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Preface

When David F. Anderson retired in September 2017, his many friends and col-
leagues from around the world felt it appropriate to acknowledge his contributions
to the wide-ranging area of commutative algebra by writing an edited book in his
honor. The enthusiastic response to this project led directly to this edited book; we
are most thankful to all the contributors who helped to make this work possible.
However, the material appearing in this book is not of the usual conference pro-
ceedings type: The editors have tried to present a balanced mix of survey papers,
which will enable experts and non-experts alike to get a good overview of devel-
opments across a range of areas of commutative algebra outlining the work of
David F. Anderson, along with research papers presenting some of the most recent
developments in commutative algebra. Every effort has been made to make these
research papers easily accessible in their introductory sections. We hope that the
material will be of interest to both beginning graduate students and experienced
researchers alike. The topics covered are, inevitably, just a cross section of the vast
areas of commutative algebra, but they reflect in a strong way the areas in which
David F. Anderson contributed so much.

The book contains surveys and recent research developments. Finally, we would
like to express our sincere thanks to the colleagues who contributed papers so
enthusiastically, to the many experts who acted as referees for all the papers, to the
professional staff at Springer, and in particular to Shamim Ahmad and Shubham
Dixit, for their help in producing a volume which we hope is an appropriate
recognition of our friend David F. Anderson.

Sharjah, United Arab Emirates Ayman Badawi
Clemenson, USA Jim Coykendall
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Introduction

David F. Anderson is a great teacher, a friend, and a
supportive colleague. I have admired his huge knowledge and
his passion for commutative ring theory. It is a privilege that
I had the opportunity to write 17 papers with him so far. In spite
of his busy schedule, he was always willing to find the time for
me to discuss mathematics and research projects.

—Ayman Badawi

I first met David in the summer of 1987 when I was fortunate
enough to have been assigned to him as his research mentee at
the University of Tennessee’s REU program, and I was lucky
enough to be able to repeat the experience in the summer of
1988. These two summers were incredibly formative in my
personal mathematical experience. During those summers, I
discovered David to be incredibly gifted at sharing his
understanding of mathematics (he is probably the best expositor
of mathematics that I know). It is interesting to note that
although my PhD was technically in algebraic number theory
at Cornell University, my work now more closely approximates
the mathematics that David turned me on to in the late 80s. The
“Anderson Effect” has truly shaped my career both before and
after my graduate school education. I have greatly admired
David’s work from both near and afar. I have been privileged to
have benefitted from his mathematics, and I continue to aspire
to his accomplishments with mathematics and its exposition and
teaching.

—Jim Coykendall
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David F. Anderson who retired in September 2017 is one of the leading algebraists
of his generation. He was born in Fort Dodge, Iowa, and grew up in Gowrie, Iowa,
a town of about 1000 people located 80 miles northwest of Des Moines. His father
was a rural mail carrier, and his mother was an elementary school teacher. His
father’s cousin was E. F. Lindquist, a professor at the University of Iowa, who
helped develop the ACT test and the GED examination and has the patent for the
first optical-mark scanner. Much of his childhood was spent riding bikes, playing
football, delivering newspapers, launching rockets, and being a Boy Scout. His
interest in Abstract Algebra started from a summer program that he attended at the
University of Iowa in 1966. He graduated from Prairie Community High School in
1967 along with 58 others, including another future mathematician (his twin brother
Dan Anderson, now at the University of Iowa).

David F. Anderson attended Iowa State University, where he received his BS and
MS in 1971. His mathematical skills were put to good use “counting cars” for the
Iowa State Highway Commission during the summers of 1967 and 1968. During the
summer of 1969, he attended an REU program in mathematics at St. Olaf College.
Then, he went to the University of Chicago on an NSF Fellowship, where he
received his Ph.D. in 1976. He joined the University of Tennessee in 1976 and had
been Associate Department Head for Graduate Studies since 2001. He had been
active in our REU program and was an AP Calculus Grader and Table Leader from
1987 to 1998. He is married with two grown children and five grandchildren. He
enjoys reading about history and religion and in particular enjoys listening to college
courses on CDs while commuting to work each day.

David F. Anderson published more than 160 papers in different branches of
commutative algebra. His complete record can be seen on Math Science Net. Many
of his publications appeared in very prestigious journals (e.g., Proceedings of the
American Mathematical Society, Journal of Algebra, Journal of Pure and Applied
Algebra, Communications in Algebra, Journal of Algebra and Its Applications). He
was a keynote speaker for several American Mathematical Society meetings.

David F. Anderson
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At the outset, let us stress that it is impossible in a few pages to give a detailed
overview of the many research contributions made by David F. Anderson, and it
will be for the later generations to assess his impact on the world of algebra. An
obvious feature of David F. Anderson’s research output is the number of coauthors,
some 30 in total, but perhaps more surprising is the number of coauthors with
whom he wrote multiple papers and the duration of these collaborations. Many
coauthors had more than ten joint papers with him, and these collaborations
endured for more than 20 years—Daniel. D. Anderson coauthored 31 papers;
David D. Dobbs coauthored 25 papers; Ayman Badawi coauthored 17 papers;
Muhammad Zafrullah coauthored 14 papers; Scot Chapman coauthored 13 papers;
Marco Fontana coauthored 10 papers; John D. Lagrange coauthored 5 papers; and
Salah-Edidne Kabbaj coauthored 4 papers. Many others had collaborations result-
ing in more than two joint papers. David F. Anderson always enjoyed this joint
approach to working on a problem and often expressed the view that “it’s fun
working together”; he is a generous coauthor, quick to share ideas, but always
demanding in terms of getting the best results possible. His ability to move from
one topic to another is impressive.

Students of David F. Anderson

1. Kihne, Patricia, 1999
2. Kim, Hawankoo, 1998
3. LaGrange, John, 2008
4. Laska, Jason, 2010
5. Lewis, Elizabeth, 2015
6. Lynch, Ben, 2010
7. Rand, Ashley, 2013
8. Redmond, Shane, 2001
9. Smith, Jessee, 2014

10. Smith, Neal, 2004
11. Weber Darrin, 2017

Publication List of David F. Anderson

1. Anderson, David F.; Badawi, Ayman; Fahid Brahim. Weakly (m, n)-closed
ideals and (m, n)-von-Neumann regular rings. J. Korean Math. Soc. 55(2018),
No. 5, pp. 1031–1043.

2. Anderson, David F.; Chang, Gyu Whan; Zafrullah, Muhammad Graded Prüfer
domains. Comm. Algebra 46 (2018), no. 2, 792–809.

3. Anderson, David F.; Weber, Darrin The zero-divisor graph of a commutative
ring without identity. Int. Electron. J. Algebra 23 (2018), 176–202.

4. Anderson, D. D.; Anderson, David F.; Zafrullah, Muhammad Completely
integrally closed Prüfer v-multiplication domains. Comm. Algebra 45 (2017),
no. 12, 5264-5282.
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5. Anderson, David F.; Badawi, Ayman The zero-divisor graph of a commutative
semigroup: a survey. Groups, modules, and model theory—surveys and recent
developments, 23–39, Springer, Cham, 2017.

6. Anderson, D. D.; Anderson, David F.; Chang, Gyu Whan Graded-valuation
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David Anderson and His Mathematics

D. D. Anderson

It is a pleasure to write a little about my twin brother David and his mathematical
work. I will begin by reminiscing our growing up together.

We were born prematurely and were not expected to survive, but survive we did.
We grew up in the small town of Gowrie, population just a little over 1,000, in
rural North-Central Iowa. Our father was a rural mail carrier and our mother a grade
school teacher.We have a younger sister Jane who never really likedmath. David and
I collected coins, flew model rockets, were in Boy Scouts, played tubas in the high
school band, were on the football team, and ran track. David and I won a number of
medals and ribbons on the sprint relay teams together—David once held the school
record for the 100 yard dash. During the summer we were on the swim team, walked
beans (for non-Iowans, this means weeding soybean fields), and worked at our Uncle
Frank’s hatchery.

I think we both knew we would be math professors by the time we were in junior
high. Our parents always reminded us about two of our relatives Everett Lindquist
(who invented the optical test scorer and founded ACT) and Uncle Art Arthur Wald
whowere professors.Wefirst really got involved inmathematics through ourAlgebra
I teacher Raymond Willis. No doubt part of this was due to him renting a room from
our Uncle Frank. We had a very good Algebra II class from Lyle Knudson who
went on to become a famous women’s track coach. David and I wrote up classroom
notes for an axiomatic treatment of the integers. Our eleventh grade math teacher
Ron Warrick lent us his college abstract algebra book to read, the well known text
by the ring theorist Neal McCoy. Between eleventh and twelfth grade we attended a
summer NSF program at The University of Iowa. David had course work in group
theory, graph theory, and computer programming.

At home David and I had a number of math books. I particularly remember our
mother getting us a calculus bookwhen she attended anNEAmeeting inDesMoines.
We had a CRC Handbook of Mathematics, some Barnes and Noble College Outline
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Series books on college algebra, college mathematics, and calculus plus some Dover
books including Davenport’s Higher Arithmetic and several books from the New
Mathematics Library including Graphs and Their Uses and Hungarian Problem
Book I and II. We kind of owned the books together, although Davenport’s book was
mine and David had a book on algebraic number theory that I coveted. Funny thing,
but I do not remember ever discussing mathematics with David at home.

After high school David went to Iowa State and I went to The University of
Iowa. I remember giving David a copy of Zariski–Samuel Commutative Algebra for
a Christmas present, probably during our sophomore year. During the summer of
1969 he attended an REU at St. Olaf College in Northfield. I believe it covered logic.
Later that summer we took a cross country trip to attend the summer AMSmeeting in
Eugene, Oregon. Once again I do not really recall us discussing much mathematics.

David got a BS and MS degree from Iowa State in 1971 and went on to graduate
school at the University of Chicago with an NSF Fellowship. I had arrived at the
University of Chicago a year earlier. Once again I do not remember discussing much
math with David. He might have been in the year-long commutative algebra course
given by Murthy and I am pretty sure we were both in Murthy’s course on projective
modules. I graduated in 1974. David went on to write his dissertation Projective
Modules Over Subrings of K [X,Y ] under M. Pavaman Murthy and graduated in
1976. I do remember going to some Cubs games together.

After graduation David went to the University of Tennessee where he spent his
entire career. He was Director of Graduate Studies for a number of years. David had
11 Ph.D. students and authored more than 160 papers. He was always willing to
share ideas with others as witnessed by his direction of graduate students, his work
with REU students, and his 60 co-authors. His Ph.D. students were Hwanko Kim,
Patricia Kiihne, Shane Redmond, Neal Smith, John LaGrange, Jason Laska, Ben
Lynch, Ashley Rand, Jesse Smith, Elizabeth Lewis, and Darrin Webber. Two of his
REU students that come to mind are Jim Coykendall (twice) and my Ph.D. student
Andrea Frazier. Of his co-authors, he and I have the most papers together, over 30.
I think the first time we really discussed mathematics was when we wrote our first
joint paper in 1979 on generalized GCD domains. We continued working off and on
together over the years with our last two papers together in 2017.

David’s early work based on his dissertation concerned subrings of K [X,Y ] and
projective modules over these subrings. I’ll mention just one of his many results.
He showed (Projective modules over subrings of K [X,Y ] generated by monomials,
Pacific J. Math. 79 (1978), 5–17) that if A is an affine normal subring of K [X,Y ]
generated by monomials, then any finitely generated projective A-module is free.

David is well known for his work on zero-divisor graphs and on factorization in
integral domains. Let us first look at zero-divisor graphs.

Let R be a commutative ring. I. Beck (Coloring of commutative rings, J. Algebra
116(1988), 208–226) made the set R into a simple graph by taking the elements of R
as the vertices and two distinct elements x and y of R to be adjacent if xy = 0. Beck
was mostly interested in the coloring of R. Let χ(R) be the chromatic number of (the
graph) R and c�(R) the clique number.Beck showed that the following are equivalent:
(1) χ(R) < ∞, (2) c�(R) < ∞, and (3) nil(R) is finite and R has only finitely
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many minimal prime ideals. He called a ring satisfying these conditions a coloring.
Now χ(R) ≥ c�(R) and let us call a coloring R a chromatic ring if χ(R) = c�(R).
Beck showed that a coloring that was a finite direct product of reduced rings and
principal ideal rings was a chromatic ring. He also showed that for n = 2, 3, or 4,
χ(R) = n ⇔ c�(R) = n, and that for χ(R) = 5, c�(R) = 5. Based on these positive
results Beck conjectured that every coloring was a chromatic ring.

The area lay dormant for five years. Thenmy graduate studentMuhammadNaseer
and I (Beck’s coloring of a commutative ring, J. Algebra 159 (1993), 500–514) gave
an example of a local ring R with 32 elements for which c�(R) = 5, but χ(R) = 6.

Again the area lay dormant, this time for 6 years, until the seminal paper The
zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434–447 by David
and graduate student Philip Livingston. Let R be a commutative ring and Z(R) the
set of zero divisors of R. They considered the subgraph Γ (R) = Z(R)\{0}, now
called the zero-divisor graph of R, of Beck’s graph. They first observed that Γ (R)

is finite if and only if R is finite or R is an integral domain, but as much as possible
allowed R to be infinite. Many examples (and non-examples) were given. It was
shown that Γ (R) is connected and is relatively small in the sense that it has diameter
diam(Γ (R)) ≤ 3 and if Γ (R) contains a cycle, then has girth g(Γ (R)) ≤ 7 (with
even g(Γ (R)) ≤ 4 if R is Artinian). They determined when Γ (R) was complete or
a star graph. Finally, the automorphism group of Γ (R) was investigated. It is hard
to overestimate the importance of this paper. A recent check of MathSciNet gave
317 citations for this paper and 603 papers containing the phrase zero-divisor graph
(with many but not all of them actually related). A recent check also showed that this
was the second most downloaded paper from Journal of Algebra for the last 90 days.
In all, David has written 20 papers on zero-divisor graphs and their generalizations.
David and co-authors M. Axtell and J. Stickles have an excellent survey article Zero-
divisor graphs of commutative rings, Commutative Algebra-Noetherian and Non-
Noetherian Perspectives (M. Fontana, S.E. Kabbaj, B. Olberding, and I. Swanson,
eds.), 23–45, Springer, New York, 2011. A second excellent survey article is J.
Coykendall, S. Sather-Wagstaff, L. Sheppardson, and S. Spiroff, On zero-divisor
graphs, Progress in Commutative Algebra 2: Closure, Finiteness and Factorization
(C. Fransisco, L. Klinger, S. Sather-Wagstaff, and J. Vassilev, eds.), 241–299, Walter
de Gruyter, Berlin 2012.

The notion of the zero-divisor graph has paved the way for a number of other
graphs associated with rings, modules, or other algebraic systems. Let me name a
few. First, with exactly the samedefinitionswe can consider the zero-divisor graph for
other algebraic structures such as semigroups or semirings. Two other graphs defined
on Z(R)\{0} are the essential graph (resp., annihilator graph) where distinct x and y
are adjacent if ann(xy) is an essential ideal of R (resp., ann(xy) �= ann(x) ∪ ann(y)).
Wecanmodify the vertex set. The compressed zero-divisor graph is defined as follows
for a commutative ring R. For x, y ∈ R define x ∼ y ⇔ ann(x) = ann(y). Take the
vertex set to be R/∼\{[0], [1]} and define [a] and [b] to be adjacent ⇔ ab = 0.
Or we can take the vertex set to be the set of nonzero ideals of R with nonzero
annihilator where two distinct ideals I and J are adjacent ⇔ I J = 0. This can be
extended tomodules. Replacingmultiplication by addition and taking R as the vertex
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set we have the total graph (resp., clean graph, nil-clean graph) where distinct x and y
are adjacent ⇔ x + y ∈ Z(R) (resp., x + y is clean, x + y is nil-clean). And finally
there is the co-zero-divisor graph. Here the vertex set is the set of nonzero nonunits
of R and two distinct elements x and y of R are adjacent ⇔ x /∈ Ry and y /∈ Rx .

David has also done important research concerning factorization in integral
domains. This area too has received a lot of attention in recent years. I would like to
think that our paper Factorization in integral domains, J. Pure Appl. Alg. 69 (1990),
1–19 with Muhammad Zafrullah had a lot to do with that. It contained the now
familiar diagram

HFD

=⇒
=⇒

UFD BFD =⇒ ACCP =⇒ atomic.=⇒ =⇒
FFD

I think this was the first paper to consider FFDs (every nonzero element has only
finitely many factorizations up to order and associates) and BFDs (each nonzero
element has a bound on the lengths of its factorizations). As an example of twin
thinking, both David and I came up with the definition and name FFD on the same
night. David has three additional papers Factorizations in integral domains, i , i =
2, 3, and 4; the second with me and Muhammad, the third with Driss El Abidine,
and the fourth with me.

In all, David has about 30 papers related to factorization. An area of factorization
in which he has particularly done a lot of work involves elasticity. Let us recall the
definition. Let R be an atomic integral domain and x a nonzero nonunit of R. The
elasticity of x isρ(x) := sup{m/n | a1 · · · am = x = b1 · · · bn, ai , b j irreducible} and
ρ(R) := sup{ρ(x)|x is a nonzero nonunit of R}. So ρ(R) = 1 ⇔ R is a HFD and
ρ(R) measures how far R is from being a HFD. He and I wrote two papers on this
topic Elasticity of factorizations in integral domains, J. Pure Appl. Alg. 80 (1992),
217–235 and Elasticity of factorizations in integral domains, II, Houston J. Math.
20 (1994), 1–15 and had another joint paper with Scott Chapman and Bill Smith.
Let me mention two results from our first paper on elasticity. (1) A one-dimensional
local (Noetherian) domain has ρ(R) < ∞ if and only if R is analytically irreducible.
(2) Let r ≥ 1 be a real number or r = ∞. Then there is a Dedekind domain R with
torsion class group such that ρ(R) = r . Moreover, if r is rational we may choose
C�(R) to be finite. David has several other papers on elasticity including the survey
article Elasticity of factorizations in integral domains: a survey, Factorization in
Integral Domains (D.D. Anderson, ed.), 1–29,Marcel Dekker, Inc., NewYork, 1997.
David gave an invited hour address on elasticity at a sectional AMS meeting.

As previously mentioned David’s dissertation involved subrings of K [X,Y ], gen-
erated by monomials. Of course these subrings are graded rings. David has always
been interested in graded rings (usually integral domains graded by a torsionless
grading monoid), especially in semigroup rings (usually monoid domains) or more
generally twisted semigroup rings.He has also been interested in abelian groups asso-
ciated to an integral domain (often graded) such as the Picard group, divisor class
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group, or group of divisibility. Two earlier papers of his in this direction are Graded
Krull domains, Comm. Algebra 7 (1979), 79–106 and The divisor class group of a
semigroup ring, Comm. Algebra, 8 (1980), 467–476. A neat result in the latter paper
is that any abelian group of the form F ⊕ T where F is free and T is torsion is the
divisor class group of a local Krull domain. In the early 80s David wrote two papers
on seminormal graded rings (Seminormal graded rings, J. Pure Appl. Alg. 21 (1981),
1–7 and Seminormal graded rings, II, J. Pure Appl. Alg. 23 (1982), 221–226) and a
paper with Jack Ohm (Valuations and semivaluations of graded domain, Math. Ann.
256 (1981), 145–146). I should also mention three of his papers involving the Picard
group of a graded integral domain: The Picard group of a monoid domain, J. Algebra
115 (1988), 342–351, The Picard group of a monoid domain, II, Acta Math (Basel)
55 (1990), 143–145 and The kernel of Pic(Ro) → Pic(R) for R a graded domain,
C. R. Math. Rep. Acad. Sci. Canada 13 (1991), 248–252. In all David has well over
twenty papers involving these topics. I would be remiss not to mention his paper A
general theory of class groups, Comm. Algebra 16 (1988), 805–847 which gives a
thorough investigation of the �-class group C��(D) := �-Inv(D)/Prin(D) where �

is a star-operation on the integral domain D, �-Inv(D) is the group of �-invertible
fractional ideals of D under the �-product and Prin(D) is its subgroup of nonzero
principal fractional ideals.

David has written a number of excellent survey articles in addition to the pre-
viously mentioned articles on the zero-divisor graph and elasticity: (1) The class
group and local class group of an integral domain, 33–55, Non-Noetherian Commu-
tative Rings, Math Appl. 520, Kluwer Acad. Publ, Dordrecht, 2000, (2) Root closure
in commutative rings: a survey, 55–71, Advances in Commutative Ring Theory
(Fez, 1997), Lecture Notes in Pure and Appl. Math. 205, Dekker, New York, 1999,
(3) Robert Gilmer’s work on semigrouprings, 21–37,Multiplicative Ideal Theory in
Commutative Algebra, Springer, New York, 2006, and (4) The zero-divisor graph of
a commutative semigroup: a survey (with Ayman Badawi), 23–29,Groups, Modules,
and Model Theory-Surveys and Developments, Springer, New York, 2017.

David has had so many papers on so many different topics I just cannot list them
all. He has done extensive work on star-operations, topics related to integral clo-
sure such as seminormality and root closure, and on rings of the form A + XB[X ].
Let me mention three papers that I found particularly interesting. The first with
his former colleague S.B. Mulay Non-catenary factorial domains, Comm. Algebra
17 (1989), 1179–1185 for any d ≥ 3 constructs a non-Noetherian d-dimensional
quasilocal non-catenary factorial domain whose maximal ideal is generated by two
elements. The second and third papers involve condensed rings, that is, rings where
the product of two ideals I and J is given by I J = {i j | i ∈ I, j ∈ J }. Condensed
rings were introduced byDavid and his former colleague David Dobbs (who together
co-authored more than twenty papers) inOn the product of two ideals, Canad. Math.
Bull. 26 (1983), 106–114 and a second with the two Davids and Jimmy Arnold,
Integrally closed condensed domains are Bezout, Canad. Math. Bull. 28 (1985),
908–102 that proved the result appearing in the title.
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David has had an outstanding career. He is an AMS Fellow, he has influenced the
area of commutative algebra through his research, exposition, and mentoring. He has
been advisor and mentor to both undergraduate students, especially with his work
on the REU’s, and with graduate students as Director of Graduate Studies and Ph.D.
advisor to his 11 students. We all wish him a happy retirement.



On �-Semi-homogeneous Integral
Domains

D. D. Anderson and Muhammad Zafrullah

Abstract Let � be a finite character star-operation defined on an integral domain D.
A nonzero finitely generated ideal of D is �-homogeneous if it is contained in a unique
maximal �-ideal. And D is called a �-semi-homogeneous (�-SH) domain if every
proper nonzero principal ideal of D is a �-product of �-homogeneous ideals. Then
D is a �-semi-homogeneous domain if and only if the intersection D = ⋂

DP
P∈�-Max(D)

is

independent and locally finite where �-Max(D) is the set of maximal �-ideals of D.
The �-SH domains include h-local domains, weakly Krull domains, Krull domains,
generalized Krull domains, and independent rings of Krull type. We show that by
modifying the definition of a �-homogeneous ideal we get a theory of each of these
special cases of �-SH domains.

1 Introduction

Many important types of integral domains have a representation of the form D =⋂
P∈F DP whereF is a set of prime ideals of D that is (1) independent, that is, two

distinct elements of F do not contain a common nonzero prime ideal and (2) has
finite character (or is locally finite), that is, each nonzero element of D is contained
in at most finitely many elements of F . These domains called F -IFC domains
were the subject of [10]. Suppose that D is an F -IFC domain. If F = Max(D),
the set of maximal ideals of D, we get the h-local domains of Matlis [20] while if
F = X (1)(D), the set of height-one prime ideals of D, we get weakly Krull domains
[5].Wecan further put conditions onDP for P ∈ F . If eachDP is a valuationdomain,
we get the independent rings of Krull type (IRKT) of Griffin [15], generalized Krull
domains if furtherF = X (1)(D), and finally Krull domains when each DP is a DVR.
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Now in [10] we began with a representation D = ⋂
DP

P∈F
and its induced star-

operation �F given by A�F = ⋂
ADP

P∈F
for a nonzero fractional ideal A of D. (The

definition of a star-operation and needed results about star-operations are reviewed
in Sect. 2.)We showed that D is anF -IFC domain if and only if each nonzero proper
principal ideal of D (or equivalently, each nonzero proper ideal A of D with A =
A�F ) has a representation of the form A = (I1 · · · In)�F where each Ii is contained
in a unique element ofF . In this paper, we change the point of view. We begin with
an integral domain D and � a finite character star-operation on D so D = ⋂

DP
P∈�-Max(D)

where �-Max(D) is the set of maximal �-ideals of D. We define a nonzero finitely
generated ideal I of D to be �-homogeneous if I is contained in a unique element
of �-Max(D) and D to be a �-semi-homogeneous (�-SH) domain if each proper
nonzero principal ideal Dx of D has a representation Dx = (I1 · · · In)� where Ii is
�-homogeneous. We show (Theorem4) that D is a �-SH domain if and only if D is
a �-Max(D)-IFC domain, that is, the representation D = ⋂

DP
P∈�-Max(D)

is independent

and of finite character. In this case, each nonzero finitely generated ideal I with
I � �= D has a representation I � = (I1 · · · In)� where each Ii is a �-homogeneous
ideal (Theorem6). We also show that for any domain D if a proper �-ideal I has a
representation as a �-product of �-homogeneous ideals, then I has a representation
I = (J1 · · · Jn)� where J1, . . . , Jn are pairwise �-comaximal �-homogeneous ideals
and that this representation is unique in the sense that if I = (K1 · · · Km)� where
K1, . . . , Km are pairwise �-comaximal �-homogeneous ideals of D, then n = m and
after reordering J �

i = K �
i for i = 1, . . . , n.

Our approach in this paper is to add additional conditions to the definition of a
�-homogeneous ideal I (such as for each �-homogeneous ideal J ⊇ I (or perhaps
just for I itself) J � is �-invertible or principal, or some (J n)� is principal) to get a
“�-β-homogeneous ideal.” We then say that a �-β-homogeneous ideal I has type 1
(resp., type 2) if

√
I = M(I ) where M(I ) is the unique �-maximal ideal containing

I (resp., I � = (M(I )n)� for some n ≥ 1). We define D to be a “�-β-SH domain”
(resp., �-β-SH domain of type i, i = 1, 2) if each proper nonzero principal ideal of
D is a �-product of �-β-homogeneous ideals (resp., �-β-homogeneous ideals of type
i, i = 1, 2). For example, we call the �-homogeneous ideal I �-super-homogeneous
if for each �-homogeneous ideal J ⊇ I, J is �-invertible. We show (Theorem10)
that D is a �-super-SH domain if and only if D is an �-IRKT, that is, D = ⋂

DP
P∈�-Max(D)

is independent and of finite character and each DP is a valuation domain. As a second
example, we show (Theorem7) that D is a �-SH domain of type 1 if and only if D
is a �-weakly Krull domain, that is, D is weakly Krull and �-Max(D) = X (1)(D).

So herewe define a class of integral domains by requiring that each proper nonzero
principal ideal is a �-product of a certain kind of �-homogeneous ideal. As a bonus
we get that if I is a finitely generated nonzero ideal with I � �= D, then I � is actually
a �-product of this kind of �-homogeneous ideal. Moreover, if a proper �-ideal I is
a �-product of this kind of �-homogeneous ideal, we can write I as a �-product of
pairwise �-comaximal �-homogeneous ideals of that kind and this representation is
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unique in the sense previously mentioned. Also within this class of �-β-SH domains,
by slightly changing the definition of a �-β-homogeneous ideal, we get �-β-SH
domains with trivial or torsion �-class group C��(D).

Of course, we can also vary the star-operation. Two important star-operations
are the d-operation A → Ad = A and the t-operation A → At = ⋃{Jv|J ⊆ A is
a nonzero finitely generated ideal} where Jv = (J−1)−1. A d-SH domain is just an
h-local domain, while t-SH domains (not called that) were the subject of [7]. By vary-
ing the kind of �-homogeneous ideal (and possibly adding a type) and varying the
star-operation, we get a whole host of various important integral domains including
h-local domains, weakly Krull domains, Krull domains, Dedekind domains, gener-
alized Krull domains, independent rings of Krull, and these classes of domains that
have trivial or torsion �-class group.

2 Star-Operations andF -IFC Domains

We begin with the definition of a star-operation.

Definition 1 Let D be an integral domain with quotient field K . Let F(D) (resp.,
f (D)) be the set of nonzero (resp., nonzero finitely generated) fractional ideals of D.
A star-operation � on D is a closure operation on F(D) (i.e., A ⊆ A�, (A�)� = A�,
and A ⊆ B ⇒ A� ⊆ B� for A, B ∈ F(D)) that satisfies D� = D and (x A)� = x A�

for A ∈ F(D) and x ∈ K ∗:=K\{0}.
With � we can associate a new star-operation �s given by A → A�s :=⋃{B�|B ⊆

A, B ∈ f (D)} for A ∈ F(D). We say that � has finite character if � = �s . Three
important star-operations are the d-operation A → Ad := A, the v-operation A →
Av:= (A−1)−1 = ⋂{Dx |Dx ⊇ A, x ∈ K ∗} where A−1 = {x ∈ K |x A ⊆ D}, and
the t-operation t :=vs . Here d and t have finite character. A fractional ideal
A ∈ F(D) is a �-ideal (resp., finite type �-ideal) if A = A� (resp., A = A�

1 for
some A1 ∈ f (D)). If � has finite character and A� has finite type, then A� = A�

1
for some A1 ∈ f (D) with A1 ⊆ A. A fractional ideal A ∈ F(D) is �-invertible if
there exists a B ∈ F(D)with (AB)� = D; in this case we can take B = A−1. For any
�-invertible A ∈ F(D), A� = Av . If � has finite character and A is �-invertible, then
A� is a finite type �-ideal and A� = At . Given two fractional ideals A, B ∈ F(D),
(AB)� is their �-product. Note that (AB)� = (A�B)� = (A�B�)�. Given two star-
operations �1 and �2 on D, we write �1 ≤ �2 if A�1 ⊆ A�2 for all A ∈ F(D). So
�1 ≤ �2 ⇔ A�1�2 = A�2 ⇔ A�2�1 = A�2 for all A ∈ F(D). For any finite character
star-operation � on D we have d ≤ � ≤ t . For an introduction to star-operations, the
reader is referred to [14, Sect. 32]. For a more detailed treatment see [16, 18].

Suppose that � is a finite character star-operation on D. Then a proper �-ideal is
contained in a maximal �-ideal and a maximal �-ideal is prime. We denote the set of
maximal �-ideals of D by �-Max(D), the set of maximal ideals of D by Max(D),
and the set of height-one prime ideals of D by X (1)(D). We have D= ⋂

DP
P∈�-Max(D)

.
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Let F be a nonempty collection of nonzero prime ideals of D. We say that F
is a defining family of primes for D if D = ⋂

DP
P∈F

. So for a finite character star-

operation � on D, �-Max(D) is a defining family of primes for D. We say that the
intersection D = ⋂

DP
P∈F

, or the setF of prime ideals itself, is of finite character, or

is locally finite, if each nonzero element of D is in at most finitely many P ∈ F .
This is equivalent to each nonzero element of D (or of K ) being a unit in almost all
DP , P ∈ F . We will say that the finite character star-operation � is locally finite if
D= ⋂

DP
P∈�-Max(D)

is locally finite. The defining family of primesF is independent if for

distinct P, Q ∈ F , there does not exist a nonzero prime ideal m with m ⊆ P ∩ Q.
This is equivalent to DPDQ = K [10, Lemma 4.1]. IfF is independent, thenF is an
anti-chain.We say that a finite character star-operation � is independent if �-Max(D)

is independent. Note that if two prime �-ideals contain a nonzero prime ideal, they
actually contain a (nonzero) prime �-ideal. Indeed, if P is a nonzero prime ideal and
0 �= x ∈ P , we can shrink P to a prime ideal P ′ minimal over Dx , and P ′ is a prime
�-ideal. For a finite character star-operation � on D, we call D a �-h-local domain if
� is independent and locally finite, that is, each proper principal ideal is contained in
only finitely many maximal �-ideals and each prime �-ideal is contained in a unique
maximal �-ideal. For the case of � = d, we just get the h-local domains of Matlis
[20]. We say that D is a F -IFC domain if F is an independent, finite character
defining family of prime ideals for D. Thus for a finite character star-operation � on
D, D being a �-h-local domain is the same thing as D being a F -IFC domain for
F = �-Max(D).

Suppose that F is a defining family of primes for D. Then the operation A −→
A�F :=⋂

ADP
P∈F

is a star-operation on D which has finite character if F is locally

finite [2, Theorem1]. (However, �F may have finite character without F being
locally finite. For example, for F = Max(D), �F is just the d-operation which
has finite character butF need not be locally finite.) Moreover, A�F DP = ADP for
A ∈ F(D) and P ∈ F . Thus if D is aF -IFCdomain, �F hasfinite character and�F -
Max(D) = F . In the case where � is a finite character star-operation on D andF =
�-Max(D), �F = �w where �w is the star-operation defined by A → A�w :={x ∈
K |x J ⊆ A for some J ∈ f (D) with J � = D}= ⋂

ADP
P∈�-Max(D)

for A ∈ F(D). Here �w

has finite character, �w ≤ �, and (A ∩ B)�w = A�w ∩ B�w for A, B ∈ F(D). Also,
�-Max(D) = �w-Max(D) and hence A ∈ F(D) is �-invertible if and only if it is
�w-invertible. Moreover, for a �-invertible (or �w-invertible) ideal A ∈ F(D), A� =
A�w = At = Av . For results on the �w-operation, see [4].

We have the following result relating � and �w.

Theorem 1 Let �1 and �2 be two finite character star-operations on an integral
domain D. Then the following conditions are equivalent.

1. �1w = �2w.
2. �1-Max(D) = �2-Max(D).
3. A�1 = D ⇔ A�2 = D for A ∈ F(D).
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4. A�1 = D ⇔ A�2 = D for A ∈ f (D).
5. P�1w = P�2w for each nonzero prime ideal P of D.

Proof (1) ⇒ (2) �1-Max(D) = �1w-Max(D) = �2w-Max(D) = �2-Max(D).
(2) ⇒ (3) ⇒ (4) ⇒ (1) ⇒ (5) Clear. (5) ⇒ (2) We have �1w-Max(D) = �2w
-Max(D) and hence as in (1) ⇒ (2) we have �1-Max(D) = �2-Max(D).

Wenext briefly review someof thematerial from [10] concerningF -IFCdomains.
So let D be an integral domain and F a defining family of primes for D. For an
ideal A of D let m(A) = {P ∈ F |A ⊆ P} and call A unidirectional if |m(A)| = 1.
Suppose that A is unidirectional. If P is the unique element ofF containing A, we
say that A is unidirectional pointing to P . The following theorem sums up some of
the results from [10].

Theorem 2 Let F be a defining family of prime ideals for the integral domain D
and let �F be the star-operation given by A�F = ⋂

ADP
P∈F

for A ∈ F(D).

1. If A is unidirectional pointing to P ∈ F , then A�F = ADP ∩ D. Conversely,
suppose that F is independent. Let P ∈ F . Then for a nonzero ideal A ⊆ P,
ADP ∩ D is unidirectional pointing to P.

2. Two nonzero ideals A and B of D are �F -comaximal (i.e., (A + B)�F = D) if
and only if m(A) ∩ m(B) = φ.

3. If a �F -ideal A of D is expressible as a finite �F -product of unidirectional
ideals, then A is uniquely expressible (up to order) as a �F -product of pairwise
�F -comaximal unidirectional �F -ideals.

4. The following conditions are equivalent.

a. F is an independent defining family of finite character, i.e., D is a F -IFC
domain.

b. Every proper integral �F -ideal of D is (uniquely) expressible as a finite
�F -product of (pairwise �F -comaximal) unidirectional (�F -) ideals.

c. Every proper integral principal ideal of D is (uniquely) expressible as a
finite �F -product of (pairwise �F -comaximal) unidirectional (�F -) ideals.

d. Every nonzero prime ideal of D contains a nonzero element x such that Dx is
(uniquely) expressible as a finite �F -product of (pairwise �F -comaximal)
unidirectional (�F -) ideals.

Proof (1) [10, Lemma 2.3], (2) Clear, (3) [10, Lemma 2.6], (4) Combine [10, Propo-
sition 2.7] and [10, Theorem2.1].

3 �-Homogeneous Ideals

ForF -IFC domains, we considered �F -product representations of �F -ideals. In this
paper, we change our point of view. We begin with a finite character star-operation
� on the integral domain D and consider �-product representations of �-ideals. We
make the following fundamental definition.
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Definition 2 Let � be finite character star-operation on the integral domain D. An
ideal I of D is �-homogeneous if I is a nonzero finitely generated ideal and I is
contained in a unique maximal �-ideal.

Suppose that I is a �-homogeneous ideal of D. If P is the unique maximal �-ideal
containing I we say that I is P-�-homogeneous. We will often denote the unique
maximal �-ideal containing I by M(I ). We say that two �-homogeneous ideals I
and J are similar, denoted I ∼ J , if M(I ) = M(J ).

Suppose that � is a finite character star-operation on the integral domain D. So
D= ⋂

DP
P∈�-Max(D)

, that is, �-Max(D) is a defining family of primes for D and hence

for F = �-Max(D), the star-operation �F given by A −→ A�F = ⋂
ADP

P∈F
is just

the �w-operation. So �F = �w is a finite character star-operation on D and �w ≤ �,
that is, A�w ⊆ A� for all A ∈ F(D). Note that I is P-�-homogeneous if and only if
I is P-�w-homogeneous if and only if I is a finitely generated unidirectional ideal
pointing to P .

The next two propositions give some results concerning �-homogeneous ideals.

Proposition 1 Let D be an integral domain, I a nonzero finitely generated ideal of
D, and � a finite character star-operation on D.

1. Suppose that I � �= D. Then I is �-homogeneous if and only if for (finitely
generated) ideals J and K of D with J, K ⊇ I and J �, K � �= D, we have
(J + K )� �= D.

2. For I �-homogeneous, M(I ) = {x ∈ D|(I, x)� �= D}.
3. If I is �-homogeneous, I �DM(I ) ∩ D = I �.
4. If I is �-homogeneous and A1, . . . , An are pairwise �-comaximal ideals of D

with A1 · · · An ⊆ I �, then some Ai ⊆ I �.

Proof 1. First note that since � has finite character, if there are ideals J, K ⊇ I with
J �, K � �= D, but (J + K )� = D, then there are finitely generated ideals J and
K with this property. (⇒) Suppose that I is �-homogeneous. If J, K ⊇ I with
J �, K � �= D, then necessarily J, K ⊆ M(I ), so (J + K )� �= D. (⇐) Let M1

andM2 bemaximal �-ideals containing I . Then (M1 + M2)
� �= D, soM1 = M2.

Hence I is �-homogeneous.
2. Here M(I ) is the unique maximal �-ideal containing I . If x ∈ M(I ), then

(I, x) ⊆ M(I ) and hence (I, x)� �= D. Conversely, if (I, x)� �= D, then (I, x)
is contained in a maximal �-ideal P that also contains I , so P = M(I ). Hence
x ∈ (I, x) ⊆ M(I ).

3. Clearly I �DM(I ) ∩ D ⊇ I �. Let x ∈ I �DM(I ) ∩ D, so x = i/s where i ∈ I �

and s /∈ M(I ). So xs ∈ I �. Now s /∈ M(I ) implies (I, s)� = D, so Dx =
(I x, sx)� ⊆ I �.

4. By induction it suffices to do the case n = 2. So suppose that A and B are �-
comaximal ideals of Dwith AB ⊆ I �.Wecannot haveboth A, B ⊆ M(I ), so say
B � M(I ). Then A ⊆ ADM(I ) ∩ D = ABDM(I ) ∩ D ⊆ I �DM(I ) ∩ D = I �.
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Proposition 2 Let � be a finite character star-operation on the integral domain D.
For �-homogeneous ideals I and J of D, the following are equivalent.

1. I ∼ J .
2. (I + J )� �= D.
3. I J is �-homogeneous.

If (1), (2), or (3) holds, then I J ∼ I ∼ J . Thus if I1, . . . , In are �-homogeneous
ideals of D with I1, . . . , In all similar, then I1 · · · In is �-homogeneous and I1 · · · In ∼
I1 ∼ · · · ∼ In.

Proof (1)⇒(2) I, J ⊆ M(I ) = M(J ) ⇒ I + J ⊆ M(J ) and hence (I + J )� �= D.
(2)⇒(1) Now (I + J )� �= D implies I + J is contained in a maximal �-ideal P . But
since I, J ⊆ P wemust haveM(I ) = P andM(J ) = P , soM(I ) = M(J ). (1)⇒(3)
I J is finitely generated and (I J )� �= D. Let P be a maximal �-ideal containing I J .
Since P is prime, we have, say I ⊆ P . So P = M(I ). So I J is �-homogeneous with
M(I J ) = M(I ). (3)⇒(1) Suppose that I � J , so M(I ) and M(J ) are two distinct
maximal �-ideals containing I J , a contradiction.

The last statement is now immediate.

We next give a uniqueness result for �-products of �-homogeneous ideals. Com-
pare with Theorem2(3) [10, Lemma 2.6].

Theorem 3 Let D be an integral domain and � a finite character star-operation on
D. Let I be an ideal of D. If I is a �-product of �-homogeneous ideals of D, then I is
uniquely expressible (up to order) as a �-product of pairwise �-comaximal �-ideals
(J �

1 · · · J �
s )� where each Ji is �-homogeneous.

Proof Suppose I = (I1 · · · In)� where Ii is �-homogeneous. Let M(Ii1), . . . , M(Iis )
be the distinct maximal �-ideals among M(I1), . . . , M(In). For 1 ≤ � ≤ s, put
J�:=∏{I j |I j ∼ Ii�}. So J1, . . . , Js are �-homogeneous ideals of D that are pair-
wise �-comaximal and I = (J1 · · · Js)� = (J �

1 · · · J �
s )�. Suppose thatwe have another

representation I = (K1 · · · Kt )
� = (K �

1 · · · K �
t )

� where K1, . . . , Kt are pairwise �-
comaximal �-homogeneous ideals of D. Now K1 · · · Kt ⊆ (J1 · · · Js)� ⊆ J �

1 , so by
Proposition1, some Ki ⊆ J �

1 . Reordering, we can take i = 1, so K1 ⊆ J �
1 . Revers-

ing the roles of the Ji ’s and Ki ’s, we have some Ji ⊆ K �
1 ⊆ J �

1 . By �-comaximality,
i = 1, so J1 ⊆ K �

1 and hence J �
1 = K �

1 . Continuing we see that each Ji matches up
to a K j with J �

i = K �
j . Likewise each Ki matches up to a Jj with K �

i = J �
j . Thus

s = t and after reordering J �
i = K �

i for i = 1, . . . , s.

We next define �-SH domains. We will see that a �-SH domain is the same thing
as a �-h-local domain.

Definition 3 Let D be an integral domain and � a finite character star-operation
on D. Then D is a �-semi-homogeneous (�-SH) domain if every proper nonzero
principal ideal of D is a finite �-product of �-homogeneous ideals of D.
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So by Theorem3, D is a �-SH domain if and only if each proper nonzero principal
ideal Dx of D has a unique representation (up to order) as a finite �-product of
pairwise �-comaximal �-ideals Dx = (J �

1 · · · J �
s )� (= (J1 · · · Js)�) where Ji is �-

homogeneous. We next use our results from [10] to get some characterizations of
�-SH domains.

Theorem 4 Let D be an integral domain and � a finite character star-operation on
D. Then the following are equivalent:

1. D is a �-SH domain.
2. D is a �-Max(D)-IFC domain, that is, D is a �-h-local domain.
3. D is a �w-SH domain.

Proof (1)⇔(3) Since �-Max(D) = �w-Max(D), an ideal is �-homogeneous if and
only if it is �w-homogeneous. Let x be a nonzero nonunit of D. Now in a repre-
sentation Dx = (I1 · · · In)� (resp., Dx = (J1 · · · Jm)�w ) where each Ii (resp., Ji ) is
�-homogeneous (resp., �w-homogeneous), I1 · · · In (resp., J1 · · · Jm) is �-invertible
(resp., �w-invertible). But an ideal I is �-invertible if and only if it is �w-invertible and
in this case I � = It = I �w . Thus Dx = (I1 · · · In)�w (resp., (J1 · · · Jm)�). So Dx is a �-
product of �-homogeneous ideals if and only if it is a �w-product of �w-homogeneous
ideals. (2)⇔(3) Let F = �-Max(D), so �F = �w. By [10, Proposition2.7], D is a
F -IFC domain if and only if for each nonzero nonunit x ∈ D, Dx is a �F = �w-
product of unidirectional ideals. Now (3)⇒(2) follows since a �w-homogeneous ideal
is unidirectional. For (2)⇒(3) note that if Dx = (I1 · · · In)�w where each Ii is unidi-
rectional, then Ii is �w-invertible and hence I �w

i = (I ′
i )

�w for some finitely generated
ideal I ′

i ⊆ Ii . So I ′
i is �w-homogeneous and Dx = (I ′

1 · · · I ′
n)

�w .

Theorem 5 Let D be an integral domain and � a finite character star-operation on
D. Then the following are equivalent:

1. D is a �-SH domain.
2. � is locally finite and independent.
3. Every nonzero prime ideal of D contains a nonzero element x such that Dx is a

�-product of �-homogeneous ideals.
4. Everynonzeroprime ideal of D contains a�-invertible�-homogeneous ideal of D.
5. For P ∈ �-Max(D) and 0 �= x ∈ P, xDP ∩ D = I � for some �-invertible P-�-

homogeneous ideal I .
6. � is independent and if A is a nonzero ideal of D with ADP finitely generated

for each P ∈ �-Max(D), then A� is a finite type �-ideal.

Proof (1)⇔(2) Theorem4.
Note that for each i , 2 ≤ i ≤ 5, (i) is equivalent to (i ′) where (i ′) is (i) with �

replaced by �w. By [10, Theorem3.3], (2′)–(5′) are equivalent, and hence (2)–(5) are
equivalent.

(2)⇒(6) Now by hypothesis, � is independent and by [10, Theorem3.3] A�w is a
finite type �w-ideal. Hence, A� is a finite type �-ideal. (6)⇒(5) Let P ∈ �-Max(D)
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and 0 �= x ∈ P . Put A:= xDP ∩ D. Let Q ∈ �-Max(D)\{P}. Since � is inde-
pendent, DPDQ = K , the quotient field of D. Thus ADQ = (xDP ∩ D)DQ =
xDPDQ ∩ DQ = xK ∩ DQ = DQ . So P is the only maximal �-ideal containing
A. Since ADM is finitely generated for each M ∈ �-Max(D), A� = A�

1 for some
finitely generated ideal A1 of D. Moreover, since � has finite character we can
take A1 ⊆ A. Since P is the only maximal �-ideal containing A, the same is true
for A1 and A2:=(A1, x). So A2 is P-�-homogeneous. Also, ADQ = DQ = A2DQ

for Q ∈ �-Max(D)\{P} and ADP = xDP ⊆ A2DP , so ADP = A2DP . Hence
A = ADP ∩ D = ⋂

ADQ
Q∈�-Max(D)

= ⋂
A2DQ

Q∈�-Max(D)

= A�w
2 . As in the proof of (5)⇒(4) of [10,

Theorem3.3], A2 is �w-invertible. Thus A2 is �-invertible and so A = A�w
2 = A�

2.

We next note that in a �-SH domain every proper finite-type �-ideal is a �-product
of �-homogeneous ideals.

Theorem 6 Let D be a �-SH domain and I a nonzero finitely generated ideal of D
with I � �= D. Then I � is uniquely expressible (up to order) as a �-product (J �

1 · · · J �
n )�

of pairwise �-comaximal �-ideals J �
1 , . . . , J �

n where each Ji is �-homogeneous.

Proof Since D is a �-SH domain, � is locally finite by Theorem5. Let M1, . . . , Mn

be the maximal �-ideals containing I and put Ii :=I DMi ∩ D. So I �w = I1 ∩ · · · ∩ In
and hence I � = (I1 ∩ · · · ∩ In)�. Since � is independent (Theorem5) Theorem2
gives that Mi is the unique maximal �-ideal containing Ii . So I1, . . . , In are pair-
wise �-comaximal and thus (I1 ∩ · · · ∩ In)� = (I1 · · · In)�. By Theorem5, I �

i has
�-finite type, so I �

i = J �
i where Ji is �-homogeneous. Now J1, . . . , Jn are pairwise �-

comaximal �-homogeneous ideals with I � = (J �
1 · · · J �

n )�. Uniqueness follows from
Theorem3.

In [5] an integral domain D was defined to be weakly Krull if D= ⋂
DP

P∈X (1)(D)

and

the intersection is locally finite. Thus D is weakly Krull if D is aF -IFC domain for
F = X (1)(D). We generalize this definition as follows.

Definition 4 Let D be an integral domain and � a finite character star-operation on
D. Then D is a �-weakly Krull domain (�-WKD) if D is a �-h-local domain for which
X (1)(D) = �-Max(D).

Thus D is a �-WKD if and only if D is weakly Krull and X (1)(D) = �-Max(D).
Note that for D weakly Krull, t-Max(D) = X (1)(D). Thus a weakly Krull domain
is the same thing as a t-WKD. At the other extreme, D is a d-WKD if and only
if dim D = 1 and each nonzero element of D is in at most finitely many maximal
ideals. If �1 and �2 be two finite character star-operations on D with �1 ≤ �2, then D
a �1-WKD implies that D is a �2-WKD. Evidently D is a �-WKD if and only if it is
a �w-WKD.

To give our characterization of �-weakly Krull domains, we need the following
definition.



16 D. D. Anderson and M. Zafrullah

Definition 5 Let D be an integral domain and � a finite character star-operation on
D. We say that a �-homogeneous ideal I of D has type 1 if M(I ) = √

I �, and D is
a type 1 �-SH domain if each nonzero proper principal ideal of D is a �-product of
type 1 �-homogeneous ideals.

It is easy to see that a �-homogeneous ideal I has type 1 if and only if for each
�-homogenous ideal A ⊇ I , there exists an n ≥ 1 with An ⊆ I �.

Theorem 7 Let D be an integral domain and � a finite character star-operation on
D. Then the following are equivalent:

1. D is a �-weakly Krull domain.
2. D is a �-h-local domain and each �-homogeneous ideal has type 1.
3. Every proper principal ideal of D is a �-product of type 1 �-homogeneous ideals,

that is, D is a type 1 �-SH domain.
4. If I is a nonzero finitely generated ideal of D with I � �= D, then I � is a �-product

of type 1 �-homogeneous ideals.

Proof (1)⇒(2) By definition a �-weakly Krull domain is �-h-local. Let I be a �-
homogeneous ideal of D. Since �-Max(D) = X (1)(D), M(I ) is a minimal prime
over I � and as any prime ideal minimal over I � is a �-ideal, M(I ) is the unique prime
ideal minimal over I �. Hence M(I ) = √

I �, so I has type 1.
(2)⇒(3) Clear since in a �-h-local domain every proper principal ideal is a �-

product of �-homogeneous ideals (Theorem4).
(3)⇒(1) Certainly (3) gives that D is a �-SH domain and hence �-h-local

(Theorem4). We show �-Max(D) = X (1)(D). Let M be a maximal �-ideal. Sup-
pose that there exists a nonzero prime ideal Q � M . Let 0 �= x ∈ Q. Shrinking
Q to a prime ideal minimal over Dx we can assume that Q is a �-ideal. Now
Dx = (I1 · · · In)� where each Ii is a type 1 �-homogeneous ideal. Now I1 · · · In ⊆ Q,
so some Ii ⊆ Q and hence I �

i ⊆ Q. But M(Ii ) = √
I �
i ⊆ Q � M , a contradiction.

Thus �-Max(D) ⊆ X (1)(D) and hence we have equality since each height-one prime
ideal is a �-ideal.

(4)⇒(3) Clear. (2)⇒(4) This follows from Theorem6 since a �-h-local domain
is a �-SH domain.

InvokingTheorem3we see that in a �-weaklyKrull domain a nonzero finitely gen-
erated ideal I with I � �= D has a unique representation (up to order) I � = (J �

1 · · · J �
n )�

where J1, . . . , Jn are pairwise �-comaximal type 1 �-homogeneous ideals.
Now a Krull domain is a weakly Krull domain (or equivalently, a t-WKD) in

which DP is a DVR for each P ∈ X (1)(D). With this in mind, we make the following
definition.

Definition 6 Let D be an integral domain and � a finite character star-operation on
D. Then D is a �-Krull domain if D is a �-weakly Krull domain and DP is a DVR
for each P ∈ �-Max(D).
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Evidently D is a �-Krull domain if and only if D is a Krull domain and
�-Max(D) = X (1)(D). Thus a Krull domain is the same thing as a t-Krull domain.
At the other extreme, a d-Krull domain is a Dedekind domain. If �1 and �2 are
finite character star-operations on D with �1 ≤ �2, then D �1-Krull implies that D is
�2-Krull.

Our characterization of �-Krull domains requires the following definition.

Definition 7 Let D be an integral domain and � a finite character star-operation on
D. A �-homogeneous ideal I of D has type 2 if I � = (M(I )n)� for some n ≥ 1. And
D is a type 2 �-SH domain if each nonzero proper principal ideal of D is a �-product
of type 2 �-homogeneous ideals.

Theorem 8 Let D be an integral domain and � a finite character star-operation on
D. Then the following conditions are equivalent.

1. D is a �-Krull domain.
2. Every proper �-ideal of D is a �-product of prime �-ideals of D.
3. Every proper principal ideal of D is a �-product of prime �-ideals of D.
4. Every proper �-ideal of D is a �-product of type 2 �-homogeneous ideals of D.
5. Every proper principal ideal of D is a �-product of type 2 �-homogeneous ideals

of D, that is, D is a type 2 �-SH domain.

Proof (1)⇒(4) D is �-Krull, so D is a Krull domain and �-Max(D) = X (1)(D). For
A ∈ F(D), A�w = ⋂

ADP
P∈X (1)(D)

= At , so A�w = A� = At . Let P ∈ X (1)(D). Choose x ∈
P\P2. Let Q1, . . . , Qn be the other height-one primes containing x and choose y ∈
P\(Q1 ∪ · · · ∪ Qn). So (x, y)� = (x, y)�w = ⋂

(x, y)DQ
Q∈X (1)(D)

= P . Put H(P):=(x, y),

so H(P) is a type 2 �-homogeneous ideal. Let A be a proper �-ideal of D. Then
A = ⋂

ADP
P∈X (1)(D)

= P (n1)
1 ∩ · · · ∩ P (ns )

s where P1, . . . , Ps are the height-one primes

containing A and P (ni )
i = Pni

i DPi ∩ D. But P (n1)
1 ∩ · · · ∩ P (ns )

s = (Pn1
1 · · · Pns

s )t =
(Pn1

1 · · · Pns
s )� = ((H(P1)�)n1 · · · (H(Ps)�)ns )� = (H(P1)n1 · · · H(Ps)ns )�.

(4)⇒(2)⇒(3), (4)⇒(5)⇒(3) Clear.
(3)⇒(1) Let x be a nonzero nonunit of D. So Dx = (P1 · · · Pn)� where Pi is

a prime �-ideal of D. Then Pi is �-invertible so Pi = H(Pi )� where H(Pi ) is a
finitely generated ideal contained in Pi . Thus H(Pi ) is a type 2 �-homogeneous
ideal and hence a type 1 �-homogeneous ideal. So each proper principal ideal of
D is a �-product of type 1 �-homogeneous ideals. By Theorem7, D is a �-WKD.
Let P ∈ X (1)(D); we need to show that DP is a DVR. Let 0 �= x ∈ P , so Dx =
(P1 · · · Pn)� where Pi is a prime �-ideal which is �-invertible. Now some Pi ⊆ P
and hence Pi = P , so P is �-invertible. Thus (PP−1) �⊂ P , so PP−1DP = DP and
hence PDP is invertible and therefore principal. Since ht P = 1, DP is a DVR.

Once again we can invoke Theorem3 to get the appropriate uniqueness result for
pairwise �-comaximal type 2 �-homogeneous ideals in Theorem8. We leave it to the
reader to show that in a �-Krull domain if (P1 · · · Pn)� = (Q1 · · · Qm)� where the
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Pi ’s and Qi ’s are maximal �-ideals, then n = m and after reordering Pi = Qi for
each i .

The notion of a Krull domain can be generalized in a number of ways. We have
already defined �-Krull domains and �-weakly Krull domains. An integral domain
D is an independent ring of Krull type (IRKT ) [15] if D is a F -IFC domain for
some defining familyF of primes where DP is a valuation domain for each P ∈ F .
For a finite character star-operation � on P , we call D a �-independent ring of Krull
type (�-IRKT ) if D is aF -IFC domain forF = �-Max(D), that is, D is �-h-local,
and for each P ∈ �-Max(D), DP is a valuation domain. Thus D is a �-IRKT if and
only if D is an IRKT where F = �-Max(D). A d-IRKT is just a finite character,
independent Prüfer domain. At the other extreme, a t-IRKT is just an IRKT. If �1 and
�2 are finite character star-operations on D with �1 ≤ �2 and D is a �1-IRKT, then
D is a �2-IRKT, see Proposition3 below. Recall that D is a P�MD if each nonzero
finitely generated ideal of D is �-invertible, or equivalently, DM is a valuation domain
for each M ∈ �-Max(D). Thus a �-IRKT is a P�MD. In fact, D is a �-IRKT if and
only if D is a �-h-local P�MD. A PvMD is usually defined to be a v-domain (each
nonzero finitely generated ideal of D is v-invertible) in which A−1 is a finite-type
v-ideal for each nonzero finitely generated ideal A of D. Thus aPvMD is just aPtMD
and a P�MD is a PvMD. Of course a PdMD is just a Prüfer domain.

The integral domain D is a generalized Krull domain (GKD) if D= ⋂
DP

P∈X (1)(D)

is locally finite and for each P ∈ X (1)(D), DP is a valuation domain, that is, D is
weakly Krull and for each P ∈ X (1)(D), DP is a valuation domain. Let � be a finite
character star-operation on D. We call D a �-generalized Krull domain (�-GKD) if
D= ⋂

DP
P∈X (1)(D)

locally finite, �-Max(D) = X (1)(D), and DP is a valuation domain for

each P ∈ X (1)(D), or equivalently, D is �-weakly Krull and for each P ∈ X (1)(D),
DP is a valuation domain, that is, D is a �-GKD if and only if D is a GKD and
�-Max(D) = X (1)(D). So D is a d-GKD if and only if D is a one-dimensional finite
character Prüfer domain. At the other extreme, a t-GKD is just a GKD. If �1 and �2
are two finite character star-operations on D with �1 ≤ �2, then D a �1-GKD implies
that D is a �2-GKD.

Proposition 3 Let D be an integral domain and �1 and �2 be finite character star-
operations on D with �1 ≤ �2. If D is a �1-IRKT, then D is a �2-IRKT.

Proof Let P ∈ �2-Max(D). Then P�1 ⊆ P�2 = P , so P�1 �= D and hence P is con-
tained in a maximal �1-ideal Q. Moreover, Q is unique since �1 is independent. Also,
DQ is a valuation domain and hence so is DP = (DQ)PQ . Note that �2 is independent.
Suppose that m is a nonzero prime ideal with m ⊆ M1, M2, two maximal �2-ideals.
Then Mi is contained in a maximal �1-ideal M ′

i . Since m ⊆ M ′
1 ∩ M ′

2, M
′
1 = M ′

2 as
�1 is independent. But then M1, M2 ⊆ M ′

1 and DM ′
1
is a valuation domain. So M1

and M2 are comparable. Hence M1 = M2. So �2 is independent. We next show that
�2 is locally finite. Suppose some 0 �= x ∈ D is contained in an infinite number of
maximal �2-ideals {Qn}∞n=1. Now each Qn is contained in a maximal �1-ideal Pn .
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Now if Pn = Pm , then Qn and Qm are comparable since DPn is a valuation domain, so
Qn = Qm . Thus x is contained in infinitely manymaximal �1-ideals, a contradiction.

The following diagram gives the various implications between the different gen-
eralizations of Krull domains.

Dedekind =⇒ �-Krull =⇒ Krull
⇓ ⇓ ⇓

one-dimensional =⇒ �-GKD =⇒ GKD
finite character Prüfer

=⇒ ⇐=
⇓ ⇓ �-WKD⇒weakly Krull ⇓

finite character
independent Prüfer =⇒ �-IRKT =⇒ IRKT

⇓ ⇓ ⇓
Prüfer =⇒ P�MD =⇒ PvMD

To characterize �-IRKTs using �-homogeneous ideals we need the following def-
inition.

Definition 8 Let D be an integral domain and � a finite character star-operation on
D. A �-homogeneous ideal I of D is �-super-homogeneous if each �-homogeneous
ideal containing I is �-invertible. The �-super-homogeneous ideal I has type 1 (resp.,
type 2) if I has type 1 as a �-homogeneous ideal, that is,

√
I � = M(I ) (resp., I � =

(M(I )n)� for some n ≥ 1). The domain D is a �-super-SH domain (resp., type 1
�-super-SH domain, type 2 �-super-SH domain) if every nonzero proper principal
ideal of D is a �-product of �-super-homogeneous ideals (resp., of type 1, of type 2).

Note that if I is �-super-homogeneous, then each finitely generated ideal con-
taining I is �-invertible. Now by [17, Theorem1.11] a product of similar �-super-
homogeneous ideals is again �-super-homogeneous. Thus the proof of Theorem3
gives the corresponding uniqueness result for �-products of �-super-homogeneous
ideals.

Theorem 9 Let � be a finite character star-operation on the integral domain D
and let J1, . . . , Jn be a set of �-super-homogeneous ideals of D. Then the �-product
(J1 · · · Jn)� can be expressed uniquely, up to order, as a �-product of pairwise �-
comaximal �-super-homogeneous ideals.

We next give several characterizations of �-IRKTs.

Theorem 10 Let D be an integral domain and � a finite character star-operation
on D. Then the following conditions are equivalent.

1. D is a �-IRKT.
2. D is �-h-local and every �-homogeneous ideal is �-invertible.
3. D is �-h-local and every �-homogeneous ideal is �-super-homogeneous.
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4. Every proper nonzero principal ideal is a �-product of �-super-homogeneous
ideals, that is, D is a �-super-SH domain.

5. If I is a nonzero finitely generated ideal with I � �= D, then I � is a �-product of
�-super-homogeneous ideals.

Proof (1)⇒(2),(3) Let I be a �-homogeneous ideal of D and let J ⊇ I be a finitely
generated ideal of D. Then J DP is principal for each P ∈ �-Max(D) since DP is
a valuation domain. Thus J is �-invertible. (2)⇒(1) Let P ∈ �-Max(D). We need
to show that DP is a valuation domain. It suffices to show that for x, y ∈ P\{0},
(x, y)DP is principal. Let A = (x, y)DP ∩ D. By Theorem5, A� is a finite type
�-ideal. So A� = A�

1 where A1 ⊆ A is finitely generated. Now P is the unique max-
imal �-ideal containing A and hence the unique maximal �-ideal containing A1. So
by hypothesis A1, and hence A, is �-invertible. So (x, y)DP = ADP is principal.
(3)⇒(4) This is immediate since for a �-h-local domain each proper nonzero prin-
cipal ideal is a �-product of �-homogeneous ideals by Theorem4. (4)⇒(1) Every
proper nonzero principal ideal of D is a �-product of �-homogeneous ideals, so by
Theorem4, D is �-h-local. Let P ∈ �-Max(D). We need that DP is a valuation
domain. Let 0 �= x ∈ P , so Dx = (I1 · · · In)� where Ii is �-super-homogeneous. Let
I = ∏{Ii |Ii is P �-homogeneous}. Then xDP ∩ D = I �. By [17, Theorem 1.11],
I is �-super-homogeneous. Let 0 �= y ∈ P . Then again yDP ∩ D = J � for some
�-super-homogeneous ideal J of D. But by [17, Theorem1.11] for two P-�-super-
homogeneous ideals I and J of D, I � and J � are comparable. Thus xDP ∩ D and
yDP ∩ D are comparable, so DP is a valuation domain. (5)⇒(4) Clear. (1)⇒(5) Let
I be a nonzero finitely generated ideal of D with I � �= D. By (1)⇒(3) it is enough to
show I � is a �-product of �-homogeneous ideals. But this follows from Theorem6.

Using Theorems9 and 10, we get the following result.

Proposition 4 Let D be an integral domain and � a finite character star-operation
on D. Suppose that D is a �-IRKT. Let a, b ∈ D∗ with (a, b)� �= D. Then (a, b)� =
(I1 · · · In)� where I1, . . . , In are pairwise �-comaximal �-super-homogeneous ideals
of D containing (a, b) such that (a, b)DM(Ii ) = Ii DM(Ii ) = aDM(Ii ) or bDM(Ii ).

Proof Now by Theorems9 and 10 (a, b)� = (I1 · · · In)� where I1, . . . , In are
pairwise �-comaximal �-super-homogeneous ideals of D. Put I ′

i = Ii + (a, b). Then
M(I ′

i ) = M(Ii ), each I ′
i is a �-super-homogeneous ideal, and I ′

i ⊇ (a, b). Now
I1 · · · In ⊆ I ′

1 · · · I ′
n = (I1 + (a, b)) · · · (In + (a, b)) ⊆ I1 · · · In + (a, b), so (I ′

1 · · ·
I ′
n)

� = (I1 · · · In)�. Thus we can replace Ii by I ′
i and hence assume that (a, b) ⊆ Ii .

Since (a, b) and I1 · · · In are �-invertible we have (a, b)�w = (a, b)� = (I1 · · · In)� =
(I1 · · · In)�w . So (a, b)DM(Ii ) = (a, b)�w DM(Ii ) = (I1 · · · In)�w DM(Ii ) = I1 · · · In
DM(Ii ) = Ii DM(Ii ). Now DM(Ii ) is a valuation domain, so either (a, b)DM(Ii ) =
aDM(Ii ) or (a, b)DM(Ii ) = bDM(Ii ).

Using Theorem10, we get several characterizations of �-GKDs.
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Theorem 11 Let D be an integral domain and � a finite character star-operation
on D. Then the following are equivalent:

1. D is a �-GKD.
2. D is a �-IRKT and a �-WKD.
3. D is a �-IRKT and every �-super-homogeneous ideal has type 1.
4. D is a �-WKD and every �-homogeneous ideal is �-invertible.
5. D is �-h-local and every �-homogeneous ideal is �-super-homogeneous and has

type 1.
6. Every proper nonzero principal ideal of D is a �-product of �-super-homogeneous

ideals of type 1, that is, D is a type 1 �-super-SH domain.
7. If I is a nonzero finitely generated ideal of D with I � �= D, then I � is a �-product

of type 1 �-super-homogeneous ideals.

Proof (1)⇔(2) Clear. (2)⇔(3) First note that by Theorem10, for a �-IRKT the
notions of �-homogeneous and �-super-homogeneous coincide. Then use Theorem7.
(2)⇔(4) Theorem10. (4)⇔(5)⇔(6) Combine Theorems7 and 10. (7)⇒(6) Clear.
(5)⇒(7) Theorem6.

Once again we can invoke Theorem3 to get the appropriate uniqueness result for
pairwise �-comaximal type 1 �-super-homogeneous ideals in Theorem10.

By Theorem8 D is a �-Krull domain if and only if D is a type 2 �-SH domain.
Now in a �-Krull domain a nonzero finitely generated ideal I is �-homogeneous if
and only if I � = P (n) for some P ∈ X1(D) and n ≥ 1. Hence I is �-homogeneous
if and only if it is a type 2 �-super-homogeneous ideal. Thus a type 2 �-super-SH
domain is the same thing as a �-Krull domain and if I is a nonzero finitely generated
ideal of D with I � �= D, I � is a �-product of type 2 �-super-homogeneous ideals.

Let � be a finite character star-operation on the integral domain D. We define D to
be �-Bezout if for a, b ∈ D∗, (a, b)� is principal. It easily follows that D is �-Bezout
if and only if A� is principal for each nonzero finitely generated (fractional) ideal A
of D. If �1 and �2 are finite character star-operations on D, then D �1-Bezout implies
that D is �2-Bezout. A d-Bezout domain is just a Bezout domain, while a t-Bezout
domain is a GCD domain.We also define D to be a �-Prüfer domain if for a, b ∈ D∗,
(a, b)� is invertible. Using [19, Exercise 22, p. 43], it is easy to see that D is �-Prüfer
if and only if A� is invertible for each nonzero finitely generated (fractional) ideal
A of D. Again if �1 ≤ �2 are finite character star-operations on D, then D �1-Prüfer
implies that D is �2-Prüfer. A d-Prüfer domain is just a Prüfer domain while a t-
Prüfer domain is a generalized GCD domain (GGCD domain). GGCD domains were
introduced in [1] and studied in more detail in [3]. We have �-Bezout ⇒ �-Prüfer ⇒
P�MD.

Storch [21] defined a Krull domain D to be almost factorial if for a, b ∈ D∗ there
exists an n = n(a, b) ≥ 1 with anD ∩ bnD principal. The second author initiated a
general theory of almost factoriality in [22]. There he defined an integral domain
D to be an almost GCD domain (AGCD domain) if for a, b ∈ D∗, there exists an
n = n(a, b) ≥ 1 with anD ∩ bnD principal, or equivalently, (an, bn)v (= (an, bn)t )
principal. This investigation was continued in [9]. In that paper an integral domain
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D was defined to be an almost Bezout domain (AB domain) (resp., almost Prüfer
domain (AP domain)) if for a, b ∈ D∗, there exists an n = n(a, b) ≥ 1 with (an, bn)
principal (resp., invertible). It was shown that D is almost Bezout (resp., almost
Prüfer) if and only if for a1, . . . , as ∈ D∗; there exists an n = n(a1, . . . , as) ≥ 1with
(an1 , . . . , a

n
s ) principal (resp., invertible). Briefly mentioned in [9] was the notion

of an almost generalized GCD domain (AGGCD domain). Here D is a AGGCD
domain if for a, b ∈ D∗ there exists an n = n(a, b) ≥ 1 with anD ∩ bnD invertible,
or equivalently, (an, bn)v (= (an, bn)t ) is invertible.

With the definitions in the previous twoparagraphs inmind,wemake the following
definitions. Let D be an integral domain and � a finite character star-operation on D.
We say the D is a �-almost Bezout domain (resp., �-almost Prüfer domain, almost
P�MD) if for a, b ∈ D∗, there exists an n = n(a, b) ≥ 1 with (an, bn)� principal
(resp., invertible, �-invertible). (More generally, we could call D a �2-almost P�1MD
if (an, bn)�2 is �1-invertible.) If �1 ≤ �2 are finite character star-operations on D,
then D �1-almost Bezout (resp., �1-almost Prüfer, almost P�1MD) implies D is �2-
almost Bezout (resp., �2-almost Prüfer, almost P�2MD). A d-almost Bezout domain
(resp., d-almost Prüfer domain) is just an almost Bezout domain (resp., almost Prüfer
domain), while a t-almost Bezout domain (resp., t-almost Prüfer domain) is just an
AGCD domain (resp., AGGCD domain).

We mention two useful results from [9]. First, let � be a finite character star-
operation on D. Let {aα} ⊆ D∗ and n ≥ 1. If ({aα}) is �-invertible, then ({anα})� =
(({aα})n)�. In particular, ({anα}) is also �-invertible. This is stated for the case � = t
in [9, Lemma 3.3]. The proof carries over mutatis mutandis for a general finite
character star-operation �. Next, for an integral domain D, the following con-
ditions are equivalent [9, Theorem6.8]: (1) D is n-root closed (i.e., for x ∈ K
with xn ∈ D, x ∈ D), (2) for {aα} ⊆ D∗, ({anα})t = (({aα})n)t , (3) for {aα} ⊆ D∗,
({anα})v = (({aα})n)v , and (4) for a, b ∈ D∗, (an, bn)t = ((a, b)n)t . Thus if D is inte-
grally closed, ({anα})t = (({aα})n)t for all {aα} ⊆ D∗ and n ≥ 1.

Using the first mentioned result of the previous paragraph, the proof of [9,
Lemma 4.3] can easily be modified to show that for an integral domain D and finite
character star-operation � on D, if D is �-almost Bezout (resp., �-almost Prüfer,
almost P�MD) and a1, . . . , as ∈ D∗, then there exits an n = n(a1, . . . , as) ≥ 1 with
(an1 , . . . , a

n
s )

� principal (resp., invertible, �-invertible). Thus for D integrally closed,
D is �-almost Bezout (resp., �-almost Prüfer, almost P�MD) if and only if for A
a nonzero finitely generated (fractional) ideal of D, there exists an n = n(A) ≥ 1
with (An)� principal (resp., invertible, �-invertible). The implication (⇐) does not
require that D be integrally closed. Indeed, if (An)� is �-invertible, A is �-invertible
and hence for A = (a, b), (an, bn)� = ((a, b)n)�. Conversely, suppose that D is inte-
grally closed and let A = (a1, . . . , as). Then for some n ≥ 1, (an1 , . . . , a

n
s ) is �-

invertible and hence (an1 , . . . , a
n
s )

� = (an1 , . . . , a
n
s )t . Thus (An)t ⊇ (an1 , . . . , a

n
s )

� =
(an1 , . . . , a

n
s )t = (An)t .

Let � be a finite character star-operation on D. The set �-Inv(D) of �-invertible
fractional �-ideals forms a group under the �-product I � J :=(I J )� with subgroup
Prin(D), the set of nonzero principal fractional ideals of D. The quotient group
C��(D):=�-Inv(D)/Prin(D) is called the �-class group of D, see [11]. For � = d,
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we have the usual class group C(D), while for � = t , we have the t-class group
introduced by Bouvier [12] and further studied in [13]. For a Krull domain, C�t (D)

is just the usual divisor class group. Suppose that �1 ≤ �2 are finite character star-
operations on D. Then we have natural inclusions C(D) ⊆ C��1(D) ⊆ C��2(D) ⊆
C�t (D). Let Inv(D) be the subgroup of �-Inv(D) consisting of invertible ideals of
D. The group LC��(D):=�-Inv(D)/ Inv(D) is called the local �-class group of D.

Proposition 5 Suppose that D is a �-IRKT. Then the following conditions are equiv-
alent.

1. D is �-almost Bezout (resp., �-almost Prüfer).
2. C��(D) is torsion (resp., LC��(D) is torsion).
3. For each �-super-homogeneous ideal A of D, there exists a natural number n =

n(A) with (An)� principal (resp., invertible).
4. D is an AGCD (resp., AGGCD domain).
5. C�t (D) is torsion (resp., LC�t (D) is torsion).

Proof We do the �-almost Bezout case, the �-almost Prüfer case is similar. Now D
being a �-IRKT is integrally closed. Hence, D is �-almost Bezout if and only if for
each nonzero finitely generated ideal A of D, (An)� is principal for some n ≥ 1.
Also, each nonzero finitely generated ideal of D is �-invertible. So (1)⇒(2)⇒(3).
(3)⇒(1) Let A be a nonzero finitely generated ideal of D. If A� = D, we can take
n = n(A) = 1. So suppose that A� �= D. Then by Theorem10, A� = (I1 · · · Im)�

where each Ii is �-super-homogeneous. By hypothesis, there exists an ni with (I nii )�

is principal. Then for n = n1 · · · nm , (An)� = ((I n11 )n/n1 · · · (I nmm )n/nm )� is principal.
(1)⇒(4) Here D is �-almost Bezout. Since � ≤ t , D is t-almost Bezout, that is, an
AGCD domain. (4)⇔(5) This follows since D is integrally closed. (5)⇒(2) Here
C��(D) ⊆ C�t (D) so C�t (D) torsion gives that C��(D) is torsion.

Definition 9 Let D be an integral domain and � a finite character star-operation
on D. A �-homogeneous ideal I of D is a �-almost factorial-homogeneous ideal
(�-a f -homogeneous ideal) (resp., �-locally almost factorial-homogeneous ideal (�-
laf-homogeneous ideal)) if for each �-homogeneous ideal J ⊇ I , there exists an
n = n(J ) ≥ 1 with (J n)� principal (resp., invertible). The integral domain D is a
�-a f -SH domain (resp., �-laf-SH domain) if for each nonzero nonunit x ∈ D, Dx
is expressible as a �-product of finitely many �-af-homogeneous ideals (resp., �-laf-
homogeneous ideals).

Thus a �-homogeneous ideal I is �-af-homogeneous (resp., �-laf-homogeneous)
if and only if for each finitely generated (or equivalently, each finite type �-ideal)
J ⊇ I , some (J n)� is principal (resp., invertible). Note that a �-af-homogeneous
ideal (resp., �-laf-homogeneous ideal) is actually �-super-homogeneous. In the spirit
of Theorems3 and 9, we have the following uniqueness result for �-products of
�-af-homogeneous ideals (resp., �-laf-homogeneous ideals).

Theorem 12 Let D be an integral domain and � a finite character star-operation on
D. Let I be an ideal of D. If I is a �-product of �-af-homogeneous ideals (resp., �-laf-
homogeneous ideals) of D, then I is uniquely expressible (up to order) as a �-product
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of pairwise �-comaximal �-ideals (J �
1 · · · J �

s )� where each Ji is �-af-homogeneous
(resp., �-laf-homogeneous).

Proof We do the �-af-homogeneous case, the �-laf-homogeneous case is similar.
The uniqueness of the product (J �

1 · · · J �
s )� follows from Theorem3. To show the

existence of the product, the proof of Theorem3 shows that it suffices to prove
that the product I J of two similar �-af-homogeneous ideals I and J is again �-
af-homogeneous. Of course I J is �-homogeneous. Let C ⊇ I J be �-homogeneous
ideal of D. Then E :=C + I is �-homogeneous. So there exists a n ≥ 1 with (En)�

principal. Thus E is �-invertible. So (CE−1 + I E−1)� = D where C ⊆ CE−1 ⊆ D
and I ⊆ I E−1 ⊆ D. Thus (CE−1)� = D or (I E−1)� = D. In the first case,C� = E�

and hence (Cn)� = (En)� is principal. So we can assume that (I E−1)� = D. Then
I � = E� ⊇ C ⊇ I J so D ⊇ (C I−1)� ⊇ J �. Choose a finitely generated ideal L ⊇ J
with (C I−1)� = L�. So there exists an m ≥ 1 with (Lm)� principal. So ((C I−1)m)�

is principal. Choose n with (I n)� principal. Then (Cmn)� = (((C I−1)m)n(I n)m)� is
principal.

We next give a characterization of AGCD �-IRKTs (resp., AGGCD �-IRKTs)
using �-af-homogeneous ideals (resp., �-laf-homogeneous ideals). Of course we
could enlarge the list of equivalences via Proposition5.

Theorem 13 Let D be an integral domain and � a finite character star-operation
on D. Then the following conditions are equivalent.

1. D is a �-af-SH domain (resp., �-laf-SH-domain).
2. If I is a nonzero finitely generated ideal of D with I � �= D, then I � is a �-product

of �-af-homogeneous ideals (resp., �-laf-homogeneous ideals).
3. D is an AGCD �-IRKT (resp., AGGCD �-IRKT).
4. D is an �-SH domain and every �-homogeneous ideal is �-af-homogeneous (resp.,

�-laf-homogeneous).
5. D is a �-IRKT with C��(D) torsion (resp., LC��(D) torsion) (equivalently,

C�t (D) torsion (resp., LC�t (D) torsion)).
6. D is �-h-local and for each �-homogeneous ideal I of D there exists an n ≥ 1

with (I n)� principal (resp., invertible).

Proof We do the �-af-homogeneous case, the �-laf-homogeneous case is simi-
lar. (3)⇒(2) By Theorem10 I � is a �-product of �-super-homogeneous ideals. By
Proposition5 C��(D) is torsion. Hence each �-super-homogeneous ideal is a �-af-
homogeneous ideal. So I � is a �-product of �-af-homogeneous ideals. (2)⇒(1) Clear.
(1)⇒(3) Since a �-af-homogeneous ideal is �-super-homogeneous, D is an �-IRKT
by Theorem10. It remains to show that D is an AGCD domain. Let a be a nonzero
nonunit of D. SoDa = (I1 · · · In)� where Ii is�-af-homogeneous (andhence�-super-
homogeneous). By Theorem12 we can take I1, . . . , In to be pairwise �-comaximal.
Now for each i , i = 1, . . . , n, there exists an ni ≥ 1 with (I nii )� principal. Hence,
for a suitable m ≥ 1 Dam = Da1 · · · Dan where Dai is �-super-homogeneous
and Da1, . . . , Dan are pairwise �-comaximal. Thus Da1 · · · Dan = Da1 ∩ · · · ∩
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Dan . Let a, b be nonzero nonunits of D. By the previous remarks, there is an
m ≥ 1 with Dam = Da1 · · · Dan = Da1 ∩ · · · ∩ Dan and Dbm = Db1 · · · Dbn =
Db1 ∩ · · · ∩ Dbn where either Dai and Dbi are similar �-super-homogeneous ide-
als of D or exactly one of Dai , Dbi is a �-super-homogeneous ideal and the
other is D, and Da1, . . . , Dan (resp., Db1, . . . , Dbn) are pairwise �-comaximal.
Now if Dai and Dbi are both �-super-homogeneous ideals, being similar, they
are comparable [17, Theorem1.11]. Thus in either case Dai ∩ Dbi is a princi-
pal �-super-homogeneous ideal. Thus Dam ∩ Dbm = (Da1 ∩ Db1) ∩ · · · ∩ (Dan ∩
Dbn) = (Da1 ∩ Db1) · · · (Dan ∩ Dbn) is principal. So D is an AGCD. (4)⇒(1)
Clear. (2)⇒(4) Let I be a �-homogeneous ideal of D. Then I � = (I1 · · · In)� where
In is �-af-homogeneous. Of course I1, . . . , In must be similar. By the proof of The-
orem12, a product of similar �-af-homogeneous ideals is again �-af-homogeneous.
Thus I1 · · · In and hence I is �-af-homogeneous. (3)⇔(5) Proposition5. (6)⇔(3)
Combine Theorem10 and Proposition5.

Recall that we defined a �-homogeneous ideal I to be of type 1 (resp., type 2) if
M(I ) = √

I � (resp., I � = (M(I )n)� for some n ≥ 1). Thus by a �-a f -homogeneous
ideal of type 1 (resp., type 2), we mean a �-af-homogeneous ideal that is type 1
(resp., type 2) as a �-homogeneous ideal. And by a �-a f -SH domain of type 1 (resp.,
type 2) we mean an integral domain in which each proper nonzero principal ideal
is a �-product of �-af-homogeneous ideals of type 1 (resp., type 2). Of course we
have the analogous definitions for �-laf-homogeneous ideals. The next two theorems
characterize these domains. Again we can invoke Theorem3 to get the appropriate
uniqueness results.

Theorem 14 Let D be an integral domain and � a finite character star-operation
on D. Then the following are equivalent:

1. D is a �-af-SH domain of type 1 (resp., �-laf-SH domain of type 1).
2. D is an AGCD �-GKD (resp., AGGCD �-GKD).
3. D is a �-SH domain and each �-homogeneous ideal is a �-af-homogeneous ideal

(resp., �-laf-homogeneous ideal) of type 1.
4. If I is a nonzero finitely generated ideal of D with I � �= D, then I � is a �-product

of �-af-homogeneous ideals (resp., �-laf-homogeneous ideals) of type 1.
5. D is a �-GKD with C��(D) torsion (resp., LC��(D) torsion) or equivalently

C�t (D) torsion (resp., LC�t (D) torsion).

Proof We do the �-af-homogeneous case, the �-laf-homogeneous case is similar.
(1)⇒(2) By Theorem11 D is a �-GKD since a �-af-homogeneous ideal is �-super-
homogeneous. And by Theorem13 D is an AGCD domain. (2)⇒(1) By Theorem11
every nonzero proper principal ideal of D is a �-product of �-super-homogeneous
ideals of type 1. Now a �-GKD is a �-IRKT and hence by Theorem13 each �-super-
homogeneous ideal is �-af-homogeneous. (3)⇒(1) Clear. (1)⇒(3) This follows from
Theorem13onceweobserve that a product of similar type 1 �-af-homogeneous ideals
is again a �-af-homogeneous ideal of type 1. (4)⇒(1) Clear. (3)⇒(4) Theorem6
(2)⇔(5) Proposition5.
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Theorem 15 Let D by an integral domain and � a finite character star-operation
on D. Then the following conditions are equivalent.

1. D is a �-af-SH domain (resp., �-laf-homogeneous-SH domain) of type 2.
2. D is an AGCD �-Krull domain (resp., AGGCD �-Krull domain).
3. D is a �-SH domain and each �-homogeneous ideal is a �-af-homogeneous ideal

(resp., �-laf-homogeneous ideal) of type 2.
4. If I is a nonzero finitely generated ideal D with I � �= D, then I � is a �-product

of �-af-homogeneous ideals (resp., �-laf-homogeneous ideals) of type 2.
5. D is a �-Krull domain with C��(D) torsion or equivalently C�(D) torsion (resp.,

LC��(D) torsion or equivalently LC�(D) torsion).

Proof We do the �-af-homogeneous case, the �-laf-homogeneous case is similar.
(1)⇒(2) By Theorem8 D is �-Krull. And since a �-af-SH domain of type 2 is
certainly a �-af-SH domain of type 1, Theorem14 gives that D is an AGCD domain.
(2)⇒(1) By Theorem8 each proper nonzero principal ideal of D is a �-product of
�-homogeneous ideals of type 2. Now a �-Krull domain is certainly a �-GKD, so
by Theorem14 each �-homogeneous ideal is actually �-af-homogeneous. So each
proper nonzero principal ideal of D is a �-product of �-af-homogeneous ideals of
type 2. (3)⇒(1) Clear. (1)⇒(3) This follows from Theorem13 once we observe that
a product of similar type 2 �-af-homogeneous ideals is again a �-af-homogeneous
ideal of type 2. (4)⇒(1) Clear. (3)⇒(4) Theorem6. (2)⇔(5) Proposition5.

To give GCD domain and GGCD domain versions of Theorems13–15, we need
the following definitions.

Definition 10 Let D be an integral domain and � a finite character star-operation on
D. An ideal I of D is �-factorial (�- f )-homogeneous (resp., �-locally factorial (�-lf )-
homogeneous) if I is �-homogeneous and for each �-homogeneous ideal J ⊇ I, J � is
principal (resp., invertible).We say the D is a �- f -SH domain (resp., �-lf-SH domain)
if each nonzero proper principal ideal of D is a �-product of �-f-homogeneous ideals
(resp., �-lf-homogeneous ideals).

Let D be an integral domain and � a finite character star-operation on D. Let I be
a nonzero ideal of D. Then we have I �-f-homogeneous (resp., �-lf-homogeneous)
⇒ I is �-af-homogeneous (resp., �-laf-homogeneous) ⇒ I is �-super-homogeneous
⇒ I is �-homogeneous. Thus D a �-f-SH domain ⇒ D is a �-af-SH domain ⇒ D is
a �-super-SH domain⇒ D is a SH domain with similar implications for the “locally”
case. Also, I �-f-homogeneous (resp., �-af-homogeneous)⇒ I is �-lf-homogeneous
(resp., �-laf-homogeneous). So D a �-f-SH domain (resp., �-af-SH domain) ⇒ D
is a �-lf-SH domain (resp., �-laf-SH domain). We have also shown that a product
of similar �-af-homogeneous (resp., �-laf-homogeneous, �-super-homogeneous, �-
homogeneous) ideals is again�-af-homogeneous (resp.,�-laf-homogeneous, �-super-
homogeneous, �-homogeneous). Using this, we showed that if an ideal I of D is a
�-product of �-af-homogeneous (resp, �-laf-homogeneous, �-super-homogeneous,
�-homogeneous) ideals, then I is uniquely expressible (up to order) as a �-product
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of pairwise �-comaximal �-ideals (J �
1 · · · J �

s )� where each Ji is �-af-homogeneous
(resp., �-laf-homogeneous, �-super-homogeneous, �-homogeneous). Not surpris-
inglywe have an analogous result for �-f-homogeneous ideals and �-lf-homogeneous
ideals.

Theorem 16 Let D be an integral domain and � a finite character star-operation
on D.

1. If I and J are similar �-f-homogeneous ideals (resp., �-lf-homogeneous ideals)
of D, then I J is �-f-homogeneous (resp., �-lf-homogeneous).

2. Let I be an ideal of D that is a �-product of �-f-homogeneous ideals (resp., �-lf-
homogeneous ideals). Then I � is uniquely expressible (up to order) as a �-product
of pairwise �-comaximal �-ideals (J �

1 · · · J �
s )� where each Ji is �-f-homogeneous

(resp., �-lf-homogeneous).

Proof We do the �-f-homogeneous case, the �-lf-homogeneous case is similar. Once
we prove (1), the proof of (2) is similar to the proofs of the �-af-homogeneous,
�-super-homogeneous, and �-homogeneous cases (Theorems 3, 9 and 12, respec-
tively). So let I and J be similar �-f-homogeneous ideals. Let C ⊇ I J be a �-
homogeneous ideal. We need to show thatC� is principal. Since I and J are �-super-
homogeneous, so is their product I J . Thus I �, J �, andC� are comparable [17, Theo-
rem 1.11]. If C� ⊇ I �, then C + I ⊇ I is �-homogeneous and hence C� = (C + I )�

is principal. Likewise C� is principal when C� ⊇ J �. Thus without loss of general-
ity we may assume that I � ⊇ J � � C� ⊇ C ⊇ I J . Now D ⊇ I � I−1 ⊇ C� I−1 ⊇ J �

where I−1 = (I �)−1 is principal. So C I−1 + J ⊇ J is �-homogeneous and hence
(C I−1 + J )� is principal. But (C I−1 + J )� = (C I−1)� = C� I−1 and hence C� is
principal since I−1 is.

We next give a characterization of GCD (resp., GGCD) �-IRKTs using �-f-
homogeneous ideals (resp., �-lf-homogeneous ideals).

Theorem 17 Let D be an integral domain and � a finite character star-operation
on D. The the following conditions are equivalent.

1. D is a �-f-SH domain (resp., �-lf-SH domain).
2. If I is a nonzero finitely generated ideal of D with I � �= D, then I � is a �-product

of �-f-homogeneous ideals (resp., �-lf-homogeneous ideals).
3. D is a GCD (resp., GGCD) �-IRKT.
4. D is a �-Bezout (resp., �-Prüfer) �-IRKT.
5. D is a �-SH domain and every �-homogeneous ideal of D is �-f-homogeneous

(resp., �-lf-homogeneous).
6. D is a �-IRKTwithC��(D) = 0, or equivalently, C�t (D) = 0 (resp., LC��(D) =

0, or equivalently, LC�t (D) = 0).

Proof We do the �-f-homogeneous case, the �-lf-homogeneous case is similar.
(5)⇒(4) Since a �-f-homogeneous ideal is �-af-homogeneous, Theorem13 gives
that D is an AGCD �-IRKT. Let I be a nonzero finitely generated ideal of D with
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I � �= D. By Theorem13 I � is a �-product of �-af-homogeneous ideals each of which
is �-f-homogeneous by hypothesis and hence principal. Thus for each nonzero finitely
generated ideal I of D, I � is principal. So D is �-Bezout. (4)⇒(3)A �-Bezout domain
is a GCD domain. (3)⇒(2) Let I be a nonzero finitely generated ideal of D with
I � �= D. Since D is an AGCD �-IRKT, I � is a �-product of �-af-homogeneous ide-
als. But since D is a GCD domain, C�t (D) = 0; so C��(D) ⊆ C�t (D) gives each
�-invertible ideal is principal. Thus a �-af-homogeneous ideal is �-f-homogeneous.
(2)⇒(1) Clear. (1)⇒(3) In the proof of (1)⇒(3) of Theorem13, we can take m = 1
and get that Da ∩ Db is principal. Thus D is a GCD domain. (3)⇒(4) D a GCD
domain gives C�t (D) = 0 and hence C��(D) = 0. So D is �-Bezout. (4)⇒(5) A �-
IRKT is a �-SHdomain. Let I be a �-homogeneous ideal. If J ⊇ I is �-homogeneous,
then J � is principal since D is �-Bezout. Thus I is �-f-homogeneous. (3)⇒(6) This
follows sinceC�t (D) = 0 for D a GCD domain. (6)⇒(4) Suppose thatC�t (D) = 0.
Let I be a nonzero finitely generated ideal of D. By Theorem10 I is �-invertible.
Since C��(D) = 0, I � is principal. So D is �-Bezout.

Combining Theorem17 with previous results, we have the following two theo-
rems.

Theorem 18 Let D be an integral domain and � a finite character star-operation
on D. Then the following are equivalent:

1. D is a �-f-SH domain of type 1 (resp., type 2).
2. D is a GCD �-GKD (resp., GCD �-Krull domain, or equivalently a UFD �-Krull

domain, or UFD �-GKD).
3. D is a �-GKD(resp., �-Krull domain)withC��(D)=0, or equivalently,C�t (D)=0.

Proof For the type 1 (resp., type 2) equivalences just combine Theorems17 and 11
(resp., Theorem8).

Recall that an integral domain D is locally factorial if DM is a UFD for each
maximal ideal M of D. And D is called a π -domain if each proper nonzero principal
ideal of D is a product of (necessarily invertible) prime ideals. For an integral domain
D the following are equivalent: (1) D is a π -domain, (2) D is a locally factorial Krull
domain, and (3) D is a Krull domain with LC�(D) = 0 [1, Theorem 1].

Theorem 19 Let D be an integral domain and � a finite character star-operation
on D. Then the following conditions are equivalent.

1. D is a �-lf-SH domain of type 1 (resp., type 2).
2. D is a GGCD �-GKD (resp., GGCD �-Krull domain, or equivalently a locally

factorial �-Krull domain, or locally factorial �-GKD).
3. D is a �-GKD (resp., �-Krull domain) with LC��(D) = 0, or equivalently,

LC�t (D) = 0.

Proof For the type 1 (resp., type 2) equivalence just combine Theorems17 and 11
(resp., Theorem8).
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We next wish to characterize �-SH domains with C��(D) = 0 or C��(D) torsion
(resp., LC��(D) = 0 or LC��(D) torsion). For this we need to define yet more types
of �-homogeneous ideals.

Definition 11 Let D be an integral domain and � a finite character star-operation
on D. An ideal of I of D is �-weakly factorial-(�-w f -) homogeneous (resp., �-
almost weakly factorial-(�-aw f -) homogeneous, �-weakly locally factorial (�-wlf -)
homogeneous, �-weakly almost locally factorial (�-walf -) homogeneous) if (1) I is �-
homogeneous and (2) if I is �-invertible, then I � is principal (resp., (I n)� is principal
for some n ≥ 1, I � is invertible, (I n)� is invertible for some n ≥ 1). And D is called a
�-w f -SH domain (resp., �-awf-SH domain, �-wlf-SH domain,�-walf-SH domain) if
each proper nonzero principal ideal of D is a �-product of �-wf-homogeneous (resp.,
�-awf-homogeneous, �-wlf-homogeneous, �-walf-homogeneous) ideals.

Theorem 20 Let D be an integral domain and � a finite character star-operation
on D. Then the following conditions are equivalent.

1. D is an �-wf-SH domain (resp., �-awf-SH domain).
2. If I is a nonzero finitely generated ideal of D with I � �= D, then I � is a �-product

of �-wf-homogeneous (resp., �-awf-homogeneous) ideals.
3. D is a �-SH domain with C��(D) = 0 (resp., C��(D) torsion).

Proof We do the case for C��(D) = 0, the C��(D) torsion case is similar. (3)⇒(2)
SinceD is an�-SHdomain, byTheorem6 I �=(I1 · · · In)� where Ii is�-homogeneous.
Now if Ii is �-invertible, then I �

i is principal. Thus Ii is �-wf-homogeneous. (2)⇒(1)
Clear. (1)⇒(3) It suffices to show that if A is a finitely generated nonzero �-invertible
integral ideal with A� �= D, then A� is principal. As in the proof of Theorem6,
A� = ((ADM1 ∩ D) · · · (ADMn ∩ D))� where M1, . . . , Mn are the maximal �-ideals
containing A. Now ADMi ∩ D is �-invertible, so ADMi ∩ D = (ADMi ∩ D)�w =
(ADMi ∩ D)�. Hence ADMi ∩ D is a �-invertible �-ideal. So (ADMi ∩ D)Mi =
ai DMi for some ai ∈ D. Now by hypothesis Dai = (I1 · · · Is)� where each I j is
�-wf-homogeneous. Hence I �

j = Dx j for some x j ∈ D. So Dai = Dx1 · · · Dxs
where Dx j is �-homogeneous. By combining similar factors, we can assume that
Dx1, . . . , Dxs are pairwise �-comaximal. Now some M(Dx j ) = Mi . By Proposi-
tion1 x j DMi ∩ D = x j D. Now ai DMi = x j DMi and hence ADMi ∩ D = ai DMi ∩
D = x j DMi ∩ D = x j D. So A� is principal.

We have a companion theorem for the “locally” case. The proof is left to the
reader.

Theorem 21 Let D be an integral domain and � a finite character star-operation
on D. Then the following conditions are equivalent.

1. D is a �-wlf-SH domain (resp., �-walf-SH domain).
2. If I is a nonzero finitely generated ideal with I � �= D then I � is a �-product of

�-wlf-homogeneous (resp., �-walf-homogeneous) ideals.
3. D is a �-SH domain with LC��(D) = 0 (resp., LC��(D) torsion).
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Let D be an integral domain and � a finite character star-operation on D. It is
evident that a �-product of similar �-wf-homogeneous (resp., �-awf-homogeneous)
ideals is again�-wf-homogeneous (resp.,�-awf-homogeneous). Thus if an ideal is a�-
product of �-wf-homogeneous (resp., �-awf-homogeneous) ideals, it is a �-product of
pairwise �-comaximal �-wf-homogeneous (resp., �-awf-homogeneous) ideals. Sim-
ilar results hold for the “locally” case. Let us call an element x ∈ D �-homogeneous
if Dx is �-homogeneous. We have the following element-wise characterization of
�-SH domains with C��(D) = 0 or torsion.

Theorem 22 Let D be an integral domain and � a finite character star-operation
on D. Then the following conditions are equivalent.

1. D is a �-SH domain with C��(D) = 0 (resp., C��(D) torsion).
2. For each nonzero nonunit x ∈ D, x (resp., xn for some n = n(x) ≥ 1) is a product

of �-homogeneous elements.
3. For each nonzero nonunit x ∈ D, x (resp., xn for some n = n(x) ≥ 1) can be

written uniquely up to order and associates as a product of pairwise �-comaximal
�-homogeneous elements.

Proof For both cases, it is clear that (2)⇔(3) and (1)⇒(2). And it is immediate
from Theorem20 that if each nonzero nonunit of D is a product of �-homogeneous
elements, then D is a �-SH domain with C��(D) = 0. So suppose that D is an
integral domain with the property that for each nonzero nonunit x , some power of
x is a product of �-homogeneous elements. Let x be a nonzero nonunit of D. Then
some xn is a product of �-homogeneous elements. Thus xn , and hence x , is contained
in only finitelymanymaximal �-ideals. So � is locally finite. Suppose thatM1 andM2

are distinct maximal �-ideals and there is a nonzero prime ideal P ⊆ M1 ∩ M2. Let
0 �= x ∈ P . So some xn is a product of �-homogeneous elements. Thus P contains a
�-homogeneous element which is absurd since P ⊆ M1 ∩ M2. So � is independent.
By Theorem4, D is an �-SH domain. Let A be a nonzero finitely generated integral
�-invertible ideal of D with A� �= D. It suffices to show that for some n ≥ 1, (An)�

is principal. But this follows from an easy modification of the proof of (1)⇒(3) of
Theorem20.

We note that the notions of type 2 �-f-SH domain (resp., type 2 �-af-SH domain)
and type 2 �-wf-SH domain (resp., type 2 �-waf-SH domain) coincide, and they are
both equivalent to being �-Krull with C��(D) = 0 (resp., C��(D) torsion). Also, the
notions of type 2 �-lf-SH domain (resp., type 2 �-laf-SH domain) and type 2 �-wlf-
SH domain (resp., type 2 �-walf-SH domain) coincide, and they are both equivalent
to being �-Krull with LC��(D) = 0 (resp., LC��(D) torsion). However, this is not
the case for type 1. Now a type 1 �-f-SH domain (resp., type 1 �-af-SH domain) is
a �-GKD with C��(D) = 0 (resp., C��(D) torsion). And a type 1 �-wf-SH domain
(resp., type 1 �-waf-SH domain) is a �-weakly Krull domain withC��(D) = 0 (resp.,
C��(D) torsion). Finally, a type 1 �-lf-SH domain (resp., type 1 �-wlf-SH domain) is
a �-GKDwith LC��(D) = 0 (resp., �-weakly Krull domain with LC��(D) = 0) and
a type 1 �-laf-SH domain (resp., type 1 �-walf-SH domain) is a �-GKDdomain (resp.,
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�-Krull domain) with LC��(D) torsion. An integral domain is weakly factorial [6]
if each nonzero nonunit is a product of primary elements. An integral domain D is
weakly factorial if and only if D is weakly Krull and C�t (D) = 0 [8, Theorem].
Also, the following are equivalent: (1) D is a weakly factorial GCD domain, (2) D is
a weakly factorial GKD, and (3) D is a GCDGKD [6, Theorem20]. For a Noetherian
domain D, D is integrally closed weakly factorial if and only if D is factorial. For
any field K , K [[X2, X3]] is weakly factorial but not factorial and hence is a type 1
�-wf-SH domain, but not a type 1 �-f-SH domain (for K [[X2, X3]], d = t).
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t-Local Domains and Valuation Domains

Marco Fontana and Muhammad Zafrullah

Dedicated to David F. Anderson

Abstract In a valuation domain (V, M), every nonzero finitely generated ideal J
is principal and so, in particular, J = J t ; hence, the maximal ideal M is a t-ideal.
Therefore, the t-local domains (i.e., the local domains, with maximal ideal being a
t-ideal) are “cousins” of valuation domains, but, as we will see in detail, not so close.
Indeed, for instance, a localization of a t-local domain is not necessarily t-local, but
of course a localization of a valuation domain is a valuation domain. So it is natural to
ask under what conditions is a t-local domain a valuation domain? The main purpose
of the present paper is to address this question, surveying in part previous work by
various authors containing useful properties for applying them to our goal.

1 Introduction

We begin by reviewing the notion of a t-local domain.
Let D be an integral domain with quotient field K , let F(D) be the set of

nonzero fractional ideals of D, and let f (D) be the set of all nonzero finitely gen-
erated D-submodules of K (obviously, f (D) ⊆ F(D)). For E ∈ F(D), let E−1 :=
{x ∈ K | xE ⊆ D}. The functions on F(D) defined by E �→ Ev := (E−1)−1 and
E �→ Et := ⋃{Fv | 0 �= F are a finitely generated subideal of E}, called, respec-
tively, the v-operation and the t-operation on the integral domain D, come under the
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umbrella of star operations (briefly recalled in Sect. 2), discussed in Sects. 32 and
34 of [18], where the reader can find proofs of the basic statements made here about
the v-, t- and, more generally, the star operations.

Recall that a nonzero fractional ideal E of D is a v-ideal, or a divisorial ideal
(resp., a t-ideal), if E = Ev (resp., E = Et ) and a v-ideal (resp., a t-ideal) of finite
type if E = Ev = Fv (resp., E = Et = Ft ) for some finitely generated F ∈ f (D)

and, obviously, F ⊆ E . Next, the t-operation is a star operation of finite type on the
integral domain D, in the sense that E ∈ F(D) is a t-ideal if and only if for each
finitely generated nonzero subideal F of E we have Fv = Ft ⊆ E and it is easy to
see that if F is principal Fv = F = Ft .

An integral ideal of D maximal with respect to being an integral t-ideal is called a
maximal t-ideal of D and it is always a prime ideal. We denote byMaxt (D) the set of
all the maximal t-ideals of D. This set is nonempty, since every t-ideal is contained
in a maximal t-ideal, thanks to the definition of the t-operation and to Zorn’s Lemma.
An integral domain is called a t-local domain if it is local and its maximal ideal is a
t-ideal.

The purpose of this article is to survey the notion indicating what t-local domains
are, where they may or may not be found and what their uses are.

Thefirst example of a t-local domain that comes tomind is a valuation domain, i.e.,
a local domain (V, M) in which every nonzero finitely generated ideal is principal.
In this case, we can say that for each F ∈ f (V ) with F ⊆ M we have F = (a) ∈ M
and so Ft = (a)t = (a) ⊆ M . But, of course, t-local domains aremuchmore general
than that.We can, for example, show that if P is a height one prime ideal of an integral
domain D, then DP is a t-local domain. We can show, as we will in more generality,
that if M = pD is a prime ideal generated by a prime element of a domain D then
M is a maximal t-ideal and DM is a t-local domain. However, we cannot just take a
prime t-ideal P of D and claim that DP is a t-local domain, as there are examples
of some domains D with prime t-ideals P such that DP is not a t-local domain. In
Sect. 2, we discuss cases of prime t-ideals P with DP a t-local domain and cases of
domains that have prime t-ideals P with DP non-t-local, indicating also that if D is
t-local then, for some multiplicative set S of D, DS the ring of fractions may not be
a t-local domain.

Now localization may not always produce t-local domains, but there are elements
of a special kind whose presence in a domain D ensures that D is a t-local domain.
In Sect. 3, we record the results related to the fact that the presence of a nonzero
nonunit comparable element (definition recalled later) in an integral domain Dmakes
D into a t-local domain. The related results include, for instance, (1) the effects the
presence of a nonzero nonunit comparable element on different kinds of domains,
(2) the presence of a nonzero comparable element in some domainswouldmake them
into valuation domains, if D is Noetherian then the presence of a nonzero nonunit
comparable element in D makes D a DVR (= discrete valuation ring), and (3) a
t-local domain may not have a comparable element, and so on, the list continues.

Citing Krull, Cohn [10] showed that D is a valuation domain if and only if D is a
Bézout domain and a local domain. (In fact, in this result “Bézout” can be replaced by
“Prüfer”; here D is Bézout—respectively, Prüfer—if every nonzero finitely generated
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ideal of D is principal—respectively, invertible.) In Sect. 4, we show that D is a
valuation domain if and only if D is a GCD domain and a t-local domain, and point
out that if, in the above statement, we replace “GCD domain” by “PvMD” the result
would still be a characterization of a valuation domain (here, D is a PvMD, if for
each pair 0 �= a, b ∈ D we have ((a, b) (a)∩(b)

ab )t = D). But of course we do not stop
here, we point to situations where recognizing the fact that the domain in question
is a t-local domain makes proving that it is a valuation domain easier.

Section 5 has to do with “applications” which are essentially more efficient proofs
of known results.We follow the studyof the ring calledShannon’s quadratic extension
in [27] and point out that it is indeed a t-local domain, thus providing a shorter, more
efficient proof of Theorem 6.2 of [27].We also point to examples of maximal t-ideals
Q in a particular domain D such that DQ is not t-local.

2 Background Results and t-Local Domains

We start with proving some important preliminary results. But, for that, we need
to recall the formal definition of a star operation. A star operation on D is a map
∗ : F(D) → F(D), E �→ E∗, such that, for all x ∈ K , x �= 0, and for all E, F ∈
F(D), the following properties hold:

(∗1) (xD)∗ = xD;
(∗2) E ⊆ F implies E∗ ⊆ F∗;
(∗3) E ⊆ E∗ and E∗∗ := (E∗)∗ = E∗;

[18, Sect. 32].
If ∗ is a star operation on D, then we can consider a map ∗f : F(D) → F(D)

defined, for each E ∈ F(D), as follows:

E∗f := ⋃{F∗ | F ∈ f (D) and F ⊆ E}.
It is easy to see that ∗f is a star operation on D, called the finite-type star operation
associated to ∗ (or the star operation of finite type associated to ∗). A star operation
∗ is called a finite-type star operation (or, star operation of finite type) if ∗ = ∗f . It
is easy to see that (∗f)f = ∗f (that is, ∗f is of finite type).

If ∗1 and ∗2 are two star operations on D, we say that ∗1 ≤ ∗2 if E∗1 ⊆ E∗2 ,
for each E ∈ F(D), equivalently, if (E∗1)∗2 = E∗2 = (E∗2)∗1 , for each E ∈ F(D).
Obviously, for each star operation ∗, we have ∗f ≤ ∗. Clearly, vf = t . Let dD (or,
simply, d) be the identity star operation on D. Clearly, d ≤ ∗ and, moreover, ∗ ≤ v,
for all star operations ∗ on D [18, Theorem 34.1(4)].

Recall that an integral domain D is called a Prüfer v-multiplication domain (for
short, PvMD), if every nonzero finitely generated F ∈ f (D) is t-invertible, i.e.,
(FF−1)t = D. Obviously, every Prüfer domain is a PvMD. It is well known (see,
Griffin [22, Theorem 5]) that D is a PvMD if and only if DQ is a valuation domain,
for each maximal (or, equivalently, prime) t-ideal Q of D.

Any unexplained terminology is straightforward, well accepted, and usually
comes from [33] or [18].
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Lemma 2.1 (Hedstrom–Houston [25, Proposition 1.1]) Let ∗ be a star operation on
an integral domain D and let ∗f be the finite-type star operation on D canonically
associated with ∗. If P is a minimal prime ideal over a ∗f -ideal of D, then P is a
∗f -ideal.

Proof Let J be a finitely generated (integral) ideal contained in P , the conclusion
will follow if we show that J ∗ ⊆ P . Since P is minimal over some (integral) ideal
I , with I = I ∗f , then rad(I DP) = PDP and, since J is finitely generated, there
exists an integer m ≥ 1 such that JmDP ⊆ I DP . Therefore, for some s ∈ D \ P ,
s Jm ⊆ I . Thus, s(J ∗)m ⊆ s(Jm)∗ = s(Jm)

∗f ⊆ I ∗f = I ⊆ P , and so J ∗ ⊆ P , since
s /∈ P . �

The next step is to apply this lemma for obtaining some sufficient conditions for a
local domain to be a t-local domain (recall that an integral domain is a t-local domain
if it is local and its maximal ideal is a t-ideal).

Remark 2.2 (1) Note that if D is an integral domain such that Maxt (D) contains
only one element, then D is necessarily a t-local domain (and conversely). If not, let
M be the unique t-maximal ideal of D and N be a maximal ideal of D with N �= M .
Let x ∈ N \ M , clearly, the t-ideal xD must be contained in some t-maximal ideal.
In the present situation xD should be contained in M and this is a contradiction.

(2) Note that if D is a local domain with divisorial maximal ideal, then clearly
D is t-local. The converse is not true: take, for instance, a valuation domain with
nonprincipal maximal ideal (e.g., a 1-dimensional non-discrete valuation domain).

(3) In an integral domain D, the set of maximal divisorial ideals, Maxv(D), might
be empty (e.g., take a 1-dimensional valuation domain with nonprincipal maximal
ideal). However, if Maxv(D) �= ∅, a maximal divisorial ideal is a prime t-ideal, but
it might be a nonmaximal t-ideal (for explicit examples see [17], where the problem
of when a maximal divisorial ideal is a maximal t-ideal is investigated).

Corollary 2.3 Let D be a local domain with maximal ideal M. Then, D is t-local
in each of the following situations:

(1) The maximal ideal M is minimal over (i.e., is the radical of) an integral t-ideal
of D.

(2) The maximal ideal M is an associated prime over a principal ideal of D (i.e.,
there exist a ∈ D and b ∈ D \ aD such that M is minimal over (aD :D bD)).

(3) The maximal ideal M is minimal over (i.e., is the radical of ) a principal ideal
of D.

(4) The maximal ideal M is principal.
(5) The integral domain D is 1-dimensional.

Proof (1) is a straightforward consequence of Lemma 2.1. (2) and (3) are obvious
from (1), because a proper ideal of the type (aD :D bD) and a principal ideal are
both t-ideals. (4) is trivial consequence of (3). Finally, (5) follows from the fact that,
in this case, the maximal ideal is a minimal prime over every nonzero (principal)
ideal contained in it. �
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Proposition 2.4 If (D, M) is a local domain and the prime ideals of D are
comparable in pairs, i.e., Spec(D) is linearly ordered under inclusion, then D is
t-local.

Proof Let I = (x1, x2, . . . , xn) be a nonzero proper finitely generated ideal of D and
let P be a minimal prime of I . The prime spectrum Spec(D) being linearly ordered
forces P to be unique. Now let, for each i = 1, 2, . . . , n, P(xi ) be the minimal
prime of the principal ideal (xi ). Again, by the linearity of order of Spec(D), for
some 1 ≤ k ≤ n, P(xk) ⊆ P(x j ) for all j �= k. So P(xk) ⊇ I and so P(xk) ⊇ P .
But as xk ∈ P , P(xk) ⊆ P . Whence every proper nonzero finitely generated ideal of
D is contained in a prime ideal of D that is minimal over a principal ideal and, hence,
P is a t-ideal, by Corollary 2.3(1). Thus, I v = I t ⊆ P ⊆ M . Since I is arbitrary as
a finitely generated proper ideal of D, M is a t-ideal. �

Remark 2.5 Note that, mutatis mutandis, from the proof of the previous proposition,
if Spec(D) is linearly ordered under inclusion, we do not deduce only that D is
t-local, but also that every prime ideal of D is a t-ideal (see also [32, Theorem
3.19]).

It is known that if J is a t-ideal of a ring of fractions DS of an integral domain
D with respect to a multiplicative subset S of D, then J ∩ D is a t-ideal of D
[32, Lemma 3.17(1)]. However, I being a t-ideal of the integral domain D does not
imply, in general, that I DS is a t-ideal of DS , even though I DS ∩ D is a t-ideal of
D [32, Lemma 3.17(2)]. In particular, as Example 2.6 will show, the prime t-ideals
may have a “bad behavior”, that is, if P is a prime t-ideal of D then PDS may not
be a prime t-ideal for some multiplicative set S disjoint with P .

The authors of [39] were led to this conclusion seeing an example given by
Heinzer and Ohm [29] of an essential domain (i.e., an integral domain D = ⋂

DP

where P ranges over prime ideals of D such that DP is a valuation domain) that is not
a PvMD. The reason for this conclusion came from the following observation. For
each maximal ideal M of the Heinzer–Ohm example D, DM is a unique factorization
domain, meaning the Heinzer–Ohm example is a locally GCD domain. Now, if for
each maximal t-ideal Q, QDQ were a prime t-ideal of DQ , and then DQ would be a
t-local domain and a GCD domain. But, as we shall see in Proposition 5.2, a t-local
GCD domain is a valuation domain. So, we would have DQ a valuation domain, for
every maximal t-ideal Q of D, making D a PvMD. Therefore, since in this example
D is not a PvMD, QDQ might not be a t-ideal, for some maximal t-ideal Q of D.
Indeed, an integral domain D which is locally a PvMD is a PvMD if and only if
QDQ is a t-ideal for every maximal t-ideal Q of D.

In [51], a prime (t-ideal) P in an integral domain D was called well behaved if
PDP is a prime t-ideal of DP . We say that an integral domain D is well behaved if
every prime (t-ideal) of D is well behaved. In [51], M. Zafrullah characterized well-
behaved domains and showed that most of the known domains, including PvMDs,
are well behaved. Furthermore, in the same paper, there is also an example of an
integral domain D such that every Q ∈ Maxt (D) is well behaved, but D is not well
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behaved. This example is obtained by a pullback construction, as briefly recalled
below (for the details of the proofs see [51]).

Example 2.6 Let (V, M) be a valuation domain with dim(V ) ≥ 2 and let P be a
nonzero nonmaximal prime ideal of V , set D := V + XVP [X ]. In [51, Lemma 2.3,
2.4, and Proposition 2.5], it is proved that

Maxt (D) = { f D | f ∈ D, f is a prime element of D such that f (0) ∈ V \ M} ∪ {N },

where N := { f ∈ D | f (0) ∈ M} = M + XVP [X ] is a maximal ideal of D.
By the previous description of Maxt (D), it is not hard to see that, for each

Q ∈ Maxt (D), QDQ is a maximal t-ideal of DQ . Now, we consider the prime
ideal P := P + XVP [X ] of D. Since P = ⋂{aV | a ∈ M \ P}, a direct verifi-
cation shows that P = ⋂{aD | a ∈ M \ P}. Thus P is a v-ideal and, in particu-
lar, a t-ideal of D. However, after observing that P ∩ (V \ P) = ∅, and so DP =
(V + XVP [X ])P+XVP [X ] = (VP [X ])PVP [X ] and PVP [X ] = PVP + XVP [X ], it can
be shown that PDP = PVP [X ]PVP [X ] is not a t-ideal of DP.

By the previous observations and example, for each P ∈ Spec(D), if DP is a
t-local domain, then P is a t-prime ideal of D; on the other hand, if a prime ideal P
is a t-ideal of D, it is not true, in general, that DP is a t-local domain. We give next
some sufficient conditions for the localizations of an integral domain to be t-local
domains.

Proposition 2.7 Let D be an integral domain.

(1) If Q is an associated prime ideal over a principal ideal of D, then DQ is a t-local
domain.

(2) If Q ∈ Maxt (D) and Q is a potent ideal (i.e., it contains a nonzero finitely
generated ideal that is not contained in any other maximal t-ideal), then DQ is
a t-local domain.

(3) If D has the finite t-character (i.e., every nonzero nonunit element of D belongs
to at most a finite number of maximal t-ideals), then DQ is a t-local domain, for
each Q ∈ Maxt (D).

Proof (1) Since Q is minimal over a t-ideal of D of the type (aD :D bD), QDQ

is minimal over the ideal (aD :D bD)DQ = (aDQ :DQ bDQ), which is a t-ideal of
DQ , and thus QDQ is a t-ideal of DQ (Corollary 2.3(2)).

(2)was proven in [3, Theorem1.1(1)] and (3) follows from (2), since eachmaximal
t-ideal in an integral domain with finite t-character is potent [3, Theorem 1.1(2)]. �

Remark 2.8 Recall that a prime t-ideal P of an integral domain D is said to
be a t-sharp ideal if

⋂{DQ | Q ∈ Maxt (D), P � Q} � DP [31, Sect. 3]. For a
PvMD, it is known that a prime t-ideal P is t-sharp if and only if it is potent
[31, Proposition 3.1].

If D has the finite t-character, then every maximal t-ideal is well behaved
(Proposition 2.7(3)). It was observed in [3, Example 3.9] that the integral domain D,
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described in Example 2.6, has the finite t-character and so even an integral domain
with the finite t-character might not be well behaved.We provide next another exam-
ple of an integral domain which happens to be t-local (and so, trivially, with the finite
t-character) and it is not well behaved (see, also, [3, Remark 3.2(2)]).

Example 2.9 Let D1 := Z(p) and so D1 is a rank 1 discrete valuation domain of the
field of rational numbers K1 := Q, with maximal principal ideal N1 := pZ(p).

Let D2 := Q[[X,Y ]] be the power series ring in two variables with coefficients
in the field Q. Clearly, D2 is an integrally closed local Noetherian 2-dimensional
integral domain with maximal ideal N2 := (X,Y )Q[[X,Y ]] and field of quotients
K2 := Q((X,Y )). Let D3 = K2[[Z ]] = Q((X,Y ))[[Z ]]; D3 is a rank 1 discrete valua-
tion domain of the field K3 := K2((Z)), with maximal ideal N3 := ZK2[[Z ]]. Set

D := D1 + N2 + N3 = Z(p) + (X,Y )Q[[X,Y ]] + ZQ((X,Y ))[[Z ]] .

Clearly, D ⊂ T := D2 + N3 = Q[[X,Y ]] + ZQ((X,Y ))[[Z ]] ⊂ D3 = K2 + N3 =
Q((X,Y ))[[Z ]]. By well-known properties of rings arising from pullback construc-
tions, it is not hard to see that the following hold:

(1) T is a 3-dimensional local ring with maximal ideal Q := N2 + N3 and the
localizations of T at each one of its infinitely many prime ideals of height 2 is
a rank 2 discrete valuation domain.

(2) T has unique prime ideal of height 1, that is, N3. More precisely, N3 is a
common prime ideal of T and D3 and N3 = (T : D3), since N3 is the maximal
ideal of the local domain D3; therefore, N3 is a t-ideal (in fact, a v-ideal) of T .
Furthermore, TN3 = D3 is a rank 1 discrete valuation domain.

(3) D is a 4-dimensional local domain, with maximal ideal M := N1 + N2 + N3.
(4) M is a t-ideal (in fact, a v-ideal) of D, since M = pD, and so D is a t-local

domain.
(5) Q = N2 + N3 = ⋂{pnD | n ≥ 0} is the unique prime of height 3 in D and it

is a t-ideal (in fact, a v-ideal) of D, since Q is a common ideal of D and T
and, since it is the maximal ideal of T , Q = (D : T ).

(6) For each one of the infinitely many height 2 prime ideals P of D, there exist a
unique prime ideal P ′ of T such that P ′ ∩ D = P and the canonical embedding
homomorphism DP ⊆ TP ′ is an isomorphism; thus DP is a rank 2 discrete
valuation domain.

(7) Set S := {pn | n ≥ 0}, clearly S is a multiplicative set of D and DS = Q +
N2 + N3 = Q + (X,Y )Q[[X, Y ]] + ZQ((X,Y ))[[Z ]] = DQ = T .

(8) QDS = QDQ = QT = Q is not a t-ideal of DQ = T , since the elements
X,Y ∈ QDQ = Q are v-coprime (note that, if F is a nonzero finitely generated
ideal in a t-ideal I , then Fv ⊆ I ).

(9) By the previous properties, it follows that T is a local, but not t-local, PvMD,
since the localization at all its nonzero nonmaximal prime ideals is a valua-
tion domain and its maximal ideal Q is not a t-ideal of T . Moreover, T is not
completely integrally closed and so it is not a Krull domain, since its com-
plete integral closure is D3, because N3 = (T : D3). T does not have the finite
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t-character, since each nonzero element inside its unique height 1 prime (t-
)ideal N3 is contained in all the infinitely many maximal t-ideals, which are all
its prime ideals of height 2.

(10) Every nonzero prime ideal of D is a t-ideal and all of them are well behaved,
except Q, its unique prime of height 3 (which is a t-ideal of D, but it is not a
t-ideal in DQ = T ).

The following result was proved by Anderson et al. in [3, Proposition 1.12(1)].

Proposition 2.10 Let D be a t-local domain, then the following hold:

(1) Every t-invertible ideal (i.e., an ideal I such that (I I−1)t = D) is principal.
(2) If I is an ideal of D such that (I n)t = D for some n ≥ 2, then I is principal.

Proof (1) If I be a t-invertible ideal of D then I I−1 is in no maximal t-ideals
of D and this implies that I I−1DQ = DQ for every Q ∈ Maxt (D). In this special
situation, Maxt (D) = Max(D) = {M}, where M is the only maximal ideal of the
t-local domain D. Thus, I is invertible in a local domain and hence it is principal.

(2) In this situation, I is t-invertible, hence, the conclusion follows from (1). �

Note that the set TI(D) of all the fractional t-invertible t-ideals of an integral
domain D is a group with respect to the operation I ·t J := (I J )t , having as subgroup
the set Princ(D) of all nonzero fractional principal ideals of D. The quotient
group Clt (D) := TI(D)/Princ(D) is called the t-class group of D. The previous
Proposition 2.10 can be also stated by saying that if D is a t-local domain then
Clt (D) = 0.

3 t-Local Domains and Local DW-Domains

A nonzero ideal J of an integral domain D is called a Glaz–Vasconcelos ideal (for
short, a GV -ideal) if J is finitely generated and J−1 = D. The set of
Glaz–Vasconcelos ideals of D is denoted by GV(D) [21]. Given a nonzero frac-
tional ideal E of D, the w-closure of E is the fractional ideal Ew := {x ∈ K |
x J ⊆ E, for some J ∈ GV(D)}. A nonzero fractional ideal E is called a w-ideal
if E = Ew. The w-operation was introduced by Wang–McCasland in [46].

It is well known that w, like v, t , and the identity operation d are examples of
star operations (respectively, w, like t , and d are examples of star operations of
finite type) [25, Proposition 3.2] and also that d ≤ w ≤ t ≤ v, this means that,
for each E ∈ F(D), we have the following inclusions Ed := E ⊆ Ew ⊆ Et ⊆ Ev .
Furthermore, for each E ∈ F(D), Ew = ⋂{EDQ | Q ∈ Maxt (D)} and the set of
maximal w-ideals of D, Maxw(D), coincide with the set of maximal t-ideals of D,
Maxt (D) [44].

It is natural to ask what is the relation between a t-local domain and a w-local
domain, i.e., a local domain such that its maximal ideal is aw-ideal. A t-local domain
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is necessarily a w-local domain, since d ≤ w ≤ t and conversely, since as observed
above, Maxw(D) = Maxt (D). We will show that something more is true, that is, in
a t-local domain, every nonzero ideal is a w-ideal. For showing this, we need some
preliminaries.

Recall that a DW-domain is an integral domain D such that d = w, i.e., for each
nonzero fractional ideal E of D, E = Ew; this is equivalent to requiring that every
nonzero (integral) finitely generated ideal of D is a w-ideal. The following result is
due to Wang [45, Proposition 1.3] (see also Mimouni [38, Proposition 2.2]).

Proposition 3.1 Let D be an integral domain. The following are equivalent:

(i) D is a DW-domain.
(ii) Every nonzero prime ideal of D is a w-ideal.
(iii) Every maximal ideal of D is a w-ideal.
(iv) Every maximal ideal of D is a t-ideal.
(v) GV(D) = {D}.
Proof Obviously, (i)⇒(ii)⇒(iii).

(iii)⇒(iv) is a consequence of the fact that Maxw(D) = Maxt (D).
(iv)⇒(v) Let J ∈ GV(D) and J � D. Let M ∈ Maxt (D) such that J ⊆ M , then

D = J v = J t ⊆ Mt = M , which is a contradiction.
(v)⇒(i) Let I be a nonzero ideal of D and let 0 �= x ∈ Iw then, for some J ∈

GV(D), x J ⊆ I . Since GV(D) = {D}, xD ⊆ I and so Iw ⊆ I . �

From the previous proposition we deduce immediately the following.

Corollary 3.2 Let D be an integral domain. The following are equivalent:

(i) D is a t-local.
(ii) D is a w-local.
(iii) D is a local DW-domain.

Remark 3.3 Note that, for a t-local domain, it is not true that every nonzero ideal
is a t-ideal, i.e., a domain such that d = t or a DT-domain; even more, for a t-local
domain, it may happen that every nonzero prime ideal is a t-ideal, without being a
DT -domain (see Example 3.5). The DT -domains are also called fgv-domains, that
is, domains such that every nonzero finitely generated ideal is a v-ideal since, for
each nonzero ideal I , I = I t if and only if, for each nonzero finitely generated ideal
J , J v = J t = J . Zafrullah in [48] studied the fgv-domains and he proved that an
integrally closed fgv domain is a Prüfer domain. Note that, for a Noetherian domain,
being a DT -domain is equivalent to being a domain such that each nonzero ideal is
divisorial (i.e., a domain such that d = v). In particular, W. Heinzer has proven that,
for a Noetherian domain D, if every nonzero ideal is divisorial, then dim(D) ≤ 1
[26, Corollary 4.3]; furthermore, for an integrally closed Noetherian domain (or,
more generally, for any completely integrally closed domain) D, every nonzero ideal
is divisorial if and only if D is Dedekind domain [26, Proposition 5.5].

Finally, note that DT -domains are exactly the DW -domains that are at the same
time TW-domains, i.e., domains such that w = t [37].
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Lemma 3.4 Let (T, N ) be a local domain, let k(T ) := T/N, let ϕ : T → k(T ) be
the canonical projection, and let R be a subring of the field k(T ). Set D := ϕ−1(R).
Then, D is a t-local domain with maximal ideal M if and only if R is a t-local domain
(with maximal ideal ϕ(M)).

Proof By the standard properties of the pullbacks constructions, D is a local domain
with maximal ideal M if and only if R is a local domain (with maximal ideal
ϕ(M)) [15, Corollary 1.5]. Moreover, for each E ∈ F(R), ϕ−1(E) ∈ F(D) and
(ϕ−1(E))w = ϕ−1(Ew) [37, Lemma 3.1]. Note that M = ϕ−1(ϕ(M)), and thus
M = Mw if and only if ϕ(M) = (ϕ(M))w. Therefore, (D, M) is w-local if and
only if (R, ϕ(M)) is w-local. The conclusion follows from Corollary 3.2. �

Example 3.5 Example of a Noetherian t-local domain (hence, a local DW -domain)
which is not a DT -domain, but each nonzero prime ideal is a t-ideal.

Consider the 2-dimensional Noetherian integrally closed domain T :=
C[X,Y ](X,Y ), which is clearly not a t-local domain, since its (finitely generatedmaxi-
mal ) idealM := (X,Y )C[X,Y ](X,Y ) is not a divisorial ideal of T (the only divisorial
ideals of T are its height 1 prime ideals). However, by the previous lemma, the local
2-dimensionalNoetherian domain D := R + (X,Y )C[X,Y ](X,Y ) (= ϕ−1(R),where
ϕ : T → T/M ∼= C is the canonical projection) is a t-local domain, since itsmaximal
ideal M = (X,Y )C[X,Y ](X,Y ) is divisorial as an ideal of D, being M = (D : T ).
Moreover, every nonzero prime ideal of D is a t-ideal. Indeed, for the well-known
properties of the pullback constructions, every nonzero nonmaximal prime ideal P
of D is such that P = Q ∩ D, where Q is a nonzero nonmaximal prime ideal of T ,
and moreover DP is canonically isomorphic to TQ [15, Theorem 1.4 (part (c) of the
proof)]. Since TQ is a DVR, DP is a DVR too and hence PDP is a t-ideal of DP

and, in particular, P is a t-ideal of D.
Finally, D is not DT -domain or, equivalently for Noetherianity, D is not a divi-

sorial domain, since dim(D) = 2 (Remark 3.3). Explicitly, for instance, M2 is not
a divisorial ideal (or, equivalently, not a t-ideal) of D (and of T ), since (D : M2) =
((D : M) : M) = (T : M) = T and so (D : (D : M2)) = (D : T ) = M .

Recall that an overring T of an integral domain D is called t-linked over D if, for
each nonzero finitely generated ideal J of D such that J t = D, then (JT )t = T . An
integral domain is t-linkative if every overring is t-linked [13].

Proposition 3.6 Let D be an integral domain. Then, D is t-local domain if and only
if D is a local t-linkative domain.

The previous proposition is a straightforward consequence of the following the-
orem.

Theorem 3.7 (Dobbs–Houston–Lucas–Zafrullah, 1989 [13, Theorem 2.6] Let D be
an integral domain. The following are equivalent:

(i) Every overring of D is t-linked over D.
(ii) Every valuation overring of D is t-linked over D.
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(iii) Every maximal ideal of D is a t-ideal.
(iv) For each nonzero proper ideal I of D, I t �= D.
(v) For each nonzero proper finitely generated ideal J of D, J t �= D.
(vi) Each t-invertible ideal of D is invertible.

Finally, we introduce a construction for building new examples of t-local domains.
We recall that, given an integral domain D, theNagata ring of D (see, for instance,

[18, Sect. 33]) is defined as follows:

D(X) := { f/g | f, g ∈ D[X ], g �= 0, with c(g) = D},

(where c(h) is the content of a polynomial h ∈ D[X ]).
First in [32] and then in [16], the construction of the Nagata ring was extended

to the case of an arbitrary chosen star (or, even semistar) operation. Given a star
operation ∗ on D, set

Na(D, ∗) := { f/g | f, g ∈ D[X ], g �= 0, with c(g)∗ = D}.

With this notation Na(D, d) = D(X). Moreover, it is clear that

Na(D, v) = Na(D, t) = Na(D, w)

since, for each nonzero finitely generated ideal F of D, Fv = Ft and, moreover,
Ft = D if and only if Fw = D, because Maxt (D) = Maxw(D).

Proposition 3.8 Let D be an integral domain.

(1) The Nagata ring Na(D, v) is a DW-domain; in particular, if Maxt (D) = {Q} is
a singleton, thenNa(D, v) is a t-local-domainwithmaximal t-ideal QNa(D, v).

(2) The following are equivalent:

(i) D is a t-local domain.
(ii) Na(D, v) = D(X) and D(X) is local.
(iii) D(X) is a t-local domain.

Proof (1) Recall that N := {g ∈ D[X ] | g �= 0 and c(g)∗ = D} is a saturated mul-
tiplicatively closed subset of D[X ], N = D[X ] \ (⋃{QD[X ] | Q ∈ Max�f (D)}),
Na(D, v) = D[X ]N , and Max(Na(D, v)) = {QNa(D, v) | Q ∈ Maxt (D)}
(see [16, Proposition 3.1] or [32, Proposition 2.1]). Then, it is easy to see that
Na(D, v)QNa(D,v) = D[X ]QD[X ] = DQ(X) and QNa(D, v) = QDQ(X) ∩
Na(D, v), for each Q ∈ Maxt (D), and so:

Na(D, v) =
⋂

{DQ(X) | Q ∈ Maxt (D)}.

Moreover, for each ideal I of D, (INa(D, v))t = I tNa(D, v) [32, Corollary 2.3].
Therefore, in particular, QNa(D, v) is a t-ideal of Na(D, v) for each Q ∈ Maxt (D),
i.e., Max(Na(D, v)) = Maxt (Na(D, v)).
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(2) (i)⇒(ii). We already observed that Na(D, v) = Na(D, t) = Na(D, w). In the
present situation d = w and so Na(D, w) = Na(D, d) = D(X).

(ii)⇒(iii). Obviously, sincewe have shown in (1) that, when D is t-local,Na(D, v)

is t-local too.
(iii)⇒(i) Since the maximal ideals of D(X) are exactly the ideals M(X) :=

MD(X), with M ∈ Max(D) [18, Proposition 33.1], and since M(X)t = Mt (X) [32,
Corollary 2.3], the conclusion is straightforward. �

By the previous proposition, the Nagata ring can be used to give new examples
of DW -domains and, in particular, of t-local domains. For instance, it is known
that D(X) is treed (i.e., the prime spectrum is a tree under the set theoretic inclu-
sion ⊆) if and only if D is treed and the integral closure D of D is a Prüfer
domain [4, Theorem 2.10]. Thus, if we take a treed domain D such that D is not
Prüfer, in this case D(X) is a DW -domain, but not treed. For an explicit example,
take D := Q +UQ(V )[[U ]], where U and V are two indeterminates, then D = D
[4, Remark 2.11], D is a t-local (treed) integrally closed domain but not a valuation
domain, and thus D(X) is a t-local non treed integrally closed domain, since the
integral closure D(X) = D(X) = D(X) [4, Proposition 2.6].

4 Comparable Elements and t-Local Domains

A nonzero element c ∈ D is called comparable in D if, for all x ∈ D, we have
cD ⊆ xD or xD ⊆ cD. It is easy to see that c ∈ D is comparable if cD is comparable
(under inclusion) with each ideal I of D. The following result is essentially Lemma
3.2 of [8].

Lemma 4.1 Let α be a nonzero nonunit element of a local domain (D, M). If, for
each x ∈ D, αD + xD = yD ⊆ M, then α is a comparable element.

Proof By the assumption, it follows that (α/y)D + (x/y)D = D and, since D is
local, α/y or x/y is a unit of D. Thus, the element y is an associate of α or of x . In the
first case, y|x (or, equivalently, α|x) and, in the second case, y|α (or, equivalently,
x |α). Therefore, α is a comparable element of D. �
Lemma 4.2 Let c be a comparable element in an integral domain D. If h is a nonunit
factor of c, then h is also a comparable element of D.

Proof Let c = hy and let x ∈ D. Then cD + xyD = hyD + xyD = y(hD + xD)

coincides with cD or xyD, since c is comparable. In the first case, y(hD + xD) =
cD = yhD, thushD + xD = hD, i.e., x |h. In the secondcase, y(hD + xD) = xyD
and thus hD + xD = xD, i.e., h|x . �

The comparable elements were introduced and studied in [5] to prove, in case of
valuation domains, a Kaplansky-type theorem (recall that Kaplansky proved that an
integral domain D is a UFD if and only if every nonzero prime ideal of D contains
a prime element [33, Theorem 5]).
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Lemma 4.3 (Anderson and Zafrullah [5, Theorem 3]) An integral domain D is a
valuation domain if and only if every nonzero prime ideal of D contains a comparable
element.

An important part of the result was the proof of the fact that the set of all compa-
rable elements of D is a saturated multiplicative set.

We recall in the next lemma some of the consequences of the existence of a
nonzero nonunit comparable element in an integral domain.

Lemma 4.4 (Gilmer–Mott–Zafrullah [20, Theorem 2.3]) Suppose the integral
domain D contains a nonzero nonunit comparable element and let C be the
(nonempty) set of nonzero comparable elements of D. Then:

(1) P := ⋂{cD | c ∈ C } is a prime ideal of D and D \ P = C (in particular, C is
a saturated multiplicative set of D).

(2) D/P is a valuation domain.
(3) P = PDP.
(4) D is local, P compares with every other ideal of D under inclusion, and

dim(D) = dim(D/P) + dim(DP).
(5) If T is any integral domain such that there is a nonmaximal prime ideal Q of T

such that (a) T/Q is a valuation domain, and (b) Q = QTQ, then each element
of T \ Q is comparable.

(6) If, in addition, Q is minimal in T with respect to properties (5, a) and (5, b)
above, then T \ Q is precisely the set of nonzero comparable elements of T .

Of course, an integral domain D is a valuation domain if and only if every nonzero
element of D is comparable. As an easy consequence of the previous lemma, we
obtain immediately the following.

Corollary 4.5 Suppose the integral domain D contains a nonzero nonunit compa-
rable element and let C be the (nonempty) set of nonzero comparable elements of
D. Then, D is a valuation domain if and only if ∩{cD | c ∈ C } = (0).

Proof The statement follows from (1) and (2) of Lemma 4.4. �

Recall that E.D. Davis proved that, given a ring S and a subring R of S, if R is
local then (R, S) is a normal pair (i.e., every ring T , R ⊆ T ⊆ S, is integrally closed
in S) if and only if there is a prime ideal Q in R such that S = RQ , Q = QRQ , and
R/Q is a valuation domain [12, Theorem 1]. From the previous remark and Lemma
4.4, we deduce immediately the following.

Corollary 4.6 Suppose the integral domain D contains a nonzero nonunit com-
parable element. Let C be the set of nonzero comparable elements of D and
P := ⋂{cD | c ∈ C }, as in Lemma 4.4(1). In this situation, (D, DP) is a normal
pair.
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In [20], a part of the following result was proved as a consequence of Lemma 4.4.
We next prove, directly, that the existence of a nonzero nonunit comparable element
in an integral domain is a sufficient but not necessary condition for being a t-local
domain.

Proposition 4.7 An integral domain D that contains a nonzero nonunit comparable
element is a t-local domain, while a t-local domain may not contain a nonzero
nonunit comparable element.

Proof Let D be an integral domain and let c be a nonzero nonunit comparable element
in D. We first show that D is local. Suppose, by way of contradiction, that there exist
two co-maximal nonunit elements x, y in D, i.e., r x + sy = 1 for some r, s ∈ D.
Now, as c is comparable, c|r x or r x |c. So r x has a nonzero nonunit comparable
factor c or, being a factor of c, r x is a nonzero nonunit comparable element. Thus,
in both cases, r x has a nonzero nonunit comparable factor h. Similarly sy has a
nonzero nonunit comparable factor k. Since h, k are comparable, h|k or k|h, say h|k.
Thus, assuming that r x + sy = 1, we get the contradictory conclusion that a nonunit
divides a unit. So, D is local. We denote by M its maximal ideal.

Next, let x1, x2, . . . , xn ∈ M and note that, as above, each of the xi has a nonzero
nonunit comparable factor hi . Thus, (x1, x2, . . . , xn) ⊆ (h1, h2, . . . , hn).

Now, consider h1, h2. Theymust have a nonzero nonunit common factor k1 (which
is equal to h1 or h2). So, (x1, x2, . . . , xn) ⊆ (h1, h2, . . . , hn) ⊆ (k1, h3, . . . , hn).
Continuing this process, we eventually get a nonzero nonunit comparable element k
such that (x1, x2, . . . , xn) ⊆ (h1, h2, . . . , hn) ⊆ (k) ⊆ M . But, as (x1, x2, . . . , xn) ⊆
(k) implies (x1, x2, . . . , xn)v ⊆ (k), we conclude that, for each finitely generated
ideal (x1, x2, . . . , xn) ⊆ M, (x1, x2, . . . , xn)v ⊆ M . Thus, D is a t-local domain.

For the converse, note that a 1-dimensional local domain has only one nonzero
prime (=maximal) ideal and so it is a valuation ring if and only if it contains a nonunit
comparable element, by the Kaplansky-type theoremmentioned above (Lemma 4.3).
The proof is complete once we note that there do exist 1-dimensional (Noetherian t-
)local domains that are not valuation domains (in fact, non-integrally closed domains)
(e.g., R + XC[[X ]]).

Note also that there even exist 1-dimensional t-local integrally closed domains
that are not valuation domains (e.g., Q + XC[[X ]], where Q is the algebraic closure
of Q in C). �
Remark 4.8 Note that the previous example shows that a local domainwith divisorial
maximal ideal may not contain a nonzero nonunit comparable element. On the other
hand, a valuation domainV with nonprincipalmaximal ideal (in particular, dim(V ) ≥
2) is a domain containing a nonzero nonunit comparable element and so it is a t-local
domain with nondivisorial maximal ideal.

Recall that an integral domain Dwith quotient field K is called a pseudo-valuation
domain (for short, PVD) if D is local and the maximal ideal M of D is strongly prime
(i.e., whenever elements x and y of K satisfy xy ∈ M , then either x ∈ M or y ∈ M).
From the proof of the previous Proposition 4.7, we give now a general class of t-local
domains that do not contain nonzero nonunit comparable elements.
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Example 4.9 Let (T, M) be any local domain, let k(T ) := T/M , let ϕ : T → k(T )

be the canonical projection, and let F be a proper subfield of k(T ). Set D := ϕ−1(F).
It is known that D is a local domain with maximal ideal M and (M : M) = (D :
M) = T . Since M = (D : T ), it is easy to see that M is a divisorial ideal in D and,
in particular, a t-ideal. Thus, (D, M) is a t-local domain. In particular, any PVD is
a t-local domain [24, Theorem 2.10].

Remark 4.10 Note that the argument used in the previous example can be used to
construct a more general class of t-local domains. Start from a (not necessarily local)
integral domain T such that its Jacobson ideal J (T ) is nonzero and suppose that the
ring T/J (T ) contains properly a field F . Let ϕ : T → T/J (T ) be the canonical
projection and let D := ϕ−1(F), then D is a t-local domain.

A fractional ideal E ∈ F(D) is said to be v-invertible (respectively, t-invertible)
if there is G ∈ F(D) such that ((EG)v = D (respectively, (EG)t = D). Obviously,
every invertible ideal is t-invertible.

Recall that a GCD domain is an integral domain D such that, for each a, b ∈ D,
aD ∩ bD is principal or, equivalently, (a, b)v is principal. Therefore, a GCD domain
(e.g., a Bézout domain) is a PvMD.

Corollary 4.11 Let D be a PvMD, not a field. Then, D is a valuation domain if and
only if D contains a nonzero nonunit comparable element.

Proof The statement follows from Proposition 4.7, from the fact that a t-local PvMD
is a valuation domain anyway and from the fact that a valuation domain that is not a
field must contain many nonunit comparable elements (in fact, all nonunit elements
are comparable). �

From the previous corollary it follows that every Krull domain (e.g., UFD) con-
taining a nonzero nonunit comparable element is a DVR and that every GCD domain
containing a nonzero nonunit comparable element is a valuation domain.

Now, here comes something more general and a tad surprising. Call an integral
domain D atomic if every nonzero nonunit of D is expressible as a finite product
irreducible elements. An irreducible element is called also atom. For instance, every
Noetherian domain and every UFD is atomic.

Corollary 4.12 An atomic domain that contains a nonzero nonunit comparable
element is a DVR.

Proof Let D be an atomic domain and let c be a nonzero nonunit comparable element
in D. Then, by Proposition 4.7, D is t-local domain; denote by M its maximal ideal.
Let h be an irreducible factor of c. Then h is a comparable element, being a factor
of a comparable element (Lemma 4.2). So, for every x in D, either h|x or x |h. Now,
as h is irreducible, x |h means that x is a unit or x = h. Thus, for all nonunits x ∈ D,
necessarily h|x . That is M = hD and so h is a prime element in D. Next, as h|x for
each nonzero nonunit x ∈ D, we have x = x1h and if x1 is a nonunit then x1 = x2h
and so x = h2x2. Continuing this way, since D is atomic, for each nonzero nonunit
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x ∈ D there is an integer n = n(x) (depending on x) such that x = hnxn where xn is
a unit. But then we can conclude that D is a DVR and h is a uniformizing parameter
of D. �

Corollary 4.12 was first proved for Noetherian domains; we thank Tiberiu
Dumitrescu for suggesting the atomic domain assumption. With hindsight we can
prove a more precise result.

Corollary 4.13 Let D be a domain that contains a nonzero nonunit comparable
element.

(1) In this situation, D is local (Proposition 4.7) and the maximal ideal of D is
generated by the nonunit comparable elements of D.

(2) The integral domain D contains an atom α if and only if α is the generator of the
(unique) maximal ideal of D and, hence, α is a prime and comparable element.

Proof (1) By Proposition 4.7, D is t-local; let M denote the maximal ideal of D.
With the notation of Lemma 4.4, M properly contains the comparable prime ideal
P of D. If (x1, x2, . . . , xn) is a finitely generated ideal and P ⊆ (x1, x2, . . . , xn) ⊆
M , since D/P is a valuation domain, then (x1, x2, . . . , xn) = (x) for some x ∈
{x1, x2, . . . , xn}. Therefore, since M = Mt , M is generated by the nonunit compa-
rable elements of D.

(2) Let α be an atom of D and let c be a nonzero nonunit comparable element
of D. Then, either c|α or α|c. If c|α then, as α is an atom and c a nonunit, c and α

must be associate, so α is a comparable element. If, on the other hand, α|c then α is
a comparable element, being a factor of a comparable element (Lemma 4.2). Thus,
as above, αD = M .

The converse is obvious, indeed if the maximal ideal M of a local domain D is
principal and M = αD then, up to associates, α is the only atom in D. �

Note that if, instead of considering atoms (=irreducible elements), we consider
prime elements, we can state a result analogous to the previous corollary in a more
general setting, with a different proof.

Proposition 4.14 Let D be a domain.

(1) If a maximal t-ideal M of D contains a prime element p, then M = pD.
(2) If (D, M) is a t-local domain (e.g., if D contains a nonzero nonunit comparable

element), then D contains a prime element p if and only if p is the generator of
the maximal ideal of D and, hence, p is a comparable element.

Proof (1) Let p be a prime element of a domain D then, for each x in D, pD ∩ xD =
xD or pD ∩ xD = pxD.

So,

((p, x)D)−1 = pD ∩ xD

px
=

(
1

p

)

D or ((p, x)D)−1 = D.
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But then ((p, x)D)v = pD or ((p, x)D)v = D. So, if a prime element p belongs to
a maximal t-ideal M then M = pD.

(2) If a prime element p belongs to a t-local ring (D, M) then M = pD, by (1)
and consequently p is a comparable element of D. �

It is well known that, if p is a prime element in an integral domain D, then⋂
n≥0 p

nD is a prime ideal too (see, for instance, Kaplansky [33, Exercise 5, pages
7-8]).

Theorem 4.15 If a domain D contains a nonzero nonunit comparable element then,
for every nonzero nonunit comparable element x of D, we have that Q := ⋂

n≥0 x
nD

is a prime ideal such that D/Q is a valuation domain and Q = QDQ.
Conversely, if there is a nonzero element x in a domain D such that

Q := ⋂
n≥0 x

nD is a prime ideal, D/Q is a valuation domain, and Q = QDQ,
then D is t-local and x is a comparable element of D.

Proof Indeed Q is an ideal, being an intersection of ideals. Now, consider S := D\Q
and let a, b ∈ S. Then a /∈ xmD for some positive integer m and b /∈ xnD for some
positive integer n. Since x and hence xm, xn are comparable, we conclude that
aD � xmD and bD � xnD. Therefore, abD � axnD � xn+mD and so ab ∈ S and
Q is a prime ideal.

From the above proof, it follows that S consists of factors of powers of the compa-
rable element x and so every element of S is comparable; this implies that D/Q is a
valuation domain. Next, let α/τ ∈ QDQ where α ∈ Q and τ ∈ D\Q. In particular,
τ divides some power of x and so τ is comparable. Hence, αD ⊆ Q � τD which
means that for some nonunit y we have α = τ y. As τ /∈ Q, then necessarily y ∈ Q.
So α/τ = y ∈ Q. Thus QDQ ⊆ Q, i.e., Q = QDQ .

The converse follows fromLemma 4.4(5) and Proposition 4.7 (see also [20, Theo-
rem 2.3]). �

Note that there are integral domains that may or may not be local, but have
elements x such that ∩xnD =: Q is a prime ideal such that Q = QDQ, but D/Q
is not a valuation domain. Here are some examples using the D + M construction
studied by Gilmer [18, page 202].

We start from a valuation domain V , with quotient field K , expressible as V =
k + M , where k is a subfield of V (and K ) and M is the maximal ideal of V ; thus,
in the present situation, the residue field V/M is canonically isomorphic to k. Let D
be a subring of k. The ring R := D + M (subring of V ) with quotient field K (the
same as V ) has some interesting properties due to the mode of this construction, as
indicated for instance in [7] (see also [15, Theorem 1.4]). Our concrete model for
these examples would be V := k[[X ]] = k + Xk[[X ]].
Example 4.16 Given a field k, let D be a 1-dimensional local domain contained in k,
with quotient field F (⊆ k) and suppose that D is not a valuation domain. Then R :=
D + Xk[[X ]] is a (local) 2-dimensional domain such that, for each nonzero nonunit x
in D, we have

⋂
n≥0 x

n R = Xk[[X ]]. Indeed, for a nonunit x in a 1-dimensional local
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domain D, we have
⋂

n≥0 x
nD = (0) and so

⋂
n≥0 x

n R = Xk[[X ]]. Moreover, since
RXk[[X ]] = F + Xk[X ]], then Xk[[X ]]RXk[[X ]] = Xk[[X ]](F + Xk[X ]]) = Xk[[X ]].
In this situation, R/Xk[[X ]] = D.

What makes the above example work is the fact that, for a nonunit x in a 1-
dimensional local domain D, we have

⋂
n≥0 x

nD = (0). Call an integral domain D
an Archimedean domain if, for all nonunit elements x in D, we have

⋂
n≥0 x

nD =
(0) [43, Definition 3.6] (this class of domains was previously considered in [41]
without naming them).By theKrull intersection theorem, everyNoetherian domain is
Archimedean. SinceMori domains satisfy the ascending chain condition on principal
ideals, they are Archimedean; in particular, Krull domains are Archimedean. The
class of Archimedean domains includes also completely integrally closed domains
[19, Corollary 5] and 1-dimensional integral domains [41, Corollary 1.4].

An Archimedean (possibly nonlocal or any dimensional) version of the previous
Example 4.16 is given next.

Example 4.17 Given a field k, let D be an Archimedean domain contained in
k, with quotient field F (⊆ k) and suppose that D is not a valuation domain.
Then, as above, R := D + Xk[[X ]] is such that, for each nonzero nonunit x in D,
we have

⋂
n≥0 x

n R = Xk[[X ]], Xk[[X ]] = Xk[[X ]]RXk[[X ]] and R/Xk[[X ]] = D. In
the present situation, Max(R) has the same cardinality of Max(D) and dim(R) =
dim(D) + 1.

Example 4.18 Let D be an integral domain and S a multiplicative subset of D.
Following the construction R := D + XDS[X ] of [11], if s is a nonunit element in
S such that

⋂
n≥0 s

nD = (0) then
⋂

n≥0 s
n R = XDS[X ] a prime ideal of R. Also in

this case R/XDS[X ] = D, which might not be a valuation domain. However, in the
present situation, XDS[X ] � XDS[X ](RXDS [X ]) = XDS[X ](X).

5 From t-Local Domains to Valuation Domains

Because in a valuation domain (V, M) every finitely generated ideal is principal, the
maximal ideal M is obviously a t-ideal. So t-local domains are “cousins” of valua-
tion domains, but sort of far removed. For instance, a localization of a t-local domain
is not necessarily t-local (see, for instance, Example 2.9 or [51]), but of course a
localization of a valuation domain is a valuation domain.

Explicitly, a more simple example is given by R := Z(p) + (X,Y )Q[[X,Y ]]. The
integral domain R is localwithmaximal idealM := pZ(p) + (X,Y )Q[[X,Y ]] = pR,
and so it is obviously a t-local domain. However, R[1/p] = RQ = Q[[X,Y ]], where
Q := (X,Y )Q[[X,Y ]], is a 2-dimensional local Noetherian Krull domain, and so it
is far away from being t-local.

So it is legitimate to ask: Under what conditions is a t-local domain a valuation
domain? Here we address this question.
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The following is a simple result that hinges on the fact that if F is a nonzero
finitely generated ideal in a t-ideal I then Fv ⊆ I .

Proposition 5.1 For a finite set of elements x1, x2, . . . , xn, in a t-local domain
(D, M), the following are equivalent:

(i) (x1, x2, . . . , xn)v = D.
(ii) At least one xi is a unit.
(iii) (x1, x2, . . . , xn) = D.

Proof Clearly, (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii) By the previous observation (x1, x2, . . . , xn) � M , and so at least one

xi /∈ M . �

Proposition 5.2 For an integral domain D the following are equivalent:

(i) D is a valuation domain
(ii) D is a t-local GCD domain (or, equivalently, a t-local Bézout domain).
(iii) D is a t-local PvMD (or, equivalently, a t-local Prüfer domain).

Proof (i) ⇒ (ii) ⇒ (iii) are straightforward.
For (iii) ⇒ (i) note for instance that, in a PvMD, every nonzero finitely generated

ideal (x1, x2, ..., xn) is t-invertible. But, by [3, Proposition 1.12(1)], (x1, x2, ..., xn)
is a principal ideal. �

Recall that a ring is coherent if every finitely generated ideal is finitely presented.
It is well known that a commutative integral domain D is coherent if and only if the
intersection of every pair of finitely generated ideals is finitely generated [9, Theorem
2.2].

Call a domain D a finite conductor domain (for short, FC domain; this name was
used for the first time in [47]) if the intersection of every pair of principal ideals
of D is finitely generated. Indeed, “finite conductor domain” is a generalization of
“coherent domain.”

Proposition 5.3 For an integral domain D, the following are equivalent:

(i) D is a valuation domain.
(ii) D is an integrally closed coherent t-local domain.
(iii) D is an integrally closed finite conductor t-local domain.

Proof (i) ⇒ (ii) ⇒ (iii) are all straightforward.
For (iii) ⇒ (i) note that an integrally closed FC domain is a PvMD [47, Theorem

2] (or, [18, Exercise 21, page 432]) and we already observed that a t-local PvMD is
a valuation domain (Proposition 5.2((iii)⇒(i))). �

As an application of the previous proposition, we easily obtain the following result
due to S. McAdam.
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Corollary 5.4 (S. McAdam [35, Theorem 1]) Let D be an integrally closed local
domain whose primes are linearly ordered by inclusion. Assume that D is an FC
domain, then D is a valuation domain.

Proof By Proposition 2.4, D is t-local. The conclusion follows from Proposition
2.4((iii)⇒(i)). �

A nonzero element r of a domain D is called a primal element if for all x, y ∈
D\{0} r |xy implies that r = st where s|x and t |y. A domainwhose nonzero elements
are all primal is called a pre-Schreier domain. An integrally closed pre-Schreier
domain was called a Schreier domain by P.M. Cohn in his paper [10, page 254].
There, he showed that a GCD domain is a Schreier domain [10, Theorem 2.4].

Based on considerations initiated by McAdam and Rush [36], a module M is
said to be locally cyclic if every finitely generated submodule of M is contained in
a cyclic submodule of M . Thus, in particular, an ideal I of D is locally cyclic if, for
any finite set of elements x1, x2, . . . , xn ∈ I , there is an element d ∈ I such that d|xk
for each k, 1 ≤ k ≤ n.

In [50, Theorem 1.1], M. Zafrullah has shown that an integral domain D is pre-
Schreier if and only if for all a, b ∈ D\(0) and x1, x2, . . . , xn ∈ (a) ∩ (b) there is
d ∈ (a) ∩ (b) such that d|xk , for each k, 1 ≤ k ≤ n.

Based on this, we easily obtain the following.

Lemma 5.5 If D is a pre-Schreier domain and a, b ∈ D\{0}, then the following are
equivalent:

(i) (a) ∩ (b) is principal.
(ii) (a) ∩ (b) is finitely generated.
(iii) (a) ∩ (b) is a v-ideal of finite type.

Proof Indeed (i) ⇒ (ii) ⇒ (iii) are all straightforward. All we need is to show
(iii) ⇒ (i). For this note that if (a) ∩ (b) = (x1, x2, . . . , xn)

v , then, x1, x2, . . . , xn ∈
(a) ∩ (b). Since D is pre-Schreier, there is an element d ∈ (a) ∩ (b) such that d|xk ,
for each k, 1 ≤ k ≤ n, i.e., (x1, x2, . . . , xn) ⊆ (d). But then (x1, x2, ...xn)

v ⊆ (d),
and so (d) ⊆ (a) ∩ (b) = (x1, x2, ...xn)

v ⊆ (d). �

Call a domain D a v-finite conductor (for short, v-FC) domain if, for each pair
0 �= a, b ∈ D, the ideal (a) ∩ (b) is a v-ideal of finite type. Then, recalling that a
GCD domain is integrally closed, from Lemma 5.5, we easily deduce the following.

Corollary 5.6 Let D be an integral domain. The following are equivalent:

(i) D is a GCD domain.
(ii) D is a Schreier and a v-FC domain.
(iii) D is a pre-Schreier and a v-FC domain.

With this preparation, we have the following result.
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Corollary 5.7 For an integral domain D, the following are equivalent:

(i) D is a valuation domain.
(ii) D is a pre-Schreier t-local coherent domain.
(iii) D is a pre-Schreier t-local FC domain.
(iv) D is a pre-Schreier t-local v-FC domain.
(v) D is a GCD t-local domain.

Proof It is obvious that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv); (iv) ⇔ (v) by Corollary 5.6 and
(v) ⇔ (i) by Proposition 5.2. �

Obviously, the above are not the only situations in which a t-local integral domain
becomes a valuation domain. We describe next another interesting situation of this
phenomenon, in case of existence of a comparable element.

Proposition 5.8 Suppose that an integral domain D contains a nonzero nonunit
comparable element x and let Q := ⋂

n≥0 x
nD. Then, D is a valuation domain if

and only if DQ is a valuation domain.

Proof Indeed, if D is a valuation domain, since Q is a prime ideal (Theorem 4.15),
DQ is also a valuation domain and so we have only to take care of its converse.

The presence of a nonzero nonunit comparable element makes D a t-local domain
(Proposition 4.7). In order to prove that D is valuation domains, we consider the
finitely generated ideals of D. We split the proper finitely generated ideals into two
types: (a) ones that contain a nonunit factor of a power of x and (b) ones that do not
contain a nonunit factor of a power of x .

Ones in part (a) are principal by [20, Theorem 2.4] and ones in part (b) are
contained in Q and are principal proper ideals of the valuation domain DQ and
hence are in QDQ . By Theorem 4.15 above, QDQ = Q, so, for each y in Q, yDQ is
(also) an ideal of D, i.e., yDQ = yD. Now, let x1, x2, . . . , xn ∈ Q and consider the
ideal (x1, x2, . . . , xn). Since DQ is a valuation domain, (x1, x2, . . . , xn)DQ = dDQ

and we can assume that d is in D. So, for some ri ∈ D and si ∈ D\Q we have
xi = ri

si
d, for each i .

So (x1, x2, . . . , xn) = ( r1s1
d, r2

s2
d, . . . , rn

sn
d). Removing the denominators, we get

s(x1, x2, . . . , xn) = (t1d, t2d, . . . , tnd) = (t1, t2, . . . , tn)d, for some s ∈ D \ Q ,
where si |s and ti := s

si
ri , for each i . As dDQ = (x1, x2, . . . , xn)DQ = s(x1, x2, . . . ,

xn)DQ = (t1, t2, . . . , tn)dDQ , we conclude that (t1, t2, . . . , tn)DQ = DQ . But that
means that at least one of the ti is in D\Q and hence is a comparable element (Lemma
4.4(5)). But then, by [20, Theorem 2.4], (t1, t2, . . . , tn) is principal generated by a
comparable element t . Thus, s(x1, x2, . . . , xn) = (t1, t2, . . . , tn)d = tdD. Since s
and t are comparable, we have two possibilities: (α) u(x1, x2, . . . , xn) = dD or (β)
(x1, x2, . . . , xn) = vdD, for some u, v ∈ D. In both cases (x1, x2, ...xn) turns out
to be a principal ideal of D (in case (α) because d ∈ u(x1, x2, . . . , xn) and so u|d
in D). �
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6 Applications: Shannon’s Quadratic Extension

A domain D is a treed domain if it has a treed spectrum, i.e., Spec(D) is a tree
as a poset with respect to the set inclusion. Note that D is a treed domain if and
only if any two incomparable primes of D are co-maximal. Indeed, if D is a treed
then DP is also a treed (more precisely, Spec(DP) is linearly ordered) for every
nonzero prime ideal P of D. So, by Proposition 2.4, DP is a t-local domain and
thus P = PDP ∩ D is a t-ideal of D. Indeed, if F is a finitely generated ideal of
D contained in P , then Ft DP = FvDP ⊆ (FDP)v = (FDP)t ⊆ (PDP)t = PDP

and so Ft ⊆ (FDP)t ∩ D ⊆ PDP ∩ D = P (see also [52, page 436]). Therefore, in
a treed domain, every nonzero prime ideal is a t-ideal (Proposition 2.4), in particular
every maximal ideal is a t-ideal, and moreover it is well behaved. However, a general
t-local domain Dmay not have Spec(D) a tree as, for instance, Examples 2.9 and 4.17
indicate. So the class of treed domains is strictly contained in the class of domains
whose maximal ideals are t-ideals. But, in the presence of some extra conditions,
this distinction may disappear.

Proposition 6.1 For a Prüfer v-multiplication domain D, the following conditions
are equivalent:

(i) Every maximal ideal of D is a t-ideal.
(ii) Every prime ideal of D is a t-ideal.
(iii) Spec(D) is a tree.
(iv) D is a Prüfer domain.

Proof (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) hold in general (without the PvMD assumption).
More precisely, (iv) ⇒ (iii) is clear because in a Prüfer domain D, DP is a valuation
domain for every nonzero prime ideal P and so Spec(D) is a tree. (iii) ⇒ (ii) has
been explained above.

(i)⇒ (iv) For every prime t-ideal P of a PvMD D, we have DP a valuation domain
(see, for instance, [39,Corollary 4.3]) and ifwe assume that DM is a valuationdomain,
for every maximal ideal M of D, then D is well known to be a Prüfer domain. �

The previous proposition leads to the following result for FC domains.

Corollary 6.2 Let D be an integral domain. The following are equivalent:

(i) D is an integrally closed finite conductor treed domain.
(ii) D is a treed PvMD.
(iii) D is Prüfer.

Proof (i) ⇒ (ii), since an integrally closed finite conductor domain is a PvMD by
Proposition 5.3 and [39, Corollary 4.3]. (ii) ⇔ (iii) by Proposition 6.1 and (iii) ⇒
(i) because a Prüfer domain is an FC domain [47, Corollary 10]. �

Indeed, it is worth noting that a nonzero proper ideal I in an integral domain D is
said to be an ideal of grade 1 if I does not contain a set of elements forming a regular
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sequence of length ≥ 2. Recall that, if an ideal I of an integral domain D contains
a regular sequence of length 2, then I−1 = D [33, Exercise 1, page 102]. So, every
t-ideal of an integral domain is a grade 1 ideal and every nonzero prime ideal in a
treed domain is a grade 1 ideal. With this background, for the next application we
need a little bit of preparation.

Let (R,m) be a regular local integral domain with quotient field F and p a
prime ideal of R so that R/p is a regular local domain. A monoidal transform of
R with nonsingular center p is a local domain of the type T := R[px−1]Q , where
0 �= x ∈ p and Q is a prime ideal in R[px−1] such that m ⊆ Q. In particular,
assume that dim(R) = n, and p = m = (x1, x2, . . . , xn)R, where {x1, x2, . . . , xn}
form a regular sequence in R. Choose i ∈ {1, 2, . . . , n}, and consider the overring
R[x1/xi , x2/xi , . . . , xn/xi ] of R. Take any prime ideal Q of R[x1/xi , x2/xi , . . . ,
xn/xi ] such that Q ⊇ m. The ring R1 := R[x1/xi , x2/xi , . . . , xn/xi ]Q is called a
local quadratic transform (for short, LQT) of R, and, again, R1 is a regular local inte-
gral domain with maximal ideal m1 := QR[x1/xi , x2/xi , . . . , xn/xi ]Q [40, Corol-
lary 38.2]. Assume that dim(R) ≥ 2 in order to have that R �= R1. By Cohen’s
dimension inequality formula dim(R1) ≤ n [34, Theorem 15.5] (and,more precisely,
dim(R1) = n if and only if R1/m1 is an algebraic extension of R/m) [2, (1.4)].

If we iterate the process, we obtain a sequence R =: R0 ⊆ R1 ⊆ R2 ⊆ ... of reg-
ular local overrings of R such that for each j ≥ 0, R j+1 is a LQT of R j . After a
finite number of iterations, the sequence of nonincreasing integers dim(R j ) is nec-
essarily bound to stabilize, and this process of iterating LQTs of the same Krull
dimension (definitively, after a certain point) and ascending unions of the resulting
regular sequences are of interest in algebraic geometry. For a description the reader
may consult a couple of recent papers [23, 27]. So, let R =: R0 ⊆ R1 ⊆ R2 ⊆ . . .

be a sequence of LQTs from a regular local integral domain R with dim(R) ≥ 2 and
dim(R j ) ≥ 2, for each j ≥ 1, as described above. The ring S := ⋃

j≥0 R j , dubbed
in recent work as Shannon’s Quadratic Extension of R, to honor David Shannon [43]
for his interesting contribution, has drawn particular attention.

Briefly, before Shannon, Abhyankar [1, Lemma 12] had shown that, if the regular
local ring R has dimension 2, then S is a valuation overring of R such that the
maximal ideal mS of S contains the maximal ideal m of R. David Shannon, one of
Abhyankar’s students, showed that if dim(R) > 2, S need not to be a valuation ring
[43, Examples 4.7 and 4.17].

Our purpose here is to look at S from a simple star-operation theoretic perspective,
to provide some direct straightforward and brief proofs of some known results and
point to known results that could simplify some of the considerations in recent work.

We start by gathering some information about the Shannon’s Quadratic Extension
S. Next two properties can be easily proved.

(1) S(:= ⋃
j≥0 R j ), as described above, is a local ring and, if mS denotes the max-

imal ideal of S, mS = ⋃
j≥0 m j where m j is the maximal ideal of the LQT R j .

(2) S is integrally closed, as being integrally closed a first-order property which is
preserved by directed unions and hence, in particular, by ascending unions.
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Since S is directed union of regular local integral domains and, by the Auslander–
Buchsbaum theorem [34, Theorem 20.3], each regular local integral domain is a
UFD and hence, in particular, a GCD domain and so, a fortiori, a Schreier domain.
This observation gives us the next property of S.

(3) S is (at least) a Schreier domain.

This follows fromadirect verification that a direct union of (pre-)Schreier domains
is a (pre-)Schreier domain.

Remark 6.3 Note that it is not true that a direct union of GCD domains is a GCD
domain. An example can be given by an integral domain of the type D(�) := D +
XD�[X ] = ⋃{D[X/s] | s ∈ �}, where D is a GCD domain and � is a saturated
multiplicative subset D, since it is known that D(�) is not a GCD if� is not a splitting
set, i.e., if� does not verify the condition that, for each 0 �= d ∈ D, d = sa for some
s ∈ � and a ∈ D with aD ∩ s ′D = as ′D for all s ′ ∈ � [49, Corollary 1.5].

We give now an explicit example. Let E be the ring of entire functions. It is well
known that E is a Bézout domain [18, Exercise 18, page 147] and that every nonzero
nonunit x of E can be written uniquely as a countable product of finite powers of
nonassociated primes, i.e., x = u

∏
α∈A pnα

α where A is a countable set, nα are natural
numbers and pα are mutually nonassociated primes elements of E and u is a unit in
E . The last property follows from the fact that the set of zeros of a nontrivial entire
function is discrete, including multiplicities, the multiplicity of a zero of an entire
function is a positive integer and a zero of an entire function determines a principal
prime in E [30, Theorem 6]. Clearly, each of these primes generates a height one
maximal ideal of E [18, Exercise 19, page 147].

Let � be the multiplicative set generated by all of these principal, height one
primes and let X be an indeterminate. Then, the ring E (�) := E + XE�[X ] =⋃{E[X/s] | s ∈ �} is not a GCD domain, even though E[X/s] is a GCD domain
for each s ∈ �.

Indeed, if x ∈ E is an infinite product of primes then it is not possible to write
x = sx1 where s ∈ � and x1 is not divisible by any of the nonunits in �, since each
s is a finite product of primes and x is a product of infinitely many primes from �.
Thus, � is not a splitting set and so E (�) cannot be a GCD domain.

However, we claim that E (�) is a locally GCD domain. For proving the claim, we
need some preliminaries. A prime ideal P of an integral domain D is said to intersect
in detail a multiplicative set � of D if every nonzero prime ideal Q contained in P
intersects �. It was shown [49, Proposition 4.1] that if D is a locally GCD domain
and � is a multiplicative set of D such that every maximal ideal of D that intersects
�, intersects � in detail, then D(�) is a locally GCD domain.

Indeed, clearly the Bézout domainE is a locally GCD domain.Moreover, as every
maximal ideal of E that intersects � contains a finite product of principal primes
and so must be a principal ideal. Thus, every maximal ideal of E that intersects �,
intersects it in detail. Consequently E (�) is a locally GCD domain; however, E (�) is
not a PvMD, since E (�) is a Schreier domain and a PvMD which also is a Schreier
domain is a GCD domain [6, Proposition 2.3].
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As a final remark, we recall from [49, Proposition 4.3] that in a locally GCD
non-PvMD D there always exists a maximal t-ideal Q of D such that QDQ is not a
t-deal of DQ . More precisely, it can be shown that an integral domain D is a PvMD
if and only if D is locally PvMD and, for every t-prime ideal P of D, PDP is a
(maximal) t-ideal of DP [49, Corollary 4.4].

We now resume our study of Shannon’s Quadratic Extension S.

(4) There exists an element x ∈ mS such that mS = √
xS [27, Proposition 3.8].

The last property gives us, in light of Corollary 2.3(1), the following property that
is of interest to us:

(5) S is a t-local integral domain.

This is enough information to provide very naturally the statements and easy new
proof(s) of [23, Theorem 6.2].

Theorem 6.4 (Guerrieri et al. [23, Theorem 6.2]) Let S be a quadratic Shannon
extension of a regular local integral domain R. Then, the following are equivalent:

(i) S is a valuation domain
(ii) S is coherent.
(iii) S is a finite conductor domain.
(iv) S is a GCD domain.
(v) S is a PvMD.
(vi) S is a v-finite conductor domain.

Proof The equivalence of (i) ⇔ (ii) ⇔ (iii) comes from Proposition 5.3. Now (i) ⇔
(iv) ⇔ (v) follow from Proposition 5.2 and, as S is Schreier (by (3)), (i) ⇔ (vi) by
Corollary 5.7. �

FromLemma5.5,Corollary 5.7, andTheorem6.4,we easily deduce the following.

Corollary 6.5 Let S be a quadratic Shannon extension of a regular local integral
domain R. If S is not a valuation domain, then S contains a pair of elements a, b
such that aS ∩ bS is not a v-ideal of finite type.

Proof If, for each pair of elements a, b ∈ S, we had that aS ∩ bS is a v-ideal of finite
type, then S would be a GCD domain by Corollary 5.6, since S is a Schreier domain
(by point (3) above). Therefore, S would be a valuation domain by Theorem 6.4,
which is not the case. �

This corollary is significant with reference to the proof of the previous theorem
(Theorem 6.4) in that there are PvMDs D, such as Krull domains, that contain
elements a, b such that aS ∩ bS a v-ideal of finite type, which may not be finitely
generated.

From [27, Proposition 4.1], we conclude that S has another property of interest.
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(5) For each element x ∈ mS such thatmS = √
xS, the integral domain T := S[1/x]

is a regular local ring with dim(T ) = dim(S) − 1.

So, if dim(S) = 2 and mS contains a nonzero comparable element then we know
that S is a valuation domain (Theorem 4.15 and (5)).

If dim(S) > 2 then S cannot be a valuation domain, whether S contains a com-
parable element or not, because a regular local ring T , constructed from S as in (5),
has dim(T ) > 1, and thus T may not be a valuation domain. However, if mS = pS
is principal then, S is a non-valuation t-local domain that contains a comparable
element, by Proposition 4.14(2). This fact, together with Proposition 5.8, provides
a definitive criterion that can be used to construct examples of non-valuation t-local
domains containing a comparable element, even in dimension two.

Example 6.6 Let Z be the ring of integers, Q (resp., R) the field of rational numbers
(resp. real numbers) and p a prime element in Z. Let P be the maximal ideal of
the DVR R[[X ]] and set D := Z(p) + XR[[X ]] = Z(p) + P . The integral domain
D is local with principal maximal ideal M := pD and

⋂
n≥0 p

nD = XR[[X ]] =
P . Clearly, p is a proper comparable element in D. Since DP = Q + XR[[X ]] is
not a valuation domain, D is a 2-dimensional non-Noetherian non-valuation t-local
integral domain with prime spectrum linearly ordered given by {M ⊃ P ⊃ (0)}.

In the same vein, and this is suggested by Tiberiu Dumitrescu, we have another
example.

Example 6.7 Let Z be the ring of integers, Q the field of rational numbers and p
a nonzero prime element in Z. Let D := Z(p) + P where P is the maximal ideal
(X2, X3) of Q[[X2, X3]]. As above, D is a local domain with maximal ideal M =
pZ(p) + P = pD and

⋂
n≥0 p

nD = P . In this case, DP = Q[[X2, X3]] which is a
well-known 2-dimensional Noetherian domain that is not a valuation domain (in fact,
it is non-integrally closed). Thus, D is a 2-dimensional non-Noetherian non-valuation
t-local integral domain, having a proper comparable element and prime spectrum
linearly ordered given by {M := pZ(p) + (X2, X3)Q[[X2, X3]] ⊃ P ⊃ (0)}.

We can provide examples in any dimension. Let P be the maximal ideal of the
n-dimensional regular local ring Q[[X1, X2, . . . , Xn]]. Then D := Z(p) + P is local
withmaximal idealM := pD. In particular, D contains a proper comparable element,
e.g., p, and, of course, DP is far from being a valuation domain. Thus, D is an
(n + 1)-dimensional non-valuation t-local integral domain.

Note that a 1-dimensional domain that contains a nonzero nonunit comparable
element is a valuation domain. This follows from the following two facts: (1) the
presence of a comparable element forces the domain to be (1-dimensional) t-local
and (2) a domain is a valuation domain if and only if every nonzero prime ideal
contains a nonzero comparable element (Lemma 4.3).

From (5), we deduce another interesting property of S.

(6) Let S be as above (i.e., a quadratic Shannon extension of a regular local integral
domain), for each element x ∈ mS such that mS = √

xS, call the saturation of
the multiplicative set {xn | n ∈ N}, span of x and denote it by span(x). Then,
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(6a) for every nonunit h in span(x) we have mS = √
hS and

(6b) mS is generated by nonunits in span(x).

The saturated multiplicative set span(x) has been used before, by Dumitrescu
et al. in [14], to determine the number of distinct maximal t-ideals that the element
x belongs to. Here, the statement that the idealmS is generated by nonunit members
of span(x) is caused by the fact that there is only one maximal t-ideal (i.e., mS)
involved.

Note that, before introducing quadratic Shannon extensions of local regular rings,
all examples of t-local domains that we have considered in the present paper were
valuation domains or rings obtained by some pullback construction. At this point,
it is natural to ask if the quadratic Shannon extensions, which are not valuation
domains, could as well be obtained by some appropriate pullback construction. For
this purpose, we start by recalling some other properties of the quadratic Shannon
extensions.

(7) Let S be as above (i.e., a quadratic Shannon extension of a regular local integral
domain of dimension> 2). If S is Archimedean, then its complete integral closure
S∗ coincides with (mS : mS) = T ∩ W , where mS is the maximal ideal of S,
T = S[1/x] is the local regular overring of S introduced in (5), and W is a
uniquely determined valuation overring of S and if S �= S∗, S∗ is a generalized
Krull domain [27, Theorem 6.2].

In the previous situation, if S �= S∗, mS is a height 1 prime ideal of S∗, since it is
the center of the maximal ideal of the valuation overringW of S∗ (see [27, Corollary
6.3] and [28, Theorem 7.4]). Therefore, S is the pullback of the residue field S/mS

with respect to the canonical projection S∗ → S∗/mS .
On the other hand, in the non-Archimedean case, we know the following fact:

(8) Let S be as above (i.e., a quadratic Shannon extension of a regular local integral
domain of dimension > 2). If S is non-Archimedean, then its complete integral
closure S∗ coincides with the overring T = S[1/x], ⋂{xnS | n ≥ 0} =: p is a
proper prime ideal of S and T = (p : p) [27, Theorem 6.9 and Corollary 6.10].

In the previous situation, the integral domain S/p is a DVR [27, Lemma 3.4],
and T = Sp, since T = S[1/x] is a ring of fractions of S and p is disjoint from the
multiplicative set {xn | n ≥ 0}. Therefore, S is the pullback of S/p with respect to
the canonical projection T → T/p, where T/p is a field, coinciding with the residue
field Sp/pSp (isomorphic to the field of quotients of the integral domain S/p).

The last remaining case is when the quadratic Shannon extension S is (Archime-
dean and) completely integrally closed. An example is given in [28, Corollary 7.7].
In this situation S may not be obtained by a pullback construction of some of its
overrings, since, if an integral domain A shares a nonzero ideal with one of its
proper overrings B then A and B must have the same complete integral closure
[19, Lemma 5].

We end with a classification of the t-local domains, which could be useful
for detecting t-local domains that are not issued from a pullback construction.
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The following proposition is a consequence of more general results concerning
DT -domains, proved by G. Picozza and F. Tartarone in [42].

Proposition 6.8 Let (D, M) be a local domain.

(1) If D �= (M : M), then D is a t-local domain.
(2) If D = (M : M) and M is finitely generated, then D is a t-local domain if and

only if M is principal.
(3) If D = (M : M), and M is not finitely generated, then D is a t-local domain if

and only if M is not t-invertible.

Proof (1) If D �= (M : M), then necessarily the maximal ideal M is the conductor
of the inclusion D ↪→ (M : M) and so M is a divisorial ideal of D.

(2) Assume that D = (M : M), andM is finitely generated, clearlyM is divisorial
if and only if (M : M) = D �= M−1 = (D : M) and this happens if and only if
M �= MM−1(⊆ D) or, equivalently, if and only if MM−1 = D. In a local domain,
a nonzero ideal is invertible if and only if it is a principal ideal.

(3)Assume that D = (M : M),M is not finitely generated and,moreover,M is not
a t-invertible ideal. IfM is not a t-ideal, thenMt = D and thus (MM−1)t = Mt = D,
which is a contradiction.

Conversely, since M is not finitely generated, M is not invertible and, since D is
t-local, M is not even t-invertible (Theorem 3.7 ((iii)⇒(vi)). �

Any pseudo-valuation non-valuation domain provides an example of case (1); a
discrete valuation domain (for short, DVR) is an example of case (2) and a rank 1
non-DVR valuation domain is an example of case (3).
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Strongly Divided Pairs of Integral
Domains

Ahmed Ayache and David E. Dobbs

Abstract This work generalizes the recent study of the class of strongly divided
(commutative integral) domains. Let R ⊆ T be domains with (R,m) quasi-local.
Then (R, T ) is said to be a strongly divided pair if, for each ring E such that R ⊆
E ⊆ T and each Q ∈ Spec(E) such that Q ∩ R ⊂ m, one has Q ⊂ R. Let R be the
integral closure of R in T . Then (R, T ) is a strongly divided pair if and only if R
and R have the same sets of nonmaximal prime ideals and, for each maximal ideal
M of R, (RM , TM) is a strongly divided pair. If R is integrally closed in T and R is
treed, then (R, T ) is a strongly divided pair if and only if R[u] is a treed domain for
each u ∈ T . If mT = T and R is integrally closed in T , then (R, T ) is a strongly
divided pair if and only if T = Rp for some divided prime ideal p of R and R/p is a
strongly divided domain. Examples of strongly divided pairs ((R,m), T ) such that
mT �= T are given using pullbacks with data having prime spectra pinched at some
nonmaximal prime ideal. Additional results and examples are given to illustrate the
theory and its sharpness.
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1 Introduction

Webeginwith a paragraph collecting someconventions about notation and some stan-
dard definitions. All rings considered below are commutative with identity; nearly
all these rings are (commutative integral) domains. If D is a domain, qf(D) denotes
the quotient field of D. If A is a ring, Spec(A) denotes the set of all prime ideals of
A, Max(A) denotes the set of all maximal ideals of A, S(A) := Spec(A) \ Max(A),
and dim(A) denotes the Krull dimension of A. As in [9], a ring A is said to be treed
if Spec(A), when viewed as a poset under inclusion, is a tree; that is, no maximal
ideal of A can contain incomparable prime ideals of A. If D and E are domains,
then D ⊆ E is understood to mean that D is a (necessarily unital) subring of E , in
which case the set of intermediate rings is denoted by [D, E] := {A | A is a ring and
D ⊆ A ⊆ E}. By an overring of a domain D, wemean any element A ∈ [D, qf(D)].
By a simple overring of a domain D, we mean any overring of D of the form D[u]
where u ∈ qf(D). If D ⊂ E are domains and P ∈ Spec(D), then EP := ED\P . Also,
for domains D ⊆ E , it will be convenient to denote the integral closure of D in E
by D; it should always be clear from the context which ring is intended to play the
role of E . If I is an ideal of a domain D, then RadD(I ) denotes the radical of I
(in D), in the sense of [21, page 17]; that is, RadD(I ) := {d ∈ D | there exists a
positive integer n such that dn ∈ I }. Following [21, page 28], we let INC, LO, and
GU denote the incomparable, lying-over, and going-up properties, respectively, of
ring extensions. As usual, ⊂ denotes proper inclusion. Any unexplained material is
standard, as in [19, 21].

Our purpose here is to initiate the study of the following concepts. Let (R,m)

be a quasi-local domain and let T be a domain containing R as a subring. We say
that R ⊆ T is (a) strongly divided extension if, whenever Q ∈ Spec(T ) satisfies Q ∩
R ∈ S(R), then Q = Q ∩ R (that is, Q ⊆ R); some characterizations of strongly
divided extensions are given in Proposition 2.5. We say that the pair (R, T ) is (a)
strongly divided pair if the extension R ⊆ E is a strongly divided extension for each
E ∈ [R, T ]. To motivate these definitions, note that if T = qf(R), then (R, T ) is
a strongly divided pair if and only if R is a strongly divided domain (in the sense
of [3]). It was shown in [3] that the class of strongly divided domains fits properly
between the class of pseudo-valuation domains (or PVDs, in the sense of [20]) and
the class of divided domains (in the sense of [10], also known as the AV-domains
introduced in [1]).

Caution is needed when seeking generalizations of results concerning strongly
divided domains. Indeed, although any strongly divided domain is a divided domain
[3, Proposition 1(a)], the analogous ring-theoretic concept was recently shown to
behave more pathologically. Indeed, [4, Example 3.23] gave an example of an ide-
alization which is a “strongly divided ring in the first sense” but not a divided ring
(in the sense of [7]). The existence of this example and several other examples in
[4] has convinced us that one should focus on domains, rather than on more general
rings, when seeking pair-theoretic generalizations of results concerning the “strongly
divided ring” concepts from [3, 4].
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In that regard, recall that [3, Proposition 3] gave a very useful characterization
that essentially reduced the study of strongly divided domains D to studying S(D)

and the case in which D is integrally closed (in its quotient field). In Proposition
2.10, we generalize [3, Proposition 3] by giving the following characterization of
strongly divided pairs: if R ⊆ T are domains such that R is quasi-local, then (R, T )

is a strongly divided pair if and only if S(R) = S(R) and (RM , TM) is a strongly
divided pair for each M ∈ Max(R). As a consequence, it is shown in Corollary 2.14
that if R ⊆ T are domains such that R and R are quasi-local, then (R, T ) is a strongly
divided pair if and only if S(R) = S(R) and R[u] is a treed domain for each u ∈ T .
This result generalizes a characterization of strongly divided domains that was given
in [3, Theorem 1].

This paragraph summarizes some other noteworthy results from Sect. 2. For this
paragraph, fix domains R ⊆ T such that R is quasi-local. We begin with some facts
from Proposition 2.1: if (R, T ) is a strongly divided pair and R is not a field, then
T is algebraic over R (in fact, if it is also the case that dim(R) > 1, then T is an
overring of R); and if T is integral over R, then (R, T ) is a strongly divided pair if
and only if S(R) = S(R). A sufficient (but not necessary) condition for (R, T ) to
be a strongly divided pair is that R is PV in T , in the sense of [5] (for instance,
if (R, T ) is a normal pair): see Proposition 2.6. (For a partial converse, see
Proposition 3.7.) Strongly divided pairs are stable under localization at nonmaxi-
mal prime ideals (Proposition 2.8) and homomorphic images (Proposition 2.4) but
need not be stable under juxtaposition (Example 2.2(a)). For some situations where
juxtaposition preserves the “strongly divided pair” property, see Proposition 2.10
(which was discussed in the preceding paragraph) and Proposition 2.11.

Section3 is devoted to the study of strongly divided pairs ((R,m), T ) that also
satisfy mT = T . Since the latter property holds in case R is a quasi-local domain
which is distinct from its quotient field T , it may be expected that the strongly
divided pairs ((R,m), T ) for whichmT = T admit a rich theory. In fact, Sect. 3 gives
some characterizations of such pairs that make use of the “strongly divided domain”
concept (see Proposition 3.1 and Theorem 3.3). One consequence is Corollary 3.5:
if R ⊆ T are domains such that (R,m) is quasi-local, mT = T and R = R, then
(R, T ) is a strongly divided pair if and only if T = Rp for some divided prime ideal
p of R and R/p is a strongly divided domain. (Recall from [10] that if D is a domain
and P ∈ Spec(D), then P is called a divided prime ideal (of) D if P = PDP , that
is, if P is comparable (under inclusion) with each (resp., with each principal) ideal
of D.) Treed-theoretic work in Sect. 3 produces results such as the following. If
((R,m), T ) is a strongly divided pair and mT = T , then R is treed ⇔ T is treed ⇔
R[u] is treed for each u ∈ T (Proposition 3.9). Example 4.1 shows that the conclusion
of Proposition 3.9 fails if one deletes the hypothesis that mT = T .

Many of the examples of strongly divided pairs given below are constructed via
pullback-theoreticmethods. In this regard,wewould point toRemark 3.10, Examples
3.11, 4.1, 4.4 and Proposition 4.5. The proofs of all these results use the fundamental
“gluing” description of the prime spectrum of a pullback [18, Theorem 1.4].

Section4 concerns the strongly divided pairs ((R,m), T ) satisfying mT �= T .
Several examples of such pairs are given in this case, often using pullbacks whose
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data include a domain whose prime spectrum is pinched at some nonmaximal prime
ideal. Such examples can be integral, integrally closed or neither: see Example 4.4
and Proposition 4.5. An analogous result for the “mT = T ” context is given in
Remark 4.6.

2 The General Case

For any quasi-local domain D, it is clear that (D, D) is a strongly divided pair.
Proposition 2.1 collects some less trivial facts concerning strongly divided pairs and
strongly divided extensions. To motivate the formulation of parts (d), (e), and (f)
of Proposition 2.1, note that if (R,m) is a quasi-local domain then R is not a field
⇔ m �= {0} ⇔ dim(R) > 0.

Proposition 2.1 (a) If F is a field and T is a domain containing F as a subring,
then (F, T ) is a strongly divided pair.

(b) Let R ⊆ T be an integral extension of domains such that R is quasi-local.
Then (R, T ) is a strongly divided pair ⇔ R ⊆ T is a strongly divided extension
⇔ S(R) = S(T ).

(c) Let R ⊆ T be domains such that R is quasi-local and R ⊆ T satisfies INC,
LO andGU. Then R ⊆ T is a strongly divided extension if and only if S(R) = S(T ).

(d) Let R ⊆ T be domains such that R is quasi-local but not a field. If R ⊆ T is
a strongly divided extension, then T is algebraic over R. In particular, if (R, T ) is a
strongly divided pair (and R is not a field), then T is algebraic over R

(e) Let R ⊆ T be domains such that R is quasi-local and dim(R) = 1. Then
(R, T ) is a strongly divided pair if and only if T is algebraic over R.

(f) Let R ⊆ T be domains such that R is quasi-local, dim(R) > 1 and (R, T ) is
a strongly divided pair. Then T is (R-algebra isomorphic to) an overring of R.

Proof (a) Since each ring E ∈ [F, T ] is a domain, it is enough to prove that F ⊆ T
is a strongly divided extension. This, in turn, holds since S(F) = ∅.

(b)Wewill use the facts that any integral ring extension satisfies INC, LO, andGU
(cf. [21, Theorem 44]). We claim that if S(R) = S(T ), then S(R) = S(E) for each
E ∈ [R, T ]. To see this, supposefirst that p ∈ S(R). Then p ∈ S(T ), and so p = p ∩
E ∈ Spec(E). In fact, since E ⊆ T satisfies INC (being an integral extension), we
get that p ∈ S(E). Thus S(R) ⊆ S(E). For the reverse inclusion, consider any Q ∈
S(E). Then, since E ⊆ T satisfies LO and GU (being an integral extension), there
existsQ ∈ S(T ) = S(R) such thatQ ∩ E = Q. AsQ ⊆ R, we get Q ⊆ Q = Q ∩
R = Q ∩ (E ∩ R) = (Q ∩ E) ∩ R = Q ∩ R ⊆ Q. It follows that Q = Q ∈ S(R).
Thus S(E) ⊆ S(R). This completes the proof of the claim.

By the above claim, it suffices to show that (R, T ) is a strongly divided extension if
and only if S(R) = S(T ). Suppose first that (R, T ) is a strongly divided extension.
Since R ⊆ T satisfies INC, it follows that if Q ∈ S(T ), then Q ∩ R ∈ S(R). As
R ⊆ T is a strongly divided extension, we get that Q = Q ∩ R. Thus S(T ) ⊆ S(R).
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For the reverse inclusion, consider any p ∈ S(R). Since R ⊆ T satisfies LO and
GU, there exists P ∈ S(T ) such that P ∩ R = p. As R ⊆ T is a strongly divided
extension, we get that p = P ∈ S(T ). Thus S(R) ⊆ S(T ). This completes the proof
of the “only if” assertion.

Suppose next that S(R) = S(T ). Let Q ∈ Spec(T ) satisfy Q ∩ R ∈ S(R). As
R ⊆ T satisfies INC, we get Q ∈ S(T ). Then, by arguing as in the second half of
the first paragraph of this proof, we see that Q = Q ∩ R. Thus (R, T ) is a strongly
divided extension.

(c) The proof of (c) can be extracted from the above proof of (b).
(d) Suppose the assertion fails. Then R ⊆ T is a strongly divided extension and

there exists z ∈ T such that z is transcendental over R. Put E := R[z] ∈ [R, T ] and
Q := zE ∈ Spec(E). Note that Q ∩ R = {0} by transcendentality, and {0} ∈ S(R)

since R is not a field. As z ∈ Q \ R and R ⊂ E is a strongly divided extension, we
have the desired contradiction.

(e) By (d), it suffices to show that if (R is quasi-local with dim(R) = 1 and) R ⊆ T
is an algebraic extension, then (R, T ) is a strongly divided pair. As each E ∈ [R, T ]
is an algebraic extension of R, it suffices to prove that R ⊆ T is a strongly divided
extension. Our task is to show that if Q ∈ Spec(T ) satisfies Q ∩ R ∈ S(R), then
Q ⊆ R. Since dim(R) = 1 and R is a domain, the only element of S(R) is {0}. Thus
Q ∩ R = {0}. By [19, Lemma 11.1], it follows from the algebraicity of the extension
R ⊆ T that Q = {0}, and so Q ⊆ R, as desired.

(f) By (d), T is algebraic over R. Hence, a fortiori, T is algebraic over R. Since
R is integrally closed in T , it follows from [21, Exercise 35, page 44] that T is
an overring of R. Thus, it suffices to prove that R is an overring of R. Therefore,
by a harmless abus de language, we may assume, without loss of generality, that
T is integral over R (that is, that R = T ). Consequently, by (b), S(R) = S(T ). As
dim(R) > 1, there exists a nonzero prime ideal p ∈ S(R). Then p ∈ S(T ), whence
pT = p. Pick a nonzero element r ∈ p. If t ∈ T , we have r t ∈ pT = p ⊆ R, and
so t = (r t)/r ∈ qf(R). Therefore, T is an overring of R. �

The statement of Proposition 2.1(c) could be simplified by deleting the “LO”
hypothesis, since GU⇒ LO [21, Theorem 42]. We used an explicit “LO” hypothesis
in that result for two reasons: the statement can be read more smoothly and the
applications will be to integral extensions (where the fact that both LO and GU hold
can go without saying).

Some familiar examples of transitive binary relations on the class of ring exten-
sions include INC, LO, GU, “integral extension,” and “integrally closed extension.”
Despite expectations thatmay have been raised byProposition 2.1(b), Example 2.2(a)
will show that “strongly divided extension” cannot be added to that list. Example
2.2(b) presents a counterpoint to Proposition 2.1(a) by examining a ring extension
whose larger ring is a field.

Example 2.2 (a) There exist domains A ⊆ B ⊆ C such that A ⊆ B and B ⊆ C are
strongly divided extensions but A ⊆ C is not a strongly divided extension. (ByPropo-
sition 2.1(b), it cannot be the case that C is integral over A.) One way to construct
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such data is to take A := Z2Z, B := Q and C := Q[X ], where X is transcendental
over Q.

(b) There exist domains A ⊆ B such that A ⊆ B is a strongly divided extension
but (A, B) is not a strongly divided pair. One way to construct such data is to take A
to be any quasi-local domainwhich is not a strongly divided domain and B := qf(A).

Proof (a) Note that A ⊆ B are domains, with A quasi-local and dim(A) = 1, such
that B is algebraic over A. Hence, by Proposition 2.1(e), (A, B) is a strongly divided
pair, and so A ⊆ B is a strongly divided extension. Moreover, Proposition 2.1(a)
ensures that B ⊆ C is a strongly divided extension. However, A ⊆ C is not a strongly
divided extension. To see this, note that Q := XB ∈ Spec(C) satisfies

Q ∩ A = Q ∩ (B ∩ A) = (Q ∩ B) ∩ A = {0} ∩ A = {0} ∈ S(A),

although Q � A (since X ∈ Q \ A).
(b) If D is any quasi-local domain and F is a field that contains D as a subring,

then D ⊆ F is a strongly divided extension. (Indeed, if Q ∈ Spec(F), then Q =
{0} ⊆ D.) Thus, A ⊆ B is a strongly divided extension. But (A, B) is not a strongly
divided pair precisely because A is not a strongly divided domain. For an example
of a divided (hence quasi-local) domain which is not a strongly divided domain, see
[3, Example 3]. �
Remark 2.3 (a) Parts (b) and (c) of Proposition 2.1 can be motivated by Proposition
2.1(a), since one can use (a) to prove that both (b) and (c) hold in case R is a field. But
the conclusion of Proposition 2.1(d) would fail if we deleted the hypothesis that R is
not a field. To see this, consider the ring extension F ⊂ F[X ] where F is a field and
X is transcendental over F . Then F is a quasi-local domain, F[X ] is a domain and
(F, F[X ]) is a strongly divided pair by Proposition 2.1(a), but F[X ] is not algebraic
over F .

(b) Proposition 2.1(e) is best-possible as one cannot add “T is an overring of R”
as an equivalent condition. For what may be the easiest example showing this, take R
to be the one-dimensional quasi-local domain Z2Z and take T to be the algebraic (in
fact, integral) extensionZ[i]2Z, where i := √−1 ∈ C. By Proposition 2.1(e), (R, T )

is a strongly divided pair but, of course, T is not an overring of R. This example also
shows that the equivalent conditions in Proposition 2.1(b) do not imply that T is an
overring of R.

(c) By [12, Corollary 3.2], any LO-pair is a GU-pair. Therefore, by using the
proof of Proposition 2.1(b), we can conclude that if R ⊆ T are domains and R is
quasi-local such that (R, T ) is both an INC-pair and an LO-pair, then (R, T ) is a
strongly divided pair if and only if S(R) = S(T ). However, this conclusion is not
new, as it is part of Proposition 2.1(b), the point being that if A ⊆ B are commutative
rings (with the same identity), then B is integral over A if (and only if) (A, B) is
both an INC-pair and an LO-pair (cf. [12, Theorem 2.1, Corollary 2.4 (bis)]).

The interplay between strongly divided extensions (or strongly divided pairs) and
strongly divided domains goes far beyond what we saw in Example 2.2(b). One
soupçon of this theme is given in the next easy result.
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Proposition 2.4 Let R ⊂ T be domains such that R is quasi-local and (R, T ) is
a strongly divided pair (resp., a strongly divided extension). If P ∈ Spec(T ) and
p := P ∩ R ∈ Spec(R), then (R/p, T/P) is a strongly divided pair (resp., a strongly
divided extension).

Proof We will prove the assertion concerning pairs, leaving the similar proof of
the parenthetical assertion to the reader. Let m denote the maximal ideal of R. If
p = m, the assertion follows from Proposition 2.1(a). Hence, without loss of gen-
erality, p ⊂ m; that is, p ∈ S(R). Then, since the hypotheses ensure that R ⊆ T
is a strongly divided extension, P = p is a common prime ideal of R and T . Let
E ′ ∈ [R/p, T/P] = [R/p, T/p]. Then E ′ = E/p for a (uniquely determined) ring
E ∈ [R, T ]. Let Q′ ∈ Spec(E ′) satisfy Q′ ∩ (R/p) ∈ S(R/p). Our task is to show
that Q′ ⊆ R/p. We have Q′ = Q/p for a (uniquely determined) Q ∈ Spec(E) such
that p ⊆ Q. Then

(Q ∩ R)/p = (Q/p) ∩ (R/p) = Q′ ∩ (R/p) ⊂ m/p,

and so Q ∩ R ⊂ m; that is, Q ∩ R ∈ S(R). As the hypotheses also ensure that R ⊆ E
is a strongly divided extension, we have Q ⊆ R, whence Q′ = Q/p ⊆ R/p, as
desired. �

The following characterizations of strongly divided extensions will lead to deeper
results on strongly divided pairs.

Proposition 2.5 Let (R,m) ⊆ T be domains such that R is quasi-local. Then the
following conditions are equivalent:

(1) R ⊆ T is a strongly divided extension;
(2) For every u ∈ T \ R, m ⊆ RadT (uT );
(3) For every ideal I of T , either I ⊆ m or m ⊆ RadT (I );
(4) Every prime ideal of T is comparable to m.

Proof (1)⇒ (2): Assume (1). If u is a unit of T , then uT = T , whence RadT (uT ) =
{t ∈ T | there exists a positive integer n such that tn ∈ T } = T , and so m ⊂
RadT (uT ). Thus, it now suffices to prove that if u ∈ T \ R and u is not a unit
of T , then m ⊆ RadT (uT ). Since u is a nonunit of T , we can pick Q ∈ Spec(T )

such that u ∈ Q. If Q ∩ R ⊂ m, then Q ∩ R ∈ S(R), whence Q ∩ R = Q via (1),
and so u ∈ Q ∩ R ⊆ R, a contradiction (since u /∈ R). Therefore, Q ∩ R = m for
each prime ideal Q of T that contains u. As RadT (uT ) is the intersection of all such
Q, we get m ⊆ RadT (uT ).

(2)⇒ (3):Assume (2).Wewill prove that if I is an ideal of T such that I � m, then
m ⊆ RadT (I ). Pick an element u ∈ I \ m. By (2), m ⊆ RadT (uT ). The assertion
follows since uT ⊆ I gives RadT (uT ) ⊆ RadT (I ).

(3) ⇒ (4): This is clear since RadT (I ) = I for all I ∈ Spec(T ).
(4) ⇒ (1): Suppose the assertion fails. Then there exists Q ∈ Spec(T ) such that

Q ∩ R ∈ S(R) (that is, Q ∩ R ⊂ m) and Q � m. Then (4) gives m ⊂ Q, whence
m ⊆ Q ∩ R, a contradiction (to Q ∩ R ⊂ m). �
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We pause to recall some background from [5]. Let A ⊆ B be domains. We say
that A is VD in B if u−1 ∈ A whenever u ∈ B \ A. Also, we say that A is PV in B
if u−1a ∈ A whenever u ∈ B \ A and a is a nonunit of A. (For our purposes, it is
useful to note that if, in addition, (A,m) is quasi-local, then A is PV in B if and only
if u−1m ⊆ m for all u ∈ B \ A.) It is clear that if A is VD in B, then A is PV in B.
The converse fails. Indeed, for any domain A, A is VD (resp., PV) in qf(A) if and
only if A is a valuation domain (resp., a pseudo-valuation domain). In general, if A
is PV in B, then A is quasi-local [5, Proposition 1.7]. If A is VD in B, then both A
and B are quasi-local [5, Corollary 1.6].

Proposition 2.6 shows that the properties whose definitions were just recalled each
give a sufficient condition for (R, T ) to be a strongly divided pair.

Proposition 2.6 Let R ⊆ T be domains such that R is quasi-local. If R is PV in T
(for instance, if R is VD in T ), then (R, T ) is a strongly divided pair.

Proof We will show that if E ∈ [R, T ], then R ⊆ E is a strongly divided extension.
By Proposition 2.5, it is enough to prove that if u ∈ E \ R, then m ⊆ RadE (uE).
Since R is PV in T , it is clear that R is PV in E . Therefore, by [5, Proposition 1.8],
u−1m ⊆ m. Hence, m ⊆ um ⊆ uE ⊆ RadE (uE), as desired. �

The converse of Proposition 2.6 is false. The most natural way to show this would
take R to be a strongly divided domain that is not a pseudo-valuation domain and
T := qf(R). Examples of such R can be found in [3, Examples 1 and 2, Remark 4].

We next recall more background. Let A ⊆ B be domains. Then (A, B) is said to
be a normal pair if each E ∈ [A, B] is integrally closed in B. It is a classic result of
E. D. Davis (cf [19, Theorems 24.3 and 26.2]) that if D is a domain, then (D, qf(D))

is a normal pair if and only if D is a Prüfer domain. For a systematic study of normal
pairs (of domains) by Davis, see [8]. Several authors have studied normal pairs for
certain types of rings that need not be domains. These studies include [16], where the
rings A and B were usually taken to be complemented rings (note that any domain
is complemented); and [22], where “(A, B) is a normal pair” was dubbed “A is a
B-Prüfer ring” and A and B were taken to be arbitrary (commutative unital) rings.
AlthoughDavis assumed as a riding hypothesis that B is an overring of the domain A,
it can be shown that if (A, B) is a normal pair, then B is (A-algebra isomorphic to) an
overring of A (that is, a ring extension of A that is contained in the total quotient ring
of A) for complemented rings (and hence for domains): see [16, Proposition 3.4]. It
is easy to see but important (and apparently not noted until [16, Proposition 3.1]) that
being a normal pair is a local property: for rings A ⊆ B, (A, B) is a normal pair if and
only if (AM , BM) is a normal pair for each M ∈ Max(A). Thus, the following result
of Davis [8, Proposition 1] is particularly relevant: if A ⊆ B are domains such that
A is quasi-local, then (A, B) is a normal pair if and only if each u ∈ B \ A satisfies
u−1 ∈ A. When one combines this result with the material recalled above from [5],
one gets Corollary 2.7 which connects the two sets of recently recalled materials.

Corollary 2.7 Let R ⊆ T be domains such that R is quasi-local. Then:

(a) (R, T ) is a normal pair if and only if R is a VD in T .
(b) If (R, T ) is a normal pair, then (R, T ) is a strongly divided pair.
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Proof (a) Combine [8, Proposition 1] with [5, Definition 0.1].
(b) Combine (a) with the parenthetical assertion in Proposition 2.6. �

By combining Proposition 2.6 with Corollary 2.7(a), we see that the converse
of Corollary 2.7(b) is false. In other words, a strongly divided pair (R, T ) need
not be a normal pair, even if R is (quasi-local and) integrally closed in T . The
most natural example showing this would take R to be an integrally closed pseudo-
valuation domain that is not a valuation domain and T := qf(R); one such R is
k + Yk(X)[[Y ]], where k is a field and X and Y are independent indeterminates
over k.

The next result examines the behavior of some of the above properties under
localization.

Proposition 2.8 Let R ⊆ T be domains such that (R, T ) is a strongly divided pair
(necessarily with (R,m) quasi-local). Let p ∈ S(R). Then:

(a) (Rp, Tp) is a strongly divided pair.
(b) Rp := RR\p = RR\p is the integral closure of Rp in Tp.

(c) Rp is VD in Tp.
(d) Rp is PV in Tp.

Proof It will be convenient in this proof to let N := R \ p. In view of Proposition
2.6, (a) will follow from (d). However, we believe that the direct proof of (a) given
below is of some interest.

(a) Let E ′ ∈ [Rp, Tp] and Q′ ∈ Spec(E ′) such that Q′ ∩ Rp ∈ S(Rp), that is,
such that Q′ ∩ Rp ⊂ pRp. Our task is to show that Q′ ⊆ Rp. Note that there exists
a (uniquely determined) E ∈ [R, T ] such that E ′ = EN . Put Q := Q′ ∩ E and q :=
Q ∩ R. Then Q′ = QEN . In addition, since the formation of rings of quotients
commutes with finite intersections,

Q′ ∩ Rp = (Q′)N ∩ RN = (Q′ ∩ R)N = qN = qRp.

As q ⊆ p ⊂ m and R ⊆ E is a strongly divided extension, Q = q. Since R and
E share the ideal Q, it follows that RN (= Rp) and EN (= E ′) share the ideal
QRN = QEN = Q′. Thus Q′ ⊆ Rp, as desired.

(b) Since R ⊆ R is a strongly divided extension and p ∈ S(R), it follows from
Proposition 2.1(b) that p ∈ S(R). In particular, p is a common prime ideal of R
and R. Therefore, [3, Lemma 1] gives that RR\p = RR\p. The final assertion fol-
lows because integral closure commutes with the formation of rings of quotients
[19, Proposition 10.2].

(c) As Rp is integrally closed in TN by (b), it follows from [6, Theorems 2.5 and
2.3] that it will suffice to prove that Rp ⊆ E ′ satisfies INC for each E ′ ∈ [Rp, TN ].
We will show even more, namely, that if P ′ and Q′ are prime ideals of E ′ such that
P ′ ∩ Rp = Q′ ∩ Rp, then P ′ = Q′. Note that there exists a (uniquely determined)
E ∈ [R, T ] such that E ′ = EN . We have P ′ = PEN and Q′ = QEN for some
(uniquely determined) prime ideals P and Q of E such that P ∩ N = ∅ = Q ∩ N ,
that is, such that P ∩ R ⊆ p and Q ∩ R ⊆ p. In fact, P ∩ R = Q ∩ R since
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P ∩ R = (P ′ ∩ E) ∩ R = (P ′ ∩ E) ∩ (Rp ∩ R) = (P ′ ∩ Rp) ∩ R

and, similarly, Q ∩ R = (Q′ ∩ Rp) ∩ R. As R ⊆ E is a strongly divided extension
and q := P ∩ R = Q ∩ R, we get P = q = Q, whence P ′ = PEN = QEN = Q′,
as desired.

(d) We must show that if u ∈ TN \ Rp and a is a nonunit of Rp, then au−1 ∈ Rp.
Recall from the proof of (b) that p is a common nonmaximal prime ideal of R and
R. As the (integral) extension Rp ⊆ Rp satisfies INC, it follows that Rp and Rp

share the common maximal ideal pRp = pRp. Since Rp is quasi-local with unique
maximal ideal pRp, it follows from [2, Proposition 3.8] that the same is true of Rp.
(The fact that Rp is quasi-local can also be seen by combining (c) and [5, Corollary
1.6].) Thus, if u ∈ Rp, then u must be a unit of Rp (that is, u−1 ∈ Rp) since u /∈ pRp.
On the other hand, if u /∈ Rp, then it follows from (c) that u−1 ∈ Rp. Thus, in all
cases, u−1 ∈ Rp. As a ∈ pRp, we have

au−1 ∈ (pRp)Rp = pRp = pRp ⊆ Rp,

as desired. �

It is possible to use the above background material to give the following quick
proof of Proposition 2.1(f). Since dim(R) > 1, there exists a nonzero prime ideal
p ∈ S(R). By Proposition 2.8(d), Rp is PV in Tp. Then qf(Rp) = qf(Tp). In other
words, qf(R) = qf(T ); that is, T is an overring of R.

The converse of Proposition 2.8(d) fails severely. In other words, it is possible for
(R, T ) not to be a strongly divided pair even if R ⊆ T are domains such that R is
quasi-local and Rp is PV in Tp for every p ∈ S(R): see Remark 2.9(a).

Remark 2.9 (a) If 2 ≤ d ≤ ∞, there exist domains R ⊆ T such that dim(R) = d,
R is quasi-local, R is integrally closed, and Rp is PV in Tp for each p ∈ S(R), but
(R, T ) is not a strongly divided pair.

For a proof, consider the domain R constructed in [3, Example 3] and put T :=
qf(R). It was shown in [3] that R is a d-dimensional integrally closed divided (hence
quasi-local) domain, but not a strongly divided domain, such that Rp is a PVD for
each p ∈ S(R). The final two assertions hold since Tp = qf(R) for each p ∈ S(R).

(b)We have seen that the example in (a) satisfies the conclusion (d) in Proposition
2.8. Hence, by Proposition 2.6, the example in (a) also satisfies the conclusion (a)
in Proposition 2.8. Since R is integrally closed, conclusion (b) in Proposition 2.8 is
trivially satisfied. We leave open the question whether R satisfies the conclusion (c)
in Proposition 2.8.

(c) We wish to mention two interesting features of the example R in (a) that are
not explicitly connected to Proposition 2.8. The first of these states the following. If
p ∈ Spec(R), then R/p is a divided domain. A proof of this assertion is immediate
via [10, Lemma 2.2(c)], which applies since R is a divided domain.

The second feature that we note here is that (R, T ) fails to exhibit a characteristic
property of normal pairs having a quasi-local base. (This is perhaps not surprising
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in view of Corollary 2.7(b) and the fact that R is not a strongly divided domain.)
A result of Davis [8, Theorem 1] asserts that if A ⊆ B are domains with A quasi-
local, then (A, B) is a normal pair if and only if there exists a divided prime ideal
P of A such that B = AP and A/P is a valuation domain. Notice that when these
equivalent conditions hold, A is the pullback AP ×L A/P , where L = qf(A/P) is
the residue field of B. On the other hand, since each p ∈ Spec(R) is a divided prime
ideal of R, there is a natural pullback description of R, namely, as Rp ×F R/p, where
F = qf(A/P) is the residue field of Rp.

It may not be apparent whether one should expect the existence of a (divided)
nonzero prime ideal p ∈ S(R) such that (the integrally closed divided domain) R/p
is a valuation domain. For the case d = 2, where there is only one nonzero prime
ideal p ∈ S(R), the data in [3, Example 3] lead to R/p ∼= k[X ](X) (where X is an
indeterminate over a field k). So this R/p is a one-dimensional valuation domain,
and Davis’ result implies that (R, Rp) is a normal pair. However, (R, T ) is not a
normal pair, for T = R(0) but R/(0) (∼= R) is not a valuation domain.

(d) A glance at [3, Example 3] reveals that the domain R in (a) was constructed
using pullbacks. Several relevant examples later in this paper will also involve pull-
back constructions. For the sake of completeness, we next sketch an example with
the properties announced in (a) that is distinct from the example given in (a). Like
that earlier example, the example given below is also constructed using pullbacks.

Another way to construct data (R, T ) with the properties announced in (a) is as
follows. Let K be a field, with X and Y algebraically independent indetermi-
nates over K . Put V := K + M1 and T := K (X) + N1, where M1 = XK [X ](X) +
Y K (X)[Y ](Y ) and N1 = (Y + 1)K (X)[Y ](Y+1). Then put E := V ∩ T , M := M1 ∩
E , N := N1 ∩ E , m := M ∩ N and R := K + m.

We next outline a proof that (R, T ) has the asserted properties, omitting some
explanatory details when they are classical. Note that V and T are incomparable valu-
ation domains,withmaximal idealsM1 and N1, respectively. Set P := Y K (X)[Y ](Y ).
By standard facts about pullbacks (as in [18]), we have dim(V ) = 2, dim(T ) = 1,
Spec(V ) consists of the chain (0) ⊂ P ⊂ M1, and Spec(T ) consists of the chain
(0) ⊂ N1. Set E := V ∩ T . As V and T have the same quotient field, E is a semi–
quasi-local Prüfer domain with exactly two maximal ideals, M := M1 ∩ E and
N := N1 ∩ E , such that E/M ∼= V/M1

∼= K and E/N ∼= T/N1
∼= K (X) (cf. [21,

Theorem 107]). Set Q := Q1 ∩ E . Then Spec(E) consists of two chains, (0) ⊂ Q ⊂
M and (0) ⊂ N . Set m := M ∩ N and R := K + m. Then (R,m) is a quasi-local
domain, and Spec(R) consists of the chain (0) ⊂ q ⊂ m, where q := Q ∩ R. (Iden-
tifying Spec(R) is most easily done by first viewing R as the pullback of the diag-
onal map K → K × K (X) and the projection map E → E/m ∼= E/(M ∩ N ) ∼=
E/M × E/N ∼= K × K (X) and then using the fundamental gluing result for pull-
backs [18, Theorem 1.4].) Note that q �= Q, since q ⊂ m ⊆ N while Q � N . Thus
R ⊂ E is not a strongly divided extension, and so (R, T ) is not a strongly divided
pair. It remains only to verify that Rp is PV in Tp for each p ∈ S(R) = {(0), q}. This
is clear if p = (0), since R(0) = K (X,Y ) = T(0); and it also holds if p = q, since
Rq = Dq is a (pseudo-)valuation domain with quotient field K (X,Y ) = Tq .
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Next, we give a helpful result that permits one to reduce certain questions concern-
ing a (possibly strongly divided) pair (R, T ) to the corresponding questions when
(R, T ) is replaced by a family of pairs of the form (D, E) such that D is integrally
closed in E . Note that Proposition 2.10 is a generalization of [3, Proposition 3].

Proposition 2.10 Let R ⊆ T be domains such that (R,m) is quasi-local. Then
(R, T ) is a strongly divided pair if and only if S(R) = S(R) and (RM , TM) is a
strongly divided pair for every M ∈ Max(R).

Proof Suppose that (R, T ) is a strongly divided pair. As (R, R) then inherits the
“strongly divided pair” property,S(R) = S(R) by Proposition 2.1(b). Next, wemust
show that if M ∈ Max(R) and E ′ ∈ [RM , TM ], with Q′ ∈ Spec(E ′) such that Q′ ∩
RM ∈ S(RM), then Q′ ⊆ RM . There exists (a uniquely determined) E ∈ [R, T ] such
that EM = E ′. There exists (a uniquely determined) Q ∈ Spec(E) such that Q′ =
QEM . As Q′ ∩ RM ⊂ MRM , we get

P := Q ∩ R = (Q′ ∩ E) ∩ R = (Q′ ∩ RM) ∩ R ⊂ M;

that is, P ∈ S(R). Since S(R) = S(R), we get P ∈ S(R). Hence P = P ∩ R. Then

Q ∩ R = (Q ∩ R) ∩ R = P ∩ R = P ∈ S(R).

As R ⊆ E is a strongly divided extension, Q = Q ∩ R, and so Q = P . Hence Q′ =
QEM = QM = PM = PRM ⊆ RM .

Conversely, suppose that S(R) = S(R) and (RM , TM) is a strongly divided pair
for every M ∈ Max(R). We must prove that if E ∈ [R, T ] and P ∈ Spec(E) such
that p := P ∩ R ∈ S(R), then P ⊆ R or equivalently, that P ⊆ p. Let E denote
the integral closure of E in T . Since integrality ensures that E ⊆ E satisfies LO,
we can pick P ′ ∈ Spec(E) such that P ′ ∩ E = P . Put p′ := P ′ ∩ R. Then p′ ∩
R = P ′ ∩ R = P ′ ∩ E ∩ R = P ∩ R = p ∈ S(R) = S(R). It follows that p′ = p.
Next, let M ∈ Max(R). By integrality (more precisely, the fact that R ⊆ R satisfies
GU), M ∩ R = m. As p ⊂ m ⊆ M , we get that pRM is a prime ideal of RM that
is properly contained in MRM ; that is, pRM ∈ S(RM). Note that P ′EM ∩ RM =
pRM . As RM ⊆ EM is a strongly divided extension, P ′EM = pRM . Consequently
P ′ ⊆ pRM . As M ∈ Max(R) was arbitrary, P ′ ⊆ ⋂

M∈Max(R)

pRM . By globalization,

this intersection coincides with p. Thus P ′ ⊆ p. As P ⊆ P ′, we get P ⊆ p, as
desired. �

After the proof of Corollary 2.7, we showed that a strongly divided pair (A, B)

need not be a normal pair. Another proof of this fact can be given by using Example
2.2(a), as that example showed that being a strongly divided pair is not a transitive
property (whereas being a normal pair is a transitive property: see [22, Theorem 5.6]
or [16, Proposition 3.9(a)]). To show that the emerging theory of strongly divided
pairs shares at least some of the flavor of the well-established theory of normal pairs,
it would be desirable to show that certain chains A ⊂ B ⊂ C do exhibit transitivity



Strongly Divided Pairs of Integral Domains 75

of the “strongly divided pair” property.Wewill do so in Proposition 2.11. The setting
for that result should, of course, not mirror that of Example 2.2(a). In that example,
(A, B) was assumed to be a normal pair but (B,C) was not. The hypotheses of
Proposition 2.11 will reverse the roles/nature of those subextensions.

Proposition 2.11 Let A ⊆ B ⊆ C be domains such that A ⊆ B is an integral
strongly divided extension (necessarily with A quasi-local) and (B,C) is a normal
pair. Then (A,C) is a strongly divided pair.

Proof By Proposition 2.1(b), S(A) = S(B). Let A denote the integral closure of A
in C . As B is integrally closed in C , we have A = B. Thus, by Proposition 2.10, we
need only to prove that (BM ,CM) is a strongly divided pair for every M ∈ Max(B).
This, in turn, follows from Corollary 2.7(b), since (BM ,CM) inherits the “normal
pair” property from (B,C) [16, Proposition 3.1]. �

The next goal in this section is to generalize a result from [3] which showed that a
quasi-local integrally closed domain is a strongly divided domain if and only if all its
simple overrings are treed. First, for motivation and reference purposes, we give an
easy result identifying some roles for the simple or 2-generated intermediate rings
of a ring extension A ⊆ B in studying whether (A, B) is a strongly divided pair or
whether all the rings in [A, B] are treed.
Proposition 2.12 (a) Let R ⊆ T be domains such that R is quasi-local. Then (R, T )

is a strongly divided pair if and only if R ⊂ R[u] is a strongly divided extension for
each u ∈ T \ R.

(b) Let R ⊆ T be domains such that (R, T ) is a strongly divided pair (and,
necessarily, R is quasi-local, say withmaximal ideal m). Then R[u] is a treed domain
for each u ∈ T if and only if R is a treed domain.

(c) If A ⊆ B are rings, then each ring in [A, B] is treed if and only if A[u, v] is
treed for all u, v ∈ B.

Proof (a) The “only if” assertion is trivial. We will prove the contrapositive of the
converse. Suppose, then, that there exists Q ∈ Spec(T ) such that q := Q ∩ R ∈
S(R) andq ⊂ Q. Picku ∈ Q \ q. Then R ⊂ R[u] is not a strongly divided extension,
as Q′ := Q ∩ R[u] ∈ Spec(R[u]) satisfies Q′ ∩ R = Q ∩ (R[u] ∩ R) = Q ∩ R =
q and u ∈ Q′ \ q.

(b) The “only if” assertion is trivial. We will suppose that the converse fails and
seeks a contradiction. Thus, we are supposing that, for some u ∈ T there exists a
maximal ideal M of R[u] which contains incomparable prime ideals Q1 and Q2 of
R[u]. For each i = 1, 2, consider pi := Qi ∩ R. As R is assumed to be treed, p1 and
p2 are comparable. Thus, we need to only consider the following five cases.

Case 1: p1 = p2 = m. ThenM ∩ R = m aswell, and so R ⊆ R[u]does not satisfy
INC. So, by [11, Theorem], u is not primitive over R; that is, u is not the root of a
polynomial over R with a unit coefficient. Let X be a transcendental element over R
and let ϕ : R[X ] → R[u] be the (surjective) R-algebra homomorphism sending X to
u. We have ker(ϕ) ⊆ mR[X ]. Hence, by a standard isomorphism theorem, there are
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R-algebra isomorphisms R[u]/mR[u] ∼= R[X ]/mR[X ] ∼= (R/m)[X ]. Note that if
P ∈ Spec(R[u]) satisfies P ∩ R = m, then mR[u] ⊆ PR[u] = P . Thus (again by
a standard homomorphism theorem), either P = mR[u] or P is one of the infinitely
many incomparable prime ideals of R[u] that properly contain mR[u] (cf. [21, page
25]). However, since each of M, Q1, and Q2 must meet R inm, we get thatmR[u] ⊂
Q1 ⊂ M , the desired contradiction.

Case 2: p1 ⊂ p2 = m. Then Q1 = p1 since R ⊆ R[u] is a strongly divided exten-
sion, and so Q1 ⊂ p2 ⊆ Q2. Then Q1 ⊂ Q2, the desired contradiction.

Case 3: p2 ⊂ p1 = m. This case can be handled as in Case 2 by interchanging
the subscripts “1” and “2.”

Case 4: p1 ⊆ p2 ⊂ m. Then Q1 = p1 and Q2 = p2 since R ⊆ R[u] is a strongly
divided extension, and so Q1 ⊆ Q2, the desired contradiction.

Case 5: p2 ⊆ p1 ⊂ m. This case can be handled as in Case 4 by interchanging
the subscripts “1” and “2.”

(c) The “only if” assertion is trivial. We will prove the contrapositive of the
converse. Suppose, then, that there exist C ∈ [A, B] and Q1, Q2, Q3 ∈ Spec(C)

such that Q1 ⊆ Q3 and Q2 ⊆ Q3, while Q1 and Q2 are incomparable. Pick u ∈
Q1 \ Q2 and v ∈ Q2 \ Q1. Set Q′

i := Qi ∩ A[u, v] ∈ Spec(A[u, v]) for i = 1, 2, 3.
Then A[u, v] is not treed. Indeed, Q′

1 ⊆ Q′
3 and Q′

2 ⊆ Q′
3, but Q′

1 and Q′
2 are

incomparable, since u ∈ Q′
1 \ Q′

2 and v ∈ Q′
2 \ Q′

1. �

It may be useful for future reference purposes to record that the proof of
Proposition 2.12 did not make significant use of the hypothesis that the rings of
interest are domains.

We can now give a treed-theoretic characterization of the integrally closed
strongly divided pairs whose base ring is treed. Theorem 2.13 generalizes part of
[3, Corollary 3].

Theorem 2.13 Let R ⊆ T be domains such that R is integrally closed in T and
(R,m) is quasi-local and treed. Then (R, T ) is a strongly divided pair if and only if
R[u] is treed for each u ∈ T .

Proof Suppose first that R is a field. Then (R, T ) is a strongly divided pair by
Proposition 2.1(a); and if u ∈ T , then the domain R[u] is treed because dim(R[u]) ≤
1. Thus, we can assume, without loss of generality, that R is not a field.

Next, suppose that (R, T ) is a strongly divided pair. Then, since R is treed by
assumption, Proposition 2.12(b) ensures that R[u] is treed for each u ∈ T .

Conversely, suppose that R[u] is treed for each u ∈ T . We will show that (R, T )

is a strongly divided pair by adapting most of the proof of the implication (3) ⇒
(1) in [3, Theorem 1, page 137]. To do so, we must verify two facts: first, that T is
algebraic over R; and then, second, that T is an overring of R (inside qf(R)). We
get the first of these facts, for if ξ ∈ T were transcendental over R, then R[ξ ] would
not be treed (because R is not a field), contrary to hypothesis; and then we get the
second fact via [21, Exercise 35, page 44]. One can now check that the argument on
[3, page 137] carries over, with the following four changes: choose u ∈ Q′′ \ P ′
(rather than u ∈ Q′ \ P ′), to ensure that u ∈ T ; then define Q as Q′′ ∩ R[u] (rather
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than as Q′ ∩ R[u]); get u−1 /∈ R (because onewould otherwise have 1 = uu−1 ∈ M ′,
a contradiction); and when enlarging M , ensure that mR[u] is properly contained in
M . The proof is complete �

We can now generalize part of a main result on strongly divided domains [3,
Theorem 1].

Corollary 2.14 Let R ⊆ T be domains such that (R,m) is a quasi-local treed
domain and R is also treed. Then (R, T ) is a strongly divided pair if and only if
S(R) = S(R) and R[u] is a treed domain for each u ∈ T .

Proof By Proposition 2.10, it is enough to show that (RM , TM) is a strongly divided
pair for eachM ∈ Max(R) if andonly if R[u] is treed for eachu ∈ T . For themoment,
fix M ∈ Max(R) and an element u ∈ TM . We can write u = v/z for some v ∈ T
and z ∈ R \ M . Then RM [u] = RM [v/1, 1/z] = RM [v/1] = R[v]R\M =: R[v]M .
Hence, for each M ∈ Max(R), we have that RM [u] is treed for each u ∈ TM if
and only if RM [v] is treed for each v ∈ T . On the other hand, if v ∈ T , then R[v]
is treed if and only if R[v]M is treed for each M ∈ Max(R); that is, if and only if
RM [v] is treed for each M ∈ Max(R). Thus, R[v] is treed for each v ∈ T if and only
if RM [v] is treed for each M ∈ Max(R) and for each v ∈ T ; that is, if and only if
RM [w] is treed for each M ∈ Max(R) and for each w ∈ TM . It now suffices to prove
the following: if M ∈ Max(R), then (RM , TM) is a strongly divided pair if and only
if RM [w] is treed for each w ∈ TM . Note that RM is a quasi-local domain which is
integrally closed in TM . By Theorem 2.13, it will suffice to have that RM is treed.
This fact, in turn, holds because of the hypothesis that R is treed. �

In view of Corollary 2.14, it is natural to ask if there exist examples of strongly
divided pairs (R, T ) such that R is treed (resp., not treed) and T is not treed. The
answer is in the affirmative: see Example 4.1 (resp., Example 3.11). On the other
hand, Proposition 4.2 will show that there does not exist a strongly divided pair
(R, T ) such that R is not treed and T is treed.

3 The Case mT = T

This section starts by characterizing a subcase that is admittedly special and rather
easy, but it is also interesting and very useful. Note that if p = {0} in Proposition
3.1, we recover the archetypical situation that was studied in [3].

Proposition 3.1 Let (R,m) be a quasi-local domain and let p ∈ S(R). Then
(R, Rp) is a strongly divided pair if and only if p is a divided prime ideal of R
and R/p is a strongly divided domain.

Proof Suppose first that (R, Rp) is a strongly divided pair. Since R ⊆ Rp is a
strongly divided extension and pRp ∈ Spec(Rp)with pRp ∩ R = p ∈ S(R), it must
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be the case that pRp = p; that is, p is a divided prime ideal of R. Furthermore, by
Proposition 2.4, (R/p, Rp/pRp) is a strongly divided pair. As Rp/pRp = qf(R/p),
this means that R/p is a strongly divided domain.

Next, for the converse, suppose that p is a divided prime ideal of R and R/p
is a strongly divided domain. Let E ∈ [R, Rp] and Q ∈ Spec(E) such that q :=
Q ∩ R ∈ S(R); that is, q ⊂ m. Our task is to prove that Q = q (or, equivalently,
that Q ⊆ R). Since p is a divided prime ideal of R, p and q are comparable (with
respect to inclusion). We proceed to consider the two cases that can occur.

Case 1: p ⊆ q. Then R/p ⊆ E/p ⊆ Rp/pRp = qf(R/p). As R/p is a strongly
divided domain with maximal ideal m/p and Q/p ∩ R/p = (Q ∩ R)/p = q/p ⊂
m/p ∈ S(R/p), we get Q/p = q/p, whence Q = q.

Case 2: q ⊂ p. Then QEp is a prime ideal of Ep. Since R ⊆ E ⊆ Rp leads
to Rp ⊆ Ep ⊆ (Rp)p = Rp (in general), we get Ep = Rp. Hence, QEp = QRp ∈
Spec(Rp) satisfies QEp ⊆ pRp. But pRp = p since p is a divided prime ideal of
R, and so QEp ⊆ p ⊆ R. Thus Q ⊆ QEp ⊆ R, and so Q ⊆ R, as desired. �

We can now augment Remark 2.9(c) by noting another interesting feature of the
d-dimensional domain studied there (that is, the domain R from [3, Example 3]) in
case (2 ≤) d < ∞. It is the following concrete example. If 2 ≤ d < ∞, then R is a
two-dimensional divided domain which is not a strongly divided domain but has a
proper overring S such that (R, S) is a strongly divided pair. For a proof, one can
take S := Rq , where q is the unique prime ideal of R of height d − 1, and apply
Proposition 3.1.

Remark 2.9(d), as well as some examples in this section and the next section,
makes explicit use of pullbacks. One should also note that pullbacks occasionally
appear implicitly in this work. For instance, when the equivalent conditions in Propo-
sition 3.1 hold, one has that R ∼= R/p ×Rp/pRp Rp.

Lemma 3.2 Let R ⊆ T be domains such that (R,m) is quasi-local. Then the fol-
lowing conditions are equivalent:

(1) For each u ∈ T \ R, one has u−1 ∈ T ;
(2) T is quasi-local and its maximal ideal is a divided prime ideal of R.

Proof If R = T , then both (1) and (2) hold. Hence, without loss of generality,
R ⊂ T . It follows that the conductor p := (R :T T ) := {u ∈ T | uT ⊆ R}, the
largest common ideal of R and T , is a proper ideal of both R and T (since R ⊂ T
ensures that 1 /∈ (R :T T )).

(1)⇒ (2): Assume (1). Let Q ∈ Max(T ). If 0 �= u ∈ Q, then u−1 /∈ T (for other-
wise, 1 = uu−1 ∈ QT = Q, a contradiction). Hence, by (1), (Q \ {0}) ∩ (T \ R) =
∅. It follows that Q ⊆ R. Thus, Q is a common ideal of R and T , and so
Q ⊆ (R :T T ) = p ⊂ R. Therefore, T is quasi-local with unique maximal ideal p,
whichmust therefore be a prime ideal of R. It remains only to show that p is a divided
prime ideal of R. This, in turn, holds since pRp ⊆ pTR\p ⊆ pTT \p = pT = p.

(2)⇒ (1): Assume (2); that is, T is quasi-local with maximal ideal P ∈ Spec(R).
Then the set of units of T is T \ P . To finish the proof, it is enough to observe that
T \ R ⊆ T \ P . �
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We can now give some characterizations of the strongly divided pairs ((R,m), T )

such that mT = T .

Theorem 3.3 Let R ⊆ T be domains such that (R,m) is quasi-local and the maxi-
mal ideal m of R satisfies mT = T . Then R ⊂ T and the following three conditions
are equivalent:

(1) (R, T ) is a strongly divided pair;
(2) T is quasi-local, the maximal ideal p of T is a divided prime ideal of R, and
(R/p, T/p) is a strongly divided pair;
(3) T is quasi-local, themaximal ideal p of T is a divided prime ideal of R, and either
(i) dim(R/p) = 1 and T/p is algebraic over R/p or (ii) dim(R/p) > 1, T = Rp,
and R/p is a strongly divided domain.

It is necessary in (2) and (3) that p ∈ S(R); and it is also necessary in (3)(ii)
that qf(R/p) = T/p.

Proof Of course, R ⊂ T since 1 ∈ T = mT and 1 /∈ m = mR. We next establish
the “It is necessary” assertion. If p is as in (2) or (3), then p ∈ S(R) (for otherwise,
p = m and then 1 ∈ T = mT = pT = p, a contradiction). If (3) and its condition
(ii) hold, then qf(R/p) = Rp/pRp = T/p since Rp = T and pRp = p. We turn to
proving that (1), (2), and (3) are equivalent.

(1) ⇒ (2): Assume (1). Let u ∈ T \ R. If u ∈ Q for some Q ∈ Spec(T ) and
q := Q ∩ R satisfies q ∈ S(R), then it follows from (1) that Q = q ⊆ R, so that
u ∈ RadT (uT ) ⊆ Q ⊆ R, contrary to the choice of u. Therefore, if u ∈ Q for some
Q ∈ Spec(T ), itmust be the case thatQ ∩ R = m. AsmT = T , no suchQ exists, and
so uT = T ; that is, u−1 ∈ T . Hence, by Lemma 3.2, T is quasi-local and its maximal
ideal p is a divided prime ideal of R. Also, since 1 ∈ T = mT and 1 /∈ p = pT , we
get p �= m; that is, p ∈ S(R). Thus, by Proposition 2.4, (R/p, T/p) is a strongly
divided pair.

(2) ⇒ (3): Assume (2). Then R ⊆ Rp ⊆ Tp ⊆ TT \p = T since (T, p) is quasi-
local. Hence, as p is a divided prime ideal of R, we get R/p ⊆ Rp/p = Rp/pRp =
qf(R/p) ⊆ T/p. Since (R/p, T/p) is a strongly divided pair, so is (R/p, qf(R/p));
that is, R/p is a strongly divided domain. Also, as shown above, p ∈ S(R). Thus
R/p is not a field. Therefore, since (R/p, T/p) is a strongly divided pair, it follows
from Proposition 2.1(d) that T/p is algebraic over R/p. It remains to prove that
if dim(R/p) > 1, then T = Rp. As we saw that Rp ⊆ T , it will suffice to prove
the reverse inclusion. By Proposition 2.1(f), T/p is an overring of R/p; that is,
T/p ⊆ qf(R/p) = Rp/p. Hence T ⊆ Rp.

(3)⇒ (1): Assume (3). Let E ∈ [R, T ] and Q ∈ Spec(E) such that q := Q ∩ R ∈
S(R); that is, q ⊂ m. Our task is to prove that Q ⊆ R (or, equivalently, Q = q). Note
that p is a common prime ideal of R, E , and T . Also, p and q are comparable because
p is a divided prime ideal of R. There are two cases.

Case 1: p � q. Then p � Q. In addition, EQ = TQ := TE\Q . (This can be shown
as in the hint for [21, Exercise 41 (a), page 46].) Thus, there exists Q′ ∈ Spec(T )

such that Q′ ∩ E = Q. As (T, p) is quasi-local, Q′ ⊆ p. Hence, Q ⊆ Q′ ⊆ p ⊆ R,
so that Q ⊆ R, as desired.
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Case 2: p ⊆ q. Then Q/p ∈ Spec(E/p) satisfies (Q/p) ∩ (R/p) = (Q ∩
R)/p = q/p ⊂ m/p sinceq ∈ S(R). Supposefirst that dim(R/p) = 1.Thenq/p =
{0}; that is, p = q. As T/p is algebraic over R/p, [19, Lemma 11.1] yields that
Q/p = {0}; that is, Q = p. Hence Q = q, as desired. In the remaining subcase,
dim(R/p) > 1. Then, as noted above, qf(R/p) = T/p. Since R/p is a strongly
divided domain, (R/p, T/p) is a strongly divided pair. As E/p ∈ [R/p, T/p], it
follows that R/p ⊆ E/p is a strongly divided extension. As q/p ∈ S(R/p), we get
Q/p = q/p, whence Q = q, as desired. �

The proof that (3) ⇒ (1) in Theorem 3.3 did not use the hypothesis thatmT = T .
We record this fact and slightly more in the next corollary.

Corollary 3.4 Let R ⊆ T be domains such that R and T are quasi-local, the max-
imal ideal p of T is a divided prime ideal of R, and either (i) dim(R/p) ≤ 1 and
T/p is algebraic over R/p or (ii) dim(R/p) > 1, T = Rp, and R/p is a strongly
divided domain. Then (R, T ) is a strongly divided pair.

Proof It clearly suffices to show that Spec(E) = Spec(R) (as sets) for all E ∈ [R, T ].
Without loss of generality, we can assume that R �= T . By the preceding comment,
we can also assume that (i) holds with dim(R/p) = 0. Then p ∈ Max(R); that is, p
is the maximal ideal of R. As Max(R) = {p} = Max(T ), [2, Theorem 3.10] gives
Spec(R) = Spec(T ) (as sets). Hence, by [2, Corollary 3.26], it will suffice to have
that T/p is algebraic over R/p. As this algebraicity was assumed in (i), the proof is
complete. �

In case R = T , condition (3) of Theorem 3.3 admits a more elegant formula-
tion that is evocative of Proposition 3.1 and the archetypical context from [3]: see
Corollary 3.5.

Corollary 3.5 Let R ⊆ T be domains such that (R,m) is quasi-local, the maximal
ideal m of R satisfies mT = T , and R is integrally closed in T . Then R ⊂ T and the
following three conditions are equivalent:

(1) (R, T ) is a strongly divided pair;
(2) T is quasi-local, the maximal ideal p of T is a divided prime ideal of R, and
(R/p, T/p) is a strongly divided pair;
(3) T = Rp for some divided prime ideal p of R and R/p is a strongly divided
domain.

It is necessary in (2) and (3) that p ∈ S(R); and it is also necessary in (3) that
(T, p) is quasi-local and qf(R/p) = T/p.

Proof Any domain of Krull dimension 1 is a strongly divided domain [3, Proposition
1(b)].Hence, byTheorem3.3, it suffices to prove that if (2) holdswith dim(R/p) = 1,
then T = Rp. Assume (2). Then, as noted above (and in Theorem 3.3), p ∈ S(R),
and so R/p is not a field. Since (R/p, T/p) is a strongly divided pair, it follows
from Proposition 2.1(d) that T/p is algebraic over R/p. However, as is well known
(cf. [18, Corollary 1.5 (5)]), the hypothesis that R is integrally closed in T implies
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that R/p is integrally closed in T/p. Therefore, by [21, Exercise 35, page 44], T/p
is an overring of R/p. Since pRp = p, it follows that T ⊆ Rp. To get the reverse
inclusion (and thus complete the proof), one can revisit the beginning of the proof
that (2) ⇒ (3) in Theorem 3.3. �

Propositions 3.7 and 3.8 will deepen the comments in Sect. 2 about the failure of
the converse of Proposition 2.6. It will be convenient to use the following notation.
If R ⊆ T are domains and T is quasi-local with maximal ideal p, let p∗ := ⋃{q ∈
S(R) | p ⊆ q}.
Lemma 3.6 Let R ⊆ T be domains, with (R,m) quasi-local, such that (R, T ) is
a strongly divided pair and mT = T . Let p denote the maximal ideal of T . (T is
quasi-local by Theorem 3.3.) Then:

(a) If q ∈ S(R) and p ⊆ q, then q is a divided prime ideal of R.
(b) p∗ is a divided prime ideal of R.

Proof (a) As R ⊆ Rq ⊆ Rp ⊆ Tp ⊆ T , we get that (R, Rq) inherits the “strongly
divided pair” property from (R, T ). Since q ⊂ m, (a) now follows from Proposition
3.1. (The preceding clause can be replaced with an appeal to Theorem 3.3, since
mRq = Rq .)

(b) Since pT = p ⊂ T and mT = T , we get p ⊂ m; that is, p ∈ S(R). As R is
quasi-local, it follows from (a) that p∗ is the (directed) direct limit, with nonempty
index set, of the set of all the (necessarily divided prime ideals) q ∈ S(R) such that
p ⊆ q. Now, one need to only observe that the proof of [14, Proposition 2.5(b)]
shows that any (directed) direct limit of a nonempty set of divided prime ideals of a
domain D is a divided prime ideal of D. �

Proposition 3.7 Let R ⊆ T be domains, with both (R,m) and (T, p) quasi-local,
such that mT = T and p∗ = m. Then (R, T ) is a strongly divided pair if and only if
R is PV in T .

Proof By Proposition 2.6, it remains to show that if (R, T ) is a strongly divided pair,
then R is PV in T . Let u ∈ T \ R. As u /∈ m, u is not an element of any q ∈ S(R)

such that p ⊆ q. Fix a ∈ m. We must show that u−1a ∈ m. As p∗ = m, there exists
qo ∈ S(R) such that p ⊆ qo and a ∈ qo. Since T ⊆ Tqo ⊆ Tp = T , we get Tqo = T ,
and so we have the inclusions R ⊂ Rqo ⊆ Tqo = T . Furthermore, (R, Rqo) inherits
the “strongly divided pair” property from (R, T ) and mRqo = Rqo (since qo ⊂ m).
Also, since p ⊆ qo, Lemma 3.6(a) ensures that qoRqo = qo. There are two possible
cases.

Case 1: u ∈ Rqo \ R. Then, by applying Lemma 3.2 to (R, Rqo), we get u
−1 ∈ Rqo .

Hence, u−1a ∈ qoRqo = qo ⊆ m.
Case 2: u ∈ T \ Rqo . Then, since Rqo is PV in Tqo = T (by Proposition 2.8(d))

and a is a nonunit of Rqo , we get u
−1a ∈ qoRqo = qo ⊆ m. �

If one deletes the hypothesis that p∗ = m in Proposition 3.7, the above “only if”
assertion is false. For the case p∗ �= m, the following result provides necessary and
sufficient conditions for R to be PV in T .
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Proposition 3.8 Let R ⊆ T be domains, with (R,m) quasi-local, such that (R, T )

is a strongly divided pair and mT = T . Suppose also that p∗ ⊂ m, where p denotes
the maximal ideal of T . Then R is PV in T if and only if R/p∗ is a PVD and Rp∗ is
VD in T .

Proof By Lemma 3.6(b), p∗ is a divided prime ideal of R. Also, since pT = p ⊂
T and mT = T , we get p ⊂ m; that is, p ∈ S(R). Consequently p ⊆ p∗, by the
definition of p∗. Thus Tp∗ ⊆ Tp = T , and so Tp∗ = T . We now have R ⊂ Rp∗ ⊆ T .

Suppose first that R is PV in T . As p∗ ⊂ m, [5, Corollary 1.9] gives that Rp∗ is
VD in Tp∗ = T . Moreover, R is PV in Rp∗ (since R is PV in T and Rp∗ ∈ [R, T ])
and mRp∗ = Rp∗ . Hence, by [5, Theorem 3.7], R/p∗ is a PVD.

Conversely, suppose that R/p∗ is a PVD and Rp∗ is VD in T . We must show that
if u ∈ T \ R, then u−1m ⊆ m. There are two possible cases.

Case 1: u ∈ Rp∗ . As R/p∗ is a PVD and p∗ is a divided prime ideal of R (by
Lemma3.6(b)), [5, Theorem3.7] gives that R is PV in Rp∗ . Hence, since u ∈ Rp∗ \ R,
we have u−1m ⊆ m.

Case 2: u ∈ T \ Rp∗ . Then u−1 ∈ Rp∗ since Rp∗ is VD in T . Hence u−1 ∈
p∗Rp∗ = p∗ ⊆ R, and so u−1m ⊆ m. �

To close the section, we build on the results from Sect. 2 concerning the interplay
between strongly divided pairs and treed simple intermediate rings, working now in
the case where mT = T .

Proposition 3.9 Let R ⊆ T be domains such that (R, T ) is a strongly divided pair
and mT = T , where m denotes the unique maximal ideal of R. Let p denote the
unique maximal ideal of T . (Note that T is quasi-local by Theorem 3.3.) Then the
following conditions are equivalent:

(1) R is treed;
(2) T is treed;
(3) {Q ∈ Spec(R) | Q ⊆ p} is linearly ordered under inclusion;
(4) R[u] is treed for each u ∈ T .

Proof We will prove that (3) ⇔ (2) and that (1) ⇔ (2). It will be convenient to let
U := {Q ∈ Spec(R) | Q ⊆ p}.

By Theorem 3.3, T is quasi-local, its maximal ideal p is a divided prime ideal of
R, and (R/p, T/p) is a strongly divided pair. In addition, since any one-dimensional
domain is a strongly divided domain [3, Proposition 1(b)], it also follows from Theo-
rem3.3 that R/p is a strongly divided domain, hence a divided domain [3, Proposition
1(a)], hence a quasi-local treed domain. Thus, as a poset under inclusion, Spec(R/p)
is a linearly ordered set. This is relevant because R is the pullback R/p ×T/p T .
Then Spec(R) (with the Zariski topology) can be described up to homeomorphism
by a fundamental gluing result [18, Theorem 1.4]. The order-theoretic upshot of
the information from that gluing is that, as a poset, Spec(R) is order-isomorphic to
the result of placing Spec(R/p) atop Spec(T ) with 0 ∈ Spec(R/p) identified with
p ∈ Spec(T ). This order-isomorphism has two important consequences. First, U is
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order-isomorphic to Spec(T ), whence (3) ⇔ (2). Second, since we have seen that
Spec(R/p) is linearly ordered, R is (quasi-local and) treed ⇔ Spec(R) is linearly
ordered ⇔ Spec(T ) is linearly ordered; that is, (1) ⇔ (2).

Finally, (1) ⇒ (4) by Propositions 2.12(b); and (4) ⇒ (1) trivially. �

The constructions in Examples 3.11 and 4.1 will depend in part on the example
in the following remark.

Remark 3.10 We will use classical methods, similar to those in Remark 2.9(d), to
construct a useful quasi-local domain which is not treed. Let k be a field and let X
and Y be (commuting) algebraically independent indeterminates over k. Consider

V := k[Y ](Y ) + Xk(Y )[X ](X) = k + Yk[Y ](Y ) + Xk(Y )[X ](X) and

W := k[X ](X+1) + Yk(X)[Y ](Y ) = k + (X + 1)k[X ](X+1) + Yk(X)[Y ](Y ). Then V
and W are two incomparable valuations domains with maximal ideals M ′ =
Yk[Y ](Y ) + Xk(Y )[X ](X) and N ′ = (X + 1)k[X ](X+1) + Yk(X)[Y ](Y ), respectively.
Set P ′ := Xk(Y )[X ](X) and Q′ := Yk(X)[Y ](Y ). Since V and W are incompara-
ble valuation domains with the same quotient field, H := V ∩ W is a quasi–semi-
local Prüfer domain whose prime spectrum consists of two chains, (0) ⊂ P ⊂ M
and (0) ⊂ Q ⊂ N , where P := P ′ ∩ H , Q := Q′ ∩ H , M := M ′ ∩ H and N :=
N ′ ∩ H. Moreover, P and Q are incomparable. Finally set T := k + I , where
I := M ∩ N . Then T is a quasi-local two-dimensional domain which is not treed.
Indeed,

Spec(T ) = {(0), P ∩ T, Q ∩ T, I },

where (0) ⊂ P ∩ T ⊂ I , (0) ⊂ Q ∩ T ⊂ I , and P ∩ T and Q ∩ T are incompara-
ble.

Examples of strongly divided pairs ((R.m), T ) with mT = T such that both R
and T are treed are commonplace: consider, for instance, (R, qf(R)) where R is any
strongly divided domain which is not a field. In light of Proposition 3.9, it is natural
to ask if there also exist examples of strongly divided pairs ((R.m), T )withmT = T
such that neither R nor T is treed. Example 3.11 will answer that question in the
affirmative.

Example 3.11 There exists a strongly divided pair (R, T ) of domains such that
(R,m) is quasi-local but not treed,mT = T , and T is not treed. One way to construct
such data is to take F ⊆ L as an algebraic extension of fields; X an indeterminate
over L; k := L(X); T and I as in Remark 3.10; D := F[X ](X); and R the pullback
R := D ×k T .

Proof Recall that T is a quasi-local two-dimensional domain with unique maxi-
mal ideal I and exactly two (incomparable) height 1 prime ideals. In particular,
T is not treed. Next, consider the pullback description that was used to define R.
(That description makes sense since T/I ∼= k.) An application of [18, Theorem 1.4]
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reveals that as a poset, Spec(R) is order-isomorphic to the result of placing Spec(D)

atop Spec(T ) with (0) ∈ Spec(D) identified with I ∈ Spec(T ). As (D, XD) is a
one-dimensional (quasi-)local domain, it follows that R is a three-dimensional quasi-
local domain, saywithmaximal idealm; the unique height 2 prime ideal of R is I ; and
the incomparable height 1 prime ideals of T intersect with R to give incomparable
height 1 prime ideals of R. Thus R is not treed. Moreover, mT = T (for otherwise,
mT ⊆ I , a contradiction since m ⊆ mT and I ⊂ m). It remains only to prove that
(R, T ) is a strongly divided pair.

Since A := F(X) + I is the pullback F(X) ×k T , an application of [18, The-
orem 1.4] reveals that Spec(A) = Spec(T ). In particular, A is quasi-local, with
unique maximal ideal I . Observe that A/I ∼= F(X) canonically. As R is the pull-
back D ×F(X) A and qf(D) = F(X), it follows from [13, Lemma 2.5(v)] that I is
a divided prime ideal of R. We claim that (R/I, T/I ) is a strongly divided pair.
Indeed, this pair can be identified with (D, k), and this pair is strongly divided by
Proposition 2.1(e), since dim(D) = 1 and k is algebraic over D. This proves the
claim. Therefore, by (verifying condition (2) in) Theorem 3.3, (R, T ) is a strongly
divided pair. At this point, the proof is complete, but we can now offer a second proof
that R is not treed: combine Proposition 3.9 with the fact that T is not treed. �

4 The Case mT �= T

In light of Proposition 3.9 and Example 3.11, it is natural to ask if there exists an
example of a strongly divided pair ((R,m), T ) such that exactly one of R, T is
treed. Example 4.1 will answer this question in the affirmative. By Proposition 3.9,
any such example must satisfy mT �= T , and so its placement here seems a fitting
way to begin this section.

Example 4.1 There exists a strongly dividedpair (R, T1)of domains such that (R,m)

is a quasi-local treed domain, mT1 �= T1, and the domain T1 is not treed. One way
to construct such data is to take k, I and T as in Remark 3.10; K = qf(T ); V1 :=
K [Z ](Z) = K + m, where Z is an indeterminate over K and m = ZV1 is the unique
maximal ideal of V1; T1 := T ×K V1 = T + m = k + I + m; and R the pullback
R = k ×T T1.

Proof Thepullback giving T1 iswell-defined sinceV1/m = K canonically.An appli-
cation of [18, Theorem 1.4] to the above pullback description of T1 reveals that as a
poset, Spec(T1) is order-isomorphic to the result of placing Spec(T ) atop Spec(V1)

with (0) ∈ Spec(T ) identified with m ∈ Spec(V1). As (V1,m) is a one-dimensional
(quasi-)local domain, it follows that T1 is a three-dimensional quasi-local domain
with maximal ideal I ; the (two) incomparable height 1 prime ideals of T become
(after the gluing identification process) incomparable height 2 prime ideals of T1;
and the unique height 1 prime ideal of T1 is m. In particular, the domain T1 is not
treed.
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Note that the pullback giving R is well-defined since T1/m = T canonically and
k ⊂ k + I = T . An application of [18, Theorem 1.4] to this pullback reveals that as
a poset, Spec(R) = {(0),m}, since the gluing process identifies each prime ideal of
T1 that contains m with (0) ∈ Spec(k). It follows that R is a one-dimensional quasi-
local domain with maximal ideal m. In particular, R is a treed domain. Moreover,
mT1 = m �= T1. It remains only to show that (R, T1) is a strongly divided pair. Since
dim(R) = 1, it follows from Proposition 2.1(e) that it suffices to prove that T1 is
algebraic over R. This, in turn, holds, since T1 is an overring of R, the point being
that R and T1 share the nonzero common ideal m. �

Example 4.1 has shown that the condition on 2-generated intermediate rings
in Proposition 2.12(c) cannot be weakened to the corresponding condition on
1-generated intermediate rings. Example 4.1 has also shown that the conclusion
of Proposition 3.9 does not hold in general for the context studied in this section.
More generally, this result indicates that the strongly divided pairs ((R,m), T ) with
mT �= T cannot be expected to behave as in the theory developed in Sect. 3. Thus,
one should perhaps cautiously begin the theoretical development in this section by
examining its simplest subcase. For domains (R,m) ⊆ T such that R is quasi-local
but not a field, it seems clear to us that the simplest sufficient condition for mT to
be unequal to T is that m is an ideal of T (that is, that mT = m). Proposition 4.2
records some consequences of this sufficient condition.

Proposition 4.2 Let (R,m) ⊆ T be domains such that R is quasi-local. Assume
also that m is an ideal of T . Then:

(a) (R, T ) is a strongly divided pair if and only if R ⊆ T is a strongly divided
extension.
(b) m is a maximal ideal of T if and only if Spec(R) = Spec(T ) (as sets).
(c) If m is a maximal ideal of T , then (R, T ) is a strongly divided pair.
(d) Let K := qf(R), let (m :K m) := {u ∈ K | um ⊆ m}, and let π : (m :K m) →
(m :K m)/m be the canonical projection map. Then for any field F ∈ [R/m, (m :K
m)/m], E := π−1(F) is a quasi-local domain with maximal ideal m and (R, E) is
a strongly divided pair. Furthermore, E ∈ [R, T ] if and only F ⊆ T/m.

Proof Each of (a)–(d) holds if R is a field (that is, if m = (0). Indeed, to see this for
(a) and (c), use Proposition 2.1(a); for (b), note that if D is a domain, then (0) is the
only prime ideal of D if and only if D is a field; and for (d), note thatm = (0) forces
(m :K m) = K = R = F = E (where we do not distinguish between a ring A and
A/(0)). Thus, we can assume henceforth that R is not a field.

(a) The “only if” assertion is trivial. It remains to prove that if R ⊆ T is a strongly
divided extension and H ∈ [R, T ], then R ⊆ H is a strongly divided extension.
Suppose that Q ∈ Spec(H) satisfies p := Q ∩ R ∈ S(R); that is, p ⊂ m. Our task
is to show that Q ⊆ R. Observe thatm � Q (for otherwise,m = m ∩ R ⊆ Q ∩ R =
p ⊂ m, a contradiction). Since m �= (0), we can conclude that HQ = TQ (:= TH\Q)
by reasoning as in the hint given for [21, Exercise 41 (b), page 46]. (In detail, if
t ∈ T , z ∈ H \ Q and a ∈ m \ Q, then at ∈ mT = m ⊆ R ⊆ H and az ∈ H \ Q,
whence t/z = (at)/(az) ∈ HQ .) It follows that Q′ := QHQ ∩ T is a (in fact, the
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unique) prime ideal of T such that Q′ ∩ H = Q. Hence Q′ ∩ R = Q′ ∩ (H ∩ R) =
(Q′ ∩ H) ∩ R = Q ∩ R = q ∈ S(R). Therefore Q′ ⊆ R, since R ⊆ T is a strongly
divided extension, and a fortiori, Q ⊆ R, as desired.

(b) This is a restatement of [2, Proposition 3.8].
(c) By hypothesis, m ∈ Max(T ). Thus, by (b), Spec(R) = Spec(T ). As (R,m)

is quasi-local, it follows that each prime ideal of T is comparable to m (with respect
to inclusion). Therefore, by Proposition 2.5, R ⊆ T is a strongly divided extension.
Hence, by (a), R ⊆ T is a strongly divided pair.

(d)We will first prove the “Furthermore” assertion. Sincem is a nonzero common
ideal of ideal of R and T , it follows that T is an overring of R and, in fact, T ⊆ (m :K
m). As R = π−1(R/m) ⊆ π−1(F) = E and E/m = F , we get that E ∈ [R, T ] ⇔
E ⊆ T ⇔ E/m ⊆ T/m ⇔ F ⊆ T/m. Next, we will prove the first assertion in (d).
By (c), it suffices to show that m ∈ Max(E). Hence, by (b), it is enough to prove
that Spec(R) = Spec(E). This, in turn, follows from [2, Theorem 3.25] since F is a
field. Finally, we offer the following sketch of an alternate way to see that Spec(R) =
Spec(E). View R as the pullback R = E ×F R/m, apply the fundamental gluing
result [18, Theorem 1.4] to this pullback to get a description (up to homeomorphism)
of Spec(R) with the Zariski topology, and consider the order-theoretic implications
of that description. �

The next result introduces a condition that is reminiscent of, but distinct from,
condition (4) in Proposition 2.5.

Proposition 4.3 If (R,m) is a quasi-local domain and R ⊆ T is a strongly divided
extension such that mT �= T , then each prime ideal of T is comparable to mT (with
respect to inclusion).

Proof LetQ ∈ Spec(T ) andputq := Q ∩ R. Ifq ⊂ m, thenQ = q (by the “strongly
divided” hypothesis), and so Q ⊂ m ⊆ mT , whence Q ⊂ mT . In the remaining case,
q = m, and so mT = qT ⊆ Q. �

Recall that if A is a ring and P ∈ Spec(A), then Spec(A) is said to be pinched at
P if each Q ∈ Spec(A) is comparable to P (with respect to inclusion). Two trivial
examples are the following: if (A,m) is a quasi-local ring, then Spec(A) is pinched
at m; if D is a domain, then Spec(D) is pinched at (0). A less trivial example, which
follows from Proposition 4.3, is the following: if (R,m) is a quasi-local domain
and R ⊆ T is a strongly divided extension such that mT ∈ Spec(T ), then Spec(T )

is pinched at mT . Combining this last example with Proposition 4.2(c) gives the
following: if R ⊆ E are domains such that (R,m) is quasi-local and m ∈ Max(E),
then (R, E) is a strongly divided pair and Spec(R) = Spec(E) is pinched at m.
Exactly the same conclusion holds for the data R, E from Proposition 4.2(d). As the
ring R in Proposition 4.2(d) is the pullback R/m ×F E , these examples suggest that
it may be fruitful to build additional examples of strongly divided pairs ((R,m), T )

such that mT �= T by using pullbacks that are pinched at some prime ideal. This
is done in the next two results. Example 4.4 treats the case of integral extensions.
Proposition 4.5 treats the remaining cases and is of some greater interest because the
prime ideals at which the given spectra are pinched are not maximal ideals.
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Example 4.4 Let 0 ≤ d ≤ ∞ and let (T,m) be a quasi-local domain of Krull
dimension d. Put k := T/m. Let F be a subfield of k such that k is algebraic over
F . Let R be the pullback R = F ×k T . Then:

(a) T is integral over R.
(b) For all H ∈ [R, T ], one has H = H/m ×k T and Spec(R) = Spec(H) =
Spec(T ), whence (H, T ) is a strongly divided pair and Spec(H) is pinched at m.
(c) dim(H) = d for all H ∈ [R, T ].
Proof (a) Since k is algebraic over F , the conclusion follows from a standard fact
about pullbacks [18, Corollary 1.5 (5)].

(b) As H/m ∈ [F, k], H/m is a domain that is algebraic over the field F , and
so H/m is a field. Then, since H = H/m ×k T , applying [18, Theorem 1.4] to
this pullback description leads to Spec(H) = Spec(T ), from which the rest of the
assertion follows easily.

(c) Apply the fact, from (b), that Spec(H) = Spec(T ); for an alternate proof of
(c), combine (a) with [21, Theorem 48]. �

Proposition 4.5 Let T be a domain and let Q be a nonmaximal prime ideal of T
such that Spec(T ) is pinched at Q. Put D := T/Q. Let F be a field such that F ⊆ D.
(Then F ⊂ D since D is not a field.) Let R be the pullback R = F ×D T . Next, let
L be the integral closure of F in D and, if π : T → D is the canonical projection
map, let S := π−1(L). Then:

(a) (R,T) is a strongly divided pair and T is not integral over R. In addition, R is
integrally closed in T if and only if F is integrally closed in D. Moreover, Q is the
unique maximal ideal of R and QT = Q �= T .
(b) (S,T) is a strongly divided pair and S is integrally closed in T . Moreover, Q is
the unique maximal ideal of S and QT = Q �= T .
(c) (S,T) is not a normal pair.

Proof (a) In the “gluing” identification of Spec(R) via [18, Theorem 1.4], all the
prime ideals of T that contain Q are identified with (0) ∈ Spec(F). The upshot
is that Spec(R) is order-isomorphic to {P ∈ Spec(T ) | P ⊆ Q}. In particular, R is
quasi-local with unique maximal ideal Q. Plainly, QT = Q �= T . In addition, [18,
Corollary 1.5 (5)] ensures that T is not integral over R, the point being that D is not
integral over F (since the domain D is not a field); and that R is integrally closed in
T ⇔ F = L (⇔ R = S) ⇔ F is integrally closed in D.

To prove that (R, T ) is a strongly divided pair, we will show that if H ∈ [R, T ],
then R ⊆ H is a strongly divided extension. Observe that H = H/Q ×D T . By
applying [18, Theorem 1.4] to this pullback description, we get that Spec(H) is
order-isomorphic to the disjoint union of {P ∈ Spec(T ) | P ⊂ Q} and some set
T ⊆ {q ∈ Spec(H) | Q ⊆ q} (with the obvious partial order). Identify S(R) with
{P ∈ Spec(T ) | P ⊂ Q}. It is clear that if p ∈ Spec(H) with p ∩ R ∈ S(R), then p
has been identified with some element of S(R), and so p = p ∩ R; that is, R ⊆ H is
a strongly divided extension.
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(b) We have S = L ×D T . Also, L is integrally closed in D. Thus, it suffices to
repeat the proof of (a), with L (resp., S) playing the earlier role of F (resp., R).

(c) By the proof of (b), Spec(S) is order-isomorphic to {P ∈ Spec(T ) | P ⊆ Q}.
Since Q is not a maximal ideal of T , we can choose N ∈ Max(T ) such that Q ⊂ N .
As Q is a (in fact, the) maximal ideal of S, we have Q ∩ S = Q = N ∩ S. Thus
S ⊆ T does not satisfy INC. Hence (S, T ) is not an INC-pair. Consequently, by [22,
Theorem 5.2], (S, T ) is not a normal pair. �

In view of Example 4.4 and Proposition 4.5, it is natural to pause and ask whether
the “mT = T ” context of Sect. 3 admits examples of strongly divided pairs (R, T )

such that R is integrally closed in T (resp., such that R is not integrally closed in
T ). In view of the lying-over theorem [19, Theorem 11.5], the condition mT = T
ensures that T cannot be integral over R. Remark 4.6 indicates some examples that
answer these questions.

Remark 4.6 There exist strongly divided pairs ((A, n), B) such that nB = B and,
as desired, either (i) A is integrally closed in B or (ii) A is not integrally closed in
B. One way to construct such data is the following. Let (R,m) be a PVD which
is not integrally closed. (In particular, R is not a valuation domain.) Let H be the
canonically associated valuation overring of R and let T := qf(R). Then (H, T )

illustrates (i) and (R, T ) illustrates (ii).
For a proof, we begin by showing thatmT = T . As all fields are valuation domains

by convention, neither R nor H is a field, so that m �= (0), whence mT = T , as
desired. Next, we will show that (R, T ) (resp., (H, T )) is a strongly divided pair.
This follows via Proposition 2.6 since R (resp., H ) is quasi-local and is PV in (its
quotient field) T . To complete the proof, recall that R is not integrally closed (in T )
and observe that H (being a valuation domain) is integrally closed (in T ).

There are at most four types of strongly divided pairs (R, T ), as R and T could
each either be treed or fail to be treed. Thanks to Example 3.11 (and the comments
preceding it) and Example 4.1, we have seen that three of these four possibilities
can be realized by specific examples. The next two results address the question of
whether there exists an example that realizes the fourth possibility. Their upshot is
that if such an example exists, it can be arranged to have a number of additional
features: see Proposition 4.8(d).

Lemma 4.7 Let R ⊆ T be domains such that R ⊆ T is a strongly divided extension
and R is (quasi-local and) not treed. Suppose also that R ⊆ T satisfiesGU and INC
(for instance, suppose that T is integral over R). Then T is not treed.

Proof As R is not treed, themaximal idealm of R contains incomparable prime ideals
p and q of R. Note that p, q ∈ S(R). As R ⊆ T is a strongly divided extension that
satisfies LO (since GU implies LO [21, Theorem 42]), it follows that both p and q
are prime ideals of T . Since R ⊆ T satisfies GU, there exists a prime ideal M (resp.,
N ) of T that contains p (resp., q) and lies over m. As R ⊆ T satisfies INC, both M
and N are maximal ideals of T .
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Now suppose the assertion fails. ThenM �= N (for otherwise, the “treed” property
of T would force p and q to be comparable, a contradiction). Similarly, one sees
that q � M . Hence, by the maximality of M , we have (M, q) = T . Thus, there
exist a ∈ M and b ∈ q such that a + b = 1. Then a = 1 − b ∈ R ∩ M = m, so that
1 = a + b ∈ m + q ⊆ m + m = m, the desired contradiction. �

Proposition 4.8 Suppose that there exist domains R ⊆ T such that (R, T ) is a
strongly divided pair, R is (quasi-local with maximal ideal m and) not treed, and T
is treed. Then:

(a) mT �= T .
(b) T is not integral over R; that is, R �= T .
(c) R is not a locally Noetherian ring; in particular, R is not a Noetherian ring.
(d) There exist domains A ⊆ B such that (A, B) is a strongly divided pair, A is
(quasi-local with maximal ideal n and) not treed, B is treed, A is integrally closed
in B (that is, A = A), nB �= B, and A is not a Noetherian ring.

Proof (a) Apply Proposition 3.9.
(b) Apply Lemma 4.7.
(c), (d) Note that (R, R) inherits the “strongly divided pair” property from (R, T ).

So, by (b) (or Lemma 4.7), R is not treed. Hence, there exists M ∈ Max(R) such
that RM is not treed. On the other hand, TM inherits the “treed” property from
T . Moreover, Proposition 2.10 ensures that (RM , TM) is a strongly divided pair.
Therefore, by (a) (or Proposition 3.9), (MRM)TM �= TM . In addition, RM is integrally
closed in TM . Thus, to establish (d) by taking A := RM and B := TM , it will suffice
to show that RM is not a Noetherian ring. Once we will have shown this, (c) will also
have been established.

The above analysis shows that, by replacing (R, T ) with (RM , TM), we may also
assume that R is integrally closed in T and need to only derive a contradiction from
the assumption that R is Noetherian. To sum up, we have that R ⊆ T are domains
such that (R,m) is (quasi-)local Noetherian and integrally closed in T , R is not treed,
T is treed and, by (a), mT �= T . Thus mT ⊂ T , and so we can choose N ∈ Max(T )

such thatmT ⊆ N . It follows that N ∩ R = m. If N = m, then Max(R) ⊆ Max(T ),
so that [2, Proposition 3.8] yields that Spec(R) = Spec(T ), a contradiction (since
R is not treed and T is treed). Thus N �= m, and so we can choose u ∈ N \ m
(= N \ R). In addition, by considering the order-theoretic impact of applying the
gluing result [18, Theorem 1.4] to the pullback R + N = R/m ×T/N T , we see that
Spec(R + N ) = Spec(T ), and so we can further change notation and assume that
T = R + N . (In so doing, we also retain the condition that N ∈ Max(T ) since the
former data satisfied (R + N )/N ∼= R/(R ∩ N ) = R/m, which is a field.) Observe
also that u−1 /∈ R (for otherwise, u−1 ∈ m ⊂ N ⊆ T , so that 1 = uu−1 ∈ NT = N ,
a contradiction). So, as in the proof of [3, Lemma 3] (that is, essentially by the proof
of the (u, u−1)-Lemma [21, Theorem 67]), mR[u] is the unique nonmaximal prime
ideal of R[u] that lies over m.

Since u is a nonunit of (T and hence a nonunit of) R[u], we can choose Q ∈
Spec(R[u]) such that Q is minimal among the prime ideals of R[u] that contain u.
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As u �= 0 and R[u] is a Noetherian ring, it follows from the Principal Ideal Theorem
[21, Theorem 142] that the height of Q (in R[u]) is 1. However, since u /∈ R and
u−1 /∈ R (and R is assumed integrally closed in T ), the (u, u−1)-Lemma ensures that
u /∈ mR[u], and so Q � mR[u]. As R ⊆ R[u] is a strongly divided extension and
mR[u] �= R[u], Proposition 4.2 yields mR[u] ⊂ Q. Since Q has height 1, we then
get mR[u] = (0), whence m = mR[u] ∩ R = (0). But R is not a field (since R is
not treed), and so we have the desired contradiction, thus completing the proof. �

We will close with a couple of results that probe more deeply into the setting of
Proposition 2.11. Proposition 4.9 will show that if one adds a few more assumptions,
the normal pair in that setting becomes trivial. First, we need to recall the following
definition from [12]. Let A ⊆ B be rings. Then A ⊆ B is said to satisfy MINC if,
whenever Q1 ⊆ Q2 in Spec(B) with Q1 ∩ A = Q2 ∩ A ∈ Max(A), then Q1 = Q2.
To appreciate the influence of theMINC property, observe that the data in Proposition
4.5(c) are such that S ⊆ T does not satisfy MINC.

Proposition 4.9 Let R ⊆ T be domains such that (R,m) is quasi-local and mT �=
T . Suppose also the following three conditions:

(i) For all E ∈ [R, T ], the extension R ⊆ E satisfies MINC; and
(ii) R is quasi-local, say with maximal ideal M; and
(iii) Spec(R) is finite.
Then (R, T ) is a strongly divided pair if and only if T is integral over R with
S(R) = S(T ).

Proof By Proposition 2.1(b), we need only to prove the “only if” assertion. Assume,
then, that (R, T ) is a strongly divided pair. By Proposition 2.1(b), it suffices to
prove that T is integral over R. Let E ∈ [R, T ] and Q1 ⊆ Q2 in Spec(E) with
q := Q1 ∩ R = Q2 ∩ R. If q ∈ S(R), then Q1 = q = Q2 since R ⊆ E is a strongly
divided extension. On the other hand, if q ∈ Max(R), then Q1 = Q2 since R ⊆ E
satisfies MINC by (i). Hence Q1 = Q2. Consequently, R ⊆ E satisfies INC for all
E ∈ [R, T ]; that is, (R, T ) is an INC-pair. As usual, let R denote the integral closure
of R in T . It follows that (R, T ) is a normal pair (cf. [22, Theorem 5.2, (9′) ⇒ (4)]).
It suffices to prove that this normal pair collapses, in the sense that R = T .

Suppose the assertion fails. Then RM = R ⊂ T = TM . Next, recall that if A ⊆ B
are rings, the support SuppA(B) := {P ∈ Spec(A) | AP ⊂ BP}. We have just seen
thatM ∈ SuppR(T ). In any case, SuppR(T ) \ {M} ⊆ S(R).However, since the (inte-
gral) extension R ⊆ R satisfies INC, eachQ ∈ S(R) satisfiesQ ∩ R ∈ S(R) and so,
since R ⊆ R is a strongly divided extension,we getQ = Q ∩ R ∈ S(R) ⊆ Spec(R).
Therefore, by (iii), S(R) is finite. Hence SuppR(T ) is finite. Then, as (R, T ) is a
normal pair, it follows from [15, Proposition 6.9] that [R, T ] is finite. Consequently,
since R ⊂ T , there exists E ∈ [R, T ] such that R ⊂ E is a minimal ring extension
(in the sense of [17]). Let M denote the crucial maximal ideal of this minimal ring
extension; that is, the element of Max(R) such that RP = EP canonically for all
P ∈ Spec(R) \ {M} [17, Théorème 2.2 (i)]. It is clear that if P ∈ Spec(R) \ {M},
then there exists a prime ideal of E that meets R in P . Thus, since R is integrally
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closed in E (and E is not integral over R), [17, Théorème 2.2 (ii)] ensures that no
prime ideal of E can meet R inM.

As mT �= T , there exists N ∈ Max(T ) such that mT ⊆ N . As m ∈ Max(R),
it must be the case that N ∩ R = m. Consider N := N ∩ R ∈ Spec(R). We then
have N ∩ R = m. Since the (integral) ring extension R ⊆ R satisfies INC and m ∈
Max(R), it follows thatN ∈ Max(R). Hence, by (ii),N = M . But (ii) also ensures
thatM = M . Therefore, N ∩ R = N = M = M. Thus, N ∩ E ∈ Spec(E) satisfies
(N ∩ E) ∩ R = N ∩ R = M, the desired contradiction. �

It is natural to ask what can be said if one deletes the hypothesis that mT �= T
in Proposition 4.9. Corollary 4.10 shows how to further illuminate that situation by
using the ideas behind the first paragraph of the proof of Proposition 4.9.

Corollary 4.10 Let R ⊆ T be domains such that (R,m) is quasi-local. Then the
following conditions are equivalent:

(1) (R, T ) is a strongly divided pair and R ⊆ E satisfiesMINC for all E ∈ [R, T ];
(2) S(R) = S(R) and (R, T ) is a normal pair.

Proof (2) ⇒ (1): If (R, T ) is a normal pair, then R ⊆ E satisfies (M)INC for all
E ∈ [R, T ] (cf. [22, Theorem 5.2, (4) ⇒ (9)′]). Then to complete the proof that (2)
⇒ (1), one need only combine Propositions 2.10 and 2.1(b) with the above-noted
fact that being a normal pair is a local property and Corollary 2.7(b).

(1) ⇒ (2): Assume (1). Then S(R) = S(R) by Proposition 2.10. It remains only
to prove that (R, T ) is a normal pair, or equivalently, that (RM , TM) is a normal pair
for each M ∈ Max(R). Fix any such M . By Proposition 2.10, (RM , TM) is a strongly
divided pair. Next, consider any E ∈ [RM , TM ]. There exists a (uniquely determined)
ring E ∈ [R, T ] such that EM = E . As R ⊆ E satisfies MINC by hypothesis, it
follows easily that RM ⊆ EM (that is, RM ⊆ E) satisfies MINC. Then, by adapting
the reasoning in the first paragraph of the proof of Proposition 4.9, we get that
(RM , TM) is an INC-pair. As RM is integrally closed in TM , it follows that (RM , TM)

is a normal pair (cf. [22, Theorem 5.2, (9)′ ⇒ (4)]). �

Finally, note that the pair (S, T ) in Proposition 4.5 illustrates the fact that the
implication (1) ⇒ (2) in Corollary 4.10 would fail if one deleted the hypothesis that
R ⊆ E satisfies MINC for all E ∈ [R, T ].
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Finite Intersections of Prüfer Overrings

Bruce Olberding

Abstract This article is motivated by the open question of whether every integrally
closed domain is an intersection of finitely many Prüfer overrings. We survey the
work of Dan Anderson and David Anderson on this and related questions, and we
show that an integrally closed domain that is a finitely generated algebra over a
Dedekind domain or a field is a finite intersection of Dedekind overrings. We also
discuss how recent work on the intersections of valuation rings has implications for
this question.

1 Introduction

An integral domain R is a Prüfer domain if every nonzero finitely generated ideal of
R is invertible; equivalently, RM is a valuation domain for each maximal ideal M of
R. The only Noetherian Prüfer domains are the Dedekind domains. From this point
of view, the class of Prüfer domains is rather special, and thus it might be expected
that the class of integral domains that are finite intersections of Prüfer overrings
is also somewhat special. (By an overring of an integral domain, we mean a ring
between the domain and its quotient field.) One elementary observation, perhaps the
least nontrivial thing that can be said about such an intersection, is that since an
intersection of valuation rings is integrally closed, an intersection of Prüfer domains
is necessarily an integrally closed domain. Strikingly, it remains an open question
whether this is also the most that can be said for a finite intersection of Prüfer
overrings. In other words, it is unknown whether every integrally closed domain
is an intersection of finitely many Prüfer overrings, or even finitely many Bézout
overrings. (An integral domain is a Bézout domain if every finitely generated ideal
is principal.)

This question has its origins in the work of Dan Anderson and David Anderson.
In their 1985 article [3, p. 97], the following questions are posed.
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Questions 1.1

(1) Is each integrally closed (resp., completely integrally closed) domain an inter-
section of two Bézout (resp., completely integrally closed Bézout) overrings?

(2) Is each Krull domain an intersection of a finite number of PID or factorial
overrings?

(3) If a domain R is a finite intersection of PID or factorial overrings, is R an
intersection of two such overrings?

To these questions, Paul-Jean Cahen added a weaker version of (1):

(4) Is every integrally closed domain an intersection of two Prüfer overrings?

Each of these questions, which are stated also in [10, Sect. 6], remains open,
and this survey article does not resolve any of them. (In fact, at the end of Sect. 4,
we add three more questions to this list.) Instead, the aim of this article is to use
these questions and the related work of Anderson and Anderson as motivation for
highlighting the intricacies involved in studying intersections of pairs of PIDs,Bézout
domains or Prüfer domains. Even the case of understanding the intersection of a PID
and a DVR proves quite subtle and technically complicated, as Sect. 5 discusses.

In Sect. 2, we discuss a number of positive results from the work of Anderson
and Anderson related to Questions1.1, and in Sect. 3 we use one of these results to
answer Question1.1(4) in the special case of an integrally closed domain that is a
finitely generated algebra over a Dedekind domain or a field. More generally, we
give a positive answer to Question1.1(4) for some classes of Krull domains.

The goal of Sect. 4 is to reverse the representation question and to ask what can
be said about the Prüfer domains in a finite representation of a completely integrally
closed local domain R? If these Prüfer domains are G-domains (i.e., the intersection
of their nonzero prime ideals is nonzero), then they must satisfy several strong condi-
tions, as illustrated by Theorem4.6. Demanding G-domains for the representation is
quite restrictive here, and by Lemma4.4 this forces R itself to be a G-domain, which
rules out many interesting choices for R. However, the real objective of Sect. 4 is
a case in which the G-domain requirement is automatically satisfied for R and its
overrings, that in which R is a one-dimensional completely integrally closed local
domain. Section4 is thus ultimately motivated by what can be said about the Prüfer
overrings in a representation of such a choice of the ring R. We narrow this even
further to a specific example due to Nagata that can serve as an interesting test case
for Questions1.1(1) and (4).

With the exception of Anderson and Anderson’s articles [3, 4], which are the
subject of Sect. 2 and motivate Sect. 3, the results in Sects. 4 and 5 are extracted
from various contexts that are motivated otherwise than by the above questions.
Most of these contexts involve a technical step, somewhere amidst other considera-
tions, in which the intersection of valuation rings must be considered and described.
A secondary goal of the article is to highlight a few examples of some of this recent
work.

Throughout the article, we assume all rings are commutative and have an identity.
We denote the Jacobson radical of a ring R by J (R).
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2 Positive Results: The Work of Anderson and Anderson

Questions1.1 concern the representation of integral domains by intersections of over-
rings from specified classes of rings. It is the restriction to overrings that proves to
be the crux of the problem. Without the restriction to overrings, these questions can
be answered in the affirmative using the Kronecker function ring construction.

Theorem 2.1 (Anderson–Anderson [3, Theorems1.1 and 1.3 and Remark1.2])

(1) Every Krull domain is an intersection of a PID (in fact, a Euclidean domain)
and a field.

(2) Every completely integrally domain is an intersection of a completely integrally
closed Bézout domain and a field.

(3) Every integrally closed domain is an intersection of a Bézout domain and a field.

In each case, the domain R in question is written as an intersection of its quo-
tient field and the Kronecker function ring of R with respect to an appropriate
e.a.b. star operation. (For general definitions and background, see [9].) In the case of
Theorem2.1(1), R is an intersection of its quotient field F and theKronecker function
ring Rv of R with respect to the v-operation:

Rv := { f/g : f, g ∈ R[X ], g �= 0, c( f ) ⊆ (R :F (R :F c(g)))},

where X is an indeterminate for R and c(−) denotes the content of the polynomial.
Since R is a Krull domain, the ring Rv is a Euclidean domain [3, Remark1.2].
Standard properties of the Kronecker function ring construction yield that R =
Rv ∩ F , so (1) follows. Statement (2) is proved similarly using the fact that if R
is completely integrally closed, then so is Rv.

Instead of Rv, statement (3) requires the Kronecker function ring with respect to
the b-operation:

Rb := { f/g : f, g ∈ R[X ], g �= 0, c( f ) ⊆ c(g)},

where c(g) denotes the integral closure of the ideal c(g) in R. If R is integrally
closed, then Rb is a Bézout domain. Since R = Rb ∩ F , statement (3) now follows.

The converses to each of statements (1)–(3) of Theorem2.1 are also valid, as noted
in [3]; i.e., the intersection of two PIDs is a Krull domain; the intersection of two
Bézout domains is an integrally closeddomain; and the intersectionof twocompletely
integrally closed Bézout domains is a completely integrally closed domain.

Thus, the version of Questions1.1 in which the restriction to overrings is removed
is completely solved by Theorem2.1.

A similar approach resolves Questions1.1 for polynomial rings.

Theorem 2.2 (Anderson–Anderson [3, Theorem1.4]) Let R be an integral domain.

(1) If R is integrally closed (resp., completely integrally closed), then R[X ] is an
intersection of two Bézout (resp., completely integrally closed Bézout) overrings.
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(2) If R is a Krull domain, then R[X ] is an intersection of two PID overrings.
Moreover, each PID overring may be chosen to be a Euclidean domain which is
a localization of R[X ].

As in the proof ofTheorem2.1, theKronecker function ring construction is the key.
With F the quotient field of R, R[X ] = Rb ∩ F[X ], and if R is a completely integrally
closed domain, then R[X ] = Rv ∩ F[X ]. (More generally, R[X ] = R∗ ∩ F[X ] for
any e.a.b. star operation ∗.) Since F[X ] is a Euclidean overring of R[X ], statements
(1) and (2) of Theorem2.2 follow as in the argument for Theorem2.1.

While theKronecker function ring construction provides an elegant solution to the
situations considered in Theorems2.1, 2.2 and 3.3, what makes it so useful for these
cases is preciselywhat prevents its applicability tomore general settings, namely, that
R = R∗ ∩ F for an e.a.b. star operation∗. Except in special cases such as that of R[X ]
in Theorem2.2, this feature of R∗ limits its usefulness when seeking representation
by rings inside the quotient field of the base domain.

Thus, different methods are generally needed for dealing with Questions1.1.
Anderson and Anderson develop one such method for classes of Krull domains
whose divisor class groups are constrained in various ways. The first such class of
rings is considered in a 1984 paper whose themes anticipate Questions1.1. A domain
R is locally factorial if Rx is factorial for each nonunit x ∈ R.

Theorem 2.3 (Anderson–Anderson [2, Theorem2.3 and Proposition6.1]) If R is a
locally factorial Krull domain, then R is an intersection of two factorial overrings.

Here the representation of R by two factorial rings is accomplished by showing
that R = Rx ∩ Ry for an appropriate choice of x, y ∈ R. If x and y are nonunits, then
Rx and Ry are factorial since R is locally almost factorial. The proof thus depends
on the choice of x and y. If R is local and has Krull dimension one, then R itself
is factorial [2, Proposition6.1]. If R is local and has Krull dimension greater than
one, then R has a regular sequence x, y of length 2 [2, Proposition6.1]. Since R is
a Krull domain, it follows that R = Rx ∩ Ry . If R is not local, then any choice of
nonunits x and y such that (x, y)R = R works, since for such a choice, R = Rx ∩ Ry

[2, Corollary2.2].
In [3], Anderson and Anderson show precisely how far this method of represen-

tation of Krull domains via factorial localizations Rx and Ry can be extended. In
Theorem2.4, Cl(R) denotes the divisor class group of the Krull domain R. A subin-
tersection of a domain R is an overring of the form

⋂
P∈X RP , where X is a set of

prime ideals of R.

Theorem 2.4 (Anderson–Anderson [3, Theorems2.3 and 2.10]) The following are
equivalent for a domain R:

(1) R is a Krull domain and Cl(R) is finitely generated.
(2) There are nonzero x, y ∈ R such that R = Rx ∩ Ry and Rx and Ry are each

factorial.
(3) There are nonzero x1, . . . , xn ∈ R such that R = Rx1 ∩ · · · ∩ Rxn and each Rxi

is factorial.
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(4) R = R1 ∩ R2, where R1 and R2 are subintersections with R1 factorial and R2 a
semilocal PID.

It is also noted [3, Theorem2.10] that Theorem2.4 implies that if R is a Dedekind
domain, then Cl(R) is finitely generated if and only if R = R1 ∩ R2, where R1 and
R2 are subintersections with R1 a PID and R2 a semilocal PID. Thus, a positive
answer to question (2) from the introduction is obtained in the case where R is a
Dedekind domain with finitely generated class group.

Theorem2.4 shows that the representation of a Krull domain R as R = Rx ∩ Ry

for factorial overrings Rx and Ry is limited to the case where R has finitely generated
divisor class group.Consequently, if aKrull domainwithout finitely generated divisor
class group is to be represented as an intersection of two (or finitely many) factorial
overrings, these overrings must be sought elsewhere than the localizations of the
form Rx .

Moving beyond Krull domains with finitely generated divisor class group, Ander-
son and Anderson consider the case of countable divisor class group.

Theorem 2.5 (Anderson–Anderson [3, Theorem2.7]) A Krull domain with count-
able divisor class group is an intersection of two factorial subintersections.

Countability is used in a strong way here to show that the set of height-one prime
ideals of the Krull domain in question can be written as a disjoint union of two sets
X1 and X2, where each

⋂
P∈Xi

RP is a factorial subintersection.
The emphasis on the divisor class group in Theorems2.4 and 2.5 suggests that

the question of whether a Krull domain can be represented by an intersection of two
factorial overrings might depend on the size or structure of the divisor class group.
Interestingly, this is not the case: Given any abelian group G and positive integer n,
there is a Krull domain of Krull dimension n having class group G such that R is
an intersection of two PID overrings [3, Example2.9]. The construction of the Krull
domain here is via Claborn’s theorem on the existence of a Krull domain R of Krull
dimension n with divisor class group G. This existence theorem is coupled with a
certain localization of R[X ] and Theorem2.2 to produce the desired example.

The treatment ofKrull domains so far has focusedon the versionofQuestion1.1(2)
that asks for representation by factorial overrings. The method of proof outlined
for special cases of Krull domains only produces in general a representation as an
intersection of factorial overrings, not PID overrings. In the case in which R has
Krull dimension 2, PID overrings can be used instead.

Theorem 2.6 (Anderson–Anderson [3, Theorem2.11]) Let R be a two-dimensional
Krull domain with only a finite number of height-two maximal ideals:

(1) If Cl(R) is finitely generated, then R is an intersection of a PID overring and a
semilocal PID overring.

(2) If Cl(R) is countable, then R is an intersection of two PID overrings and a
semilocal PID overring.
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Theorem2.6 gives sufficient conditions for a two-dimensional semilocal Krull
domain to decompose into an intersection of a PID overring and a semilocal PID
overring. The following theorem from [19] is in a similar spirit, although one of the
components of the intersection is allowed to be a Noetherian domain instead of a
PID. Recall that a collection X of valuation overrings has finite character if each
nonzero element of the quotient field is a unit in all but at most finitely members
of X . For example, the collection of localizations of a Krull domain at height-one
prime ideals is a finite character collection of DVR overrings.

Theorem 2.7 [19, Proposition9.1] Let R be an overring of a two-dimensional
Noetherian domain such that J (R) �= 0. Then there exists a finite character collec-
tion X of valuation overrings of R such that R = ⋂

V ∈X V if and only if R = A ∩ B,
where A is an integrally closed Noetherian overring and B is a semilocal Prüfer
overring.

Weakening the requirement in Theorem2.6 that the Krull domain R is repre-
sented by two factorial overrings, Anderson and Anderson consider in a 1987 paper
when a Krull domain can be represented by an intersection of almost factorial Krull
domains, where a Krull domain is almost factorial if it has torsion divisor class group
(equivalently, each subintersection of R is a localization of R [4, p. 395]).

Theorem 2.8 (Anderson–Anderson [4, Theorem4.1]) The following statements are
equivalent for an integral domain R:

(1) R is a Krull domain and Cl(R) has finite rank.
(2) R is a Krull domain and Rx is almost factorial for some nonzero x ∈ R.
(3) There are nonzero x and y in R such that R = Rx ∩ Ry and Rx and Ry are each

almost factorial Krull domains.
(4) There are nonzero x1, . . . , xn ∈ R such that R = Rx1 ∩ · · · ∩ Rxn and each Rxi

is an almost factorial Krull domain.

Theorem2.8 is the “almost factorial” analogue of Theorem2.4. Similarly, the
following theorem is analogous to Theorem2.5.

Theorem 2.9 (Anderson–Anderson [4, Theorem4.2]) Let R be a Krull domain
whose divisor class group has countable rank. Then R is an intersection of two
almost factorial subintersections.

Summary. The most general positive result for Question1.1(2) from the intro-
duction that has been obtained is that for which the Krull domain R has countable
divisor class group. In this case, R is an intersection of two factorial overrings, but it is
not known whether R can always be written as an intersection of two PID overrings.
Weakening Question1.1(2) so that the components of the intersection representation
are only required to be almost factorial permits extension to divisor class groups
of countable rank. In either case, the Krull domain is an intersection of two almost
factorial subintersections. This raises another open question [4, p. 406]: Can every
Krull domain be written as an intersection two factorial (or even almost factorial)
subintersections?
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3 Krull Domains

In this section, we add to the list of examples of Krull domains that can be represented
as a finite intersection of Prüfer overrings. For example, we show inCorollary3.4 that
every integrally closed domain that is a finitely generated algebra over a Dedekind
domain or a field has this property.

We begin with the observation that for Krull domains, representation as a finite
intersection of Prüfer overrings implies representation as a finite intersection of
Dedekind overrings. (In what follows, when we write that a domain is an intersection
of n overrings for some positive integer n, then we do not necessarily assume these
overrings are distinct.)

Lemma 3.1 Let R be a Krull domain that is not a field. If R is an intersection of a
finite number of n Prüfer overrings (resp., Bézout overrings), then R is an intersection
of n Dedekind subintersections (resp., PID subintersections).

Proof Suppose that R = A1 ∩ · · · ∩ An , where each Ai is a Prüfer overring of R. If
P is a height-one prime ideal of R, then RP = A1RP ∩ · · · ∩ An RP . Since R is a
Krull domain and P has height one, RP is a valuation ring, and hence, its overrings
form a chain under inclusion, so it follows that Ai ⊆ RP for some i . Thus, each
localization of R at a height-one prime ideal contains one of the Ai .

For each i , let Bi = ⋂
Ai ⊆RP

RP , where P ranges over the height-one prime ideals
of R with Ai ⊆ RP . (If there is no height-one prime P with Ai ⊆ RP , then let Bi

be the quotient field of R.) Since R is a Krull domain and hence the intersection of
the localizations of R at its height-one prime ideals, we have R = B1 ∩ · · · ∩ Bn .
Moreover, for each i such that Bi is not the quotient field of R, we have that as a
Krull overring of the Prüfer domain Ai , the ring Bi is a Prüfer Krull domain, hence a
Dedekind domain. If also Ai is a Bézout overring, then Bi is a Bézout Krull domain,
hence a PID. Since the Bi are subintersections, the lemma follows. �

Lemma 3.2 Let D ⊆ R be an integral extension of Krull domains. If D is an inter-
section of a finite number of n Prüfer overrings, then R is an intersection of n
Dedekind overrings.

Proof Let A1, . . . , An be Prüfer overrings of D such that D = A1 ∩ · · · ∩ An . For
each i , let Fi be the set of height-one prime ideals P of R such that Ai ⊆ RP . We
claim that F1 ∪ · · · ∪ Fn is the set of all height-one prime ideals of R. Indeed, let
P be a height-one prime ideal of R. As R is integral over D and a domain, P ∩ D is
nonzero since no two comparable prime ideals of R lie over the same prime ideal of
D. Since D is an integrally closed domain and R is a domain that is integral over D,
Going Down holds for the extension D ⊆ R [27, 13.41, p. 261]. Consequently, the
height of (P ∩ D)R is equal to the height of P ∩ D [29, PropositionB.2.4, p. 398].
Since P has height one and P ∩ D �= 0, it follows that (P ∩ D)R has height one, and
hence, P ∩ D has height one. Therefore, DP∩D is a DVR since D is a Krull domain.
Also, since DP∩D = A1DP∩D ∩ · · · ∩ An DP∩D and the overrings of a valuation ring
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form a chain under inclusion, we conclude that Ai ⊆ DP∩D ⊆ RP for some i . This
proves that F1 ∪ · · · ∪ Fn is the set of height-one prime ideals of R.

For each i , let Bi = ⋂
P∈F i

RP . Then Ai ⊆ Bi . As an intersection of DVRs, Bi

is integrally closed, so the integral closure Ai of Ai in the quotient field F of R is
contained in Bi . Since F is an algebraic extension of the quotient field of D, Ai is
a Prüfer domain [14, Theorem101, p. 71], and hence, as an overring of Ai , Bi is
also a Prüfer domain. Finally, since F1 ∪ · · · ∪ Fn is the set of height-one prime
ideals of R, we have R = B1 ∩ · · · ∩ Bn , proving that R is an intersection of n Prüfer
overrings. By Lemma3.1, R is an intersection of n Dedekind overrings. �

WenowuseTheorem2.2, Lemma3.2 andNoether normalization to exhibit classes
of Krull domains that can be represented as a finite intersection of Dedekind over-
rings.

Theorem 3.3 Let R be a Krull domain with quotient field Q(R), let D be a subring
of R with quotient field Q(D), and suppose that R is a finitely generated D-algebra:

(1) If D is a Krull domain and the extension Q(D) ⊆ Q(R) is not algebraic, then
R is the intersection of two Dedekind overrings and a semilocal PID overring.

(2) If D is a Krull domain that is the intersection of n Prüfer overrings and the
extension Q(D) ⊆ Q(R) is algebraic, then R is the intersection of n Dedekind
overrings and a semilocal PID overring.

(3) If D is a Dedekind domain, then R is the intersection of two Dedekind overrings
and a semilocal PID overring.

(4) If D is a field, then R is either a field or the intersection of two Dedekind
overrings.

Proof (1) By Noether normalization for rings [28, Tag 07NA], there is a nonzero
element d ∈ D and algebraically independent elements x1, . . . , xm ∈ R[1/d] such
that R[1/d] is a module-finite extension of D[1/d][x1, . . . , xm], where the latter ring
is isomorphic to a polynomial ring inm variables over D[1/d]. (Since Q(D) ⊆ Q(R)
is not algebraic, we have m ≥ 1.) By Theorem2.2, there exist PID overrings A1

and A2 of D[1/d][x1, . . . , xn] such that D[1/d][x1, . . . , xn] = A1 ∩ A2. Therefore,
Lemma3.2 implies that R[1/d] = B1 ∩ B2 for some Dedekind overrings B1, B2 of
R[1/d]. If d is a unit in R and hence R[1/d] = R, then we may choose any DVR
overring of B1 to be the semilocal PID in the statement of (1) and the claim is proved.
On the other hand, suppose d is not a unit in R. Since R is a Krull domain, there are
only finitely many height-one prime ideals P1, . . . , Pn of R that contain d and we
have R = R[1/d] ∩ RP1 ∩ · · · ∩ RPn . The ring C = RP1 ∩ · · · ∩ RPn is a semilocal
PID (see [18, (11.11), p. 38]), so since R = B1 ∩ B2 ∩ C , statement (1) is proved.

(2)Again byNoether normalization and the fact that Q(R) is algebraic over Q(D),
we have 0 �= d ∈ D such that R[1/d] is finite over D[1/d]. By Lemma3.2, R[1/d]
is an intersection of n Dedekind overrings. With P1, . . . , Pn the height-one prime
ideals of R that contain d, we have as in (1) that R = R[1/d] ∩ (RP1 ∩ · · · ∩ RPn ) is
an intersection of n Dedekind overrings and a semilocal PID overring.
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(3) If Q(R) is transcendental over Q(D), then this follows from (1), while if
Q(R) is algebraic over Q(D), we may apply (2).

(4) Since D is a field and R has dimension at least 1, Noether normalization
implies there exist algebraically independent elements x1, . . . , xm ∈ R such that R
is a module-finite extension of D[x1, . . . , xm]. By Theorem2.2, D[x1, . . . , xm] is an
intersection of two PID overrings, and so by Lemma3.2, R is an intersection of two
Dedekind overrings. �

Corollary 3.4 Let R be an integrally closed domain that is not a field. If R is a finitely
generated algebra over a Dedekind domain or a field, then R is an intersection of
two Dedekind overrings and a semilocal PID overring.

Proof Let D be a ring, and let R be an integrally closed domain that is a finitely
generated D-algebra. Then R is a Noetherian domain, and hence aKrull domain. If D
is a field, then D is isomorphic to a subring of R and wemay apply Theorem3.3(4) to
obtain that R is an intersection of two Dedekind overrings. Since any local overring
of one of these Dedekind overrings is a local PID, the claim is proved in the case in
which D is a field.

Now suppose that D is a Dedekind domain. Let f : D → R denote the structure
map given by f (d) = d · 1 for each d ∈ D. If f is not injective, then since R is a
domain and D has Krull dimension one, the image of f in R is a field. Since R is
a finitely generated algebra over this field, we are once more in the previous case,
and the claim is proved. Otherwise, if f is injective, then the claim follows from
Theorem3.3(3). �

4 One-Dimensional Completely Integrally Closed Domains

This section is motivated by a very narrow version of Questions1.1(1) and (4):
Is every completely integrally closed local domain R of Krull dimension one an
intersection of finitely many Prüfer overrings? While we have no answer to this
question, we show that as long as R is not a valuation domain, then any Prüfer
overrings in such a representation of R must meet several strong requirements that
in effect assert that they are each the intersection of a large and complicated set of
valuation overrings, both quantitatively (in terms of cardinality) and qualitatively
(in terms of the intersection having no sharp prime ideals; see the discussion before
Lemma4.5 for the definition of a sharp prime ideal).

Pulling back from the one-dimensional case, our approach works in a more gen-
eral situation, that in which R is a completely integrally closed domain for which
R = A1 ∩ · · · ∩ An ∩ D, where each Ai is a proper Prüfer overring and D is a proper
integrally closed overring. We examine in Theorem4.6 what such a decomposition
implies about R in the case in which the Ai are also G-domains, where a domain
is a G-domain (in the sense of Goldman [14, Sect. 1.3]) if the intersection of all its
nonzero prime ideals is nonzero. The relevance here to the one-dimensional case is
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that every overring of a one-dimensional local domain is a G-domain. This allows us
in Theorem4.6 to draw out consequences for the one-dimensional case. As the argu-
ments indicate, the preoccupation with G-domains is because we rely on a number
of results from elsewhere that require various weaker constraints on intersections of
prime ideals, constraints that are encompassed by this assumption.

Thus, the theme of this section is: if a completely integrally closed local domain
can be represented as the intersection of finitely many Prüfer G-overrings, then what
can be said about these Prüfer domains? The hope is that the observations made in
examining this question can be brought to bear on the one-dimensional completely
integrally local version of Questions1.1(1) and (4). As we discuss at the end of the
section, an example due to Nagata is a particularly relevant test case for this question.

Most of the results in this section rely on recent work on intersections of valuation
domains.We often consider subsets X of the set of all valuation overrings of a domain
R. We denote by J (X) the intersection of the maximal ideals of the valuation rings
in X . If R = ⋂

V ∈X V , then J (X) is contained in the Jacobson radical J (R) of R;
see [12, Remark1.4].

Our first results concern the number of maximal ideals of the components in an
irredundant intersection of finitely many Prüfer G-overrings. For this, we rely on the
following lemma that gives a sufficient condition for when countably many valuation
rings can be omitted from a representation of a completely integrally closed local
domain.

Lemma 4.1 ([24, Corollary3.7]) Let R be a completely integrally closed local
domain, and let X be a set of valuation overrings of R with J (X) �= 0 and
R = ⋂

V ∈X V . Then either R is a rank one valuation ring or X is uncountable
and R = ⋂

V ∈X\Y V for every countable subset Y of X.

A collection F of prime ideals of a domain R is a defining family for R if
R = ⋂

P∈F RP . For example, the set of maximal ideals of R is a defining family for
R, while if R is a Krull domain, the set of height-one prime ideals is also a defining
family.

Lemma 4.2 Let R be a completely integrally closed local domain, and suppose
that R = A ∩ D1 ∩ · · · ∩ Dn, where A is a proper Prüfer overring of R and each
Di is a proper integrally closed overring of R with nonzero Jacobson radical. If
A cannot be omitted from this representation, then each defining family G of prime
ideals of A having nonzero intersection is uncountable. Moreover, for each nonempty
co-countable subset F of G we have

R =
(

⋂

P∈F
AP

)

∩ D1 ∩ · · · ∩ Dn.

In particular, if J (A) �= 0, then A has uncountably many maximal ideals.

Proof Since the overrings of a valuation domain are ordered by inclusion and A
and all the Di are proper overrings of R, the ring R is not a valuation domain.
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We use this below when we appeal to Lemma4.1. Let G be a defining family of
prime ideals of A having nonzero intersection. Then A = ⋂

P∈G AP , and since A
is a Prüfer domain, each ring AP is a valuation ring. Moreover, the intersection⋂

P∈G P AP of the maximal ideals of the valuation rings AP , where P ranges over
G , is nonzero since the intersection of the prime ideals in G is nonzero.

Let X be the set of all the valuation overrings V of R such that V is minimal
among the valuation overrings of Di for some i . Then D1 ∩ · · · ∩ Dn = ⋂

V ∈X V
and J (D1) ∩ · · · ∩ J (Dn) ⊆ J (X), since the minimality of each V ∈ X implies it
is centered on some maximal ideal of one of the Di . Because D1 ∩ · · · ∩ Dn has
the same quotient field as each of the Di and each Di has nonzero Jacobson radi-
cal, it follows that J (D1) ∩ · · · ∩ J (Dn) �= 0. This shows J (X) �= 0, and similarly
J (X) ∩ (

⋂
P∈G P AP) �= 0. Thus, if G is a countable set, Lemma4.1 implies that

R = D1 ∩ · · · ∩ Dn , contrary to the assumption that A cannot be omitted from the
given representation of R. We conclude that every defining family of prime ideals
of A having nonzero intersection is uncountable. Similarly, if F is a co-countable
nonempty subset of G , Lemma4.1 implies that

R =
(

⋂

P∈F
AP

)

∩ D1 ∩ · · · ∩ Dn.

The last claim of the lemma is now clear. �

The relevance of the next lemma is that it will allow us to replace a Prüfer overring
in a representation of a domain with one that is “maximal” in the representation.

Lemma 4.3 Let R be a domain, and suppose that R = A1 ∩ · · · ∩ An ∩ D, where
D and each Ai is an overring of R. Then there exist overrings B1, . . . , Bn of R such
that Ai ⊆ Bi for each i , R = B1 ∩ · · · ∩ Bn ∩ D and no Bi can be replaced in this
intersection by one of its proper overrings. Moreover, if R is completely integrally
closed, then so is each Bi .

Proof Let F be the set of n-tuples (B1, . . . , Bn) such that each Bi is an overring
of Ai and R = B1 ∩ · · · ∩ Bn ∩ D. Then F is nonempty since (A1, . . . , An) ∈ F .
Define a partial order ≤ onF by (B1, . . . , Bn) ≤ (C1, . . . ,Cn) if Bi ⊆ Ci for each
i . To justify an application of Zorn’s lemma, suppose that {(Bi1, . . . , Bin) : i ∈ I }
is a chain in F . Let B1 = ⋃

i Bi1, . . . , Bn = ⋃
i Bin . The fact that for each j the

rings in {Bi j : i ∈ I } form a chain implies that B j is a ring. Moreover, R = B1 ∩
· · · ∩ Bn ∩ D, so (B1, . . . , Bn) ∈ F . By Zorn’s lemma, there is a maximal member
(C1, . . . ,Cn) of F . Thus, R = C1 ∩ · · · ∩ Cn ∩ D and maximality implies that no
Ci can be replaced by one of its proper overrings.

Suppose now that R is completely integrally closed. Let 1 ≤ i ≤ n. To prove that
Ci is completely integrally closed it suffices to show that no proper overring of Ci

is a fractional ideal of Ci . Suppose Di is an overring of Ci and there is 0 �= r ∈ R
such that r Di ⊆ Ci . Then r(Di ∩ (

⋂
j �=i C j ) ∩ D) ⊆ R, so since R is completely

integrally closed, we have R = Di ∩ (
⋂

j �=i C j ) ∩ D. Since Ci cannot be replaced
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by one of its proper overrings, we conclude that Ci = Di , thus proving that Ci is
completely integrally closed. �

For lack of a reference, we mention the following routine observation that will be
needed in the proof of Theorem4.6.

Lemma 4.4 Let R be a domain, and let A and B be overrings of R. Then A and B
are G-domains if and only if A ∩ B is a G-domain.

Proof Suppose A and B are G-domains, and let F denote the quotient field of R.
Since A and B are overrings of R and G-domains, there exists 0 �= r ∈ R such that
r is in the intersection of all the nonzero prime ideals of A as well as those of B.
Thus,

(A ∩ B)[1/r ] = A[1/r ] ∩ B[1/r ] = F.

Consequently, the nonzero element r is contained in every prime ideal of A ∩ B,
proving that A ∩ B is a G-domain.

Conversely, if A ∩ B is a G-domain, then there is 0 �= r ∈ A ∩ B such that r is
contained in every prime ideal of A ∩ B. Thus, F = (A ∩ B)[1/r ], so that A[1/r ] =
F = B[1/r ], from which it follows that A and B are G-domains. �

A prime ideal P of a Prüfer domain R is sharp if there is a finitely generated
ideal contained in P but not in any maximal ideal of R that does not contain P;
equivalently,

⋂
P�M RM � RP , where M ranges over the maximal ideals of R not

containing P; see [7, Proposition2.2]. A prime ideal of a Prüfer domain that is not
the union of the prime ideals properly contained in it is sharp if and only if it is the
radical of a finitely generated ideal; see the discussion before Proposition2.2 in [7].

Lemma 4.5 Let R be a Prüfer domain, and let A and B be Prüfer overrings of R
such that R = A ∩ B. If some nonzero prime ideal of R is sharp, then so is some
nonzero prime ideal of A or B.

Proof Let P be a nonzero sharp prime ideal of R. Since R is a Prüfer domain,
P = P A ∩ P B [9, Theorem26.1] and so we may assume without loss of generality
that P A �= A and hence (again since R is a Prüfer domain) that P A is a prime ideal
of A [9, Theorem26.1]. Since P is sharp there is a finitely generated ideal I of R
contained in P such that the only maximal ideals containing I are those that contain
P . To see that I A plays the same role for P A as I does for P , suppose that N is a
maximal ideal of A that contains I A. Since I ⊆ N ∩ R, the choice of I implies that
everymaximal ideal of R containing N ∩ R contains P .Moreover, since R is a Prüfer
domain, no two incomparable prime ideals of R are contained in the same maximal
ideal of R. Therefore, N ∩ R and P are comparable, so that P A and (N ∩ R)A are
comparable. Since R is a Prüfer domain, N = (N ∩ R)A [9, Theorem26.1]. As N
is a maximal ideal of A, we thus have P A ⊆ N , which proves that P A is a sharp
prime ideal of A. �
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We do not have an example for which the hypotheses of the next theorem and
corollary are satisfied. Instead, the point of these two results is to derive some conse-
quences of such hypotheses that may be useful in verifying whether the hypotheses
themselves can be obtained.

Theorem 4.6 Let R be a completely integrally closed local domain, and suppose
there are proper overrings A1, . . . , An, D of R such that R = A1 ∩ · · · ∩ An ∩ D,
each Ai is a Prüfer G-overring of R, and D is an integrally closed domain that either
has nonzero Jacobson radical or is the quotient field of R. Then there is a positive
integer m ≤ n and Prüfer G-overrings B1, . . . , Bm of R such that:

(a) R = B1 ∩ · · · ∩ Bm ∩ D,
(b) each Bi is an overring of one of the A j ,
(c) no Bi has a sharp prime ideal,
(d) each Bi has uncountably many height-one prime ideals (and hence uncountably

many maximal ideals),
(e) each of B2, . . . , Bm has at least as many height-one prime ideals as the cardi-

nality of the residue field of R, and
(f) at most one of the Bi has Krull dimension one.

Proof Since the overrings of a valuation domain are ordered by inclusion and D and
all the Ai are proper overrings of R, the ring R is not a valuation domain. We use
this fact later in the proof when we appeal to Lemmas4.1 and 4.2.

We first prove (a), (b) and (c). By Lemma4.3, there are completely integrally
closed overrings B1, . . . , Bn of R such that Ai ⊆ Bi for each i ; R = B1 ∩ · · · ∩
Bn ∩ D; and no Bi can be replaced in this intersection by one of its proper overrings.
Since an overring of a G-domain is a G-domain by Lemma4.4, and an overring of
a Prüfer domain is a Prüfer domain, each Bi is a Prüfer G-domain. After relabeling
we may assume there is m ≤ n such that R = B1 ∩ · · · ∩ Bm ∩ D and each Bi is
irredundant in this representation. (Since D is a proper overring of R, at least one of
the Bi is needed to represent R.)

We claim that for each i , Bi has no nonzero prime ideals that are sharp. Fix a
positive integer. i ≤ m, and let P be a nonzero prime ideal of Bi . Let F be the set
of maximal ideals of Bi not containing P . Since Bi is a Prüfer domain, we have by
[8, Theorem3.2.6, p. 49] that if F is empty, then (P :F P) = (Bi )P , while if F is
nonempty, then

(P :F P) = (Bi )P ∩
(

⋂

M∈F
(Bi )M

)

.

Since Bi is completely integrally closed, Bi = (P :F P) so that in the former case
Bi = (Bi )P , while in the latter case

Bi = (Bi )P ∩
(

⋂

M∈F
(Bi )M

)

.
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If Bi = (Bi )P , then Bi is local with maximal ideal P , contrary to Lemma4.2, which
requires Bi to have uncountably many maximal ideals. Therefore, F is nonempty.
The intersection of all the ideals in the defining family {P} ∪ F of Bi is nonzero
since Bi is a G-domain. Since Bi cannot be omitted from the representation in (a),
Lemma4.2 implies that

R =
(

⋂

M∈F
(Bi )M

)

∩
⎛

⎝
⋂

j �=i

B j

⎞

⎠ ∩ D.

Since Bi cannot be replaced in the representation in (a) with one of its overrings, we
conclude that ⋂

M∈F
(Bi )M = Bi ⊆ (Bi )P ,

proving that P is not a sharp prime ideal of Bi .
We have verified (a), (b), and (c). However, we wish to make an additional reduc-

tion to the case that Bi ∩ B j is not a Prüfer domain for any i �= j . Such a reduction
is possible since if there are i, j such that Bi ∩ B j is a Prüfer domain, then by
Lemmas4.4 and 4.5, Bi ∩ B j is a completely integrally closed Prüfer G-domain
with the property that no nonzero prime ideal is sharp. Therefore, we can replace Bi

and B j in the representation of R with the intersection Bi ∩ B j to obtain a represen-
tation R = B1 ∩ · · · ∩ Bn ∩ D which satisfies (a), (b) and (c) and has the additional
property that no intersection of two distinct Bi is a Prüfer domain. We use this last
property in what follows.

(d) Fix 1 ≤ i ≤ m. Since Bi is a completely integrally closed G-domain, Bi is
in the intersection of the rank one valuation rings containing Bi ; cf. [11, p. 359].
Since Bi is a Prüfer domain, the rank one valuation overrings of Bi are precisely
the localizations of Bi at height-one prime ideals. Therefore, the height-one prime
ideals of Bi constitute a defining family for Bi . Since Bi is a G-domain, the set of
height-one prime ideals has nonzero intersection, so Lemma4.2 implies that Bi has
uncountably many height-one prime ideals. Since a Prüfer domain has the property
that no two incomparable prime ideals are contained in the same maximal ideal, it
follows that Bi has uncountably many maximal ideals.

(e) Suppose there are two distinct indices i, j such that Bi and B j each has fewer
height-one prime ideals than the cardinality of the residue field of R. As in (d), Bi and
B j are each intersections of the valuation rings that are localizations at height-one
primes. Hence Bi ∩ B j is an intersection of a set of valuation rings whose cardinality
is less than that of the cardinality of the residue field of R. By [22, Corollary3.8],
this implies that Bi ∩ B j is a Prüfer domain, contrary to assumption. Therefore, no
more than one of the Bi can have fewer height-one primes than the cardinality of the
residue field of R. After relabeling we may assume only B1 can have this property.

(f) Suppose that there are distinct i, j such that Bi , B j have Krull dimen-
sion one. The intersection of finitely many one-dimensional Prüfer overrings of a
domain, eachwith nonzero Jacobson radical, is a one-dimensional Prüfer domain [23,
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Corollary5.11]. Therefore, Bi ∩ B j is a one-dimensional Prüfer domain
contradicting the choice of Bi , B j . We conclude that at most one of B1, . . . , Bm

has Krull dimension one. �

Remark 4.7 A theme of Theorem4.6 is that the Prüfer overrings Bi that comprise
the representation of R must meet somewhat stringent conditions. This ultimately is
because the resulting representation by valuation overrings must also meet stringent
conditions. To explain this topologically, we recall the notion of the Zariski–Riemann
space Zar(R) of a domain R. As a set, Zar(R) consists of the valuation overrings of
R. The Zariski topology on Zar(R) has as a basis of open sets the sets of the form

U (x1, . . . , xn) = {V ∈ Zar(R) : x1, . . . , xn ∈ V },

where x1, . . . , xn are in the quotient field F of R. For each x ∈ F , let

V (x) = {V ∈ Zar(R) : x /∈ V }.

The patch topology on Zar(R) has a basis of open sets the sets of the form
U (x1, . . . , xn) ∩ V (y1) ∩ · · · ∩ V (ym), where x1, . . . , xn, y1, . . . , ym ∈ F . With
respect to the patch topology, Zar(R) is a compact Hausdorff space having a basis of
clopen sets. Formore background on the patch topology in the context of the Zariski–
Riemann space (considerably more background than will be needed for our present
purposes), see, for example, [6, 21, 23, 24] and their references. A topological space
is perfect if every point in the space is a limit point; i.e., the space has no open
subsets consisting of one element only. In [24, Theorem3.5] it is proved that if R
is a completely integrally closed local domain that is not a valuation domain, and X is
a set of valuation overrings of R such that R = ⋂

V ∈X V and J (X) �= 0, then there is
a subset Y of the set of patch limit points of X such that R = ⋂

V ∈Y V and Y is perfect
and closed in the patch topology. The fact that X can thus be replaced by a perfect
space has several strong consequences that are examined in [24]. Related ideas lead
to the assertion that X can also be replaced by a collection of valuation rings whose
residue fields are transcendental over the residue field of R [24, Theorem3.11].

Theorem4.6 specializes in dimension one to the following corollary, which is
the main objective of this section. The ostensible difference here with Theorem4.6
is that we do not need to assume the original representation of R consists of
G-domains. This is simply because every overring of a one-dimensional local domain
is a G-domain by Lemma4.4.

Corollary 4.8 Let R be a completely integrally closed one-dimensional local
domain. If R = A1 ∩ · · · ∩ An for some proper Prüfer overrings A1, . . . , An of
R, then there is m ≤ n and Prüfer overrings B1, . . . , Bm of R such that R =
B1 ∩ · · · ∩ Bm and statements (b)–(f) of Theorem4.6 hold for the Bi .

Proof With D the quotient field of R, this is a consequence of Theorem4.6 and the
fact that every overring of a one-dimensional local domain is a G-domain. �
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Despite an early conjecture by Krull to the contrary, there do exist completely
integrally closed one-dimensional local domains that are not valuation rings. Nagata
constructed such an example in [16, 17] by intersecting certain rank one valuation
rings, and Ribenboim gave a different perspective on this example in [26]. This
construction can even be adapted to produce examples over the polynomial ring
k[X,Y ], where k is a field [20, Proposition4.4].

We formalize some of the questions that are implicit in this section.

Questions 4.9

(1) Does there exist a completely integrally closed local domain R that is an inter-
section of finitelymany proper Prüfer G-overrings? By Lemma4.4, R must itself
be a G-domain.

(2) Is every one-dimensional completely integrally closed local domain an intersec-
tion of finitely many Prüfer overrings? This is a special case of Question1.1(4)
from the introduction.

(3) Is the one-dimensional completely integrally closed local domain constructed
by Nagata an intersection of finitely many Prüfer overrings?

Loosening the requirement that the local domain in (1) be completely integrally
closed to the assumption that it is integrally closed, the answer to question (1) is
affirmative. Such an example can be found in [10, Example12, Sect. 32], where a
one-dimensional local domain R is constructed as a pullback of a DVR and the field
of rational functions in one variable over the residue field of R. This ring has the
property that if X ∪ Y is a disjoint partition into nonempty subsets of the set of rank
two valuation overrings that dominate R, then R = (

⋂
V ∈X V ) ∩ (

⋂
V ∈Y V ) and both⋂

V ∈X V and
⋂

V ∈Y V are proper Prüfer G-overrings of R. For a close analysis of
this example, see [5, Sect. 4].

5 Special Case: The Intersection of a Prüfer Domain
and a Valuation Domain

As a final illustration of some of the subtleties involved in intersecting Prüfer over-
rings, we briefly discuss the special case of an intersection of a Prüfer overring and
finitely many valuation overrings. To contrast this with the setting of the previous
section, we begin with the following observation.

Proposition 5.1 A completely integrally closed local domain cannot be written as
an intersection of finitely many proper valuation overrings and a proper integrally
closed overring with nonzero Jacobson radical.

Proof Suppose R is a completely integrally closed domain and R = V1 ∩ · · · ∩ Vn ∩
D, where the Vi are proper valuation overrings and D is a proper integrally closed
overring with nonzero Jacobson radical. Since D is a proper overring of R, we may
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assume without loss of generality that V1 cannot be omitted from this representa-
tion. However, Lemma4.2 implies then that V1 is not local, contrary to assumption.
Therefore, no such representation of R is possible. �

Since any overring of a one-dimensional local domain is either equal to the
quotient field of R or is a G-domain, Proposition5.1 implies that one-dimensional
completely integrally closed local domains are excluded from the setting of this
section. We state this more precisely.

Corollary 5.2 A one-dimensional completely integrally closed local domain cannot
be written as an intersection of finitely many proper valuation overrings and a proper
integrally closed overring.

In the case in which the valuation rings have rank one, another explanation for
Proposition5.1 is given by the following general result due to Heinzer.

Theorem 5.3 (Heinzer [12, Corollary1.16]) Let D be a domain with nonzero
Jacobson radical. If V1, . . . , Vn are rank one valuation rings of the quotient field
of D, then D is a localization of R := V1 ∩ · · · ∩ Vn ∩ D. Moreover, irredundant Vi

are centered on maximal ideals of R and are localizations of R.

If in Theorem5.3 the valuation rings are assumed to have rational rank one,
then regardless of whether D has nonzero Jacobson radical, the irredundant Vi are
localizations of R, though not necessarily at a maximal ideal, see [13, Lemma1.3].

If in Theorem5.3, D is assumed to be a Prüfer G-domain, then the structure of
R is disposed of by the following theorem, which is a consequence of some of the
topological methods from [24] discussed in Remark4.7.

Theorem 5.4 [24, Corollary4.5] Let V1, . . . , Vn be rank one valuation rings of F.
If R is a Prüfer G-domain with quotient field F, then V1 ∩ · · · ∩ Vn ∩ R is a Prüfer
G-domain with quotient field F.

The crux of the theorem is that R is a G-domain and that the valuation rings have
rank one. If one of the valuation rings Vi does not have rank one, then R need not be
a Prüfer domain, see [24, Example4.6]. Similarly, without the requirement that D
is a G-domain, the structure of an intersection of a Prüfer domain and finitely many
rank one valuation rings can be much more complicated, and certainly not a Prüfer
domain. Theorem2.6 illustrates this well: Every semilocal two-dimensional Krull
domain with finitely generated class group is an intersection of a PID and finitely
many DVRs.

Motivated by Theorem2.6, we consider more closely the intersection of a PID
and a valuation ring. We restrict even further to the case of the intersection of a
polynomial ring over a field and a valuation ring. Two elementary observations are
that such an intersection is an integrally closed domain, and if the valuation ring
in question has rank one, then the intersection is completely integrally closed. To
close this section we discuss some results that show how sensitive the structure of the
intersection is to the choice of valuation overring. A theorem of Abhyankar, Eakin,
and Heinzer provides a good example of this sensitivity. We state the theorem in a
form that is similar to the way it is given in [15].
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Theorem 5.5 (Abhyankar–Eakin–Heinzer [1, Theorem5.7]) Let V be a DVR with
quotient field F, and let V1, V2, . . . , Vn be DVR overrings of V [X ] such that Vi ∩ F =
V for each i . Let R = V1 ∩ V2 ∩ · · · ∩ Vn ∩ F[X ]. Then R is a Dedekind domain
provided the residue field of each Vi is algebraic over the residue field of V . If
one of the residue fields is not algebraic over the residue field of V , then R is a
two-dimensional Noetherian domain.

Motivated by this theorem, Loper and Tartarone explore in [15] the structure of
the integrally closed rings between V [X ] and F[X ] in the case where V = Zp with
p a prime integer. Each such ring R is an intersection of F[X ] and (in general,
infinitely many) valuation overrings of V [X ]. Loper and Tartarone prove however
that if P is a prime ideal of R, then RP is an intersection of a single valuation ring
and a localization of F[X ]. Thus, the structure of the ring R depends locally on the
question of the structure of the intersection of a valuation overring of V [X ] and a
PID overring of F[X ]. The case in which the valuation overring is a DVR is settled
by Theorem5.5. The remaining cases in which the valuation overring need not be
a DVR or even have rank one are dealt with in [15], and it is shown which choices
of valuation ring produce Prüfer domains, PvMDs, Mori domains, and Krull-type
domains.

Some of this framework is extended to regular local rings of Krull dimension two
in [25]. Let (D,m) be a two-dimensional integrally closed local Noetherian domain,
let 0 �= f ∈ m such that

√
f D is a prime ideal of D, and let n be a positive integer. A

criterion [25, Theorem1.1] is given for when every integrally closed ring R between
D and D f and maximal ideal M of R, there is a representation RM = V1 ∩ · · · ∩
Vn ∩ (D f )M , for some not necessarily distinct valuation overrings V1, . . . , Vn of R.
This criterion is shown to be satisfied for n = 1 if D is a two-dimensional regular
local ring and either D is equicharacteristic or D has mixed characteristic and f
is a prime integer in D. In this setting, too, the structure of each integrally closed
ring between D and D f depends locally on the structure of the intersection of a PID
overring and a valuation overring.

Acknowledgements I thank the referee for the helpful comments.
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Strongly Additively Regular Rings
and Graphs

Thomas G. Lucas

Abstract A commutative ring R is said to be additively regular if for each pair
of elements f, g ∈ R with f regular, there is an element t ∈ R such that g + f t is
regular. For any commutative ring R, the polynomial ring R[X] is additively regular,
moreover if deg(g) < n, then g + f Xn is regular when f ∈ R[x] is regular. We
introduce several stronger types of additively regular rings where the choice for t is
restricted: R is strongly additively regular if for each pair of elements f, g ∈ R with
f regular and g a zero divisor, there is a regular element t ∈ R such that g + f t is
regular; R is very strongly additively regular if for each pair of elements h, k ∈ R
with h regular, there is a regular element s ∈ R such that k + hs is regular. Even
stronger are strongly u-additively regular and very strongly u-additively regular, for
these the “t” is further restricted to being a unit of R.

1 Introduction

Throughout this paper, all rings are assumed to be commutativewith nonzero identity.
For a ring R, we let Z(R) denote the set of zero divisors of R and let T (R) denote
the total quotient ring of R.

Recall that for a ring R, R is additively regular if for each regular element f ∈ R
and each g ∈ R, there is an element t ∈ R such that g + f t is regular (this equivalent
to the original definition in [4], see, for example [4, Lemma7]). Note that if g is
regular, we can simply choose t = 0. We introduce four stronger conditions, two
where the choice of t is restricted to being regular and two where the choice of t
is restricted to being a unit. We say that R is strongly additively regular (strongly
u-additively regular) if for each regular f ∈ R and each zero divisor g ∈ R, there is
a regular element (unit) t ∈ R such that g + f t is regular. Also, R is very strongly
additively regular (very strongly u-additively regular) if for each regular element
f ∈ R and each g ∈ R, there is a regular element (unit) t ∈ R such that g + f t is
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regular. The fieldZ2 is strongly u-additively regular but not very strongly u-additively
regular. All other fields are very strongly u-additively regular. Also, for Z2, Z2[X]
is both strongly u-additively regular and very strongly additively regular but not
very strongly u-additively regular. In contrast, for any ring R, the corresponding
Nagata ring R(X) is very strongly u-additively regular (for the “unit” t ∈ R(X) one
can simply choose a sufficiently large power of Xn). In the case R = T (R) is its own
total quotient ring, then regular= unit, so in this case, we are starting with the regular
f as a unit and trying to find a unit t such that g + f t is a unit of R. Finally, note
that in the general case for a ring R, if g = 0, then we simply choose t = 1 to have
g + f t regular.

To save a few twigs (and quite a bit of typing), we introduce the following abbre-
viations: strongly additively regular = sAR, strongly u-additively regular = suAR,
very strongly additively regular = vsAR, and very strongly u-additively regular =
vsuAR.

The second section is devoted to the study of the various strongly additively
regular properties. One of the main results there is that if R = S × T for a pair of
rings S and T and R is sAR, then all three of R, S, and T are vsAR. Conversely,
if both S and T are vsAR, then R is vsAR (Theorem2.3). In the third section, we
concentrate on the case R is a von Neumann regular ring. One of the main results
there is that if R is a von Neumann regular ring that is not a field, then it is vsAR
if and only if there is a unit u ∈ R such that 1 + u is a unit (Theorem3.3). Another
characterization is that R is vsAR if and only if it has no prime ideal P such that
R/P = Z2 (Corollary3.10).

The fourth section introduces four new types of graphs associated with the ring
R. In 1988, Istvan Beck introduced the zero-divisor graph associated to the ring R
where the vertices are the elements of R and for f �= g, ( f, g) is an edge if and
only if f g = 0 [3]. In 1999, David F. Anderson and Philip S. Livingston refined the
definition by limiting the vertex set to the set of nonzero zero divisors of R, they
denoted the resulting graph as Γ (R) [2]. They proved that Γ (R) is connected and
has diameter less than or equal to 3. Another graph associated with David Anderson
(together with Ayman Badawi) is the total graph of R [1]. For this graph the vertices
include all elements of R and for f �= g, ( f, g) is an edge if and only if f + g is a
zero divisor. Unlike the zero-divisor graph, this graph need not be connected. Another
graph associated to a ring is the comaximal graph (as in [6, 7]) where (r, s) is an
edge if r R + sR = R (in [7] the units of R are included in the set of vertices, while
in [6] only nonunits of R are vertices). The graphs we introduce in Sect. 4 include all
elements of R as the vertices. The starting point is the graph A(R) where for f �= g,
( f, g) is an edge if and only if there is a regular element p ∈ R such that at least one of
f + gp and f p + g is regular. A subgraph of A(R) is the graph Au(R) where (b, c)
is an edge if and only if there is a unit u ∈ R such that b + cu is regular (equivalently,
bu−1 + c is regular). Both A(R) and Au(R) exist for all rings (and have at least two
vertices, 1 and 0, and at least one edge, namely, (1, 0)). For several of the results in
this section we define two other graphs which need not exist for a given ring R. For
existence, we require that for each regular element g of R, there is a regular element
(unit) p such that g + gp is regular, which makes (g, g) a loop in this new graph. It is
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an easy exercise to show that there is a loop at each regular element if and only if there
is a loop at 1 if and only if there is a loop at some regular element f . We define the
set of edges of A�(R) to be the union of the set of edges of A(R) and the set of loops
at regular elements provided there is a loop at each regular element. Similarly, the set
of edges of Au�(R) is the union of the set of edges of Au(R) and the set of loops at
regular elements provided there is a loop at each regular element.

2 Strongly Additively Regular Rings

We start with a simple example of a strongly additively regular ring that is not a very
strongly additively regular ring.

Example 2.1 For the field Z2, the only regular element is 1 so there is no regular
element t such that 1 + 1 · t is regular. Thus, Z2 is not vsAR, but Z2[X] is vsAR (see
Theorem2.2 below). Also, for a field F , the regular elements of the ring R = Z2 × F
all have the form (1, x) for some (each) nonzero x ∈ F . The element (1, 0) is a zero
divisor forwhich there is no regular element (b, c) ∈ R such that (1, 0) + (1, x)(b, c)
is regular since b must be 1.

For a polynomial f (X) = f0 + f1X + · · · + fnXn ∈ R[X], the ideal C( f ) =
f0R + f1R + · · · + fn R is referred to as the “content” of f (X). In the event
C( f ) = R, f (X) is said to have unit content. Using the Dedekind–Mertens content
formula it is easy to see that the set of all unit content polynomials is multiplicatively
closed. The Nagata ring corresponding to R is the ring R(X) = R[X]U (R) where
U (R) = { f (X) ∈ R[X] | C( f ) = R}.
Theorem 2.2 Let R be a commutative ring.

1. R[X] is vsAR.
2. R(X) is vsuAR.

Proof Let f (X), g(X) ∈ R[X] with f (X) regular. Then C( f ) has no nonzero anni-
hilator in R. For n > deg(g), the content of the polynomial d(X) = g(X) + f (X)Xn

contains C( f ). Thus, C(d) has no nonzero annihilator in R, and therefore, d(X) is
regular.

Next, suppose (instead) that f (X), g(X) ∈ R(X) with f (X) regular. Then there are
polynomials h(X), k(X) ∈ R[X] and u(X), v(X) ∈ U (R) such that f (X) = h(X)/u(X)

and g(X) = k(X)/v(X). The polynomial h(X) is a regular element of R[X] and thus
C(h) has no nonzero annihilator in R. For n > deg(k(x)) + deg(u(X)), g(X) +
f (X)Xn = (k(X)u(X) + h(X)v(X)Xn)/u(X)v(X) is regular as the content of k(X)u(X) +
h(X)v(X)Xn contains C(hv) = C(h). Hence, R(X) is vsuAR. �
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Theorem 2.3 For a pair of rings S and T , let R = S × T .

1. The following are equivalent:

a. Both S and T are vsAR.
b. R is vsAR.
c. R is sAR.

2. The following are equivalent:

a. Both S and T are vsuAR.
b. R is vsuAR.
c. R is suAR.

Proof Recall that an element p = (x, y) ∈ R is regular if and only if x is a regular
element of S and y is a regular element of T . Also, p is a unit if and only if x is a
unit of S and y is a unit of T .

First suppose both S and T are vsAR (vsuAR) and let f = (b, c) be regular and
g = (d, e) ∈ R. Since S and T are vsAR (vsuAR), there are regular elements (units)
v ∈ S and w ∈ T such that d + bv and e + cw are regular. It follows that z = (v,w)

is a regular element (unit) of R such that g + f z is a regular element of R. Thus, R
is vsAR (vsuAR).

It is clear that (b) implies (c) in both cases, so we assume R is sAR (suAR). We
will show S is vsAR (vsuAR). Let b ∈ S be regular and let d be in S. Then j = (b, 1)
is a regular element of R and k = (d, 0) is a zero divisor of R. Thus, there is regular
element (unit) q = (u, v) of R such that k + jq = (d + bu, 0 + v) = (d + bu, v) is
regular element of R. It follows that d + bu is a regular element of S, and therefore,
S is vsAR (vsuAR). The analogous proof involving T shows that T is vsAR
(vsuAR). �

In [5], we introduced the notion of an additively regular family of prime ideals
as a nonempty set of primesP = {Pα} of a ring R such that for each f ∈ R\⋃

Pα

and each g ∈ R, there is an element h ∈ R such that g + f h ∈ R\⋃
Pα . If

⋃
Pα =

Z(R), then P is an additively regular family if and only if R is additively regular
(a trivial generalization of [5, Theorem2.1]). We say thatP is a strongly additively
regular family if for each f ∈ R\⋃

Pα and each g ∈ ⋃
Pα , there is an h ∈ R\⋃

Pα

such that g + f h ∈ R\⋃
Pα . Similarly, P is a very strongly additively regular

family if for each f ∈ R\⋃
Pα and each g ∈ R, there is an h ∈ R\⋃

Pα such that
g + f h ∈ R\⋃

Pα . If one can choose h to be a unit, then P is a (very) strongly
additively regular u-family. There is no requirement that f and/or h be regular, only
that neither is in

⋃
Pα . Next, we show that if there is a Pβ ∈ P such that R/Pβ = Z2,

then P is never a very strongly additively regular family, and it is not a strongly
additively regular family except in the rare case that Pβ contains each Pα .

Lemma 2.4 Let R be a ring and letP = {Pα} be a nonempty family of prime ideals
of R such that there is a prime Pβ ∈ P such that R/Pβ = Z2.
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1. P is not a very strongly additively regular family.
2. If there is a g ∈ ⋃

Pα that is not in Pβ , then for each pair f, h ∈ R\⋃
Pα ,

g + f h ∈ Pβ . Thus, in this case, P is not a strongly additively regular family.
3. If Pβ contains each Pα (equivalently, Pβ = ⋃

Pα), thenP is a strongly additively
regular u-family.

Proof Let f, h, k ∈ R\⋃
Pα . Then all are congruent to 1mod Pβ and thus k + f h ∈

Pβ . Hence,P is not a very strongly additively regular family. Similarly, if there is a
g in

⋃
Pα but not in Pβ , we have g + f h ∈ Pβ (since both g and f h are congruent

to 1 mod Pβ) and thus P is not a strongly additively regular family in this case.
Finally, if Pβ contains each Pα , then each g ∈ ⋃

Pα is contained in Pβ . Thus,
we have g + f h ∈ R\⋃

Pα and soP is a strongly additively regular family in this
(very special) case. Moreover since g ∈ Pβ and f /∈ Pβ , g + f ∈ D\Pβ so we can
simply choose h = 1. Therefore, P is a strongly additively regular u-family. �

Lemma 2.5 Let P = {Pα} be a nonempty family of primes of a ring R such that⋃
Pα = Z(R).

1. R is sAR (suAR) if and only ifP is a strongly additively regular family (u-family).
2. R is vsAR (vsuAR) if and only if P is a very strongly additively regular family

(u-family).

Proof Since
⋃

Pα = Z(R), an element is in R\⋃
Pα if and only if it is regular. �

A useful method for constructing reduced rings with/without certain properties
is referred to as the A + B construction. For a domain D (that is not a field), let
P = {Pα} be a nonempty set of prime ideals and let I = A × N where A is
an index set for P . For each i = (α, n) ∈ I , let Ki denote the quotient field of
D/Pα . Next, let B = ∑

Ki and form a ring R = D + B from D × B by setting
(r, b) + (s, c) = (r + s, b + c) and (r, b)(s, c) = (rs, rc + sb + bc). The ring R is
referred to as the A + B ring corresponding to D and P . It is known that R is
additively regular if and only if P is an additively regular family [5, Theorem4.4].
We first consider the case where there is no Pβ ∈ P such that D/Pβ = Z2.

Theorem 2.6 Let D be a domain that is not a field and letP = {Pα} be a nonempty
set of prime ideals of D for which there is no Pβ ∈ P such that D/Pβ = Z2. Also,
let R = D + B be the A + B ring corresponding to D and P .

1. R is sAR (suAR) if and only ifP is a strongly additively regular family (strongly
additively regular u-family).

2. R is vsAR (vsuAR) if and only if P is a very strongly additively regular family
(very strongly additively regular u-family).

Proof For each i = (α, n), r ∈ D and b ∈ B, we let ri denote the image of r in Ki

and let bi denote the i th coordinate of b. Also, it is convenient to let ei denote the
element in B whose i th coordinate is 1 and all others are 0. If ri = −bi for some i ,
then (r, b)(0, ei ) = (0, 0). For the case r ∈ Pα for someα, ri = 0 for each i = (α, n).
Hence, in this case, (r, b) ∈ Z(R) for each b ∈ B. We also have that (1,−ei ) is a zero
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divisor for each i (with (0, ei ) a nonzero annihilator). It follows easily that (s, c) ∈ R
is a zero divisor if and only if there is an i ∈ I such that si = −ci .

It is clear that the D component of a unit of R must be a unit of D. So start with
u ∈ D a unit. As above, if b ∈ B is such that ui = −bi for some i , then (u, b) is a
zero divisor. So assume there is no i such that ui = −bi . Define an element c ∈ B
by setting ci = 0 when bi = 0 and ci = −u−1bi/(ui + bi ) when bi �= 0. We have
(u, b)(u−1, c) = (1, 0) and thus (u, b) is a unit in this case.

Let f = (r, b) and g = (s, c) be elements of R with f regular. Also, let h = (t, d)

be a regular element of R. Then t ∈ D\⋃
Pα . A necessary condition to have g + f h

regular is that s + r t /∈ ⋃
Pα . We also need no i ∈ I such that si + ri ti = −(ci +

ridi + ti bi + bidi ). We know ri + bi is never zero, and t and d must be such that
ti + di is never zero.

If R is sAR/vsAR (suAR/vsuAR), then we have such a regular (unit) h such that
g + f h is regular and so s + r t ∈ D\⋃

Pα . Thus, the family is a strongly additively
regular (u-)family in the sAR (suAR) case, and a very strongly regular (u-)family in
the vsAR (vsuAR) case.

For the converses, suppose P is a [very] strongly additively regular (u-)family.
Then for r and s,wehave an element (unit) t ∈ D\⋃

Pα such that s + r t ∈ D\⋃
Pα .

The goal is show there is a d ∈ B such that both (t, d) and (s, c) + (r, b)(t, d) are
regular.

Since s + r t ∈ D\⋃
Pα , there is no i such that si + ri ti = 0. For a suitable d ∈ B,

we set di = 0when both bi and ci are 0. For those finitelymany i where at least one of
bi and ci is not 0,wemakeuseof knowing that ri + bi is never 0 to see that the equation
si + ri ti = −(ci + ti bi ) + (ri + bi )x has a unique solution for x in Ki . Since Ki

has at least three elements, there is a di ∈ Ki such that ti + di �= 0 and si + ri ti �=
−(ci + ridi + ti bi + bidi ). It follows that both (t, d) and (s, c) + (r, b)(t, d) are
regular.

Thus, P is a [very] strongly additively regular (u-)family if and only if R is a
[very] strongly (u-)additively regular ring. �

From Lemma2.4, if there is a Pβ ∈ P such that D/Pβ = Z2, then P is not a
very strongly additively regular family, and thus, the corresponding ring R = D + B
is not a very strongly additively regular ring. Similarly, R = D + B is not strongly
additively regular if there is an element s ∈ ⋃

Pα that is not in Pβ . The remaining
case is when Pβ contains

⋃
Pα and D/Pβ = Z2.

Theorem 2.7 Let D be a domain and letP = {Pα} be a nonempty family of prime
ideals such that there is a Pβ ∈ P where Pβ ⊇ ⋃

Pα and D/Pβ = Z2. Also, let
R = D + B be the A + B ring corresponding to D and P . Then R is not sAR.

Proof Let f = (r, b) be a regular element of R. Then r ∈ D\Pβ . Let j = (β, 1) and
define an element e ∈ B by setting e j = 1 and ei = 0 for all other i ∈ I . Since f
is regular, r ∈ D\Pβ and thus r j = 1 and b j = 0. Similarly, for each regular h =
(t, d) ∈ R, h j = 1 and d j = 0. For g = (0, e), g + f h = (r t, e + rd + tb + bd)

and so for j we have (r t) j = 1 = e j + r jd j + t j b j + b jd j . Thus, g + f h is a zero
divisor of R, and therefore, R is not sAR. �
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3 Von Neumann Regular Rings

In this section, we assume R is von Neumann regular ring that is not a field. We are
interested in determining when R is vsAR (equivalently, vsuAR).

For a nonzero idempotent e ∈ R, we say that x = ex is an e-unit if x ∈ R is a unit
of the ring eR. A unit of R is a 1-unit, but will simply say unit. Also, we say that
a pair of (not necessarily distinct) e-units u = eu and v = ev is a unit sum pair if
u + v = e(u + v) is an e-unit. The corresponding ring S = eR is said to admit unit
sum pairs if at least one pair of e-units forms a unit sum pair.

Let S = {S = eR | e ∈ E and S admits unit sum pairs} where E is the set of
nonzero idempotents of R.

Lemma 3.1 Let R be von Neumann regular ring such that the set S is nonempty.

1. For S = eR, T = f R ∈ S with S � T , a unit sum pair u = eu and v = ev can
be extended to a unit sum pair x = f x, y = f y of T where ex = u and ey = v.

2. For S = eR ∈ S , if h ∈ E is such that eh = h, then W = hR = hS ⊆ S is in
the set S .

Proof Since S � T , e f = e and g = f − e f = f − e are nonzero idempotents of T .
Let u, v be e-units that form a unit sum pair. Next, let w, z be f -units that form a unit
sum pair. Then we have u = eu, v = ev,w = f w and z = f z with u + v = e(u + v)
a unit of S and w + z = f (w + z) a unit of T . The ring T is the internal direct
sum of S = eR = eT and S′ = gR = gT . Also, gw and gz are units of S′ with
egw = 0 = egz and gu = geu = 0 = gev = gv. Let x = u + gw and y = v + gz.
Both x and y are f -units. The sum x + y = u + gw + v + gz = (u + v) + g(w + z)
is a unit of T and we have ex = u and ey = v.

For the second statement, we may assume h �= e so that j = e − eh = e − h is a
nonzero idempotent in S. Let W ′ = j S = j R. Since hj = 0, S is the internal direct
sum of W and W ′. As above, let u, v be e-units that form a unit sum pair. Then
s = hu and t = hv are h-units (of W ), and p = ju and q = jv are j-units (of W ′).
We have s + p = u and t + q = v. As u + v is an e-unit, h(u + v) = s + t is an
h-unit and j (u + v) = p + q is a j-unit. Thus, s and t form a unit sum pair as do p
and q. Therefore, W and W ′ are in S . �

From statement (2) in the previous lemma, if R has a unit sum pair, then S =
{eR | e ∈ E }. Continuing using (1): every unit sum pair u and v of S = eR for some
e ∈ E can be extended to a unit sum pair x and y of R (so that ex = u and ey = v).

Lemma 3.2 The following are equivalent for a von Neumann regular ring R:

1. For each unit u ∈ R, there is a unit v ∈ R such that u + v is a unit of R.
2. There is a unit w such that 1 + w is a unit of R.
3. R has a unit sum pair.

Proof It is clear that (1) implies (2) and that (2) implies (3). To complete the proof
we show (3) implies (1) (it is quite simple). Suppose z, t ∈ R are units such that
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z + t is a unit of R and let u be a unit of R. Then all three of uz−1, uz−1t and
uz−1(z + t) = u + uz−1t are units of R. �

The next result connects the property of being vsAR with the existence of unit
pair sums (when R is von Neumann regular).

Theorem 3.3 Let R be von Neumann regular ring that is not a field. Then the
following are equivalent:

1. R is vsAR (=vsuAR).
2. eR is vsAR for each nonzero idempotent e.
3. There is a nonzero idempotent e ∈ R\{1}, such that both eR and (1 − e)R are

vsAR.
4. eR is sAR for each nonzero idempotent e.
5. R is sAR (=suAR).
6. For every unit u ∈ R, there is a unit v ∈ R such that u + v is a unit.
7. There is a unit q ∈ R such that 1 + q is a unit.
8. R admits unit sum pairs.

Proof Since R is a total quotient ring, each regular element is a unit. Hence, R is
vsAR if and only if it is vsuAR, and it is sAR if and only if it is suAR. The equivalence
of (1) through (5) follows from Theorem2.3 and the fact that R is the internal direct
sum of eR and (1 − e)R for each nonzero idempotent e �= 1.

The equivalence of (6), (7) and (8) is from Lemma3.2.
To see that (1) implies (7), we start with 1 ∈ R viewed both as the regular element

f and the arbitrary element g from the definition of “vsAR.” Then we have a unit
q ∈ R such that g + f q = 1 + q is a unit.

To complete the proof we show that (8) implies (1). Let f ∈ R be a unit and
let g ∈ R\{0}. Since R is von Neumann regular ring, there is a nonzero idempotent
e ∈ R (perhaps e = 1) and a unitw ∈ R such that g = ew. Both g and e f are e-units.
By Lemma3.1 (and the assumption that R admits unit pair sums), the ring eR admits
unit sum pairs. Hence, by Lemma3.2, there is an e-unit k = ek such that g + k is an
e-unit. For k, there is a unit t ∈ R such that k = et . The element q = f −1t is a unit of
R and g + k = g + f qe = g + f eqewhere both f e and qe are e-units.We are done
if e = 1, otherwise f (1 − e) is a (1 − e)-unit of T = (1 − e)R with R the internal
direct sum of S and T . It follows that g + f qe + f (1 − e) = g + f (qe + (1 − e))
is a unit of R with qe + (1 − e) a unit of R. Hence, (8) implies (1). �

Corollary 3.4 Let R be a von Neumann regular ring. If R is vsAR, then there is no
nonzero idempotent e such that eR is Boolean.

Proof We prove the contrapositive. Suppose there is a nonzero idempotent e such
that S = eR is Boolean. Then e is the only unit of S, so clearly, S has no unit sum
pair. By Lemma3.1, it must be that R has no unit sum pair, and therefore, R is not
vsAR in this case. �

Corollary 3.5 Let R be a von Neumann regular ring. If R is vsAR, then there is no
prime ideal P such that R/P is Z2 (equivalently, cannot have RP = Z2).
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Proof We prove the contrapositive. Suppose there is a prime P such that R/P = Z2

and let u and v be units of R. Then u + P = 1 + P = v + P and thus (u + v) + P =
0 + P and so u + v is not a unit and R has no unit sum pairs. �

In the next example, the ring R is a von Neumann regular ring with characteristic
2 which has no unit sum pair. In addition, there is no nonzero idempotent e such that
eR is Boolean. However, there is a prime P such that R/P = Z2.

Example 3.6 Let F4 be the fieldwith four elements and let T = ∏

n∈Z
Kn with Kn = F4

for each n. Next, letU be a nonprincipal ultrafilter onZ and letX = {q ∈ T | qm =
1 for all m ∈ U, for some U ∈ U } and Y = {p ∈ T | pm = 0 for all m ∈ U,

for some U ∈ U }.
1. X ∪ Y is a subring R of T .
2. R is von Neumann regular with characteristic 2.
3. There is no nonzero idempotent e of R such that eR is Boolean.
4. For each pair of units u and v of R, u + v is not a unit.
5. The set Y is a prime ideal M of R such that R/M = Z2.
6. R is not vsAR.

Proof Note that 1 ∈ X (as the tuple with all coordinates 1). SinceU is an ultrafilter,
it is closed to finite intersections. Hence, X is closed to finite products and Y is
closed to finite sums. In addition, p + q ∈ X for each p ∈ X and q ∈ Y . It is
also the case that if p ∈ X ∪ Y and q ∈ Y , then pq ∈ Y . On the other hand, if
q1, q2, . . . , qn ∈ X , then q = ∑

qi is inX if n is odd and it is in Y if n is even. In
particular, 1 + q ∈ Y for each q ∈ X . Thus, X ∪ Y is a subring R of T with Y
an ideal, in fact a prime ideal. Also, since T has characteristic 2, so does R.

For nonzero x ∈ R, if there is no k such that xk = 0, then it must be that there
is a set U ∈ U such that xm = 1 for all m ∈ U . We may define an element z ∈ R
by setting zm = 1(= x−1

m ) for all m ∈ U and zn = x−1
n for all n /∈ U . Then xz = 1.

On the other hand, if xk = 0 for some k, then we may define a nonzero annihilator
for x . Suppose x ∈ Y . Then the set V = {m ∈ Z | xm = 0} is inU . Define q ∈ X
such that qm = 1 for all m ∈ V and qn = 0 for all n /∈ V . Clearly, qx = 0. We could
also simply choose an m such that xm = 0, and define a nonzero idempotent e ∈ Y
by setting em = 1 and en = 0 for all n �= m. On the other hand, if x ∈ X , then an
annihilator must be in Y as xm = 1 for all m ∈ U for some U ∈ U . For such an x ,
we define z ∈ Y by setting zn = 0 when xn �= 0 and zn = 1 when xn = 0. We will
have zm = 0 for all m ∈ U , and zk = 1 for at least one k /∈ U . So z �= 0, but zx = 0.
We have also shown that each unit of R is in the set X .

Next, we seek an idempotent e and unit u such that x = eu. There is nothing to
prove if x is a unit. Thus, from the discussion above, there is a k such that xk = 0 and
an n such that xn �= 0. Let S = {k ∈ Z | xk = 0} and S′ = {n ∈ Z | xn �= 0}. Neither
set is empty, and exactly one is in U . Note that if S is not in U , then it must be
that the set {m ∈ Z | xm = 1} is in U (and clearly, it is a subset of S′). Thus, we
may define a nonzero idempotent e such that ek = 0 for all k ∈ S and en = 1 for
all n ∈ S′. To define the unit u, we simply set uk = 1 for all k ∈ S and un = xn for
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all n ∈ S′. Clearly, there is no m such that um = 0. Thus, u is a unit with x = eu.
Therefore, R is von Neumann regular ring and there is no pair of units whose sum is
a unit. By Theorem3.3 R is not vsAR.

For a nonzero idempotent f , f R contains elements that are not idempotent.Hence,
there is no nonzero idempotent e such that eR is Boolean. However, as we noted
above, M = Y is a prime ideal of R, necessarily both minimal and maximal since
R is von Neumann regular ring. For each q ∈ R\M (equivalently, q ∈ X ) we have
1 + q ∈ M and thus R/M = Z2. �

Our final goal of this section is to establish the converse of Corollary3.5. We
start by doing this for the case R has characteristic 2. As a first step, we record the
following corollary of Theorem3.3 which holds in the general case.

Corollary 3.7 Let R be a von Neumann regular ring that is not a field. Then the
following are equivalent:

1. R is not vsAR.
2. Each unit u can be written as u = 1 + p for some zero divisor p.
3. For units u and v, u + v is a zero divisor.

Next, we record the following elementary result dealingwith idempotents of a von
Neumann regular ring that has characteristic 2 (so that 1 + e = 1 − e is idempotent
for each idempotent e). Combining this observation with Theorem2.3 will be very
useful.

Lemma 3.8 Let R be a von Neumann regular ring with characteristic 2. Also, let e
and h be nonzero idempotents.

1. If eR and hR are incomparable, then the ring eR + hR can be realized as a
nontrivial internal direct sum as eR + (h + eh)R and as hR + (e + eh)R.

2. If eR � hR, then hR = eR + hR and (h + eh)R + eR is a nontrivial internal
direct sum decomposition of hR.

Proof Since R has characteristic 2, e + h + eh is an idempotent. If eh = 0, then
eR + hR is an internal direct sum. Otherwise, we have (e + eh)R + ehR + (h +
eh)R is an internal direct sum representation of eR + hR. In addition, eR =
(e + eh)R + ehR and hR = ehR + (h + eh)R are both internal direct sums. So we
have eR + hR = eR + (h + eh)R = (e + eh)R + hR with both eR + (h + eh)R
and (e + eh)R + hR as internal direct sum representation.

For (2), suppose eR � hR. Then eh = e, and h + eh generates the annihilator
of eR in hR. Thus, we have that hR = (h + eh)R + eR is an internal direct sum
decomposition of hR. �

Theorem 3.9 Let R be a von Neumann regular ring with characteristic 2. Then R
is vsAR if and only if there is no prime ideal Q such that R/Q = Z2.
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Proof The assumption that R has characteristic 2 means that r = −r for each r ∈ R.
Corollary3.5 takes care of showing that the existence of a prime Q such R/Q =

Z2 implies R is not vsAR. Next, we assume R is not vsAR. By Corollary3.7, each
unit u can be written as a sum u = 1 + p for some (unique) zero divisor p. Let
Y = {q ∈ Z(R) | 1 + q is a unit of R}.

If the set Y generates a proper ideal of R, then there is a prime M containing Y
such that R/M = Z2. To see this, note that it is clear that each unit is congruent to 1
mod M . For a zero divisor g /∈ M , we have g = f w for some unit w and nontrivial
idempotent f with 1 + f ∈ M . The element z = g + (1 + f ) is a unit of R. Note
that z = 1 + (g + f ) and g + f is a zero divisor, so g + f is in the set Y . We also
have z congruent to both 1 and g mod M . Hence, R/M = Z2 (provided Y generates
a proper ideal of R).

To see that Y generates a proper ideal of R, we first show that if s, t ∈ Y , then
sR + t R is a proper ideal of R. In the process, we will see that if s1, s2, . . . , sn ∈ Y ,
then

∑
si R is a proper ideal of R.

Let u = 1 + p and v = 1 + q be distinct units with p and q nonzero zero divisors.
For p andq, there are units x and y andnonzero idempotents e and h such that p = ex ,
q = hy, pR = eR and qR = hR.

For p suppose there is an idempotent f ∈ eR such that p f = f (clearly true for
the case f = 0). Then f annihilates e + p. But as u = (1 + e) + (e + p) is a unit
of R and (1 + e)R + eR is an internal direct sum decomposition of R, e + p is a
unit of eR. Thus, f = 0. Hence, we have that e, p, and e + p are units of eR and so
by Theorem3.3, eR is vsAR.

Similarly, hR is vsAR.
By Lemma3.8 and Theorem2.3, eR + hR is a von Neumann regular ring that is

vsAR. Since R is not vsAR, eR + hR is a proper ideal of R.
For finitely many pi ∈ Y , we have corresponding idempotents ei and units wi

such that pi = eiwi and pi R = ei R. As rings, each ei R is von Neumann regular ring
that is vsAR. So as with eR + hR, the sum

∑
ei R is a von Neumann regular ring

that is vsAR. Thus, it is a proper ideal of R. It follows that
∑

pi R is a proper ideal
of R. Hence, Y generates a proper ideal of R. From the argument above, if M is a
prime that contains Y , then R/M = Z2. So by Corollary3.5, R is not vsAR in this
case. �
Corollary 3.10 Let R be a von Neumann regular ring. Then R is vsAR if and only
if there is no prime P such that R/P = Z2.

Proof We may assume R does not have characteristic 2. By Corollary3.5, if there
is a prime P such that R/P = Z2, then R does not admit unit sum pairs. So all
we need to prove is that such a prime exists whenever R does not admit unit sum
pairs. Hence, we have may assume 0 �= 1 + 1 = eu = e + e = for some nonzero
idempotent e and unit u where e �= 1. Since R = eR + (1 − e)R and e + e = eu
is a unit of eR, Theorem3.3 implies that (1 − e)R does not admit unit sum pairs.
We have 2(1 − e) = (1 + 1) − (e + e) = 0. Thus, (1 − e)R has characteristic 2 and
therefore there is a prime ideal P of (1 − e)R such that (1 − e)R/P = Z2. It follows
that Q = eR + P is a prime ideal of R such that R/Q = (1 − e)R/P = Z2. �
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It may be helpful to consider the ring R from Example3.6 with regard to the proof
that each zero divisor g ∈ R\M is congruent to 1 mod M . In the example, Y and
M coincide as the set of elements p ∈ T such that pn = 0 for all n ∈ U for some
set U in the ultrafilter U . For g we have gm = 1 for all m in some set V ∈ U . We
may assume V contains eachm where this occurs and thus gn �= 1 when n /∈ V (and
gn = 0 for at least one such n). For the corresponding idempotent f , fm = 1 for all
m ∈ V (and all n /∈ V where gn �= 0) so that (g + f )m = gm + fm = 0 for all such
m, and thus, we see that g + f is in Y = M .

Example 3.11 Let S = R ⊕ R where R is the von Neumann regular ring of Exam-
ple3.6 (that is not vsAR). Then S is a von Neumann regular ring that is not vsAR
and the set Y = {t ∈ Z(S) | 1 + t is a unit of S} generates a proper ideal (in fact, is
a proper ideal) that is contained in more than one prime ideal.

Proof Using the notation from Example3.6, we have that M = {t ∈ T | tn(x) =
0 for all x ∈ U for some U ∈ U } is a maximal ideal of R such that R/M = Z2. In
S, both N1 = M ⊕ R and N2 = R ⊕ M are maximal ideals such that S/N1 = Z2 =
S/N2. Note that for each nonzero p ∈ M , (p, 1) and (1, p) are zero divisors of S
such that neither (p, 1) + (1, 1) = (p + 1, 0) nor (1, p) + (1, 1) = (0, p + 1) is a
unit of S (even though p + 1 is a unit of R). For S, we have Y = M ⊕ M is an ideal
that is contained in both N1 and N2. �

4 AR Graphs

We introduce four graphs whose vertices are the elements of a ring R. For distinct
f, g ∈ R, ( f, g) is an edge if there is a regular element t ∈ R such that at least one
of f + gt and f t + g is regular. We denote this graph by A(R) and refer to it as the
AR graph of R. We may augment the graph by adding a loop at f when there is a
regular element s ∈ R such that f + f s is regular. A necessary condition for there
to be a loop at f is that f is regular. When there is a loop at each regular f ∈ R,
we denote the augmented graph by A�(R), and refer to it as the looped AR graph
of R. The other two graphs are subgraphs of A(R) and A�(R). For these, we have
an edge ( f, g) (loop when g = f ) when there is a unit u of R such that f + gu
is regular (equivalently, f u−1 + g is regular). The graph with no loops allowed is
denoted byAu(R) and the one with loops included (when they exist) isAu�(R), these
are the u-AR graph of R and the looped u-AR graph of R, respectively. Unlike the
zero-divisor graph of R (and many others associated with R), an AR graph need not
be connected. However, when R is sAR, then the AR graph is connected and the
diameter of A(R) is bounded above by 2. Lemma4.6 provides a way to construct a
ring whose AR graph is connected with diameter 3. Also, the ring R in Example4.17
is such that A(R) is connected, and for each positive integer n, there is a nonzero
element rn ∈ R such that the distance between rn and 0 is n. Hence, the diameter of
the graph is unbounded. For n > 3, we do not know of a ring R such that A(R) is
connected and has diameter n.
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If we remove the restriction of having a regular element r such that at least one
of f r + g and f + gr is regular and replace it with just requiring the existence of a
nonzero s such that at least one of f s + g and f + gs is regular, the resulting graph
will always be connected with diameter less than or equal to 2: (h, g) is an edge for
each regular element h and each zero divisor g, simply choose s to be a nonzero
annihilator of g to get h + gs = h regular.

The first lemma in this section is a generalized version of Lemma3.2.

Lemma 4.1 Let R be a commutative ring.

1. The following are equivalent:

a. For each regular element g ∈ R, there is a regular element p ∈ R such that
g + gp is regular.

b. There is a regular element q ∈ R such that 1 + q is regular.
c. There is a pair of regular elements f and q (not necessarily distinct) such

that f + f q is regular.

2. The following are equivalent:

a. For each regular element g ∈ R, there is a unit u ∈ R such that g + gu is
regular.

b. There is a unit v ∈ R such that 1 + v is regular.
c. There is a pair of regular elements f and w (not necessarily distinct) with w

a unit such that f + f w is regular.

Proof For both equivalences, it suffices to prove (c) implies (a). So assume there
is regular element f ∈ R and a regular element (unit) w ∈ R such that f + f w
is regular. Then for each regular g ∈ R, g( f + f w) = g f + g f w = f (g + gw) is
regular and thus g + gw is regular. �

The ring R = Z2[X] is such that there is a loop at 1 in A�(R), but since 1 is the
only unit, the graph Au�(R) does not exist.

Lemma 4.2 If D is an integral domain, then A(D) is the complete graph on |D|
vertices. Moreover, if D has at least three elements, then A�(D) exists.

Proof A special case is D = Z2. In this case, we have only 1 and 0. Clearly, 1 · 1 +
0 = 1 is regular and so (1, 0) is an edge. Thus, A(D) = K2, the complete graph on
2 vertices. However, there is no loop at 1.

Next, suppose D has at least three elements and let f, g be distinct elements of D.
We may assume g �= 0. If f �= −g, then f + g · 1 = f + g �= 0 so that ( f, g) is an
edge. If f = −g, then we know −g �= g (since f and g are assumed to be distinct).
In this case, f · (−1) + g = 2g �= 0 so again ( f, g) is an edge. Therefore, A(D)

is the complete graph on |D| vertices. Also, for f �= 0, there is a nonzero c ∈ D
such that f + f c is not zero. Hence, there is a loop at f , and therefore, A�(D)

exists. �
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Lemma 4.3 If R is a ring such that A(R) is a complete graph, then R is an integral
domain.

Proof If R has a nonzero zero divisor b, then (b, 0) is not an edge, and thus, A(R)

is not complete. �

Lemma 4.4 If R is sAR and not a domain, then A(R) is connected with diameter 2.
Moreover, if R is suAR, then Au(R) is connected with diameter equal to 2.

Proof If R is not a domain, then it has a nonzero zero divisor b. Since (b, 0) is not
an edge, the diameter (if it exists) is not 1. Since R is sAR, for each regular element
f , there is a regular element r such that b + f r is regular. Hence, both ( f, b) and
( f, 0) are edges so we have a path b − f − 0. For distinct zero divisors c and d, we
have a path c − f − d. So the distance between c and d is at most 2. Also, for a pair
of distinct regular elements g and h, g − b − h is a path. Hence, A(R) is connected
with diameter 2. In the case R is suAR, Au(R) is connected with diameter 2. �

Example 4.5 For each n ≥ 2, let Rn = Z2 × Z2 × · · · × Z2 be the direct sum of n
copies of Z2. Then the (u-)AR graph A(Rn) is the disjoint union of 2n−1 copies of
K2.

Proof Since 1n = (1, 1, . . . , 1) is the only regular element of Rn ,A(Rn) = Au(Rn).
Also, for b, c ∈ Rn , b + c is regular if and only if b + c = 1n . Hence, each edge
has the form (e, 1 − e) for some (idempotent) e ∈ Rn . It follows that A(Rn) is the
disjoint union of 2n−1 copies of K2. �

Lemma 4.6 Let R = Z2 × D where D is an integral domain with at least three
elements. Then the graph A(R) is connected with diameter 3 but A�(R) does not
exist.

Proof The regular elements of R are those of the form (1, r) for some nonzero r ∈ D.
We have an edge ((1, r), (0, 0)) for each such r and there are no other edges at (0, 0).
In particular ((1, 0), (0, 0)) is not an edge. Moreover, for x ∈ Z2, there are no edges
of the form ((x, t), (x, s)) since 1 · x + x = 0. Hence, there are no loops and no pair
of distinct regular elements forms an edge.

Let a ∈ D\{0} and b ∈ D. Since D has at least three element, there is a nonzero
d ∈ D such that ad + b �= 0. For such a d, both (1, d) and (1, a)(1, d) + (0, b) =
(1, ad + b) are regular elements of R. Hence, ((1, a), (0, b)) is an edge. Also, note
that (1, 0) · (1, 1) + (0, a) = (1, 0) + (0, a) = (1, a) is regular so ((1, 0), (0, a)) is
also an edge. Thus, the graph A(R) is connected. Since there is no edge of the form
((1, 0), (1, a)), there is no path of length 2 or less between (1, 0) and (0, 0). We do
have a path of length 3: (1, 0) − (0, 1) − (1, 1) − (0, 0) is one such path. Finally, for
each c ∈ D\{a}, we have paths (1, c) − (0, 1) − (1, a) and (0, c) − (1, 1) − (0, a).
Thus, A(R) has diameter 3. �

Lemma 4.7 Let R = T × D where T is the direct sum of n > 1 copies of Z2 and D
is an integral domain with at least three elements. Then A(R) is the disjoint union
of 2n−1 copies of the connected graph A(R0) where R0 = Z2 × D.
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Proof We let 1n = (1, 1, . . . , 1) ∈ T . Then the regular elements of R are those of
the form (1n, g) for some nonzero g ∈ D.

Let e, f ∈ T and let b, c, g ∈ D with g �= 0, for the sum (e, b) + ( f, c)(1n, g) =
(e + f, b + cg) to be regular we must have f = 1 − e and b + cg �= 0. Thus,
((e, b), ( f, c)) is an edge if and only if f = 1 − e and at least one of b and c is
nonzero. Hence, ((e, b), ( f, c)) is an edge in A(R) if and only if ((1, b), (0, c)) is an
edge in A(R0). As there are 2n−1 pairs of idempotents {e, 1 − e} in T , A(R) is the
disjoint union of 2n−1 copies of A(R0). �

Theorem 4.8 Let R = Z2 × S for some ring S. Then A(R) is connected if and only
if A(S) is connected and for all f, g ∈ S\{0} there are paths of odd length between
f and g and when f �= g, paths of even length between f and g. In the caseA(R) is
connected and there are elements s �= t in A(S) where the distance between them is
m, then there are points in A(R) where the distance between them is at least m + 1.

Proof First, we note that for x ∈ Z2 and f, g ∈ S, (x, f ) + (x, g) = (0, f + g) a
zero divisor of R. On the other hand, (x, f ) + (x + 1, g) = (1, f + g) is regular if
and only if f + g is regular. Thus, a (nontrivial) path between (x, f ) and (x, g)must
have even length and a path between (x, f ) and (x + 1, g) must have odd length.

Assume A(R) is connected and suppose f, g are in S\{0}. In A(R), we have a
path (of odd length) (1, f ) − (0, g1) − (1, g2) − · · · − (0, g2n+1) = (0, g). Thus, in
A(S), we have a path f − g1 − g2 − · · · − g2n+1 = g (perhaps with loops) of odd
length. In the case f �= g we also have a path (1, f ) − (0, f1) − (1, f2) − · · · −
(1, f2m) = (1, g) which has even length. In A(S), f − f1 − f2 − · · · − f2m = g is
a path of even length.

Next, suppose that for all f, g ∈ S\{0}, there is a path f − g1 − g2 − · · · −
g2n+1 = g inA(S). Also, when f �= gwe have a path f − f1 − f2 − · · · − f2m = g.
For x ∈ Z2, we get paths (x, f ) − (x + 1, g1) − (x, g2) − · · · − (x + 1, g2n+1) =
(x + 1, g) for each g and (x, f ) − (x + 1, f1) − (x, f2) − · · · − (x, f2m) = (x, g)
when f �= g. Thus, A(R) is connected.

Finally, assume A(R) is connected and let s �= t in S be such that the distance
between them ism. Suppose s − s1 − s2 − · · · − sm = t is a (shortest) path between s
and t . In the casem is odd,we have a path (1, s) − (0, s1) − (1, s2) − · · · − (0, sm) =
(0, t) of lengthm. But to have a path between (1, s) and (1, t)wemust have a path of
even length which must have length at least m + 1. On the other hand, if m is even,
a path between (1, s) and (0, t) must have length at least m + 1. So the diameter of
A(R) must be least one more than the diameter of A(S) (in the case the diameter of
A(S) is finite). �

For a pair of distinct nonzero elements f, g ∈ R, if there is a unit u such that
f + gu is regular, then we also have f u−1 + g regular. On the other hand, it may be
that there is a regular element s such that f + gs but no regular element r such that
f r + g is regular. For example, in the ring R of [5, Example5.6], (8, 0) is regular
while (3, 0) and each element of the form (8k + 3, b) is a zero divisor (for k an
integer). Thus, there is no regular element (k, c) such that (8, 0)(k, c) + (3, 0) is
regular. On the other hand, (8, 0) + (3, 0)(8, 0) = (32, 0) is regular.
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Theorem 4.9 Let R = S × T for rings S and T . ThenAu�(R) exists and is connected
if and only if both Au�(S) and Au�(T ) exist and are connected.

Proof The regular elements of R are those of the form ( f, g) for regular f ∈ S
and regular g ∈ T . If there is a unit (p, q) ∈ R such that ( f, g)(p, q) + ( f, g) =
( f p + f, gq + g) is regular, then both f p + f and gq + g are regular. Hence, if
there is a loop at ( f, g), then there are loops at both f and g. We may easily reverse
the argument: if p ∈ S and q ∈ T are units with f + f p and g + gq regular, then
(p, q) and ( f, g) + ( f, g)(p, q) are both regular and so we have a loop at ( f, g).
Therefore, loops exist at each regular element of R if and only if loops exist at each
regular element of S and each regular element of T .

Suppose Au�(R) exists and is connected. We have loops at each regular ele-
ment of S and at each regular element of T . We will show that there is a path
between each pair of distinct elements b, d ∈ S and each pair of distinct ele-
ments c, e ∈ T . We can do these simultaneously. Since Au�(R) is connected,
there is a finite path from (b, c) to (d, e). Hence, there are elements (b, c) =
a0 = (b0, c0), a1 = (b1, c1), a2 = (b2, c2), . . . , an = (bn, cn) and (d, e) = an+1 =
(bn+1, cn+1) such that a0 − a1 − a2 − · · · − an − an+1 is a path. It follows that we
have units u0 = (v0,w0), u1 = (v1,w1), . . . , un = (vn,wn) such that ai + ai+1ui is
a regular for each 0 ≤ i ≤ n. Hence, bi + bi+1vi and ci + ci+1wi are regular for each
0 ≤ i ≤ nwith each vi aunit in S and eachwi aunit inT . It follows thatb = b0 − b1 −
b2 − · · · − bn − bn+1 = d is a path in Au�(S) and c = c0 − c1 − c2 − · · · − cn −
cn+1 = e is a path inAu�(T ). Thus, bothAu�(S) andAu�(T ) exist and are connected.
Note that for both b0 − b1 − b2 − · · · − bn+1 and c0 − c1 − c2 − · · · − cn − cn+1

some bi − bi+1 and/or some c j − c j+1 may be loops. For example in (Z × Z),
(1, 1) − (2, 1) − (2, 3) is a path with three distinct vertices, but both extracted paths
have loops: 1 − 2 − 2 and 1 − 1 − 3, respectively.

For the converse, we assume both Au�(S) and Au�(T ) exist and are connected.
From the argument in the first paragraph, R has loops at each regular element. To see
that Au�(R) is connected it suffices to show that for each p = (b, c) ∈ R\{(1, 1)}
there is a path between p and (1, 1). Let b = b0 − b1 − b2 − · · · − bn = 1 be a
shortest path between b and 1, including the possibility that b = 1 and so n = 1
and we simply have a loop. Also, let c = c0 − c1 − c2 − · · · − cm = 1 be a shortest
path between c and 1, including the possibility that c = 1 and so m = 1. With-
out loss of generality, we may assume n ≤ m (simply reverse roles in the fol-
lowing argument when m < n). For 0 ≤ i ≤ n, there are units v0, v1, . . . , vn ∈ S
such that bi + bi+1vi is regular (in particular, bn−1 + vn is regular). Also, for
0 ≤ j ≤ m, there are units w0,w1, . . . ,wm ∈ T such that c j + c j+1wj (cm−1 + wm

for j = m) is regular. In the event n < m, we let v′ = vn+1 = vn+1 = · · · = vm be
a unit of S such that 1 + v′ is regular. The elements u j = (v j ,wj ) are units of R
with (b j , c j ) + (b j+1, c j+1)u j regular for 0 ≤ j ≤ n and (1, c j ) + (1, c j+1)u j reg-
ular for n < j ≤ m. Thus, (b, c) − (b1, c1) − (b2, c2) − · · · − (bn, cn) = (1, cn) −
(1, cn+1) − · · · − (1, cm) = (1, 1) is a path in Au�(R). Therefore, Au�(R) exists and
is connected. �
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We break down the proof of the analogous result for the graphsA�(R),A�(S), and
A�(T ). We start by showing that if A�(R) exists and is connected, then both A�(S)

and A�(T ) exist and are connected.

Theorem 4.10 Let R = S × T for a pair of rings S and T . If A�(R) exists and is
connected, then both A�(S) and A�(T ) exist and are connected.

Proof Assume A�(R) exists and is connected. To show the same conclusions hold
for A�(S) and A�(T ), it suffices to show A�(S) exists and is connected.

We first show that there is a loop at each regular r ∈ S. Consider the element (r, 1).
This a regular element of R. Hence, there is a regular element (b, c) ∈ R such that
(r, 1) + (r, 1)(b, c) = (r + rb, 1 + c) is regular. We have r + rb a regular element
of S. Hence, there is a loop at r .

Next, let f, g ∈ S with f �= g and choose any h in T . Then we have a path
from ( f, h) to (g, h). There is a nonnegative integer n, regular elements p0 =
(s0, t0), p1 = (s1, t1), . . . , pn = (sn, tn) and elements a0 = ( f, h), a1 = (b1, c1),
a2 = (b2, c2), . . . , an = (bn, cn) and an+1 = (g, h) such that at least one in each pair
{a0 + a1 p0, a0 p0 + a1}, {a1 + a2 p2, a1 p2 + a2}, . . ., {an + an+1 pn, an pn + an+1} is
regular. The elements s0, s1, . . . , sn are regular elements of S and we have that there
is at least one regular element in each pair { f + b1s0, f s0 + b1}, {b1 + b2s1, b1s1 +
b2}, . . . , {bn−1 + bnsn−1, bn−1sn−1 + bn}, {bn + gsn, bnsng}. Hence, there is a path
from f to g inA�(S). Therefore,A�(S) exists and is connected. The same conclusions
hold for A�(T ). �

The converse ismore difficult to establish sowe include it as a separate result. First
a few definitions and a pair of lemmas. For a directed path a0 − a1 − a2 − · · · − an
in A(R), a list of regular elements q0, q1, . . . , qn−1 is a corresponding list for the
path if for each i , at least one of ai + ai+1qi and aiqi + ai+1 is regular. Also, we
say we have a neutral step at i if qi = 1 (ai + ai+1 is regular), a left step at i if both
qi �= 1 and aiqi + ai+1 is regular, and a right step at i if both qi �= 1 and ai + ai+1qi
is regular. For a particular i , it may be that we have both a left step at i and a right
step at i for the same qi . Also, for a different corresponding list p0, p1, . . . , pn , it
may be that there is a left step at i with respect to qi and a right step (or neutral step)
at i for pi .

Lemma 4.11 For a ring R, if b0 − b1 − b2 − · · · − bn = 0 is a path in A(R)

with corresponding list of regular elements q0, q1, . . . , qn−1 such that there is a
right shift at some i < n, then there is an alternate path b0 − b1 − · · · − bi −
qibi+1 − qibi+2 − · · · − qibn = 0 = bn with corresponding list of regular elements
q0, q1, . . . , qi−1, 1, qi+1, . . . , qn−1 with the same step pattern except at i which is
now a neutral step.

Proof Since bi + bi+1qi is regular, (bi , qibi+1) is an edge with a neutral step. For
j > i , at least one of b j + b j+1q j and b jq j + b j+1 is regular. Since qi is regular,
qib j + qib j+1q j is regular when b j + b j+1q j is regular, and qib jq j + qib j+1 is reg-
ular when b jq j + b j+1 is regular. Moreover, if q j = 1, we still have a neutral step
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at j . On the other hand, if q j �= 1, then qib j − qib j+1 with q j is a left step when
b j − b j+1 with q j is a left step, and qib j − qib j+1 with q j is a right step when
b j − b j+1 with q j is a right step. �

By iterating the process in the previous lemma we obtain a way to modify a path
between a given b ∈ R and 0 (assuming one exists).

Lemma 4.12 For a ring R, if b0 − b1 − b2 − · · · − bn = 0 is a path in A(R) with
corresponding list of regular elements q0, q1, . . . , qn−1 such that there is a right step
at some smallest h < n, then there is an alternate path b0 − b′

1 − b′
2 − · · · − b′

n−1 −
b′
n = 0 = bn with corresponding list of regular elements q ′

0, q
′
1, . . . , q

′
n−1 such that

(i) b′
i = bi for all i ≤ h,

(ii) for j > h, b′
j is the product of b j and all qi s with i < j such that biqi + bi+1

is not regular,
(iii q ′

i = 1 when qi = 1,
(iv) q ′

i = 1 for each i such that bi + bi+1qi is regular (and qi �= 1), and
(v) q ′

i = qi ( �= 1) for each i such that bi + bi+1qi is not regular,

this resulting path b0 − b′
1 − b′

2 − · · · − b′
n−1 − b′

n = 0 = bn with corresponding list
of regular elements q ′

0, q
′
1, . . . , q

′
n−1 has the property that there are no right steps.

Proof Apply Lemma4.11 and the rules (i)–(v) to get the new path b0 − b′
1 − b′

2 −
· · · − b′

n−1 − b′
n = 0 = bn with corresponding list of regular elements q ′

0, q
′
1, . . . ,

q ′
n−1. Each step that is not neutral is a left step (and not a right step). �

Theorem 4.13 Let R = S × T . If both A�(S) and A�(T ) exist and are connected,
then A�(R) exists and is connected.

Proof Assume both A�(S) and A�(T ) exist and are connected.
First, we show there is a loop at each regular element of R. Let r = ( f, g) be

regular. Then f is a regular element of S and g is a regular element of T . SinceA�(S)

andA�(T ) have loops at each regular element, there are regular elements f ′ ∈ S and
g′ ∈ T such that f + f f ′ and g + gg′ are regular. The element r ′ = ( f ′, g′) is a
regular element of R as is r + rr ′ = ( f + f f ′, g + gg′). Hence, there is a loop at r .

Let ( f, g) ∈ R\{(0, 0)}. Next, let f = f0 − f1 − f2 − · · · − fn = 0 and
g = g0 − g1 − g2 − · · · − gm = 0 be paths in A�(S) and A�(T ), respectively. Note
that fn−1 is a regular element of S and gm−1 is a regular element of T . If n < m, we
may insert additional loops at fn−1 to get a path of length m between f and 0. Simi-
larly, we may insert loops at gm−1 whenm < n to get a new path of length n between
g and 0. Hence, wemay assume n = m. By Lemma4.12, wemay further assume that
there are corresponding lists of regular elements p0, p1, . . . , pn−2, pn−1 = fn−1 in
S and q0, q1, . . . , qn−1 = gn−1 in T such that both fi pi + fi+1 and g jq j + g j+1

are regular for each i . Thus, for each 0 ≤ i ≤ n − 1, the elements (p j , q j ) and
( f j , g j )(p j , q j ) + ( f j+1, g j+1) are regular in R. Hence, we have a path between
( f, g) and (0, 0), and therefore, A�(R) (exists and) is connected. �
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Corollary 4.14 Suppose D and E are domains with at least three elements each.
Then for R = D × E, A�(R) exists and both A(R) and A�(R) have diameter 2.
Moreover, for each regular element r ∈ R, (r, t) is an edge for each t ∈ R\{r}.
Proof By Lemma4.2 and Theorem4.13, A(R) is connected and A�(R) both exists
and is connected. Also, since R is not an integral domain, A(R) is not a complete
graph and so the diameter (if it exists) is greater than 1. Let r = (a, b) be a regular
element of R and let t = (c, d) be any element other than r . Since both D and E
have at least three elements, there are nonzero elements f ∈ D and g ∈ E such
that a + c f and b + dg are nonzero. Thus, both ( f, g) and (a, b) + (c, d)( f, g)
are regular. Hence, (r, t) is an edge. It follows that both A(R) and A�(R) have
diameter 2. �

The proof of the next result is adapted from the one given for Theorem4.13.

Corollary 4.15 Let R = Z2 × T . If A�(T ) exists and is connected, then A(R) is
connected, but loops do not exist.

Proof Each regular element in R has the form (1, t) for some regular element t of
T . So the sum of two regular elements is a zero divisor. Thus, there are no loops
for R. While there is no loop at (1, t), there is a loop at t since A�(T ) exists. For
regular q ∈ T such that t + tq is regular, both (1, q) and (1, t) + (0, t)(1, q) are
regular elements of R, and thus, ((1, t), (0, t)) is an edge in A(R). Also, note that
((1, 0), (0, 1)) is an edge in A(R).

Let f ∈ T \{0}. Since there is a loop at 1 in A�(T ), T has at least three ele-
ments (and at least two regular elements). Since A(T ) is connected, there is a path
f = f0 − f1 − f2 − · · · − fn−1 − fn = 0, necessarily with fn−1 a regular element
of T . There is a loop at fn−1 and thus we also have a path fn−1 − fn−1 − 0 inA�(T ).
By replacing fn−1 − 0 with fn−1 − fn−1 − 0, we have a pair of paths f = g0 −
g1 − g2 − · · · − g2k − g2k+1 = 0 and f = h0 − h1 − h2 − · · · − h2m−1 − h2m = 0
with gi = fi = hi when 0 ≤ i ≤ n − 1. We then have paths (1, f ) = (1, g0) −
(0, g1) − (1, g2) − · · · − (0, g2k+1) = (0, 0) and (0, f ) − (1, h1) − (0, h2) − · · · −
(0, h2m) = (0, 0) in A(R). Since ((1, 0), (0, 1)) is an edge, A(R) is connected. �

Theorem 4.16 Let R = T (R) be a von Neumann regular ring that is not a field.
Then the following are equivalent:

1. A�(R) exists and is connected.
2. A�(R) exists and is connected with diameter 2.
3. For each nonzero idempotent e �= 1, there is a loop at e in the ring eR.
4. There is a loop at 1 in R.
5. R is vsAR.
6. There is a nonzero idempotent e �= 1 such that there is a loop at e in the ring eR

and a loop at 1 − e in the ring (1 − e)R.

Proof It is clear that (1) implies (4), and (2) implies (1). Since R is von Neumann
regular, each regular element is a unit and each nonzero element f is the product of
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a unique idempotent e and a unit v. The element 1 − e annihilates f and Ann( f ) =
(1 − e)R. Since e + (1 − e) = 1, (e, 1 − e) is an edge. Also, it is clear that (1, 0) is
an edge in A(R).

Since each regular element of R is a unit, having a loop at 1 is equivalent to having
a unit p such that 1 + p is regular. Thus, (4) and (5) are equivalent by Theorem3.3.
In addition, for a nonzero idempotent e �= 1, there is a loop at e in the ring eR if
and only if eR is vsAR. Thus, another application of Theorem3.3 establishes the
equivalence of (3), (4), (5) and (6).

All that is left is to show that (3) implies (2). Since R is not a field, the diameter of
A�(R) is not 1. To see thatA(R) is connected with diameter 2, it suffices to show that
( f, 1) is an edge for each f ∈ R\{0, 1}. Assume that for each nonzero idempotent
e �= 1, there is a loop at e in the ring eR. Thus, there is an e-unit g ∈ eR such that
e + eg = e + g is an e-unit. Also, we have a unit p ∈ R such that 1 + p is regular
(thus a unit).

To start, we consider the case that f is a unit. Then f −1 p is also a unit and we
have f ( f −1 p) + 1 = p + 1, a regular element. Hence, ( f, 1) is an edge when f is
a unit.

Next, suppose f is not a unit. Then there is a nonzero idempotent e �= 1 such
that eR = f R. In the ring eR, there is an element h = he ∈ eR such that f h = e.
We then have v = h + (1 − e) is a unit of R such that f v = e. Also, we have an
e-unit g ∈ eR such that e + eg = e + g is an e-unit. The elements e + g + (1 − e)
and q = vg + (1 − e) are units of R such that f q + 1 = f (vg) + 1 = eg + e +
(1 − e). Hence, ( f, 1) is an edge. It follows thatA�(R) exists and is connected. Also,
both A�(R) and A(R) have diameter 2. �

The ring R in our last example is the one promised above: A(R) is connected and
for each positive integer n, there is a nonzero element rn ∈ R such that the distance
between rn and 0 is n.

Example 4.17 Let D = K [X] for some field K that does not have characteris-
tic 2 and let R = D + B be the A + B ring corresponding to D and the set
P = Max(D)\{XD}. Also, let S = {aXm | a ∈ K\{0},m ≥ 0}. ThenA (R) has the
following properties:

1. For each nonzero b ∈ B, there is a path of length 2 between (0, b) and (0, 0).
2. For each f ∈ S and each b ∈ B, there is a path of length at most 2 between ( f, b)

and (0, 0).
3. For each nonzero h ∈ D\S and each b ∈ B, there is a path of length n between

(h, b) and (0, 0) where n is the number of nonzero terms of h and there is no
shorter path.

4. A (R) is connected with infinite diameter and for each positive integer m there is
a nonzero element p ∈ D such that the distance between (p, 0) and (0, 0) is m.

Proof Let f ∈ S. Since K does not have characteristic 2, 2 f is not zero and there is
no i such that 2 fi is 0. In addition, for b ∈ B\{0}, 2bi = 0 if and only if bi = 0.

Suppose (r, b) and (s, c) form an edge in A(R). Since each h ∈ S is a nonzero
monomial, hr and r have the same number of nonzero terms. In addition, a necessary
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condition for hr + s to be in S is that the number of nonzero terms of r must bewithin
one of the number of nonzero terms of s. In R, having both (g, d) and (g, d)(r, b) +
(s, c) regular requires that g ∈ S and the number of nonzero terms of r must be
within one of the number of nonzero terms of s. For d, we must have that there is no
i where di = −gi and no i where (gb + rd + db + c)i = −(gr + s)i .

For nonzero b ∈ B, (0, b) is a zero divisor of R and so ((0, b), (0, 0)) is not
an edge. However, we may define c ∈ B by ci = 0 when bi + 1 �= 0 (necessarily
the case when bi = 0) and ci = 1 when bi + 1 = 0. For such a c both (1, c) and
(1, c + b) are regular since both ci and ci + bi are never −1. Thus, we have a path
(0, b) − (1, c) − (0, 0).

Next, let f ∈ S and b ∈ B. If ( f, b) is regular, then (( f, b), (0, 0)) is an edge.
If ( f, b) is a zero divisor, then (( f, b), (0, 0)) is not an edge. We have a slightly
different definition for a c to get a regular element ( f, c) such that ( f, b) + ( f, c)
is also regular. As above, we set ci = 0 when bi + 2 fi �= 0 (so ci = 0 whenever
bi = 0) and ci = fi when bi + 2 fi = 0 (necessarily with bi �= 0). There is no i such
that ci + fi = 0 so ( f, c) is regular. Also, there is no i such that ci + bi + 2 fi = 0 so
that ( f, b) + ( f, c) = (2 f, b + c) is regular. Thus, ( f, b) − ( f, c) − (0, 0) is a path
of length 2.

Finally, we consider the case of an element (h, b)where h = ∑
h jX

j is a nonzero
element in D\S of degree m (with m > 0). The element (h, b) is a zero divisor
no matter the choice of b. Let n be the number of nonzero terms of h. Then n ≥
2. We use induction on the number of nonzero terms of h. For n = 2, we have
h = hkXk + hmXm with k < m and neither hk nor hm equal to 0. Let h′ = −hkXk

(= hmXm − h).We define an element b′ ∈ B by setting b′
i = 0when bi + (hmXm)i �=

0 (which includes when bi = 0) and b′
i = −(hkXk)i ( �= 0) when bi + (hmXm)i = 0.

There is no i such that b′
i = (hkXk)i , so (h′, b′) is regular. Also, there is no i such that

b′
i + bi + (hmXm)i = 0. Thus, both (hmXm, b + b′) = (h, b) + (h′, b′) and (h′, b′)
are regular and so we have a path (h, b) − (h′, b′) − (0, 0) of length 2.

Next, assume that for all 2 ≤ j < n and g0 ∈ Dwith j nonzero terms and arbitrary
c ∈ B, we have a path (of length j) (g0, c0) − (g1, c1) − · · · − (g j−1, c j−1) − (0, 0),
necessarily with each gs having one fewer nonzero term than gs−1 and with
(g j−1, c j−1) a regular element of R. For (h, b) we simply need to make an edge
((h, b), (h′, b′)) where h′ has n − 1(≥ 2) nonzero terms (in this case, (h′, b′) is
not regular). As above, let h′ = hmxm − h (where m is the degree of h and hm is
its leading term) and define b′ by b′

i = 0 when bi + (hmxm)i �= 0 and b′
i = 1 when

bi + (hmxm)i = 0. Then (hmxm, b + b′) = (h, b) + (h′, b′) is regular, and therefore,
((h, b), (h′, b′)) is an edge. By the induction hypothesis, we have a path of length
n − 1 between (h′, b′) and (0, 0). Thus, we have a path of length n between (h, b)
and (0, 0). From the argument above, there can be no shorter path between (h, b)
and (0, 0) so the distance between these two points is n.

We conclude thatA (R) is connected, but there is no upper bound on the distance
between vertices. Hence, the diameter is infinite. Moreover, for each positive integer
m, there is a nonzero element p ∈ D such that the distance between (p, 0) and (0, 0)
is m. �
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On t-Reduction and t-Integral Closure
of Ideals in Integral Domains

Salah Kabbaj

Dedicated to David F. Anderson

Abstract Let R be an integral domain and I a nonzero ideal of R. An ideal J ⊆ I is
a t-reduction of I if (J I n)t = (I n+1)t for some n ≥ 0. An element x of R is t-integral
over I if there is an equation xn + a1xn−1 + · · · + an−1x + an = 0 with ai ∈ (I i )t

for i = 1, . . . , n. The set of all elements that are t-integral over I is called the t-
integral closure of I . This paper surveys recent literature which studies t-reductions
and t-integral closure of ideals in arbitrary domains aswell as in special contexts such
as Prüfer v-multiplication domains, Noetherian domains, and pullback constructions.

1 Introduction

Throughout, all rings considered are commutative with identity. Let R be a domain
with quotient field K , I a nonzero fractional ideal of R, and let I −1 := (R : I ) = {x ∈
K | x I ⊆ R}. The v- and t-closures of I are defined, respectively, by Iv := (I −1)−1

and It := ∪Jv , where J ranges over the set of finitely generated subideals of I . The
ideal I is a v-ideal (or divisorial) if Iv = I and a t-ideal if It = I . Under the ideal t-
multiplication (I, J ) �→ (I J )t the set Ft (R) of fractional t-ideals of R is a semigroup
with unit R. Recall that factorial domains, Krull domains, GCDs, and PvMDs can
be regarded as t-analogues of the principal domains, Dedekind domains, Bézout
domains, and Prüfer domains, respectively. For instance, a domain is Prüfer (resp.,
a PvMD) if every nonzero finitely generated ideal is invertible (resp., t-invertible).
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We also recall the w-closure of I defined by Iw := ⋃
(I : J ), where the union is

taken over all finitely generated ideals J of R that satisfy Jv = R; equivalently,
Iw = ⋂

I RM , where M ranges over the maximal t-ideals of R. We always have
I ⊆ Iw ⊆ It ⊆ Iv . For ample details on the v-, t-, and w-operations, we refer the
reader to David Anderson’s papers [1–16] and also [21, 23, 26, 35, 46, 53–55, 57,
60, 62, 63, 65–67].

Let R be a ring and I an ideal of R. An ideal J ⊆ I is a reduction of I if J I n = I n+1

for some positive integer n. An ideal which has no reduction other than itself is called
a basic ideal [38, 39, 59]. The notion of reduction was introduced by Northcott and
Rees and its usefulness resides mainly in two facts: “First, it defines a relationship
between two ideals which is preserved under homomorphisms and ring extensions;
secondly, what we may term the reduction process gets rid of superfluous elements
of an ideal without disturbing the algebraic multiplicities associated with it” [59].
The main purpose of their paper was to contribute to the analytic theory of ideals
in Noetherian (local) rings via minimal reductions. An element x ∈ R is integral
over I if there is an equation xn + a1xn−1 + · · · + an−1x + an = 0 with ai ∈ I i for
i = 1, . . . , n. The set of all elements that are integral over I is called the integral
closure of I and is denoted by I . Reductions happened to be a very useful tool for
the theory of integral dependence over ideals. For a full treatment of these topics,
we refer the reader to Huneke and Swanson’s book “Integral closure of ideals, rings,
and modules” [48].

Let R be a domain and I a nonzero ideal. An ideal J ⊆ I is a t-reduction of
I if (J I n)t = (I n+1)t for some n ≥ 0, and x ∈ R is t-integral over I if there is
an equation xn + a1xn−1 + · · · + an−1x + an = 0 with ai ∈ (I i )t for i = 1, . . . , n.
The set of all elements that are t-integral over I is called the t-integral closure
of I . This paper surveys recent literature which studies t-reductions and t-integral
closure of ideals in arbitrary domains as well as in special contexts such as Prüfer v-
multiplication domains (PvMDs), Noetherian domains, and pullback constructions.
The four papers involved in this survey are [50] (co-authored with A. Kadri), [44]
(co-authored with E. Houston and A. Mimouni), and [51, 52] (co-authored with A.
Kadri and A. Mimouni). In this survey, we present and discuss the results without
proofs and provide most of the examples with full details (from the original papers).

2 The General Case of Integral Domains

This part covers [50] which deals with t-reductions and t-integral closure of ideals
in arbitrary domains. The aim is to provide t-analogues of well-known results on
the integral closure of ideals and the correlations with reductions. Namely, Sect. 2.1
identifies basic properties of t-reductions of ideals and gives explicit examples dis-
criminating between the notions of reduction and t-reduction. Section 2.2 examines
the concept of t-integral closure of ideals as well as its correlation with t-reductions.
Section 2.3 studies the persistence and contraction of t-integral closure of ideals
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under ring homomorphisms. All along this part, the main results are illustrated with
original examples.

2.1 t-Reductions of Ideals

This section identifies basic ideal-theoretic properties of the notion of t-reduction
including its behavior under localizations. We first provide an example (with full
details) discriminating between the notions of reduction and t-reduction. Recall that,
in a ring R, a subideal J of an ideal I is called a reduction of I if J I n = I n+1 for
some positive integer n [59]. An ideal which has no reduction other than itself is
called a basic ideal [38, 39].

Definition 2.1 Let R be a domain and J ⊆ I nonzero [fractional] ideals of R.

• J is a trivial t-reduction of I if Jt = It .
• J is a t-reduction of I if (J I n)t = (I n+1)t for some integer n ≥ 0.
• I is t-basic if it has no t-reduction other than the trivial t-reductions.
• R has the t-basic (resp., finite t-basic) ideal property if every nonzero (resp., finitely
generated) [fractional] ideal of R is t-basic.

This is not to be confused with the identically named notion of Epstein [28–
30], which generalizes the original notion of reduction in a different way and was
studied in different settings. Namely, let c be a closure operation. An ideal J ⊆ I is
a c-reduction of I if J c = I c. Thus, Epstein’s c-reduction coincides with our trivial
c-reduction.

Recall a basic property of the t-operation (which, in fact, holds for any arbitrary
star operation): for any two nonzero ideals I and J , we have (I J )t = (It J )t =
(I Jt )t = (It Jt )t . So, for nonzero ideals J ⊆ I , J is a t-reduction of I if and only if
J is a t-reduction of It if and only if Jt is a t-reduction of It . Notice also that any
reduction is also a t-reduction, and the converse is not true, in general, as shown by
the next example which exhibits a domain R with two t-ideals J � I such that J is
a t-reduction but not a reduction of I .

Example 2.2 ([50, Example 2.2]) We use a construction from [49]. Let x be
an indeterminate over Z and let R := Z[3x, x2, x3], I := (3x, x2, x3), and J :=
(3x, 3x2, x3, x4). Then J � I are two finitely generated t-ideals of R such that
J I n � I n+1∀ n ∈ N and (J I )t = (I 2)t .

Proof I is a height-one prime ideal and, hence, a t-ideal of R [49]. Next, we prove
that J is a t-ideal. We first claim that J−1 = 1

x Z[x]. Indeed, notice that Q(x) is
the quotient field of R and since 3x ⊆ J , then J−1 ⊆ 1

3x R. So, let f := g
3x ∈ J−1

where g = ∑m
i=0 ai xi ∈ Z[x] with a1 ∈ 3Z. Then the fact that x3 f ∈ R implies

that ai ∈ 3Z for i = 0, 2, . . . , m; i.e., g ∈ 3Z[x]. Hence, f ∈ 1
x Z[x], whence J−1 ⊆

1
x Z[x]. The reverse inclusion holds since 1

x JZ[x] = (3, 3x, x2, x3)Z[x] ⊆ R, prov-
ing the claim. Next, let h ∈ (R : Z[x]) ⊆ R. Then xh ∈ R forcing h(0) ∈ 3Z and
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thus h ∈ (3, 3x, x2, x3). So, (R : Z[x]) ⊆ (3, 3x, x2, x3), hence (R : Z[x]) = 1
x J .

It follows that Jt = Jv = (
R : 1

x Z[x]) = x(R : Z[x]) = J , as desired. Next, let
n ∈ N. It is to see that x3x2n = x2n+3 is the monic monomial with the small-
est degree in J I n . Therefore, x2(n+1) = x2n+2 ∈ I n+1 \ J I n . That is, J is not a
reduction of I . It remains to prove (J I )t = (I 2)t . We first claim that (J I )−1 =
1
x2 Z[x]. Indeed, (J I )−1 ⊆ (J−1)2 = 1

x2 Z[x] and the reverse inclusion holds since
1
x2 J IZ[x] = (3, 3x, x2, x3)(3, x, x2)Z[x] ⊆ R, proving the claim. Now, observe
that I 2 = (9x2, 3x3, x4, x5). It follows that (I J )t = (I J )v = (

R : 1
x2 Z[x]) = x2(R :

Z[x]) = x J ⊇ I 2. Thus, (I J )t ⊇ (I 2)t , as desired.

In the above example, the domain R is not integrally closed. In fact, there is a
class of integrally closed domains where the notions of reduction and t-reduction
are always distinct. Indeed, in [50, Example 2.3], we show that if R is any integrally
closed Mori domain that is not completely integrally closed, then there always exist
nonzero ideals J � I in R such that J is a t-reduction but not a reduction of I .
Another crucial fact concerns reductions of t-ideals. That is, if J is a reduction of
a t-ideal, then so is Jt , and the converse is not true, in general, as shown by [50,
Example 2.4] which features a domain R with a t-ideal I and an ideal J ⊆ I such
that Jt is a reduction but J is not a reduction of I .

In the rest of this section, we provide basic ideal-theoretic properties of t-
reduction. Let R be an arbitrary domain. Recall that, for any nonzero ideals I, J, H
of R, the equality (I J + H)t = (It J + H)t always holds. This property allowed us
to prove the next basic result which examines the t-reduction of the sum and product
of ideals.

Lemma 2.3 Let J ⊆ I and J ′ ⊆ I ′ be nonzero ideals of R. If J and J ′ are t-
reductions of I and I ′, respectively, then J + J ′ and J J ′ are t-reductions of I + I ′
and I I ′, respectively.

The next basic result examines the transitivity for t-reduction.

Lemma 2.4 Let K ⊆ J ⊆ I be nonzero ideals of R. Then:

(1) If K is a t-reduction of J and J is a t-reduction of I , then K is a t-reduction
of I .

(2) If K is a t-reduction of I , then J is a t-reduction of I .

The next basic result examines the t-reduction of the power of an ideal.

Lemma 2.5 Let J ⊆ I be nonzero ideals of R and let n be a positive integer. Then:

(1) J is a t-reduction of I ⇔ J n is a t-reduction of I n.
(2) If J = (a1, . . . , ak), then: J is a t-reduction of I ⇔ (an

1 , . . . , an
k ) is a t-reduction

of I n.

The next basic result examines the t-reduction of localizations.

Lemma 2.6 Let J ⊆ I be nonzero ideals of R and let S be a multiplicatively closed
subset of R. If J is a t-reduction of I , then S−1 J is a t-reduction of S−1 I.

Note that, in a PvMD, J is a t-reduction of I if and only if J is t-locally a reduction
of I (Lemma 3.9).
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2.2 t-Integral Closure of Ideals

This section investigates the concept of t-integral closure of ideals and its correlation
with t-reductions. Our objective is to establish satisfactory t-analogues of (and in
some cases generalize) well-known results, in the literature, on the integral closure
of ideals and its correlation with reductions.

Definition 2.7 Let R be a domain and I a nonzero ideal of R. An element x ∈ R is
t-integral over I if there is an equation

xn + a1xn−1 + · · · + an−1x + an = 0 with ai ∈ (I i )t ∀i = 1, . . . , n.

The set of all elements that are t-integral over I is called the t-integral closure of I
and is denoted by Ĩ . If I = Ĩ , then I is called t-integrally closed.

The t-integral closure of the ideal R is always R, whereas the t-integral closure
of the ring R (also called pseudo-integral closure) may be larger than R. Also, we
have J ⊆ I ⇒ J̃ ⊆ Ĩ . More properties are listed in Remark 2.14. It is well known
that the integral closure of an ideal is an ideal which is integrally closed. The next
theorem provides a t-analogue for this result.

Theorem 2.8 The t-integral closure of an ideal is an integrally closed ideal. In
general, it is not t-closed and, a fortiori, not t-integrally closed.

The proof of the first statement of this theorem relied on the following lemma
which sets a t-analogue for the notion of Rees algebra of an ideal [48, Chap.5].
The Rees algebra of an ideal I (in a ring R) is the graded subring of R[x] given by
R[I x] := ⊕

n≥0 I n xn [48, Definition 5.1.1] and whose integral closure in R[x] is
the graded ring

⊕
n≥0 I n xn [48, Proposition 5.2.1].

Lemma 2.9 Let R be a domain, I a t-ideal of R, and x an indeterminate over R. The
t-Rees algebra of I is given by Rt [I x] := ⊕

n≥0(I n)t xn, and it is a graded subring
of R[x] and its integral closure in R[x] is the graded ring

⊕
n≥0 Ĩ n xn.

The proof of the last statement of the above theorem is handled by the next
example, which provides a domain with an ideal I such that Ĩ is not a t-ideal and,
hence, not t-integrally closed since ( Ĩ )t ⊆ ˜̃I always holds.

Example 2.10 ([50, Example 3.10]) Let R := Z + xQ(
√
2)[x], I := ( x√

2
), and a :=

x
2 , where x is an indeterminate over Q. Then:

(1) I is a t-reduction of I + a R and a /∈ Ĩ.
(2) Ĩ � ( Ĩ )t and hence Ĩ � ˜̃I.

Proof (1) First, we prove that (I (I + a R))t = ((I + a R)2)t . It suffices to show
that a2 ∈ (I (I + a R))t . For this purpose, let f ∈ (I (I + a R))−1 = ( x2

2 , x2

2
√
2
)−1 ⊆
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( x2

2 )−1 = 2
x2 R. Then, f = 2

x2 (a0 + a1x + . . . + an xn), for some n ≥ 0, a0 ∈ Z, and

ai ∈ Q(
√
2) for i ≥ 1. Since x2

2
√
2

f ∈ R, a0 = 0. It follows that (I (I + a R))−1 ⊆
1
x Q(

√
2)[x]. On the other hand, (I (I + a R))( 1x Q(

√
2)[x]) ⊆ R. So, we have

(
I (I + a R)

)−1 =
(

x2

2
,

x2

2
√
2

)−1

= 1

x
Q(

√
2)[x]. (1)

Now, clearly, a2(I (I + a R))−1 ⊆ R. Therefore, a2 ∈ (I (I + a R))v = (I (I + a R))t ,
as desired. Next, we prove that a /∈ Ĩ = I . By [48, Corollary 1.2.2], it suffices to
show that I is not a reduction of I + a R. Deny and suppose that I (I + a R)n =
(I + a R)n+1, for some positive integer n. Then an+1 = ( x

2 )
n+1 ∈ I (I + a R)n =

x√
2
( x√

2
, x
2 )

n . One can check that this yields 1 ∈ √
2(

√
2, 1)n ⊆ (

√
2) in Z[√2], the

desired contradiction.
(2) We claim that a ∈ ( Ĩ )t . Notice first that x ∈ Ĩ as x2 ∈ I 2 = (I 2)t . There-

fore, A := (x, x√
2
) ⊆ Ĩ . Clearly, A = 2

x ( x2

2 , x2

2
√
2
). Hence, by (1), A−1 = Q(

√
2)[x].

However, a A−1 ⊆ R. Whence, a ∈ Av = At ⊆ ( Ĩ )t . Consequently, a ∈ ( Ĩ )t \ Ĩ .

The next result shows that the t-integral closure coincides with the t-closure in
the class of integrally closed domains. It also completes two existing results in the
literature on the integral closure of ideals (Gilmer [37] and Mimouni [57]).

Theorem 2.11 Let R be a domain. The following assertions are equivalent:

(1) R is integrally closed;
(2) Every principal ideal of R is integrally closed;
(3) Every t-ideal of R is integrally closed;
(4) I ⊆ It for each nonzero ideal I of R;
(5) Every principal ideal of R is t-integrally closed;
(6) Every t-ideal of R is t-integrally closed; and
(7) Ĩ = It for each nonzero ideal I of R.

If all ideals of a domain are t-integrally closed, then it must be Prüfer. This is a
well-known result in the literature.

Corollary 2.12 ([37, Theorem 24.7]) A domain R is Prüfer if and only if every ideal
of R is (t-)integrally closed.

Now, we examine the correlation between the t-integral closure and t-reductions
of ideals. In this vein, recall that, for the trivial operation, two crucial results assert
that x ∈ I ⇔ I is a reduction of I + Rx [48, Corollary 1.2.2] and if I is finitely
generated and J ⊆ I , then: I ⊆ J ⇔ J is a reduction of I [48, Corollary 1.2.5].
Here are the t-analogues of these two results.

Proposition 2.13 Let R be a domain and let J ⊆ I be nonzero ideals of R.

(1) If x ∈ Ĩ , then I is a t-reduction of I + Rx.
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(2) If I is finitely generated with I ⊆ J̃ , then J is a t-reduction of I .

Moreover, both implications are irreversible in general.

The next remark collects some basic properties of the t-integral closure.

Remark 2.14 Let R be a domain and let I, J be nonzero ideals of R. Then:

(1) ∀ x ∈ R, x Ĩ ⊆ x̃ I .
(2) Ĩ ∩ J ⊆ Ĩ ∩ J̃ . The inclusion can be strict, see Example 2.15(3).
(3) I ⊆ I ⊆ Ĩ ⊆ √

It . These inclusions can be strict, see Example 2.15(1).
(4) ∀ n ≥ 1, ( Ĩ )n ⊆ Ĩ n . The inclusion can be strict, see Example 2.15(2).

(5) Ĩ + J̃ ⊆ Ĩ + J . The inclusion can be strict. For instance, in Z[x], we have
(̃2) + (̃x) = (2, x) and (̃2, x) = (2, x)t = Z[x] (via Theorem 2.11).

Example 2.15 ([50, Example 3.9]) Let R := Z[√−3][2x, x2, x3]. Let J := (x3)

and I := (2x2, 2x3, x4, x5), where x is an indeterminate over Z. Then I is a t-ideal
such that

(1) I � I � Ĩ �
√

I .

(2) ( Ĩ )2 � Ĩ 2.

(3) J̃ ∩ I � J̃ ∩ Ĩ .

Proof We first show that I is a t-ideal. Clearly, 1
x2 Z[√−3][x] ⊆ I −1. For the reverse

inclusion, let f ∈ I −1 ⊆ x−4R. Then f = 1
x4 (a0 + a1x + · · · + an xn) for some n ∈

N, a0 ∈ Z[√−3], a1 ∈ 2Z[√−3], and ai ∈ Z[√−3] for i ≥ 2. Since 2x2 f ∈ R, then
a0 = a1 = 0. It follows that f ∈ 1

x2 Z[√−3][x]. Therefore, I −1 = 1
x2 Z[√−3][x].

Next, let g ∈ (R : Z[√−3][x]) ⊆ R. Then xg ∈ R, forcing g(0) ∈ 2Z[√−3] and
hence g ∈ (2, 2x, x2, x3). So (R : Z[√−3][x]) ⊆ (2, 2x, x2, x3). The reverse inclu-
sion is obvious. Thus, (R : Z[√−3][x]) = (2, 2x, x2, x3). Consequently, we obtain
It = Iv = (R : 1

x2 Z[√−3][x]) = x2(R : Z[√−3][x]) = I .

(1) Next, we prove the strict inclusions I � I � Ĩ �
√

I . For I � I , notice that

(1 + √−3)x2 ∈ I \ I as
(
(1 + √−3)x2

)3 = −8x6 ∈ I 3 and1 + √−3 /∈ 2Z[√−3].
For I � Ĩ , we claim that x3 ∈ Ĩ \ I . Indeed, let f ∈ (I 2)−1 ⊆ x−8R. Then there

are n ∈ N, ai ∈ Z[√−3] for i ∈ {0, 2, . . . , n}, and a1 ∈ 2Z[√−3] such that f =
1
x8 (a0 + a1x + · · · + an xn). Since 4x4 f ∈ R, then a0 = a1 = a2 = a3 = 0.
Therefore, (I 2)−1 ⊆ 1

x4 Z[√−3][x]. The reverse inclusion is obvious. Hence,
(I 2)−1 = 1

x4 Z[√−3][x]. It follows that (I 2)t = (I 2)v = (R : 1
x4 Z[√−3][x]) = x4

(R : Z[√−3][x]) = x2 I . Hence, x6 ∈ (I 2)t and thus x3 ∈ Ĩ . It remains to show that
x3 /∈ I . By [48, Corollary 1.2.2], it suffices to show that I is not a reduction of I +
(x3). Let n ∈ N. It is easy to see that x4x3n is the monic monomial with the smallest
degree in I

(
I + (x3)

)n
. Therefore, x3(n+1) = x3n+3 ∈ (

I + (x3)
)n+1 \ I

(
I + (x3)

)n
.

Hence, I is not a reduction of I + (x3), as desired.
For Ĩ �

√
I , we claim that x2 ∈ √

I \ Ĩ . Obviously, x2 ∈ √
I . In order to prove

that x2 /∈ Ĩ , it suffices by Proposition 2.13 to show that I is not a t-reduction of I +
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(x2). To this purpose, notice that I + (x2) = (x2). Suppose by way of contradiction
that (I (I + (x2))n)t = ((I + (x2))n+1)t for some n ∈ N. Then (x2)n+1 = x2n+2 ∈
(I (I + (x2))n)t = x2n I . Consequently, x2 ∈ I , absurd.

(2) We first prove that Ĩ = (2x2, (1 + √−3)x2, x3, x4). In view of (1) and its
proof, we have (2x2, (1 + √−3)x2, x3, x4) ⊆ Ĩ . Next, let α := (a + b

√−3)x2 ∈ Ĩ
where a, b ∈ Z. If b = 0, then a �= 1 as x2 /∈ Ĩ . Moreover, since 2x2 ∈ Ĩ , a must be
even; that is, α ∈ (2x2). Now assume b �= 0. If a = 0, then b �= 1 as

√−3x2 /∈ Ĩ .
Moreover, since 2

√−3x2 ∈ Ĩ , b must be even; that is, α ∈ (2x2). So suppose a �= 0.
Then similar arguments force a and b to be of the same parity. Further, if a and
b are even, then α ∈ (2x2); and if a and b are odd, then α ∈ (2x2, (1 + √−3)x2).
Finally, we claim that Ĩ contains no monomials of degree 1. Deny and let ax ∈ Ĩ ,

for some nonzero a ∈ 2Z[√−3]. Then, by [48, Remark 1.1.3(7)], ax ∈ Ĩ ⊆ (̃x2) =
(x2) ⊆ x2Z[√−3][x]. By [48, Corollary 1.2.2], (x2) is a reduction of (ax, x2) in
Z[√−3][x], absurd. Consequently, Ĩ = (2x2, (1 + √−3)x2, x3, x4). Now, we are
ready to check that ( Ĩ )2 � Ĩ 2. For this purpose, recall that (I 2)t = x2 I . So, 2x4 ∈
Ĩ 2. We claim that 2x4 /∈ ( Ĩ )2. Deny. Then, 2x4 ∈ (4x4, 2(1 + √−3)x4). So x2 ∈
(2x2, (1 + √−3)x2) ⊆ Ĩ , absurd.

(3) We claim that x3 ∈ Ĩ ∩ J̃ \ Ĩ ∩ J . We proved in (1) that x3 ∈ Ĩ . So, x3 ∈
Ĩ ∩ J̃ . Now, observe that I ∩ J = x I and assume, by way of contradiction, that

x3 ∈ Ĩ ∩ J = x̃ I . Then x3 satisfies an equation of the form (x3)n + a1(x3)n−1 +
· · · + an = 0 with ai ∈ ((x I )i )t = xi (I i )t , i = 1, . . . , n. For each i , let ai = xi bi ,
for some bi ∈ (I i )t . Therefore, (x2)n + b1(x2)n−1 + · · · + bn = 0. It follows that
x2 ∈ Ĩ , the desired contradiction.

2.3 Persistence and Contraction of t-Integral Closure

For any ringhomomorphism,ϕ : R → T , the persistenceof integral closure describes
the fact ϕ( I ) ⊆ ϕ(I )T for every ideal I of R, and the contraction of integral closure
describes the fact ϕ−1(J ) = ϕ−1(J ) for every integrally closed ideal J of T . This
section deals with the persistence and contraction of t-integral closure. For this pur-
pose, we first need to introduce the concept of t-compatible homomorphism (which
extends the well-known notion of t-compatible extension [13]). Throughout, t (resp.,
t1) and v (resp., v1) denote the t- and v- closures in R (resp., T ).

Lemma 2.16 Let ϕ : R −→ T be a homomorphism of domains. Then, the following
statements are equivalent:

(1) ϕ(Iv)T ⊆ (
ϕ(I )T

)
v1

, for each nonzero finitely generated ideal I of R;

(2) ϕ(It )T ⊆ (
ϕ(I )T

)
t1

, for each nonzero ideal I of R; and

(3) ϕ−1(J ) is a t-ideal of R for each t1-ideal J of T such that ϕ−1(J ) �= 0.
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Definition 2.17 A homomorphism of domains ϕ : R −→ T is called t-compatible
if it satisfies the equivalent conditions of Lemma 2.16.

Under the embedding R ⊆ T , this definition matches the notion of t-compatible
extension (i.e., It T ⊆ (I T )t1 ) well studied in the literature (cf. [13, 18, 27, 31]).Next,
the main result of this section establishes persistence and contraction of t-integral
closure under t-compatible homomorphisms.

Proposition 2.18 Let ϕ : R −→ T be a t-compatible homomorphism of domains.
Let I be an ideal of R and J an ideal of T . Then:

(1) ϕ( Ĩ )T ⊆ ϕ̃(I )T .

(2) ϕ̃−1(J ) ⊆ ϕ−1( J̃ ); and if J is t-integrally closed, then ϕ̃−1(J ) = ϕ−1(J ).

If both R and T are integrally closed, then persistence of t-integral closure coin-
cides with t-compatibility by Theorem 2.11. So the t-compatibility assumption in
Proposition 2.18 is imperative.

Corollary 2.19 Let R ⊆ T be a t-compatible extension of domains and let I be an
ideal of R. Then:

(1) Ĩ T ⊆ Ĩ T .

(2) Ĩ ⊆ ˜I T ∩ R ⊆ Ĩ T ∩ R.

Moreover, the above inclusions are strict in general.

Corollary 2.20 Let R be a domain, I an ideal of R, and S a multiplicatively closed

subset of R. Then S−1 Ĩ ⊆ S̃−1 I .

Recall that, for the integral closure, we have S−1 I = S−1 I [48, Proposition 1.1.4],
whereas in the above corollary the inclusion can be strict, as shown by the following
example.

Example 2.21 We use a construction due to Zafrullah [65]. Let E be the ring of
entire functions and x an indeterminate over E . Let S denote the set generated
by the principal primes of E . Then, we claim that R := E + x S−1E[x] contains
a prime ideal P such that S−1 P̃ � S̃−1P . Indeed, R is a P-domain that is not a
PvMD [65, Example 2.6]. By [66, Proposition 3.3], there exists a prime t-ideal P
in R such that P RP is not a t-ideal of RP . By Theorem 2.11, we have P̃ RP =
P RP � RP = (P RP)t = P̃ RP since R is integrally closed. Also notice that P =

˜P RP ∩ R � P̃ RP ∩ R = R.

Corollary 2.22 Let R be a domain and I a t-ideal that is t-locally t-integrally closed
(i.e., IM is t-integrally closed in RM for every maximal t-ideal M of R). Then I is
t-integrally closed.
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3 The Case of Prüfer v-multiplication Domains

In [38, 39], Hays investigated reductions of ideals in commutative rings with a
particular focus on Prüfer domains. He studied the notion of basic ideal and examined
domains subject to the basic ideal property. He showed that this class of domains
is strictly contained in the class of Prüfer domains; namely, a domain is Prüfer if
and only if it has the finite basic ideal property [38, Theorem 6.5]. The second main
result of these two papers characterizes domains with the basic ideal property as
one-dimensional Prüfer domains ([38, Theorem 6.1] and [39, Theorem 10]).

This part covers [44] which deals with the extension of Hays’ aforementioned
results on Prüfer domains to Prüfer v-multiplication domains (PvMDs). In Sect. 3.1
we first extend the definition of t-reduction to �-reduction, for any arbitrary �-
operation, and then discuss the notion of �-basic ideals and prove that a domain
with the finite �-basic ideal property (resp., �-basic ideal property) must be integrally
closed (resp., completely integrally closed). We also observe that a domain has the
v-basic ideal property if and only if it is completely integrally closed. Section 3.2
is devoted to generalizing Hays’ results; we show that a domain has the finite w-
basic ideal property (resp., w-basic ideal property) if and only if it is a PvMD (resp.,
PvMDof t-dimension one). In Sect. 3.3, we present a diagram of implications among
domains having various �-basic properties and provide examples showing that most
of the implications are not reversible.

3.1 �-Basic Ideals

Let R be a domain with quotient field K and let F(R) denote the set of nonzero
fractional ideals of R. A map � : F(R) → F(R), I �→ I �, is called a star operation
on R if the following conditions hold for every 0 �= a ∈ K and I, J ∈ F(R):

• R� = R and (aI )� = aI �,
• I ⊆ J ⇒ I � ⊆ J �, and
• I ⊆ I � and I �� = I �.

The next definition extends the notion of t-reduction and related concepts to an
arbitrary star operation � on R.

Definition 3.1 Let J ⊆ I be nonzero [fractional] ideals of R.

• J is a trivial �-reduction of I if J � = I �.
• J is a �-reduction of I if (J I n)� = (I n+1)� for some integer n ≥ 0.
• I is �-basic if it has no �-reduction other than the trivial �-reductions.
• R has the �-basic (resp., finite �-basic) ideal property if every nonzero (resp.,
finitely generated) [fractional] ideal of R is �-basic.
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If �1 and �2 are two star operations on R with I �1 ⊆ I �2 for each ideal I , then any
�1 reduction is also a �2-reduction, and the converse is not true in general, since a
t-reduction may not be a reduction (see also Example 2.2).

The next results provide elementary properties and natural examples of �-basic
ideals and domains with the (finite) �-basic ideal property.

Lemma 3.2 �-invertible ideals and �-idempotent ideals are �-basic.

Recall that R is completely integrally closed (resp., a v-domain) if every nonzero
ideal (resp., finitely generated ideal) of R is v-invertible.

Proposition 3.3 The following assertions always hold:

(1) If R has the finite �-basic ideal property, then R is integrally closed.
(2) If R has the �-basic ideal property, then R is completely integrally closed.
(3) R has the v-basic ideal property if and only if R is completely integrally closed.
(4) If R is a v-domain, then R has the finite v-basic ideal property.

The next example features a Noetherian domain with two t-ideals I, J such that J
is a t-reduction, but not a reduction, of I . Since the v- and t-operations coincide under
Noetherianess, such domain is not (completely) integrally closed by Proposition 3.3.

Example 3.4 Let k be a field, x, y two indeterminates over k, and T := k[x, y].
Consider the Noetherian domain R = k + M2, where M := (x, y)T (cf. [22]). As
an ideal of T , M is basic [38, Theorem 2.3]. In particular, M2 is not a reduction of
M in T , and hence, it is not a reduction of M as a fractional ideal of R. However, M2

is a nontrivial t-reduction of M in R. Indeed, we have (T : M) = T . It follows that
M ⊆ M−1 (= (R : M)) ⊆ T . On the other hand, if f ∈ T satisfies f M ⊆ R, then,
writing f = a + m with a ∈ k and m ∈ M , we immediately obtain that aM ⊆ R,
whence a = 0, i.e., f ∈ M . Thus, M−1 = M , whence also Mt = Mv = M . How-
ever, (R : T ) = M2, whence (M2)−1 = ((R : M) : M) = (M : M) = T and then
(M2)t = (M2)v = (R : T ) = M2, where the t- and v-operations are taken in R. A
similar argument yields (Mn)t = M2 for n ≥ 2. Hence, M2 = (M3)t = (M2M)t .
Consequently, J := x M2 ⊆ I := x M are two (integral) t-ideals of R, where J is a
nontrivial t-reduction, but not a reduction, of I .

Recall that, to the star operation �, we may define an associated star operation � f

by setting, for each I ∈ F(R), I � f = ⋃
J �, where J ranges over all finitely generated

subideals of I ; and then � is of finite type if � = � f . In this case, minimal primes of
�-ideals are necessarily �-ideals and each �-ideal is contained in a maximal �-ideal.
For instance, v f = t and t f = t .

Lemma 3.5 Assume that � is of finite type. If I is a finitely generated ideal of R and
J is a �-reduction of I , then there is a finitely generated ideal K ⊆ J such that K is
a �-reduction of I .

This lemma allows to prove the following result.
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Proposition 3.6 If R has the finite �-basic ideal property, then R also has the finite
� f -basic ideal property. In particular, if R has the finite v-basic ideal property, then
R also has the finite t-basic ideal property.

Corollary 3.7 A v-domain has the finite t-basic ideal property.

3.2 Characterizations

At this point, we recall Kang’s result [55, Theorem 3.5] that a PvMD is an integrally
closed domain in which the t- and w-operations coincide. The next theorem features
an analogue of Hays’ first result that “a domain is Prüfer if and only if it has the
finite basic ideal property” [38, Theorem 6.5].

Theorem 3.8 A domain is a PvMD if and only if it has the finite w-basic ideal
property.

Hays proved that, in a Prüfer domain, the definition of a reduction can be restricted;
namely, J ⊆ I is a reduction if and only if J I = I 2 [39, Proposition 1]. The next
lemma establishes a similar property for t-reductions and shows that this notion is
local in the class of PvMDs.

Lemma 3.9 Let R be a PvMD and J ⊆ I nonzero ideals of R. Then, the following
assertions are equivalent:

(1) (J I )t = (I 2)t ;
(2) J is a t-reduction of I ; and
(3) J RM I RM = (I RM)2 for each maximal t-ideal M of R.

It is useful to note if J is a t-reduction of an ideal I , then a prime t-ideal of R
contains I if and only if it contains J . We also recall that if I is a nonzero ideal of a
domain R and S is a multiplicatively closed subset of R, then (It RS)tRS

= (I RS)tRS

(this fact follows from [64, Lemma 4] and is stated explicitly in [55, Lemma 3.4]).

Lemma 3.10 Let R be a PvMD and let 0 �= x ∈ R. Let P be a minimal prime of
x R and set I := x RP ∩ R. Then:

(1) I is a w-ideal of R.
(2) x R + I 2 is a w-reduction of I .
(3) If I is w-basic, then P is a maximal t-ideal of R.

The above two lemmas allowed us to prove the next theorem, which features an
analogue of Hays’ second result that “a domain has the basic ideal property if and
only if it is a Prüfer domain of dimension 1” [39, Theorem 10].

Theorem 3.11 A domain has the w-basic ideal property if and only if it is a PvMD
of t-dimension 1.
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3.3 Examples

Consider the following diagram of implications putting in perspective the (finite) v-,
t-, and w-basic ideal properties.

Notice that the implications (1)–(3) and (8) are well known, and (4)–(7) follow
from Propositions 3.3, 3.6, Theorem 3.11, and the fact that the w- and t-operations
coincide in a PvMD. Also, it is well known that (1)–(3) and (8) are irreversible
in general. Moreover, the finite v-basic ideal property obviously implies the finite
t-basic ideal property, and in Sect. 5.2 we will see that in fact, they are equivalent
(Theorem 5.5).

Next, we provide examples with full details, from [44], proving that the remaining
implications in the diagram are, too, irreversible in general.

Example 3.12 ([44, Example 3.1]) Implication (4) is irreversible.

Proof Let k be a field and X, Y, Z indeterminates over k. Let T := k((X)) + M
and R := k[[X ]] + M , where M := (Y, Z)k((X))[[Y, Z ]]. Let A be an ideal of R.
Then A is comparable to M . Suppose A ⊆ M and A is not invertible. If AA−1 � M ,
then AA−1 is principal, and hence, A is invertible, contrary to assumption. Hence,
AA−1 ⊆ M . We claim that (AA−1)v = M . To verify this, first recall that M is divi-
sorial in R. Then, since AA−1 is a trace ideal, that is, (AA−1)−1 = (AA−1 : AA−1),
we have (AA−1)−1 ⊆ (AA−1T : AA−1T ) = T = M−1 (the first equality holding
since T is Noetherian and integrally closed). This forces (AA−1)−1 = M−1, whence
(AA−1)v = Mv = M , as claimed. Now let I be a finitely generated ideal of R and
J a v-reduction of I , so that (J I n)v = (I n+1)v for some positive integer n. We shall
show that J−1 = I −1 (and hence that Jv = Iv), and for this, we may assume that I
is not invertible. Suppose, by way of contradiction, that I T (T : I T ) = T , i.e., that
I T is invertible in T . Then, since T is local, I T is principal and, in fact, I T = aT
for some a ∈ I . We then have R ⊆ a−1 I ⊆ T . Then k[[X ]] ∼= R/M ⊆ a−1 I/M ⊆
T/M ∼= k((X)), fromwhich it follows that a−1 I/M must be a cyclic k[[X ]]-module.
However, this is easily seen to imply that a−1 I , hence I , is principal, the desired
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contradiction. We therefore have (T : I T )I ⊆ M , whence (I M)−1 = (R : I M) =
((R : M) : I ) = (T : I ) = (M : I ) ⊆ I −1.This immediately yields I −1 = (I M)−1.

Now set Q = I n(I n)−1. From above (setting A = I n), we have Qv = M . There-
fore, I −1 ⊆ J−1 ⊆ (J M)−1 = (J Q)−1 = (I Q)−1 = (I M)−1 = I −1, which yields
J−1 = I −1, as desired. Hence, R has the finite v-basic property. Finally, again from
above, we have ((y, z)(y, z)−1)v = M , so that R is not a v-domain.

Example 3.13 ([44, Example 3.2]) Implication (5) is irreversible.

Proof Let k be a field and X, Y indeterminates over k. Let V = k(X)[[Y ]] and
R = k + M , where M = Y k(X)[[Y ]]. Clearly, R is an integrally closed domain. Of
course, M is divisorial in R. Also, (M2)−1 = ((R : M) : M) = (V : M) = Y −1V ,
and so (M2)v = (R : Y −1V ) = Y (R : V ) = Y M = M2, i.e., M2 is also diviso-
rial. We claim that R does not have the finite t-basic ideal property. Indeed,
let W := k + Xk and consider the finitely generated ideal I of R given by I =
Y (W + M). We have (k : W ) = (0); otherwise, we have 0 �= f ∈ (k : W ), and
both f and f X ∈ k, whence X ∈ k, a contradiction. Therefore, I −1 = Y −1M and
thus It = Iv = Y M−1 = M . Now, let J = Y R. Then Jt = Y R � M = It . However,
(J I )t = (Y I )t = Y It = Y M = M2 = ((It )

2)t = (I 2)t , and so R does not have the
finite t-basic ideal property.

Example 3.14 ([44, Example 3.3]) Implication (6) is irreversible.

Proof In [42], Heinzer and Ohm give an example of an essential domain that is not
a PvMD. In that example, k is a field, y, z, and {xi }∞i=1 are indeterminates over k,
and D = R ∩ (

⋂∞
i=1 Vi ), where R = k({xi })[y, z](y,z)k({xi })[y,z] and Vi is the rank-

one discrete valuation ring on k({x j }∞j=1, y, z) with xi , y, z all having value 1 and x j

having value 0 for j �= i (using the “infimum” valuation). As further described in
[58, Example 2.1], we have Max(D) = {M} ∪ {Pi }, where M is the contraction of
(y, z)R to D and the Pi are the centers of the maximal ideals of the Vi ; moreover,
DM = R and Vi = DPi .

It was pointed out in [35, Example 1.7] that each finitely generated ideal of D is
contained in almost all of the Vi . If fact, one can say more. Let a be an element of D.
We may represent a as a quotient f/g with f, g ∈ T := k[{xi }, y, z](y,z)k[{xi },y,z] and
g /∈ (y, z)T (and hence g /∈ M). Since f and g involve only finitely many x j and
g /∈ M , the sequence {vi (a)} must be eventually constant, where vi is the valuation
corresponding to Vi . We denote this constant value by w(a). A similar statement
holds for finitely generated ideals of D.

Let K be anonzero ideal of D. Then Kt DPi ⊇ K DPi = (K DPi )tDPi
= (Kt DPi )tDPi⊇ Kt DPi ,whence Kt DPi = K DPi . Now suppose that we have nonzero ideals J ⊆ I

of D with (J I n)t = (I n+1)t . Let a ∈ I , and choose a0 ∈ I so that w(a0) is mini-
mal. Then aan

0 ∈ I n+1 ⊆ (J I n)t , and so aan
0 ∈ (B An)v for finitely generated ideals

B ⊆ J and A ⊆ I . With the observation in the preceding paragraph, we then have
aan

0 ∈ B An DPi for each i . However, since w(a0) ≤ w(A), it must be the case that
w(a) ≥ w(B); i.e., for some integer k, a ∈ B DPi for all i > k. Since the equality
(J I n)t = (I n+1)t yields J DPi = I DPi for each i , we may choose elements b j ∈ J



On t-Reduction and t-Integral Closure of Ideals in Integral Domains 149

for which v j (a) = v j (b j ), j = 1, . . . , k. With B ′ = (B, b1, . . . , bk), we then have
a ∈ B ′ DPi for each i . This yields a(B ′)−1 ⊆ ⋂

DPi .
Next, we consider extensions to DM . From (J I n)t = (I n+1)t , we obtain

(J I n DM)tDM
= (I n+1DM)tDM

. Since DM is a regular local ring, each nonzero
ideal of DM is t-invertible, and we may cancel to obtain (I DM)tDM

= (J DM)tDM
.

There is a finitely generated subideal B1 of J with B1DM = J DM . We then
have I B−1

1 ⊆ I DM B−1
1 DM = I DM(B1DM)−1 ⊆ (J DM(J DM)−1)tDM

⊆ DM .Now
let B2 = B ′ + B1. Then a(B2)

−1 ⊆ DM ∩ ⋂
DPi = D, whence a ∈ (B2)v ⊆ Jt . It

follows that D has the t-basic property. However, since D is not a PvMD, D cannot
have the (finite) w-basic property.

Example 3.15 ([44, Example 3.4]) Implication (7) is irreversible. For instance, the
ring of entire functions is a completely integrally closed Prüfer domain with infinite
Krull dimension, and hence, it does not have the (t-) basic ideal property by [39,
Theorem 10].

4 The Case of Noetherian Domains

This part covers [52], which studies t-reductions and t-integral closure of ideals in
Noetherian domains. The main objective is to establish t-analogues for well-known
results on reductions and integral closure of ideals in Noetherian rings. Section
4.1 investigates t-reductions of ideals subject to t-invertibility and localization in
arbitrary Noetherian domains. Section 4.2 investigates the t-integral closure of ideals
and its correlation with t-reductions in Noetherian domains of Krull dimension one.

4.1 t-Reductions Subject to t-Invertibility and Localization

This section dealswith t-reductions of ideals subject to t-invertibility and localization
in Noetherian domains. The first main result establishes a t-analogue for Hays’
result on the correlation between invertible reductions and the Krull dimension [38,
Theorem 4.4]; and the second main result establishes a t-analogue for Hays’ global–
local result on the basic ideal property [38, Theorem 3.6]. In 1973, Hays proved the
following result:

Theorem 4.1 ([38, Theorem 4.4]) Let R be a Noetherian domain such that R/M is
infinite for every maximal ideal M of R. Then, each nonzero ideal has an invertible
reduction if and only if dim(R) ≤ 1.

The t-dimension of a domain R, denoted t-dim(R), is the supremumof the lengths
of chains of prime t-ideals in R (here (0) is considered as a prime t-ideal although
technically it is not); and the inequality t-dim(R) ≤ dim(R) always holds [43]. Here
is a t-analogue of the above result.
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Theorem 4.2 Let R be a Noetherian domain such that the residue field of each
maximal t-ideal is infinite. Then, the following statements are equivalent:

(1) Each t-ideal of R has a t-invertible t-reduction;
(2) Each maximal t-ideal of R has a t-invertible t-reduction; and
(3) t-dim(R) ≤ 1.

The next lemma handles the implication (2) ⇒ (3) without the infinite residue
field assumption.

Lemma 4.3 Let R be a Noetherian domain. If every maximal t-ideal of R has a
t-invertible t-reduction, then t-dim(R) ≤ 1.

Observe that, in general, the converse of Lemma 4.3 is not true. For instance,
consider an almost Dedekind domain R which is not Dedekind. Then R is a one-
dimensional locally Noetherian Prüfer domain. Hence, R has the basic ideal property
[38, Theorem 6.1]. Since R is not Dedekind, it has a non-invertible maximal ideal
which has no proper reduction.

Next, we move to the global–local transfer of the t-basic ideal property. For this
purpose, recall that an ideal I is locally basic (resp., t-locally t-basic) if I RM is basic
(resp., t-basic) for each maximal ideal (resp., maximal t-ideal) M of R containing
I . In 1973, Hays proved the following result.

Theorem 4.4 ([38, Theorem 3.6]) In a Noetherian ring, an ideal is basic if and only
if it is locally basic.

Here is a t-analogue for the “if” assertion of this result.

Theorem 4.5 In a Noetherian domain, if an ideal is t-locally t-basic, then it is
t-basic.

Now, note that, in his proof of the implication “basic ⇒ locally basic,” Hays used
two basic facts. The first one states that, in an arbitrary ring R, if J ⊆ I and J RM is
a reduction of I RM , then (J ∩ I ) + I M is a reduction of I ; and here is a t-analogue
for this result.

Proposition 4.6 Let R be a domain, M a maximal t-ideal of R, and I ⊆ M a
nonzero ideal of R. If J is an ideal of R such that J RM is a t-reduction of I RM , then
(J ∩ I ) + I M is a t-reduction of I .

However, the second fact was Nakayama’s lemma, which ensures that J ⊆ I ⊆
J + I M in a local Noetherian ring (R, M) forces J = I , and a t-analogue for this
Nakayama property is not true in general. For example, consider the local Noetherian
ring R := k + M2 ⊆ k[x, y], where M = (x, y) and (M2)t = (M3)t [44, Example
1.5].
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4.2 t-Reductions and t-Integral Closure in One-Dimensional
Noetherian Domains

This section deals with the t-integral closure of ideals and its correlation with
t-reductions in Noetherian domains of Krull dimension one. The objective is to
establish t-analogues of well-known results, in the literature, on the integral closure
of ideals and its correlation with reductions of ideals in Noetherian settings.

Recall from Sect. 2.2 that “ Ĩ is an integrally closed ideal which is not
t-integrally closed in general.” Several ideal-theoretic properties of Ĩ are collected
in Remark 2.14, including the inclusions I ⊆ I ⊆ Ĩ ⊆ √

It . Consider the two sets
related to the (trivial) d-operation and t-operation, respectively:

Î
d := {

x ∈ R | I is a reduction of (I, x)
}

Î
t := {

x ∈ R | I is a t-reduction of (I, x)
}
.

For the trivial operation, it is well known that the equality I = Î
d
always holds

[48, Corollary 1.2.2]. This fact which was used to show that I is an ideal [48, Corol-
lary 1.3.1]. However, it is still an open problem of whether Î

t
is an ideal [51, Ques-

tion 3.5]. We always have It ⊆ Ĩ ⊆ Î
t
where the second containment is proved by

[50, Proposition 3.7] and can be strict as shown by [50, Example 3.10(a)]. Moreover,
“It = Ĩ for each nonzero ideal I if and only if R is integrally closed” [50, Theorem
3.5], and “It = Î

t
for each nonzero ideal I if and only if R has the finite t-basic

ideal property” [51, Theorem 3.2].
The class of Prüfer domains is the only known class of domains, where the two

notions of reduction and t-reduction coincide (since the trivial and t- operations
are the same). The next result shows that the same happens in one-dimensional
Noetherian domains (where the trivial and t- operations are not necessarily the same).

Theorem 4.7 In a one-dimensional Noetherian domain, the notions of reduction
and t-reduction coincide. Moreover, I = Ĩ = Î

t
for any nonzero ideal I .

As illustrative examples, consider one-dimensional Noetherian domains which
are not divisorial (i.e., t-operation is not trivial), as shown below.

Example 4.8 Let R := Q + xQ(
√
2,

√
3)[[x]], whereQ is the field of rational num-

bers and x is an indeterminate over Q. Then, R is a pseudo-valuation domain (see
definition in Sect. 5.1) issued from the DVR Q(

√
2,

√
3)[[x]] and hence is a one-

dimensional Noetherian domain. Further, R is not a divisorial domain by [40, The-
orem 3.5] or [45, Theorem 2.4] since [V/M : R/M] �= 2.

One wonders whether there exist Noetherian domains of dimension > 1 where
the notions of reduction and t-reduction coincide. Next, we show this cannot happen
in a large class of Noetherian domains.
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Proposition 4.9 Let R be a Noetherian domain with (R : R) �= 0. Then, the notions
of reduction and t-reduction coincide in R if and only if dim(R) = 1.

5 The Case of Pullbacks

This part covers [51], which investigates t-reductions of ideals in pullback construc-
tions (defined in Sect. 5.3). Section 5.1 examines the correlation between the notions
of reduction and t-reduction in pseudo-valuation domains. Section 5.2 solves an open
problem raised in [44] on whether the finite t-basic and v-basic ideal properties are
distinct. In fact, these two notions coincide in any arbitrary domain (Theorem 5.5).
Section 5.3 features themain result, which establishes the transfer of the finite t-basic
ideal property to pullbacks in linewithFontana–Gabelli’s result onPvMDs [31,Theo-
rem 4.1] andGabelli–Houston’s result on v-domains [34, Theorem 4.15]. This allows
us to enrich the literature with new examples, putting the class of domains subject
to the finite t-basic ideal property strictly between the two classes of v-domains and
integrally closed domains.

5.1 t-Reductions in Pseudo-Valuation Domains

Recall that a pseudo-valuation domain (PVD) R is a special pullback issued from
the following diagram:

R = ϕ−1(k) −→ k
↓ ↓
V

ϕ−→ K := V/M,

where (V, M) is a valuation domain with residue field K and k is a subfield of K .
We say that R is a PVD issued from (V, M, k). For more details on pseudo-valuation
domains, see [40, 41] and also [17, 19, 24, 25, 61].

Note that a reduction is necessarily a t-reduction; and the converse is not true
in general. The next result investigates necessary and sufficient conditions for the
notions of reduction and t-reduction to coincide in PVDs. This result can be used
readily to provide examples discriminating between the two notions of reduction and
t-reduction.

Theorem 5.1 Let R be a PVD issued from (V, M, k) with K := V/M. Then, the
following statements are equivalent:

(1) For every nonzero ideals J ⊆ I , J is a t-reduction of I ⇔ J is a reduction of I .
(2) For each k-vector subspace W of K containing k, W n is a field for some n ≥ 0.
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Note that Condition (2) in the above result forces K to be algebraic over k, and
so this fact can be used to build examples where the two notions of reduction and
t-reduction are the same or distinct, as shown below.

Example 5.2 ([51, Example 2.3]) Let R be a PVD issued from (V, M, k)with K :=
V/M .

(1) Assume K is a transcendental over k. Then, the notions of reduction and t-
reduction are distinct in R. For example, pick a transcendental element λ ∈ K
over k and let W := k + kλ, I := aϕ−1(W ) and J =: a R. Then, J is a proper
t-reduction of I , whereas I is basic in R.

(2) Assume [K : k] is finite. Then for every k-submodule W of K with k ⊆ W ⊆ K ,
some power of W is a field, and hence, the notions of reduction and t-reduction
coincide in R.

Given nonzero ideals J ⊆ I , if Jt is a reduction of It , then J is a t-reduction
of I . The converse is not true in general as shown by Example 2.2. The next result
provides a class of (integrally closed) pullbacks where the two assumptions are
always equivalent.

Proposition 5.3 Let R be a PVD and let J ⊆ I be nonzero ideals of R. Then, J is
a t-reduction of I if and only if Jt is a reduction of It .

The class of Prüfer domains is, so far, the only known class of domains where
the two notions of reduction and t-reduction coincide. We close this section with
the next result, which features necessary conditions for such a coincidence. For this
purpose, recall that a domain where the trivial and w-operations are the same is said
to be a DW domain [36, 47, 57]. Common examples of DW domains are pseudo-
valuation domains, Prüfer domains, and quasi-Prüfer domains (i.e., domains with
Prüfer integral closure) [32, p. 190].

Proposition 5.4 Let R be a domain where the notions of reduction and t-reduction
coincide for all ideals of R. Then:

(1) Every nonzero prime ideal of R is a t-ideal. In particular, R is a DW domain.
(2) R is integrally closed if and only if R has the finite t-basic ideal property.
(3) R is a PvMD if and only if R is a Prüfer domain.

5.2 Equivalence of the Finite t- and v-Basic Ideal Properties

A domain is called a v-domain if all its nonzero finitely generated ideals are
v-invertible; a comprehensive reference for v-domains is Fontana and Zafrullah’s
survey paper [33]. Also, recall the finite v-basic ideal property obviously implies the
finite t-basic ideal property, and the question of whether this implication is reversible
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was left open in [44, Sect. 3]. Themain result of this section (Theorem 5.5) solves this
open question. For this purpose, recall from Sect. 4.2 the following objects Ĩ := {

x ∈
R | x is t-integral over I

}
and Î

t := {
x ∈ R | I is a t-reduction of (I, x)

}
along

with the basic inclusions It ⊆ Ĩ ⊆ Î
t
. Finally, in order to put the main result into

perspective, recall the important result that “a domain R is integrally closed if and
only if It = Ĩ for each nonzero (finitely generated) ideal I of R” (Theorem 2.11).

Here is the main result of this section.

Theorem 5.5 For a domain R, the following assertions are equivalent:

(1) It = Î for each nonzero (finitely generated) ideal I of R;
(2) R has the finite t-basic ideal property; and
(3) R has the finite v-basic ideal property.

The proof of this result required the following two elementary lemmas.

Lemma 5.6 (cf. Lemma 3.5) Let R be a domain and let I be a finitely generated
ideal of R. If J ⊆ I is a t-reduction of I , then there exists a finitely generated ideal
K ⊆ J such that K is a t-reduction of I .

Lemma 5.7 For a domain R, let K ⊆ J ⊆ I and J ′ ⊆ I ′ be nonzero fractional
ideals, and let n and k be positive integers.

(1) If J and J ′ are �-reductions of I and I ′, respectively, then J + J ′ and J J ′ are
�-reductions of I + I ′ and I I ′, respectively.

(2) Assume K is a �-reduction of J . If J is a �-reduction of I , then so is K .
(3) If K is a �-reduction of I , then J is a �-reduction of I .
(4) J is a �-reduction of I if and only if J n is a �-reduction of I n.
(5) J = (a1, . . . , ak) is a �-reduction of I ⇔ (an

1 , . . . , an
k ) is a �-reduction of I n.

New examples of domains subject to the finite t-basic (equiv., v-basic) ideal
property will be provided in the next section.We close this section with the following
open question:

Question 5.8 ([51, Question 3.5]) Let I be a nonzero ideal, is Î always an ideal?

5.3 Transfer of the Finite t-Basic Ideal Property to Pullbacks

Throughout, R will be the pullback issued from the following diagram of canonical
homomorphisms:

R −→ D
↓ ↓
T

ϕ−→ K = T/M,
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where T is a domain, M is a maximal ideal of T with residue field K , ϕ : T −→ K
is the canonical surjection, and D is a proper subring of K with quotient field k.
So, R := ϕ−1(D) � T . First, note that Proposition 3.3 ensures that a domain with
the t-basic ideal property is necessarily completely integrally closed, and so, by
[37, Lemma 26.5], R never has the t-basic ideal property. This section investigates
conditions for R to inherit the finite t-basic (or, equivalently, v-basic) ideal property
when T is local.

Recall from Sects. 3.3 and 5.2 that the finite t-basic ideal property lies between
the two notions of v-domain and integrally closed domain; and that the finitew-basic
ideal property coincides with the PvMD notion. Also, at this point, it is worthwhile
recalling Fontana and Gabelli’s [31] and Gabelli and Houston’s [34] well-known
results, which establish the transfer of the notions of PvMD and v-domain to pull-
backs, respectively, and which summarize as follows.

Theorem 5.9 ([31, Theorem 4.1] and [34, Theorem 4.15]) R is a PvMD (resp.,
v-domain) if and only if T and D are PvMDs (resp., v-domains), TM is a valuation
domain, and k = K .

Here is the main result of this section.

Theorem 5.10 Assume that T is local. Then, R has the finite t-basic ideal property
if and only if T and D have the finite t-basic ideal property and k = K .

This result enables the construction of new examples, which put the finite t-basic
ideal property strictly between the two notions of integrally closed domain and v-
domain. Follow some examples with full details from [51].

Example 5.11 ([51, Example 4.3])Consider any nontrivial pseudo-valuation domain
R issued from (V, M, k) with k algebraically closed in K := V/M . Then, R is an
integrally closed domain by [20, Theorem 2.1], which does not have the finite t-
basic ideal property by Theorem 5.10. Moreover, the two notions of reduction and
t-reduction are distinct in R by Proposition 5.4.

Example 5.12 ([51, Example 4.4]) Consider a pullback R issued from (T, M, D),
where T is a non-valuation local v-domain and D is a v-domain with quotient field
T/M . Then, R has the finite t-basic ideal property by [44, Proposition 1.6] and
Theorem 5.5 and Theorem 5.10, which is not a v-domain by [34, Theorem 4.15]. One
can easily build non-valuation local v-domains via pullbacks through [34, Theorem
4.15].

Example 5.13 ([51, Example 4.5]) Let T := Q(X)[[Y, Z ]] = Q(X) + M and R :=
Z[X ] + M . Clearly, T and D := Z[X ] have the finite t-basic property (since they are
Noetherian Krull domains). By Theorem 5.10, R has the finite t-basic property. Also,
R is not a v-domain since T is a non-valuation local domain. Next, let 0 �= a ∈ Z and
consider the finitely generated ideal of R given by I := (a, X)Z[X ] + M = a R +
X R. Clearly I −1 = R and so (I s)−1 = R, for every positive integer s. In particular,
we have (I 2 I )t = (I 3)t = (I 3)v = R = (I 2)v = (I 2)t , and hence, I 2 is a t-reduction
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of I . However, I 2 is not a reduction of I ; otherwise, if I n+2 = I 2 I n = I n+1, for some
n ≥ 1, thiswould contradict [56, Theorem76]. It follows that the notions of reduction
and t-reduction are distinct in R.

We close this section with the following two open questions from [51].

Question 5.14 ([51, Question 4.6]) Is Theorem 5.10 valid for the classical pullbacks
R = D + M issued from T := K + M not necessarily local? The idea here is that
(since k = K , then) T = S−1R for S := D \ {0}. Clearly, the current proof of the
“only if” assertion works for this context.

Question 5.15 ([51, Question 4.7]) Is Theorem 5.10 valid for the nonlocal case
through an additional assumption on TM? The idea here is that “(k = K and hence)
RM = TM” is a necessity for the finite t-basic property, and for the PvMD and v-
domain notions, RM = TM is a valuation domain. So, one needs to investigate this
localization for the t-basic ideal property in this context.
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Local Types of Classical Rings

L. Klingler and W. Wm. McGovern

Abstract Motivated by recent results on commutative rings with zero divisors [2,
11], we investigate the difference between the three notions of locally classical,
maximally classical, and classical rings.Motivated also by results in [12], we explore
these notions when restricted to certain subsets of the prime spectrum of the ring. As
an application, we examine the case of locally classical rings of continuous functions,
the case of maximally classical and classical rings having already been considered
[1, 14].

1 Introduction and Main Results

Throughout, we shall assume that R denotes a commutative ring with identity. We
denote the classical ring of quotients (also known as the total quotient ring) of R
by q(R). When a ring equals its classical ring of quotients, the ring is said to be
classical. Classical rings are characterized by the simple condition that all regular
elements are units. For any ring R, q(R) is a classical ring.

A ring-theoretic property is said to be local if an arbitrary ring R satisfies the
property if and only if the localization RP satisfies the property for every prime ideal
P of R. For example, “reduced” is a well-known local property, where a ring is
reduced if it has no nonzero nilpotent elements. As a second example, we note the
useful fact that “regular” is also a local property, which we show in the following
lemma.
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Lemma 1 For an element r ∈ R, the following statements are equivalent.

1. r is regular.
2. r

1 is regular in RP for every prime ideal P ⊂ R.
3. r

1 is regular in RM for every maximal ideal M ⊂ R.

Proof For (1) implies (2), if r
1 · a

s = 0 in RP , then ra · t = 0 for some t ∈ R � P;
if r is regular, then at = 0 in R forces a

s = 0 in RP . (2) implies (3) is trivial. For (3)
implies (1), if ra = 0 for some a ∈ R, then r

1 · a
1 = 0 and r

1 regular in RM for every
maximal ideal M ⊂ R implies that the annihilator AnnR(a) of a in R is contained
in no maximal ideal of R; that is, R annihilates a, so that a = 0.

The goal of this paper is to investigate the extent to which “classical” is a
local property. The first motivation comes from [2, 11], in which it is shown that
“Prüfer ” is not a local property. (Recall that a ring R is called a Prüfer ring if every
finitely generated regular ideal of R is invertible. Note that a classical ring is Prüfer,
because it has no proper regular ideals.) The ring R is said to be locally (respectively,
maximally)Prüfer if the localization RP is a Prüfer ring for every prime (respectively,
maximal) ideal P ⊂ R. Boynton showed in [2] that locally Prüfer implies Prüfer but
not conversely. Klingler, Lucas, and Sharma showed in [11] that maximally Prüfer
implies Prüfer but not conversely, and that maximally Prüfer does not imply locally
Prüfer. These results are summarized by the diagram

locally Prüfer ⇒ maximally Prüfer ⇒ Prüfer

inwhich neither arrow is reversible.Moreover, examples show that these implications
are not reversible even under the extra hypothesis that the ring is reduced.

In this paper, we establish the corresponding results for “classical.” We shall say
that a ring R is locally (respectively, maximally) classical if the localization RP is a
classical ring for every prime (respectively, maximal) ideal P ⊂ R. Clearly, locally
classical implies maximally classical; our main theorem of this section establishes
the second implication.

Theorem 1 If R is maximally classical, then it is classical.

Proof It is easier to prove the contrapositive, so suppose that R is not classical, say
r ∈ R is regular but not a unit. Then there is amaximal idealM ⊂ R such that r ∈ M ,
so r

1 is not a unit in the localization RM . By Lemma1, r
1 is regular, so RM is not

classical, and hence R is not maximally classical.

Examples2 and 3 below show that these two implications are not reversible, even
under the additional hypothesis that the ring is reduced. That is, Example2 gives a
(reduced) ring R which is classical but not maximally classical, and Example3 gives
a (reduced) ring R which is maximally classical but not locally classical.

The second motivation for this paper comes from [12], in which the authors
considered restricting the Prüfer property locally to only the regular or semiregular,
prime or maximal ideals. (Recall that an ideal is called semiregular if it contains a
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finitely generated dense ideal, that is, a finitely generated ideal whose annihilator is
zero.) Restricting the locally (or maximally) classical property to regular prime (or
maximal) ideals would be pointless, however, since by Lemma1, a regular nonunit
in a prime ideal will remain a regular nonunit in the localization at that prime ideal.
Thus, “regular locally classical” and “regular maximally classical” are equivalent to
classical; that is, a ring is classical if and only if it has no regular prime ideals if and
only if it has no regular maximal ideals. On the other hand, restricting the locally
(or maximally) classical property to semiregular prime (or maximal) ideals does
produce a weaker condition, as we shall show. Therefore, we shall say that a ring R is
semiregular locally (respectively semiregular maximally) classical if the localization
RP is a classical ring for every semiregular prime (respectively semiregularmaximal)
ideal P ⊂ R.

Obviously locally classical implies semiregular locally classical, and semireg-
ular locally classical and maximally classical each implies semiregular maximally
classical. Moreover, a regular element generates a finitely generated ideal with zero
annihilator, so the proof of Theorem1 shows that, if the ring R is not classical, then it
is not semiregular maximally classical. Therefore, semiregular maximally classical
implies classical, and we obtain the following diagram of implications.

Diagram 2

LC

MC SRLC

SRMC

C

where LC abbreviates locally classical, SRLC abbreviates semiregular locally clas-
sical, etc. Examples5 and 6 below (together with the examples already mentioned)
show that none of the arrows is reversible, and indeed, that there are no other impli-
cations than those implied by the diagram, even under the added hypothesis that the
ring is reduced.

The third motivation for this paper comes from the theory of rings of (real-valued)
continuous functions. For a topological space X , letC(X)denote the set of continuous
functions from the space X to the real field R; C(X) is a commutative ring with
identity under pointwise addition and multiplication. One area of particular research
interest has been determining conditions on the space X equivalent to some desired
property of the ring C(X). (See [8] as a good general reference for the theory of
rings of continuous functions.) For example, Levy [14] gave necessary and sufficient
conditions on X that C(X) be classical, and Banerjee, Ghosh, and Henriksen [1]
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gave necessary and sufficient conditions on X that C(X) be maximally classical. We
devote Sect. 2 of this paper to reviewing the necessary terminology for these results
from the theory of rings of continuous functions, and to constructing two examples
to sharpen Theorem1. We also characterize the topological spaces X for which the
ring C(X) is locally classical (Theorem7).

Note that the ring C(X) has Property A, that is, every semiregular ideal of C(X)

is regular. This follows from the fact that in C(X), the annihilator of f, g equals the
annihilator of f 2 + g2. Thus, forC(X), semiregular locally (respectivelymaximally)
classical is equivalent to regular locally (respectively maximally) classical, both of
which, as noted above, are equivalent to classical. Therefore, to establish the claim
made about the completeness of the implications in Diagram2, we need to look for
examples beyond rings of continuous functions. This we do in Sect. 3, where we also
collect some miscellaneous results on classical rings.

We finish the current section by developing a useful condition on the prime ideal
P which, for a reduced ring R, is equivalent to the localization RP being classical.

For prime ideal P ⊂ R, we denote by O(P) the set of elements of R annihilated
by an element of R � P:

O(P) = {a ∈ R : there is an x ∈ R � P such that ax = 0}

Note that O(P) ⊆ P; we easily obtain the following alternative description of RP ,
since O(P) is the kernel of the natural map from R to the localization RP . (See
Sect. 4 of [9] for details.)

Proposition 1 Let P be a prime ideal of R, and set R̄ = R/O(P) and P̄ =
P/O(P). Then R̄P̄

∼= RP.

If the ring R is reduced, the minimal prime ideals of R play a crucial role in
determining whether or not R is locally or maximally classical. The following char-
acterization of minimal primes in reduced rings will prove useful.

Lemma 2 ([10, Corollary2.2]) Let R be a reduced ring and suppose P is a prime
ideal of R. Then P is a minimal prime ideal if and only if for each a ∈ P there exists
an element x ∈ R � P such that ax = 0.

For a reduced ring R and prime ideal P ⊂ R, the following proposition gives an
elegant description of the ideal O(P).

Proposition 2 If R is a reduced ring and P is a prime ideal of R, then

O(P) = ∩{Q ⊆ P : Q is a minimal prime},

the intersection of the minimal primes of R contained in P.

Proof Let a ∈ O(P) and Q be a minimal prime contained in P . By definition, there
is an element x ∈ R � P such that ax = 0. Since Q ⊆ P , it follows that x /∈ Q, and
hence a ∈ Q. This demonstrates one containment.
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For the opposite containment, if a is in all of the minimal primes contained in
P , then a

1 is in all of the minimal primes of the localization RP , so in the nilradical
of RP . Since R is assumed to be reduced, RP is also reduced (as noted above), and
hence a

1 = 0 in RP . This implies that the annihilator of a is not contained in P , so
a ∈ O(P).

For a reduced ring R and prime ideal P ⊂ R, we can now determine conditions
on P which guarantee that the localization RP is classical.

Theorem 3 Let R be a reduced ring and P be a prime ideal of R. The following
statements are equivalent.

1. The localization RP is classical.
2. For every a ∈ P, the annihilator of a in R is not contained in O(P).
3. P = ⋃ {Q ⊆ P : Q is a minimal prime}, the union of the minimal primes of R

contained in P.

Proof (1) implies (2). Let a ∈ P . If a ∈ O(P), then by definition there is an element
x ∈ R � P such that ax = 0, so the annihilator of a is not contained in P , and
so not contained in O(P). Assume instead that a ∈ P � O(P). By hypothesis, the
localization RP is classical, so a

1 must be a zero divisor, and hence there is a nonzero
b
s ∈ RP such that a

1 · b
s = 0 in RP . This means that there is some t /∈ P such that

abt = 0. If bt ∈ O(P), then btx = 0 for some x ∈ R � P , but then t x ∈ R � P
would imply b

s = 0 in RP , contrary to assumption. Therefore, abt = 0 with bt /∈
O(P), as required.

(2) implies (3). Clearly,
⋃ {Q ⊆ P : Q is a minimal prime} ⊆ P . Conversely,

suppose a ∈ P , so that, by hypothesis, ab = 0 for some b /∈ O(P). By Proposi-
tion2, there is a minimal prime Q ⊆ P such that b /∈ Q. Then ab = 0 and Q prime
implies a ∈ Q, proving the opposite containment.

(3) implies (1). Let a
s ∈ PRP , so that a ∈ P . By hypothesis, a ∈ Q for some

minimal prime Q ⊆ P . By Lemma2, there is an element x /∈ Q such that ax = 0.
By Proposition2, x /∈ O(P), so x

1 is a nonzero element of RP , whence a
s is a zero

divisor of RP .

Quantifying overall prime or all maximal ideals of the reduced ring R, Theorem3
yields criteria for R to be locally or maximally classical.

Corollary 1 If R is reduced, then:

1. R is locally classical if and only if every prime ideal is a union of minimal prime
ideals.

2. R is maximally classical if and only if every maximal ideal is a union of minimal
prime ideals.
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2 Rings of Continuous Functions

We recall a useful classification of local Prüfer rings. First, recall that a ring R is
called a Bézout ring if every finitely generated ideal is principally generated. In the
weaker case that every finitely generated regular ideal is principally generated we say
R is quasi-Bézout. Observe that a quasi-Bézout ring is a Prüfer ring. Of course, there
are Prüfer domains which are not Bézout (and hence not quasi-Bézout). Theorem2
of [15] states that for rings of continuous functions the notions of quasi-Bézout and
Prüfer are equivalent. It is also the case that these conditions are equivalent for local
rings. We let Z(R) denote the set of zero divisors of the ring R.

Theorem 4 ([15, Proposition]) Let R be a local ring. The following statements are
equivalent.

1. R is a Prüfer ring.
2. R is a quasi-Bézout ring.
3. Z(R) is an (prime) ideal of R and R/Z(R) is a valuation domain.

Remark 1 Recall the domain is a valuation domain if and only if its ideals are
linearly ordered, i.e., the domain is a chained ring. When the ring has zero divisors
the distinction between valuation rings and chained rings becomes slightly more
delicate. For more information on this, we suggest the reader peruse [13].

Next, we give a brief account of the theory of rings of continuous functions. For a
topological space X , we letC(X) denote the ring of real-valued continuous functions
on X . The subring of bounded continuous functions on X is denoted by C∗(X). We
shall assume that X is a Tychonoff space, that is, completely regular and Hausdorff.

Next, recall the following subsets of X that are useful in describing algebraic prop-
erties ofC(X). For f ∈ C(X), we denote its zeroset by Z( f ) = {x ∈ X : f (x) = 0}.
The set-theoretic complement of Z( f ) in X is denoted by coz( f ) and is called the
cozeroset of f . A subset V ⊆ X is called a zeroset (respectively, cozeroset) if there
is some f ∈ C(X) such that V = Z( f ) (respectively, V = coz( f )). We shall use
clXV and intXV to denote the closure and interior of V in X , respectively. We shall
also feel free to drop the subscripts on these operators when it is clear which space
is being discussed.

For a Tychonoff space X , the Stone–Čech compactification of X , denoted βX ,
is the unique compact space (up to homeomorphism) containing X densely and C∗-
embedded. Recall that a subspace Y of a space X is said to be C∗-embedded in X if
every bounded continuous function on Y has a continuous extension to X . Our main
reference for C(X) is [8].

For p ∈ βX we form two ideals of C(X):

Mp = { f ∈ C(X) : p ∈ clβX Z( f )}
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and

Op = { f ∈ C(X) : clβX Z( f ) is a neighborhood of p}
= { f ∈ C(X) : there is a βX -neighborhood V of p such that V ∩ X ⊆ Z( f )}.

It is known that each Mp is a maximal ideal ofC(X) and that every maximal ideal
ofC(X) is of the form Mp for some (unique) p ∈ βX ; this is known as the Gelfand–
Kolmogoroff Theorem. The ring C(X) is a pm-ring, that is, every prime ideal is
contained in a unique maximal ideal. Furthermore, for any prime P ∈ Spec(C(X))

the set of prime ideals containing P forms a chain, i.e., Spec(C(X)) is a root system.
Since Op is a radical ideal, it follows that Op is the intersection of the minimal prime
ideals contained in Mp. (When p ∈ X we instead write Mp and Op and notice that
Mp = { f ∈ C(X) : f (p) = 0} and Op = { f ∈ C(X) : p ∈ intX Z( f )}.)

Chronologically, Gilman and Henriksen [6] characterized when C(X) is a von
Neumann regular ring, calling such a space X a P-space. It is known that X is a P-
space if and only if the topology of open sets is closed under countable intersections
if and only if every zeroset is open. Next, the authors classified in [7] when C(X)

is a Bézout ring, calling such a space an F-space. X is an F-space if and only if
every cozeroset is C∗-embedded if and only if C(X) is an arithmetical ring. Then, in
[4], the authors classified when C(X) is quasi-Bézout calling such a space X a quasi
F-space. X is a quasi F-space if and only if every dense cozeroset is C∗-embedded.
In [15] the authors proved that for C(X) (and in a more general situation), C(X) is
a quasi-Bézout ring if and only if C(X) is a Prüfer ring. Formally:

Theorem 5 ([15, Theorem2], [4, Theorem5.1]) For a space X the following state-
ments are equivalent.

1. C(X) is a Prüfer ring.
2. Every dense cozeroset of X is C∗-embedded, that is, X is a quasi F-space.
3. βX is a quasi F-space.
4. C∗(X) is a Prüfer ring.

Levy [14] called a space X an almost P-space if the interior of every nonempty
zeroset is nonempty. It follows that every P-space is an almost P-space. It also
follows that in an almost P-space, there are no nontrivial dense cozerosets of X .
Since f ∈ C(X) is regular precisely when coz( f ) is dense we obtain:

Theorem 6 The space X is an almost P-space if and only if C(X) is a classical
ring. In particular, an almost P-space is a quasi F-space.

Example 1 The one-point compactification of an uncountable discrete space, αD,
is an example of an almost P-space. If X is locally compact and real compact but
not compact, then βX � X is an almost P-space [5, Lemma3.1].

The question of when C(X)M is classical for every maximal ideal was addressed
in [1], though not in these terms. The authors call X a UMP-space (pronounced U -
M - P - space) if every maximal ideal of C(X) is the union of minimal prime ideals.
An application of Theorem3 yields the following result.
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Corollary 2 ([1, Theorem2.2]) The space X is a UMP-space if and only if C(X) is
maximally classical.

Example 2 It is pointed out in [1] that a UMP-space is an almost P-space. This also
follows from the fact that a maximally classical ring is classical. In Observation 1.6
of [1], it is pointed out that the space βN � N is an example of an almost P-space
which is not a UMP-space. Therefore, C(βN � N) is classical but not maximally
classical.

Example 3 Let D be an uncountable discrete space and let αD denote its one-point
compactification. The ring C(αD) is a maximally classical ring, equivalently, X is a
UMP-space (see [1, Example1.8]). However,C(αD) is not a locally classical ring. In
C(αD) every non-maximal prime ideal (necessarily lying beneath Mα) has a unique
minimal prime ideal beneath it [3, Proposition3]. Therefore, if P is any non-maximal
prime, then O(P) is a prime ideal. Thus, C(X)P is a domain. To be classical, we
would need C(X)P to be a field, which occurs precisely when P = O(P), i.e., P
is a minimal prime ideal. Since there are primes which are both non-maximal and
non-minimal prime ideals of C(αD) it follows that C(X) is not locally classical.

A recap is in order. C(X) is classical if and only if X is an almost P-space, and
C(X) is maximally classical if and only if X is a UMP-space. We now come to the
main theorem in this section, characterizing when C(X) is locally classical.

Theorem 7 Let X be a space. The following statements are equivalent.

1. The ring C(X) is a locally classical ring.
2. The ring C(X) is a von Neumann regular ring.
3. X is a P-space.

Before we supply a proof, we recall a needed definition. Recall that an ideal
I ⊂ C(X) is called a z-ideal if f ∈ I and Z( f ) = Z(g) implies that g ∈ I . For
example, each maximal ideal and each minimal prime ideal of C(X) is a z-ideal.

Lemma 3 If {Iσ }σ∈τ is a collection of z-ideals such that the union I = ⋃
σ∈τ Iσ

forms an ideal, then I is a z-ideal.

Proof Let f ∈ I and Z( f ) = Z(g). By hypothesis there is a σ ∈ τ such that f ∈ Iσ .
Since Iσ is a z-ideal it follows that g ∈ Iσ , whence g ∈ I .

Remark 2 Lemma3 can be generalized to the join of z-ideals being a z-ideal using
[8, Lemma14.8]. However, we do not need the full version here, and so we provided
a proof for completeness sake.

We can now prove Theorem7.

Proof That (2) and (3) are equivalent has already been pointed out. If C(X) is von
Neumann regular, then it is locally a field, hence locally classical, so (2) implies (1).

For (1) implies (2), suppose thatC(X) is locally classical; we show that each point
in X is a P-point. Let p ∈ X . If Op � Mp, then it is well known that there exists
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a prime ideal P beneath Mp which is not a z-ideal [8, Sect. 14.13]. Since C(X)P
is classical, by Proposition3 we know that P is the union of the minimal prime
ideals beneath it. But minimal prime ideals are z-ideals, so it follows from Lemma3
that P is a z-ideal, contradiction. Therefore, Op = Mp, and hence p is a P-point.
Consequently, X is a P-space.

For reduced rings, being von Neumann regular is equivalent to being zero-
dimensional, so Theorem7 means that a ring C(X) is locally classical if and only if
it is zero-dimensional. The next example shows that, for rings in general, this is not
the case, even for reduced rings.

Example 4 Let k be a field and D = k[[x]] a power series ring in one indeterminate
over k; so D is a discrete valuation domain with unique maximal ideal M = xk[[x]].
Set B = ⊕n∈NM , the direct sum of countably many copies of M . One can define a
ring structure on the cartesian product R = D × B using coordinatewise addition,
and multiplication defined by (a, b)(c, d) = (ac, ad + bc + bd); in [12], R is called
a ring of form A + Z B[[Z ]]. By [12, Theorem3.7 (8)], R is a local ring of Krull
dimension 1, and by [12, Theorem3.7 (1) and (2)], R is a classical ring. One easily
checks that R is reduced, so R is locally a field at all minimal primes and hence at all
non-maximal primes. It follows that R is a locally classical, reduced ring with Krull
dimension equal to 1.

3 Additional Examples and Further Results

The ring R = C(βN � N) of Example2 is classical but not maximally classical.
As noted in the introduction, since R has property A, it is also semiregular locally
(and hence semiregular maximally) classical. Thus, in the notation of Diagram2,
no member of {C, SRMC, SRLC} implies a member of {MC, LC}. Similarly, the
ring R = C(αD) of Example3 is maximally classical but not locally classical; that
is, MC does not imply LC. Moreover, both examples are reduced, so none of these
implications holds even under the additional assumption that the ring is reduced.

To complete the claim following Diagram2 that no implications hold other than
those implied by the diagram, we give additional (reduced) examples showing that
C implies neither SRMC nor SRLC (Example5), and that neither MC nor SRMC
implies SRLC (Example6). It is then straightforward to verify that the only necessary
implications are the (downward) directed paths in Diagram2.

Example 5 The ring R of the form A + B in [12, Example3.5] is classical (R =
q(R), the total quotient ring of R), while the maximal ideal N + B of R is semireg-
ular, and RN+B = D is an integral domain but not a field. Therefore, R is classical
but not semiregular maximally classical, and hence (in the notation of Diagram2),
C implies neither SRMC nor SRLC. Moreover, the ring R is reduced.
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Example 6 The ring Q(R) = RN+B = D̂ + B (where R = D + B) is a ring of the
form A + B[[Z ]] in [12, Example3.11]. The ring D̂ + B is classical (because Q(R)

is the total quotient ring of R), and N + B is the unique maximal ideal of D̂ + B
by [12, Theorem3.7 (8)] (because N is the unique maximal ideal of D̂). Therefore,
D̂ + B is a local classical ring and hence maximally (and semiregular maximally)
classical. The ideal P + B (where P = (X2, X3)D̂) is a semiregular prime ideal
of both R and D̂ + B (so that, incidentally, the maximal ideal N + B of D̂ + B is
semiregular as well), and (D̂ + B)P+B = RP+B = D̂P is an integral domain but not
a field. Therefore, D̂ + B is (semiregular) maximally classical but not semiregular
locally classical, and hence (in the notation of Diagram2), neither MC nor SRMC
implies SRLC. Again, the ring D̂ + B is reduced.

We conclude this section with a few miscellaneous results and examples concern-
ing classical rings. We start by noting that “classical” lifts modulo the nilradical but
does not pass modulo the nilradical.

Proposition 3 If R/N is classical, where N is the nilradical of R, then R is also
classical.

Proof Let r be a regular element of R. We claim that r + N is a regular element of
R/N. If (r + N)(s + N) = 0 + N for some s ∈ R, then (rs)n = 0 for some n ∈ N,
so regularity of r (and thus of rn) implies that s ∈ N, proving the claim. Now by
hypothesis, r + N is a unit in R/N, from which it follows that r is a unit in R.
Therefore, R is classical.

Example 7 The converse of Proposition3 is not true. Let K be a field and set R =
K [x, y](x,y)/(xy, y2). Observe that R is a local ring whose maximal ideal consists
of zero divisors, whence R is classical. Moreover, the nilradical of R is N = (y +
(xy, y2)), and R/N is isomorphic to K [x](x), which is a domain but not a field.
Consequently, R/N is not classical.

Finally, we show that a “trivial extension” of a classical ring is classical. Recall
that, for ring R and R-module M , we can form the trivial extension R ∝ M (also
called the idealization) starting with the additive group R × M , and defining mul-
tiplication by (r,m)(s, n) = (rs, rn + sm) (see [10, Sect. 25] for details). In the
following theorem, we collect together some important (known) facts about trivial
extensions.

Theorem 8 If R is a ring and M is an R-module, then:

1. (r,m) ∈ R ∝ M is a unit if and only if r ∈ R is a unit.
2. (r,m) ∈ R ∝ M is regular if and only if r ∈ R is regular and r acts faithfully on

M (that is, rn = 0 implies n = 0 for n ∈ M).
3. J is a prime ideal of R ∝ M if and only if J = P ∝ M for some prime ideal P

of R, in which case (R ∝ M)J ∼= RP ∝ MP.
4. If P is a prime ideal of R such that P ∝ M is a semiregular prime ideal of R ∝ M,

then P is a semiregular prime ideal of R.
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Proof (1) is [10, Theorem25.1 (6)]; (2) is [10, Theorem25.3]; and (3) is [10, Theo-
rem25.1 (3) and Corollary25.5 (2)].

To prove (4), suppose that P ⊂ R is a prime ideal and (r1,m1), . . . , (rt ,mt ) ∈
P ∝ M generate a subideal J with zero annihilator. If x ∈ R annihilates the subideal
I of P generated by r1, . . . , rt , then for each index i , (0, xmi ) annihilates J , so that
xmi = 0. Thus, (x, 0) annihilates J , which forces x = 0, and hence I has zero
annihilator. Therefore, P is also semiregular.

As an immediate consequence,weget the following characterizationof “classical”
for trivial extensions.

Corollary 3 For a ring R and R-module M, R ∝ M is classical if and only if every
regular element of R that acts faithfully on M is a unit in R.

Note that (0) ∝ M is a nilpotent ideal of R ∝ M and hence contained in the
nilradical. Although (0) ∝ M need not equal the nilradical of R ∝ M , the result of
Proposition3 still holds.

Corollary 4 If R is a classical ring and M is an R-module, then R ∝ M is classical.

Proof If (r,m) ∈ R ∝ M is regular, then r ∈ R is regular by Theorem8(2), so r is
a unit by assumption, and hence (r,m) is a unit by Theorem8(1).

In fact, we can extend this result to both “locally classical” and“maximally clas-
sical,” and to their semiregular analogs.

Corollary 5 Let R be a ring and M an R-module.

1. If R is (semiregular) locally classical, then so is R ∝ M.
2. If R is (semiregular) maximally classical, then so is R ∝ M.

Proof By Theorem8(3), the prime (respectively maximal) ideals of R ∝ M have the
form P ∝ M as P ranges over the prime (respectively maximal) ideals of R, and
(R ∝ M)P∝M

∼= RP ∝ MP . Moreover, by Theorem8(4), if P ∝ M is a semiregular
prime ideal of R ∝ M , then P is a semiregular prime ideal of R, so both statements
(and their semiregular analogs) follow immediately from Corollary4.

Note that the converse to Theorem8(4) does not hold. For example, if p ∈ Z is
prime, then pZ ∝ Z/pZ is not a semiregular ideal of Z ∝ Z/pZ (being annihilated
by (0, 1)), even though pZ is a regular prime ideal of Z. We conclude by adapting
this example to show that the converses of the statements in Corollaries 4 and 5 do
not hold either.

Example 8 If p ∈ Z is prime, then Z(p) ∝ Z(p)/pZ(p) is a classical ring by Corol-
lary3, because only the elements ofZ(p) � pZ(p) act faithfully onZ(p)/pZ(p). On the
other hand, clearlyZ(p) is not classical, so that the converse of Corollary4 fails. Since
Z(p) (and hence also Z(p) ∝ Z(p)/pZ(p)) is local, the converse of Corollary5(2) also
fails. In fact, Z(p) ∝ Z(p)/pZ(p) is also locally classical, because, by Theorem8(3),
its only non-maximal prime ideal is (0) ∝ Z(p)/pZ(p), and
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(Z(p) ∝ Z(p)/pZ(p))(0)∝Z(p)/pZ(p)
∼= (Z(p))(0) ∝ (Z(p)/pZ(p))(0) ∼= Q.

Thus, Corollary5(1) fails as well. Finally, since Z(p) ∝ Z(p)/pZ(p) is locally classi-
cal, it is semiregular locally and semiregular maximally classical, but Z(p) is neither,
so the converse of the semiregular variations of Corollary5 fail too.
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1 Introduction

Consider the integral domain

Z[√−5] = {a + b
√−5 | a, b ∈ Z}.

Your undergraduate abstract algebra text probably used it as the base example of an
integral domain that is not a unique factorization domain (or UFD). The Fundamen-
tal Theorem of Arithmetic fails in Z[√−5] as this domain contains elements with
multiple factorizations into irreducibles; for example,

6 = 2 · 3 = (1 − √−5)(1 + √−5) (1)

even though 2, 3, 1 − √−5, and 1 + √−5 are pairwise non-associate irreducible
elements in Z[√−5]. To argue this, the norm on Z[√−5], i.e.,

N (a + b
√−5) = a2 + 5b2, (2)

plays an important role, as it is a multiplicative function satisfying the following
properties:

• N (α) = 0 if and only if α = 0;

• N (αβ) = N (α)N (β) for all α, β ∈ Z[√−5];
• α is a unit if and only if N (α) = 1 (i.e., ±1 are the only units of Z[√−5]);
• if N (α) is prime, then α is irreducible.

However, introductory abstract algebra books seldom dig deeper than what Equation
(1) does. The goal of this paper is to use ideal theory to describe exactly how ele-
ments in Z[√−5] factor into products of irreducibles. In doing so, we will show that
Z[√−5] satisfies a nice factorization property, which is known as half-factoriality.
Thus, we say that Z[√−5] is a half-factorial domain (or HFD). Our journey will
require nothing more than elementary algebra, but will give the reader a glimpse of
how The Fundamental Theorem of Ideal Theory resolves the nonunique factoriza-
tions of Z[√−5]. The notion that unique factorization in rings of integers could be
recovered via ideals was important in the late 1800s in attempts to prove Fermat’s
Last Theorem (see [9, Chap. 11]).

Our presentation is somewhat interactive, as many steps that follow from standard
techniques of basic algebra are left to the reader as exercises. The only backgroundwe
expect from the reader is introductory courses in linear algebra and abstract algebra.
Assuming such prerequisites, we have tried to present here a self-contained and
friendly approach to the phenomenon of nonuniqueness of factorizations occurring
in Z[√−5]. More advanced and general arguments (which apply to any ring of
integers) can be found in [8, 9].
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2 Integral Bases and Discriminants

Although in this paperweare primarily concernedwith thephenomenonof nonunique
factorizations in the particular ring of integers Z[√−5], it is more enlightening from
an algebraic perspective to introduce our needed concepts for arbitrary commutative
rings with identity, rings of integers, or quadratic rings of integers, depending on
the most appropriate context for each concept being introduced. In what follows, we
shall proceed in this manner while trying, by all means, to keep the exposition as
elementary as possible.

An element α ∈ C is said to be algebraic provided that it is a root of a nonzero
polynomial with rational coefficients, while α is said to be an algebraic integer
provided that it is a root of a monic polynomial with integer coefficients. It is not
hard to argue that every subfield of C contains Q and is a Q-vector space.

Definition 2.1 A subfield K of C is called an algebraic number field provided that
it has finite dimension as a vector space over Q. The subset

OK := {α ∈ K | α is an algebraic integer}

of K is called the ring of integers of K .

The ring of integers of any algebraic number field is, indeed, a ring. The reader
is invited to verify this observation. If α is a complex number, then Q(α) denotes
the smallest subfield of C containing α. It is well known that a subfield K of C is
an algebraic number field if and only if there exists an algebraic number α ∈ C such
that K = Q(α) (see, for example, [6, Theorem 2.17]). Among all algebraic number
fields, we are primarily interested in those that are two-dimensional vector spaces
over Q.

Definition 2.2 An algebraic number field that is a two-dimensional vector space
over Q is called a quadratic number field. If K is a quadratic number field, then OK

is called a quadratic ring of integers.

Forα ∈ C, letZ[α] denote the set of all polynomial expressions inα having integer
coefficients. Clearly, Z[α] is a subring of Q(α). It is also clear that, for d ∈ Z, the
field Q(

√
d) has dimension at most two as a Q-vector space and, therefore, it is an

algebraic number field. Moreover, if d /∈ {0, 1} and d is squarefree (i.e., d is not
divisible by the square of any prime), then it immediately follows that Q(

√
d) is

a two-dimensional vector space over Q and, as a result, a quadratic number field.
As we are mainly interested in the case when d = −5, we propose the following
exercise.

Exercise 2.3 Let d ∈ Z \ {0, 1} be a squarefree integer such that d ≡ 2, 3 (mod 4).
Prove that Z[√d] is the ring of integers of the quadratic number field Q(

√
d).

Remark When d ∈ Z \ {0, 1} is a squarefree integer satisfying d ≡ 1 (mod 4), it is
not hard to argue that the ring of integers of Q(

√
d) is Z[ 1+

√
d

2 ]. However, we will
not be concerned with this case as our case of interest is d = −5.
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For d as specified in Exercise 2.3, the elements of Z[√d] can be written in the
form a + b

√
d for a, b ∈ Z. The norm N on Z[√d] is defined by

N (a + b
√
d) = a2 − db2

(cf. Eq. (2)). The norm N on Z[√d] also satisfies the four properties listed in the
introduction.

Let us now take a look at the structure of an algebraic number field K with
linear algebra in mind. For α ∈ K consider the function mα : K → K defined via
multiplication by α, i.e., mα(x) = αx for all x ∈ K . One can easily see that mα is a
linear transformation of Q-vector spaces. Therefore, after fixing a basis for the Q-
vector space K , we can representmα by amatrix M . The trace of α, which is denoted
by Tr(α), is defined to be the trace of the matrix M . It is worth noting that Tr(α) does
not depend on the chosen basis for K . Also, notice that Tr(α) ∈ Q. Furthermore, if
α ∈ OK , then Tr(α) ∈ Z (see [10, Lemma 4.1.1], or Exercise 2.5 for the case when
K = Q(

√
d)).

Definition 2.4 Let K be an algebraic number field that has dimension n as a Q-
vector space. The discriminant of a subset {ω1, . . . , ωn} of K , which is denoted by
Δ[ω1, . . . , ωn], is det T , where T is the n × n matrix

(
Tr(ωiω j )

)
1≤i, j≤n .

With K as introduced above, if {ω1, . . . , ωn} is a subset ofOK , then it follows that
Δ[ω1, . . . , ωn] ∈ Z (see Exercise 2.5 for the case when K = Q(

√
d)). In addition,

the discriminant of any basis for the Q-vector space K is nonzero; we will prove this
for K = Q(

√
d) in Proposition 2.10.

Exercise 2.5 Let d ∈ Z \ {0, 1} be a squarefree integer such that d ≡ 2, 3 (mod 4).

1. If α = a1 + a2
√
d ∈ Z[√d], then Tr(α) = 2a1.

2. If, in addition, β = b1 + b2
√
d ∈ Z[√d], then

Δ[α, β] =
(
det

[
α σ(α)

β σ(β)

])2

= 4d(a1b2 − a2b1)
2,

where σ(x + y
√
d) = x − y

√
d for all x, y ∈ Z.

Example 2.6 Let d /∈ {0, 1} be a squarefree integer such that d ≡ 2, 3 (mod 4). It
follows from Exercise 2.5 that the subset {1,√d} of the ring of integers Z[√d]
satisfies that Δ[1,√d] = 4d.

We proceed to introduce the concept of integral basis.

Definition 2.7 Let K be an algebraic number field of dimension n as a vector space
over Q. The elements ω1, . . . , ωn ∈ OK form an integral basis for OK if for each
β ∈ OK there are unique z1, . . . , zn ∈ Z satisfying β = z1ω1 + · · · + znωn .
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Example 2.8 Let d ∈ Z \ {0, 1} be a squarefree integer such that d ≡ 2, 3 (mod 4).
Clearly, every element in Z[√d] is an integral linear combination of 1 and

√
d.

Suppose, on the other hand, that a1 + a2
√
d = b1 + b2

√
d for some a1, a2, b1, b2 ∈

Z. Note that a2 = b2; otherwise
√
d = a1−b1

b2−a2
would be a rational number. As a result,

a1 = b1. Thus, we have verified that every element ofZ[√d] can be uniquely written
as an integral linear combination of 1 and

√
d. Hence, the set {1,√d} is an integral

basis for Z[√d].
In general, the ring of integers of any algebraic number field has an integral basis

(see [6, Theorem 3.27]). On the other hand, although integral bases are not unique,
any two integral bases for the same ring of integers have the same discriminant. We
shall prove this for Z[√d] in Theorem 2.13.

Notation: If S is a subset of the complex numbers, then we let S• denote S\{0}.
Lemma 2.9 Let K be an algebraic number field of dimension n as aQ-vector space.
An integral basis for OK is a basis for K as a vector space over Q.

Proof Suppose that {ω1, . . . , ωn} is an integral basis for OK , and take rational coef-
ficients q1, . . . , qn such that

q1ω1 + · · · + qnωn = 0.

Multiplying the above equality by the common denominator of the nonzero qi ’s and
using the fact that {ω1, . . . , ωn} is an integral basis for the ring of integers OK , we
obtain that q1 = · · · = qn = 0. Hence, {ω1, . . . , ωn} is a linearly independent set of
the Q-vector space K . As K has dimension n over Q, the set {ω1, . . . , ωn} is a basis
for the vector space K over Q. �
Proposition 2.10 Let d ∈ Z \ {0, 1} be a squarefree integer with d ≡ 2, 3 (mod 4).
If {α1, α2} is a vector space basis for Q(

√
d) contained in Z[√d], then Δ[α1, α2] ∈

Z
•.

Proof From the fact that {α1, α2} ⊆ Z[√d], it follows that Δ[α1, α2] ∈ Z. So sup-
pose, by way of contradiction, that Δ[α1, α2] = 0. Taking {ω1, ω2} to be an integral
basis for Z[√d], one has that

α1 = z1,1ω1 + z1,2ω2

α2 = z2,1ω1 + z2,2ω2,

for some zi, j ∈ Z. Using Exercise 2.5, we obtain

Δ[α1, α2] =
(
det

[
α1 σ(α1)

α2 σ(α2)

])2

=
(
det

([
z1,1 z1,2
z2,1 z2,2

] [
ω1 σ(ω1)

ω2 σ(ω2)

]))2

=
(
det

[
z1,1 z1,2
z2,1 z2,2

])2 (
det

[
ω1 σ(ω1)

ω2 σ(ω2)

])2

=
(
det

[
z1,1 z1,2
z2,1 z2,2

])2

Δ[ω1, ω2],
(3)
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where σ(x + y
√
d) = x − y

√
d for all x, y ∈ Z. If ω1 = 1 and ω2 = √

d, then

det

[
z1,1 z2,1
z1,2 z2,2

]
= det

[
z1,1 z1,2
z2,1 z2,2

]
= 0,

and so there are elements q1, q2 ∈ Q not both zero with

[
z1,1 z2,1
z1,2 z2,2

] [
q1
q2

]
=

[
0
0

]
.

Hence,

0 = ω1(q1z1,1 + q2z2,1) + ω2(q1z1,2 + q2z2,2)

= q1(z1,1ω1 + z1,2ω2) + q2(z2,1ω1 + z2,2ω2)

= q1α1 + q2α2,

which is a contradiction because the set {α1, α2} is linearly independent in the vector
space Q(

√
d). Thus, Δ[α1, α2] �= 0, as desired. �

Exercise 2.11 Let d ∈ Z \ {0, 1} be a squarefree integer with d ≡ 2, 3 (mod 4).
Show thatΔ[α1, α2] �= 0 whenever {α1, α2} is a basis for theQ-vector spaceQ(

√
d).

Using Lemma 2.9 and Exercise 2.5, we obtain the following important result.

Corollary 2.12 Let d ∈ Z \ {0, 1} be a squarefree integer with d ≡ 2, 3 (mod 4).
The discriminant of each integral basis for Z[√d] is in Z

•.

Notation: Let N denote the set of positive integers, and set N0 = {0} ∪ N.

Theorem 2.13 Let d ∈ Z \ {0, 1} be a squarefree integer with d ≡ 2, 3 (mod 4).
Any two integral bases for Z[√d] have the same discriminant.
Proof Let {α1, α2} and {ω1, ω2} be integral bases for Z[√d], and let zi, j be
defined as in the proof of Proposition 2.10. Since Δ[α1, α2] and Δ[ω1, ω2] are
both integers, Eq. (3) in the proof of Proposition 2.10, along with the fact that(
det

[
z1,1 z1,2
z2,1 z2,2

])2

∈ N, implies that Δ[ω1, ω2] divides Δ[α1, α2]. Using a similar

argument, we can show thatΔ[α1, α2] dividesΔ[ω1, ω2]. As both discriminants have
the same sign, Δ[α1, α2] = Δ[ω1, ω2]. �

Using Example 2.6 and Example 2.8, we obtain the following corollary.

Corollary 2.14 Let d ∈ Z \ {0, 1} be a squarefree integer with d ≡ 2, 3 (mod 4).
Every integral basis for Z[√d] has discriminant 4d.
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3 General Properties of Ideals

Let R be a commutative ring with identity. In most beginning algebra classes, the
units, irreducibles, and associate elements in R are standard concepts of interest.
Recall that the units of R are precisely the invertible elements,while nonunit elements
x, y ∈ R are associates if a = ub for a unit u of R. A nonunit x ∈ R• := R \ {0} is
irreducible if whenever x = uv in R, then either u or v is a unit.

To truly understand factorizations in Z[√−5], we will need to know first how
ideals of Z[√−5] are generated. Recall that a subset I of a commutative ring R with
identity is called an ideal of R provided that I is a subring with the property that
r I ⊆ I for all r ∈ R. It follows immediately that if x1, . . . , xk ∈ R, then the set

I = 〈x1, . . . , xk〉 = {r1x1 + · · · + rk xk | each ri ∈ R}

is an ideal of R, that is, the ideal generated by x1, . . . , xk . Recall that I is said to be
principal if I = 〈x〉 for some x ∈ R, and R is said to be a principal ideal domain (or
a PID) if each ideal of R is principal. The zero ideal 〈0〉 and the entire ring R = 〈1〉
are principal ideals. May it be that all the ideals of Z[√−5] are principal? It turns
out that the answer is “no” as we shall see in the next example.

Example 3.1 The ring of integers Z[√−5] is not a PID. We argue that the ideal

I = 〈2, 1 + √−5〉

is not principal. If I = 〈α〉, thenα divides both 2 and 1 + √−5. The readerwill verify
in Exercise 3.2 below that both of these elements are irreducible and non-associates.
Hence, α = ±1 and I = 〈±1〉 = Z[√−5]. Now we show that 3 /∈ I . Suppose there
exist a, b, c, d ∈ Z so that

(a + b
√−5)2 + (c + d

√−5)(1 + √−5) = 3.

Expanding the previous equality, we obtain

2a + c − 5d = 3
2b + c + d = 0.

(4)

After subtracting, we are left with 2(a − b) − 6d = 3, which implies that 2 divides
3 in Z, a contradiction.

Exercise 3.2 Show that the elements 2 and 1 + √−5 are irreducible and non-
associates in Z[√−5]. (Hint: use the norm function.)

Let us recall that a proper ideal I of a commutative ring R with identity is said to
be prime if whenever xy ∈ I for x, y ∈ R, then either x ∈ I or y ∈ I . In addition,
we know that an element p ∈ R \ {0} is said to be prime provided that the principal
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ideal 〈p〉 is prime. It follows immediately that, in any integral domain, every prime
element is irreducible.

Exercise 3.3 Let P be an ideal of a commutative ring R with identity. Show that P
is prime if and only if the containment I J ⊆ P for ideals I and J of R implies that
either I ⊆ P or J ⊆ P .

Example 3.4 We argue that the ideal I = 〈2〉 is not prime in Z[√−5] and will in
fact use Eq. (1). Since (1 − √−5)(1 + √−5) = 2 · 3, it follows that

(1 − √−5)(1 + √−5) ∈ 〈2〉.

Now if 1 − √−5 ∈ 〈2〉, then there is an element α ∈ Z[√−5] with 1 − √−5 = 2α.
But then α = 1

2 −
√−5
2 /∈ Z[√−5], a contradiction. A similar argument works with

1 + √−5. Hence, 〈2〉 is not a prime ideal in Z[√−5].
We remind the reader that a proper ideal I of a commutative ring R with identity

is called maximal if for each ideal J the containment I ⊆ J ⊆ R implies that either
J = I or J = R.Whatwe ask the reader to verify in the next exercise is awell-known
result from basic abstract algebra.

Exercise 3.5 Let I be a proper ideal of a commutative ring R with identity, and let
R/I = {r + I | r ∈ R} be the quotient ring of R by I .

1. Show that I is prime if and only if R/I is an integral domain.

2. Show that I is maximal if and only if R/I is a field. Deduce that maximal ideals
are prime.

Example 3.6 Weexpand our analysis of I = 〈2, 1 + √−5〉 in Example 3.1 by show-
ing that I is a prime ideal in Z[√−5]. To do this, we first argue that an element
α = z1 + z2

√−5 ∈ Z[√−5] is contained in I if and only if z1 and z2 have the same
parity. If α ∈ I , then there are integers a, b, c, and d so that

z1 + z2
√−5 = (a + b

√−5)2 + (c + d
√−5)(1 + √−5).

Adjusting the equations from (4) yields

2a + c − 5d = z1
2b + c + d = z2.

(5)

Notice that if c ≡ d (mod 2), then both z1 and z2 are even, while c �≡ d (mod 2)
implies that both z1 and z2 are odd. Hence, z1 and z2 must have the same parity.
Conversely, suppose that z1 and z2 have the same parity. As, clearly, every element
of the form 2k1 + 2k2

√−5 = 2(k1 + k2
√−5) is in I , let us assume that z1 and z2

are both odd. The equations in (5) form a linear system that obviously has solutions
over Q for any choice of z1 and z2 in Z. By solving this system, we find that a and
b are dependent variables and
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a = z1 − c + 5d

2
and b = z2 − c − d

2
.

Letting c be any even integer and d any odd integer now yields a solution with both
a and b integers. Thus, z1 + z2

√−5 ∈ I .
Now consider Z[√−5]/I . As I is not principal (Example 3.1), 1 /∈ I . Therefore

1 + I �= 0 + I . If c1 + c2
√−5 /∈ I , then c1 and c2 have opposite parity. If c1 is odd

and c2 even, then ((c1 − 1) + c2
√−5) + I = 0 + I implies that (c1 + c2

√−5) +
I = 1 + I . If c1 is even and c2 odd, then ((c1 − 1) + c2

√−5) + I = 0 + I again
implies that (c1 + c2

√−5) + I = 1 + I . Hence, Z[√−5]/I ∼= {0 + I, 1 + I } ∼=
Z2. Since Z2 is a field, I is a maximal ideal and thus prime (by Exercise 3.5).

Exercise 3.7 Show that 〈3, 1 − 2
√−5〉 and 〈3, 1 + 2

√−5〉 are prime ideals in the
ring of integers Z[√−5].

Let R be a commutative ring with identity. If every ideal of R is finitely generated,
then R is called a Noetherian ring. In addition, R satisfies the ascending chain
condition on ideals (ACC) if every increasing (under inclusion) sequence of ideals
of R eventually stabilizes.

Exercise 3.8 Let R be a commutative ring with identity. Show that R is Noetherian
if and only if it satisfies the ACC.

We shall see in Theorem 4.3 that the rings of integers Z[√d] are Noetherian and,
therefore, satisfy the ACC.

4 Ideals in Z[√−5]

In this section we explore the algebraic structure of all ideals of Z[√−5] under ideal
multiplication, encapsulating the basic properties of multiplication of ideals. Let us
begin by generalizing the notion of an integral basis, which also plays an important
role in ideal theory.

Definition 4.1 Let K be an algebraic number field of dimension n as a vector
space over Q, and let I be a proper ideal of the ring of integers OK . The elements
ω1, . . . , ωn ∈ I form an integral basis for I provided that for each β ∈ I there exist
unique z1, . . . , zn ∈ Z satisfying that β = z1ω1 + · · · + znωn .

With notation as in the above definition, notice that if {ω1, . . . , ωn} is an integral
basis for I , then I = 〈ω1, . . . , ωn〉. Care is needed here as the converse is not neces-
sarily true. For instance, {3} is not an integral basis for the ideal I = 〈3〉 of Z[√−5]
(note that 3

√−5 ∈ I ).

Exercise 4.2 Argue that {3, 3√−5} is an integral basis for the ideal I = 〈3〉 of the
ring of integers Z[√−5].
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We now show that every proper ideal of Z[√−5] has an integral basis.

Theorem 4.3 Let d ∈ Z \ {0, 1} be a squarefree integer with d ≡ 2, 3 (mod 4).
Every nonzero proper ideal of Z[√d] has an integral basis. Hence, every ideal of
Z[√d] is finitely generated.
Proof Let I be a nonzero proper ideal of Z[√d]. To find an integral basis for I
consider the collection B of all subsets of I which form a vector space basis for
Q(

√
d). Note that if {ω1, ω2} is an integral basis for Z[√d] and α ∈ I •, then the

subset {αω1, αω2} of I is also a linearly independent subset inside the vector space
Q(

√
d). As a result, the collectionB is nonempty. As I ⊆ Z[√d], Proposition 2.10

ensures that Δ[δ1, δ2] ∈ Z
• for every member {δ1, δ2} ofB. Then we can take a pair

{δ1, δ2} inB and assume that the absolute value of its discriminant, i.e., |Δ[δ1, δ2]|,
is as small as possible. We argue now that {δ1, δ2} is an integral basis for I .

Assume, by way of contradiction, that {δ1, δ2} is not an integral basis for I . Since
{δ1, δ2} is a basis for Q(

√
d) as a vector space over Q, there must exist β ∈ I and

q1, q2 ∈ Q such that β = q1δ1 + q2δ2, where not both q1 and q2 are in Z. Without
loss of generality, we can assume that q1 ∈ Q \ Z. Write q1 = z + r , where z ∈ Z

and 0 < r < 1. Let

δ∗
1 = β − zδ1 = (q1 − z)δ1 + q2δ2

δ∗
2 = δ2.

It is easy to verify that {δ∗
1 , δ

∗
2} is linearly independent and thus is another vector

space basis for Q(
√
d) which consists of elements of I , that is, {δ∗

1 , δ
∗
2} is a member

of B. Proceeding as we did in the proof of Proposition 2.10, we find that

Δ[δ∗
1 , δ

∗
2 ] = r2Δ[δ1, δ2];

this is because

(
det

[
q1 − z q2

0 1

])2

= r2. It immediately follows from 0 < r < 1

that |Δ[δ∗
1 , δ

∗
2 ]| < |Δ[δ1, δ2]|, contradicting the minimality of |Δ[δ1, δ2]|. Hence,

{δ1, δ2} is an integral basis for I , which completes the proof. �

Theorem 4.3 yields the next important corollary.

Corollary 4.4 Let d ∈ Z \ {0, 1} be a squarefree integer with d ≡ 2, 3 (mod 4). If
I is a proper ideal of the ring of integers Z[√d], then there exist elements α1, α2 ∈ I
such that I = 〈α1, α2〉. Thus, Z[√d] is a Noetherian ring.

Remark One can actually say much more. For d as in Corollary 4.4, the following
stronger statement is true: if I is a nonzero proper ideal of Z[√d] and α1 ∈ I •,
then there exists α2 ∈ I satisfying that I = 〈α1, α2〉. This condition is known as the
11
2 -generator property. The interested reader can find a proof of this result in [9,

Theorem 9.3].
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Definition 4.5 A pair (M, ∗), where M is a set and ∗ is a binary operation on
M , is called a monoid if ∗ is associative and there exists e ∈ M satisfying that
e ∗ x = x ∗ e = x for all x ∈ M . The element e is called the identity element. The
monoid M is called commutative if the operation ∗ is commutative.

Let R be a commutative ring with identity. Recall that we have a natural multi-
plication on the collection consisting of all ideals of R, that is, for any two ideals I
and J of R, the product

I J = { k∑

i=1

aibi | k ∈ N, a1, . . . , ak ∈ I, and b1, . . . , bk ∈ J
}

(6)

is again an ideal. It is not hard to check that ideal multiplication is both associative
and commutative, and satisfies that RI = I for each ideal I of R. This amounts to
arguing the following exercise.

Exercise 4.6 Let R be a commutative ring with identity. Show that the set of all
ideals of R is a commutative monoid under ideal multiplication.

Example 4.7 To give the reader a notion of how ideal multiplication works, we show
that

〈2, 1 + √−5〉2 = 〈2〉.

It follows by (6) that ideal multiplication can be achieved by merely multiplying
generators. For instance,

〈2, 1 + √−5〉2 = 〈2, 1 + √−5〉〈2, 1 + √−5〉
= 〈4, 2(1 + √−5), 2(1 + √−5),−2(2 − √−5)〉.

Since 2 divides each of the generators of 〈2, 1 + √−5〉2 in Z[√−5], we clearly
have that 〈2, 1 + √−5〉2 ⊆ 〈2〉. To verify the reverse inclusion, let us first observe
that 2

√−5 = 4 − 2(2 − √−5) ∈ 〈2, 1 + √−5〉2. As 2√−5 ∈ 〈2, 1 + √−5〉2, one
immediately sees that 2 = 2(1 + √−5) − 2

√−5 ∈ 〈2, 1 + √−5〉2. Hence, the
inclusion 〈2〉 ⊆ 〈2, 1 + √−5〉2 holds, and equality follows.

Exercise 4.8 Verify that the next equalities hold:

〈3〉 = 〈3, 1 − 2
√−5〉〈3, 1 + 2

√−5〉,
〈1 − √−5〉 = 〈2, 1 + √−5〉〈3, 1 + 2

√−5〉,
〈1 + √−5〉 = 〈2, 1 + √−5〉〈3, 1 − 2

√−5〉.

Example 4.8 is no accident. Indeed, every nonprincipal ideal of Z[√−5] has a
multiple which is a principal ideal as it is established in the following theorem.
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Theorem 4.9 Let I be an ideal of Z[√−5]. Then there exists a nonzero ideal J of
Z[√−5] such that I J is principal.

Proof If I is a principal ideal, then the result follows by letting J = 〈1〉. So suppose
I = 〈α, β〉 is not a principal ideal of Z[√−5], where α = a + b

√−5 and β = c +
d
√−5. Notice that it is enough to verify the existence of such an ideal J when

gcd(a, b, c, d) = 1, andwemake this assumption. It is easy to check thatαβ + αβ =
2ac + 10bd ∈ Z. Hence, αα, αβ + αβ, and ββ are all integers. Let

f = gcd(αα, αβ + αβ, ββ̄)

= gcd(a2 + 5b2, 2ac + 10bd, c2 + 5d2).

Take J = 〈α, β〉. We claim that I J = 〈 f 〉. Since f = gcd(αα, αβ + αβ, ββ), there
are integers z1, z2, and z3 so that

f = z1αα + z2ββ + z3(αβ + αβ).

Because I J = 〈αα, αβ, βα, ββ〉, we have that f is a linear combination of the
generating elements. Thus, f ∈ I J and, therefore, 〈 f 〉 ⊆ I J .

To prove the reverse containment, we first show that f divides bc − ad. Suppose,
by way of contradiction, that this is not the case. Notice that 25 � f ; otherwise
25 | a2 + 5b2 and 25 | c2 + 5d2 would imply that 5 | gcd(a, b, c, d). On the other
hand, 4 | f would imply 4 | a2 + 5b2 and 4 | c2 + 5d2, forcing a, b, c, and d to be
even, which is not possible as gcd(a, b, c, d) = 1. Hence, 4 � f and 25 � f . Because

2c(a2 + 5b2) − a(2ac + 10bd) = 10b(bc − ad)

2a(c2 + 5d2) − c(2ac + 10bd) = 10d(ad − bc),

f must divide both 10b(bc − ad) and 10d(bc − ad). As, by assumption, f � bc −
ad, there must be a prime p and a natural n such that pn | f but pn � bc − ad. If
p = 2, then 4 � f forces n = 1. In this case, both a2 + 5b2 and c2 + 5d2 would be
even, and so 2 | a − b and 2 | c − d, which implies that 2 | bc − ad, a contradiction.
Thus, p �= 2. On the other hand, if p = 5, then again n = 1. In this case, 5 | a2 + 5b2

and 5 | c2 + 5d2 and so 5 would divide both a and c, contradicting that 5 � bc − ad.
Then, we can assume that p /∈ {2, 5}. As pn | 10b(bc − ad) but pn � bc − ad, we
have that p | 10b. Similarly, p | 10d. Since p /∈ {2, 5}, it follows that p | b and p | d.
Now the fact that p divides both a2 + 5b2 and c2 + 5d2 yields that p | a and p | c,
contradicting that gcd(a, b, c, d) = 1. Hence, f | bc − ad.

Let us verify now that f | ac + 5bd. If f is odd, then f | ac + 5bd. Assume,
therefore, that f = 2 f1, where f1 ∈ Z. As 4 � f , the integer f1 is odd. Now, f |
a2 + 5b2 implies that a and b have the same parity. Similarly, one sees that c and d
have the same parity. As a consequence, ac + 5bd is even. Since f1 is odd, it must
divide (ac + 5bd)/2, which means that f divides ac + 5bd, as desired.
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Because f divides both αα and ββ in Z, proving that I J ⊆ 〈 f 〉 amounts to
verifying that f divides both αβ and αβ in Z[√−5]. Since f divides both ac + 5bd
and bc − ad in Z, one has that

x = ac + 5bd

f
∈ Z and y = bc − ad

f
∈ Z.

Therefore

αβ = ac + 5bd + (bc − ad)
√−5 = (x + y

√−5) f ∈ 〈 f 〉.

Also,αβ = αβ = (x − y
√−5) f ∈ 〈 f 〉. Hence, the reverse inclusion I J ⊆ 〈 f 〉 also

holds, which completes the proof. �

A commutative monoid (M, ∗) is said to be cancellative if for all a, b, c ∈ M ,
the equality a ∗ b = a ∗ c implies that b = c. By Exercise 4.6, the set

I := {I | I is an ideal of Z[√−5]}

is a commutative monoid. As the next corollary states, the set I • := I \ {〈0〉} is
indeed a commutative cancellative monoid.

Corollary 4.10 The setI • under ideal multiplication is a commutative cancellative
monoid.

Proof Because I is a commutative monoid under ideal multiplication, it immedi-
ately follows thatI • is also a commutativemonoid. To prove thatI • is cancellative,
take I, J, K ∈ I • such that I J = I K . By Theorem 4.9, there exists an ideal I ′ of
Z[√−5] and x ∈ Z[√−5]• with I ′ I = 〈x〉. Then

〈x〉J = I ′ I J = I ′ I K = 〈x〉K .

As x �= 0 and the product in Z[√−5]• is cancellative, J = K . �

5 The Fundamental Theorem of Ideal Theory

We devote this section to prove a version of the Fundamental Theorem of Ideal
Theory for the ring of integers Z[√−5]. To do this, we need to develop a few tools.
In particular, we introduce the concept of a fractional ideal ofZ[√−5] and show that
the set of such fractional ideals is an abelian group.

Let us begin by exploring the relationship between the concepts of prime and
maximal ideals. We recall that every proper ideal of a commutative ring R with
identity is contained in a maximal ideal, which implies, in particular, that maximal
ideals always exist.
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Exercise 5.1 Show that every maximal ideal of a commutative ring with identity is
prime.

Prime ideals, however, are not necessarily maximal. The following example sheds
some light upon this observation.

Example 5.2 Let Z[X ] denote the ring of polynomials with integer coefficients.
Clearly, Z[X ] is an integral domain. It is not hard to verify that the ideal 〈X〉 of Z[X ]
is prime. Because 2 /∈ 〈X〉, one obtains that 〈X〉 � 〈2, X〉. It is left to the reader to
argue that 〈2, X〉 is a proper ideal of Z[X ]. Since 〈X〉 � 〈2, X〉 � Z[X ], it follows
that 〈X〉 is not a maximal ideal of Z[X ]. (An alternate argument can easily be given
using Exercise 3.5.)

In the ring of integers OK of any algebraic number field K , every nonzero prime
ideal is maximal (see, for instance, [6, Proposition 5.21]). Let us establish this result
here for our case of interest.

Proposition 5.3 Let d ∈ Z \ {0, 1} be a squarefree integer with d ≡ 2, 3 (mod 4).
Then every nonzero prime ideal of Z[√d] is maximal.
Proof Let P be a nonzero prime ideal in Z[√d], and let {ω1, ω2} be an integral basis
for Z[√d]. Fix β ∈ P•. Note that n := N (β) = ββ̄ ∈ P ∩ N. Consider the finite
subset

S = {
n1ω1 + n2ω2 + P | n1, n2 ∈ {0, 1, . . . , n − 1}}

ofZ[√d]/P . Take x ∈ Z[√d]. As {ω1, ω2} is an integral basis, there exist z1, z2 ∈ Z

such that x = z1ω1 + z2ω2 and, therefore, x + P = n1ω1 + n2ω2 + P ∈ S, where
ni ∈ {0, . . . , n − 1} andni ≡ zi (mod n). Hence,Z[√d]/P = S, which implies that
Z[√d]/P is finite. It follows by Exercise 3.5(1) thatZ[√d]/P is an integral domain.
As a result, Z[√d]/P is a field (see Exercise 5.4 below). Thus, Exercise 3.5(2)
guarantees that P is a maximal ideal. �

Exercise 5.4 Let R be a finite integral domain. Show that R is a field.

Although the concepts of (nonzero) prime and maximal ideals coincide inZ[√d],
we will use both terms depending on the ideal property we are willing to apply.

Lemma 5.5 If I is a nonzero ideal of a Noetherian ring R, then there exist nonzero
prime ideals P1, . . . , Pn of R such that P1 · · · Pn ⊆ I .

Proof Assume, by way of contradiction, that the statement of the lemma does not
hold. Because R is a Noetherian ring and, therefore, satisfies the ACC, there exists
an ideal I of R that is maximal among all the ideals failing to satisfy the statement
of the lemma. Clearly, I cannot be prime. By Exercise 3.3, there exist ideals J and
K of R such that J K ⊆ I but neither J ⊆ I nor K ⊆ I . Now notice that the ideals
J ′ = I + J and K ′ = I + K both strictly contain I . The maximality of I implies
that both J ′ and K ′ contain products of nonzero prime ideals. Now the fact that
J ′K ′ ⊆ I would also imply that I contains a product of nonzero prime ideals, a
contradiction. �
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Recall that if R is an integral domain contained in a field F , then the field of
fractions of R is the smallest subfield of F containing R. If K is an algebraic number
field, then it is not hard to argue that the field of fractions of OK is precisely K .

Definition 5.6 Let R be an integral domain with field of fractions F . A fractional
ideal of R is a subset of F of the form α−1 I , where α ∈ R• and I is an ideal of R.

With notation as in the previous definition, it is clear that every ideal of R is a
fractional ideal. However, fractional ideals are not necessarily ideals. The product
of fractional ideals is defined similarly to the product of standard ideals. Therefore
it is easily seen that the product of two fractional ideals is again a fractional ideal.
Indeed, for elements α and β of R• and for ideals I and J of R, we only need to
observe that (α−1 I )(β−1 J ) = (αβ)−1 I J .

Notation: Let F denote the set of all fractional ideals of Z[√−5], and set F • :=
F \ {〈0〉}.
Definition 5.7 Let R be an integral domain with field of fractions F . For a fractional
ideal I of R, the set

I−1 := {α ∈ F | α I ⊆ R}

is called the inverse of I .

Exercise 5.8 Show that the inverse of a fractional ideal is again a fractional ideal.

Lemma 5.9 Let d ∈ Z \ {0, 1} be a squarefree integer with d ≡ 2, 3 (mod 4). If I
is a proper ideal of the ring of integers Z[√d], then Z[√d] is strictly contained in
the fractional ideal I−1.

Proof Since I is a proper ideal of Z[√d], then there exists a maximal ideal M
of Z[√d] containing I . Fix α ∈ M•. By the definition of the inverse of an ideal,
Z[√d] ⊆ M−1. Since Z[√d] is a Noetherian ring, Lemma 5.5 ensures the existence
of m ∈ N and prime ideals P1, . . . , Pm in Z[√d] such that P1 · · · Pm ⊆ 〈α〉 ⊆ M .
Assume thatm is the minimum natural number satisfying this property. Since M is a
prime ideal (Exercise 5.1), by Exercise 3.3 there exists P ∈ {P1, . . . , Pm} such that
P ⊆ M . There is no loss of generality in assuming that P = P1. Now, by Propo-
sition 5.3, the ideal P1 is maximal, which implies that P1 = M . By the minimal-
ity of m, there exists α′ ∈ P2 · · · Pm \ 〈α〉. Therefore, we find that α−1α′ /∈ Z[√d]
and α′M = α′P1 ⊆ P1 · · · Pm ⊆ 〈α〉, that is α−1α′M ⊆ 〈1〉 = Z[√d]. As a result,
α−1α′ ∈ M−1 \ Z[√d]. Hence, we find that Z[√d] � M−1 ⊆ I−1, and the proof
follows. �

We focus throughout the remainder of our work on the ring of integers Z[√−5].
This, via Theorem 4.9, will substantially simplify our remaining arguments.

Lemma 5.10 If I ∈ I • and α ∈ Q(
√−5), then α I ⊆ I implies α ∈ Z[√−5].



186 S. T. Chapman et al.

Proof Let I and α be as in the statement of the lemma. By Theorem 4.9, there exists
a nonzero ideal J of Z[√−5] such that I J = 〈β〉 for some β ∈ Z[√−5]. Then
α〈β〉 = α I J ⊆ I J = 〈β〉, which means that αβ = σβ for some σ ∈ Z[√−5]. As
β �= 0, it follows that α = σ ∈ Z[√−5]. �

Theorem 5.11 The set F • is an abelian group under multiplication of fractional
ideals.

Proof Clearly, the multiplication of fractional ideals is associative. In addition, it
immediately follows that the fractional ideal Z[√−5] = 1−1〈1〉 is the identity. The
most involved part of the proof consists in arguing that each fractional ideal is invert-
ible.

Let M ∈ I • be a maximal ideal of Z[√−5]. By definition of M−1, we have
that MM−1 ⊆ Z[√−5], which implies that MM−1 ∈ I •. As M = MZ[√−5] ⊆
MM−1 and M is maximal, MM−1 = M or MM−1 = Z[√−5]. As M is proper,
Lemma 5.9 ensures that M−1 strictly contains Z[√−5], which implies, by
Lemma 5.10, that MM−1 �= M . So MM−1 = Z[√−5]. As a result, each maximal
ideal of Z[√−5] is invertible.

Now suppose, by way of contradiction, that not every ideal in I • is invertible.
Among all the nonzero non-invertible ideals take one, say J , maximal under inclu-
sion (this is possible because Z[√−5] satisfies the ACC). Because Z[√−5] is an
invertible fractional ideal, J � Z[√−5]. Let M be a maximal ideal containing J .
By Lemma 5.9, one has that Z[√−5] � M−1 ⊆ J−1. This, along with Lemma 5.10,
yields J � JM−1 ⊆ J J−1 ⊆ Z[√−5]. Thus, JM−1 is an ideal of Z[√−5] strictly
containing J . The maximality of J now implies that JM−1(JM−1)−1 = Z[√−5]
and, therefore, M−1(JM−1)−1 ⊆ J−1. Then

Z[√−5] = JM−1(JM−1)−1 ⊆ J J−1 ⊆ Z[√−5],

which forces J J−1 = Z[√−5], a contradiction.
Finally, take F ∈ F •. Then there exist an ideal I ∈ I • and α ∈ Z[√−5]• such

that F = α−1 I . So one obtains that

(α I−1)F = (α I−1)(α−1 I ) = I−1 I = Z[√−5].

As a consequence, the fractional ideal α I−1 is the inverse of F in F •. Because
each nonzero fractional ideal of Z[√−5] is invertible, F • is a group. Since the
multiplication of fractional ideals is commutative, F • is abelian. �

Corollary 5.12 If I ∈ I • and α ∈ I •, then I J = 〈α〉 for some J ∈ I •.

Proof Let I and α be as in the statement of the corollary. As α−1 I is a nonzero
fractional ideal, there exists a nonzero fractional ideal J such thatα−1 I J = Z[√−5],
that is I J = 〈α〉. Since β I ⊆ J I = 〈α〉 ⊆ I for all β ∈ J , Lemma 5.10 guarantees
that J ⊆ Z[√−5]. Hence, J is a nonzero ideal of Z[√−5]. �
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Theorem 5.13 [The Fundamental Theorem of Ideal Theory] Let I be a nonzero
proper ideal of Z[√−5]. There exists a unique (up to order) list of prime ideals
P1, . . . , Pk of Z[√−5] such that I = P1 · · · Pk.
Proof Suppose, by way of contradiction, that not every ideal in I • can be written
as the product of prime ideals. From the set of ideals of Z[√−5] which are not the
product of primes ideals, take one, say I , maximal under inclusion. Clearly, I is not
prime. Therefore I is contained in a maximal ideal P1, and such containment must be
strict by Exercise 5.1. ByLemma 5.9, one has thatZ[√−5] � P−1

1 and so I ⊆ I P−1
1 .

Now Lemma 5.10 ensures that the latter inclusion is strict. The maximality of I now
implies that I P−1

1 = P2 · · · Pk for some prime ideals P2, . . . , Pk . This, along with
Theorem 5.11, ensures that I = P1 · · · Pk , a contradiction.

To argue uniqueness, let us assume, by contradiction, that there exists an ideal
having two distinct prime factorizations. Letm be the minimum natural number such
that there exists I ∈ I with two distinct factorizations into prime ideals, one of them
containing m factors. Suppose that

I = P1 · · · Pm = Q1 · · · Qn. (7)

Because Q1 · · · Qn ⊆ Pm , there exists Q ∈ {Q1, . . . , Qn} such that Q ⊆ Pm (Exer-
cise 3.3). By Proposition 5.3, both Q and Pm are maximal ideals, which implies that
Pm = Q. As I Q−1 ⊆ I I−1 ⊆ Z[√−5], it follows that I Q−1 ∈ I . Multiplying the
equality (7) by the fractional ideal Q−1, we obtain that I Q−1 is an ideal of Z[√−5]
with two distinct factorizations into prime ideals such that one of them, namely
P1 · · · Pm−1, contains less than m factors. As this contradicts the minimality of m,
uniqueness follows. �

An element a of a commutative monoid M is said to be an atom if for all x, y ∈ M
such that a = xy, either x is a unit or y is a unit (i.e., has an inverse). A commutative
cancellativemonoid is called atomic if every nonzero nonunit element can be factored
into atoms.

Corollary 5.14 The monoid I • is atomic.

6 The Class Group

To understand the phenomenon of nonunique factorization in Z[√−5], we first need
to understand certain classes of ideals of Z[√−5]. Let

P := {I ∈ I | I is a principal ideal of Z[√−5]}.

Two ideals I, J ∈ I are equivalent if 〈α〉I = 〈β〉J for someα, β ∈ Z[√−5]•. In this
case, we write I ∼ J . It is clear that ∼ defines an equivalence relation on Z[√−5].
The equivalence classes of ∼ are called ideal classes. Let IP denote the ideal class
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of I , and we also let C (Z[√−5]) denote the set of all nonzero ideal classes. Now
define a binary operation ∗ on C (Z[√−5]) by

IP ∗ JP = (I J )P.

It turns out that C (Z[√−5]) is, indeed, a group under the ∗ operation.

Theorem 6.1 The set of ideal classes C (Z[√−5]) is an abelian group under ∗.
Proof Because the product of ideals is associative and commutative, so is ∗. Also, it
follows immediately that 〈1〉P ∗ IP = (〈1〉I )P = IP for each I ∈ I •, which
means thatP = 〈1〉P is the identity element ofC (Z[√−5]). In addition, as any two
nonzero principal ideals are in the same ideal class, Theorem 4.9 ensures that, for any
IP ∈ C (Z[√−5]), there exists J ∈ I • such that IP ∗ JP = I J ∈ P = 〈1〉P .
So JP is the inverse of IP in C (Z[√−5]). Hence, C (Z[√−5]) is an abelian
group. �

Definition 6.2 The group C (Z[√−5]) is called the class group of Z[√−5], and the
order of C (Z[√−5]) is called the class number of Z[√−5].

Recall that if θ : R → S is a ring homomorphism, then ker θ = {r ∈ R | θ(r) =
0} is an ideal of R. Moreover, the First Isomorphism Theorem for rings states that
R/ ker θ ∼= θ(R).

Definition 6.3 Let K be an algebraic number field. For any nonzero ideal I of OK ,
the cardinality |OK /I | is called the norm of I and is denoted by N (I ).

Proposition 6.4 Let d ∈ Z \ {0, 1} be a squarefree integer with d ≡ 2, 3 (mod 4).
Then N (I ) is finite for all nonzero ideals I of Z[√d].
Proof Take n = αᾱ for any nonzero α ∈ I . Then n ∈ I ∩ N. As 〈n〉 ⊆ I , it follows
that |Z[√d]/I | ≤ |Z[√d]/〈n〉|. In addition, each element of Z[√d]/〈n〉 has a rep-
resentative n1 + n2

√
d with n1, n2 ∈ {0, 1, . . . , n − 1}. Hence, Z[√d]/〈n〉 is finite

and, therefore, N (I ) = |Z[√d]/I | < ∞. �

As ideal norms generalize the notion of standard norms given in (2), we expect
they satisfy some similar properties. Indeed, this is the case.

Exercise 6.5 Let I and P be a nonzero ideal and a nonzero prime ideal of Z[√−5],
respectively. Show that |Z[√−5]/P| = |I/I P|.
Proposition 6.6 N (I J ) = N (I )N (J ) for all I, J ∈ I •.

Proof By factoring J as the product of prime ideals (Theorem 5.13) and applying
induction on the number of factors, we can assume that J is a prime ideal. Consider
the ring homomorphism θ : Z[√−5]/I J → Z[√−5]/I defined by θ(α + I J ) =
α + I . It follows immediately that θ is surjective and ker θ = {α + I J | α ∈ I }.
Therefore
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Z[√−5]/I J
I/I J

∼= Z[√−5]/I

by the First Isomorphism Theorem. As I J is nonzero, |Z[√−5]/I J | = N (I J ) is
finite and so |Z[√−5]/I J | = |Z[√−5]/I | · |I/I J |. Since J is prime, we can use
Exercise 6.5 to conclude that

N (I J ) = |Z[√−5]/I J | = |Z[√−5]/I | · |I/I J |
= |Z[√−5]/I | · |Z[√−5]/J | = N (I )N (J ).

�

Corollary 6.7 If N (I ) is prime for some I ∈ I •, then I is a prime ideal.

Let us verify now that the ideal norm is consistent with the standard norm on
principal ideals.

Proposition 6.8 N (〈α〉) = N (α) for all α ∈ Z[√−5]•.
Proof Set S = {

a + b
√−5 | a, b ∈ {0, 1, . . . , n − 1}}. Clearly, |S| = n2. In addi-

tion,
Z[√−5]/〈n〉 = {s + 〈n〉 | s ∈ S}.

Note that if s + 〈n〉 = s ′ + 〈n〉 for s, s ′ ∈ S, then we have s = s ′. As a conse-
quence, N (〈n〉) = n2 = N (n) for each n ∈ N. It is also easily seen that the map
θ : Z[√−5] → Z[√−5]/〈ᾱ〉 defined by θ(x) = x̄ + 〈ᾱ〉 is a surjective ring homo-
morphism with ker θ = 〈α〉. Therefore the rings Z[√−5]/〈α〉 and Z[√−5]/〈ᾱ〉 are
isomorphic by the First Isomorphism Theorem. This implies that N (〈α〉) = N (〈ᾱ〉).
Because αᾱ ∈ N, using Proposition 6.6, one obtains

N (〈α〉) = √
N (〈α〉)N (〈ᾱ〉) = √

N (〈αᾱ〉) = αᾱ = N (α).

�

Lemma 6.9 If P is a nonzero prime ideal in Z[√−5], then P divides exactly one
ideal 〈p〉, where p is a prime number.

Proof For α ∈ P•, it follows that z = αᾱ ∈ P ∩ N. Then, writing z = p1 · · · pk for
some prime numbers p1, . . . , pk , we get 〈z〉 = 〈p1〉 · · · 〈pk〉. As 〈p1〉 · · · 〈pk〉 ⊆ P ,
we have that 〈pi 〉 ⊆ P for some i ∈ {1, . . . , k} (Exercise 3.3). As pi ∈ P•, Corol-
lary 5.12 ensures that P divides 〈pi 〉. For the uniqueness, note that if P divides
〈p〉 and 〈p′〉 for distinct primes p and p′, then the fact that mp + np′ = 1 for some
m, n ∈ Z would imply that P divides the full ideal 〈1〉 = Z[√−5], a contradiction.

�

Theorem 6.10 The class group of Z[√−5] is Z2.
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Proof First, we verify that every nonzero ideal I of Z[√−5] contains a nonzero
element α with N (α) ≤ 6N (I ). For I ∈ I •, take B = �√N (I )� and define

SI := {
a + b

√−5 | a, b ∈ {0, 1, . . . , B}} � Z[√−5].

Observe that |SI | = (B + 1)2 > N (I ). Thus, there existα1 = a1 + b1
√−5 ∈ SI and

α2 = a2 + b2
√−5 ∈ SI such that α = α1 − α2 ∈ I \ {0} and

N (α) = (a1 − a2)
2 + 5(b1 − b2)

2 ≤ 6B2 ≤ 6N (I ).

Now, let IP be a nonzero ideal class ofZ[√−5]. Take J ∈ I • satisfying I JP =
P . By the argument given in the previous paragraph, there exists β ∈ J • such that
N (β) ≤ 6N (J ). By Corollary 5.12, there exists an ideal K ∈ I • such that J K =
〈β〉. Using Propositions 6.6 and 6.8, one obtains

N (J )N (K ) = N (〈β〉) = N (β) ≤ 6N (J ),

which implies that N (K ) ≤ 6. Because K J ∼ I J (they are both principal), it follows
that K ∈ IP . Hence, every nonzero ideal class of Z[√−5] contains an ideal whose
norm is at most 6.

To show that the class group ofZ[√−5] isZ2, let us first determine the congruence
relations among ideals of norm atmost 6. Every ideal P of norm p ∈ {2, 3, 5}must be
primebyCorollary 6.7.Moreover, byLemma6.9, Theorem5.13, andProposition 6.6,
the ideal P must show in the prime factorization

〈p〉 = Pn1
1 · · · Pnk

k (8)

of the ideal 〈p〉. The following ideal factorizations have been already verified in
Example 4.7 and Exercise 4.8:

〈2〉 = 〈2, 1 + √−5〉2,
〈3〉 = 〈3, 1 − 2

√−5〉〈3, 1 + 2
√−5〉, (9)

〈5〉 = 〈√−5〉2.

In addition, we have proved in Example 3.6 and Exercise 3.7 that the ideals on
the right-hand side of the first two equalities in (9) are prime. Also, the fact that
N (〈√−5〉) = N (

√−5) = 5 implies that the ideal 〈√−5〉 is prime. It follows now
by the uniqueness of Theorem 5.13 that the ideals on the right-hand side of the
equalities (9) are the only ideals of Z[√−5] having norm in the set {2, 3, 5}. Once
again, combining Lemma 6.9, Theorem 5.13, and Proposition 6.6, we obtain that any
ideal I whose norm is 4 must be a product of prime ideals dividing 〈2〉, which forces
I = 〈2〉. Similarly, any ideal J with norm 6 must be the product of ideals dividing
the ideals 〈2〉 and 〈3〉. The reader can readily verify that,
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〈1 − √−5〉 = 〈2, 1 + √−5〉〈3, 1 + 2
√−5〉 (10)

〈1 + √−5〉 = 〈2, 1 + √−5〉〈3, 1 − 2
√−5〉. (11)

Therefore 〈1 − √−5〉 and 〈1 + √−5〉 are the only two ideals having norm 6. Now
sinceweknowall ideals ofZ[√−5]with normatmost 6, it is not difficult to check that
|C (Z[√−5])| = 2. Because each principal ideal of Z[√−5] represents the identity
ideal class P , we find that

〈1〉P = 〈2〉P = 〈√−5〉P = 〈1 − √−5〉P.

On the other hand, we have seen that the product of 〈2, 1 + √−5〉 and each of the
three nonprincipal ideals with norm at most 6 is a principal ideal. Thus,

〈2, 1 + √−5〉P = 〈3, 1 + 2
√−5〉P = 〈3, 1 − 2

√−5〉P.

Since there are only two ideal classes, C (Z[√−5]) = Z2. �

Exercise 6.11 Verify the equalities (10), and (11).

From this observation, we deduce an important property of the ideals of Z[√−5].
Corollary 6.12 If I, J ∈ I • are not principal, then I J is principal.

7 Half-factoriality

The class group, in tandem with The Fundamental Theorem of Ideal Theory, will
allow us to determine exactly what elements of Z[√−5] are irreducible.
Proposition 7.1 Let α be a nonzero nonunit element in Z[√−5]. Then α is irre-
ducible in Z[√−5] if and only if

1. 〈α〉 is a prime ideal in Z[√−5] (and hence α is a prime element), or

2. 〈α〉 = P1P2 where P1 and P2 are nonprincipal prime ideals of Z[√−5].
Proof (⇒) Suppose α is irreducible in Z[√−5]. If 〈α〉 is a prime ideal, then we are
done. Assume 〈α〉 is not a prime ideal. Then by Theorem 5.13 there are prime ideals
P1, . . . , Pk ofZ[√−5]with 〈α〉 = P1 · · · Pk for some k ≥ 2. Suppose that one of the
Pi ’s is a principal ideal. Without loss of generality, assume that P1 = 〈β〉 for some
prime β in Z[√−5]. Using the class group, P2 · · · Pk = 〈γ 〉, where γ is a nonzero
nonunit of Z[√−5]. Thus, 〈α〉 = 〈β〉〈γ 〉 implies that α = (uβ)γ for some unit u of
Z[√−5]. This contradicts the irreducibility of α in Z[√−5]. Therefore all the Pi ’s
are nonprincipal. Since the class group of Z[√−5] is Z2, it follows that k is even.
Now suppose that k > 2. Using Corollary 6.12 and proceeding in a manner similar
to the previous argument, P1P2 = 〈β〉 and P3 . . . Pk = 〈γ 〉, and again α = uβγ for
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some unit u, which contradicts the irreducibility of α. Hence, either k = 1 and α is
a prime element, or k = 2.

(⇐) If 〈α〉 is a prime ideal, then α is prime and so irreducible. Then suppose
that 〈α〉 = P1P2, where P1 and P2 are nonprincipal prime ideals of Z[√−5]. Let
α = βγ for some β, γ ∈ Z[√−5], and assume, without loss of generality, that β is
a nonzero nonunit of Z[√−5]. Notice that 〈βγ 〉 = 〈β〉〈γ 〉 = P1P2. Because P1 and
P2 are nonprincipal ideals, 〈β〉 /∈ {P1, P2}. As a consequence of Theorem 5.13, we
have that 〈β〉 = P1P2. This forces 〈γ 〉 = 〈1〉, which implies that γ ∈ {±1}. Thus, α
is irreducible. �

Let us use Proposition 7.1 to analyze the factorizations presented in (1) at the
beginning of the exposition.As the product of any two nonprincipal ideals ofZ[√−5]
is a principal ideal, the decompositions

〈6〉 = 〈2〉〈3〉 = 〈2, 1 + √−5〉2〈3, 1 − √−5〉〈3, 1 + √−5〉
= 〈2, 1 + √−5〉〈3, 1 + √−5〉〈2, 1 + √−5〉〈3, 1 − √−5〉
= 〈1 + √−5〉〈1 − √−5〉

yield that 2 · 3 and (1 + √−5)(1 − √−5) are the only two irreducible factorizations
of 6 in Z[√−5]. Thus, any two irreducible factorizations of 6 in Z[√−5] have the
same factorization length. We can take this observation a step further.

Theorem 7.2 If α is a nonzero nonunit of Z[√−5] and β1, . . . , βs, γ1, . . . , γt are
irreducible elements of Z[√−5] with α = β1 · · ·βs = γ1 · · · γt , then s = t .

Proof Let α = ω1 · · · ωm be a factorization into irreducibles of α in Z[√−5]. By
Theorem 5.13, there are unique prime ideals P1, . . . , Pk in Z[√−5] satisfying that
〈α〉 = P1 · · · Pk . Suppose that exactly d of these prime ideals are principal and
assume, without loss, that Pi = 〈αi 〉 for all i ∈ {1, . . . , d}, where each αi is prime
in Z[√−5]. Since the class group of Z[√−5] is Z2, there exists n ∈ N such that
k − d = 2n. Hence,

〈α〉 = (P1 · · · Pd) (Pd+1 · · · Pk) = 〈α1 · · · αd〉 (Pd+1 · · · Pk) ,

and any factorization into irreducibles of α will be of the form uα1 · · ·αd · β1 · · ·βn ,
where each ideal 〈β j 〉 is the product of two ideals chosen from Pd+1, . . . , Pk . As a
result, m = d + n and, clearly, s = t = m, completing the proof. �

Thus, while some elements of Z[√−5] admit many factorizations into irre-
ducibles, the number of irreducible factors in any two factorizations of a given ele-
ment is the same. As we mentioned in the introduction, this phenomenon is called
half-factoriality. Since the concept of half-factoriality does not involve the addition
of Z[√−5], it can also be defined for commutative monoids.

Definition 7.3 An atomicmonoidM is called half-factorial if any two factorizations
of each nonzero nonunit element of M have the same number of irreducible factors.
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Half-factorial domains and monoids have been systematically studied since the
1950s, when Carlitz gave a characterization theorem of half-factorial rings of inte-
gers, which generalizes the case of Z[√−5] considered in this exposition.

Theorem 7.4 (Carlitz [1]) Let R be the ring of integers in a finite extension field of
Q. Then R is half-factorial if and only if R has class number less than or equal to
two.

A list of factorization inspired characterizations of class number two can be found
in [3]. In addition, a few families of half-factorial domains in a more general setting
are presented in [7]. We will conclude this paper by exhibiting two simple examples
of half-factorial monoids, using the second one to illustrate how to compute the
number of factorizations in Z[√−5] of a given element.

Example 7.5 (Hilbert monoid) It is easily seen that

H = {1 + 4k | k ∈ N0}

is a multiplicative submonoid of N. The monoid H is calledHilbert monoid. It is not
hard to verify (Exercise 7.6) that the irreducible elements of H are

1. the prime numbers p satisfying p ≡ 1 (mod 4) and

2. p1 p2, where p1 and p2 are prime numbers satisfying pi ≡ 3 (mod 4).

Therefore every element of H is a product of irreducibles. Also, in the factorization
of any element of H into primes, there must be an even number of prime factors
congruent to 3 modulo 4. Hence, any factorization of an element x ∈ H comes from
pairing the prime factors of x that are congruent to 3 modulo 4. This implies that H
is half-factorial. For instance, x = 52 · 32 · 11 · 13 · 19 has exactly two factorizations
into irreducibles, each of them contains five factors:

x = 52 · 13 · (32) · (11 · 19) = 52 · 13 · (3 · 11) · (3 · 19).

Exercise 7.6 Argue that the irreducible elements of the Hilbert monoid are precisely
those described in Example 7.5.

Definition 7.7 Let p be a prime number.

1. We say that p is inert if 〈p〉 is a prime ideal in Z[√−5].
2. We say that p is ramified if 〈p〉 = P2 for some prime ideal P in Z[√−5].
3. We say that p splits if 〈p〉 = PP ′ for two distinct prime ideals in Z[√−5].

Prime numbers p can be classified according to the above definition. Indeed,
we have seen that p is ramified when p ∈ {2, 5}. It is also known that p splits if
p ≡ 1, 3, 7, 9 (mod 20) and is inert if p �≡ 1, 3, 7, 9 (mod 20) (except 2 and 5). A
proof of this result is given in [8].
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Example 7.8 When n ≥ 2, the submonoid Xn of the additive monoid N
n+1
0 given by

Xn = {(x1, . . . , xn+1) | xi ∈ N0 and x1 + · · · + xn = xn+1}

is a half-factorial Krull monoid with divisor class group Z2 (see [5, Sect. 2] for more
details). Following [4], we will use Xn to count the number of distinct factorizations
into irreducibles of a given nonzero nonunit α ∈ Z[√−5]. Let

〈α〉 = Pn1
1 · · · Pnk

k Qm1
1 · · · Qmt

t ,

where the Pi ’s are distinct prime ideals in the trivial class ideal of Z[√−5], the Q j ’s
are distinct prime ideals in the nontrivial class ideal of Z[√−5], andm1 ≤ · · · ≤ mt .
Then the desired number of factorizations η(α) of α in Z[√−5] is given by

η(α) = ηXt

(
m1, . . . ,mt ,

m1 + · · · + mt

2

)
,

which, when t = 3, can be computed by the formula

ηX3(x1, x2, x3, x4) =
�x1/2�∑

j=0

x1−2 j∑

k=0

(⌊
min{x2 − k, x3 − x1 + 2 j + k}

2

⌋
+ 1

)
.

For instance, let us find how many factorizations 1980 = 22 · 32 · 5 · 11 has in
Z[√−5]. We have seen that 5 ramifies as 〈5〉 = P2

1 , where P1 is principal. As 11 is
inert, P2 = 〈11〉 is prime. In addition, 3 splits as 〈3〉 = Q1Q2, where Q1 and Q2 are
nonprincipal. Finally, 2 ramifies as 〈2〉 = Q2

3, where Q3 is nonprincipal. Therefore
one has that 〈1980〉 = P2

1 P2Q
2
1Q

2
2Q

4
3, and so

η(1980) = ηX3(2, 2, 4, 4) =
1∑

j=0

2−2 j∑

k=0

(⌊
min{2 − k, 2 + 2 j + k}

2

⌋
+ 1

)
= 6.
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David Anderson’s Work on Graded
Integral Domains

Gyu Whan Chang and Hwankoo Kim

Dedicated to David F. Anderson

Abstract In this paper, we survey David Anderson’s work on graded integral
domains, with emphasis on Picard groups of graded integral domains, graded Krull
domains, graded Prüfer v-multiplication domains, graded Prüfer domains, Nagata
rings, and Kronecker function rings.

1 Introduction

Graded rings, as a generalization of polynomial rings and semigroup rings, have
played an important role in modern algebra and geometry. In this survey paper, we
are interested in David Anderson’s seminal work on graded integral domains. This
includes at least a dozen of his papers solely or with some collaborators: Daniel
Anderson, G.W. Chang, and M. Zafrullah.

In the introduction, we give terminologies and notation related to star operations
on an integral domain and graded integral domains. In the second section, we discuss
normality and (homogeneous) Picard groups of graded integral domains. In the third
section, we give some characterizations of graded Krull domain, graded factorial
domains, and graded Dedekind domains. In the forth section, we discuss Anderson’s
work with Daniel Anderson on graded Prüfer v-multiplication domains. In the fifth
section, we discuss Anderson’s two papers with Daniel Anderson and Chang on
graded-valuation domains and with Chang and Zafrullah on graded Prüfer domains.
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In the final section, we cover Anderson’s work with Chang on Nagata rings and
Kronecker function rings of graded integral domains.

1.1 Star Operations

Let D be an integral domain with quotient field K . An overring of Dmeans a subring
of K containing D. Let F(D) (resp., f(D)) be the set of nonzero (resp., nonzero
finitely generated) fractional ideals of D. A map ∗ : F(D) → F(D), I �→ I∗, is
called a star operation on D if the following three conditions are satisfied for all
0 �= a ∈ K and I, J ∈ F(D): (i) (aD)∗ = aD and (aI )∗ = aI∗, (ii) I ⊆ I∗, and if
I ⊆ J , then I∗ ⊆ J∗, and (iii) (I∗)∗ = I∗. Given a star operation ∗ on D, we can
construct a new star operation ∗ f by setting I∗ f = ⋃{J∗ | J ∈ f(D) and J ⊆ I } for
all I ∈ F(D). Clearly we have (∗ f ) f = ∗ f ; I∗ = I∗ f for all I ∈ f(D); I ⊆ I∗ f ⊆ I∗
for all I ∈ F(D).

An I ∈ F(D) is called a ∗-ideal if I∗ = I ; a ∗-ideal I ∈ F(D) is said to be of
finite type if I = J∗ for some J ∈ f(D); a ∗-ideal is called a maximal ∗-ideal if it
is maximal among proper integral ∗-ideals. Let ∗-Max(D) be the set of maximal ∗-
ideals of D. It is well known that ∗ f -Max(D) �= ∅ if D is not a field; each maximal
∗ f -ideal is a prime ideal; each proper ∗ f -ideal is contained in a maximal ∗ f -ideal;
each prime ideal minimal over a ∗ f -ideal is a ∗ f -ideal. Examples of the most well-
known star operations include the v-operation, the t-operation, and the d-operation.
The v-operation is defined by Iv = (I−1)−1, where I−1 = {x ∈ K | x I ⊆ D}. The
t-operation is defined by t = v f . The d-operation is just the identity function on
F(D), i.e., Id = I for all I ∈ F(D); so d f = d. It is known that v-Max(D) = ∅ even
though D is not a field as in case of a rank-one nondiscrete valuation domain.

An I ∈ F(D) is said to be ∗-invertible if (I I−1)∗ = D. Note that if I ∈ F(D) is
invertible, then I is a ∗-invertible ∗-ideal for any star operation ∗ on D. A domain
D is called a Prüfer ∗-multiplication domain (P∗MD) if each nonzero finitely gen-
erated ideal of D is ∗ f -invertible, equivalently, DP is a valuation domain for all
P ∈ ∗ f -Max(D) [26, Theorem1.1]. Let T (D) be the group of t-invertible fractional
t-ideals of D under I ∗ J = (I J )t , I nv(D) be the group of invertible fractional ide-
als of D, and Prin(D) be the group of nonzero principal fractional ideals of D. It
is easy to see that I nv(D) is a subgroup of T (D) and Prin(D) is a subgroup of
I nv(D). Then the factor group Cl(D) := T (D)/Prin(D), called the (t-)class group
of D, is an abelian group, and Pic(D) := I nv(D)/Prin(D), the Picard group of D,
is a subgroup of Cl(D). If D is a Prüfer domain, then every t-invertible t-ideal of D
is invertible; so Cl(D) = Pic(D). Also, if D is a Krull domain, then Cl(D) is the
usual divisor class group of D.

Let S be a saturated multiplicative set of D and N (S) = {a ∈ D | (a, s)v = D for
all s ∈ S}. Then S is called a splitting set if, for each 0 �= d ∈ D, there are s ∈ S and
a ∈ N (S) so that d = sa. A splitting set S of D is an lcm splitting set if sD ∩ dD is
principal for all s ∈ S and d ∈ D. Amultiplicative subset S of D is called a t-splitting
set if each 0 �= d ∈ D can be written as dD = (AB)t , where A and B are integral
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ideals of D such that At ∩ sD = s At (equivalently, (A, s)t = D) for all s ∈ S and
Bt ∩ S �= ∅. By definition, splitting sets are t-splitting sets, and if Cl(D) = {0}, then
t-splitting sets are splitting sets.

1.2 Graded Integral Domains

The following notation is fixed throughout this paper. Let Γ be a nonzero torsionless
grading monoid, i.e., a nonzero torsionless commutative cancellative monoid, 〈Γ 〉
the quotient group of Γ (so 〈Γ 〉 is a torsion-free abelian group), U(Γ ) := Γ ∩ −Γ

the group of units of Γ , R = ⊕
α∈Γ Rα a Γ -graded integral domain with Rα �= {0}

for all α ∈ Γ , and K0 the quotient field of R0. Then Γ can be given a total order
compatible with the monoid operation [28, p. 123]. Hence, each nonzero f ∈ R can
be written uniquely as f = xα1 + · · · + xαn with xαi ∈ Rαi and α1 < · · · < αn . Each
nonzero x ∈ Rα is called a homogeneous element of degree α, i.e., deg(x) = α, and
deg(0) = 0. Let C( f ) be the ideal of R generated by the homogeneous components
of f ∈ R and C(I ) = ∑

f ∈I C( f ) for an ideal I of R. Let H be the multiplicative
set of nonzero homogeneous elements of R. Then H is a saturated multiplicative
subset of R and RH is a 〈Γ 〉-graded quotient ring of R, where RH = ⊕

α∈〈Γ 〉(RH )α
with (RH )α = { ab | a ∈ Rβ, 0 �= b ∈ Rγ , and β − γ = α}. Clearly, each nonzero
homogeneous element of RH is a unit. Also, R �= RH if and only if R contains a
nonzero nonunit homogeneous element. The next result is very useful when we study
the divisibility properties of graded integral domains.

Theorem 1.1 ([3, Proposition2.1]) Let R = ⊕
α∈Γ Rα be a graded integral domain

and H be the set of nonzero homogeneous elements of R. Then RH is a completely
integrally closed GCD domain.

Proof This can be proved by the fact that each nonzero homogeneous element of
RH is a unit.

An ideal A of R is said to be homogeneous if A = ⊕
α∈Γ (A ∩ Rα); so A is

homogeneous if and only if A is generated by homogeneous elements. A fractional
ideal A of R is said to be homogeneous if there is an 0 �= x ∈ H such that x A ⊆ R and
x A is homogeneous. A homogeneous ideal of R is amaximal homogeneous ideal if it
is maximal among proper homogeneous ideals. Let h-Max(R) be the set of maximal
homogeneous ideals of R. It is easy to show that everymaximal homogeneous ideal is
a prime ideal and every homogeneous ideal is contained in a maximal homogeneous
ideal. We mean by h-dim(R) = 1 that each nonzero homogeneous prime ideal of
R is a maximal homogeneous ideal. A subring T of RH containing R is called
a homogeneous overring of R if T = ⊕

α∈〈Γ 〉(RH ∩ T )α . Hence, a homogeneous
overring of R is a 〈Γ 〉-graded integral domain. Clearly, if T = RS for amultiplicative
set S of nonzero homogeneous elements of R, then T is a homogeneous overring
of R.
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It is easy to construct a graded integral domain R with amaximal idealM such that
M ∩ H �= ∅ butM is not homogeneous. The next lemma shows that eachmaximal t-
ideal of R containing an element of H is homogeneous. Hence, t-Max(R) is a disjoint
union of {Q ∈ t-Max(R) | Q ∩ H = ∅} and {Q ∈ t-Max(R) | Q is homogeneous}.
Lemma 1.2 ([14, Lemmas1.2]) Let R = ⊕

α∈Γ Rα be a graded integral domain.
Then each maximal t-ideal of R intersecting H is homogeneous.

Let N (H) = {g ∈ R | (g, h)v = R for all h ∈ H}. Then it is shown that N (H) =
{g ∈ R | g �= 0 andC(g)v = R} [14, Lemmas1.1].Moreover, recall that if f, g ∈ R,
then C( f )m+1C(g) = C( f )mC( f g) for some integer m ≥ 1 [27]. Hence, N (H) is
a saturated multiplicative set of R. It is easy to see that if R contains a unit of
nonzero degree, then I ∩ N (H) �= ∅ for all nonzero ideals I of R with C(I )t = R
[15, Example1.6]. More generally, we have

Lemma 1.3 ([15, Proposition1.4]) Let R = ⊕
α∈Γ Rα be a graded integral domain.

Then Max(RN (H)) = {QN (H) | Q ∈ t-Max(R) and Q is homogeneous} if and only
if I ∩ N (H) �= ∅ for all nonzero ideals I of R with C(I )t = R.

We say that R is a graded-valuation domain (gr-valuation domain) if either
x ∈ R or x−1 ∈ R for every nonzero homogeneous element x ∈ RH . It is known
that if V is a gr-valuation homogeneous overring of R, then V̂ := { f

g | f, g ∈
R, g �= 0, and C( f ) ⊆ C(g)V } is a valuation overring of R such that V̂ ∩ RH = V
[22, Theorem4.3].

Theorem 1.4 The following statements are equivalent for a graded integral domain
R = ⊕

α∈Γ Rα .

1. R is a gr-valuation domain.
2. Either a|b or b|a for every nonzero homogeneous elements a, b ∈ R.
3. The set of principal homogeneous ideals of R is totally ordered under inclusion.
4. The set of homogeneous (fractional) ideals of R is totally ordered under inclusion.

Proof This is an easy exercise (see, for example, [4, Theorem2.2]).

As in [17], we say that R is a graded Prüfer domain if each nonzero finitely
generated homogeneous ideal of R is invertible. Clearly, gr-valuation domains are
graded Prüfer domains.

Let HT(R) be the group of homogeneous t-invertible t-ideals of a graded integral
domain R under t-multiplication, HInv(R) be its subgroup of homogeneous invert-
ible ideals of R, and HPrin(R) its subgroup of principal homogeneous ideals. Then
HCl(R) := HT(R)/HPrin(R) is an abelian group, called the homogeneous (t-)class
group of R and HPic(R) := HInv(R)/HPrin(R), called the homogeneous Picard
group of R, is a subgroup ofHCl(R). Also,HCl(R) andHPic(R) can be considered as
subgroups ofCl(R) and Pic(R), respectively. Similarly to the ungraded case, onemay
define the homogeneous group of divisibility of R, denoted by HG(R), to be A/B,
where A is the set of nonzero homogeneous elements of RH and B = H ∩ U(R),
the set of (homogeneous) units of R.
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2 Normality and (Homogeneous) Picard Groups

Let R = ⊕
α∈Γ Rα be a graded integral domain and H be the set of nonzero homoge-

neous elements of R. In this section, we survey the David Anderson’s work on when
Pic(R) = HPic(R) (resp., Pic(R0) = Pic(R), Pic(R0) = HPic(R)). The results of
this section are based on [2, 8, 9, 12].

Lemma 2.1 Let R = ⊕
α∈Γ Rα be a graded integral domain. Then Pic(R) =

HPic(R) if and only if for each integral invertible ideal I of R, I = x J for some
x ∈ RH and some homogeneous integral invertible ideal J of R.

Proof This is an easy exercise.

Let I be a fractional ideal of a graded integral domain R. Then I h will denote
the (homogeneous) fractional ideal of R generated by the homogeneous elements
of I . Thus, I is homogeneous if and only if I = I h . It is well known that if P is a
prime ideal, then Ph is also a prime ideal. The next result gives several conditions
equivalent to (r) : (x) = { f ∈ R | f x ∈ (r)} being homogeneous for every r ∈ H
and x ∈ R.

Theorem 2.2 The following statements are equivalent for a graded integral domain
R = ⊕

α∈Γ Rα .

1. For r ∈ H and x ∈ R, (r) : (x) is homogeneous.
2. If I is an integral v-ideal of R with I h nonzero, then I is homogeneous.
3. If I is an integral v-ideal of R of finite type with I h nonzero, then I is homoge-

neous.
4. C(xy)v = (C(x)C(y))v for all nonzero x, y ∈ R.
5. For each nonzero x ∈ R, x RH ∩ R = xC(x)−1.
6. If I is an integral v-ideal of R of finite type, then I = q J for some q ∈ RH and

some homogeneous integral v-ideal J of R of finite type.

Moreover, if RH is a PID, then each of the above conditions is equivalent to the
following statement.

7. If I is an integral v-ideal of R, then I = x J for some x ∈ R and some homoge-
neous integral v-ideal J of R.

Proof The equivalences of (1)–(6) are in [2, Theorem3.2], while the equivalence of
(1) and (7) is just [2, Corollary3.4].

Following [2], a graded integral domain R is said to be almost normal if every
homogeneous element x ∈ RH of nonzero degree which is integral over R is actually
in R. Let A ⊆ B be an extension of commutative rings with identity. Following
Cohn [23], we say that A ⊆ B is inert if whenever xy ∈ A for some x, y ∈ B,
then x = ru and y = su−1 for some r, s ∈ A and u a unit of B. The next result
examines relationship between (almost) normality of a graded integral domain R
and the equality C(xy)v = (C(x)C(y))v for all nonzero x, y ∈ R.
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Theorem 2.3 Let R = ⊕
α∈Γ Rα be a graded integral domain.

1. If C(xy)v = (C(x)C(y))v for all nonzero x, y ∈ R, then R is almost normal.
2. R is integrally closed if and only if R0 is integrally closed in (RH )0 andC(xy)v =

(C(x)C(y))v for all nonzero x, y ∈ R.
3. If R contains a (homogeneous) unit of nonzero degree, then R is integrally closed

if and only if R is almost normal. Thus R satisfies C(xy)v = (C(x)C(y))v for
all nonzero x, y ∈ R if and only if R is integrally closed.

4. If R0 ⊆ R is inert, then R satisfies C(xy)v = (C(x)C(y))v for all nonzero x, y ∈
R if and only if R is almost normal.

Proof See [2, Theorem3.5] for (1), [2, Corollary3.6] for (2), and [2, Theorem3.7]
for (3) and (4).

Following [2], a graded integral domain R is said to be almost seminormal if
whenever x2, x3 ∈ R for all homogeneous x ∈ RH of nonzero degree, then x ∈ R.
The next result gives some sufficient conditions for a graded domain R to be almost
seminormal.

Theorem 2.4 Let R = ⊕
α∈Γ Rα be a graded integral domain. Consider the follow-

ing conditions.

1. If I is an integral invertible ideal of R with I h nonzero, then I is homogeneous.
2. If I is an integral invertible ideal of R, then I = x J for some x ∈ RH and some

homogeneous integral invertible ideal J of R.
3. HPic(R) = Pic(R).
4. R is almost seminormal.

Then (1) ⇔ (2) ⇔ (3) ⇒ (4).

Proof (1) ⇔ (2) [2, Theorem4.1]. (2) ⇔ (3) [2, Theorem4.3]. (2) ⇒ (4) [2, Theo-
rem4.3].

Recall that an integral domain Dwith quotient field K is seminormal if x2, x3 ∈ D
for x ∈ K implies x ∈ D. Equivalently (following Swan), D is seminormal if and
only if for x, y ∈ D with x2 = y3, there exists z ∈ D so that z3 = x and z2 = y. The
next result is the graded analog of seminomality.

Theorem 2.5 ([2, Theorem6.1]) The following statements are equivalent for a
graded integral domain R = ⊕

α∈Γ Rα .

1. R is seminormal.
2. For x ∈ RH , x2, x3 ∈ R implies x ∈ R.
3. For x, y ∈ H with x2 = y3, there exists z ∈ R (necessarily homogeneous) so that

z3 = x and z2 = y.

LetN0 denote the additive monoid of all nonnegative integers and R = ⊕
n∈N0

Rn

be an N0-graded integral domain. In [7, Corollary6.2], Anderson showed that if R
is a Krull domain, then Pic(R0) = Pic(R). The following theorem is an answer to a
question: When does the inclusion R0 ↪→ R induce an isomorphism ϕ : Pic(R0) →
Pic(R)?
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Theorem 2.6 Let R = ⊕
n∈N0

Rn be an N0-graded integral domain. Then the fol-
lowing conditions are equivalent.

1. R is seminormal if and only if R0 is seminormal and the natural map ϕ :
Pic(R0) → Pic(R) is an isomorphism.

2. R is almost seminormal if and only if the natural map ϕ : Pic(R0) → Pic(R) is
an isomorphism.

Proof (1) [8, Theorem3]. (2) [9, Theorem1].

Clearly, if K is a field, then K is seminormal and Pic(K ) = {0}. Hence, by The-
orem2.6, we have

Corollary 2.7 ([8, Corollary4]) Let R = ⊕
n∈N0

Rn be an N0-graded integral
domain with R0 a field. Then R is seminormal if and only if Pic(R) = {0}.

Let R = ⊕
α∈Γ Rα be a graded integral domain. It is easy to see that R0 ⊂ R is

inert if and only if R has a (homogeneous) unit of degree α for all α ∈ U(Γ ). There
are three important cases when R0 � R is an inert extension: (i) R = R0[Γ ] is a
semigroup ring, (ii) R0 is a field, and (iii) U(Γ ) = {0}. Hence, if R = ⊕

n∈N0
Rn is

an N0-graded integral domain, then R0 ⊂ R is an inert extension.

Proposition 2.8 ([2, Proposition5.2]) The following statements are equivalent for
a graded integral domain R = ⊕

α∈Γ Rα .

1. R0 ⊂ R is an inert extension.
2. Let a ∈ R with aR ∩ R0 nonzero. Then aR ∩ R0 is principal and aR = (aR ∩

R0)R.
3. Let I be an integral invertible ideal of R with I0 = I ∩ R nonzero. Then I0 is

R0-invertible, I = I0R, and the natural homomorphism φ : Pic(R0) → Pic(R)

is injective.

LetΓ1 = {α ∈ U(Γ ) | RαR-α = R0}. Clearly,Γ1 is a subgroup of U(Γ ), RαRβ =
Rα+β and R−1

α = R−α for all α, β ∈ Γ1. Let Γ2 = {α ∈ Γ | Rα ∩ U(R) �= ∅}. Then
Γ2 is a subgroup of Γ1, and moreover, if α ∈ Γ2, then Rα = aαR0 for all aα ∈ Rα ∩
U(R).

Theorem 2.9 Let R = ⊕
α∈Γ Rα be a graded integral domain with R0 ⊂ R an inert

extension.

1. The natural homomorphism φ : Pic(R0) → HPic(R) is an isomorphism.
2. If R is almost normal, then the natural homomorphism φ : Pic(R0) → Pic(R) is

an isomorphism.
3. If φ : Pic(R0) → Pic(R) is the natural homomorphism, then ker(φ) = Γ1/Γ2,

the factor group of Γ1 modulo Γ2.

Proof See [2, Theorem5.4] for (1), [2, Theorem5.5] for (2), and [12, Theorem] for
(3).
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Anderson also studied the Picard group of monoid domains [10, 11]. The next
theorem completely characterizes when HCl(R) = Cl(R).

Theorem 2.10 ([2, Theorem5.9])Let R = ⊕
α∈Γ Rα be an integrally closed graded

integral domain. Then HCl(R) = Cl(R) if and only if for each integral v-ideal I of
R, I RH is principal in RH . In particular, HCl(R) = Cl(R) if either R is a Krull
domain or R is Z- or N0-graded.

3 Graded Krull Domains

Let R = ⊕
α∈Γ Rα be a graded integral domain. We say that R is a graded Krull

domain if it is completely integrally closed with respect to homogeneous elements
and satisfies the ascending chain condition on homogeneous integral v-ideals [3,
Definition 5.1]. Clearly, Krull domains are graded Krull domains, while graded Krull
domains need not be Krull domains (e.g., let R = Z[Q] be the semigroup ring of the
additive group Q of rational numbers over the ring Z of integers). The results of this
section are based on [2, 3, 14, 17].

First we characterize when a graded domain R is completely integrally closed
(resp., integrally closed).

Proposition 3.1 The following statements are equivalent for a graded integral
domain R = ⊕

α∈Γ Rα .

1. R is completely integrally closed (resp., integrally closed).
2. R is completely integrally closed (integrally closed) with respect to homogeneous

elements.
3. I : I = R for each nonzero (resp., nonzero finitely generated) homogeneous frac-

tional ideal I of R.
4. R is completely integrally closed (resp., integrally closed) in RH .

Proof The completely integrally closed property appears in [3, Proposition5.2] and
the integrally closed property is in [3, Proposition5.4].

The next result gives some nice properties of graded Krull domains.

Theorem 3.2 Let R = ⊕
α∈Γ Rα be a graded Krull domain. Then

1. R0 is a Krull domain.
2. Cl(R) is generated by the classes of the homogeneous height-one prime ideals.
3. In addition, if U(Γ ) = {0}, then ϕ : Cl(R0) → Cl(R) is injective. (Note that ϕ

need not be a homomorphism.)

Proof See [7, Proposition1.1] for (1), [7, Theorem4.2] for (2), and [7, Theorem6.4]
for (3).
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A gr-valuation ring R is said to be discrete if each homogenous primary ideal
of R is a power of its radical. Hence, if R is a discrete gr-valuation domain with
h-dim(R) = 1, which is called a graded DVR, then R is a graded Krull domain.
Let V be a gr-valuation homogeneous overring of R and V̂ = { f

g | f, g ∈ R, g �=
0, and C( f ) ⊆ C(g)V }. Then V is discrete as a gr-valuation domain if and only if
V̂ is discrete [22, Theorem4.3].

Theorem 3.3 Let R = ⊕
α∈Γ Rα be a graded integral domain. Then the following

statements are equivalent.

1. R is a graded Krull domain.
2. R = RH ∩ (

⋂
P∈XH

RP), the intersection is locally finite, and each RP is a DVR,
where XH is the set of height-one homogeneous prime ideals of R.

3. R = RH ∩ (
⋂

α Vα), each nonzero nonunit of R is a unit in Vα except finitely
many α’s, and each Vα is a rank-one DVR.

4. R = ⋂
α Vα , each nonzero nonunit homogeneous element of R is a unit in Vα

except finitely many α’s, and each Vα is a homogeneous overring of R which is
a graded DVR.

5. Every nonzero homogeneous ideal of R is t-invertible.
6. Every nonzero homogeneous prime (t-)ideal of R is t-invertible.
7. RN (H) is a Dedekind domain.
8. RN (H) is a PID.

Proof (1) ⇔ (2) ⇔ (3) [3, Theorem5.12]. (1) ⇔ (4) [3, Theorem5.15]. (1) ⇔ (5)
⇔ (6) [14, Theorem2.4]. (1) ⇔ (7) ⇔ (8) [15, Theorem2.3].

Corollary 3.4 ([3, Theorem5.8]) A graded integral domain R = ⊕
α∈Γ Rα is a

Krull domain if and only if R is a graded Krull domain and RH is a Krull domain.

It is known that S is a t-splitting set of an integral domain D if and only if dDS ∩ D
is t-invertible for all 0 �= d ∈ D [5, Corollary2.3].

Theorem 3.5 Let R = ⊕
α∈Γ Rα be a graded integral domain. Then:

1. H is a t-splitting set of R if and only if C(Q)t = R for each prime t-ideal Q of
R with Q ∩ H = ∅.

2. Suppose that RH is aUFD.Then H is a t-splitting set if andonly if Q is t-invertible
for each prime t-ideal Q of R with Q ∩ H = ∅. In this case, ht(Q) = 1.

Proof (1) [14, Theorem2.1]. (2) [14, Corollary2.2].

Recall that a t-splitting set S of D is called a Krull t-splitting set if sD is a t-
product of (height-one) prime ideals of D for all nonunits s ∈ S, equivalently, every
integral ideal of D intersecting S is t-invertible (see [21, Theorem2.2]).

Theorem 3.6 ([14, Theorem2.4]) The following statements are equivalent for a
graded integral domain R = ⊕

α∈Γ Rα .

1. H is a Krull t-splitting set.
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2. R is a graded Krull domain.
3. Every nonzero homogeneous prime ideal of R contains a t-invertible prime t-

ideal.
4. Every nonzero homogeneous prime ideal of R contains a t-invertible prime ideal.
5. Every prime ideal of R minimal over a nonzero homogeneous principal ideal is

t-invertible.

An integral domain is a π -domain if each nonzero principal ideal is a product of
prime ideals. Then an integral domain D is a π -domain if and only if D is a Krull
domain with Cl(D) = Pic(D). Analogously to the ungraded case, a graded integral
domain R is called a graded π -domain if each nonzero principal homogeneous ideal
is a product of (necessarily homogeneous invertible) prime ideals. Hence, a graded
π -domain R is just a graded Krull domain with HCl(R) = HPic(R).

Theorem 3.7 ([3, Theorem6.2]) A graded integral domain R = ⊕
α∈Γ Rα is a π -

domain if and only if R is a graded π -domain and RH is a π -domain.

A graded integral domain R is called a graded GCD-domain if each pair of
nonzero homogenous elements has a (necessarily homogeneous) GCD, equivalently
if each pair of nonzero homogenous elements has a (necessarily homogeneous) LCM
[3, Lemma3.2]. The next theorem shows that the GCD domain property of R is
completely determined by the nonzero homogeneous elements of R.

Theorem 3.8 ([3, Theorem3.4]) If R = ⊕
α∈Γ Rα is a graded GCD domain, then

R is a GCD domain.

A graded integral domain R is called a graded UFD (or graded factorial) if each
nonzero nonunit homogenous element of R is a product of (necessarily homoge-
neous) principal primes. Hence, by Theorem3.6, a graded UFD is a graded Krull
domain.

Theorem 3.9 Let R = ⊕
α∈Γ Rα be a graded integral domain. Then the following

statements are equivalent.

1. R is a graded UFD.
2. R is a GCD domain and R satisfies the ascending chain condition on homoge-

neous principal ideals.
3. HG(R), the homogeneous group of divisibility of R, is order isomorphic to a

direct sum of copies of Z with the usual product order.
4. Each nonzero homogeneous prime ideal of R contains a nonzero homogeneous

principal prime ideal.
5. H is a splitting set and RN (H) is a PID.
6. R is a GCD domain and RN (H) is a PID.

Proof (1) ⇔ (2) ⇔ (3) ⇔ (4) [3, Proposition4.2]. (1) ⇔ (5) [15, Corollary2.5]. (1)
⇔ (6) [15, Corollary2.6].
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It is well known that a Krull domain is a UFD if and only if it is a GCD domain.
Hence, by Corollary3.4 and Theorem3.9, we have

Corollary 3.10 ([3, Theorem4.4]) Let R = ⊕
α∈Γ Rα be a graded integral domain.

Then R is a UFD if and only if R is a graded UFD and RH is a UFD.

Let R = ⊕
α∈Γ Rα be anN0- or aZ-graded integral domain. Then RH

∼= k[y, y−1]
for some field k and an indeterminate y over k, and hence RH is a UFD, Thus, by
Corollaries3.4, 3.10 and Theorem3.7, we have

Corollary 3.11 ([3, Corollaries4.6, 5.10, and 6.4]) Let R = ⊕
α∈Γ Rα be an N0- or

a Z-graded integral domain. Then R is a Krull domain (resp., π -domain, UFD) if
and only if R is a graded Krull domain (resp., graded π -domain, graded UFD).

If a graded integral domain R satisfies certain extra properties, then we can say
more about characterizations of graded Prüfer domains. Let

S(H) = { f ∈ R | C( f ) = R}.

Then S(H) is a saturated multiplicative set of R such that S(H) ⊆ N (H), and equal-
ity holdswhen eachmaximal homogeneous ideal of R is a t-ideal (e.g., h-dim(R) = 1
or R is a graded Prüfer domain).

Lemma 3.12 Let R = ⊕
α∈Γ Rα be a graded integral domain and I be a nonzero

homogeneous ideal of R. Then we have

1. I = ⋂
Q∈h-Max(R) I RH\Q = (

⋂
Q∈h-Max(R) I RQ) ∩ RH = I RS(H) ∩ RH .

2. (I RS(H))
−1 = I−1RS(H).

3. I is invertible if and only if I RS(H) is invertible.

Proof See [17, Corollary2.5] for (1) and [16, Lemma2] for (2) and (3).

Following [17, p. 801], we say that R satisfies property (∗) if whenever A is a
nonzero ideal of R withC(A) = R, then A ∩ S(H) �= ∅. Let R = D[X, X−1] be the
Laurent polynomial ring over an integral domain D. Then R is a Z-graded integral
domain with deg(aXn) = n for 0 �= a ∈ D and n ∈ Z. Clearly, R satisfies property
(∗) and RS(H) = D(X), the Nagata ring of D. More generally, if R contains a unit
of nonzero degree, then R satisfies property (∗) [17, Example4.2]. The following
lemma is very useful.

Lemma 3.13 ([17, Lemma4.1]) The following statements are equivalent for a
graded integral domain R = ⊕

α∈Γ Rα .

1. Max(RS(H)) = {QS(H) | Q ∈ h-Max(R)}.
2. R satisfies property (∗).

The next corollary can be easily proved by Lemmas3.12(3) and 3.13.
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Corollary 3.14 ([17,Corollary4.4])Let R = ⊕
α∈Γ Rα beagraded integral domain

that satisfies property (∗) and 0 �= f ∈ R. Then C( f ) is invertible if and only if
C( f )RS(H) = f RS(H).

A graded Noetherian domain is a graded integral domain whose homogeneous
ideals are finitely generated. We say that R is a graded Dedekind domain (resp.,
graded PID) if every nonzero homogeneous ideal of R is invertible (resp., princi-
pal). Note that invertible ideals are finitely generated; hence, graded PID ⇒ graded
Dedekind domain ⇒ graded Noetherian domain. The following result characterizes
graded Dedekind domains.

Theorem 3.15 ([16, Theorem4]) Let R = ⊕
α∈Γ Rα be a graded integral domain

with R �= RH . Then the following statements are equivalent.

1. R is a graded Dedekind domain.
2. RS(H) is a Dedekind domain.
3. RS(H) is a PID.
4. R is a graded Krull domain and h-dim(R) = 1.
5. R is an integrally closed graded Noetherian domain and h-dim(R) = 1.

Moreover, if the above statements hold, then Max(RS(H)) = {QS(H) | Q ∈
h-Max(R)}, and hence R satisfies property (∗).

A graded Dedekind domain (resp., graded PID) need not be a Dedekind domain
(resp., PID) [16, Example1]. But, the next result shows that if U(Γ ) = {0}, then a
graded Dedekind domain is a PID.

Corollary 3.16 ([16, Corollary7]) Let R = ⊕
α∈Γ Rα be a graded integral domain

such that U(Γ ) = {0}. Then the following statements are equivalent.

1. R is a graded Dedekind domain.
2. R is a graded PID.
3. R0 is a field and R ∼= R0[X ], where X is an indeterminate over R0.
4. R is a PID.
5. R is a Dedekind domain.

In [3], Anderson also studied when D[Γ ] is a Krull domain (resp., π -domain,
UFD). For example, D[Γ ] is a UFD if and only if D is a UFD, Γ is a unique
factorization semigroup, andU (Γ ) satisfies the ascending chain condition on cyclic
subgroups [3, Proposition4.7].

4 Graded Prüfer v-Multiplication Domains

Agraded Prüfer v-multiplication domain (PvMD) R = ⊕
α∈Γ Rα is a graded integral

domain in which every nonzero finitely generated homogeneous ideal of R is t-
invertible, equivalently, the monoid of homogeneous v-ideals of finite type forms
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a group under v-multiplication. By definition, almost all graded integral domains
considered in this paper are graded PvMDs. The next theorem shows that it is enough
to consider the homogeneous ideals in order to study the PvMD property of graded
integral domains.

Theorem 4.1 ([2, Theorem6.4]) Let R = ⊕
α∈Γ Rα be a graded integral domain.

Then R is a graded PvMD if and only if R is a PvMD.

By Theorem3.3, graded Krull domains are graded PvMDs, and thus by Theo-
rem4.1, graded Krull domains are PvMDs.

Theorem 4.2 ([15, Theorem3.4]) The following statements are equivalent for a
graded integral domain R = ⊕

α∈Γ Rα with a unit of nonzero degree.

1. R is a PvMD.
2. Every ideal of RN (H) is extended from a homogeneous ideal of R.
3. Every principal ideal of RN (H) is extended from a homogeneous ideal of R.
4. R is integrally closed and It = I RN (H) ∩ R for every nonzero homogeneous ideal

I of R.
5. RN (H) is a Prüfer domain.
6. RN (H) is a Bézout domain.

Recall that a t-splitting set S of a domain D is called a t-lcm t-splitting set if
sD ∩ dD is t-invertible for all s ∈ S and 0 �= d ∈ D.

Theorem 4.3 ([14, Theorem2.6]) Let R = ⊕
α∈Γ Rα be a graded integral domain.

Then H is a t-lcm t-splitting set of R if and only if R is a PvMD.

Let A ⊆ B be an extension of integral domains, qf(A) be the quotient field of
A, and X be an indeterminate over B. It is clear that A + XB[X ] is an N0-graded
integral domain with deg(aXn) = n for 0 �= a ∈ B and n ∈ N0. The notion of t-
splitting sets was introduced by Anderson, Anderson, and Zafrullah [5] in order to
study the PvMD property of A + XB[X ].
Theorem 4.4 ([5, Theorem2.5]) Let D be an integral domain, S be a multiplicative
set of D, X be an indeterminate over D, and R = D + XDS[X ]. Then R is a PvMD
if and only if D is a PvMD and S is a t-splitting set.

In [14, Corollary2.7], it is characterized when H is a Krull (resp., t-lcm) t-
splitting set in the group ring D[G], where G is a torsion-free abelian group. Also,
[14, Corollary2.8] (resp., [14, Corollary2.9]) characterizes when H is a t-lcm t-
splitting set in A + XB[X ] (resp., A + X AS[X ]), where qf(A) ⊆ B (resp., S is a
multiplicative subset of A).

Theorem 4.5 ([14, Theorem1.4]) The following statements are equivalent for a
graded integral domain R = ⊕

α∈Γ Rα .

1. H is an lcm splitting set.
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2. R is a GCD domain.

Moreover, if R contains a (homogeneous) unit of nonzero degree, then the above
statements are equivalent to

3. H is a splitting set.

Theorem4.5 can be applied to some special cases: [14, Corollary1.5] (resp., [14,
Corollary1.6]) characterizes when H is a (an lcm) splitting set (resp., a splitting set
generated by principal primes) in semigroup rings, while [14, Corollary1.7] (resp.,
[14, Theorem1.8]) characterizes when H is an lcm splitting set (resp., a splitting set)
in A + B[X ] for an extension A ⊆ B (resp., A ⊆ B ⊆ qf(A)) of domains.

Theorem 4.6 ([18, Theorem2.10]) Let A ⊆ B be an extension of integral domains,
X be an indeterminate over B, and R = A + XB[X ]. Then R is a GCD domain if
and only if A is a GCD domain and B = AS for a splitting set S of A.

Following [1], an integral domain D is a G-GCD domain (generalized GCD
domain) if the intersection of two invertible (equivalently, principal) ideals of D
is invertible. Equivalently, D is a G-GCD domain if and only if every finite type
v-ideal of D is invertible [1, Theorem1]. In [2], Anderson and Anderson defined a
graded integral domain R to be a graded G-GCD domain if the intersection of two
homogeneous invertible ideals of R is invertible. As mentioned in [2], this is clearly
equivalent to each homogeneous v-ideal of R of finite type being invertible.

Proposition 4.7 ([2, Proposition6.6]) Let R = ⊕
α∈Γ Rα be a graded integral

domain. Then R is a G-GCD domain if and only if R is a graded G-GCD domain.

In [2, 3], Anderson also used some results of this section to completely charac-
terize when D[Γ ] is a PvMD (resp., GCD domain, G-GCD domain).

5 Graded Prüfer Domains

In this section, we discuss Anderson’s two papers with Daniel Anderson and Chang
[4] on gr-valuation domains and with Chang and Zafrullah [17] on graded Prüfer
domains. The main goal of [4] is to characterize graded-valuation domains, while
the purpose of [17] is to generalize several results on Prüfer domains to graded Prüfer
domains.

We begin this section with a theorem which gives some very useful properties of
gr-valuation domains.

Theorem 5.1 Let R = ⊕
α∈Γ Rα be a gr-valuation domain. Then we have:

1. R is a GCD domain.
2. R is integrally closed.
3. R has a unique maximal homogeneous ideal M.
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4. Let T be a homogeneous overring of R. Then T is a gr-valuation domain and
T = RS for some multiplicative set S ⊆ H. In fact, we can take S = H \ (P ∩
R), where P is the unique maximal homogeneous ideal of T .

5. RM = R̂ is a valuation domain and RM ∩ RH = R.
6. Let Q beaprime ideal of R with Q ⊆ M.Then Q is homogeneous and QRH\Q =

Q.
7. R is completely integrally closed if and only if ht(M) ≤ 1.
8. R0 is a valuation domain and K0 = (RH )0.
9. Γ is a valuation monoid.

10. Every Rα is a torsion-free R0-module.
11. If α ∈ Γ is not a unit, then Rα = K0x for every 0 �= x ∈ Rα .

Proof (5) [22, Theorem4.2], while the others are in [4, Theorem2.3 andLemma3.1].

The following is a nice characterization of gr-valuation domains.

Theorem 5.2 ([4, Theorem3.2]) Let R = ⊕
α∈Γ Rα be a graded integral domain.

Then R is a gr-valuation domain if and only if the following conditions hold:

1. Γ is a valuation monoid,
2. Rα = K0x for every 0 �= x ∈ Rα whenever α is not a unit of Γ , and
3. T = ⊕

α∈U(Γ ) Rα is a gr-valuation domain.

Theorem5.2 has some interesting corollaries. See [4, Corollaries3.4, 3.5, 3.6] for
details. In [19], Anderson also studied valuations of graded integral domains. Next,
we give some characterizations of graded Prüfer domains.

Theorem 5.3 ([17, Theorem3.1]) The following statements are equivalent for a
graded integral domain R = ⊕

α∈Γ Rα .

1. R is a graded Prüfer domain.
2. R is a PvMD and every nonzero finitely generated homogeneous ideal of R is a

t-ideal.
3. R is a PvMD and every nonzero homogeneous ideal of R is a t-ideal.
4. RQ is a valuation domain for every Q ∈ h-Max(R).
5. RQ is a valuation domain for every homogeneous prime ideal Q of R.
6. RH\Q is a gr-valuation domain for every Q ∈ h-Max(R).
7. RH\Q is a gr-valuation domain for every homogeneous prime ideal Q of R.

As a corollary of Theorem5.3, we have the following result.

Corollary 5.4 ([17, Corollary4.5]) Let R = ⊕
α∈Γ Rα be a graded integral domain

that satisfies property (∗).

1. If R is a graded Prüfer domain, then every ideal of RS(H) is extended from a
homogeneous ideal of R.

2. RS(H) is a Prüfer domain if and only if R is a graded Prüfer domain.
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We next give some properties of homogeneous overrings of a graded Prüfer
domain which is the graded Prüfer domain analog of [24, Theorem26.1].

Theorem 5.5 ([17, Theorem3.5]) Let R = ⊕
α∈Γ Rα be a graded Prüfer domain,

T be a homogeneous overring of R, andΩ be the set of nonzero homogeneous prime
ideals P of R such that PT � T .

1. If M is a proper homogeneous prime ideal of T and P = M ∩ R, then RH\P =
TH\M, RP = TM, and M = PRP ∩ T = PRH\P ∩ T .

2. T is a graded Prüfer domain.
3. If P is a nonzero homogeneous prime ideal of R, then P ∈ Ω if and only if

T ⊆ RH\P . Moreover, T = ⋂
P∈Ω RH\P = ⋂

M∈h-Max(T ) TH\M.
4. If A is a homogeneous ideal of T , then A = (A ∩ R)T .
5. {PT | P ∈ Ω} is the set of nonzero homogeneous prime ideals of T .

An overring B of an integral domain A is said to be t-flat over A if BM = AA∩M

for every maximal t-ideal M of B. Hence, flat overrings are t-flat. Let I be an ideal
of A and {Vλ} be the set of valuation overrings of A. Then I ∗ = ⋂

λ I Vλ is called the
completion of I , and I is said to be complete if I ∗ = I .

Corollary 5.6 Let R = ⊕
α∈Γ Rα be a graded integral domain. Then:

1. The following statements are equivalent:

a. R is a graded Prüfer domain.
b. Every homogeneous overring of R is t-flat over R.
c. Every homogeneous overring of R is integrally closed.
d. Every homogeneous ideal of R is complete.

2. Let T be a homogeneous overring of a graded Prüfer domain R. Then T =⋂
Q∈t-Max(T ) RQ∩R = ⋂

M∈h-Max(T ) RH\M.

Proof (1) [17, Corollaries3.6, 3.8, 3.9]. (2) [17, Corollary3.7].

Recall that an integral domain D is said to have theQR-property if every overring
of D is a quotient ring of D. Analogously a graded integral domain R has the h-QR-
property if every homogeneous overring of R is a quotient ring of R. The following
result is the h-QR-property analog of [24, p. 334] that an integral domain with the
QR-property is a Prüfer domain.

Proposition 5.7 ([17, Lemma3.10]) If a graded integral domain R = ⊕
α∈Γ Rα has

the h-QR-property, then R is a graded Prüfer domain.

In order to give a complete characterization of graded integral domains with the
h-QR-property, we need the following lemma, which is a graded analog of [24,
Lemma27.1] that an integral domain D has the QR-property if and only if D[ ab ] is
a quotient ring of D for every 0 �= a, b ∈ D.
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Lemma 5.8 ([17, Lemma3.11]) Let R = ⊕
α∈Γ Rα be a graded integral domain

and T a homogeneous overring of R. If R[x] is a quotient ring of R for every
homogeneous element x ∈ T , then T is a quotient ring of R. Thus, R has the h-QR-
property if and only if R[y] is a quotient ring of R for every homogeneous element
y ∈ RH .

The following result is a generalization of [24, Theorem27.5] that an integral
domain D has the QR-property if and only if for a finitely generated ideal A of D,
there is an element a ∈ A and an integer n ≥ 1 such that An ⊆ (a) ⊆ A.

Theorem 5.9 ([17, Theorem3.12]) The following statements are equivalent for a
graded Prüfer domain R = ⊕

α∈Γ Rα .

1. R has the h-QR-property.
2. If A is a finitely generated homogeneous ideal of R, then there exist an a ∈ A ∩ H

and an integer n ≥ 1 such that An ⊆ (a) ⊆ A.

It is clear that D is a Bézout domain if and only if D is a Prüfer domain with
Cl(D) = {0}. The following result is [17, Corollary3.13].

Corollary 5.10 Let R = ⊕
α∈Γ Rα be a graded Prüfer domain with Cl(R) torsion.

Then R has the h-QR-property.

We say that an integral domain D is of finite character if the intersection D =⋂
M∈Max(D) DM is locally finite. An ideal I of D is said to be locally (resp., t-locally)

principal if I DP is principal for every maximal ideal (resp., maximal t-ideal) P of
D. As in [6], D is called an LPI domain if every nonzero locally principal ideal of D
is invertible. It is known that a Prüfer domain D is an LPI domain if and only if D
is of finite character [25, Theorem10]. The following result gives the graded Prüfer
domain analog.

Theorem 5.11 ([17, Corollary4.6]) Let R = ⊕
α∈Γ Rα be a graded Prüfer domain

that satisfies property (∗). Then the following statements are equivalent.

1. If I is a nonzero homogeneous ideal of R such that I RM is principal for every
M ∈ h-Max(R), then I is invertible.

2. The intersection
⋂

M∈h-Max(R) RM is locally finite.
3. RS(H) is of finite character.
4. Every nonzero locally principal ideal of RS(H) is invertible.
5. Every nonzero t-locally principal homogeneous ideal of R is invertible.

The next result can be obtained by combining [15, Theorems3.3, 3.4, and 3.7]
and [29, Theorems4.5 and 4.7].

Theorem 5.12 ([17, Proposition4.9]) Let R = ⊕
α∈Γ Rα be a graded integral

domain with a unit of nonzero degree. Then the following statements are equiva-
lent.
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1. R is a graded Prüfer domain.
2. Every ideal of RS(H) is extended from a homogeneous ideal of R.
3. Every principal ideal of RS(H) is extended from a homogeneous ideal of R.
4. RS(H) is a Prüfer domain.
5. RS(H) is a Bézout domain.
6. C( f g) = C( f )C(g) for every f, g ∈ R.

Let R = ⊕
α∈Γ Rα be a graded integral domain. If U(Γ ) = {0}, i.e.,Γ ∩ (−Γ ) =

{0}, then R satisfies property (∗) [17, Example4.2], and hence Max(RS(H)) =
{QS(H) | Q ∈ h-Max(R)} by Lemma3.13. The following result characterizes graded
Prüfer domains R with U(Γ ) = {0}.
Theorem 5.13 ([17, Theorem5.2]) Let R = ⊕

α∈Γ Rα be a graded integral domain
with U(Γ ) = {0}. Then the following statements are equivalent.

1. R is a graded Prüfer domain.
2. R0 is a Prüfer domain, and if x, y ∈ H, then x |y or y|x in R when deg(x) �=

deg(y), and dx, dy ∈ R0 for some 0 �= d ∈ RH when deg(x) = deg(y).
3. R0 is a Prüfer domain, every principal ideal of RS(H) is extended from a homo-

geneous ideal of R, and if x, y ∈ H with deg(x) = deg(y), then there is a
0 �= d ∈ RH such that dx, dy ∈ R0.

4. R0 is a Prüfer domain, every ideal of RS(H) is extended from a homogeneous
ideal of R, and if x, y ∈ H with deg(x) = deg(y), then there is a 0 �= d ∈ RH

such that dx, dy ∈ R0.
5. RS(H) is a Prüfer domain.

Clearly, if Γ = N0, then U(Γ ) = {0}, and in this case, the graded Prüfer domain
R has a simple form D + XK [X ] for an integral domain with quotient field K . The
next result can be proved by Theorem5.13.

Corollary 5.14 ([17, Corollary5.3]) Let R = ⊕
n∈N0

Rn be an N0-graded integral
domain. Then the following statements are equivalent.

1. R is a graded Prüfer domain.
2. R0 is a Prüfer domain and R = R0 + XK [X ], where K is the quotient field of

R0 and X is an indeterminate over R0.
3. R is a Prüfer domain.

6 Nagata Rings and Kronecker Function Rings

In this section, we cover Anderson’s work [15] with Chang on Nagata rings and
Kronecker function rings of graded integral domains. A star operation ∗ on a domain
D is said to be an endlich arithmetisch brauchbar (e.a.b.) star operation if (AB)∗ ⊆
(AC)∗ implies B∗ ⊆ C∗ for all A, B,C ∈ f(D). Clearly ∗ is an e.a.b. star operation
if and only if ∗ f is an e.a.b. star operation. It is known that if D admits an e.a.b. star
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operation, then D is integrally closed [24, Corollary32.8]. Conversely, suppose that
D is integrally closed, and define

Ib :=
⋂

{I V | V is a valuation overring of D}

for every I ∈ F(D). Then the mapping b : F(D) → F(D), given by I �→ Ib, is an
e.a.b. star operation on D [24, Theorem32.5].

Let D[X ] be the polynomial ring over D, A f be the ideal of D generated by the
coefficients of f ∈ D[X ], and ∗ be an e.a.b. star operation on D. Then Kr(D, ∗) =
{ f
g | f, g ∈ D[X ], g �= 0 and A f ⊆ (Ag)∗}, called the Kronecker function ring of D

with respect to ∗, is a Bézout domain. The next result is a generalization of Kronecker
function rings to graded integral domains.

Theorem 6.1 ([15, Theorem2.9]) Let R = ⊕
α∈Γ Rα be a graded integral domain,

∗ an e.a.b. star operation on R, and

Kr(R, ∗) :=
{
f

g
| f, g ∈ R, g �= 0, and C( f ) ⊆ C(g)∗

}

.

Then

1. Kr(R, ∗) is an integral domain.
2. Kr(R, ∗) ∩ RH = R.
3. If f, g ∈ R are nonzero such that C( f + g)∗ = (C( f ) + C(g))∗, then ( f, g)

Kr(R, ∗) = ( f + g)Kr(R, ∗). In particular, fKr(R, ∗) = C( f )Kr(R, ∗) for all
f ∈ R.

Corollary 6.2 ([15, Corollary2.10]) Let R = ⊕
α∈Γ Rα be a graded Krull domain.

Then RN (H) = Kr(R, t).

Theorem 6.3 ([15, Theorem3.3]) Let R = ⊕
α∈Γ Rα be a graded integral domain

with a unit of nonzero degree. Then Cl(RN (H)) = Pic(RN (H)) = {0}.
Theorem 6.4 ([15, Theorem3.5]) Let R = ⊕

α∈Γ Rα be a graded integral domain
with a unit of nonzero degree and ∗ an e.a.b. star operation on R.

1. Kr(R, ∗) is a Bézout domain.
2. IKr(R, ∗) ∩ RH = I∗ for every nonzero finitely generated homogeneous ideal I

of R.
3. If ∗ f = t , then R is a PvMD if and only if RN (H) = Kr(R, t).

Theorem 6.5 ([15, Theorem3.7]) Let R = ⊕
α∈Γ Rα be a graded integral domain

with a unit of nonzero degree. If R is integrally closed, then R is a graded Prüfer
domain if and only if RS(H) = Kr(R, b).

Notice that the results ofTheorems6.3, 6.4 and6.5 are not truewithout the assump-
tion that R has a unit of nonzero degree (for concrete examples, see [20]). Formore on
divisibility properties of graded integral domains, the reader can refer to Anderson’s
survey article [13].
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Divisor Graphs of a Commutative Ring

John D. LaGrange

This work is dedicated to David Fenimore Anderson, whose
guidance and leadership has fostered multitudes of
mathematical pursuits, and whose friendship has inspirited a
lighthearted approach to all of them.

Abstract If x is an element of a commutative ring R then define the x-divisor graph
Γx (R) to be the graph, whose vertices are the elements of d(x) = {r ∈ R | rs = x
for some s ∈ R} such that two distinct vertices r and s are adjacent if and only
if rs = x . In this chapter, the components of Γx (R) are completely characterized
when R is a von Neumann regular ring. Various other types of “divisor graphs” are
considered as well. For example, if x is a nonzero element of an integral domain R
with group of units U (R) then the compressed divisor graph (ΓE )d

×
x (R) associated

with x is defined to be the graph, whose vertices are the associate-equivalence classes
r = rU (R) of elements r ∈ d(x)× = d(x) \ (xU (R) ∪U (R)) such that two distinct
vertices r and s are adjacent if and only if rs ∈ d(x). Alternatively, by letting M be
the positive cone of the group of divisibility of R, every (ΓE )d

×
x (R) is a member of

the class of graphs Γ≤x (M) defined by picking an element x of a partially ordered
commutative monoid M with least element equal to its identity 1, and letting the
vertices of Γ≤x (M) be the elements of {m ∈ M | 1 < m < x} such that two distinct
vertices m and n are adjacent if and only if mn ≤ x . Other aspects of the chapter
include the exploration of graph-theoretic criteria that reveal when two elements of
an integral domain are associates, and it is proved that R is a unique factorization
domain if and only if (ΓE )d

×
x (R) is either null or finitewith a dominant clique for every

x ∈ R \ {0}. Throughout, emphasis is placed on similaritieswith zero-divisor graphs.
For example, it is proved that if R is von Neumann regular and G is a component
of Γx(R) that contains a square root of x then G ∼= Γ0(annR(x)) (in particular, if
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x = 0 then we have the tautology G ∼= Γ0(R)), and if x is a square-free element of
a unique factorization domain then (ΓE )d

×
x (R) is isomorphic to a zero-divisor graph

of a finite Boolean ring.

1 Introduction

Factorization in integral domains, and zero-divisor structure in nonintegral domains
are important parts of the work on divisibility pioneered by David F. Anderson. In
this chapter, some of the methods that he used to study zero-divisors are expanded to
include more general elements of commutative rings, and these ideas are applied to
provide new perspectives on divisibility in integral domains. In particular, the zero-
divisor structure exploited in his seminal paper with Livingston [11] on zero-divisor
graphs is linked with general divisor structure in commutative von Neumann regular
rings, and then factorization in integral domains (especially unique factorization
domains, and also the finite factorization domains that were introduced in his paper
with Anderson and Zafrullah [2]) is considered from a graph-theoretic point of view.

Throughout, irr(R) will denote the set of irreducible elements of an integral
domain R. As in [24], R is called atomic if for every nonzero nonunit r ∈ R there
exists a finite multiset S ⊆ irr(R) such that r = ∏

S. Thus, a unique factorization
domain (UFD) is an atomic integral domain such that the multiset S is unique (up
to associates) for every nonzero nonunit r . If R is atomic and |S1| = |S2| whenever
S1, S2 ⊆ irr(R) are multisets with

∏
S1 = ∏

S2 then R is called a half-factorial
domain (HFD) [45]. Moreover, following [2], an atomic integral domain R is called
a finite factorization domain (FFD) if every nonzero nonunit r ∈ R has only a finite
number of nonassociate irreducible divisors, and it is a bounded factorization domain
(BFD) if for every nonzero nonunit r ∈ R there exists a positive integer n such that
if S ⊆ irr(R) is a multiset with r = ∏

S then |S| ≤ n. Examples are given in [2] to
show that no additional implications can be inserted into the following diagram.

All monoids and rings will be assumed commutative. The set of positive integers,
the ring of integers, the ring integers modulo n, the field of rational numbers, and

UFD

FFD

HFD

BFD Atomic

the field of complex numbers will be denoted by N, Z, Zn , Q, and C, respectively.
The set of vertices of a graph G will be denoted by V (G), and the group of units of a
commutative ring R with identity will be denoted byU (R). If v is a vertex of a graph
G then let N (v) be the set of all vertices of G that are adjacent to v, and if r is an
element of a commutative ring R then set annR(r) = {s ∈ R | rs = 0}. There will be
no risk of confusion by letting the graph-theoretic and ring-theoretic isomorphism
relations both be denoted by ∼=. See [23, 29] for clarification of any undefined terms
from graph theory and ring theory, respectively.
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1.1 Divisor Graphs

Let R be a commutative ring. The zero-divisor graph Γ0(R), whose vertices are
the elements of R such that two distinct vertices r and s are adjacent if and only
if rs = 0, was introduced by I. Beck in 1988 [21], and then investigated further
by D.D. Anderson and M. Naseer in 1993 [1]. In 1999, D.F. Anderson and P.S.
Livingston began the study of the subgraph Γ (R) of Γ0(R) induced by the nonzero
zero-divisors of R, and this work has been the basis for much of the research on
zero-divisor graphs over the past 20 years. Similar constructions have subsequently
been defined for nonassociative binary structures [36] and semigroups [28], partially
ordered sets [32, 38], and multiplicative lattices [34], and the idea has been modified
in various ways to examine other aspects of algebraic structure (e.g., [5, 7, 9, 10, 15,
16, 19, 20, 22, 25, 33, 35, 40–44]). Some surveys on zero-divisor graphs include
[6, 14, 27].

One of the first variations of the zero-divisor graph concept was introduced in
2002 by S.B. Mulay in [42]. Here, a (multiplicative) congruence relation ∼ was
defined on a commutative ring R with identity by r ∼ s if and only if r and s have
equal annihilators (i.e., annR(r) = annR(s)), and the “zero-divisor graph” ΓE (R)

of the multiplicative monoid R/∼ of equivalence classes r∗ = {s ∈ R | r ∼ s} was
defined (using different notation) to be the graph, whose vertices are the elements of
(R/∼) \ {0∗, 1∗} such that two distinct vertices r∗ and s∗ are adjacent if and only if
r∗s∗ = 0∗, if and only if rs = 0.

In [42, p. 3551], it was noted that several graph-theoretic properties of Γ (R)

remain valid for ΓE (R) (for example, each is connected with diameter at most three;
cf. Theorem 4(2)). Later, the notation ΓE (R)was used by S. Spiroff and C.Wickham
in [44] (with the subscript emphasizing that it is a graph of “equivalence” classes),
where associated primes (that is, prime annihilator ideals) were among the main
objects of interest. The graph ΓE (R) was termed the compressed zero-divisor graph
of R by D.F. Anderson and the author in [7–10, 12, 18, 27, 33, 39] are examples of
references where the continued study of ΓE (R) can be found.

Another offshoot of the zero-divisor graph was introduced in 2007 by J. Coyk-
endall and J. Maney in [25]. Here, for an integral domain R and an element x ∈ R
that can be factored into irreducibles, the (reduced) irreducible divisor graph of x
was defined to be the graph G(x) whose vertex-set V (G(x)) is a collection of irre-
ducible divisors of x such that r ∈ irr(R) divides x if and only if V (G(x)) contains
exactly one associate of r , and two distinct vertices r and s are adjacent if and only
if rs divides x (although V (G(x)) is not unique, it is clear that G(x) is well defined
up to graph-isomorphism). Among their findings is the following delightful result.

Theorem 1 If R is an atomic integral domain then R is a UFD if and only if G(x) is
connected for every nonzero nonunit x ∈ R, if and only if G(x) is a complete graph
for every nonzero nonunit x ∈ R.

Proof The result is verified in [25, Theorem 5.1]. �
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It was also observed that an atomic integral domain R is an FFD if and only if
G(x) is finite [25, Proposition 3.1] (cf. Theorem 13). Irreducible divisor graphs were
studied further in [16, 40], and they were extended to rings with zero-divisors in [15].
Moreover, they were defined in terms of some generalized-factorization properties
in [41]. A survey on irreducible divisor graphs is given in [17].

Recently, a more direct extension of the zero-divisor graph idea has been con-
sidered. If x is an element of a commutative ring R then define the x-divisor graph
Γx (R) (or, Γx if there is no risk of confusion) to be the graph whose vertices are
the elements of d(x) = {r ∈ R | rs = x for some s ∈ R} such that two distinct ver-
tices r and s are adjacent if and only if rs = x . The graphs Γx were studied in [35]
for the special case when x is an idempotent element of a commutative ring R. A
similar construction was used in [36], where R was a commutative, not necessarily
associative, binary structure. In the present exposition, the graphs Γx(R) associated
with general elements x of commutative von Neumann regular rings R (i.e., rings
R such that for every r ∈ R there exists t ∈ R such that r = r2t) are linked closely
with zero-divisor graphs. These results will be motivated in Sect. 1.3, and they are
the focus of Sect. 2.

Of course, if x = 0 then Γx is the graph Γ0(R) introduced by Beck in [21]. Also,
if x is not a zero-divisor then Γx is either null (e.g., consider Γ2(2Z)), or it is a
disjoint union of complete graphs K1 and K2 of orders one and two, respectively.
More precisely, we have the following characterization.

Proposition 1 Let x be an element of a commutative ring R. If x is not a zero-divisor
thenΓx

∼= ⊔
i∈I Gi , whereGi ∈ {K1, K2} for every element i of some (possibly empty

if R does not have identity) indexing set I .

Proof If x is not a zero-divisor and r, s, t ∈ V (Γx ) such that rs = r t then s = t
(indeed, if x is not a zero-divisor then neither is any element of d(x)). Hence, no
vertex of Γx has degree greater than one, and the result follows. �

Proposition 1 suggests that x-divisor graphs are more interesting when R is not
an integral domain. To obtain a graph that is more appropriate for studying integral
domains, we begin by defining Γ d

x (R) (for any commutative ring R and x ∈ R) to be
the graphwhose vertices are the elements of d(x) such that two distinct vertices r and
s are adjacent if and only if rs ∈ d(x). If R has identity then Γ d

x (R) = ⋃
a|x Γa(R),

and rs ∈ d(x) if and only if d(rs) ⊆ d(x) (on the other hand,
⋃

a|4 Γa(2Z) is null
even though d(4) = {−2, 2}).

Note that, for an integral domain R and an element x ∈ R that can be factored
into irreducibles, G(x) is an induced subgraph of Γ d

x (R). In contrast to irreducible
divisor graphs, Γ d

x (R) is defined even if x cannot be factored into irreducibles. For
example, the next observation is easily verified.

Proposition 2 The following statements hold for a commutative ring R.

1. Γ d
0 (R) is the complete graph on R.

2. If R has identity and u ∈ U (R) then Γ d
u (R) is the complete graph on U (R).
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Let x be a nonzero element of an integral domain R. The relations inΓ d
x (R) involv-

ing elements of xU (R) ∪U (R) are trivially understood (every element of U (R) is
adjacent to every other vertex of Γ d

x (R), and if u ∈ U (R) then the vertices of Γ d
x (R)

that are adjacent to ux are precisely the elements of U (R) \ {ux}), so divisibility
properties of x are illuminated more efficiently by the subgraph Γ d×

x (R) (or, Γ d×
x if

there is no risk of confusion) ofΓ d
x (R) inducedbyd(x)× = d(x) \ (xU (R) ∪U (R)).

Note that Γ d×
x is null if and only if x ∈ irr(R) ∪U (R) (recall that x is being assumed

nonzero, so this claim is valid even if R is a field).
Actually, the graphs Γ d×

x can be simplified even further without losing too much
essential structure. In analogy with the multiplicative monoid R/∼ of equivalence
classes r∗ and the compressed zero-divisor graph ΓE (R) defined above, if x is a
nonzero element of an integral domain R then let the compressed divisor graph
(ΓE )d

×
x (R) (or, (ΓE )d

×
x if there is no risk of confusion) associated with x be the graph

whose vertices are the associate-equivalence classes r = rU (R) of elements r ∈
d(x)× such that two distinct vertices r and s are adjacent if and only if rs ∈ d(x).1

Like ΓE (R), the graphs (ΓE )d
×

x can be described as divisor graphs of the induced
quotient monoid. Indeed, consider the partially ordered multiplicative monoid
G(R)+ = (R \ {0})/U (R), where rU (R) ≤ sU (R) inG(R)+ if and only if r divides
s in R.2 Note that (ΓE )d

×
x can be defined by extending (in the obvious way) the

definition of Γ d×
x (R) from rings to include more general commutative monoids; in

particular, it is straightforward to check that we have (ΓE )d
×

x (R) = Γ d×
xU (R)(G(R)+).

Moreover, since rs ∈ d(x) if and only if (rU (R))(sU (R)) ≤ xU (R), every
(ΓE )d

×
x belongs to the family of graphs Γ≤x (M) (or, Γ≤x if there is no risk of con-

fusion) defined by picking an element x of a partially ordered commutative monoid
M with least element equal to its identity 1, and letting the vertices of Γ≤x (M) be
the elements of (1, x) = {m ∈ M | 1 < m < x} such that two distinct vertices m
and n are adjacent if and only if mn ≤ x . Specifically, we now have the following
interpretations of (ΓE )d

×
x .

Proposition 3 Suppose that R is an integral domain. If x ∈ R \ {0} then the equal-
ities (ΓE )d

×
x (R) = Γ d×

xU (R)(G(R)+) = Γ≤xU (R)(G(R)+) hold.

As with compressed zero-divisor graphs, an advantage of working with the graph
(ΓE )d

×
x is that it provides a more succinct model of the divisor structure of x . Of

course, additional algebraic information (namely, the “associate” relations in R) is
used to refine Γ d×

x into the compressed graph (ΓE )d
×

x . Thus, if purely graph-theoretic
characterizations are desirable, then it is natural to seek non-algebraic criteria from
which (ΓE )d

×
x can be obtained from Γ d×

x .
Let G be a graph. An equivalence relation on V (G) is defined by v ≡ w if and

only if N (v) \ {w} = N (w) \ {v} [9, Theorem 2.1], and we define G̃ to be the graph

1“Compressed irreducible divisor graphs” were defined in [16, Sect. 5] using coarser equivalence
relations on irr(R).
2For an integral domain R with quotient field K , the group of divisibility (K \ {0})/U (R) of R is
often denoted by G(R); it is a partially ordered abelian group under the relation rU (R) ≤ sU (R)

if and only if sr−1 ∈ R, and then G(R)+ is the positive cone of G(R).
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whose vertices are the equivalence classes [v] = {w ∈ V (G) | v ≡ w} of elements
v ∈ V (G) such that two distinct vertices [v] and [w] are adjacent in G̃ if and only if
some (and hence every) element of [v] is adjacent to some (and hence every) element
of [w] in G. Applications of this construction to zero-divisor graphs are given in [9],
where the following result was provided to show that ΓE (R) can usually be obtained
from Γ (R) using only graph-theoretic information.

Theorem 2 Let R be a commutative ringwith identity. If R � Z2 × Z2 then Γ̃ (R) =
ΓE (R).

Proof The desired equality is verified in the proof of [9, Theorem 2.5].

Regarding the graphs Γ d×
x , the decision to neglect adjacency between v and w in

the definition of ≡ is based on the premise that if v is a vertex of Γ d×
x and u ∈ U (R)

then the vertices v andw = uv should be “equivalent” even if v2 divides x . The utility
of this convention will become evident as the forthcoming arguments unfold. In fact,
it will be shown in Sect. 3.1 that if U (R) 	= {1} (in particular, if the characteristic of
R is not equal to 2) then two vertices v and w of Γ d×

x are equivalent under ≡ if and
only if v and w are associates in R (Corollary 2) . Hence, in analogy with Theorem
2, we have the following result.

To ease notation, if G = Γ d×
x (R) then G̃ will be denoted by Γ̃ d×

x (R) (or, Γ̃ d×
x if

there is no risk of confusion).

Theorem 3 Suppose that R is an integral domain such thatU (R) 	= {1}, and let x ∈
R \ {0}. Then Γ̃ d×

x (R) = (ΓE )d
×

x (R). In particular, this is the case if the characteristic
of R is not equal to 2.

Proof The graphs Γ̃ d×
x and (ΓE )d

×
x are null if and only if x ∈ irr(R) ∪U (R), so the

result follows immediately by Corollary 2 in Sect. 3.1.

As we shall see, Γ̃ d×
x and (ΓE )d

×
x carry enough information so that a purely graph-

theoretic characterization of UFDs (without the “atomic” condition that was assumed
in Theorem 1) can be obtained. This result will be motivated in Sect. 1.4, and its
justification is the primary focus of Sect. 3.2.

1.2 Idempotent Divisors

While the earlier papers [1, 21] on zero-divisor graphs were mainly concerned with
colorings, the Anderson–Livingston paper [11] deliberately exploited the interplay
between algebraic and graph-theoretic properties. The following theorem illustrates
a couple of the fundamental results from [11], along with an important finding that
appeared in Anderson’s paper [13] with R. Levy and J. Shapiro on the relationship
between Γ (R) and the zero-divisor graph of the total quotient ring T (R) of R. (Also,
for the casewhen R is not assumed to have identity, the analogous results are provided
in [12, Theorems 2.2 and 4.1].)
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Theorem 4 Let R be a commutative ring with identity that contains nonzero zero-
divisors. The following statements hold.

1. Γ (R) is finite if and only if R is finite.
2. Γ (R) is connected with diameter at most three.
3. Γ (T (R)) ∼= Γ (R).

Proof The first two statements follow from [11, Theorems 2.2 and 2.3], and (3) holds
by [13, Theorem 2.2]. �

In contrast to zero-divisor graphs, Γx (R) need not be connected even if x is idem-
potent (e.g., if R has a nontrivial group of units then certainlyΓ1(R) is disconnected).
On the other hand, the statements in Theorem 4 were generalized in [35] as follows
(note the similarities with Theorem 4 in the case where x = 0).

Theorem 5 Let x be an idempotent element of a commutative ring R.

1. If R has identity then Γx (R) is finite if and only if (1 − x)R and U (R) are finite.
2. If x R is Boolean then Γx (R) is connected, and the converse holds if R is von

Neumann regular.
3. Suppose that R has identity. If Γx (T (R)) is connected then Γx (T (R)) ∼= Γx(R).

More generally, if v is a vertex of a component G of Γx (R), and if H is the
component of Γx (T (R)) containing v, then H ∼= G.

Proof The statements in (2) hold by [35, Theorems 4.1 and 5.7], and (1) and (3)
follow by [35, Corollary 3.1 and Theorem 4.6]. �

In fact, the following characterization shows that if x is idempotent then the
structure of Γx (R) is strikingly similar to that of a zero-divisor graph. Recall that if
G and H are graphs then the direct product G × H is the graphwhose vertices are the
elements of V (G) × V (H) such that two vertices (a, b) and (x, y) are adjacent if and
only if a is adjacent to x in G, and b is adjacent to y in H . Also, denote the complete
graph of order n by Kn , and let Γ ∗

0 (R) be the unrestricted zero-divisor graph of R
with V (Γ ∗

0 (R)) = V (Γ0(R)) such that (not necessarily distinct) a, b ∈ V (Γ ∗
0 (R))

are adjacent if and only if ab = 0.

Theorem 6 Let x be an idempotent element of a commutative ring R. If G is a
component of Γx (R) then the following statements hold.

1. y2 = x for some y ∈ V (G) if and only if G ∼= Γ0(annR(x)).
2. y2 	= x for every y ∈ V (G) if and only if G ∼= K2 × Γ ∗

0 (annR(x)).

In particular, Γx(R) is isomorphic to the zero-divisor graph Γ (S) of a commutative
ring S if and only if Γx (R) is connected.

Proof The statements in (1) and (2) are given in [35, Theorem 3.1], and then the
“in particular” part follows by setting y = x in (1) since if Γx(R) is connected then
x ∈ V (Γx (R)) = V (G) (cf. [35, Corollary 2.6]). �
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1.3 General Divisors

What if x is not idempotent? With the exception of the first statement in Theorem
5(3) (see Question 1), all questions regarding the generalizability of Theorems 5
and 6 will be answered in the negative. On the other hand, Sect. 2 is devoted to
showing that these results extend rather nicely if R is a von Neumann regular ring
(except for the second assertion of Theorem 5(2) and the “in particular” statement of
Theorem 6).

First, let R = Z2[X ], and set x = X . Then r R is infinite for every r 	= 0, but
Γx

∼= K2 (the complete graph on {1, x}). Thus, Theorem 5(1) does not hold if the
“idempotent” condition is dropped.

Next, consider Theorem 5(2). Let I = X3
Z5[X ], and define R = (X + I )Z5

[X ]/I . If x = X2 + I then x R is the trivial (hence Boolean) ring, but Γx (R) is
the disjoint union of two complete graphs K5 (on the vertex-sets {X + r X2 | r ∈ Z5}
and {4X + r X2 | r ∈ Z5}, respectively), and a complete bipartite graph K5,5 (with
partite sets {2X + r X2 | r ∈ Z5} and {3X + r X2 | r ∈ Z5}, respectively). Hence,
the “idempotent” condition is necessary in the first assertion of Theorem 5(2). Also,
the graph Γ2(Z3) ∼= K2 is connected even though Z3 is von Neumann regular and
2Z3 = Z3 is not Boolean. Therefore, the “idempotent” condition cannot be dropped
in the second part of Theorem 5(2).

The situation regarding Theorem 5(3) is nontrivial, and it is addressed below
(where it will be shown that its second assertion does not generalize; also, see Ques-
tion 1 regarding the first assertion). Thus, we consider Theorem 6 next. Note that
if R = Z8 then 22 = 4 while the component of Γ4(R) that contains 2 is a complete
graph on {2, 6}. However, Γ0(annR(4)) = Γ0({0, 2, 4, 6}) is a graph on four ver-
tices. Also, if R = Z4 then y2 	= 2 for every y ∈ R while Γ2(R) is a path on the
three vertices 1, 2, and 3, but K2 × Γ ∗

0 (annR(2)) is easily checked to be a cycle on
four vertices. Therefore, assertions (1) and (2) of Theorem 6 do not generalize to
elements x that are not idempotent. Furthermore, the graph Γ(0,2)(Z2 × Z3) is a path
on the four vertices (1, 1), (0, 2), (0, 1), and (1, 2), which is a connected graph that
is not a zero-divisor graph (in a zero-divisor graph, every nonzero vertex is adjacent
to the vertex 0; also, cf. [11, Example 2.1(b)]). Hence, the “in particular” statement
of Theorem 6 need not hold if x is not idempotent.

The next example provides a commutative ring R such that T (R) is von Neumann
regular, and R contains an element x such that Γx (R) has a component of diameter at
least four. By appealing to results fromSect. 2, it will follow that the second statement
of Theorem 5(3) does not extend to elements x that are not idempotent. The next
lemma handles the technical aspects of the example. Throughout, the leading terms
of polynomials will be defined with respect to the lexicographic monomial ordering
induced by X1 > X2 > X3 > X4 > X5 > Y .

Lemma 1 Let I be the ideal of D = Z2[X1, X2, X3, X4, X5,Y ] (where X1, . . . , X5

and Y are algebraically independent indeterminates) that is generated by {Xi Xi+1 +
Y | i ∈ {1, 2, 3, 4}}. The following statements hold.
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1. If r ∈ X2 + X−1
1 I and s ∈ X4 + X−1

5 I then rs /∈ Y + I .
2. If r ∈ D such that r X1 ∈ Y + I then r ∈ X2 + X−1

1 I .
3. If r ∈ D such that r X5 ∈ Y + I then r ∈ X4 + X−1

5 I .
4. If r ∈ D such that r X1 ∈ Y + I then r X5 /∈ Y + I .
5. If R = D/I then T (R) is von Neumann regular.

Proof Let r = X2 + h and s = X4 + k, where h ∈ X−1
1 I and k ∈ X−1

5 I . If rs = Y +
i for some i ∈ I then X1X5(X2X4 + X2k + X4h + hk) = X1X5rs = X1X5(Y + i),
and hence X1X2X4X5 + X1X5Y = X1X2X5k + X1X4X5h + X1X5hk + X1X5i ∈
I . But it is straightforward to check (e.g., using Buchberger’s Criterion, and remem-
bering that D has characteristic 2) that

G = {Xi Xi+1 + Y | i ∈ {1, 2, 3, 4}} ∪ {X1Y + X5Y, X2Y + X4Y, X3Y + X5Y }

is a Gröbner basis for I , and therefore the containment

X1X2X4X5 + X1X5Y

= X4X5(X1X2 + Y ) + Y (X4X5 + Y ) + X5(X1Y + X5Y ) + X2
5Y + Y 2

∈ X2
5Y + Y 2 + I

shows (e.g., by [29, Theorem 9.6.23], and noting that none of the terms of X2
5Y + Y 2

are divisible by any of the leading terms of the elements of G ) that X1X2X4X5 +
X1X5Y /∈ I . Thus, rs /∈ Y + I , which verifies (1).

To prove (2), let r1, r2, r3, r4 ∈ D such that r X1 = Y + ∑4
i=1 ri (Xi Xi+1 + Y ).

The polynomials r2, r3, r4 ∈ D do not have any nonzero constant terms (because
there is no i ∈ {2, 3, 4} such that Xi Xi+1 is a term of r X1), and it follows that
r1 = f + 1 for some f ∈ D that has no nonzero constant term (since Y is not a
term of r X1). Then X1X2 is a term of r X1, and hence r = X2 + g for some g ∈ D
such that X2 is not a term of g. Thus, (2) follows since X1g = X1X2 + r X1 =
X1X2 + Y + ∑4

i=1 ri (Xi Xi+1 + Y ) ∈ I , and (3) holds symmetrically.
Suppose that r ∈ D such that r X1 ∈ Y + I . By the proof of (2), r = X2 + g for

some g ∈ D such that X2 is not a term of g. Hence, if r X5 ∈ Y + I then there exist
r1, r2, r3, r4 ∈ D such that X2X5 + gX5 = r X5 = Y + ∑4

i=1 ri (Xi Xi+1 + Y ). But
X2X5 is not a term of the latter expression, so the previous equality cannot hold
unless X2 is a term of g. Thus, (4) follows, and it remains to prove (5).

Since every Noetherian ring with a trivial nilradical has a von Neumann regular
total quotient ring [37, e.g., Propositions 2.4.1 and 4.6.5], it is sufficient to verify that
I is a radical ideal. But the ideal L = (X1X2, X2X3, X3X4, X4X5, X1Y, X2Y, X3Y )

of D generated by the leading terms of the Gröbner basis G provided above is
radical since its generators are square-free monomials [30, Lemma 2.5.3], and it
follows that I is a radical ideal: Indeed, if r ∈ D then (general) polynomial division
by the elements ofG yields f, g ∈ Dwith r = f + g such that f ∈ I and no nonzero
monomial term of the “remainder” g is divisible by any of the given generators of
L [29, Sect. 9.6]. Thus, if rn ∈ I then gn = (r − f )n ∈ I and hence, since G is a
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Gröbner basis, either g = 0 or the leading term of gn belongs to L . But L is a radical
ideal, so either g = 0 or the leading term of g belongs to L . The latter scenario
contradicts the choice of g, so r = f + g = f ∈ I . �

Example 1 Let R be the ring defined in Lemma 1(5). Note that the vertices X1 + I ,
X2 + I , X3 + I , X4 + I , X5 + I of the graph ΓY+I (R) belong to a path of length
four. Also, Lemma 1(4) implies that ΓY+I (R) contains no vertex that is adjacent to
both X1 + I and X5 + I , eliminating the possibility of any path between X1 + I and
X5 + I of length two.But if r + I is adjacent to X1 + I , and s + I is adjacent to X5 +
I , then r ∈ X2 + X−1

1 I and s ∈ X4 + X−1
5 I by Lemma 1(2) and (3), respectively.

Therefore r + I is not adjacent to s + I by Lemma 1(1), and this eliminates the
possibility of any path between X1 + I and X5 + I of length one or three. Hence,
every path in ΓY+I (R) between X1 + I and X5 + I has length at least four.

Let G be the component of ΓY+I (R) that contains X1 + I . If S is a commutative
ring then Γ0(S) has diameter at most two (as every vertex is adjacent to 0) and
K2 × Γ ∗

0 (S) has diameter at most three (as every vertex is adjacent to one of the two
elements of V (K2) × {0}). Therefore, since T (R) is vonNeumann regular, Corollary
1 in Sect. 2.2 implies that G is not isomorphic to any component of ΓY+I (T (R)).
Hence, the second statement of Theorem 5(3) fails in the case x = Y + I .

Regarding the generalizability of Theorems 5 and 6, the following question
remains unanswered.

Question 1 Let x be an element of a commutative ring R with identity. Does
Γx (T (R)) ∼= Γx (R) hold if Γx (T (R)) is connected?

Furthermore, in contrast to idempotent-divisor graphs, Example 1 provides a graph
Γx (R) containing a component of diameter at least four, and the next question is left
open.

Question 2 Let x be an element of a commutative ring R, and suppose that G is a
component of Γx(R). Does there exist a bound on the diameter of G?

1.4 The Shape of Unique Factorization

Let R be an atomic integral domain. If x ∈ R \ (U (R) ∪ {0}) then define �(x) =
sup{n | n ∈ N and x = p1 . . . pn for some p1, . . . , pn ∈ irr(R)} ∈ N ∪ {∞}. It is
clear that �(xy) ≥ �(x) + �(y) for all x, y ∈ R \ (U (R) ∪ {0}), and R is a BFD if
and only if �(x) < ∞ for every x ∈ R \ (U (R) ∪ {0}). (In fact, it is interesting to
note that [2, Theorem 2.4] shows that BFDs are completely characterized by the
existence of a function � : R \ {0} → N ∪ {0} that is positive at nonunits and obeys
the inequality �(xy) ≥ �(x) + �(y) for every x, y ∈ R \ {0}.)

Continuing in the spirit of relating general divisor graphs to zero-divisor graphs,
we offer the following observations. To avoid disruption, the proofs of Propositions
4 and 5 are postponed until the end of this section.
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Proposition 4 Suppose that R is an atomic integral domain, and let x ∈ R \
(irr(R) ∪U (R)) be square-free with a unique factorization (up to order and asso-
ciates) into a product of irreducible elements of R. If B is the finite Boolean ring of
order 2�(x) then following statements hold.

1. (ΓE )d
×

x
∼= Γ (B).

2. If either U (R) 	= {1} or �(x) ≥ 3 then Γ̃ d×
x

∼= Γ (B).

3. If U (R) = {1} and �(x) = 2 then Γ̃ d×
x

∼= Γ̃ (B) ∼= K1.

In particular, if R is a UFD then these statements hold for every square-free x ∈
R \ (irr(R) ∪U (R)).

Naturally, Proposition 4 suggests the question of whether a graph-theoretic char-
acterization of UFDs can be given by the condition “(ΓE )d

×
x is isomorphic to the zero-

divisor graphof afiniteBoolean ring for every square-free x ∈ R \ (irr(R) ∪U (R)).”
However, the next result shows that this is not possible.

Proposition 5 Let K1 be a proper subfield of a quadratically closed field K2 (that is,
for every b ∈ K2 there exists c ∈ K2 such that c2 = b), and set R = K1 + XK2[X ].
Then R is a non-UFD such that every square-free F ∈ R \U (R) has a unique
factorization (up to order and associates) into a product of irreducible elements of
R. In particular, (ΓE )d

×
x is isomorphic to the zero-divisor graph of a finite Boolean

ring for every square-free x ∈ R \ (irr(R) ∪U (R)).

In search of a characterization of UFDs in terms of the graphs (ΓE )d
×

x (respectively,
Γ̃ d×
x ), we have shown that the condition given prior to Proposition 5 admits too

many rings. Naively, one might suggest removing the “square-free” assumption,
but this would certainly be too restrictive (e.g., the ring of integers Z is a UFD
but (ΓE )d

×
12 (Z) = Γ̃ d×

12(Z) is a path on the four vertices [4], [3], [2], and [6], which
is not even a zero-divisor graph [11, Example 2.1(b)]). What is the appropriate
compromise?

A subgraph H of a simple graph G is called a clique if it is a complete graph,
and it is called dominant if every vertex of G is either a vertex of H or adjacent to a
vertex of H . For example, if B � Z2 is a finite Boolean ring (which, for convenience,
may be regarded as the power-set of a finite set S; see the proof of Proposition 4)
then the subgraph H of Γ (B) that is induced by the singleton subsets of S is a
dominant clique. The following theorem shows how these concepts yield a condition
that gives a purely graph-theoretic classification of UFDs (without any knowledge
of irreducible elements).

Let Z≥0 denote the (additive) monoid of nonnegative integers. Given a nonempty
indexing set I , the monoid

⊕
I Z≥0 is partially ordered (under the usual product

order) with least element equal to its identity 0. Recall that if α ∈ ⊕
I Z≥0 then

Γ≤α(
⊕

I Z≥0) is the graphwhose vertices are the elements of (0, α) = {β ∈ ⊕
I Z≥0

| 0 < β < α} such that two distinct vertices v and w are adjacent if and only if
v + w ≤ α (see the discussion prior to Proposition 3). If (0, α) 	= ∅ then α will be
called a non-minimal nonzero element. Thus, Γ≤α(

⊕
I Z≥0) is not null if and only if

α ∈ ⊕
I Z≥0 is a non-minimal nonzero element.
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Theorem 7 The following statements are equivalent for an integral domain R.

1. R is a UFD.
2. If x ∈ R \ {0} then (ΓE )d

×
x is either a null graph, or (ΓE )d

×
x

∼= Γ≤α(
⊕

I Z≥0) for
some finite indexing set I and non-minimal nonzero α ∈ ⊕

I Z≥0.
3. If x ∈ R \ {0} then (ΓE )d

×
x is either a null graph, or a finite graph that contains

a dominant clique.
4. If x ∈ R \ {0} then Γ̃ d×

x is either a null graph, or a finite graph that contains a
dominant clique.

The proof of Theorem 7 (which is the main objective of Sect. 3.2) reveals that the
vertices of the aforementioned dominant cliques can be taken to be the (equivalence
classes of the) vertices of the complete graph in Theorem 1 (although, the dominant
clique need not be unique; e.g., the sets {[2]}, {[2], [4]}, and {[2], [8]} induce three
distinct dominant cliques in (ΓE )d

×
16 (Z) = Γ̃ d×

16(Z)). On the other hand, in contrast to

Theorem 1, (ΓE )d
×

x (respectively, Γ̃ d×
x ) may be connected for every nonzero nonunit

x ∈ R even if R is not a UFD. Furthermore, while Theorem 1 is given without
imposing any “finite” conditions on G(x), the “finite” assumptions in Theorem 7
cannot be dropped. We close this section with an example to illustrate these claims,
along with the proofs of Propositions 4 and 5.

Example 2 Let C[X; Q≥0] = {∑i∈Q≥0
ai Xi | ai ∈ C with ai = 0 for all but finitely

many i} be the monoid domain induced by Xi X j = Xi+ j , where Q≥0 is the
additive monoid of nonnegative rational numbers (see [31] for more on monoid
domain constructions). Define R = C[X; Q≥0]m, where m = ∑{Xq

C[X; Q≥0] |
q ∈ Q≥0 \ {0}}. Then R is an integral domain that is not a UFD (in fact, irr(R) = ∅;
cf. [4, Theorem 1] or [26, Proposition 2.3]).

If x ∈ R is a nonzero nonunit then x = Xq f for some q ∈ Q≥0 \ {0} and f ∈
U (R), and if y, z ∈ V (Γ d×

x ) then y = Xi g and z = X jh for some g, h ∈ U (R) and
i, j ∈ Q≥0 with i, j < q. Hence, if n ∈ Q≥0 \ {i, j} with 0 < n < min{q − i, q −
j} then Xn ∈ N (y) ∩ N (z), which shows that Γ d×

x (and hence (ΓE )d
×

x and Γ̃ d×
x ) is

connected. In fact, similar reasoning shows that the set {Xn | n ∈ Q≥0 \ {0} and
n ≤ q/2} induces a dominant clique of Γ d×

x , and hence (ΓE )d
×

x and Γ̃ d×
x also contain

dominant cliques.

Proof of Proposition 4. Suppose that x = p1 . . . pn (n ≥ 2), where p1, . . . , pn ∈
irr(R) are mutually nonassociate (by the “square-free” hypothesis), and let B be
the power-set of P = {p1, . . . , pn}. Thus, �(x) = n, and B is a Boolean ring of
order 2n (with addition given by symmetric-difference, and multiplication given by
∩). Moreover, it is straightforward to check that if n = 2 then (ΓE )d

×
x

∼= K2 (on the
vertices p1 and p2),while Γ̃ d×

x
∼= K2 (on the vertices [p1] and [p2]) ifU (R) 	= {1}, and

Γ̃ d×
x

∼= K1 (on the vertex [p1] = [p2]) ifU (R) = {1}. The result follows immediately
for the case when �(x) = 2, so it remains to prove (1) and (2) when �(x) ≥ 3.

Henceforth, suppose that n ≥ 3. Note that Γ̃ d×
x = (ΓE )d

×
x by Proposition 6 in

Sect. 3.1. Therefore, it is sufficient to prove that (ΓE )d
×

x
∼= Γ (B).
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It is clear that V ((ΓE )d
×

x ) = {∏ S | S ∈ B \ {∅, P}} (indeed, if r ∈ d(x)× then
“unique factorization” guarantees that r and

∏
S are associates for some S ∈ B \

{∅, P}). Also, since x is square-free, two vertices
∏

S1 and
∏

S2 are adjacent in
(ΓE )d

×
x if and only if

∏
(S1 � S2) = (

∏
S1)(

∏
S2) ∈ d(x), if and only if S1 � S2 ⊆

P , if and only if S1 ∩ S2 = ∅. Therefore, the mapping V (Γ (B)) → V ((ΓE )d
×

x ) by
S �→ ∏

S for every S ∈ B \ {∅, P} preserves and reflects adjacency. Thus, it is an
graph-isomorphism because the “unique factorization” of x guarantees that it is
injective, and it is surjective since clearly V (Γ (B)) = B \ {∅, P}.

The “in particular” statement follows trivially. �
Proof of Proposition 5. Note that R is an HFD (hence, it is atomic) by [3, Theorem
5.3]. If a ∈ K2 \ K1 then aX and X are nonassociate irreducible elements of R, and
(aX)(a−1X) = X2. Therefore, R is not a UFD.

Next, observe that irr(R) ⊆ irr(K2[X ]). To see this, it is enough to show that if
f, g ∈ K2[X ] \ K2 with f /∈ R and f g ∈ R then f g = rs for some r, s ∈ R \ K1.
But if f /∈ R and f g ∈ R then f ∈ a + XK2[X ] for some a ∈ K2 \ K1, and either
g ∈ a−1K1 + XK2[X ] or g ∈ XK2[X ]. In any case, it follows that a−1 f, ag ∈ R \
K1 with

(
a−1 f

)(
ag

) = f g, and the claim is verified.
Let F ∈ R \ (U (R) ∪ {0}). It will be shown that either F factors uniquely (up to

order and associates) into a product of irreducible elements of R, or F is not square-
free. Note that either F ∈ u + XK2[X ] for some u ∈ K1 \ {0}, or F ∈ XK2[X ], so
first assume that F ∈ u + XK2[X ].

Every irreducible factor of F in R belongs to v + XK2[X ] for some v ∈ K1 \ {0}.
But irr(R) ⊆ irr(K2[X ]), so the existence of two “distinct” factorizations of F into
products of irreducibles in R would imply (since K2[X ] is a UFD) that F has two
nonassociate (in R) irreducible factors f and g that are associates in K2[X ]. That is,
there exist v1, v2 ∈ K1 \ {0} and distinct f ∈ v1 + XK2[X ] and g ∈ v2 + XK2[X ]
such that f = ag for some a ∈ K2 \ K1. This contradicts that v1 ∈ K1, so F factors
uniquely (up to order and associates) in R.

Suppose that F ∈ XK2[X ]; say F = aX + h for some a ∈ K2 and h ∈ X2K2[X ].
If a 	= 0 then F = aX (1 + h/(aX)) is a factorization of F in R. Thus, since K2[X ]
is a UFD, every factorization of F into irreducible elements of R includes a K2[X ]-
associate of aX . But if b ∈ K2 such that F = bX (ab−1 + h/(bX)) is a factorization
in R then ab−1 ∈ K1, i.e., a ∈ bK1, so aX and bX are associates in R. Moreover,
1 + h/(aX) and ab−1 + h/(bX) are associates in R and, since the above argument
implies that 1 + h/(aX) ∈ 1 + XK2[X ] factors “uniquely” in R, it follows again
that any factorization of F in R is unique (up to order and associates).

Finally, suppose that a = 0. Then there exists n ≥ 2 such that F = bXn + h′
for some b ∈ K2 \ {0} and h′ ∈ Xn+1K2[X ]. Thus, if c ∈ K2 with c2 = b then F =
(cX)2(Xn−2 + h′/(bX2)) is a factorization in R. Therefore, if a = 0 then F is not
square-free.

It has been verified that if F ∈ R \U (R) is square-free then F factors uniquely
(up to order and associates) into a product of irreducible elements of R. The “in
particular” statement follows by Proposition 4. �
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2 von Neumann Regular Rings

In this section, it is shown that the “idempotent” hypotheses in Theorems 5 and 6
can be dropped if R is a von Neumann regular ring, with the exception of the second
assertion of Theorem 5(2) (consider the von Neumann regular ring Z3 and the graph
Γ2(Z3) thatwasmentioned in the discussion prior to Lemma1) and the “in particular”
statement of Theorem 6 (consider the von Neumann regular ring Z2 × Z3 and the
graph Γ(0,2)(Z2 × Z3) that was mentioned in the discussion prior to Lemma 1). If
R is von Neumann regular then T (R) = R, so Theorem 5(3) holds trivially (even if
Γ (T (R)) is not connected). Hence, the arguments of this section focus on Theorem
5(1), the first assertion of Theorem 5(2), and statements (1) and (2) of Theorem 6.

Recall that a commutative ring R is von Neumann regular if for every r ∈ R
there exists tr ∈ R such that r = r2tr (note that tr is not necessarily unique, but this
is a harmless abuse of notation whose convenience will be enjoyed throughout).
Also, the element er defined by er = r tr is idempotent, and rer = r (note that er is
unique since if r = r2s = r2t then r t = r2st = (rs)(r t) and, symmetrically, rs =
(rs)(r t)). These facts, along with the observations in the following lemma, will be
used repeatedly.

Lemma 2 Let r and s be elements of a commutative von Neumann regular ring R.
If s divides r then eser = er . In particular, esr = r .

Proof Let w ∈ R such that sw = r . Then er = r tr = swtr = (s2ts)wtr = (sts)
swtr = esr tr = eser , and then the “in particular” statement holds by multiplying
by r . �

2.1 Generalization of Theorem 5

To begin, consider the assertions of Theorem 5. First, it is proved that the state-
ment in (1) generalizes if R is von Neumann regular. Note that both conditions in
Theorem 8 below are necessary to conclude that Γx (R) is finite. For example, con-
sider the von Neumann regular rings Q and

∏∞
i=1 Z2. If x = 1 then Γx (Q) is infinite

even though (x − 1)Q = {0} is finite, and Γ(1,0,0,...)(
∏∞

i=1 Z2) is infinite even though
U (

∏∞
i=1 Z2) = {1} is finite.

Theorem 8 Let x be an element of a commutative von Neumann regular ring R with
identity. Then Γx (R) is finite if and only if (1 − x)R and U (R) are finite.

Proof Suppose that (1 − x)R andU (R) are finite. If r ∈ R then (r + 1 − er )(er tr +
1 − er ) = 1, so the set A = {r + 1 − er | r ∈ V (Γx (R))} ⊆ U (R) is finite. Note that
if r ∈ V (Γx (R)) then er ex = ex by Lemma 2, so multiplying by x yields er x = x .
Hence, the set {r x | r ∈ V (Γx(R))} = {(r + 1 − er )x | r ∈ V (Γx (R)} = {ax | a ∈
A} is finite. But {r(1 − x) | r ∈ V (Γx (R))} ⊆ (1 − x)R is also finite, and therefore
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V (Γx (R)) = {r | r ∈ V (Γx (R))} = {r x + r(1 − x) | r ∈ V (Γx (R))} is finite. This
verifies the “if” portion of the result.

Conversely, if u ∈ U (R) then u(u−1x) = x , so u ∈ V (Γx(R)). Therefore, if
Γx (R) is finite then U (R) is finite. By way of contraposition, we next assume
that (1 − x)R is infinite, and prove that Γx (R) is infinite. Note that the equality
a = aex + a(1 − ex ) implies that either {aex | a ∈ (1 − x)R} is infinite or {a(1 − ex )
| a ∈ (1 − x)R} is infinite.

If {a(1 − ex ) | a ∈ (1 − x)R} is infinite then B = {ex + a(1 − ex ) | a ∈ (1 −
x)R} is infinite, and B ⊆ V (Γx (R)) since bx = x for every b ∈ B. Thus, if {a(1 −
ex ) | a ∈ (1 − x)R} is infinite then Γx (R) is infinite. Therefore, assume that {aex |
a ∈ (1 − x)R} is infinite.

If {eaex | a ∈ (1 − x)R} is finite then C = {aex + ex − eaex | a ∈ (1 − x)R} is
infinite, and the equality (aex + ex − eaex )(x + xtaex eaex − xeaex ) = x shows that
C ⊆ V (Γx (R)). Hence, if {eaex |a ∈ (1 − x)R} is finite thenΓx (R) is infinite.Hence-
forth, suppose that {eaex | a ∈ (1 − x)R} is infinite.

The set D = {ex − xeaex | a ∈ (1 − x)R} is infinite; indeed, if xeaex = xebex
for some a, b ∈ (1 − x)R then multiplying by tx yields exeaex = exebex , and hence
eaex = ebex by Lemma 2 since x(txa) = aex and x(txb) = bex .Moreover, if a ∈ (1 −
x)R then (ex − xeaex )(x + xeaex t1−x − xeaex ) = x + xeaex t1−x − xeaex − x2eaex −
x2eaex t1−x + x2eaex = x − xeaex + x(1 − x)eaex t1−x = x − xeaex + xe1−x eaex =
x − xeaex + xeaex = x , where the fourth equality holds by Lemma 2 since a ∈
(1 − x)R. Therefore, D ⊆ V (Γx (R)), and it follow that Γx (R) is infinite. This
exhausts all cases, so if Γx (R) is finite then (1 − x)R and U (R) are finite. �

The following result proves that if R is von Neumann regular then the first state-
ment in Theorem 5(2) holds (albeit vacuously) without the “idempotent” condition.

Theorem 9 Let x be an element of a commutative von Neumann regular ring R.
If x R is Boolean then x is idempotent. In particular, if x R is a Boolean ring then
Γx (R) is connected.

Proof The “in particular” statement holds if x is idempotent by Theorem 5(2), so it
suffices to verify that if x R is Boolean then x is idempotent. Since x R is Boolean,
the result will follow if x ∈ x R (which, of course, is obvious if R has identity). But
x = x2tx ∈ x2R ⊆ x R (actually, x2R = x R since x = x2tx ∈ x2R). �

2.2 Generalization of Theorem 6

Now, statements (1) and (2) of Theorem 6 will be generalized to include non-
idempotent elements x of a von Neumann regular ring R (Corollary 1). The
objective in Theorem 10 is to establish an isomorphism Γx

∼= Γex whenever there
exists y ∈ R such that y2 = x , and then Theorem 11 provides an isomorphism
G ∼= K2 × Γ ∗

0 (annR(x)) for any component G of Γx in the case where y2 	= x for
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every y ∈ R. The next lemma will be useful when proving that the desired isomor-
phisms are bijective.

Lemma 3 Let x be an element of a commutative von Neumann regular ring R. If
y ∈ R such that ex = ey then the following statements hold.

1. If r ∈ V (Γex ) then there exists s ∈ R such that (yr + r − exr)s = x.
2. If r, s ∈ R such that yr + r − exr = ys + s − exs then r = s.
3. If s ∈ V (Γx ) then there exists r ∈ V (Γex ) such that s = yr + r − exr .

Proof Set e = ex = ey . If r ∈ V (Γe) then there exists z ∈ Rwith r z = e, and then (1)
is easily verified by setting s = xzty . Also, multiplying the equality yr + r − er =
ys + s − es by e yields yr = ys, which becomes er = es upon multiplying by ty .
Hence, yr − er = ys − es, so if yr + r − er = ys + s − es then r = s, and this
proves (2).

To show that (3) holds, let z ∈ R such that sz = x . Define r = etys + s −
es. Then r ∈ V (Γe) since r(yts) = e(yty)(sts) + y(sts) − (ey)(sts) = eees + yes −
yes = e, where the last equality follows by Lemma 2. Similarly, straightforward
computations show that yr = es and er = etys, and hence yr + r − er = es + r −
etys = s, where the last equality holds by the definition of r . �

The following theorem shows that if x is a perfect square in a von Neumann
regular ring then Γx is identical to an idempotent-divisor graph.

Theorem 10 Let x be an element of a commutative von Neumann regular ring R.
If there exists y ∈ R such that y2 = x then Γx

∼= Γex .

Proof The equality ex = eyex holds by Lemma 2. Moreover, ey = e2y = (yty)2 =
xt2y = xex t2y = y2ex t2y = (yty)2ex = e2yex = eyex . Henceforth, set e = ex = ey . It
will be proved that the mapping ϕ : V (Γe) → V (Γx) defined by

ϕ(r) = yr + r − er

is a graph-isomorphism.
Note that ϕ is well defined by Lemma 3(1), and it is bijective by Lemma 3(2) and

(3). Thus, it remains to show that ϕ preserves and reflects adjacency relations, and it
is sufficient to verify that if r, s ∈ V (Γe) then rs = e if and only if ϕ(r)ϕ(s) = x .

If rs = e then the equalities ϕ(r)ϕ(s) = (yr + r − er)(ys + s − es) = y2e =
xe = x are easily verified. Thus, suppose that ϕ(r)ϕ(s) = x . That is, x = (yr + r −
er)(ys + s − es) = xrs + rs − ers. Multiplying by e yields the equality x = xrs,
from which e = ers is deduced by multiplying by tx . Therefore, rs = x − xrs +
ers = x − x + e = e. �

Let e be an idempotent element of a commutative ring R, and letGe be the compo-
nent of Γe that contains the vertex e. Define G∗

e to be the unrestricted component of
Γe containing e, where V (G∗

e) = V (Ge) and (not necessarily distinct) r, s ∈ V (G∗
e)
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are adjacent if and only if rs = e (in particular, G∗
0 = Γ ∗

0 (R) is the unrestricted
zero-divisor graph of R, as defined in Sect. 1.2).

It is proved in [35, Proposition 2.5(1)] that if r is a vertex of Ge then re = e.
This fact will be used freely in the proof of the next theorem, which addresses the
structure of Γx when x is not a perfect square.

Theorem 11 Let x be an element of a commutative von Neumann regular ring R. If
y2 	= x for every y ∈ R then G ∼= K2 × Γ ∗

0 (annR(x)) for every component G of Γx .

Proof Let G be a component of Γx , and set e = ex . Since y2 	= x for every y ∈ R,
it follows that |V (G)| ≥ 2. Hence, there exist v1, v2 ∈ V (G) that are adjacent in G.

Let yi = vi e (i ∈ {1, 2}). Then y1y2 = v1v2e2 = xe = x , and therefore y1 	= y2
since y2i 	= x . Furthermore, since y1y2 = x and vi xtx = vi e = yi , Lemma 2 implies
eyi e = e and eyi e = eyi , respectively. Thus, ey1 = e = ey2 .

Suppose thatGe is the component ofΓe containing the vertex e. Clearly annR(x) =
annR(e) (indeed, e = xtx and xe = x). Also, [35, Proposition 2.5(2)] shows that
V (Ge) and annR(e) are isomorphic (multiplicative) semigroups under a mapping
that satisfies e �→ 0, so G∗

e
∼= Γ ∗

0 (annR(x)). Therefore, it is enough to show that
G ∼= K2 × G∗

e . Hence, let V (K2) = {1, 2}, and define ϕ : V (K2 × G∗
e) = {1, 2} ×

V (Ge) → V (G) by

ϕ(i, r) =
{
y1 + r − e, i = 1
y2 + r − e, i = 2

.

Pick i ∈ {1, 2}. If r ∈ V (Ge) then re = e (recall the above comments), so ifw ∈ R
with viw = x then the equalities (yi + r − e)(we) = vi ewe + we − we = xe = x
are easily verified. Hence, (yi + r − e)(we) = x = xe = vi (we), which shows that
yi + r − e and vi belong to the same component, i.e., yi + r − e ∈ V (G). Therefore,
ϕ is well defined.

Let i, j ∈ {1, 2}, and suppose that r, s ∈ V (Ge) such that ϕ(i, r) = ϕ( j, s).
Then yi = yi e = (yi + r − e)e = ϕ(i, r)e = ϕ( j, s)e = (y j + s − e)e = y j e = y j
(in particular, i = j , as it has already been observed that y1 	= y2), and therefore the
equalities r = ϕ(i, r) − yi + e = ϕ( j, s) − y j + e = s hold. Thus, ϕ is injective.

To prove that ϕ is surjective, let s ∈ V (G). By induction (since paths between
vertices of a connected graph are necessarily finite), generality is not lost by assuming
that s is adjacent to ϕ(i, r) for some i ∈ {1, 2} and r ∈ V (Ge). Furthermore, by
symmetry, it can be assumed that i = 1, so suppose that s is adjacent to ϕ(1, r) (in
particular, ϕ(1, r)s = x).

By Lemma 3(3), there exists ρ ∈ V (Γe) such that s = y2ρ + ρ − eρ.
Thus, x = ϕ(1, r)s = (y1 + r − e)(y2ρ + ρ − eρ) = xρ + y2rρ + rρ − eρ − y2ρ.
Multiplying by etx yields e = ee = etx x = etx (xρ + y2rρ + rρ − eρ − y2ρ) =
e(tx x)ρ + (er)tx y2ρ + (er)txρ − (ee)txρ − etx y2ρ = eeρ + etx y2ρ + etxρ − etx
ρ − etx y2ρ = eρ, and hence ρ ∈ V (Ge). Therefore, ϕ(2, ρ) = y2 + ρ − e = y2e +
ρ − eρ = y2(eρ) + ρ − eρ = (y2e)ρ + ρ − eρ = y2ρ + ρ − eρ = s.

To show that ϕ preserves adjacency, suppose that (i, r), ( j, s) ∈ V (K2 × G∗
e) are

adjacent. Then i 	= j and rs = e. Note that ϕ(i, r) 	= ϕ( j, s) since ϕ is injective, so
it is sufficient to verify that ϕ(i, r)ϕ( j, s) = x .
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The equalities er = e = es hold since r, s ∈ V (Ge). Hence, yi s = (vi e)s =
vi (es) = vi e = yi . Similarly, y jr = y j , and it follows that ϕ(i, r)ϕ( j, s) = (yi +
r − e)(y j + s − e) = yi y j = x .

To complete the proof, it only remains to show that ϕ reflects adjacency. Sup-
pose that (i, r), ( j, s) ∈ V (K2 × G∗

e) such that ϕ(i, r) and ϕ( j, s) are adjacent
in G. As noted above, the equalities yi s = yi and y jr = y j hold. Hence, if i =
j then x = ex = eϕ(i, r)ϕ(i, s) = e(yi + r − e)(yi + s − e) = e(y2i + rs − e) =
y2i , which contradicts the hypothesis. Therefore, i 	= j , and it is sufficient to ver-
ify that rs = e. But this follows immediately from x = ϕ(i, r)ϕ( j, s) = (yi + r −
e)(y j + s − e) = x + rs − e, and the proof is complete. �

Theorems 10 and 11 are summarized in the following corollary, which completes
the task of determining the extent to which statements (1) and (2) of Theorem 6
generalize to non-idempotent elements of von Neumann regular rings.

Corollary 1 Let x be an element of a commutative von Neumann regular ring R. If
G is a component of Γx then the following statements hold.

1. y2 = x for some y ∈ V (G) if and only if G ∼= Γ0(annR(x)).
2. y2 	= x for every y ∈ V (G) if and only if G ∼= K2 × Γ ∗

0 (annR(x)).

Proof It is not difficult to check that Γ0(annR(x)) � K2 × Γ ∗
0 (annR(x)) (details are

given in the first paragraph of the proof of [35, Theorem 3.1]), so it is sufficient
to prove the “only if” portions of (1) and (2). Thus, suppose that y2 = x for some
y ∈ V (G). The first paragraph of the proof of Theorem 10 shows that ey = ex , and
then it was proved that ϕ : V (Γex ) → V (Γx ) defined by ϕ(r) = yr + r − exr is a
graph-isomorphism. In particular, since ϕ(ex ) = y, the restrictedmap ϕ : V (Gex ) →
V (G) is a well-defined graph-isomorphism. Hence, G ∼= Gex

∼= Γ0(annR(ex )) ∼=
Γ0(annR(x)), where the second and third isomorphisms follow from Theorem 6(1)
and the equality annR(ex ) = annR(x), respectively. Therefore, the “only if” state-
ment in (1) holds.

Suppose that y2 	= x for every y ∈ V (G). If z2 	= x for every z ∈ R then the
result follows by Theorem 11. Thus, suppose that z ∈ R such that z2 = x . As before,
ez = ex , and the mapping ϕ : V (Γex ) → V (Γx ) defined by ϕ(r) = zr + r − exr is
a graph-isomorphism.

To the contrary, suppose that G � K2 × Γ ∗
0 (annR(x)). Since G is isomorphic to

the component of Γex that is induced by ϕ−1(V (G)), it follows by Theorem 6(1)
that r2 = ex for some r ∈ ϕ−1(V (G)). But then ϕ(r)2 = (zr + r − exr)2 = z2 = x ,
contradicting that y2 	= x for every y ∈ V (G). Hence, if y2 	= x for every y ∈ V (G)

then G ∼= K2 × Γ ∗
0 (annR(x)). �

3 Integral Domains

The main goal of this section is to provide a proof of Theorem 7, along with a graph-
theoretic characterization of FFDs. It is shown that an integral domain R is an FFD
if and only if (ΓE )d

×
x (R) (respectively, Γ̃ d×

x (R)) is a finite graph for every x ∈ R \ {0}
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(Theorem 13; cf. [25, Proposition 3.1]). To proceed, it is necessary to consider the
connection between associate elements of an integral domain R and equivalence
classes of vertices in Γ d×

x (R). This is done in Sect. 3.1, where it is proved that if
|[r ]| ≥ 3 then the relation r ≡ s holds if and only if r and s are associates in R.

To ease notation, set R′ = R \ (irr(R) ∪U (R) ∪ {0}). Thus, if x is a nonzero
element of an integral domain R then Γ d×

x (R) (and hence (ΓE )d
×

x (R) and Γ̃ d×
x (R)) is

not null if and only if x ∈ R′. Recall that two distinct vertices r and s of Γ d×
x (R)

(respectively, distinct vertices r and s of (ΓE )d
×

x (R), and distinct vertices [r ] and [s]
of Γ̃ d×

x (R)) are adjacent if and only if rs ∈ d(x), if and only if there exists q ∈ R such
that rsq = x . A graph is called totally disconnected if it has at least one vertex and
it has no edges. Also, the clique number of a graph G is 0 if G is null, and otherwise
it is sup{n ∈ N | G contains a clique of order n} ∈ N ∪ {∞}.

3.1 Equivalent Vertices and Associates

Suppose that R is an integral domain, and let x ∈ R′. The following lemma records
the basic observations that every equivalence class of ≡ in Γ d×

x induces a subgraph
of Γ d×

x that is either complete or totally disconnected, and if two vertices of Γ d×
x are

associates in R then they are equivalent in Γ d×
x .

Lemma 4 Let R be an integral domain. If x ∈ R′ then the following statements hold.

1. If r ∈ V (Γ d×
x ) then the subgraph of Γ d×

x induced by [r ] is either complete or
totally disconnected.

2. If r ∈ V (Γ d×
x ) and u ∈ U (R) then [r ] = [ur ].

Proof Suppose that the subgraph ofΓ d×
x induced by [r ] is neither complete nor totally

disconnected. Then there exist distinct q, s, t ∈ [r ] such that q and s are adjacent in
Γ d×
x , but q and t are not. Of course, this is absurd since s ≡ t , so the subgraph of Γ d×

x
induced by [r ] is either complete or totally disconnected.

To prove (2), note that if t ∈ N (r) \ {ur} then t /∈ {r, ur}, and there exists q ∈ R
such that r tq = x . Hence, (ur)tq ′ = x where q ′ = qu−1, and therefore t ∈ N (ur) \
{r}. This shows that N (r) \ {ur} ⊆ N (ur) \ {r}, and the reverse inclusion follows
similarly by noting that if (ur)tq = x then r tq ′ = x where q ′ = uq. Thus, r ≡ ur ,
i.e., [r ] = [ur ]. �

While it was straightforward to verify that associates are equivalent in Γ d×
x , the

core of this subsection is devoted to the converse. The following example shows that
it can fail, regardless of whether the subgraph induced by [r ] is complete or totally
disconnected.

Example 3 1. Let R = Z2[X2, X3]. The equivalence class [X2] = [X4] = {X2,

X4} induces a complete subgraph of Γ d×
X6. Also, X2 and X4 are not associates

in R.
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2. Let R = Z2[Y ]. The equivalence class [Y 2] = [Y 3] = {Y 2,Y 3} induces a totally
disconnected subgraph of Γ d×

Y 4. Also, Y 2 and Y 3 are not associates in R.

As a special case, however, it is not difficult to show that equivalent vertices
are necessarily associates whenever x is a square-free element of a UFD such that
�(x) ≥ 3. This is recorded in the next proposition (which was used in the proof
of Proposition 4). Note that Example 3(2) shows that the result does not extend to
general elements of UFDs.

Proposition 6 Suppose that R is anatomic integral domain, and let x ∈ R be square-
free with a unique factorization (up to order and associates) into a product of irre-
ducible elements of R. If �(x) ≥ 3 and r, s ∈ V (Γ d×

x ) then [r ] = [s] if and only if r
and s are associates.

Proof Let r, s ∈ V (Γ d×
x ), and set x = p1 . . . pn for some mutually distinct p1, . . . ,

pn ∈ irr(R) (n ≥ 3). Since R is atomic, unique factorization of x implies r and s
factor “uniquely” into products of associates of some of the irreducibles pi . If r and
s are not associates in R then it can be assumed, without loss of generality, that p1
divides r but does not divide s. Thus, if r 	= p1 then p1 is an element of N (s) \ {r}
that is not adjacent to r in Γ d×

x . But if r = p1 then it can be assumed, without loss
of generality, that p2 divides s, and it follows that either p2 or p2 p3 is an element of
N (r) \ {s} that is not adjacent to s in Γ d×

x . This shows that N (r) \ {s} = N (s) \ {r}
only if r and s are associates, and the converse holds by Lemma 4(2). �

The illustrations given in Example 3 are perhaps not very surprising sinceU (R) =
{1} (i.e., no two distinct elements are associates) in both cases. However, Theorem 12
and Corollary 2 show that if [r ] contains two elements that are not associates then it
is necessarily true that |[r ]| = 2 and U (R) = {1} (in particular, R has characteristic
equal to 2). Furthermore, in the case where the subgraph induced by [r ] = {r, s} is
totally disconnected, if r and s are not associates then the following lemma shows
that either r2 = x or s2 = x (and they cannot both equal x since if r2 = x = s2 then
the containment r ∈ {−s, s} implies r and s are associates). In this sense, Example
3 turns out to illustrate the unfavorable situation in a rather general way.

Lemma 5 Suppose that R is an integral domain, and let x ∈ R′. Assume that r, s ∈
V (Γ d×

x ) such that [r ] = [s] induces a totally disconnected subgraph of Γ d×
x . If r and

s are not associates, then x ∈ {r2, s2}.
Proof Suppose that r2 	= x . Since r ∈ d(x)×, there exists t ∈ d(x)× such that r t = x .
Note that t 	= r since r2 	= x , so r and t are adjacent inΓ d×

x . But t 	= s since rs /∈ d(x)
(as r and s are vertices of a totally disconnected subgraph), so the equality [r ] = [s]
implies that s and t are adjacent in Γ d×

x . Hence, there exists q ∈ R such that stq = x .
Thus, to prove that s2 = x , it remains to show that tq = s.

To the contrary, suppose that tq 	= s. In particular, the equality stq = x implies
that s and tq are adjacent in Γ d×

x . Also, tq 	= r since r and s are vertices of a totally
disconnected subgraph. Since [r ] = [s], it follows that r and tq are adjacent in Γ d×

x .
Hence, there exists p ∈ R such that r(tq)p = x , i.e., r tqp = r t . Thus, qp = 1, so
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q ∈ U (R). But the equality r t = x = stq implies that r = sq, and this contradicts
the hypothesis that r and s are not associates. Therefore, tq = s. �

The next result gives the analogue of Lemma 5 for the case where [r ] induces a
complete subgraph of Γ d×

x .

Lemma 6 Suppose that R is an integral domain, and let x ∈ R′. If [r ] induces a
clique of Γ d×

x and |[r ]| ≥ 3 then s2 ∈ d(x) for every s ∈ [r ].
Proof Let s ∈ [r ], and pick q, t ∈ [r ] such that q, s, and t are mutually distinct.
Since [r ] induces a clique, s is adjacent to both q and t . Hence, there exist j, k ∈ R
such that sq j = x = stk. Since q 	= t , we have sq 	= st , so either j 	= 1 or k 	= 1.
Without loss of generality, assume that j 	= 1. In particular, s 	= s j .

If q = s j then s2 j2 = sq j = x , and hence s2 ∈ d(x). If q 	= s j then q and s j are
adjacent in Γ d×

x , and it follows that s and s j are adjacent since s 	= s j and [s] = [q].
Thus, s2 j = s(s j) ∈ d(x), and therefore s2 ∈ d(x). �

The preparation to begin establishing the connection between≡ and the “associate
relation” is now in place. The next lemma handles the case when [r ] induces a
complete subgraph, and then the full result is provided in the following theorem.

Lemma 7 Suppose that R is an integral domain, and let x ∈ R′. Assume that r ∈
V (Γ d×

x ) such that |[r ]| ≥ 3. If [r ] induces a clique of Γ d×
x then r and s are associates

for every s ∈ [r ].
Proof Let s ∈ [r ]. ByLemma6, there exist j, k ∈ R such that r2 j = x = s2k. If r2 =
s2 then r ∈ {−s, s}, and the result follows. Also, if s = r j then x jk = (r2 j) jk =
(r j)2k = s2k = x , and thus jk = 1. In particular, j ∈ U (R), so r and s are associates.
Similarly, the result holds if r = sk. Henceforth, assume that r2 	= s2, s 	= r j , and
r 	= sk.

Since r2 	= s2, either j 	= 1 or k 	= 1. Without loss of generality, assume that
j 	= 1. Thus, r 	= r j , and hence r and r j are adjacent in Γ d×

x . But s 	= r j , so the
equality [r ] = [s] implies that s and r j are adjacent. It follows that there exists
q ∈ R such that rs jq = x . That is, rs jq = r2 j , and therefore r = sq ∈ (s).

By similar reasoning as above, if k 	= 1 then s ∈ (r). But if k = 1, i.e., if s2 = x ,
then rs jq = x = s2 implies s = r jq ∈ (r). In either case, the containments r ∈ (s)
and s ∈ (r) hold. Therefore, r and s are associates. �

Theorem 12 Suppose that R is an integral domain, and let x ∈ R′. If r ∈ V (Γ d×
x )

and |[r ]| ≥ 3 then r and s are associates for every s ∈ [r ].
Proof Let s ∈ [r ]. The desired outcome is trivial if r = s, so assume r 	= s. By
Lemmas 4(1) and 7, it only remains to verify the result for the case where [r ] induces
a totally disconnected subgraph of Γ d×

x . In particular, by Lemma 5, if x /∈ {r2, s2}
then there is nothing left to prove. Therefore, it is enough to verify that the condition
“x ∈ {r2, s2}” leads to a contradiction.

Without loss of generality, assume that r2 = x . Let t ∈ [r ] \ {r, s} = [s] \ {r, s}. If
s and t are not associates then, by Lemma 5, there exists q ∈ {s, t} such that q2 = x .
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Then q2 = r2, so q = −r (since q 	= r ). But this means rq(−1) = r2 = x , which
implies that r and q are adjacent in Γ d×

x . This contradicts that [r ] induces a totally
disconnected subgraph of Γ d×

x , so s and t are associates.
Let u ∈ U (R) such that s = ut . Then u 	= 1 since s 	= t , so r 	= ur . But

r(ur)u−1 = r2 = x , which implies r and ur are adjacent in Γ d×
x . By Lemma 4(2),

this contradicts that [r ] induces a totally disconnected subgraph, and the result
follows. �

This subsection is closed with a corollary to further demonstrate that the occur-
rence of nonassociate elements in [r ] is a rather special situation.
Corollary 2 Suppose that R is an integral domain such that U (R) 	= {1}, and let
x ∈ R′. If r, s ∈ V (Γ d×

x ) then [r ] = [s] if and only if r and s are associates. In
particular, this is the case if the characteristic of R is not equal to 2.

Proof If r and s are associates then [r ] = [s] by Lemma 4(2). Conversely, suppose
that [r ] = [s]. If s ∈ rU (R) then there is nothing left to show, so assume s /∈ rU (R).
If u ∈ U (R) \ {1} then ur 	= r , so ur , r , and s are distinct elements of [r ]. Thus,
|[r ]| ≥ 3, and it follows that r and s are associates by Theorem 12.

The “in particular” statement holds since if the characteristic of R is not equal to
2 then −1 ∈ U (R) \ {1}. �

3.2 FFDs and UFDs

Let R be an integral domain. Now, the results of Sect. 3.1 are applied to obtain
purely graph-theoretic characterizations of FFDs and UFDs. Statements that can be
applied to both (ΓE )d

×
x and Γ̃ d×

x will often be made simultaneously. For this, it will
be notationally convenient to regard (ΓE )d

×
and Γ̃ d×

as functions on the set R \ {0},
where (ΓE )d

×: R \ {0} → {(ΓE )d
×

x | x ∈ R \ {0}} is defined by the rule x �→ (ΓE )d
×

x ,
and Γ̃ d×: R \ {0} → {Γ̃ d×

x | x ∈ R \ {0}} is defined by the rule x �→ Γ̃ d×
x . Thus,

if G ∈ {(ΓE )d
×
, Γ̃ d×} and x ∈ R \ {0} then we shall write Gx = (ΓE )d

×
x whenever

G = (ΓE )d
×
, and otherwise Gx = Γ̃ d×

x .
It is shown in [25, Proposition 3.1] that an atomic integral domain R is an FFD if

and only if the irreducible divisor graph of x is finite for every x ∈ R \ (U (R) ∪ {0}).
By considering the graphs (ΓE )d

×
x and Γ̃ d×

x , we can drop the “atomic” hypothesis, and
the irreducible elements of R do not have to be acknowledged. It will be useful to
note that Lemma 4(2) implies that if r, s ∈ d(x)× such that [r ] and [s] are distinct
then r and s are distinct. In particular, the inequality |V (Γ̃ d×

x )| ≤ |V ((ΓE )d
×

x )| holds,
and if [r ] and [s] are adjacent in Γ̃ d×

x then r and s are adjacent in (ΓE )d
×

x .

Theorem 13 Suppose that R is an integral domain, and let G ∈ {(ΓE )d
×
, Γ̃ d×}. The

following statements are equivalent.

1. R is an FFD.
2. Gx is finite for every x ∈ R \ {0}.
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3. Gx has finite clique number for every x ∈ R \ {0}.
4. Gx has no infinite clique for every x ∈ R \ {0}.
Proof It is clear that (1) implies (2) since Gx is null (hence finite) if x ∈ irr(R) ∪
U (R), and if x ∈ R′ then (ΓE )d

×
x (and hence Γ̃ d×

x ) is finite since x has only finitely
many nonassociate irreducible divisors. Also, the implications (2) ⇒ (3) and (3) ⇒
(4) are trivial. It remains to prove that (4) implies (1).

By Lemma 4(2) and Theorem 12, it is straightforward to check that (ΓE )d
×

x has
an infinite clique if and only if Γ̃ d×

x has an infinite clique, so it is sufficient to verify
the result for G = (ΓE )d

×
. Hence, suppose that (ΓE )d

×
x has no infinite clique for

every x ∈ R \ {0}. To the contrary, let S be an infinite set of nonassociate irreducible
divisors of an element x ∈ R \ {0}. Then the set {s | s ∈ S} is infinite, and if s1, s2 ∈ S
with s1 	= s2 then s1 is adjacent to s2 in the graph (ΓE )d

×
x2 . Thus, {s | s ∈ S} induces

an infinite clique of (ΓE )d
×

x2 . This is a contradiction, so the result follows. �

The remainder of this section is devoted to the graph-theoretic properties of UFDs.
The following result shows that if irreducible elements can be distinguished then a
characterization is readily obtained. Note that if R is a UFD then R is an FFD, so
Gx is finite for every x ∈ R′ by Theorem 13. Also, the assumption “Gx is finite for
every x ∈ R′” implies that R is an FFD by Theorem 13 (in particular, R is atomic),
so Proposition 7 easily follows by the Coykendall–Maney result (Theorem 1). An
independent proof is provided below.

Proposition 7 Suppose that R is an integral domain, and let G ∈ {(ΓE )d
×
, Γ̃ d×}.

Then R is a UFD if and only if, for every x ∈ R′, the graph Gx is finite, and every
set of nonassociate irreducible divisors of x induces a clique of Γ d×

x .

Proof By Theorem 13, the conditions of the “if” statement imply that R is atomic,
so it is sufficient to verify that irreducible elements of R are prime. For this, suppose
that p ∈ R is irreducible, and p ∈ d(ab) for some a, b ∈ R \ (U (R) ∪ {0}). Since R
is atomic, there exist factorizations a = q1 . . . qm and b = qm+1 . . . qn (m ≥ 1) where
everyqi is irreducible. Sincenonassociate irreducible divisors ofab are assumedadja-
cent in Γ d×

ab, if p and q1 are not associates then pq1 ∈ d(ab). Thus, p ∈ d(q2 . . . qn).
If n = 2 then clearly p and q2 are associates. If n > 2 then either p and q2 are asso-
ciates, or the hypothesis implies that p and q2 are adjacent in Γ d×

q2...qn . This process
will terminate, so p and qi are associates for some i ; that is, p ∈ d(a) or p ∈ d(b),
and it follows that R is a UFD.

To verify the “only if” statement, suppose that R is a UFD and x ∈ R′. Then R is
an FFD, soGx is finite byTheorem13.Also, by “unique factorization,” if A ⊆ d(x) is
a set of nonassociate irreducible elements then

∏
A ∈ d(x), and therefore A induces

a clique of Γ d×
x . �

The next lemma takes steps toward abstracting the ring-theoretic information in
the hypothesis of Proposition 7. The remaining arguments are rather technical, but
they serve to finalize the claims of Sect. 1.4.
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Lemma 8 Let R be an atomic integral domain. If x ∈ R′ then the following state-
ments hold.

1. If Γ̃ d×
x contains a dominant clique then there exists Q ⊆ irr(R) and a dominant

clique K of Γ̃ d×
x such that V (K ) = {[q] | q ∈ Q}.

2. Suppose that q1 ∈ irr(R) ∩ d(x) such that {[q1]} induces a dominant clique of
Γ̃ d×
x . If p ∈ irr(R) ∩ d(x) such that p 	= q1 and pq1 /∈ d(x) then there exists

q2 ∈ irr(R) ∩ d(x) with [q1] 	= [q2] such that p and q2 are not associates and
{[q1], [q2]} induces a dominant clique of Γ̃ d×

x .
3. Suppose that R is aBFD. If Q ⊆ irr(R) such that {[q] |q ∈ Q} induces a dominant

clique K of Γ̃ d×
x with |V (K )| ≥ 2 then for every nonempty multiset S of elements

of Q with
∏

S ∈ d(x) there exist u ∈ U (R) and a (possibly empty) multiset T of
elements of Q such that x = u

∏
(S � T ).

Proof (1) LetC be a dominant clique of Γ̃ d×
x ; say V (C) = {Ci | i ∈ I } (I an indexing

set). For every i ∈ I , pick s ∈ Ci and let qi ∈ irr(R) ∩ d(s) (such qi exists since R
is atomic and s ∈ d(x)×). Set Q = {qi | i ∈ I }, and let K be the subgraph of Γ̃ d×

x
induced by {[q] | q ∈ Q}.

To show that K is dominant, let r ∈ d(x)× such that [r ] /∈ V (K ). If there does
not exist i ∈ I such that [r ] is adjacent to Ci then, evidently (since C is a dominant
clique), V (C) = {[r ]}. Hence, [r ] is adjacent to every element of V (Γ̃ d×

x ) \ {[r ]}
and, in particular, it is adjacent to every element of V (K ).

Suppose that [r ] is adjacent toCi for some i ∈ I . Then rs ∈ d(x) for every s ∈ Ci .
But qi ∈ d(s) for some s ∈ Ci , so rqi ∈ d(rs) ⊆ d(x). Hence, [r ] is adjacent to [qi ]
(recall that [r ] 	= [qi ] since [r ] /∈ V (K ) by assumption). Therefore, K is dominant.

To show that K is a clique, let [qi ], [q j ] ∈ V (K ) be distinct (in particular, i, j ∈ I
are distinct). By the definition of qi and q j , there exist r ∈ Ci and s ∈ C j such that
qi ∈ d(r) and q j ∈ d(s). Note that [r ] = Ci 	= C j = [s] since i 	= j , so rs ∈ d(x)
(since C is a clique). Hence, qiq j ∈ d(rs) ⊆ d(x), which shows that [qi ] and [q j ]
are adjacent in Γ̃ d×

x . Therefore, (1) holds.
(2) Let p ∈ irr(R) ∩ d(x) such that p 	= q1 and pq1 /∈ d(x). Note that [p] and

[q1] are not adjacent since pq1 /∈ d(x), so the equality [p] = [q1] must hold by
the dominance of {[q1]}. Moreover, since {[q1]} already induces a dominant clique,
{[q1], [q2]} will also induce a dominant clique for every q2 ∈ irr(R) ∩ d(x). Fur-
thermore, if [q1] 	= [q2] (i.e., if [p] 	= [q2]) then p and q2 are not associates by
Lemma 4(2). Thus, it is sufficient to show that there exists q2 ∈ irr(R) ∩ d(x) with
[q1] 	= [q2].

If no such q2 exists then irr(R) ∩ d(x) ⊆ [q1]. But x ∈ R′ (in particular, x is not
irreducible), so if the elements of irr(R) ∩ d(x) were associates then pq1 ∈ d(x).
This is a contradiction, so it follows byTheorem12 andCorollary 2 that [p] = [q1] =
{p, q1} andU (R) = {1}. Therefore, irr(R) ∩ d(x) = {p, q1} andU (R) = {1}, so the
assumption pq1 /∈ d(x) implies that x = pm = qn

1 for some m, n ≥ 2.
Ifm = n = 2 then p ∈ {−q1, q1} (which implies p = q1 sinceU (R) = {1}), con-

tradicting that p 	= q1. Hence, without loss of generality, assume that m ≥ 3. Then
p and p2 are adjacent in Γ d×

x , so the equality [p] = [q1] implies that q1 and p2 are
adjacent in Γ d×

x . This contradicts that pq1 /∈ d(x), and the result follows.
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(3) Let S 	= ∅ be a multiset of elements of Q such that
∏

S ∈ d(x). Consider
the (possibly empty) multisets T consisting only of elements from Q such that∏

(S � T ) ∈ d(x). Since R is a BFD, such a T can be chosen “maximally” so that
q

∏
(S � T ) /∈ d(x) for every q ∈ Q. But if r ∈ R \U (R)with x = r

∏
(S � T ) then

[∏(S � T )] ∈ V (Γ̃ d×
x ), from which it follows by the “dominant clique” hypothe-

sis that [∏(S � T )] is adjacent to [q] for some q ∈ Q (and this is also where the
assumption “|V (K )| ≥ 2” is needed). This contradicts the maximality of T , so the
containment

∏
(S � T ) ∈ d(x) implies there exists u ∈ U (R) such that x = u

∏

(S � T ). �

Finally, we present a proof of Theorem 7.

Proof of Theorem 7. Suppose that R is aUFD, and let {pi R | i ∈ J } (J an indexing set)
be the set of principal prime ideals of R (with pi R 	= p j R if i 	= j). As R is a UFD,
recall that the mapping ϕ : (R \ {0})/U (R) → ⊕

J Z≥0 by (
∏

J paii )U (R) �→ (ai |
i ∈ J ) (with ai = 0 for all but finitely many i ∈ J ) is an isomorphism of partially
ordered monoids. If x ∈ R \ {0} such that (ΓE )d

×
x is not null (i.e., x ∈ R′), say u ∈

U (R) with x = u
∏

J paii , then it is clear that α′ = (ai | i ∈ J ) is a non-minimal
nonzero element of

⊕
J Z≥0, and the restriction ofϕ to {rU (R) | r ∈ d(x)×} induces a

graph-isomorphism between (ΓE )d
×

x andΓ≤α′(
⊕

J Z≥0). Furthermore, let I = {i ∈ J
| ai 	= 0} andα = (ai | i ∈ I ). Then I is finite,α is a non-minimal nonzero element of⊕

I Z≥0, and the natural projection V (Γ≤α′(
⊕

J Z≥0)) → V (Γ≤α(
⊕

I Z≥0)) defined
by (ri | i ∈ J ) �→ (ri | i ∈ I ) is trivially an isomorphism between Γ≤α′(

⊕
J Z≥0)

and Γ≤α(
⊕

I Z≥0). Hence, (1) implies (2).
Assume (2), and that x ∈ R \ {0} such that (ΓE )d

×
x is not null. If α ∈ ⊕

I Z≥0 such
that (ΓE )d

×
x

∼= Γ≤α(
⊕

I Z≥0) then it is clear that the minimal elements of (0, α) (that
is, the elements less than α with a 1 in exactly one coordinate and 0 elsewhere)
induce a dominant clique of Γ≤α(

⊕
I Z≥0). Also, (0, α) is finite (i.e., Γ≤α(

⊕
I Z≥0)

is a finite graph) since I is finite, so (2) implies (3).
If r, s ∈ d(x)× such that r and s are adjacent in (ΓE )d

×
x then either [r ] = [s], or [r ]

and [s] are adjacent in Γ̃ d×
x . Thus, it is straightforward to check that (3) implies (4).

Note, however, that the converse does not follow as trivially (e.g., if R = Z2[Y ] then
{[Y 2]} induces a dominant clique of Γ̃ d×

Y 4, but {Y 2} does not induce a dominant clique
of (ΓE )d

×
Y 4 ). Hence, we will complete the proof by showing that (4) implies (1).

Suppose that Γ̃ d×
x is either a null graph or a finite graph that contains a dominant

clique for every x ∈ R \ {0}. To the contrary, assume that R is not a UFD. Proposition
7 implies that there exist x ∈ R′ and a set of nonassociate irreducible divisors of x that
does not induce a clique of Γ d×

x . Since x ∈ R′ (so that Γ̃ d×
x is not null), the hypothesis

implies Γ̃ d×
x contains a dominant clique.

By Lemma 8(1), there exists a set Q ⊆ irr(R) such that {[q] | q ∈ Q} induces a
dominant clique K of Γ̃ d×

x . Since K is a clique, it can be assumed (by omitting redun-
dant elements of Q when necessary) that any two distinct elements of Q are adjacent
in Γ d×

x . Also, since K is finite, Q can be assumed finite; say Q = {q1, . . . , qn}.
Since the subgraph of Γ d×

x induced by Q is a clique, the choice of x implies that
there exists an irreducible p ∈ d(x) such that p and q are not associates for every
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q ∈ Q. If p and q are adjacent in Γ d×
x for every q ∈ Q then redefine Q (and hence

K , possibly) by letting Q = {p, q1, . . . , qn}, and note that the above conditions on
Q and K are still satisfied. By relabeling, set Q = {q1, . . . , qn}.

Note that R is an FFD byTheorem 13. Since x has only finitelymany nonassociate
irreducible divisors, the choice of x guarantees that iterating the above process will
eventually yield an irreducible p ∈ d(x) that is not adjacent to q in Γ d×

x for some q ∈
Q. Therefore, it can be assumed that q1, . . . , qn ∈ irr(R) such that {[q1], . . . , [qn]}
induces a dominant clique K in Γ̃ d×

x , the elements p and qi are nonassociate for every
i ∈ {1, . . . , n}, and pq j /∈ d(x) for some j ∈ {1, . . . , n}. Moreover, if |V (K )| = 1
then Lemma 8(2) supplies an extension of K to a dominant clique of order 2 onwhich
all of the above conditions are preserved. Thus, it can be assumed that |V (K )| ≥ 2.

Consider the nonempty multisets S consisting only of elements from {q1, . . . , qn}
such that p

∏
S ∈ d(x) (and note that such a nonempty S exists since K is dominant

with |V (K )| ≥ 2). Since R is an FFD (and hence a BFD), such an S can be chosen
“maximally” so that pqi

∏
S /∈ d(x) for every i ∈ {1, . . . , n}. If p

∏
S is not an

associate of x then [p∏
S] ∈ V (Γ̃ d×

x ). But this contradicts that K is a dominant
clique since pqi

∏
S /∈ d(x) for every i ∈ {1, . . . , n}. Thus, x = pv

∏
S for some

v ∈ U (R).
By Lemma 8(3), x = u

∏
(S � T ) for some u ∈ U (R) and multiset T of elements

of Q, and it follows that p = w
∏

T where w = v−1u. This implies that if T = ∅
then p = w ∈ U (R), if |T | = 1 then p is associate to an element of Q, and if |T | ≥ 2
then p /∈ irr(R). This is a contradiction, and therefore R is a UFD. �
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Isomorphisms and Planarity
of Zero-Divisor Graphs

Jesse Gerald Smith Jr.

Abstract Let R be a commutative ring with nonzero identity and I a proper ideal
of R. The zero-divisor graph of R, denoted by Γ (R), is the graph on vertices R∗ =
R \ {0} where distinct vertices x and y are adjacent if and only if xy = 0. The ideal-
based zero-divisor graph of R with respect to the ideal I , denoted by ΓI (R), is the
graph on vertices {x ∈ R \ I | xy ∈ I for some y ∈ R \ I }, where distinct vertices
x and y are adjacent if and only if xy ∈ I . In this paper, we cover two main topics:
isomorphisms and planarity of zero-divisor graphs. For each topic, we begin with
a brief overview on past research on zero-divisor graphs. Whereafter, we provide
extensions of that material to ideal-based zero-divisor graphs.

1 Preliminaries

Let R be a commutative ring with nonzero identity, I a proper ideal of R, and
Z(R) the set of zero-divisors of R. Throughout this paper, a graph will always be
a simple graph, i.e. an undirected graph without multiple edges or loops. In 1988,
I. Beck used zero-divisors to produce a graph given a ring R [8]; he was interested
in colorings of these graphs. In 1999, D.F. Anderson and P.S. Livingston modified
Beck’s definition to the following [4, 13]; the zero-divisor graph of R, denoted by
Γ (R), is the graph on the vertex set Z(R)∗ = Z(R) \ {0}, where two distinct vertices
x and y are adjacent if and only if xy = 0. In 2001, S.P. Redmond gave the following
definition [16, 17] as a generalization of the zero-divisor graph; the graph on vertex
set {x ∈ R \ I | xy ∈ I for some y ∈ R \ I }, where distinct vertices x and y are
adjacent if and only if xy ∈ I . This is called the ideal-based zero-divisor graph of
R with respect to the ideal I and is denoted by ΓI (R). Note that ΓI (R) and Γ (R/I )
are non-empty if and only if I is not a prime ideal of R.

Throughout this paper, R will be a commutative ring with nonzero identity, Z(R)

its set of zero-divisors, nil(R) its ideal of nilpotent elements, and total quotient ring
T (R) = RS , where S = R \ {0}. Given an ideal I of R, we define

√
I = {r ∈ R |
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rk ∈ I for some k ∈ N}. A ring R is reduced if nil(R) = √{0} = {0}. Notice that
R/I is reduced if and only if

√
I = I . An ideal I is a radical ideal if

√
I = I . Let

Z and Zn denote the integers and the integers modulo n, respectively. A graph G is
a pair of sets V and E , of vertices and edges respectively, where E consists of sets
{a, b} and a, b ∈ V . Graphs are often visualized by drawing the vertices as dots and
the edges by lines connecting the dots. Let the graph G be defined by vertex set V
and edge set E . Let H be the graph defined by vertex set V ′ and edge set E ′. We say
that a graph is complete on n vectices, denoted by Kn , if it is a graph on n vectices
in which each vertex is connected to all other vertices. Given a graph G, we will let
V (G) be its vertex set and E(G) be its edge set. A complete bipartite graph G is a
graph for which there exists disjoint non-empty subsets A, B of vertices such that
two vertices of G are adjacent if and only if one vertex is in A and the other vertex
is B; we denote such a graph by Km,n , where m = |A| and n = |B|. The girth of a
graph G, denoted gr(G), is defined to be the length of a shortest cycle in G provided
a cycle exists and ∞ otherwise.

2 Isomorphisms

An important concept in abstract algebra is that of isomorphisms. In this section, we
study the relationship between ring isomorphisms and graph isomorphisms on two
types of zero-divisor graphs (Γ (R) and ΓI (R)). Recall that a graph isomorphism
from G to H is a bijection φ : V → V ′ such that {φ(a), φ(b)} ∈ E ′ if and only if
{a, b} ∈ E . In other words, a graph isomorphism is a bijection between the vertex
sets which preserves edges.

2.1 A Brief Survey on Isomorphisms of Zero-Divisor Graphs

We begin by reviewing the research done on graph isomorphisms of zero-divisor
graphs by David F. Anderson and his colleagues. It is clear that R ∼= S implies that
Γ (R) ∼= Γ (S). But does Γ (R) ∼= Γ (S) imply R ∼= S? It was in Anderson’s second
paper on zero-divisor graphs that we first saw results on isomorphisms of zero-divisor
graphs. From arguably the simplest zero-divisor graph (a graph with a single vertex)
it is quickly noted that zero-divisor graphs being isomorphic does not imply that
the corresponding rings are isomorphic. The authors (D.F. Anderson, A Frazier, A.
Lauve, and P.S. Livingston) go on to find a case when the answer to our question
is yes. The key to the following result involves being able to express the rings as a
nontrivial product of finite fields.

Theorem 2.1 ([2]) Let R and S be commutative reduced rings that are not fields.
Then Γ (R) ∼= Γ (S) if and only if R ∼= S.
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In the same paper, the authors go on to find the finite hypothesis in the preceding
result is required. Their example being the rings R = Z2 × Z and S = Z2 × Q. Here
both rings have zero-divisor graph K 1,ℵ0 but R � S.

In 2003, D.F. Anderson, R. Levy, and J. Shapiro, proved a rather interesting result.
Recall that given a ring R we denote its total quotient ring by T (R). The result is as
follows. It has been reported that the proof of this theorem is one of D.F. Anderson’s
favorites (being referred to as rather beautiful and elegant). The proof builds a graph
isomorphism beginning with an equivalence relation which give rise to equivalence
classes and eventually the isomorphism.

Theorem 2.2 ([3]) Let R be a commutative ring with total quotient ring T (R). Then
Γ (T (R)) ∼= Γ (R).

Research by J.D. LaGrange found another case in which the answer to our original
question is yes. In one paper, LaGrange considers the concepts of complements,
ends, and isomorphisms (among others). The proof for the following results utilizes
a finding from [3].

Theorem 2.3 ([12]) Let R and S be Boolean rings, then Γ (R) ∼= Γ (S) ⇔ R ∼= S.

We know turn our attention to the ideal-based zero-divisor graph. Recall that the
ideal-based zero-divisor graph of a commutative ring R with ideal I is the graph on
vertex set {x ∈ R \ I | xy ∈ I for some y ∈ R \ I }, where distinct vertices x and y
are adjacent if and only if xy ∈ I .

2.2 Isomorphisms of ΓI (R)

In this section, we consider the nature of isomorphisms on the ideal-based zero-
divisor graph. It is evident that R ∼= S does not imply ΓI (R) ∼= ΓJ (S) (as the ideals
I and J could vary in size or structure). Properties of the ideal-based zero-divisor
graph have been studied by various authors. In both [16, 17], Redmond notes a strong
connection between ΓI (R) and Γ (R/I ). In his early papers, Redmond describes a
three-step construction method for ΓI (R) based on Γ (R/I ). Notice that the key
factors in the construction method are Γ (R/I ), |I |, and the concept of connected
columns.

The motivation for our research in this topic begins with a Theorem published in
2006 [14, Theorem 2.2]. It was stated as follows:

Let I be a finite ideal of R and J be a finite ideal of S such that I = √
I and

J = √
J . Then the following hold:

(a) If |I | = |J | and Γ (R/I ) ∼= Γ (S/J ), then ΓI (R) ∼= ΓJ (S).
(b) If ΓI (R) ∼= ΓJ (S), then Γ (R/I ) ∼= Γ (S/J ).

Remark 2.1 We first note that (b) of the preceding result does not hold. Consider
the following example. Let R = Z3 × Z3 and I = 0. Let S = Z2 × Z2 × Z2 and
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Fig. 1 Γ (R/I ), where
R = Z2 × Z2 × F4 and
I = Z2 × 0 × 0

J = Z2 × 0 × 0. Then ΓI (R) and ΓJ (S) are both 4-cycles, and hence isomorphic. In
both cases, I and J are finite radical ideals of their respective rings.However,Γ (R/I )
is a 4-cycle and Γ (S/J ) is a line graph on 2 vertices; thus Γ (R/I ) � Γ (S/J ). This
example also provides a counterexample to [6, Theorem 5.3] as both I and J are
also non-maximal ideals.

The proof of [14, Theorem 2.2(b)] seems to have two shortcomings. The first is
in the line: “Now if a, b ∈ V (K ′), then a + J �= b + J ; otherwise, a2 ∈ J = √

J ,
and hence a ∈ J , which is a contradiction.” It is a common argument in proofs
regarding ideal-based zero-divisor graphs that if a, b are adjacent vertices of ΓJ (S)

and J = √
J , then a + J �= b + J . However, we do not have here that the two

vertices in the argument are necessarily adjacent. By considering the example in the
above remark, one can see that two different coset representatives in Γ (R/I ) may
map to equivalent coset representatives in Γ (S/J ).

The second shortcoming in [14, Theorem 2.2(b)] can be seen by considering
Example 2.1. The example shows that the restriction of a graph isomorphismbetween
ΓI (R) and ΓJ (S) to a set of coset representatives for V (Γ (R/I )) may not map to a
set of distinct coset representatives of V (Γ (S/J )).

Example 2.1 Let R = S = Z2 × Z2 × F4 and I = J = Z2 × 0 × 0, where F4 =
{0, 1, a, b} is the field with four elements. For a graph of Γ (R/I ), see Fig. 1. For a
graph of ΓI (R), see Fig. 2.Wemay choose a complete set of coset representatives for
Γ (R/I ) to be K = {(0, 0, 1), (0, 1, 0), (0, 0, a), (0, 0, b)}. Then consider the graph
isomorphism given by Table 1.

Fig. 2 ΓI (R), where
R = Z2 × Z2 × F4 and
I = Z2 × 0 × 0
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Table 1 A graph isomorphism

x ∈ ΓI (R) φ(x)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (0, 1, 0)

(0, 0, a) (0, 0, a)

(0, 0, b) (1, 0, a)

(1, 0, 1) (0, 0, 1)

(1, 1, 0) (1, 1, 0)

(1, 0, a) (1, 0, b)

(1, 0, b) (0, 0, b)

We then have that K ′ = φ(K ) = {(1, 0, 1), (0, 1, 0), (0, 0, a), (1, 0, a)}. But K ′
is not a set ofdistinct coset representatives forΓ (S/J ) as (0, 0, a) + J = (1, 0, a) +
J since (1, 0, 0) ∈ J .

We believe that the proposition in question will hold if we assume beforehand that
|I | = |J |. That is, changing [14, Theorem 2.2(b)] to be “If |I | = |J | and ΓI (R) ∼=
ΓJ (S), then Γ (R/I ) ∼= Γ (S/J ).”

Because of the shortcomings in the proof of [14, Theorem 2.2(b)] and reservations
of this author regarding the statement “Part (a) is an easy consequence of Theorem
2.1” [14], we seek to first give a direct proof of part (a) of [14, Theorem 2.2]. We
should note that the following results should be fairly intuitive from Redmond’s
three step construction method for ΓI (R). In this proof, notice the subtle use of the
radical ideal hypothesis. It would not be hard for one to construct an incorrect proof
overlooking the requirement that the ideals must be radical.

Theorem 1 Let R and S be commutative rings with nonzero identity and I and J
radical ideals of R and S, respectively. If Γ (R/I ) ∼= Γ (S/J ) and |I | = |J |, then
ΓI (R) ∼= ΓJ (S).

Proof Since Γ (R/I ) ∼= Γ (S/J ), there exists a graph isomorphism φ : Γ (R/I ) →
Γ (S/J ). Let K = {aλ}λ∈� be a complete set of distinct coset representatives of
V (Γ (R/I )). Consider φ(K ) = {φ(aλ)}λ∈�; this will be a complete set of distinct
coset representatives of V (Γ (S/J )) as φ : V (Γ (R/I )) → V (Γ (S/J )) is a bijec-
tion. For ease of notation, set φ(aλ) = bλ and φ(K ) = {bλ}λ∈�. Since |I | = |J |,
there exists a bijection f : I → J . Consider the correspondence ψ : V (ΓI (R)) →
V (ΓJ (S)) given by ψ(aλ + i) = φ(aλ) + f (i) = bλ + f (i). This correspondence
is a well-defined function by [17, Corollary 2.7]; the fact that ψ is onto fol-
lows from [17, Corollary 2.7] and that both φ and f are onto. Assume that
bλ1 + f (i1) = φ(aλ1 + i1) = φ(aλ2 + i2) = bλ2 + f (i2). Then bλ1 − bλ2 ∈ J , and
hence bλ1 + J = bλ2 + J . But φ(K ) is a set of distinct coset representatives of
V (Γ (S/J )), and therefore λ1 = λ2. It is then evident that i1 = i2 as f is injective.
Therefore ψ is also injective.
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We now show that ψ preserves edges. Let r and s be adjacent in V (ΓI (R)). Then
since I is a radical ideal, r + I �= s + I and r + I is adjacent to s + I [17, Theorem
2.5]. Since r + I �= s + I , there exist distinct λ1, λ2 ∈ � and i, j ∈ I such that r =
aλ1 + i and s = aλ1 + j . Since φ is a graph isomorphism, φ(r + I ) = φ(aλ1 + I ) =
bλ1 + J is adjacent toφ(s + I ) = φ(aλ2 + I ) = bλ2 + J . In otherwords,bλ1bλ2 ∈ J .
Therefore,ψ(r) = bλ1 + f (i) is adjacent toψ(s) = bλ2 + f ( j) in ΓJ (S). The proof
of the reverse direction for edge preservation is similar. Thus, ψ : ΓI (R) → ΓJ (S)

is a graph isomorphism. �

If we leave out the radical ideal hypothesis, we know the result does not hold. For
the non-radical case, the proof fails when we try to prove that edges are preserved.
In particular, if we had an edge created by a connected column, we would not be
guaranteed that a corresponding edge exists in the second graph.

We return our focus to finding a converse of this result; we begin by proving a
weaker result. Instead of assuming that R/I and S/J are reduced, let us assume that
they are Boolean rings. We then quickly get that the desired implication holds. The
following Lemma follows from the fact that |V (ΓI (R))| = |I ||V (Γ (R/I ))|.
Lemma 2.1 Let R and S be finite commutative rings with nonzero identity and
I and J ideals of R and S respectively. If |I | = |J | and ΓI (R) ∼= ΓJ (S), then
|V (Γ (R/I ))| = |V (Γ (S/J ))|.
Lemma 2.2 Let R and S be finite Boolean rings. Then R ∼= S if and only if |Z(R)| =
|Z(S)|.
Proof The forward direction is evident. So let us prove the converse. It is well known
that for finite Boolean rings R and S, we have R ∼= ∏m

i=1 Z2 and S ∼= ∏n
i=1 Z2, for

m, n ∈ Z
+. It suffices to show that m = n. Assume to the contrary, that is m �= n.

Without loss of generality,m < n. Then R can be viewed as a subring of S in the nat-
ural way, namely R ∼= R′ = ∏m

i=1 Z2 × ∏n
j=m+1 0 ⊆ S. Let x = (1, 1, 1, . . . , 1, 0).

Then x ∈ Z(S) \ Z(R′) sincem < n. Hence |Z(R)| = |Z(R′)| < |Z(S)|. But this is
a contradiction of the hypothesis, and therefore we must have that m = n, and hence
R ∼= S. �

Alternative Proof

Proof Since R and S are finite Boolean rings, they are isomorphic to a product of
Z2’s. Thus |R| = 2m and |S| = 2n . Notice then that R ∼= S if and only if m = n.
Thus R ∼= S if and only if |R| = |S|. Notice that if 1 �= x ∈ R, then 1 − x �= 0
and x(1 − x) = 0. Thus x ∈ Z(R). Since 1 �= x ∈ R was arbitrary, it follows that
R = Z(R) ∪ {1}. Hence |R| = |S| if and only if |Z(R)| = |Z(S)|. �

Notice that the argument in the Alternative Proof shows that for a Boolean ring
R, R = Z(R) ∪ {1}.
Theorem 2 Let R and S be finite commutative rings with nonzero identities and
ideals I and J , respectively. Moreover, assume that R/I and S/J are Boolean and
|I | = |J |. Then ΓI (R) ∼= ΓJ (S) implies that Γ (R/I ) ∼= Γ (S/J ).
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Proof By the Lemma 2.1, |V (Γ (R/I ))| = |V (Γ (S/J ))|.
Hence |Z(R/I )| = |V (Γ (R/I ))| + 1 = |V (Γ (S/J ))| + 1 = |Z(S/J )|. Thus

R/I ∼= S/J by Lemma 2.2, and hence Γ (R/I ) ∼= Γ (S/J ). �

The preceding arguments gave rise to the following conjecture and its proof.
Here we find that if we assume that R and S are finite Boolean rings, then ΓI (R) ∼=
ΓJ (S) ⇒ Γ (R/I ) ∼= Γ (S/J ) and |I | = |J |.
Theorem 3 Let R and S be finite Boolean rings with I and J proper non-prime
ideals of R and S, respectively. Then ΓI (R) ∼= ΓJ (S) if and only if R ∼= S and
|I | = |J |.
Proof Assume that ΓI (R) ∼= ΓJ (S). Then |I ||V (Γ (R/I ))| = |J ||V (Γ (S/J ))|.
Since R and S are isomorphic to a direct product of Z2’s, we have |R| = 2m and
|S| = 2n for some positive integers m, n.

If either m = 1 or n = 1, then the corresponding ring(s) will be isomorphic to
Z2, and hence will not contain a proper non-prime ideal; the only proper ideal of Z2

is {0}, which is maximal, and hence prime. Thus m ≥ 2 and n ≥ 2, and therefore
m − 2 ≥ 0 and n − 2 ≥ 0.

Moreover, we know that I will be isomorphic to a product of Z2’s and {0}’s,
whence |I | = 2i for some 0 ≤ i < m. Similarly, |J | = 2 j for some 0 ≤ j < n.
Note that if i = m − 1, then R/I will be an integral domain, and hence I a
prime ideal. But this is contrary to the hypothesis. Hence 0 ≤ i ≤ m − 2; simi-
larly, 0 ≤ j ≤ m − 2. Since the number of zero-divisors of a Boolean ring is one
less than the cardinality of the ring, we have |Z(R/I )| = |R/I | − 1 = 2m−i − 1
and |Z(S/J )| = 2n− j − 1. Hence |V (Γ (R/I ))| = 2m−i − 2 and |V (Γ (S/J ))| =
2n− j − 2 with 0 ≤ i ≤ m − 2 and 0 ≤ j ≤ n − 2 (using that |Z∗(R)| = |Z(R)| −
1). Therefore, |I ||V (Γ (R/I ))| = |J ||V (Γ (S/J ))| implies that 2m − 2i+1 = 2n −
2 j+1.

We claim that m = n and i = j . It is evident that m = n ⇔ i = j ; hence it suf-
fices to show that m �= n and i �= j (along with 0 ≤ i ≤ m − 2 and 0 ≤ j ≤ n − 2)
implies that 2m − 2i+1 �= 2n − 2 j+1.

Assume that m �= n, i �= j , 0 ≤ i ≤ m − 2 and 0 ≤ j ≤ n − 2. Without loss of
generality, we may assume that m < n. First notice that for all 0 ≤ j ≤ n − 2, we
have that 2n − 2 j+1 ≥ 2n − 2n−1 (since f (x) = 2n − 2x is decreasing). Now 2n −
2n−1 = 2n(1 − 2−1) = 2n(2−1) = 2n−1; thus 2n − 2 j+1 ≥ 2n−1 for all 0 ≤ j ≤ n −
2. Since m < n, we have 2m < 2n , and hence 2m ≤ 2n−1. Thus m < n implies that
2m − 2 < 2m ≤ 2n−1. Hence

2n − 2 j+1 ≥ 2n−1 > 2m − 2 for all 0 ≤ j ≤ m − 2.

But 2m − 2 ≥ 2m − 2i+1 for all 0 ≤ i ≤ n − 2. Thus

2n − 2 j+1 > 2m − 2 ≥ 2m − 2i+1 for 0 ≤ i ≤ m − 2 and 0 ≤ j ≤ n − 2.

Hence 2n − 2 j+1 �= 2m − 2i+1 for all 0 ≤ i ≤ m − 2 and 0 ≤ j ≤ n − 2, as desired.
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Thus we must have m = n and i = j , whence |R| = |S| and |I | = |J |. Since R
and S are finite Boolean rings, |R| = |S| ⇒ R ∼= S. Therefore, R ∼= S and |I | = |J |,
as desired.

For the converse, note that Boolean rings are reduced, and thus I and J are radical
ideals. The result then follows by Theorem 1. �

Remark 2.2 If we simply assume that at least one of the ideals in the preceding
proposition is non-prime, it follows that the ideal-based zero-divisor graph relative
to the non-prime ideal will be non-empty. Thus in the forward implication, the other
graph is non-empty; therefore we also have the remaining ideal is non-prime. In the
reverse implication, Spec(R) = Max(R) and Spec(S) = Max(S). Thus the prime
ideals are those that are maximal. By viewing R and S as a product of Z2’s, it is
evident that an ideal I is prime if and only if maximal, if and only if |I | = |R|/2.
Thus the conditions |I | = |J | and R ∼= S ensure that if at least one of the two ideals
is prime, then so is the other.

Therefore, although the theorem is true if we only assume that one of the ideals
is non-prime, we are not losing generality by assuming both are non-prime.

If both of the ideals are prime, then the theorem does not hold. Consider R =
Z2 × Z2 × Z2, I = 0 × Z2 × Z2 and S = Z2 × Z2, J = 0 × Z2. Then ΓI (R) and
ΓJ (S) are empty, hence isomorphic; however, R � S and |I | �= |J |.
Remark 2.3 The converse of Theorem 3 does not hold for infinite Boolean rings.
Consider R = S = ∏∞

i=1 Z2, where I = 0 × 0 × ∏∞
i=3 Z2 and J = 0 × 0 × 0 ×∏∞

i=4 Z2. Then S/J ∼= Z2 × Z2 × Z2,whence gr(Γ (S/J )) = 3 = gr(ΓJ (S)).How-
ever ΓI (R) ∼= K ℵ0,ℵ0 ; to see this, consider the vertex sets V = {(ai )i∈N ∈ R | a1 =
0, a2 = 1} and W = {(ai )i∈N ∈ R | a1 = 1, a2 = 0}.

Herewehave that gr(ΓI (R)) = 4 and gr(ΓJ (S)) = 3.ThereforeΓI (R) � ΓJ (S);
however R ∼= S and |I | = |J |.

Recall that one of our goals is to determine when the following implication holds:
ΓI (R) ∼= ΓJ (S) ⇒ Γ (R/I ) ∼= Γ (S/J ).
We have seen that even in the finite radical case that the above implication does

not hold. We then assumed that we need the ideals to have the same cardinality. That
is, we hoped to prove the following implication (at least in the reduced case):

ΓI (R) ∼= ΓJ (S) and |I | = |J | ⇒ Γ (R/I ) ∼= Γ (S/J ).
However, the following example dashes the hopes of this holding in the case the

ideals are infinite.

Example 2.2 Let R = Z2 × Z2 × Z, S = Z3 × Z3 × Z, I = 0 × 0 × Z, and J =
0 × 0 × Z. Then |I | = |J |. Notice that Γ (R/I ) ∼= K 2 and Γ (S/J ) is a 4-cycle;
henceΓ (R/I ) � Γ (S/J ). However,ΓI (R) ∼= ΓJ (S) since both graphs are a K ℵ0,ℵ0 .

To see the that ΓJ (S) = K ℵ0,ℵ0 , consider the sets V = {(0, 1, k) | k ∈ Z} ∪
{(0, 2, k) | k ∈ Z} and W = {(1, 0, k) | k ∈ Z} ∪ {(2, 0, k) | k ∈ Z}. Notice that no
vertex ofV is adjacent to any other vertex ofV . The same is true ofW . However, every
vertex of V is adjacent to every vertex ofW (and vice-versa). Thus ΓJ (S) = K ℵ0,ℵ0 .

Similarly, ΓI (R) = K ℵ0,ℵ0 .
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In this example, we have commutative rings R and S with radical ideals I and J ,
respectively, such that ΓI (R) ∼= ΓJ (S) and |I | = |J |, but Γ (R/I ) � Γ (S/J ).

As of yet, there has not been a counterexample for the implication when both
ideals are finite. Based of the underlying similarities to Theorem 4.1 from [2], we
believe that the implication will hold in this case. As such we close here leaving open
the following conjecture.

Conjecture 2.1 Let R and S be commutative rings with finite radical ideals I of R
and J of S and |I | = |J |. Then ΓI (R) ∼= ΓJ (S) ⇔ Γ (R/I ) ∼= Γ (S/J ).

3 On Planarity of Zero-Divisor Graphs

Recall that a graph G is planar if it can be drawn in a plane so that no two edges
cross. The following is a well-known result that we use throughout this section.

Lemma 1 Let R be a commutative local ring with nonzero identity and |R| = 4.
Then

R ∼= Z4, Z2[X ]/(X2), or F4.

In this paper, one of our goals is to classify when an ideal-based zero-divisor graph
is planar. We consider ΓI (R) to be nontrivial if I is a nonzero, proper, non-prime
ideal of R. The latter requirements forces ΓI (R) to be distinct from Γ (R) and to
be nonempty. In order to achieve this goal, we will use the celebrated Kurtowski’s
Theorem from Graph Theory [10, Theorem 6.13]. To state the theorem, we need to
define a graph subdivision.

Definition: Let G and H be graphs. Then H is a subdivision of G if H can be
derived from G by applying the following operations:

1. Adding a vertex on an edge, that is, replacing v − w (vertices v, w are adjacent)
by v − a − w, where a is a new vertex.

2. Replacing a vertex adjacent to only twovertices by only an edge (undoing item1).

Theorem 4 (Kuratowski’s Theorem) A graph G is planar if and only if it does not
contain a subgraph which is a subdivision of K 5 or K 3,3.

A particular case of the above theorem is that a graph containing a K 5 or K 3,3

is nonplanar. So throughout the following investigation we will be looking for sub-
graphs (or subdivisions) that are either K 5 or K 3,3.

3.1 A Brief Survey on the Planarity of Zero-Divisor Graphs

Research on classifying all finite commutative rings with nonzero identity having
nonempty planar zero-divisor graph has been done in [1, 2, 9, 19, 20, 22]. Work has
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also been done regarding when infinite commutative rings have planar zero-divisor
graphs [21].

The earliest work on planar zero-divisor graphs can be found in the Anderson,
Lauve, Frazier, and Livingston paper from 1999. In this paper, the authors classified
when Zn , Zn1 × · · · × Znr (for r > 2), and Zn[X ]/(Xm) have planar zero-divisor
graphs [2]. A student of David F. Anderson continued this work in the mid 2000s.
Neal O. Smith classified all finite commutative rings (up to isomorphism)which have
a nontrivial planar zero-divisor graph. The result is as follows:

Theorem 5 ([21]) Let R be a finite commutative ring that is not a field and K a
finite field. Then Γ (R) is planar if and only if R is isomorphic to one of the following
44 types of rings:

Z2 × K , Z3 × K , Z2 × Z4, Z2 × Z2[X ]/(X)2,

Z3 × Z4, Z3 × Z2[X ]/(X2), Z2 × Z2 × Z2, Z2 × Z2 × Z3,

Z2 × Z8, Z2 × Z2[X ]/(X3), Z2 × Z4[X ]/(2X, X2 − 2),
Z2 × Z9, Z2 × Z3[X ]/(X2),

Z3 × Z9, Z3 × Z3[X ]/(X2),

Z4, Z2[X ]/(X2), Z9, Z3[X ]/(X)2,

Z8, Z2[X ]/(X3), Z4[X ]/(2X, X2 − 2), Z16, Z2[X ]/(X4),

Z4[X ]/(2X, X3 − 2), Z4[X ]/(X2 − 2), Z4[X ]/(X2 + 2X + 2), F4[X ]/(X2),

Z4[X ]/(X2 + X + 1), Z2[X,Y ]/(X,Y )2, Z4[x]/(2, X)2,

Z27, Z3[X ]/(X3), Z9[X ]/(X2 − 3, 3X), Z9[X ]/(X2 − 6, 3X),

Z2[X,Y ]/(X2,Y 2 − XY ), Z2[X,Y ]/(X2,Y 2), Z8[X ]/(2X − 4, X2),

Z4[X ]/(X2), Z4[X ]/(X2 − 2X),

Z4[X, Y ]/(X2, XY − 2, Y 2 − XY, 2X, 2Y ), Z4[X, Y ]/(X2, XY − 2, Y 2, 2X, 2Y ),

Z25, or Z5[X ]/(X2).

Research has also been done onwhen ideal-based zero-divisor graphs are planar. This
work began with [17]. It is from this paper’s work that we begin. In 1999, Anderson
and Livingston proved that there are arbitrarily large planar zero-divisor graphs. In
this 2003 paper, Redmond extends this result to ideal-based zero-divisor graphs. By
considering the foundation laid by Redmond, we seek to find all planar ideal-based
zero-divisor graphs.

3.2 Restraints on |I| and gr(Γ (R/I))

We begin by investigating what restraints planarity forces on the graphs of Γ (R/I )
and ΓI (R). Much like our last topic of research being motivated by another author’s
claim. Our work on planarity was spurred on by considering a result by Redmond
[17, Theorem 7.2]. This will be discussed shortly.

Proposition 1 Let R be a commutative ring with nonzero identity and I an ideal of
R. If ΓI (R) is planar, then |I | ≤ 2 or |V (Γ (R/I ))| ≤ 1.
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Proof (By Contrapositive) Assume |I | ≥ 3 and |V (Γ (R/I ))| ≥ 2. Then there are
distinct adjacent vertices x + I, y + I in Γ (R/I ). Since |I | ≥ 3, there are distinct
elements 0, i, j of I .

Note that the subgraph ofΓI (R) generated by {x, y, x + i, y + i, x + j, y + j} =
{x, x + i, x + j} ∪ {y, y + i, y + j} contains a subgraph isomorphic to K 3,3. Thus
ΓI (R) is nonplanar by Kuratowski’s Theorem. �

Proposition 2 Let R be a commutative ring with nonzero identity and I an ideal of
R. If |V (Γ (R/I ))| = 1, then ΓI (R) is planar if and only if 1 ≤ |I | ≤ 4.

Proof |Γ (R/I )| = 1 ⇔ |Z(R/I )∗| = 1 ⇔ R/I ∼= Z4 or Z2[X ]/(X2). In both
cases, I is not a radical ideal. Thus by Redmond’s construction method of ΓI (R),
ΓI (R) = K |I |. The result then follows since K |I | is planar if and only if 1 ≤ |I | ≤ 4
(by Kuratowski’s Theorem). �

It now suffices to consider the case when |I | = 2 and Γ (R/I ) has at least two dis-
tinct vertices.Wewill approach the problem by considering the different possibilities
for gr(Γ (R/I )). Recall that gr(Γ (R/I )) ∈ {3, 4,∞} [7, 11, 15, 23].
Proposition 3 Let R be a commutative ring with nonzero identity and I an ideal
of R. If |I | = 2 and gr(Γ (R/I )) = 4, then ΓI (R) is nonplanar. Moreover, if I is
nonzero and gr(Γ (R/I )) = 4, then ΓI (R) is nonplanar.

Proof Since gr(Γ (R/I )) = 4, there exists vertices a + I, b + I, c + I, d + I of
Γ (R/I ) that form a 4-cycle. Moreover, since |I | = 2, there exists 0 �= i ∈ I . Thus
by Redmond’s construction of ΓI (R) based on Γ (R/I ), we see that ΓI (R)will have
a subgraph as in Fig. 3.

Notice that the vertex sets A = {a, a + i, c} and B = {b, b + i, d + i} induce a
subgraph isomorphic to K 3,3.WhencebyKuratowski’sTheorem,ΓI (R) is nonplanar.
The “moreover statement” follows by combining Proposition 1 and this result. �

The following is [17, Theorem 7.2]:
Let I be a proper, nonzero ideal of a ring R that is not a prime ideal. Then ΓI (R)

is planar if and only if ω(Γ (R/I )) ≤ 2 (i.e., Γ (R/I ) has no cycles) and either (a)
|I | = 2 or (b) Γ (R/I ) consists of a single vertex and |I | ≤ 4.

Here ω(G) is the clique number of a graph G. A clique of a graph G is a subgraph
of G that is isomorphic to Kn for some n ∈ N. If a graph has no cliques, we set the
clique number of G to be zero; otherwise we set the clique number to the sup{n | Kn

is isomorphic to a subgraph of G}. Notice that the clique number of a graph can be
infinity.

If Γ (R/I ) consists solely of a four-cycle (as the subgraph in our previous proof),
thenω(Γ (R/I )) = 2. SoRedmond’s [17,Theorem7.2]would imply that the induced
subgraph from the preceding proof would be planar. However, we exhibited that this
was not the case. For a concrete counterexample, consider R = Z3 × Z3 × Z2 and
I = 0 × 0 × Z2 (See Fig. 3 for an isomorphic copy of ΓI (R)). We note that in Red-
mond’s statement of the theorem, Redmond wrote “ω(Γ (R/I )) ≤ 2 (i.e., Γ (R/I )
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Fig. 3 Subgraph when
gr(Γ (R/I )) = 4

has no cycles)”. Although this statement is invalid, the theorem holds if we replace
the clique number hypothesis with “Γ (R/I ) has no cycles” (i.e., gr(Γ (R/I ) = ∞).

We continue our investigation of the problem by now considering the girth 3 case.
The proof of the following canbe derived byusingRedmond’s three-step construction
and inspection.

Proposition 4 Let R be a commutative ring with nonzero identity and I an ideal of
R. If |I | = 2, I = √

I , and Γ (R/I ) = K 3, then ΓI (R) is planar.

It turns out the preceding result is rendered mute. In Example 2.1 of [2, pp. 2–3],
it was shown thatΓ (R) ∼= K 3 if and only R is isomorphic to one of the following four
rings: F4[X ]/(X2), Z4[X ]/(X2 + X + 1), Z4[X ]/(2, X)2, or Z2[X,Y ]/(X,Y )2.
Thus in the preceding proposition, Γ (R/I ) ∼= K 3 if and only if R/I is isomorphic
to one of the four previously mentioned rings. Since these rings are non-reduced, it
follows that R/I is non-reduced. Since R/I is non-reduced if and only if I is not
a radical ideal of R, it follows that the hypothesis of the preceding proposition is
vacuous.

This observation lends light to Redmond’s argument in [17, Theorem 7.2] in the
following manner. He argues in his proof that if Γ (R/I ) ∼= K 3, then one can verify
that ΓI (R) is nonplanar by exhibiting a subgraph of ΓI (R) isomorphic to K 3,3. This
is the case if one takes into consideration that I must be a non-radical ideal of R,
and hence ΓI (R) has a connected column.

In light of this observation, we come to the following proposition.

Proposition 5 Let R be a commutative ring with nonzero identity and I an ideal
of R. If gr(Γ (R/I )) = 3 and |I | = 2, then ΓI (R) is nonplanar. Moreover, if
gr(Γ (R/I )) = 3 and I is nonzero, then ΓI (R) is nonplanar.

Proof First assume that Γ (R/I ) ∼= K 3. By the preceding observations, it follows
that I is not a radical ideal. Since Γ (R/I ) ∼= K 3, we have that Γ (R/I ) consists
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Fig. 4 Subgraph of ΓI (R)

when gr(R/I ) = 3 and
|I | ≥ 2

solely of a three-cycle, say a + I − b + I − c + I − a + I . Since I �= √
I , at least

one of the elements a, b, c is in
√
I . Without loss of generality, assume that c2 ∈ I .

Then using Redmond’s Construction Method, ΓI (R) will have a subgraph as in
Fig. 4.

The vertex sets {a, c, a + i} and {b, b + i, c + i} induce a subgraph of the preced-
ing graph isomorphic to K 3,3. Thus ΓI (R) is nonplanar by Kuratowski’s Theorem.

If Γ (R/I ) � K 3, then since gr(Γ (R/I )) = 3, we have that Γ (R/I ) does not
consist solely of a three-cycle. Thus it follows that Γ (R/I ) would have a subgraph
as in Fig. 5a. Therefore, again using Redmond’s construction method, ΓI (R) would
have the subgraph as in Fig. 5b.

Taking a subdivision of this graph by replacing c − d − c + i with c − c + i ,
we get a subdivision of ΓI (R) which contains a subgraph isomorphic to the graph
in Fig. 4. Thus ΓI (R) is nonplanar (since we have already shown that the graph in
Fig. 4 was nonplanar). The “moreover statement” follows from Proposition 1 and
this result. �

It now remains only to investigate the case when gr(Γ (R/I )) = ∞ (i.e., Γ (R/I )
has no cycles) and |I | = 2. A natural question is whether or not I being a radical
ideal of R will affect the planarity of ΓI (R); in this case, it turns out that it does not.

We will need a special type of graph defined in [5] denoted K
1,3
. The graph K

1,3
is

the graph formed by adding an additional vertex to K 1,3 adjacent only to one leaf
(non-center vertex) of K 1,3.

Proposition 6 Let R be a finite commutative ring with nonzero identity and I an
ideal of R. If |I | = 2 and gr(Γ (R/I )) = ∞, then ΓI (R) is planar.
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Fig. 5 Subgraphs when gr(Γ (R/I )) = 3, |I | = 2, and ΓI (R) � K 3

Proof If I is a prime ideal of R or I = R, then both Γ (R/I ) and ΓI (R) are empty,
and hence planar. Assume that I is a proper, non-prime ideal of R.

Now Γ (R/I ) is nonempty since I is a proper, non-prime ideal of R. We handled
the case when V (Γ (R/I )) is a singleton in Proposition 2; so we may assume that
|V (Γ (R/I ))| ≥ 2. It then follows from [5, Theorems 2.4 and 2.5] that Γ (R/I ) is

isomorphic to either K
1,3

or K 1,n for some n ≥ 1.
We begin with the case that Γ (R/I ) is a star graph (Γ (R/I ) ∼= K 1,n), say with

center c, ends ak , and I = {0, i}. Using Redmond’s construction method and the fact
that |I | = 2, we can draw ΓI (R) as in Fig. 6a. The dotted or hash-mark lines indicate
lines that occur if and only if the vertex is in a connected column (recall connected
columns exist if and only if I is a non-radical ideal). As drawn, we see that ΓI (R)

is planar. It is important to note that we are using the finite hypothesis here. In order
for the drawing of Fig. 6a to be make sense, there needs to be some constraints on
the cardinality of vertices of Γ (R/I ).

If Γ (R/I ) ∼= K
1,3
, then one can see (regardless of whether or not I = √

I ) that
ΓI (R) is planar. Using dotted or hash-mark lines as before, we can draw ΓI (R) as
in Fig. 6b.

Thus in all cases, ΓI (R) is planar as desired. �

Combining all these results, we get a theorem which turns out to be only a slight
modification of Redmond’s Theorem 7.2. As previously mentioned, Redmond’s
statement of the theorem seems incorrect due to using the hypothesisω(Γ (R/I )) ≤ 2
instead of gr(Γ (R/I )) = ∞. Moreover, it seems that in Redmond’s proof a key
observation (that appears to go unmentioned) was that Γ (R/I ) ∼= K 3 implies that
R/I is non-reduced. Combining the previous propositions (and noting that Proposi-
tion 4 can not happen) yields the following theorem.
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Fig. 6 Graphs for Proposition 6

Fig. 7 The five finite planar graphs with non-radical nontrivial ideals

Theorem 6 Let I be a nonzero, proper, non-prime ideal of a finite commutative ring
R with nonzero identity. Then ΓI (R) is planar if and only if gr(Γ (R/I )) = ∞ and
either (a) |I | = 2 or (b) |V (Γ (R/I ))| = 1 and |I | ∈ {2, 3, 4}.

Notice that the only place we required the finite hypothesis in the preceding
was when |I | = 2 and gr(R/I ) = ∞. We can now draw all finite planar graphs
corresponding to non-empty ΓI (R) with I a non-radical, nonzero ideal of a ring R.
By connecting some results from [3, 5], we can make short work of determining
these graphs.

Theorem 7 Let R be a commutative ring with nonzero identity and I a non-radical,
nonzero ideal of R. Then ΓI (R) is planar if and only if ΓI (R) is isomorphic to one
of the 5 graphs in Fig.7.



260 J. G. Smith Jr.

Proof The converse is evident. For the forward implication, by Theorem 6 we have
that gr(Γ (R/I )) = ∞ and either (a) |I | = 2 or (b) |V (Γ (R/I ))| = 1 and |I | ∈
{2, 3, 4}. In case (b), ΓI (R) is isomorphic to K 2, K 3, or K 4.

Assume case (a) holds. Recall that I is not a radical ideal of R if and only if
R/I is not reduced. So we begin our search by considering which non-reduced
rings have corresponding zero-divisor graph with infinite girth. By [5, Theorem 2.5],
we have that a non-reduced ring A has gr(Γ (A)) = ∞ if and only if A ∼= B or
A ∼= B × Z2, where B ∼= Z4 or Z2[X ]/(X2), or Γ (A) is a star graph. In the proof of
the proceeding result, the authors show thatΓ (A) is complementedwhen nil(R) �= 0
and gr(Γ (R)) = ∞. They then split the situation into two cases: when the graph is
uniquely complemented or not. The uniquely complemented case is when Γ (A) is a
star graph. But using [3, Theorem 3.9], we have that Γ (A) uniquely complemented
with nil(R) nonzero implies that either Γ (A) is a star graph on at most two edges
or an infinite star graph. However, since we are considering finite rings, Γ (A) must
be a star graph on at most two edges. Now using Redmond’s construction of ΓI (R)

from Γ (R/I ), we can deduce the possible graphs for ΓI (R).
If R/I ∼= Z4 or Z2[X ]/(X2), then |V (Γ (R/I ))| = 1. Hence |I | = 2 gives that

ΓI (R) ∼= K 2.
If R/I ∼= Z2 × B (where B is as before), then R/I is K

1,3
. Notice that the vertex

of degree 3 is the only element whose square is zero, thus |I | = 2 implies that ΓI (R)

is isomorphic to (E) in Fig. 7.
If Γ (R/I ) ∼= K 1,1, then R/I ∼= Z9 or Z3[X ]/(X2) [3, pp. 2–3], and whence each

vertex of the graph has the property that its square is zero. So with |I | = 2, we get
ΓI (R) ∼= K 4.

If Γ (R/I ) ∼= K 1,2 and I �= √
I , then R/I ∼= Z8, Z2[X ]/(X3), or Z4[X ]/(2X,

X2 − 2) [3, pp. 2–3]. In each of the latter cases, the only vertex whose square is zero
is the center vertex. Thus with |I | = 2, we have that ΓI (R) will be isomorphic to
(D) of Fig. 7. �

We now consider when ΓI (R) is a finite, planar graph and I is a radical ideal. In
this case, by Theorem 6, it follows that gr(Γ (R/I )) = ∞ and |I | = 2. To conclude
our work here, we prove the following Proposition.

Proposition 7 Let I be a nonzero, proper, non-prime, radical ideal of a finite com-
mutative ring R with nonzero identity. Then gr(Γ (R/I )) = ∞ and |I | = 2 if and
only if R is isomorphic to a ring with corresponding ideal from Table 2, where K is
a finite field.

Table 2 Rings for Proposition 7

Ring Ideal

Z4 × K (2) × 0

Z2[X ]/(X2) × K (x) × 0

Z2 × Z2 × K Z2 × 0 × 0, 0 × Z2 × 0, or 0 × 0 × K (when
K = Z2)
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Proof In the following argument, we use, without direct reference, that an ideal of∏n
i=1 Ri is of the form

∏n
i=1 Ii , where Ii is an ideal of Ri . In the case of an ideal

with only two elements, it must be of the form
∏n

i=1 Ii , where Ii = 0 for all i except
a fixed k ∈ {1, . . . , n} and |Ik | = 2.

Since I is a radical ideal, we have that R/I is reduced. By [5, Theorem 2.4], we
have that T (R/I ) ∼= Z2 × K , where K is a field. Since R is finite, and hence also R/I ,
we have R/I ∼= T (R/I ); whence R/I ∼= Z2 × K . Since R is a finite commutative
ring, we have that R ∼= ∏n

i=1 Ri , where each Ri is a finite local ring. If n ≥ 4, then
R/I will be isomorphic to a product of at least 3 nonzero local rings. But this is a
contradiction as R/I is a product of 2 local rings. Thus we must have that n ≤ 3.

If n = 1, then R is local. Thus R/I is also local; so R/I can be expressed as a
product of only one local ring. Thus n �= 1 as R/I is a product of two local rings.

If n = 2, then R ∼= R1 × R2, where R1, R2 are local. Hence either I = I1 × 0 or
I = 0 × I2, where |I1| = |I2| = 2. Thus R/I ∼= R1/I1 × R2 or R/I ∼= R1 × R2/I2.
In either case,wehave that Ri is a local ringwith ideal Ii such that |Ii | = 2 and Ri/Ii is
a field. Thus Ii is amaximal ideal of Ri . Notice that Z(Ri ) is nonzero, since otherwise
Ri wouldbe afinite integral domain, andhence afield (which contradicts the existence
of a proper ideal with 2 elements). Since 0 � Z(Ri ) ⊆ Ii and |Ii | = 2, it follows that
Z(Ri ) = Ii . Therefore |Z(Ri )| = 2.Hence either |Z(R1)| = 2 or |Z(R2)| = 2. Since
one of the rings has exactly 2 zero-divisors either R1 or R2 is isomorphic to Z4 or
Z2[X ]/(X2). The only constraint on the remaining factor (the one which is neither
Z4 nor Z2[X ]/(X2)) is that it must a field or Z2. Since Z2 is a field, the preceding
requirement reduces to simply being a field.

Whence R1/I1 ∼= Z2 or R2/I2 ∼= K where K is field. Thus the ideals I1, I2 are
maximal ideals of their respective local factors. If {0} � I1 � R1 where I1 ismaximal,
then R1 is not a field and hence {0} �= Z(R1) (since R1 must be finite and a finite
integral domain is a field). Thus we would have Z(R1) = I1 and therefore |Z(R1)| =
2. Similarly if 0 � I2 � R2, then |Z(R2)| = 2.

If n = 3, then since R/I is a product of two local rings, I is of the form one of the
three rings times 2 zero ideals. Thus we must have that R ∼= Z2 × K × Z2, where
I = Z2 × 0 × 0, 0 × 0 × Z2, or 0 × K × 0 (in the case that K = Z2).

Thus in conclusion, R is isomorphic to one of the rings in Table 2 with corre-
sponding ideal I . The converse is evident. �

Therefore by Proposition 7, in the case that ΓI (R) is a finite, planar graph and I
is a radical ideal we must have that Γ (R/I ) will be a star graph and |I | = 2. It then
follows that ΓI (R) will be isomorphic to the graph in Fig. 8. Thus [17, Remark 7.3]
actually captures all planar non-radical ideal-based zero-divisor graphs.

In conclusion, we have the following theorem.

Theorem 8 Let R be a commutative ring, I a proper, non-prime ideal of R. Then
ΓI (R) is planar if and only if it is isomorphic to one of the graphs in Fig.7 or Fig.8.

Thus, we have classified all the planar nontrivial ideal-based zero-divisor graphs.
In our dissertation, we also classified all commutative rings (and corresponding ide-
als) which produce planar ideal-based zero-divisor graphs. The process begins with
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Fig. 8 Finite planar graphs
with I radical and nonzero

classifying all complete ideal-based zero-divisor graphs on up to 5 vertices. Using
factorization techniques and exhaustive methods, we are able to classify all finite
commutative rings with nontrivial, finite, planar ideal-based zero-divisor graphs. In
a future paper, we hope to present that work in a more organized and concise manner.
We will close with an interesting fact, Neal O. Smith proved that there were 44 types
of finite commutative rings (non-fields) which give rise to planar zero-divisor graphs.
It turns out that there are also 44 types of rings (some of these different from the
44 in N.O. Smith’s result) with nontrivial planar ideal-based zero-divisor graphs (3
infinite and 41 finite).
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