for some J ∈

GV(D), x J ⊆ I . Since GV(D) = {D}, xD ⊆ I and so Iw ⊆ I . �

From the previous proposition we deduce immediately the following.

Corollary 3.2 Let D be an integral domain. The following are equivalent:

(i) D is a t-local.
(ii) D is a w-local.
(iii) D is a local DW-domain.

Remark 3.3 Note that, for a t-local domain, it is not true that every nonzero ideal
is a t-ideal, i.e., a domain such that d = t or a DT-domain; even more, for a t-local
domain, it may happen that every nonzero prime ideal is a t-ideal, without being a
DT -domain (see Example 3.5). The DT -domains are also called fgv-domains, that
is, domains such that every nonzero finitely generated ideal is a v-ideal since, for
each nonzero ideal I , I = I t if and only if, for each nonzero finitely generated ideal
J , J v = J t = J . Zafrullah in [48] studied the fgv-domains and he proved that an
integrally closed fgv domain is a Prüfer domain. Note that, for a Noetherian domain,
being a DT -domain is equivalent to being a domain such that each nonzero ideal is
divisorial (i.e., a domain such that d = v). In particular, W. Heinzer has proven that,
for a Noetherian domain D, if every nonzero ideal is divisorial, then dim(D) ≤ 1
[26, Corollary 4.3]; furthermore, for an integrally closed Noetherian domain (or,
more generally, for any completely integrally closed domain) D, every nonzero ideal
is divisorial if and only if D is Dedekind domain [26, Proposition 5.5].

Finally, note that DT -domains are exactly the DW -domains that are at the same
time TW-domains, i.e., domains such that w = t [37].
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Lemma 3.4 Let (T, N ) be a local domain, let k(T ) := T/N, let ϕ : T → k(T ) be
the canonical projection, and let R be a subring of the field k(T ). Set D := ϕ−1(R).
Then, D is a t-local domain with maximal ideal M if and only if R is a t-local domain
(with maximal ideal ϕ(M)).

Proof By the standard properties of the pullbacks constructions, D is a local domain
with maximal ideal M if and only if R is a local domain (with maximal ideal
ϕ(M)) [15, Corollary 1.5]. Moreover, for each E ∈ F(R), ϕ−1(E) ∈ F(D) and
(ϕ−1(E))w = ϕ−1(Ew) [37, Lemma 3.1]. Note that M = ϕ−1(ϕ(M)), and thus
M = Mw if and only if ϕ(M) = (ϕ(M))w. Therefore, (D, M) is w-local if and
only if (R, ϕ(M)) is w-local. The conclusion follows from Corollary 3.2. �

Example 3.5 Example of a Noetherian t-local domain (hence, a local DW -domain)
which is not a DT -domain, but each nonzero prime ideal is a t-ideal.

Consider the 2-dimensional Noetherian integrally closed domain T :=
C[X,Y ](X,Y ), which is clearly not a t-local domain, since its (finitely generatedmaxi-
mal ) idealM := (X,Y )C[X,Y ](X,Y ) is not a divisorial ideal of T (the only divisorial
ideals of T are its height 1 prime ideals). However, by the previous lemma, the local
2-dimensionalNoetherian domain D := R + (X,Y )C[X,Y ](X,Y ) (= ϕ−1(R),where
ϕ : T → T/M ∼= C is the canonical projection) is a t-local domain, since itsmaximal
ideal M = (X,Y )C[X,Y ](X,Y ) is divisorial as an ideal of D, being M = (D : T ).
Moreover, every nonzero prime ideal of D is a t-ideal. Indeed, for the well-known
properties of the pullback constructions, every nonzero nonmaximal prime ideal P
of D is such that P = Q ∩ D, where Q is a nonzero nonmaximal prime ideal of T ,
and moreover DP is canonically isomorphic to TQ [15, Theorem 1.4 (part (c) of the
proof)]. Since TQ is a DVR, DP is a DVR too and hence PDP is a t-ideal of DP

and, in particular, P is a t-ideal of D.
Finally, D is not DT -domain or, equivalently for Noetherianity, D is not a divi-

sorial domain, since dim(D) = 2 (Remark 3.3). Explicitly, for instance, M2 is not
a divisorial ideal (or, equivalently, not a t-ideal) of D (and of T ), since (D : M2) =
((D : M) : M) = (T : M) = T and so (D : (D : M2)) = (D : T ) = M .

Recall that an overring T of an integral domain D is called t-linked over D if, for
each nonzero finitely generated ideal J of D such that J t = D, then (JT )t = T . An
integral domain is t-linkative if every overring is t-linked [13].

Proposition 3.6 Let D be an integral domain. Then, D is t-local domain if and only
if D is a local t-linkative domain.

The previous proposition is a straightforward consequence of the following the-
orem.

Theorem 3.7 (Dobbs–Houston–Lucas–Zafrullah, 1989 [13, Theorem 2.6] Let D be
an integral domain. The following are equivalent:

(i) Every overring of D is t-linked over D.
(ii) Every valuation overring of D is t-linked over D.
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(iii) Every maximal ideal of D is a t-ideal.
(iv) For each nonzero proper ideal I of D, I t �= D.
(v) For each nonzero proper finitely generated ideal J of D, J t �= D.
(vi) Each t-invertible ideal of D is invertible.

Finally, we introduce a construction for building new examples of t-local domains.
We recall that, given an integral domain D, theNagata ring of D (see, for instance,

[18, Sect. 33]) is defined as follows:

D(X) := { f/g | f, g ∈ D[X ], g �= 0, with c(g) = D},

(where c(h) is the content of a polynomial h ∈ D[X ]).
First in [32] and then in [16], the construction of the Nagata ring was extended

to the case of an arbitrary chosen star (or, even semistar) operation. Given a star
operation ∗ on D, set

Na(D, ∗) := { f/g | f, g ∈ D[X ], g �= 0, with c(g)∗ = D}.

With this notation Na(D, d) = D(X). Moreover, it is clear that

Na(D, v) = Na(D, t) = Na(D, w)

since, for each nonzero finitely generated ideal F of D, Fv = Ft and, moreover,
Ft = D if and only if Fw = D, because Maxt (D) = Maxw(D).

Proposition 3.8 Let D be an integral domain.

(1) The Nagata ring Na(D, v) is a DW-domain; in particular, if Maxt (D) = {Q} is
a singleton, thenNa(D, v) is a t-local-domainwithmaximal t-ideal QNa(D, v).

(2) The following are equivalent:

(i) D is a t-local domain.
(ii) Na(D, v) = D(X) and D(X) is local.
(iii) D(X) is a t-local domain.

Proof (1) Recall that N := {g ∈ D[X ] | g �= 0 and c(g)∗ = D} is a saturated mul-
tiplicatively closed subset of D[X ], N = D[X ] \ (⋃{QD[X ] | Q ∈ Max�f (D)}),
Na(D, v) = D[X ]N , and Max(Na(D, v)) = {QNa(D, v) | Q ∈ Maxt (D)}
(see [16, Proposition 3.1] or [32, Proposition 2.1]). Then, it is easy to see that
Na(D, v)QNa(D,v) = D[X ]QD[X ] = DQ(X) and QNa(D, v) = QDQ(X) ∩
Na(D, v), for each Q ∈ Maxt (D), and so:

Na(D, v) =
⋂

{DQ(X) | Q ∈ Maxt (D)}.

Moreover, for each ideal I of D, (INa(D, v))t = I tNa(D, v) [32, Corollary 2.3].
Therefore, in particular, QNa(D, v) is a t-ideal of Na(D, v) for each Q ∈ Maxt (D),
i.e., Max(Na(D, v)) = Maxt (Na(D, v)).
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(2) (i)⇒(ii). We already observed that Na(D, v) = Na(D, t) = Na(D, w). In the
present situation d = w and so Na(D, w) = Na(D, d) = D(X).

(ii)⇒(iii). Obviously, sincewe have shown in (1) that, when D is t-local,Na(D, v)

is t-local too.
(iii)⇒(i) Since the maximal ideals of D(X) are exactly the ideals M(X) :=

MD(X), with M ∈ Max(D) [18, Proposition 33.1], and since M(X)t = Mt (X) [32,
Corollary 2.3], the conclusion is straightforward. �

By the previous proposition, the Nagata ring can be used to give new examples
of DW -domains and, in particular, of t-local domains. For instance, it is known
that D(X) is treed (i.e., the prime spectrum is a tree under the set theoretic inclu-
sion ⊆) if and only if D is treed and the integral closure D of D is a Prüfer
domain [4, Theorem 2.10]. Thus, if we take a treed domain D such that D is not
Prüfer, in this case D(X) is a DW -domain, but not treed. For an explicit example,
take D := Q +UQ(V )[[U ]], where U and V are two indeterminates, then D = D
[4, Remark 2.11], D is a t-local (treed) integrally closed domain but not a valuation
domain, and thus D(X) is a t-local non treed integrally closed domain, since the
integral closure D(X) = D(X) = D(X) [4, Proposition 2.6].

4 Comparable Elements and t-Local Domains

A nonzero element c ∈ D is called comparable in D if, for all x ∈ D, we have
cD ⊆ xD or xD ⊆ cD. It is easy to see that c ∈ D is comparable if cD is comparable
(under inclusion) with each ideal I of D. The following result is essentially Lemma
3.2 of [8].

Lemma 4.1 Let α be a nonzero nonunit element of a local domain (D, M). If, for
each x ∈ D, αD + xD = yD ⊆ M, then α is a comparable element.

Proof By the assumption, it follows that (α/y)D + (x/y)D = D and, since D is
local, α/y or x/y is a unit of D. Thus, the element y is an associate of α or of x . In the
first case, y|x (or, equivalently, α|x) and, in the second case, y|α (or, equivalently,
x |α). Therefore, α is a comparable element of D. �
Lemma 4.2 Let c be a comparable element in an integral domain D. If h is a nonunit
factor of c, then h is also a comparable element of D.

Proof Let c = hy and let x ∈ D. Then cD + xyD = hyD + xyD = y(hD + xD)

coincides with cD or xyD, since c is comparable. In the first case, y(hD + xD) =
cD = yhD, thushD + xD = hD, i.e., x |h. In the secondcase, y(hD + xD) = xyD
and thus hD + xD = xD, i.e., h|x . �

The comparable elements were introduced and studied in [5] to prove, in case of
valuation domains, a Kaplansky-type theorem (recall that Kaplansky proved that an
integral domain D is a UFD if and only if every nonzero prime ideal of D contains
a prime element [33, Theorem 5]).
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Lemma 4.3 (Anderson and Zafrullah [5, Theorem 3]) An integral domain D is a
valuation domain if and only if every nonzero prime ideal of D contains a comparable
element.

An important part of the result was the proof of the fact that the set of all compa-
rable elements of D is a saturated multiplicative set.

We recall in the next lemma some of the consequences of the existence of a
nonzero nonunit comparable element in an integral domain.

Lemma 4.4 (Gilmer–Mott–Zafrullah [20, Theorem 2.3]) Suppose the integral
domain D contains a nonzero nonunit comparable element and let C be the
(nonempty) set of nonzero comparable elements of D. Then:

(1) P := ⋂{cD | c ∈ C } is a prime ideal of D and D \ P = C (in particular, C is
a saturated multiplicative set of D).

(2) D/P is a valuation domain.
(3) P = PDP.
(4) D is local, P compares with every other ideal of D under inclusion, and

dim(D) = dim(D/P) + dim(DP).
(5) If T is any integral domain such that there is a nonmaximal prime ideal Q of T

such that (a) T/Q is a valuation domain, and (b) Q = QTQ, then each element
of T \ Q is comparable.

(6) If, in addition, Q is minimal in T with respect to properties (5, a) and (5, b)
above, then T \ Q is precisely the set of nonzero comparable elements of T .

Of course, an integral domain D is a valuation domain if and only if every nonzero
element of D is comparable. As an easy consequence of the previous lemma, we
obtain immediately the following.

Corollary 4.5 Suppose the integral domain D contains a nonzero nonunit compa-
rable element and let C be the (nonempty) set of nonzero comparable elements of
D. Then, D is a valuation domain if and only if ∩{cD | c ∈ C } = (0).

Proof The statement follows from (1) and (2) of Lemma 4.4. �

Recall that E.D. Davis proved that, given a ring S and a subring R of S, if R is
local then (R, S) is a normal pair (i.e., every ring T , R ⊆ T ⊆ S, is integrally closed
in S) if and only if there is a prime ideal Q in R such that S = RQ , Q = QRQ , and
R/Q is a valuation domain [12, Theorem 1]. From the previous remark and Lemma
4.4, we deduce immediately the following.

Corollary 4.6 Suppose the integral domain D contains a nonzero nonunit com-
parable element. Let C be the set of nonzero comparable elements of D and
P := ⋂{cD | c ∈ C }, as in Lemma 4.4(1). In this situation, (D, DP) is a normal
pair.
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In [20], a part of the following result was proved as a consequence of Lemma 4.4.
We next prove, directly, that the existence of a nonzero nonunit comparable element
in an integral domain is a sufficient but not necessary condition for being a t-local
domain.

Proposition 4.7 An integral domain D that contains a nonzero nonunit comparable
element is a t-local domain, while a t-local domain may not contain a nonzero
nonunit comparable element.

Proof Let D be an integral domain and let c be a nonzero nonunit comparable element
in D. We first show that D is local. Suppose, by way of contradiction, that there exist
two co-maximal nonunit elements x, y in D, i.e., r x + sy = 1 for some r, s ∈ D.
Now, as c is comparable, c|r x or r x |c. So r x has a nonzero nonunit comparable
factor c or, being a factor of c, r x is a nonzero nonunit comparable element. Thus,
in both cases, r x has a nonzero nonunit comparable factor h. Similarly sy has a
nonzero nonunit comparable factor k. Since h, k are comparable, h|k or k|h, say h|k.
Thus, assuming that r x + sy = 1, we get the contradictory conclusion that a nonunit
divides a unit. So, D is local. We denote by M its maximal ideal.

Next, let x1, x2, . . . , xn ∈ M and note that, as above, each of the xi has a nonzero
nonunit comparable factor hi . Thus, (x1, x2, . . . , xn) ⊆ (h1, h2, . . . , hn).

Now, consider h1, h2. Theymust have a nonzero nonunit common factor k1 (which
is equal to h1 or h2). So, (x1, x2, . . . , xn) ⊆ (h1, h2, . . . , hn) ⊆ (k1, h3, . . . , hn).
Continuing this process, we eventually get a nonzero nonunit comparable element k
such that (x1, x2, . . . , xn) ⊆ (h1, h2, . . . , hn) ⊆ (k) ⊆ M . But, as (x1, x2, . . . , xn) ⊆
(k) implies (x1, x2, . . . , xn)v ⊆ (k), we conclude that, for each finitely generated
ideal (x1, x2, . . . , xn) ⊆ M, (x1, x2, . . . , xn)v ⊆ M . Thus, D is a t-local domain.

For the converse, note that a 1-dimensional local domain has only one nonzero
prime (=maximal) ideal and so it is a valuation ring if and only if it contains a nonunit
comparable element, by the Kaplansky-type theoremmentioned above (Lemma 4.3).
The proof is complete once we note that there do exist 1-dimensional (Noetherian t-
)local domains that are not valuation domains (in fact, non-integrally closed domains)
(e.g., R + XC[[X ]]).

Note also that there even exist 1-dimensional t-local integrally closed domains
that are not valuation domains (e.g., Q + XC[[X ]], where Q is the algebraic closure
of Q in C). �
Remark 4.8 Note that the previous example shows that a local domainwith divisorial
maximal ideal may not contain a nonzero nonunit comparable element. On the other
hand, a valuation domainV with nonprincipalmaximal ideal (in particular, dim(V ) ≥
2) is a domain containing a nonzero nonunit comparable element and so it is a t-local
domain with nondivisorial maximal ideal.

Recall that an integral domain Dwith quotient field K is called a pseudo-valuation
domain (for short, PVD) if D is local and the maximal ideal M of D is strongly prime
(i.e., whenever elements x and y of K satisfy xy ∈ M , then either x ∈ M or y ∈ M).
From the proof of the previous Proposition 4.7, we give now a general class of t-local
domains that do not contain nonzero nonunit comparable elements.
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Example 4.9 Let (T, M) be any local domain, let k(T ) := T/M , let ϕ : T → k(T )

be the canonical projection, and let F be a proper subfield of k(T ). Set D := ϕ−1(F).
It is known that D is a local domain with maximal ideal M and (M : M) = (D :
M) = T . Since M = (D : T ), it is easy to see that M is a divisorial ideal in D and,
in particular, a t-ideal. Thus, (D, M) is a t-local domain. In particular, any PVD is
a t-local domain [24, Theorem 2.10].

Remark 4.10 Note that the argument used in the previous example can be used to
construct a more general class of t-local domains. Start from a (not necessarily local)
integral domain T such that its Jacobson ideal J (T ) is nonzero and suppose that the
ring T/J (T ) contains properly a field F . Let ϕ : T → T/J (T ) be the canonical
projection and let D := ϕ−1(F), then D is a t-local domain.

A fractional ideal E ∈ F(D) is said to be v-invertible (respectively, t-invertible)
if there is G ∈ F(D) such that ((EG)v = D (respectively, (EG)t = D). Obviously,
every invertible ideal is t-invertible.

Recall that a GCD domain is an integral domain D such that, for each a, b ∈ D,
aD ∩ bD is principal or, equivalently, (a, b)v is principal. Therefore, a GCD domain
(e.g., a Bézout domain) is a PvMD.

Corollary 4.11 Let D be a PvMD, not a field. Then, D is a valuation domain if and
only if D contains a nonzero nonunit comparable element.

Proof The statement follows from Proposition 4.7, from the fact that a t-local PvMD
is a valuation domain anyway and from the fact that a valuation domain that is not a
field must contain many nonunit comparable elements (in fact, all nonunit elements
are comparable). �

From the previous corollary it follows that every Krull domain (e.g., UFD) con-
taining a nonzero nonunit comparable element is a DVR and that every GCD domain
containing a nonzero nonunit comparable element is a valuation domain.

Now, here comes something more general and a tad surprising. Call an integral
domain D atomic if every nonzero nonunit of D is expressible as a finite product
irreducible elements. An irreducible element is called also atom. For instance, every
Noetherian domain and every UFD is atomic.

Corollary 4.12 An atomic domain that contains a nonzero nonunit comparable
element is a DVR.

Proof Let D be an atomic domain and let c be a nonzero nonunit comparable element
in D. Then, by Proposition 4.7, D is t-local domain; denote by M its maximal ideal.
Let h be an irreducible factor of c. Then h is a comparable element, being a factor
of a comparable element (Lemma 4.2). So, for every x in D, either h|x or x |h. Now,
as h is irreducible, x |h means that x is a unit or x = h. Thus, for all nonunits x ∈ D,
necessarily h|x . That is M = hD and so h is a prime element in D. Next, as h|x for
each nonzero nonunit x ∈ D, we have x = x1h and if x1 is a nonunit then x1 = x2h
and so x = h2x2. Continuing this way, since D is atomic, for each nonzero nonunit
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x ∈ D there is an integer n = n(x) (depending on x) such that x = hnxn where xn is
a unit. But then we can conclude that D is a DVR and h is a uniformizing parameter
of D. �

Corollary 4.12 was first proved for Noetherian domains; we thank Tiberiu
Dumitrescu for suggesting the atomic domain assumption. With hindsight we can
prove a more precise result.

Corollary 4.13 Let D be a domain that contains a nonzero nonunit comparable
element.

(1) In this situation, D is local (Proposition 4.7) and the maximal ideal of D is
generated by the nonunit comparable elements of D.

(2) The integral domain D contains an atom α if and only if α is the generator of the
(unique) maximal ideal of D and, hence, α is a prime and comparable element.

Proof (1) By Proposition 4.7, D is t-local; let M denote the maximal ideal of D.
With the notation of Lemma 4.4, M properly contains the comparable prime ideal
P of D. If (x1, x2, . . . , xn) is a finitely generated ideal and P ⊆ (x1, x2, . . . , xn) ⊆
M , since D/P is a valuation domain, then (x1, x2, . . . , xn) = (x) for some x ∈
{x1, x2, . . . , xn}. Therefore, since M = Mt , M is generated by the nonunit compa-
rable elements of D.

(2) Let α be an atom of D and let c be a nonzero nonunit comparable element
of D. Then, either c|α or α|c. If c|α then, as α is an atom and c a nonunit, c and α

must be associate, so α is a comparable element. If, on the other hand, α|c then α is
a comparable element, being a factor of a comparable element (Lemma 4.2). Thus,
as above, αD = M .

The converse is obvious, indeed if the maximal ideal M of a local domain D is
principal and M = αD then, up to associates, α is the only atom in D. �

Note that if, instead of considering atoms (=irreducible elements), we consider
prime elements, we can state a result analogous to the previous corollary in a more
general setting, with a different proof.

Proposition 4.14 Let D be a domain.

(1) If a maximal t-ideal M of D contains a prime element p, then M = pD.
(2) If (D, M) is a t-local domain (e.g., if D contains a nonzero nonunit comparable

element), then D contains a prime element p if and only if p is the generator of
the maximal ideal of D and, hence, p is a comparable element.

Proof (1) Let p be a prime element of a domain D then, for each x in D, pD ∩ xD =
xD or pD ∩ xD = pxD.

So,

((p, x)D)−1 = pD ∩ xD

px
=

(
1

p

)

D or ((p, x)D)−1 = D.
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But then ((p, x)D)v = pD or ((p, x)D)v = D. So, if a prime element p belongs to
a maximal t-ideal M then M = pD.

(2) If a prime element p belongs to a t-local ring (D, M) then M = pD, by (1)
and consequently p is a comparable element of D. �

It is well known that, if p is a prime element in an integral domain D, then⋂
n≥0 p

nD is a prime ideal too (see, for instance, Kaplansky [33, Exercise 5, pages
7-8]).

Theorem 4.15 If a domain D contains a nonzero nonunit comparable element then,
for every nonzero nonunit comparable element x of D, we have that Q := ⋂

n≥0 x
nD

is a prime ideal such that D/Q is a valuation domain and Q = QDQ.
Conversely, if there is a nonzero element x in a domain D such that

Q := ⋂
n≥0 x

nD is a prime ideal, D/Q is a valuation domain, and Q = QDQ,
then D is t-local and x is a comparable element of D.

Proof Indeed Q is an ideal, being an intersection of ideals. Now, consider S := D\Q
and let a, b ∈ S. Then a /∈ xmD for some positive integer m and b /∈ xnD for some
positive integer n. Since x and hence xm, xn are comparable, we conclude that
aD � xmD and bD � xnD. Therefore, abD � axnD � xn+mD and so ab ∈ S and
Q is a prime ideal.

From the above proof, it follows that S consists of factors of powers of the compa-
rable element x and so every element of S is comparable; this implies that D/Q is a
valuation domain. Next, let α/τ ∈ QDQ where α ∈ Q and τ ∈ D\Q. In particular,
τ divides some power of x and so τ is comparable. Hence, αD ⊆ Q � τD which
means that for some nonunit y we have α = τ y. As τ /∈ Q, then necessarily y ∈ Q.
So α/τ = y ∈ Q. Thus QDQ ⊆ Q, i.e., Q = QDQ .

The converse follows fromLemma 4.4(5) and Proposition 4.7 (see also [20, Theo-
rem 2.3]). �

Note that there are integral domains that may or may not be local, but have
elements x such that ∩xnD =: Q is a prime ideal such that Q = QDQ, but D/Q
is not a valuation domain. Here are some examples using the D + M construction
studied by Gilmer [18, page 202].

We start from a valuation domain V , with quotient field K , expressible as V =
k + M , where k is a subfield of V (and K ) and M is the maximal ideal of V ; thus,
in the present situation, the residue field V/M is canonically isomorphic to k. Let D
be a subring of k. The ring R := D + M (subring of V ) with quotient field K (the
same as V ) has some interesting properties due to the mode of this construction, as
indicated for instance in [7] (see also [15, Theorem 1.4]). Our concrete model for
these examples would be V := k[[X ]] = k + Xk[[X ]].
Example 4.16 Given a field k, let D be a 1-dimensional local domain contained in k,
with quotient field F (⊆ k) and suppose that D is not a valuation domain. Then R :=
D + Xk[[X ]] is a (local) 2-dimensional domain such that, for each nonzero nonunit x
in D, we have

⋂
n≥0 x

n R = Xk[[X ]]. Indeed, for a nonunit x in a 1-dimensional local
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domain D, we have
⋂

n≥0 x
nD = (0) and so

⋂
n≥0 x

n R = Xk[[X ]]. Moreover, since
RXk[[X ]] = F + Xk[X ]], then Xk[[X ]]RXk[[X ]] = Xk[[X ]](F + Xk[X ]]) = Xk[[X ]].
In this situation, R/Xk[[X ]] = D.

What makes the above example work is the fact that, for a nonunit x in a 1-
dimensional local domain D, we have

⋂
n≥0 x

nD = (0). Call an integral domain D
an Archimedean domain if, for all nonunit elements x in D, we have

⋂
n≥0 x

nD =
(0) [43, Definition 3.6] (this class of domains was previously considered in [41]
without naming them).By theKrull intersection theorem, everyNoetherian domain is
Archimedean. SinceMori domains satisfy the ascending chain condition on principal
ideals, they are Archimedean; in particular, Krull domains are Archimedean. The
class of Archimedean domains includes also completely integrally closed domains
[19, Corollary 5] and 1-dimensional integral domains [41, Corollary 1.4].

An Archimedean (possibly nonlocal or any dimensional) version of the previous
Example 4.16 is given next.

Example 4.17 Given a field k, let D be an Archimedean domain contained in
k, with quotient field F (⊆ k) and suppose that D is not a valuation domain.
Then, as above, R := D + Xk[[X ]] is such that, for each nonzero nonunit x in D,
we have

⋂
n≥0 x

n R = Xk[[X ]], Xk[[X ]] = Xk[[X ]]RXk[[X ]] and R/Xk[[X ]] = D. In
the present situation, Max(R) has the same cardinality of Max(D) and dim(R) =
dim(D) + 1.

Example 4.18 Let D be an integral domain and S a multiplicative subset of D.
Following the construction R := D + XDS[X ] of [11], if s is a nonunit element in
S such that

⋂
n≥0 s

nD = (0) then
⋂

n≥0 s
n R = XDS[X ] a prime ideal of R. Also in

this case R/XDS[X ] = D, which might not be a valuation domain. However, in the
present situation, XDS[X ] � XDS[X ](RXDS [X ]) = XDS[X ](X).

5 From t-Local Domains to Valuation Domains

Because in a valuation domain (V, M) every finitely generated ideal is principal, the
maximal ideal M is obviously a t-ideal. So t-local domains are “cousins” of valua-
tion domains, but sort of far removed. For instance, a localization of a t-local domain
is not necessarily t-local (see, for instance, Example 2.9 or [51]), but of course a
localization of a valuation domain is a valuation domain.

Explicitly, a more simple example is given by R := Z(p) + (X,Y )Q[[X,Y ]]. The
integral domain R is localwithmaximal idealM := pZ(p) + (X,Y )Q[[X,Y ]] = pR,
and so it is obviously a t-local domain. However, R[1/p] = RQ = Q[[X,Y ]], where
Q := (X,Y )Q[[X,Y ]], is a 2-dimensional local Noetherian Krull domain, and so it
is far away from being t-local.

So it is legitimate to ask: Under what conditions is a t-local domain a valuation
domain? Here we address this question.
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The following is a simple result that hinges on the fact that if F is a nonzero
finitely generated ideal in a t-ideal I then Fv ⊆ I .

Proposition 5.1 For a finite set of elements x1, x2, . . . , xn, in a t-local domain
(D, M), the following are equivalent:

(i) (x1, x2, . . . , xn)v = D.
(ii) At least one xi is a unit.
(iii) (x1, x2, . . . , xn) = D.

Proof Clearly, (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii) By the previous observation (x1, x2, . . . , xn) � M , and so at least one

xi /∈ M . �

Proposition 5.2 For an integral domain D the following are equivalent:

(i) D is a valuation domain
(ii) D is a t-local GCD domain (or, equivalently, a t-local Bézout domain).
(iii) D is a t-local PvMD (or, equivalently, a t-local Prüfer domain).

Proof (i) ⇒ (ii) ⇒ (iii) are straightforward.
For (iii) ⇒ (i) note for instance that, in a PvMD, every nonzero finitely generated

ideal (x1, x2, ..., xn) is t-invertible. But, by [3, Proposition 1.12(1)], (x1, x2, ..., xn)
is a principal ideal. �

Recall that a ring is coherent if every finitely generated ideal is finitely presented.
It is well known that a commutative integral domain D is coherent if and only if the
intersection of every pair of finitely generated ideals is finitely generated [9, Theorem
2.2].

Call a domain D a finite conductor domain (for short, FC domain; this name was
used for the first time in [47]) if the intersection of every pair of principal ideals
of D is finitely generated. Indeed, “finite conductor domain” is a generalization of
“coherent domain.”

Proposition 5.3 For an integral domain D, the following are equivalent:

(i) D is a valuation domain.
(ii) D is an integrally closed coherent t-local domain.
(iii) D is an integrally closed finite conductor t-local domain.

Proof (i) ⇒ (ii) ⇒ (iii) are all straightforward.
For (iii) ⇒ (i) note that an integrally closed FC domain is a PvMD [47, Theorem

2] (or, [18, Exercise 21, page 432]) and we already observed that a t-local PvMD is
a valuation domain (Proposition 5.2((iii)⇒(i))). �

As an application of the previous proposition, we easily obtain the following result
due to S. McAdam.
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Corollary 5.4 (S. McAdam [35, Theorem 1]) Let D be an integrally closed local
domain whose primes are linearly ordered by inclusion. Assume that D is an FC
domain, then D is a valuation domain.

Proof By Proposition 2.4, D is t-local. The conclusion follows from Proposition
2.4((iii)⇒(i)). �

A nonzero element r of a domain D is called a primal element if for all x, y ∈
D\{0} r |xy implies that r = st where s|x and t |y. A domainwhose nonzero elements
are all primal is called a pre-Schreier domain. An integrally closed pre-Schreier
domain was called a Schreier domain by P.M. Cohn in his paper [10, page 254].
There, he showed that a GCD domain is a Schreier domain [10, Theorem 2.4].

Based on considerations initiated by McAdam and Rush [36], a module M is
said to be locally cyclic if every finitely generated submodule of M is contained in
a cyclic submodule of M . Thus, in particular, an ideal I of D is locally cyclic if, for
any finite set of elements x1, x2, . . . , xn ∈ I , there is an element d ∈ I such that d|xk
for each k, 1 ≤ k ≤ n.

In [50, Theorem 1.1], M. Zafrullah has shown that an integral domain D is pre-
Schreier if and only if for all a, b ∈ D\(0) and x1, x2, . . . , xn ∈ (a) ∩ (b) there is
d ∈ (a) ∩ (b) such that d|xk , for each k, 1 ≤ k ≤ n.

Based on this, we easily obtain the following.

Lemma 5.5 If D is a pre-Schreier domain and a, b ∈ D\{0}, then the following are
equivalent:

(i) (a) ∩ (b) is principal.
(ii) (a) ∩ (b) is finitely generated.
(iii) (a) ∩ (b) is a v-ideal of finite type.

Proof Indeed (i) ⇒ (ii) ⇒ (iii) are all straightforward. All we need is to show
(iii) ⇒ (i). For this note that if (a) ∩ (b) = (x1, x2, . . . , xn)

v , then, x1, x2, . . . , xn ∈
(a) ∩ (b). Since D is pre-Schreier, there is an element d ∈ (a) ∩ (b) such that d|xk ,
for each k, 1 ≤ k ≤ n, i.e., (x1, x2, . . . , xn) ⊆ (d). But then (x1, x2, ...xn)

v ⊆ (d),
and so (d) ⊆ (a) ∩ (b) = (x1, x2, ...xn)

v ⊆ (d). �

Call a domain D a v-finite conductor (for short, v-FC) domain if, for each pair
0 �= a, b ∈ D, the ideal (a) ∩ (b) is a v-ideal of finite type. Then, recalling that a
GCD domain is integrally closed, from Lemma 5.5, we easily deduce the following.

Corollary 5.6 Let D be an integral domain. The following are equivalent:

(i) D is a GCD domain.
(ii) D is a Schreier and a v-FC domain.
(iii) D is a pre-Schreier and a v-FC domain.

With this preparation, we have the following result.
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Corollary 5.7 For an integral domain D, the following are equivalent:

(i) D is a valuation domain.
(ii) D is a pre-Schreier t-local coherent domain.
(iii) D is a pre-Schreier t-local FC domain.
(iv) D is a pre-Schreier t-local v-FC domain.
(v) D is a GCD t-local domain.

Proof It is obvious that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv); (iv) ⇔ (v) by Corollary 5.6 and
(v) ⇔ (i) by Proposition 5.2. �

Obviously, the above are not the only situations in which a t-local integral domain
becomes a valuation domain. We describe next another interesting situation of this
phenomenon, in case of existence of a comparable element.

Proposition 5.8 Suppose that an integral domain D contains a nonzero nonunit
comparable element x and let Q := ⋂

n≥0 x
nD. Then, D is a valuation domain if

and only if DQ is a valuation domain.

Proof Indeed, if D is a valuation domain, since Q is a prime ideal (Theorem 4.15),
DQ is also a valuation domain and so we have only to take care of its converse.

The presence of a nonzero nonunit comparable element makes D a t-local domain
(Proposition 4.7). In order to prove that D is valuation domains, we consider the
finitely generated ideals of D. We split the proper finitely generated ideals into two
types: (a) ones that contain a nonunit factor of a power of x and (b) ones that do not
contain a nonunit factor of a power of x .

Ones in part (a) are principal by [20, Theorem 2.4] and ones in part (b) are
contained in Q and are principal proper ideals of the valuation domain DQ and
hence are in QDQ . By Theorem 4.15 above, QDQ = Q, so, for each y in Q, yDQ is
(also) an ideal of D, i.e., yDQ = yD. Now, let x1, x2, . . . , xn ∈ Q and consider the
ideal (x1, x2, . . . , xn). Since DQ is a valuation domain, (x1, x2, . . . , xn)DQ = dDQ

and we can assume that d is in D. So, for some ri ∈ D and si ∈ D\Q we have
xi = ri

si
d, for each i .

So (x1, x2, . . . , xn) = ( r1s1
d, r2

s2
d, . . . , rn

sn
d). Removing the denominators, we get

s(x1, x2, . . . , xn) = (t1d, t2d, . . . , tnd) = (t1, t2, . . . , tn)d, for some s ∈ D \ Q ,
where si |s and ti := s

si
ri , for each i . As dDQ = (x1, x2, . . . , xn)DQ = s(x1, x2, . . . ,

xn)DQ = (t1, t2, . . . , tn)dDQ , we conclude that (t1, t2, . . . , tn)DQ = DQ . But that
means that at least one of the ti is in D\Q and hence is a comparable element (Lemma
4.4(5)). But then, by [20, Theorem 2.4], (t1, t2, . . . , tn) is principal generated by a
comparable element t . Thus, s(x1, x2, . . . , xn) = (t1, t2, . . . , tn)d = tdD. Since s
and t are comparable, we have two possibilities: (α) u(x1, x2, . . . , xn) = dD or (β)
(x1, x2, . . . , xn) = vdD, for some u, v ∈ D. In both cases (x1, x2, ...xn) turns out
to be a principal ideal of D (in case (α) because d ∈ u(x1, x2, . . . , xn) and so u|d
in D). �
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6 Applications: Shannon’s Quadratic Extension

A domain D is a treed domain if it has a treed spectrum, i.e., Spec(D) is a tree
as a poset with respect to the set inclusion. Note that D is a treed domain if and
only if any two incomparable primes of D are co-maximal. Indeed, if D is a treed
then DP is also a treed (more precisely, Spec(DP) is linearly ordered) for every
nonzero prime ideal P of D. So, by Proposition 2.4, DP is a t-local domain and
thus P = PDP ∩ D is a t-ideal of D. Indeed, if F is a finitely generated ideal of
D contained in P , then Ft DP = FvDP ⊆ (FDP)v = (FDP)t ⊆ (PDP)t = PDP

and so Ft ⊆ (FDP)t ∩ D ⊆ PDP ∩ D = P (see also [52, page 436]). Therefore, in
a treed domain, every nonzero prime ideal is a t-ideal (Proposition 2.4), in particular
every maximal ideal is a t-ideal, and moreover it is well behaved. However, a general
t-local domain Dmay not have Spec(D) a tree as, for instance, Examples 2.9 and 4.17
indicate. So the class of treed domains is strictly contained in the class of domains
whose maximal ideals are t-ideals. But, in the presence of some extra conditions,
this distinction may disappear.

Proposition 6.1 For a Prüfer v-multiplication domain D, the following conditions
are equivalent:

(i) Every maximal ideal of D is a t-ideal.
(ii) Every prime ideal of D is a t-ideal.
(iii) Spec(D) is a tree.
(iv) D is a Prüfer domain.

Proof (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) hold in general (without the PvMD assumption).
More precisely, (iv) ⇒ (iii) is clear because in a Prüfer domain D, DP is a valuation
domain for every nonzero prime ideal P and so Spec(D) is a tree. (iii) ⇒ (ii) has
been explained above.

(i)⇒ (iv) For every prime t-ideal P of a PvMD D, we have DP a valuation domain
(see, for instance, [39,Corollary 4.3]) and ifwe assume that DM is a valuationdomain,
for every maximal ideal M of D, then D is well known to be a Prüfer domain. �

The previous proposition leads to the following result for FC domains.

Corollary 6.2 Let D be an integral domain. The following are equivalent:

(i) D is an integrally closed finite conductor treed domain.
(ii) D is a treed PvMD.
(iii) D is Prüfer.

Proof (i) ⇒ (ii), since an integrally closed finite conductor domain is a PvMD by
Proposition 5.3 and [39, Corollary 4.3]. (ii) ⇔ (iii) by Proposition 6.1 and (iii) ⇒
(i) because a Prüfer domain is an FC domain [47, Corollary 10]. �

Indeed, it is worth noting that a nonzero proper ideal I in an integral domain D is
said to be an ideal of grade 1 if I does not contain a set of elements forming a regular
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sequence of length ≥ 2. Recall that, if an ideal I of an integral domain D contains
a regular sequence of length 2, then I−1 = D [33, Exercise 1, page 102]. So, every
t-ideal of an integral domain is a grade 1 ideal and every nonzero prime ideal in a
treed domain is a grade 1 ideal. With this background, for the next application we
need a little bit of preparation.

Let (R,m) be a regular local integral domain with quotient field F and p a
prime ideal of R so that R/p is a regular local domain. A monoidal transform of
R with nonsingular center p is a local domain of the type T := R[px−1]Q , where
0 �= x ∈ p and Q is a prime ideal in R[px−1] such that m ⊆ Q. In particular,
assume that dim(R) = n, and p = m = (x1, x2, . . . , xn)R, where {x1, x2, . . . , xn}
form a regular sequence in R. Choose i ∈ {1, 2, . . . , n}, and consider the overring
R[x1/xi , x2/xi , . . . , xn/xi ] of R. Take any prime ideal Q of R[x1/xi , x2/xi , . . . ,
xn/xi ] such that Q ⊇ m. The ring R1 := R[x1/xi , x2/xi , . . . , xn/xi ]Q is called a
local quadratic transform (for short, LQT) of R, and, again, R1 is a regular local inte-
gral domain with maximal ideal m1 := QR[x1/xi , x2/xi , . . . , xn/xi ]Q [40, Corol-
lary 38.2]. Assume that dim(R) ≥ 2 in order to have that R �= R1. By Cohen’s
dimension inequality formula dim(R1) ≤ n [34, Theorem 15.5] (and,more precisely,
dim(R1) = n if and only if R1/m1 is an algebraic extension of R/m) [2, (1.4)].

If we iterate the process, we obtain a sequence R =: R0 ⊆ R1 ⊆ R2 ⊆ ... of reg-
ular local overrings of R such that for each j ≥ 0, R j+1 is a LQT of R j . After a
finite number of iterations, the sequence of nonincreasing integers dim(R j ) is nec-
essarily bound to stabilize, and this process of iterating LQTs of the same Krull
dimension (definitively, after a certain point) and ascending unions of the resulting
regular sequences are of interest in algebraic geometry. For a description the reader
may consult a couple of recent papers [23, 27]. So, let R =: R0 ⊆ R1 ⊆ R2 ⊆ . . .

be a sequence of LQTs from a regular local integral domain R with dim(R) ≥ 2 and
dim(R j ) ≥ 2, for each j ≥ 1, as described above. The ring S := ⋃

j≥0 R j , dubbed
in recent work as Shannon’s Quadratic Extension of R, to honor David Shannon [43]
for his interesting contribution, has drawn particular attention.

Briefly, before Shannon, Abhyankar [1, Lemma 12] had shown that, if the regular
local ring R has dimension 2, then S is a valuation overring of R such that the
maximal ideal mS of S contains the maximal ideal m of R. David Shannon, one of
Abhyankar’s students, showed that if dim(R) > 2, S need not to be a valuation ring
[43, Examples 4.7 and 4.17].

Our purpose here is to look at S from a simple star-operation theoretic perspective,
to provide some direct straightforward and brief proofs of some known results and
point to known results that could simplify some of the considerations in recent work.

We start by gathering some information about the Shannon’s Quadratic Extension
S. Next two properties can be easily proved.

(1) S(:= ⋃
j≥0 R j ), as described above, is a local ring and, if mS denotes the max-

imal ideal of S, mS = ⋃
j≥0 m j where m j is the maximal ideal of the LQT R j .

(2) S is integrally closed, as being integrally closed a first-order property which is
preserved by directed unions and hence, in particular, by ascending unions.
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Since S is directed union of regular local integral domains and, by the Auslander–
Buchsbaum theorem [34, Theorem 20.3], each regular local integral domain is a
UFD and hence, in particular, a GCD domain and so, a fortiori, a Schreier domain.
This observation gives us the next property of S.

(3) S is (at least) a Schreier domain.

This follows fromadirect verification that a direct union of (pre-)Schreier domains
is a (pre-)Schreier domain.

Remark 6.3 Note that it is not true that a direct union of GCD domains is a GCD
domain. An example can be given by an integral domain of the type D(�) := D +
XD�[X ] = ⋃{D[X/s] | s ∈ �}, where D is a GCD domain and � is a saturated
multiplicative subset D, since it is known that D(�) is not a GCD if� is not a splitting
set, i.e., if� does not verify the condition that, for each 0 �= d ∈ D, d = sa for some
s ∈ � and a ∈ D with aD ∩ s ′D = as ′D for all s ′ ∈ � [49, Corollary 1.5].

We give now an explicit example. Let E be the ring of entire functions. It is well
known that E is a Bézout domain [18, Exercise 18, page 147] and that every nonzero
nonunit x of E can be written uniquely as a countable product of finite powers of
nonassociated primes, i.e., x = u

∏
α∈A pnα

α where A is a countable set, nα are natural
numbers and pα are mutually nonassociated primes elements of E and u is a unit in
E . The last property follows from the fact that the set of zeros of a nontrivial entire
function is discrete, including multiplicities, the multiplicity of a zero of an entire
function is a positive integer and a zero of an entire function determines a principal
prime in E [30, Theorem 6]. Clearly, each of these primes generates a height one
maximal ideal of E [18, Exercise 19, page 147].

Let � be the multiplicative set generated by all of these principal, height one
primes and let X be an indeterminate. Then, the ring E (�) := E + XE�[X ] =⋃{E[X/s] | s ∈ �} is not a GCD domain, even though E[X/s] is a GCD domain
for each s ∈ �.

Indeed, if x ∈ E is an infinite product of primes then it is not possible to write
x = sx1 where s ∈ � and x1 is not divisible by any of the nonunits in �, since each
s is a finite product of primes and x is a product of infinitely many primes from �.
Thus, � is not a splitting set and so E (�) cannot be a GCD domain.

However, we claim that E (�) is a locally GCD domain. For proving the claim, we
need some preliminaries. A prime ideal P of an integral domain D is said to intersect
in detail a multiplicative set � of D if every nonzero prime ideal Q contained in P
intersects �. It was shown [49, Proposition 4.1] that if D is a locally GCD domain
and � is a multiplicative set of D such that every maximal ideal of D that intersects
�, intersects � in detail, then D(�) is a locally GCD domain.

Indeed, clearly the Bézout domainE is a locally GCD domain.Moreover, as every
maximal ideal of E that intersects � contains a finite product of principal primes
and so must be a principal ideal. Thus, every maximal ideal of E that intersects �,
intersects it in detail. Consequently E (�) is a locally GCD domain; however, E (�) is
not a PvMD, since E (�) is a Schreier domain and a PvMD which also is a Schreier
domain is a GCD domain [6, Proposition 2.3].
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As a final remark, we recall from [49, Proposition 4.3] that in a locally GCD
non-PvMD D there always exists a maximal t-ideal Q of D such that QDQ is not a
t-deal of DQ . More precisely, it can be shown that an integral domain D is a PvMD
if and only if D is locally PvMD and, for every t-prime ideal P of D, PDP is a
(maximal) t-ideal of DP [49, Corollary 4.4].

We now resume our study of Shannon’s Quadratic Extension S.

(4) There exists an element x ∈ mS such that mS = √
xS [27, Proposition 3.8].

The last property gives us, in light of Corollary 2.3(1), the following property that
is of interest to us:

(5) S is a t-local integral domain.

This is enough information to provide very naturally the statements and easy new
proof(s) of [23, Theorem 6.2].

Theorem 6.4 (Guerrieri et al. [23, Theorem 6.2]) Let S be a quadratic Shannon
extension of a regular local integral domain R. Then, the following are equivalent:

(i) S is a valuation domain
(ii) S is coherent.
(iii) S is a finite conductor domain.
(iv) S is a GCD domain.
(v) S is a PvMD.
(vi) S is a v-finite conductor domain.

Proof The equivalence of (i) ⇔ (ii) ⇔ (iii) comes from Proposition 5.3. Now (i) ⇔
(iv) ⇔ (v) follow from Proposition 5.2 and, as S is Schreier (by (3)), (i) ⇔ (vi) by
Corollary 5.7. �

FromLemma5.5,Corollary 5.7, andTheorem6.4,we easily deduce the following.

Corollary 6.5 Let S be a quadratic Shannon extension of a regular local integral
domain R. If S is not a valuation domain, then S contains a pair of elements a, b
such that aS ∩ bS is not a v-ideal of finite type.

Proof If, for each pair of elements a, b ∈ S, we had that aS ∩ bS is a v-ideal of finite
type, then S would be a GCD domain by Corollary 5.6, since S is a Schreier domain
(by point (3) above). Therefore, S would be a valuation domain by Theorem 6.4,
which is not the case. �

This corollary is significant with reference to the proof of the previous theorem
(Theorem 6.4) in that there are PvMDs D, such as Krull domains, that contain
elements a, b such that aS ∩ bS a v-ideal of finite type, which may not be finitely
generated.

From [27, Proposition 4.1], we conclude that S has another property of interest.
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(5) For each element x ∈ mS such thatmS = √
xS, the integral domain T := S[1/x]

is a regular local ring with dim(T ) = dim(S) − 1.

So, if dim(S) = 2 and mS contains a nonzero comparable element then we know
that S is a valuation domain (Theorem 4.15 and (5)).

If dim(S) > 2 then S cannot be a valuation domain, whether S contains a com-
parable element or not, because a regular local ring T , constructed from S as in (5),
has dim(T ) > 1, and thus T may not be a valuation domain. However, if mS = pS
is principal then, S is a non-valuation t-local domain that contains a comparable
element, by Proposition 4.14(2). This fact, together with Proposition 5.8, provides
a definitive criterion that can be used to construct examples of non-valuation t-local
domains containing a comparable element, even in dimension two.

Example 6.6 Let Z be the ring of integers, Q (resp., R) the field of rational numbers
(resp. real numbers) and p a prime element in Z. Let P be the maximal ideal of
the DVR R[[X ]] and set D := Z(p) + XR[[X ]] = Z(p) + P . The integral domain
D is local with principal maximal ideal M := pD and

⋂
n≥0 p

nD = XR[[X ]] =
P . Clearly, p is a proper comparable element in D. Since DP = Q + XR[[X ]] is
not a valuation domain, D is a 2-dimensional non-Noetherian non-valuation t-local
integral domain with prime spectrum linearly ordered given by {M ⊃ P ⊃ (0)}.

In the same vein, and this is suggested by Tiberiu Dumitrescu, we have another
example.

Example 6.7 Let Z be the ring of integers, Q the field of rational numbers and p
a nonzero prime element in Z. Let D := Z(p) + P where P is the maximal ideal
(X2, X3) of Q[[X2, X3]]. As above, D is a local domain with maximal ideal M =
pZ(p) + P = pD and

⋂
n≥0 p

nD = P . In this case, DP = Q[[X2, X3]] which is a
well-known 2-dimensional Noetherian domain that is not a valuation domain (in fact,
it is non-integrally closed). Thus, D is a 2-dimensional non-Noetherian non-valuation
t-local integral domain, having a proper comparable element and prime spectrum
linearly ordered given by {M := pZ(p) + (X2, X3)Q[[X2, X3]] ⊃ P ⊃ (0)}.

We can provide examples in any dimension. Let P be the maximal ideal of the
n-dimensional regular local ring Q[[X1, X2, . . . , Xn]]. Then D := Z(p) + P is local
withmaximal idealM := pD. In particular, D contains a proper comparable element,
e.g., p, and, of course, DP is far from being a valuation domain. Thus, D is an
(n + 1)-dimensional non-valuation t-local integral domain.

Note that a 1-dimensional domain that contains a nonzero nonunit comparable
element is a valuation domain. This follows from the following two facts: (1) the
presence of a comparable element forces the domain to be (1-dimensional) t-local
and (2) a domain is a valuation domain if and only if every nonzero prime ideal
contains a nonzero comparable element (Lemma 4.3).

From (5), we deduce another interesting property of S.

(6) Let S be as above (i.e., a quadratic Shannon extension of a regular local integral
domain), for each element x ∈ mS such that mS = √

xS, call the saturation of
the multiplicative set {xn | n ∈ N}, span of x and denote it by span(x). Then,
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(6a) for every nonunit h in span(x) we have mS = √
hS and

(6b) mS is generated by nonunits in span(x).

The saturated multiplicative set span(x) has been used before, by Dumitrescu
et al. in [14], to determine the number of distinct maximal t-ideals that the element
x belongs to. Here, the statement that the idealmS is generated by nonunit members
of span(x) is caused by the fact that there is only one maximal t-ideal (i.e., mS)
involved.

Note that, before introducing quadratic Shannon extensions of local regular rings,
all examples of t-local domains that we have considered in the present paper were
valuation domains or rings obtained by some pullback construction. At this point,
it is natural to ask if the quadratic Shannon extensions, which are not valuation
domains, could as well be obtained by some appropriate pullback construction. For
this purpose, we start by recalling some other properties of the quadratic Shannon
extensions.

(7) Let S be as above (i.e., a quadratic Shannon extension of a regular local integral
domain of dimension> 2). If S is Archimedean, then its complete integral closure
S∗ coincides with (mS : mS) = T ∩ W , where mS is the maximal ideal of S,
T = S[1/x] is the local regular overring of S introduced in (5), and W is a
uniquely determined valuation overring of S and if S �= S∗, S∗ is a generalized
Krull domain [27, Theorem 6.2].

In the previous situation, if S �= S∗, mS is a height 1 prime ideal of S∗, since it is
the center of the maximal ideal of the valuation overringW of S∗ (see [27, Corollary
6.3] and [28, Theorem 7.4]). Therefore, S is the pullback of the residue field S/mS

with respect to the canonical projection S∗ → S∗/mS .
On the other hand, in the non-Archimedean case, we know the following fact:

(8) Let S be as above (i.e., a quadratic Shannon extension of a regular local integral
domain of dimension > 2). If S is non-Archimedean, then its complete integral
closure S∗ coincides with the overring T = S[1/x], ⋂{xnS | n ≥ 0} =: p is a
proper prime ideal of S and T = (p : p) [27, Theorem 6.9 and Corollary 6.10].

In the previous situation, the integral domain S/p is a DVR [27, Lemma 3.4],
and T = Sp, since T = S[1/x] is a ring of fractions of S and p is disjoint from the
multiplicative set {xn | n ≥ 0}. Therefore, S is the pullback of S/p with respect to
the canonical projection T → T/p, where T/p is a field, coinciding with the residue
field Sp/pSp (isomorphic to the field of quotients of the integral domain S/p).

The last remaining case is when the quadratic Shannon extension S is (Archime-
dean and) completely integrally closed. An example is given in [28, Corollary 7.7].
In this situation S may not be obtained by a pullback construction of some of its
overrings, since, if an integral domain A shares a nonzero ideal with one of its
proper overrings B then A and B must have the same complete integral closure
[19, Lemma 5].

We end with a classification of the t-local domains, which could be useful
for detecting t-local domains that are not issued from a pullback construction.
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The following proposition is a consequence of more general results concerning
DT -domains, proved by G. Picozza and F. Tartarone in [42].

Proposition 6.8 Let (D, M) be a local domain.

(1) If D �= (M : M), then D is a t-local domain.
(2) If D = (M : M) and M is finitely generated, then D is a t-local domain if and

only if M is principal.
(3) If D = (M : M), and M is not finitely generated, then D is a t-local domain if

and only if M is not t-invertible.

Proof (1) If D �= (M : M), then necessarily the maximal ideal M is the conductor
of the inclusion D ↪→ (M : M) and so M is a divisorial ideal of D.

(2) Assume that D = (M : M), andM is finitely generated, clearlyM is divisorial
if and only if (M : M) = D �= M−1 = (D : M) and this happens if and only if
M �= MM−1(⊆ D) or, equivalently, if and only if MM−1 = D. In a local domain,
a nonzero ideal is invertible if and only if it is a principal ideal.

(3)Assume that D = (M : M),M is not finitely generated and,moreover,M is not
a t-invertible ideal. IfM is not a t-ideal, thenMt = D and thus (MM−1)t = Mt = D,
which is a contradiction.

Conversely, since M is not finitely generated, M is not invertible and, since D is
t-local, M is not even t-invertible (Theorem 3.7 ((iii)⇒(vi)). �

Any pseudo-valuation non-valuation domain provides an example of case (1); a
discrete valuation domain (for short, DVR) is an example of case (2) and a rank 1
non-DVR valuation domain is an example of case (3).
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