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Crop plants are subject to various types of biotic stresses right from the stage of seed
germination till the harvesting stage. Attacks by a wide variety of already known
and newly emerging pests, nematodes, and microorganisms are some of the major
threats to the crop plants and therefore to the agriculture productivity. Plant diseases
caused by different pathogens are known to cause loss of more than 30% crop yield,
resulting in decreased agriculture produce of the country thus increasing the eco-
nomic hardships of the farmers. Traditionally these plant diseases have been man-
aged so far using various agrochemicals. However, the liberal, untargeted, and
nonspecific use of these agrochemicals increases the cultivation cost of crops,
besides posing threat to the health of human beings, soil, useful soil microflora, and
environment. With increasing awareness of demerits of agrochemicals and benefits
of organic agriculture and food safety, the use of plant bioinoculants that serves as
biocontrol agents (against a wide variety of phytopathogens) besides plant growth
promotion activity is now gaining significance as the best and eco-friendly alterna-
tive to the hazardous agrochemicals. Chemical-free management of pests and dis-
eases, agro-ecosystem well-being, and health issues in humans and animals have
become the need of the hour. The use of plant growth promoting rhizobacteria
(PGPR) as biotic stress managers offers good management of plant diseases (biotic
stress). They also provide induced systemic resistance (ISR) and systemic acquired
resistance (SAR). Application of PGPR as bioinoculants can help in reducing the
loss of crop yield due to the attack by various phytopathogens, and hence PGPR has
gained considerable attention among researchers, agriculturists, farmers, and poli-
cymakers and consumers.



Vi Foreword

The book entitled Rhizobacteria in Biotic Stress Management contains 16 book
chapters contributed by eminent researchers, scholars, and academicians from
around the globe. It deals with the various mechanisms and strategies adopted by
PGPR in managing the biotic stress, i.e., plant disease. Various mechanisms adopted
by PGPR for the lysis of phytopathogens have been discussed in this book. The
principal mechanisms, namely production of antibiotics, production of antifungal
metabolites, induction resistance, seed biopriming, and plant small RNAs, have
been encompassed in this book. This book highlights salient features on the applica-
tion of PGPRs as effective managers of biotic stress (plant diseases) in agricultural
crop plants to lend a hand to scientists working in this field. Rhizobacteria in Biotic
Stress Management is a timely effort for sustainable agriculture. I compliment the
authors and hope that the teachers and researchers working in this area would make
use of this publication.

gt

Dated the 19th February, 2019 (T. Mohapatra)
New Delhi



Preface

Achieving sustainable agricultural production while keeping the environmental
quality and agro-ecosystem function and biodiversity is a real challenge in current
agricultural practices. Crop plants are subject to a wide range of biotic stresses, and
plant pathogens are the major biotic threats to the agriculture crops affecting quality
and yield of crops. It is estimated that about 30% of crops are lost due to phyto-
pathogen infestations. Phytopathogens also cause deficiency of variety of micronu-
trients in crops, and consumption of such staple crops has been one of the principal
causes of micronutrient deficiency diseases. Traditional use of chemical inputs (fer-
tilizers, pesticides, nutrients, etc.) poses serious threats to crop productivity, soil
fertility, and the nutritional value of farm produce. Global concern over the demerits
of chemicals in agriculture has diverted the attention of researchers towards sustain-
able agriculture by utilizing the potential of plant growth promoting rhizobacteria
(PGPR). Therefore, management of pests and diseases, agro-ecosystem well-being,
and health issues for humans and animals has become the need of the hour. The use
of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant
health managers has gained considerable attention among researchers, agricultur-
ists, farmers, and policymakers and consumers.

Application of PGPR as a bioinoculant mitigating the biotic stresses can help in
plant growth promotion and disease control thus leading to more crop yield and can
help in meeting the expected demand for global agricultural productivity to feed the
world’s booming population, which is predicted to reach around 9 billion by 2050.
However, to be a useful and effective bioinoculant, PGPR strain should possess high
rhizosphere competence, safety to the environment, plant growth promotion and
biocontrol potential, compatibility with useful soil rhizobacteria, and broad-
spectrum activity and be tolerant to various biotic and abiotic stresses. In the light
of the above properties, the need for a better PGPR to complement increasing agro-
productivity as one of the crucial drivers of the economy has been highlighted.

PGPR-mediated biotic stress management is now gaining worldwide importance
and acceptance as eco-friendly and effective bioinoculants for sustainable agricul-
ture. However, the performance of PGRR is subject to various abiotic factors such
as salinity, temperature (high/low), drought, metal ions, and presence of various
toxic compounds. Only those PPGR that establish themselves and can manage such
abiotic stress can perform better as plant growth-promoting and biocontrol agents.

vii



viii Preface

The prime aim and objective of this book is to highlight salient features on the
application of PGPRs as biotic stress managers of agricultural crop plants to lend a
hand to scientists throughout the world working in this field. PGPR in biotic stress
management is a timely effort for sustainable agriculture. PGPR also provide excel-
lent tools for understanding the stress tolerance, adaptation, and response mecha-
nisms that can be subsequently engineered into crop plants to cope with climate
change-induced stresses.

This book is composed of 19 chapters encompassing the influence of various
abiotic factors on the performance of PGPR to comprehend the information that has
been generated on the abiotic stress alleviating mechanisms of PGPR and their abi-
otic stress alleviation potential. Agricultural crops grown on saline soils suffer on an
account of high osmotic stress, nutritional disorders and toxicities, poor soil physi-
cal conditions, and reduced crop productivity. The various chapters in this book
focus on the enhancement of productivity under stressed conditions and increased
resistance of plants against salinity stress by application of PGPR.

It has been an immense pleasure to edit this book, with continued cooperation of
the authors. We wish to thank Dr. Mamta Kapila, Ms. Raman Shukla, and Mr.
Sivachanrda Ravanan at Springer, India, for their generous cooperation in the com-
pletion of this book.

Shahada, Nandurbar, Maharashtra, India R. Z. Sayyed
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Biosynthesis of Antibiotics by PGPR
and Their Roles in Biocontrol
of Plant Diseases

Ahmed Kenawy, Daniel Joe Dailin, Gaber Attia Abo-Zaid,
Roslinda Abd Malek, Kugan Kumar Ambehabati,
Khairun Hani Natasya Zakaria, R. Z. Sayyed,

and Hesham Ali El Enshasy

Abstract

Plant growth-promoting rhizobacteria (PGPR) plays an essential role when it
comes to protection of crop, promoting growth, and improvement on soil health
status. There are some prevalent PGPR strains such as Pseudomonas, Bacillus,
Azospirillum, Rhizobium, and Serratia species. The key mechanism of biocon-
trol by PGPR is the involvement of antibiotics production such as phenazine-1-
carboxylic acid, 2,4-diacetyl phloroglucinol, oomycin, pyoluteorin, pyrrolnitrin,
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kanosamine, zwittermicin-A, and pantocin. The cascade of endogenous signals
such as sensor kinases, N-acyl homoserine lactones, and sigma factors regulates
the synthesis of antibiotics. The genes which are responsible for the synthesis of
antibiotics are greatly conserved. The antibiotics of this PGPR belong to
polyketides, heterocyclic nitrogenous compounds, and lipopeptides which have
broad-spectrum action against several plant pathogens, affecting crop plants.
Though antibiotics play a vibrant role in disease management, their role in bio-
control is questioned due to limitations of antibiotic production under natural
environmental conditions. In addition to direct antipathogenic action, they also
serve as determinants in prompting induced systemic resistance in the plant
system.

Keywords
PGPR - Antibiotics - Secondary metabolites - Biocontrol - Plant disease

1.1 Introduction

Biological control is the utilization of variously beneficial microorganisms that are
biological enemies, neutral or antagonistic of a pest or pathogen, to suppress or kill
its harmless results on plants or products. Nowadays, the agricultural industry
faces challenges, for example, reduction of soil fertility, climate change, and
increased pathogen and pest attacks (Gopalakrishnan et al. 2015). In this manner,
environmentally sound crop protection techniques are our future core interest.
Expanding worries over the utilization of chemical and synthetic fertilizers and
pesticides. Demand for ecologically stable and sustainable approaches for crop
production. Sustainability and environmental safety of horticulture business
depend on eco-accommodating methodologies like biofertilizers, biopesticides,
and crop residue return. Plant growth-promoting rhizobacteria (PGPR) assume an
essential part in crop protection, in growth promotion, and in the change of soil
well-being (Liu et al. 2017; Beneduzi et al. 2012). Some outstanding PGPR strains
are Pseudomonas, Bacillus, Azospirillum, Rhizobium, and Serratia species which
show a major role to inhibit or kill pathogenic microorganism by producing spe-
cific or mixtures of antibiotics. Usage of microbial antagonist has been proposed as
another way to combat against plant pathogens in agriculture crops aside from
chemical pesticides. PGPR is known to control an extensive variety of plant patho-
gens like bacteria, fungi, viruses, bug irritations, and nematodes. PGPR is a stand-
out among the best and environmental friendly for the plant disease management
(Coy 2017; Liu et al. 2017).

PGPR as biocontrol specialists were preferred over conventional chemical con-
trol strategy, on the grounds that PGPR are nontoxic naturally occurring microor-
ganisms, their application is feasible, and they can stimulate plant development and
soil health, but they are also involved in abiotic and biotic stress tolerance. Another
favorable position of PGPR is that they have different scopes of methods of activity,
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namely, they are involved in antibiosis; act as cell divider debasing compounds,
biosurfactants, and volatiles; and furthermore prompt fundamental obstruction in
plants. The utilization of PGPR inoculants as biofertilizers is because of the creation
of some plant development advancing substances, production of compounds, and
generation of some antifungal and antibacterial secondary metabolites and as antag-
onists of phytopathogens is because of discharge of antibiotics which gives a prom-
ising method to chemical fertilizers and pesticides. Antibiotic is described as a
heterogeneous grouping of low-molecular-weight organic complex that is harmful
to the development or metabolic exercises of different microorganisms (Kumar
et al. 2015). The antibiotics were more effective in smothering the development of
target pathogen in vitro and in situ. The creation of at least one antibiotic production
is the most imperative component of plant development advancing rhizobacteria
which encourage the opposing against numerous phytopathogens (Glick, et al.
2007). The antibiotics are categorized into volatile and nonvolatile complexes. The
volatile antibiotics include alcohols, aldehydes, ketones, sulfides, and hydrogen
cyanide, and the nonvolatile antibiotics are polyketides, cyclic lipopeptide amino
polyols, phenylpyrrole, and heterocyclic nitrogenous compound (Gouda et al. 2017;
Fernando et al. 2018). This antibiotic production has antiviral, antimicrobial, insec-
ticidal, antihelminthic, phytotoxic, antioxidant, and cytotoxic effect and promotes
plant growth (Ulloa-Ogaz et al. 2015; Fernando et al. 2018).

1.2 Intrinsic Antibiotic Resistance

The soil is an oligotrophic environment, which is an excellent habitat for the growth
of microorganisms and maintaining their biodiversity. As the microbial load gets
bigger, microbes usually compete for nutrients and strive trying to colonize their
habitat (ecosphere) (Song et al. 2005; Demaneche et al. 2008; Allen et al. 2009;
Philippot et al. 2010; Arora et al. 2013a). Therefore, different species have devel-
oped varied strategies to secure their needs and ensure their survival. The produc-
tion of antibiotics, which are heterogeneous, low-molecular-weight, and toxic
organic compounds that affect the activities of other microorganisms, is one impor-
tant strategy and an important means of competition among different microbial
strains (Duffy 2003). These metabolites have shown diverse properties such as anti-
microbial, antihelminthic, phytotoxic, antiviral, antioxidant, cytotoxic, antitumor,
and plant growth-promoting compounds (Kim 2012). Furthermore, the develop-
ment of intrinsic antibiotic resistance (IAR) was a crucial mechanism to encounter
the effect of another aggressive microorganism. Both strategies determine the fit-
ness of a strain in a population and secure its survival (Nesme and Simonet 2015).
The production of one or more antibiotic is usually detrimental for the competition
between microorganisms in any ecosphere including plant growth-promoting rhizo-
bacteria (PGPR) in their rhizosphere, allowing for better colonization and enhanc-
ing microbial efficiency (Sharma et al. 2017). In addition, PGPR antibiotics are
produced as important antagonistic agents against phytopathogens (Glick et al.
2007; van Loon 2007; Sharma et al. 2017).
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As the TAR pattern of a bacterial strain, generated by testing it against low con-
centrations of antibiotics, was found to be stable property, many researchers have
used TAR as a classification method in order to differentiate between closely related
isolates. The strain-specific IAR profile was widely accepted to group the closely
related bacterial isolates that belong to the same serological group of the same spe-
cies as IAR profile was found to be strain specific rather than a species-specific
feature (Amarger et al. 1997). For example, different populations of PGPR rhizobial
isolates were studied using numerical taxonomy, and the isolates were grouped
using IAR profile (Atta et al. 2004; Atta 2005; Degefu et al. 2018). In addition, AR
profiling technique was also used to characterize rhizobial strains that nodulate
Trifolium alexandrinum and Phaseolus vulgaris according to their resistance to dif-
ferent antibiotics (Nassef 1995). The diversity of rhizobia associated with Amorpha
fruticosa isolated from Chinese soils was investigated using different phenotypic
and genotypic techniques using the IAR patterns analysis. As a result, Mesorhizobium
amorphae was described as a new species (Wang et al. 1999).

Several classes of antibiotics were found to be produced in the soil by PGPRs
such as phenazines, phloroglucinol, pyoluteorin, pyrrolinitrin, cyclic lipopeptides,
and volatile HCN (Hass and Defago 2005). In addition, the biosurfactants of
Pseudomonas and Bacillus species were used as biocontrol agents against plant
diseases (Raaijmakers et al. 2010). The mechanisms by which these antibiotics are
working are partly understood; the main effects of antibiotics include inhibition of
cell wall synthesis, the arrest of ribosomal RNA formation, deformation of cellular
membranes, and inhibition of protein biosynthesis (Maksimov et al. 2011).

1.3  Major Antibiotics of PGPR

Antibiotics production (antibiosis) by PGPR plays an important role in the manage-
ment of plant diseases. The process has been defined as the inhibition or suppression
of pathogenic microorganisms via the production of low-molecular-weight com-
pounds (antibiotic) by other microorganisms.

Bacillus species and fluorescent pseudomonas are playing active roles in the sup-
pression of pathogenic microorganisms by producing extracellular metabolites that
have inhibitory and antagonistic effects against their competitors. Additionally, to
the direct antagonistic action, antibiotics have a vital role in induced systemic resis-
tance (ISR) mechanism in plants.

Different microorganisms have the ability to produce different antibiotics, for
example, PGPR (Bacillus species) produces several antibiotics that comprise itu-
rins, mycosubtilin, bacillomycin D surfactin, fengycin, and zwittermicin A, whereas
antibiotics produced by fluorescent pseudomonads include 2,4-diacetyl phloroglu-
cinol (DAPG), pyoluteorin, phenazines, pyrrolnitrin, oomycin A, viscosin, and mas-
setolide A.
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1.3.1 Polyketides

1.3.1.1 2,4-Diacetyl Phloroglucinol (DAPG or Phl)

DAPG or Phl is a phenolic polyketide compound that is produced by many fluores-
cent pseudomonads and has antifungal, antibacterial, antihelminthic, and phyto-
toxic activities (Harrison et al. 1993; Gaur 2002).

Phl is a major determinant in the biocontrol activity of plant growth-promoting
rhizobacteria. Take-all diseases of wheat caused by Gaeumannomyces graminis var.
tritici can be naturally suppressed by take-all decline (TAD) caused by strains of P.
fluorescens that produce the antibiotic 2.4-diacetylphloroglucinol (2,4-DAPG)
(Raaijmakers and Weller 1998; Weller et al. 2002; Weller et al. 2007). Some strains
of P. fluorescens inhibit several soil-borne pathogens that cause diseases such as
damping off, root rot, take-all, and other wilting diseases (McSpadden Gardener
2007). 2,4-Diacetylphloroglucinol (DAPG) produced from some strains of P. fluo-
rescens had a nematicidal effect (Meyer et al. 2009; Siddiqui and Shaukat 2003).
Production of DAPG by Pseudomonas sp. LBUM300 plays a vital role in the bio-
control of bacterial canker of tomato caused by Clavibacter michiganensis subsp.
michiganensis (Lanteigne et al. 2012).

The mode of action of Phl is still unclear, although it is known that the interaction
between Phl-producing root-associated microorganisms and the pathogens is a major
reason for disease suppression. Phl also elicits ISR in plants. Thus, Phl-producing
microorganisms can act as specific elicitors for the production of phytoalexins and
other similar molecules in plant-disease biocontrol (Dwivedi and Johri 2003).

The molecular basis for the production of Phl has been studied, and five com-
plete open reading frames (ORFs) and one partial ORF with a molecular size of
6.8 kb were found responsible for the biosynthesis of Phl (Bangera and Thomashaw
1996). The genes phlA, phlC, phlB, and phlD are located within a large transcrip-
tional unit transcribed in the same direction. phlD is the polyketide synthase gene
that is necessary for the synthesis of the DAPG precursor monoacetylphloroglu-
cinol (Bangera and Thomashaw 1996). phlE gene secretes a red pigment, which is
responsible for transportation of Phl out of the cell and is placed downstream of
phID (Delany et al. 2000). Another divergently transcribed gene, phlF, is located
421 bp upstream of biosynthetic genes and consists of an ORF of 627 bp with a cor-
responding protein of 209 amino acids, with the expected molecular mass of
23,570 Da. The Phl operon is regulated by a repressor molecule of PhIF that exhibits
a helix—turn—helix DNA binding motif. phlO is a specific sequence of 30 bp that
exists downstream of phlA. The interaction between PhIF repressor protein and this
sequence results in repression of Phl operon (Cook et al. 1995; Bangera and
Thomashaw 1996; Delany et al. 2000).

Biosynthesis of a polyketide Phl occurs by condensation of three molecules of
acetyl CoA with one molecule of malonyl CoA to produce the precursor mono-
acetylphloroglucinol (MAPG), which is subsequently transacetylated to generate
Phl (Dwivedi and Johri 2003).
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1.3.1.2 Pyoluteorin (Plt)

Pyoluteorin (PIt) is a phenolic polyketide with a resorcinol ring. The ring is coupled
to a bichlorinated pyrrole moiety (Fernando et al. 2005). Several strains of
Pseudomonas sp. that produce PIt suppressed plant diseases caused by phytopatho-
genic fungi (Maurhofer et al. 1994; Kraus and Loper 1995). Most of oomycete
pathogens such as Pythium ultimum were inhibited by Plt. Nowak-Thompsan et al.
(1999) reported that the severity of Pythium damping-off decreased when Plt-
producing pseudomonads were applied to seeds. Pyoluteorin produced by P. putida
was more effective in reducing symptoms of red root rot disease caused by
Glomerella tucumanensis in sugar cane (Hassan et al. 2011).

Ten open reading frames, pitLABCDEFGMR, are involved in the biosynthesis of
PIt with a molecular size of 24 kb in P. fluorescens Pf-5. Among these ten genes,
pltB and putC are responsible for the synthesis of type 1 polyketide synthase, plitG
synthesizes thioesterase, and pltA, pltD, and pltM are involved in the biosynthesis
of three halogenases (Dwivedi and Johri 2003).

PIt biosynthesis starts from proline, which acts as a precursor for dichloropyrrole moi-
ety of PIt. Proline condenses with three acetate equivalents linked to chlorination and
oxidation. The action of a single multienzyme complex is responsible for the formation
and cyclization of the C-skeleton (Cuppels et al. 1986; Nowak-Thompsan et al. 1999).

1.3.2 Heterocyclic Nitrogenous Compounds

Heterocyclic pigments containing nitrogen known as phenazines, which are low-
molecular-weight metabolites, are produced by a restricted number of bacterial genera
including Pseudomonas, Burkholderia, Brevibacterium, and Streptomyces (Leisinger
and Margraff 1979; Turner and Messenger 1986; Budzikiewicz 1993; Huang et al.
2011; Chen et al. 2014; Dasgupta et al. 2015). Greater than 50 naturally occurring phen-
azine compounds have been studied. Some bacterial strains are capable of producing
mixtures of different phenazine derivatives at one time (Turner and Messenger 1986;
Smirnov and Kiprianova 1990; Guttenberger et al. 2017). For instance, P. fluorescens
2-79 produces essentially PCA (phenazine-1-carboxylic acid), whereas P. aureofaciens
30-84 not only produces PCA but also minor amounts of 2-hydrozyphenazine.
Pyocyanin (1- hydroxy-5-methyl phenazine) is a major phenazine biosynthesized by P.
aeruginosa (Wienberg 1970); also P. aeruginosa has the ability to biosynthesize other
phenazine compounds, including phenazine-1-carboxylic acid (PCA), 1-hydroxyphen-
azine (1-OH-PHZ), and phenazine- 1-carboxamide (PCN).

Phenazines produced by several strains of PGPR pseudomonads have antibiotic and
antitumor properties; they are involved with their capability to control plant pathogenic
fungi and nematodes (Chin-A-Woeng et al. 2000; Mavrodi et al. 2001, 2006; Pierson and
Pierson 2010; Cezairliyan et al. 2013; Zhou et al. 2016). Phenazine- 1-carboxylic acid
(PCA) produced by P. fluorescens 2-79 and P. aureofaciens 30-84 plays a vital role in
biocontrol of take-all disease of wheat caused by G. graminis var. tritici (Thomashow and
Weller 1988; Ju et al. 2018). Tomato foot and root rot are caused by Fusarium oxysporum
f. sp. radicis-lycopersici and rice pathogens, Rhizoctonia solani Kiihn and Xanthomonas
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oryzae pv. oryzae, suppressed by phenazine-1-carboxamide (PCN) produced from P
chlororaphis PCL1391 and P. aeruginosa MML2212 (Chin-A-Woeng et al. 2000;
Shanmugaiah et al. 2010). Phenazine-1-carboxylic acid and phenazine-1-carboxamide
produced by P. aeruginosa PNA1 (wild type) are essential compounds in the control of
root rot of cocoyam caused by P. myriotylum (Tambong and Hofte 2001). Phenazine-1-
carboxylic acid and pyocyanin produced by P. aeruginosa revealed antagonistic activity
against Aspergillus niger NCIM 1025, F. oxysporum NCIM 1008, Sclerotium rolfsii
NCIM 1084, R. solani, and several other phytopathogens (Rane et al. 2007; Abo-Zaid
2014). Yu et al. (2018) reported that phenazine derivatives produced by P. chlororaphis
30-84 are necessary for their ability to inhibit plant pathogenic fungi.

1.3.3 Mode of Action of Phenazine

The wide-range activity demonstrated by phenazine pigments against fungi and
other bacteria is not clear. However, it is assumed that pyocyanin can accept elec-
trons that produce a relatively stable anion radical, which readily enters the redox
cycle. Mn-containing superoxide dismutase (MnSOD) is a major enzyme that
causes an increase in the production of O2~ (superoxide radical), as illustrated in
Fig. 1.1. There is a distinct possibility that the antibiotic action of pyocyanin is actu-
ally a result of toxicity of O*2” and H202 produced in increased amounts in its
presence (Mavrodi et al. 2001, 2006).

1.3.4 Phenazines Biosynthesis

Seven genes phzABCDEFG are involved in the synthesis of PCA that represents a
6.8 kb fragment in P. fluorescens 2—79 (Mavrodi et al. 1998). The precursor for
phenazine biosynthesis is shikimic acid (Jin et al. 2016; Guo et al. 2017). The

PYocyanin s Diffusion into cell

Accept Single Electron

H,0, MnSOD . Stable Anion Radical

NADP*
Hydrogen it
P id o Flavi
- : Redox Cycle bias I
l 0; Enzymes

FAD.q NADPH+H'

R Radical Metabolites

MnSOD, Mn-containing superoxide dismutase

Fig. 1.1 Mode of action of pyocyanin (Abo-Zaid 2014)
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symmetrical condensation of two molecules of chorismic acid forms phenazine
nucleus (Chang and Blackwood 1969; Herbert et al. 1976), in which the amide
nitrogen of glutamine serves as the immediate source of N in the heterocyclic
nucleus. The first step is amination of chorismic acid to aminodeoxyisochorismate
(ADIC) which is catalyzed by aminodeoxyisochorismate (ADIC) synthase
(Fig. 1.2). The second step is the elimination of pyruvate and aromatization to form
3-hydroxyanthranilic acid, which is catalyzed by ADIC lyase (Morollo and Bauerle
1993). The products of phzF and phzG are involved in the condensation of two
molecules of 3-hydroxyanthranilate to generate the phenazine nucleus. Spontaneous
non-enzymatic decarboxylation is responsible for the conversion of phenazine-1,6-
dicarboxylic acid to PCA probably by Mavrodi et al. (1998). Minor amounts of
2-hydroxyphenazine-1-carboxylic acid (2-OH-PCA) and small quantities of

O0H Gin Glu COOH
phzE ?
NH,
CH, - CH,
JLMCDWMM. JL
O COOH o COOH
OH 2-aminodeoxy-
chionriits sl COOH isochorsmic acid
phzD 7
NH, pyrnic ( ACID } lyase
acid
Fhydroxy-
anthranilic acid OH
COOH COOH
phzF+ N
N, phzG 7 =
OH S N
3-hydroxy- |
anthranilic acid COOH

phenazine-1,6-dicarboxylic acid

COOH
N
/ = non-enzymatic
decarboxylation
\ \\
N
phenazine-1-dicarboxylic acid P .fluorescens 2-79

Fig. 1.2 The proposed biosynthetic pathway for the synthesis of phenazine-1-carboxylic acid in
Pseudomonas fluorescens 2—79 (Abo-Zaid 2014)
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COOH

@: *: : i flavin-diffusible monoxygenase

phenazine-1-dicarboxylic acid COOH

acid
@: D/ non-enzymatic decarboxylation
P.aureofaciens 30-84

2-+hydroxyphenazine

Fig. 1.3 The proposed biosynthetic pathway for the synthesis of 2-hydroxyphenazine in
Pseudomonas aureofaciens 30-84 (Abo-Zaid 2014)

2-hydroxyphenazine are produced by P. aureofaciens 30-84 and P. chlororaphis
GP72 in addition to PCA. phzO gene that codes flavin-diffusible monooxygenase is
responsible for conversion of PCA to 2-OH-PCA in strain 30-84 which adds a
hydroxyl group to PCA at ortho-position relative to carboxyl group (Fig. 1.3)
(Delaney et al. 2001; Pierson and Pierson 2010; Huang et al. 2011; Chen et al.
2014). P. aeruginosa contains two operons (phzAI1BICIDIEIF1G1 and phz-
A2B2C2D2E2F2G2), which are responsible for the biosynthesis of PCA and three
genes (phzM, phzS, and phzH) coding a set of enzymes that converts PCA to
5-methyl-phenazine-1-carboxylic acid (SMPCA), 1-hydroxy-phenazine (10HPZ),
PCN, and pyocyanin (Fig. 1.4) (Mavrodi et al. 2001, 2006; Greenhagen et al. 2008;
Abo-Zaid 2014; Jin et al. 2016).

1.3.5 Phenylpyrroles

Many fluorescent and non-fluorescent strains of the genus Pseudomonas can pro-
duce pyrrolnitrin [3-chloro-4-(2'-nitro-3’-chloro-phenyl) pyrrole] that is a broad-
spectrum antifungal metabolite. Prn was first studied and utilized as a clinical
antifungal agent against dermatophyte fungus Trichophyton skin mycoses.
Consequently, Prn was expanded as an agricultural fungicide (Elander et al. 1968).
Its antifungal activity against R. solani and F. graminearum was reported (El-Banna
and Winkelmann 1988; Huang 2017). Post-harvest diseases of apple and pear
caused by Botrytis cinerea are suppressed by Prn (Janisiewicz and Roitman 1988;
Evensen and Hammer 1993). In addition, Prn produced by P. fluorescens strains was
sufficient in the reduction of the take-all decline of wheat (Tazawa et al. 2000).
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Fig. 1.4 The proposed biosynthetic pathway for the synthesis of pyocyanin, 1-hydroxyphenazine,
and phenazine- 1-carboxamide in Pseudomonas aeruginosa PAO1 (Abo-Zaid 2014)
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Qing-Xia et al. (2016) illustrated that Prn produced by P. fluorescens FD6 isolated
from the canola rhizosphere was able to inhibit Monilinia fructicola, the causal
agent of peach brown rot. Prn of P. chlororaphis PA23 used as a biocontrol agent
against the model nematode, Caenorhabditis elegans (Nandi et al. 2015).

Pyrrolnitrin inhibited the growth of Saccharomyces cerevisiae, Penicillium atro-
venetwn, and P. oxalicwn. The primary site of action of Prn on S. cerevisiae was the
terminal electron transport system between succinate or reduced nicotinamide ade-
nine dinucleotide (NADH) and coenzyme-Q. At growth inhibitory concentrations
and after its addition to the system, Prn inhibited endogenous and exogenous respi-
ration immediately. In mitochondrial preparations, the antibiotic inhibited succinate
oxidase, NADH oxidase, succinate-cytochrome C reductase, NADH-cytochrome C
reductase, and succinate-coenzyme-Q6 reductase (Tripathi and Gottliep 1969).

The biocontrol agent, P. fluorescens BL915, containing one operon consists of
four genes that are implicated in the biosynthesis of Prn from the precursor trypto-
phan (Hamill et al. 1970; Chang 1981; Xiaoguang et al. 2018). The prn operon
with 5.8 kb (prnABCD) has been fully sequenced. It includes four ORFs, prnA,
prmB, prnC, and prnD, which are localized on a single transcriptional unit
(Qing-xia et al. 2016).

The first step in the biosynthesis of Prn is chlorination of tryptophan to result
in 7-chlorotryptophan (7-CT). This step is catalyzed by a tryptophan halogenase
enzyme that is synthesized by prnA gene. 7-CT is a catalyzed by-product of prnB
to phenylpyrrole and decarboxylate to monodechloroamino pyrrolnitrin (MDA).
The third step includes second chlorination in the three positions of pyrrole ring
to form amino-pyrrolnitrin that is catalyzed by MDA halogenase synthesized by
the prnC gene. The fourth step comprises of oxidation of amino group to a nitro
group to form pyrrolnitrin that is catalyzed by enzyme coded by prnD (Fig. 1.5)
(Van Pee et al. 1980).

1.3.6 Cyclic Lipopeptides of Pseudomonas sp.

Cyclic lipopeptides are adaptable metabolites produced by different genera of bacteria
such as Pseudomonas and Bacillus (Nybroe and Sorensen 2004; Ongena and Jacques
2008; Raaijmakers et al. 2006). Fluorescent pseudomonades produce different kinds of
CLPs (Nielsen et al. 2002). CLPs play an important role in seeds and roots colonization
(Nielsen et al. 2005; Tran et al. 2007), in protection from competing microorganisms
and predatory protozoa (Mazzola et al. 2009), and in swarming motility and biofilm
creation (Raaijmakers et al. 2010). CLP biosynthesis is managed by large multi-mod-
ular non-ribosomal peptide synthetases (NRPS) through a thiotemplate process
(Finking and Marahiel 2004; Raaijmakers et al. 2006; Zhao et al. 2018a, b). The com-
position of CLPs produced by Pseudomonas spp. including a fatty acid tail is linked to
a short oligopeptide, which is formed in a lactone ring between two amino acids in the
peptide chain (Raaijmakers et al. 2006; Zhao et al. 2018a, b). CLPs of Pseudomonas
spp. were classified into four major groups (viscosin, amphisin, tolaasin,
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Fig. 1.5 The proposed biosynthetic pathway for the synthesis of pyrrolnitrin

syringomycin) according to the length and composition of the fatty acid tail as well as
the number, type, and configuration of the amino acids in the peptide moiety.

1.3.7 Viscosin Group

Viscosin group contains CLPs with nine amino acids linked at the N-terminus, in
most cases, to the 3-hydroxy decanoic acid (3-HDA) (De Bruijn et al. 2008). For
example, viscosin has been described and identified for pectolytic strains of P. fluo-
rescens causing head rot of broccoli (Hildebrand et al. 1998). In addition, masse-
tolide A was first identified in a marine Pseudomonas species isolated from Masset
Inlet, BC, Canada (Gerard et al. 1997). Zoospores of multiple oomycete plant
pathogens are destructive when treated by massetolide A produced from PGPR P.
Sfluorescens SS101 (De Bruijn et al. 2007; De Souza et al. 2003). Furthermore, mas-
setolide A plays a vital role in the induction of systemic resistance response in
tomato plants and root colonization by strain SS101 (Tran et al. 2007). Massetolide
A is produced in the early exponential growth phase and is essential for swarming
motility and biofilm formation of strain SS101 (De Bruijn et al. 2008). Three nonri-
bosomal peptide synthetases, designated MassA, MassB, and MassC, is responsible
for biosynthesis of massetolide A in strain SS101 (De Bruijn et al. 2008).
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1.3.8 Amphisin Group

Amphisin group consists of 11 amino acids in the peptide part attached to
3-HDA. This group includes amphisin and tensin (Henriksen et al. 2000; Sorensen
et al. 2001; Raaijmakers et al. 2006), which had antagonistic effects against P. ulti-
mum (Thrane et al. 2000) and R. solani (Nielsen et al. 2002).

1.3.9 Tolaasin Group

There are multiple variations in the composition and length of the peptide chain (19 to
25 amino acids) and the lipid tail (3-HDA or 3-hydroxyoctanoic acid [3-HOA]) in the
tolaasin group, which are different from viscosin and amphisin groups. The peptide
part of the CLPs in this group includes several unusual amino acids, such as 2,3-dihydro-
2-aminobutyric acid (Dhb) and homoserine (Hse). Five to eight amino acids are
involved in the composition of the cyclic part of the peptide moiety, and the lactone
ring is formed between the C-terminal amino acid and the all-Thr residue (Raaijmakers
et al. 2006). Few tolaasin-like CLPs produced by plant-pathogenic strains of
Pseudomonas are working as virulence factors.

1.3.10 Syringomycin Group

CLPs in the syringomycin group have similar structure to the CLPs in the viscosin
group. On the other hand, syringomycin contains unusual amino acids, including
Dhb, 2.4-diamino butyric acid (Dab), and C-terminal 4-chlorothreonine (Thr
[4-Cl]), the latter being effective for the antifungal activity of syringomycin
(Grgurina et al. 1994). Furthermore, the lactone ring is formed between the
N-terminal Ser and the C-terminal Thr(4-Cl); being different from members of the
viscosin group, the ring usually is formed between the C-terminal amino acid and
the D-allo-Thr at the third amino acid position in the peptide chain. 3-Hydroxy or
3,4-dihydroxy fatty acid composed of 10—14 carbon atoms represents the fatty acid
tail of CLPs in the syringomycin group (Bender et al. 1999; Bender and Scholz-
Schroeder 2004; Raaijmakers et al. 2006).

1.3.11 Cyclic Lipopeptides of Bacillus sp.

Bacillus sp. produce small peptides with a long fatty moiety, the so-called cyclic
lipopeptide antibiotics. Based on the structural relationship, the lipopeptides that
have been identified in Bacillus spp. are generally classified into three groups: iturin
group, surfactin group, and plipastatin-fengycin group (Zhao et al. 2014).
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1.3.12 Iturin Group

This group includes iturin A, bacillomycin L, bacillomycin D, bacillomycin F, and
mycosubtilins. Iturin A as a molecule has a low molecular weight of ~ 1.1 kDa.
Iturin A consists of a peptide chain composed of 7 amino acid residues linked to the
hydrophobic tail of f-amino fatty acid chain that can vary from C-14 to C-17 carbon
molecules (Fig. 1.6) (Meena and Kanwar 2015). Members of this group are pro-
duced from all strains of Bacillus subtilis. Four open reading frames, namely, [tuA,
ItuB, ItuC, and ItuD, are responsible for the synthesis of iturin A that are located in
one operon with a molecular size of 38—40 kb (Tsuge et al. 2001). Iturin A produced
by B. subtilis RB14 was effective in reduction of damping-off of tomato caused by
R. solani. Also, iturin A showed suppressing effect against P. ultimum, F. oxyspo-
rum, S. sclerotiorum, M. phaseolina, and Podosphaera fusca (Asaka and Shoda
1996; Constantinescu 2001; Romero et al. 2007). Overexpression of mycosubtilin
in B. subtilis ATCC 6633 is involved in the reduction of seedling infection by P.
aphanidermatum (Lecleére et al. 2005).

1.3.13 Surfactin Group

This group includes surfactin, esperin, lichenysin, and pumilacidin. Surfactin is a
biosurfactant molecule with a molecular mass of 1.36 ~ kDa that is produced by
several strains of B. subtilis. Surfactin consists of a peptide chain of 7 amino acids
(Glu-Leu-Leu-Val-Asp-Leu-Leu) linked to f-hydroxy fatty acid of the chain length
of 12 to 16 carbon atoms to form a cyclic lactone ring structure (Fig. 1.6) (Seydlova
et al. 2011; Meena and Kanwar 2015). The type of surfactin might also vary based
on amino acids and the size of lipid portion (Korenblum et al. 2012). Three large
open reading frames (ORFs), namely, srfA-A, srfA-B, and srfA-C, encoding surfac-
tin synthetases are responsible for biosynthesis of surfactin (Peypoux et al. 1999).
Additionally, a fourth gene called srfA-D stimulates the initiation of the biosynthe-
sis (Steller et al. 2004). Surfactin was able to reduce infection of Arabidopsis with
P. syringae (Bais et al. 2004).

1.3.14 Fengycin Group

This group includes fengycin A, fengycin B, plipastatin A, and plipastatin
B. Fengycin is a bioactive molecule that contains a peptide chain of 10 amino acids
linked to p-hydroxy fatty acid chain that can vary from C-14 to C-17 carbon atoms
with lactone ring (Fig. 1.6) (Akpa et al. 2001; Meena and Kanwar 2015). Five open
reading frames, namely, fenC, fenD, fenE, fenA, and fenB, are responsible for the
synthesis of fengycin that are located in one operon with a molecular size of 37 kb
(Lin et al. 1999). Both iturins and fengycins showed an antagonistic effect against
P. fusca infecting melon leaves (Romero et al. 2007).
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Fig. 1.6 Different types of Bacillus spp. lipopeptides of biological control activities
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1.3.15 Aminopolyols (Zwittermicin A)

Zwittermicin A is known as an aminopolyol antibiotic produced by B. cereus group
and has structural similarities to polyketide antibiotics with a wide range of actions
against various microorganisms (Silo-Suh et al. 1998; Elizabeth et al. 1999;
Sansinenea and Ortiz 2012). Zwittermicin A is used as antifungal against oomycete
plant pathogens. Also, zwittermicin A produced by B. thuringiensis had insecticidal
activity (Emmert et al. 2004). Kevany et al. (2009) reported 22 open reading frames
(ORFs) with a molecular size of 62.5 kb related to ZmA biosynthesis by gene map-
ping the zmal6Bc cluster from B. cereus UW85.

1.3.16 Volatile Antibiotics

There are several volatiles antibiotics such as hydrogen cyanide (HCN), alde-
hydes, alcohols, ketones, and sulfides, but HCN is the most important metabolite
among them.

1.3.16.1 Hydrogen Cyanide (HCN)

Cyanide is a secondary metabolite produced by gram-negative P. fluorescens, P.
aeruginosa, and Chromobacterium violaceum (Askeland and Morrison 1983).
Hydrogen cyanide secreted by P. chlororaphis O6 demonstrates nematicidal activity
against Meloidogyne hapla (Lee et al. 2011; Anderson and Kim 2018; Kang et al.
2018). In alfalfa, P. putida produced HCN to stop the infection by F. solani (Sarhan
and Shehata 2014). Production of hydrogen cyanide (HCN) is an important biocon-
trol determinant (Haas and Defago 2005). The characterized set of genes hcnABC
were found to be responsible for the biosynthesis of HCN in P. fluorescens strains
Q2-87 and CHAO (Haas and Defago 2005).

1.4  Regulation of Antibiotic Biosynthesis
1.4.1 GacS/GacA System

GacS/GacA double constituent signal transduction system manages essential patho-
genicity and virulence mechanisms in numerous gram-negative bacteria (Zhang
et al. 2018). Research of Gac-defective mutants has shown that several traits are
controlled by these two constituent systems which comprise of motility, sidero-
phores, pigment production, and lesion formation (Cha et al. 2012). De la Torre-
Zavala et al. (2011) reported that phaseolotoxin biosynthesis includes elements
within and outside the Pht cluster and that the GacS/GacA system regulates them.
In that case, tox-phenotype gacA- and gacS- mutants were found and gacA- tran-
scriptome analysis showed that this response activator regulates expression of genes
within the Pht cluster and other gene placed in a different area in the bacterial chro-
mosome and it has shown to be directly involved in the biosynthesis of
phaseolotoxin.
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1.4.2 Quorum Sensing

Quorum sensing (QS) is a molecular mechanism whereby bacteria is adapting their
self according to cell density and neighboring atmosphere (Rémy et al. 2018).
Normally, bacteria constantly produce signal beginning at a low concentration in a
fresh culture and the signal gathers in the initial location as the population concen-
tration upsurges (Abisado et al. 2018). The signal interrelates with a receptor pro-
tein triggering a synchronized alteration in gene expression in the population when
a threshold concentration is reached. This will allow bacteria to perform processes
that are expensive and non-effective at small cell concentration but that turn into
valuable for the entire community at high cell density such as biofilm formation,
virulence factor synthesis, protease, and production of siderophore (Heilmann et al.
2015). Gram-positive bacteria possess peptide-based QS systems agr system where
Staphylococcus aureus is the most studied species. Effector purposes of agr are
mainly regulated by RNAIII in which a regulatory RNA encoded by this operon and
the phenotype and expression significantly affect the chronicity of an infection
(Singh and Ray 2014).

1.4.3 Type VI Secretion System (T6SS)

Bacterial cells are able to interact with their surrounding atmosphere through
secretion systems. Type VI secretion system (T6SS) is one of the most lately
learned secretion systems, which is dispersed widely in gram-negative bacteria
such as Pseudomonas aeruginosa (Chen et al. 2015). It was reported that the gene
expression of H2-T6SS P. aeruginosa PAO1 WT strain is upregulated by the Las
and Rhl QS systems (Sana et al. 2013). They concluded that T6SS is important for
the survival of P. aeruginosa by bringing toxins to its surrounding pathogens,
translocating protein effectors into the host cells, acting as a virulence factor, and
taking part in biofilm formation. In general, T6SS is regulated at transcriptional,
posttranscriptional, and posttranslational levels by diverse mechanisms in P. aeru-
ginosa (Sana et al. 2013).

1.4.4 \Virulence Factor Regulator

Virulence factor regulator (Vfr) is an associate of the cyclic 3’,5’-adenosine mono-
phosphate (cAMP) receptor proteins that manage the expression of many vital viru-
lence genes (Taguchi and Ichinose 2013). Regulation by Vfr permits the organized
production of related virulence functions, such as type IV pili and type III secretion
that are necessary for adherence to and intoxication of host cells, respectively
(Marsden et al. 2016). Biochemical studies showed that antibiotics production of
2.4-diacetylphloroglucinol, pyrrolnitrin, and pyoluteorin was distinctly improved in
the vfr mutant P. fluorescens FD6 (Zhang et al. 2016). These outcomes show that
Vfir regulates the expression of several important traits and production of essential
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antibiotics involved in the biocontrol potential of P. fluorescens FD6. It was also
reported that vfr mutation improved swimming motility and biofilm production and
exopolysaccharide-associated gene (pelA, pslA, and pull) transcripts expression
(Taguchi and Ichinose 2013; Ventre et al. 2006).

1.5 Outer Membrane Protein Gene oprF

Soil-borne pathogen antagonization depends mainly on the production of secondary
metabolites, such as pyoluteorin, siderophores, 2,4-diacetylphloroglucinol (2,4-
DAPG), pyrrolnitrin, hydrogen cyanide, phenazines, and several lipopeptide com-
pounds (Raaijmakers et al. 2010). Survival in harsh environments obliges bacteria
to use their outer membrane to sense and response quickly to the extracellular envi-
ronments. OprF of Pseudomonas spp. is the major OM protein involved in forming
nonspecific channels for passive diffusion of ions, small polar nutrients, and even
antibiotics (Nestorovich et al. 2006). Expression of the 2,4-DAPG biosynthesis
enzymes, which are encoded by the phlACBD locus, is under the control of a deli-
cate regulatory network. The previous study by Li et al. (2018) shows a novel role
for the outer membrane protein gene oprF, in negatively regulating the 2,4-DAPG
production by using random mini-Tn5 mutagenesis. SigX, a sigma factor gene, was
located on the upstream of oprF gene revealed to be a positive regulator for oprF
transcription and 2,4-DAPG production.

1.6  Control of Soil-Borne Disease Using PGPR Antibiotics

Administration of soil-borne disease relies upon an exhaustive learning of the
pathogen, the host plant, and the natural conditions that support the infection. The
diseases that are initiated by pathogens which stay in the soil and in residues on the
soil surface are defined as soil-borne diseases (Veena et al. 2014; Landa et al. 2013).
Soil-borne diseases are hard to manage since they are caused by a pathogen which
can live for long times in the absence of the normal crop host. In this way, these
diseases may not be seen until over-the-ground (foliar) parts of the plant are influ-
enced by extremely indicating side effects, for example, hindering, shrinking, chlo-
rosis, and demise. There are a few different sorts of disease caused by soil-borne
plant pathogens, for instance, root rots; Rhizoctonia root rot disease; stem, collar,
and head rots; wilts; shrinks; seedling blights; and damping-off diseases, pythium
damping-off disease, and Phytophthora damping-off (Veena et al. 2014).

Crop losses due to plant diseases represent the main risk to food security world-
wide. The outcome of losses ranges from a modest reduction of plant development
measurements to more significant damage leading to plant death and decreased
yield (Savary et al. 2012). To avoid or control such pathogenic microorganism and
their pervasions, numerous methodologies have been attempted, including the
improvement of resistant varieties through plant breeding, the invention of geneti-
cally modified resistant plants, and the practice of chemical enrolments such as
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fungicides. However, all have restrictions. In addition, the existence of pesticide and
fungicide leftovers on food may affect human well-being, which has also elevated
significant concerns. The importance of antibiotic in biocontrol and in microbial
antagonism has been addressed due to the imperatives to antibiotic production in
regular habitat. Every one of these antibiotics has a different method of activity,
some assault the cell layers, and others affect the ribosome or other cell
constituents.

Antibiotic production by rhizobacteria species is one of the real components
hypothesized for antifungal and plant development advancement. These antibiotics
have appeared to assume a part in disease concealment in numerous biocontrol
frameworks by mutant investigations and biochemical examinations utilizing puri-
fied antibiotics. These antimicrobial mixes may follow up on plant pathogenic
microbes or growths by inducing fungistasis, inhibition of spore germination, and
lysis of fungal mycelia (Adhya et al. 2018; Ulloa-Ogaz et al. 2015). Usage of micro-
bial antagonists has been proposed as another way to combat against plant patho-
gens in horticulture crops aside from chemical pesticides. The importance of
antibiotics application in biocontrol and in microbial antagonism has been addressed
as a result of the requirements of antibiotics production in natural environments.
Recuperation and discovery might be hampered by biotic and abiotic intricacy, sub-
stance precariousness of the compound, irreversible authoritative to soil colloids or
natural issue, or microbial decay. The primary line of proof of the expansive range
of activity of antibiotic agents by PGPR was gotten from purified antibiotics
(Fernando et al. 2005). In numerous biocontrol frameworks, at least one antibiotic
has appeared to assume a part in disease control or suppression. Molecular tool or
genetic engineering has been successful here, because mutants faulty in antibiotics
creation are effortlessly acquired, and in vitro examinations are helpful tests. The
most broadly examined gathering of rhizospheric microbes as for the generation of
antibiotics is that of the fluorescent pseudomonads (Fernando et al. 2005).

Antibiotics produced by PGPR include phenazine, 2,4-diacetylphloroglucinol
(DAPG), surfactin, iturin, fengycin, bacilysin, pyrrolnitrin, pyoluteorin, hydrogen
cyanide, iturin A, iturin D, bacillomycin D, fengycin A, pyrrolnitrin (3-chloro-4-[2'-
nitro-3" chlorophenyl]-pyrrole) pyrrolnitrin, viscosinamide, tensin, amphisin, triter-
penoid soyasapogenol, bacillomycin, subtilin, and subtilosin (Table 1.1). The
important antibiotic DAPG produced by Pseudomonas fluorescens has efficiently
affected membrane destruction to Meloidogyne incognita and Fusarium oxysporum
[ sp. niveum. Pseudomonas is biocontrol bacteria that presented antagonistic action
including fungi, bacteria, protozoa, and nematodes by producing lipopeptide biosur-
factant (Zihalirwa Kulimushi et al. 2017; Nielsin et al. 2003). Pseudomonas has the
capacity to produce phenazine, 2,4-diacetylphloroglucinol (DAPG), and antibiotic,
showing antagonistic activity against plant pathogen in watermelon, which are
Meloidogyne incognita and Fusarium oxysporum f. sp. niveum (Meyer et al. 2016).
A study done by Caulier et al. (2018) showed that antagonistic mixed soil bacteria
can substitute the indiscriminate use of pesticide in potato farming. For example, the
discovery of genes involved in bacilysin biosynthesis was associated with the strong
antagonism of Bacillus pumilus strains toward P. infestans. The production of cyclic
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lipopeptides (CLPs) with antibiotic and biosurfactant properties has been found in
various microorganisms isolated from different habitat. Lipopeptides, such as visco-
sinamide, tensin, amphisin (Nielsen and Sgrensen 2003), as well as fengycin, were
isolated from Pseudomonas fluorescens and Bacillus amyloliquefaciens subsp. plan-
tarum, respectively. Furthermore, Zihalirwa Kulimushi et al. (2017) found that a
strain belonging to Bacillus amyloliquefaciens subsp. plantarum clade has the ability
to generate varied antimicrobial compounds that participate in their effectiveness as
biocontrol agents against plant fungal pathogens. In that context, the function of
cyclic lipopeptides (CLPs) has been reported, but still little is known about the impact
of interactions with other soil-inhabiting microbes on the expression of these mole-
cules. In this work, the antagonistic activity is created by this bacterium against
Rhizomucor variabilis, a pathogen isolated from diseased maize cobs.

Cao et al. (2018) isolated Bacillus velezensis from banana, which was found to
suppress Ralstonia solanacearum and Fusarium oxysporum. The antibiotic com-
pound was identified as surfactin, iturin, and fengycin. Fluorescent pseudomonad
was isolated from turmeric; in soil naturally it can inhibit Pythium aphaniderma-
tum. It was found to produce a variety of secondary metabolites, for example, phen-
azine, 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin, pyoluteorin, and hydrogen
cyanide, which protect from diseases. This exploration expects to assess the execu-
tion of fluorescent pseudomonads against rhizome rot disease in turmeric plants.
Fluorescent pseudomonads were screened against Pythium aphanidermatum utiliz-
ing double culture. Chosen strains were assessed for the execution of development
advancing properties and the nearness of antimicrobial qualities through PCR
examination (Prabhukarthikeyan and Raguchander (2016).

Pseudomonas chlororaphis strain PA23 is a biocontrol agent talented to inhibit
the growth of the fungal pathogen Sclerotinia sclerotiorom. This bacterium gener-
ates several antibiotics including pyrrolnitrin, phenazine, hydrogen cyanide, and
enzymes. Production of these mixtures of exometabolites is regulated at both the
transcriptional and posttranscriptional levels by the Gac-Rsm system, RpoS, PsrA,
and the Phz quorum-sensing system. Commonly, these outcomes demonstrated that
PA23 is capable to recognize the presence of C. elegans and it can kill the nema-
todes, which ought to encourage natural ingenuity and eventually biocontrol (Nandi
et al. 2015). Table 1.1 gives a few examples of antibiotics production by PGPR
microorganism for management of soil-borne diseases.

1.7  Involvements of PGPR Antibiotics in Induced Systemic
Resistance (ISR)

The rhizosphere, ecosphere of plant roots, is a complicated ecosystem, which is
colonized by diverse groups of organisms including arthropod, fungi, bacteria, and
nematodes (Venturi and Keel 2016). All of these organisms are interconnected
through a coherent network of biochemical signals that link them to each other as
well as to plants growing in the same rhizosphere (Mhlongo et al. 2018). PGPRs are
essential for plant growth in either direct or indirect mechanisms. Several
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publications have shed the light on these mechanisms, and it has been proven that
the direct mechanisms including nitrogen fixation, nutrient acquisition, iron chela-
tion, phytohormone production, and phosphate solubilization could indirectly help
the plant. Similarly, the indirect mechanisms such as antibiotics for biocontrol and
induced systemic resistance (ISR) execute other direct functions in favor of plant
thriving. In other words, the two types of mechanisms function simultaneously
reducing the boundaries between them (Zahir et al. 2004; van Loon 2007; Arora
et al. 2013a). Recently, commercial microbial inocula (either single or a consor-
tium) have been developed based on the advancement in plant-microbe interactions
to enhance plant growth and development (Mhlongo et al. 2018). The common
PGPR includes Acinetobacter, Arthrobacter, Burkholderia, Bacillus, Enterobacter,
Paenibacillus, and Pseudomonas (Finkel et al. 2017; Sasse et al. 2017; Zhang et al.
2017; Mhlongo et al. 2018).

Induced resistance is a state of enhanced defensive capability that develops by a
plant upon stimulation via biotic or abiotic cues (van Loon et al. 1998). The
pathogen-related systemic acquired resistance (SAR) and rhizobacteria-mediated
induced systemic resistance (ISR) are the two major components of plant-induced
resistance (Pieters and Van Loon 1999; Bakker et al. 2003; Bakker et al. 2013). The
two mechanisms have been integrated into the biological control process of plant
diseases. The two mechanisms are mediated through Jasmonic acid, ethylene, and
salicylic acid biosynthesis pathways (Dempsey and Klessig 2012; Denance et al.
2013). These hormones interact either antagonistically or synergistically to adjust
the defense system (Koornneef and Pieterse 2008; Verhage et al. 2010; Nassem and
Dandekar 2012). The production of a plethora of secondary metabolites that possess
antibiotic activities (small phenolic molecules, flavonoids, alkaloids, cyaniding gly-
cosides, etc.) in non-infected plants after receiving chemical signals from infected
plants was documented as an ISR mechanism and the signal was the volatile methyl
salicylic acid (Dempsey et al. 2011; Dempsey and Klessig 2012). Phenolic com-
pounds have antimicrobial activity and can suppress microbial growth, and different
phenolic metabolites are accumulated in the plant cells as phenolic glycosides such
as salicylic acid glycosides and flavonoid glycosides, which are less toxic to plant
cells than the aglycone. Upon infection, hydrolysis occurs releasing the aglycone,
which is toxic for both plant cells and microbes (Kenawy 2016). In plant system, the
defense responses may initiate cell wall thickening and lignification, deposition of
callose, accumulation of antimicrobial low-molecular-weight substances (e.g., phy-
toalexins), and synthesis of various enzymes (chitinases, glucanases, peroxidases,
and other stress-related proteins) that help plants to resist the pathogen
(Hammerschmidt and Kuc 1982; Hammerschmidt et al. 1984; Kessmann et al.
1994; Sticher et al. 1997).

Several examples in the literature illustrate the role of PGPRs in ISR initiation in
plants. Ongena et al. (1999) found that the induced resistance elicited by fluorescent
pseudomonads could protect cucumber against pythium root rot, and two of the
tested strains were found to increase cucumber growth. Peer et al. (1991) also found
increased amounts of phytoalexins in P. fluorescens strain WCS417r inoculated
plants when compared to the control plants. Leeman et al. (1996) have also found
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that the lipopolysaccharide with the O-antigenic side chain produced by P. fluores-
cens strain WCS374 is involved in the induction of systemic resistance in radish
against Fusarium wilt. In addition, the antibiotic pyocyanin induced ISR in radish
against Fusarium wilt of tomato (Leeman et al. 1995; Audenaert et al. 2001, 2002).
However, salicylic acid or pyocyanin mutant of wild-type P. aeruginosa TNSK2
was defective in inducing plant resistance against B. cinerea (Audenaert et al. 2001).
Similarly, bacteria in the genera Streptomyces, Pseudomonas, Burkholderia, and
Agrobacterium suppress plant disease through production of antibiotics and induc-
tion of systemic resistance (Tenuta and Beauchamp 2003). Both pyoluteorin and
DAPG negatively affected the growth of sweet corn, cress, and cucumber, and the
stress response triggered by these antibiotics might cause plant resistance (Maurhofer
et al. 1992). P. fluorescens protected tomato from wilt disease by accumulating the
pool of DAPG in tomato root rhizosphere and might act as a signal to trigger ISR
(Aino et al. 1997; Haas and Keel 2003).

N-Acyl homoserine lactones (AHLs) are signaling molecules that were reported
to affect plant physiology and initiate plant defense via the accumulation of plant
secondary metabolites. For example, in barley endophytic Acidovorax radicis N35
rhizobacteria producing 3-hydroxydecanoyl-homoserine lactone induced defense
responses and caused accumulation of flavonoids such as saponarin and lutonarin
(Pierson et al. 1998; Han et al. 2016). The growing understanding of the signaling
role of AHL in the production of antimicrobial metabolites through quorum sensing
and the identification of promoters that can be induced in the rhizosphere can open
new areas for the development of novel biocontrol agents. The development of a
formulation of PGPR consortia possess compatible signaling mechanism between
the bacterial strains and sensitive receptors in the plant rhizosphere, which can per-
ceive the signals and will elicit resistance in the plant against pathogens (Pierson
et al. 1998; Arora et al. 2013b).

Several in vitro studies showed that antibiotic-producing PGPRs are efficient in
suppressing plant pathogens. However, the antibiotics are produced in very low
concentrations in the rhizosphere and below the minimal inhibitory concentration.
Nevertheless, the antibiotic producers are still able to control plant diseases, and this
might be via the involvement of very low concentration antibiotic-mediated sys-
temic resistance or due to the interaction of antibiotics with other extracellular
metabolites that may trigger ISR (Fernando et al. 2005). More studies are needed to
explore the interaction between antibiotics and other components of ISR.

1.8 Conclusions

Nature is the most precious gift because it is rich in different kinds of PGPR. Some
of the well-known microfloras that are present in the PGPR community are
Pseudomonas sp. and Bacillus spp. Many research on this PGPR over the decades
resulted in the introduction of many well-characterized Pseudomonas spp. This
ironically helps to have a deep understanding of the regulation and organization of
the biosynthetic gene clusters that involved predominantly in antibiotics production.
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Broad knowledge on the regulation of antibiotics can help in the development of
PGPR with improved efficiency and reliability. On top of that, the molecular com-
munication between the different species of PGPR helps much when it comes to the
selection of the compatible strains that can be released under some field
conditions.

Research about the communication between different types of antibiotic and its
interaction with the abiotic environment, plant pathogens, and the plant is still at its
beginning stage. But the intensification of the research in the field can help in the
better understanding level about the interaction of PGPR, pathogen, plant, and the
abiotic environment around the rhizosphere. This will be very helpful for the fellow
researchers to make a good conclusion on figuring out the best biocontrol agents
which overcome the negative crosstalk in the environment around the rhizosphere.
Moreover, the knowledge on the antibiotic genes and the ecology of these organ-
isms in its natural environment can help to introduce the non-indigenous strains, and
in addition to that, it also helps to select the biocontrol strains which can be suitable
for different ecological conditions and for different species of the crop.
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Abstract

Inoculation of Azotobacter chroococcum in preparing organic compost by vermi-
composting using Eisenia fetida (common names: red worm, brandling worm,
panfish worm, trout worm, tiger worm, red wiggler worm, red Californian earth-
worm) can promote the growth of the Phaseolus bean. Various abiotic stresses,
such as drought and salinity, are among the major environmental constraints that
limit growth, productivity, and quality of plants. The growth promotion of
Phaseolus bean with inoculation of A. chroococcum in the presence of vermi-
compost using different substrate combinations was assessed by a number of
nodules, shoot length, root length, dry shoot weight, dry root weight, and nitro-
gen, phosphorus, and potassium (NPK) content of the plant. Among different
substrates used, cow dung only and cow dung plus straw could be enriched with
A. chroococcum with survival period up to 5 weeks. However, cow dung plus
chopped grass and cow dung plus ground grass couldn’t be enriched with A.
chroococcum. A significant positive response was noted in all growth parameters
when the plant was inoculated with A. chroococcum in the presence of vermi-
compost compared to the untreated control plants. Cow dung plus straw had been
used as a substrate for the enrichment of vermicomposting with A.
chroococcum.
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2.1 Introduction

Optimal growth of plants requires nutrients in sufficient and balanced quantities in
available form (Atlas and Bartha 2000). Soil contains a natural reservoir of essential
nutrients for plants, but these nutrients are not directly available to the plants (Khan
et al. 2009). As a result, primary nutrients nitrogen (N), phosphorus (P), and potas-
sium (K) are utilized by crops in large amounts and are commonly made available
in the form of biofertilizers nowadays. Application of biofertilizers for crop produc-
tion is environmentally friendly and sustainable for the ecological system. Several
types of biofertilizers have been developed from bacteria and used in the growth of
various plants (Prasad et al. 2015). Azotobacter is one of the commonly used biofer-
tilizers that has the ability to fix nitrogen providing beneficial effects on plants and
increase soil fertility. The application of Azotobacter chroococcum as microbial
inoculant has shown a positive effect on the plant with marked enhanced crop pro-
duction (Manandhar et al. 2017). Despite the availability of beneficial biofertilizer,
the adverse effects associated with various abiotic stresses, such as drought and
salinity, are among the major environmental constraints that limit growth, produc-
tivity, and health of plants.

Vermicomposting can be a cost-effective process for the enhanced growth and
yield of various plants (Acharya 1997; Saha et al. 2018). In vermicomposting,
microbes are responsible for the biochemical degradation of organic matter where
the earthworms drive the process, conditioning the substrate and altering its bio-
chemical activity (Edwards and Burrows 1988; Sharma and Garg 2017). The nature
of the substrate used for vermicomposting greatly determines the quality of vermi-
compost (Borges et al. 2017). The application of vermicompost using various sub-
strate combinations for the cultivation of the bean plant inoculated with A.
chroococcum was aimed to enhance the growth, productivity, and nutritional con-
tent of the plant.

2.2 Azotobacter chroococcum as a Biofertilizer

Azotobacter is a free-living obligatory aerobic heterotrophic Gram-negative bacte-
rium that belongs to the family Azotobacteriaceae. The first described species of the
genus was A. chroococcum (Beijerinck 1901). Cells appear as blunt rods to ellipsoid
forms, 1.6-2.5 pm in diameter and 3-5 pm in length. Occasionally, cells in some
strains appear in chains. They are motile with peritrichous flagella having a wave-
length of 2.0-2.9 pm and an amplitude of 0.40-0.59 pm (Kennedy et al. 2015).
Azotobacter has the ability to fix nitrogen non-symbiotically with at least 10 pg of
nitrogen fixed per gram of glucose consumed. The pH range for growth in the
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presence of combined nitrogen is 4.8—8.5 with optimum pH for growth and nitrogen
fixation to be 7.0-7.5 (Garrity et al. 2005).

The use of Azotobacter as a biofertilizer was first described by Gerlach and Voel
in 1902 for their ability to fix atmospheric nitrogen (Gerlach and Voel 1902).
Azotobacter has also been reported to play a role in promoting the growth of plants
by synthesizing biologically active substances such as vitamins, amino acids, aux-
ins, gibberellins, etc. (Barea and Brown 1974). Furthermore, the fungistatic com-
pounds have been reported to be synthesized by this organism which inhibits the
growth of fungi like Alternaria (Bhattarai 2001). These attributes of Azotobacter
explain the observed beneficial effects of the bacteria in improving seed germina-
tion and plant growth.

2.3  Environmental Stresses Affecting Nitrogen Fixation
in Phaseolus Bean

Beans (Phaseolus vulgaris) are the members of the Leguminosae, family Phaseoleae,
subfamily Papilionoideae (Bressani 1993). Common bean is a nutritionally and
economically important food crop. Phaseolus associates with rhizospheric and
other microorganisms and fixes atmospheric nitrogen in the soil thereby benefiting
the crop (Kay 1979). However, several environmental conditions limit the growth
and activity of these plants. Environmental stresses faced by the common bean and
their symbiotic partners typically include photosynthate deprivation, water stress,
salinity, soil nitrate, temperature, heavy metals, and biocides (Walsh 1995). One
stress may also have multiple effects; for example, salinity may also act as water
stress, which in turn affects the rate of photosynthesis or metabolism. The initial
interaction between the common bean and Azotobacter and subsequent sustainabil-
ity of this association is greatly influenced by the environmental factors.

24  Effect of Substrates Used for Vermicomposting
on the Survival of Azotobacter chroococcum

Vermicomposting is the process of biooxidation and stabilization of organic matter
under aerobic and mesophilic conditions through the combined activity of earth-
worm (Eisenia foetida) and microorganisms (Hait and Tare 2011). Vermicompost is
rich in nitrogen, phosphorus, and potassium (NPK) and important plant growth hor-
mones and thus enhance the biomass production of plants (Tuladhar et al. 2013).
Microorganisms play a key role in the biodegradation of organic matter and the
transformation of nutrients during vermicomposting (Prajapati et al. 2010).
Inoculation of suitable microorganisms could accelerate the vermicomposting pro-
cess and improve compost quality. Microbial inoculants, also known as biofertiliz-
ers, are the carrier-based preparations containing beneficial microorganisms in a
viable state intended for seed or soil application and designed to improve soil fertil-
ity and help plant growth by increasing the number and biological activity of desired



40 S.Sharma et al.

== Cow dung only

== Cow dung plus straw

=== Cow dung plus chopped grass

=>é= Cow dung plus ground grass
100 +

80 -
60 -
40 -
20 -

0 T —=
Ist  2nd 3rd 4th  5th  6th  7th  &th

Week after inoculation of A. chroococcum at 1072 dilution

Number of A. chroococcum isolated

Fig. 2.1 Number of A. chroococcum isolated from 1st to 8th week from vermicompost using dif-
ferent substrates

microorganisms in the root environment (Bhandari and Somani 1990). Earthworms
have been found to proliferate a variety of microorganisms such as actinomycetes,
Azotobacter, Rhizobium, Nitrobacter, and phosphate-solubilizing bacteria signifi-
cantly (Singh and Sharma 2002). However, the survival of these microbes depends
on various environmental factors such as pH, temperature, availability of nutrients,
oxygen concentration, etc.

An experiment was carried out by enriching A. chroococcum at 1072, 1074, and
10-¢ dilutions into four different types of substrates for vermicomposting, i.e., cow
dung only, cow dung plus straw, cow dung plus chopped grass, and cow dung plus
ground grass. Enumeration of A. chroococcum was done at every week interval for
up to 8 weeks. A. chroococcum was recovered from vermicompost using cow dung
only and cow dung plus straw up to 5 weeks. The bacteria couldn’t survive in ver-
micompost using cow dung plus chopped grass and cow dung plus ground grass.
The counts at 10~2 dilution were the most representative ones for the evaluation of
the viability of A. chroococcum (Fig. 2.1).

2.5 Inoculation of Azotobacter into Vermicompost
Enhances the Growth of Phaseolus Bean

Improvement in crop production due to Azotobacter inoculation has been reported
in a number of crops including bean, corn, potato, wheat, clove, oat, etc. A signifi-
cant positive response in plant growth with inoculation of A. chroococcum is
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attributed to their ability of nitrogen fixation (Manandhar et al. 2017). Nitrogen is
one of the important nutrients required for production of crops (Deacon 2006).

Phaseolus vulgaris inoculated with A. chroococcum and grown in soil supple-
mented with vermicompost increased the length and dry weight of shoot and root
compared to the plant treated with vermicompost alone (Fig. 2.2). The experiment
was carried out in an earthen pot filled with soil supplemented with vermicompost
using different substrates. The plants were harvested at the flowering stage, i.e.,
42nd day after sowing of the seeds (Fig. 2.2).

The number of nodules per plant was highest in the plant grown in Azofobacter-
enriched vermicompost prepared with cow dung only in comparison to vermicom-
post prepared with other substrate combinations (Fig. 2.3). The least number of
nodules per plant was observed when chemical fertilizers were used for the
experiment.

The symbiotic relationship between Piriformospora indica and Rhizobium legu-
minosarum in the presence of vermicompost further enhances the productivity of
Phaseolus vulgaris (Singh 2004; Tuladhar et al. 2013; Varma et al. 1999). The sym-
biosis between P. indica and A. chroococcum has also been reported to improve the
growth and development of Oryza sativa in the presence of vermicompost (Das
et al. 2014; Prajapati et al. 2010).

2.6 Nitrogen, Phosphorus, and Potassium (NPK) Content
in the Plant

NPK is most essential for plant’s growth. Nitrogen is the key building block of the
protein and present in the nucleic acid. Phosphorous is present in biomolecules like
nucleic acid, phospholipids, and ATP. Potassium promotes the growth of root in
plants and enhances the absorption of minerals. The efficient uptake of these essen-
tial nutrients plays a crucial role in the growth of plants. The increase in uptake of
NPK by plants has been reported in the presence of Azotobacter (Biswas et al.
2000). This experiment was conducted to determine the percentage of NPK content
in Phaseolus grown on vermicompost using various substrates and enriched with A.
chroococcum. The highest percentage of NPK was observed in vermicompost of
cow dung enriched with A. chroococcum as compared to vermicompost using other
substrates (Fig. 2.4).

2.7 Conclusion

Inoculation of Phaseolus bean with A. chroococcum enhances the overall growth
performances resulting in an increase of NPK content. Vermicompost using cow
dung serves as the superior substrate for the viability of A. chroococcum. This syn-
ergistic interaction can be applied in the field to promote sustainable agriculture.
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Abstract

Among the different causes of plant diseases, microbes are considered the most
important and serious. From which, the fungal pathogens occupy the first place
in distribution between numerous plant hosts, including economically important
plants. There are a huge number of fungal genera affecting the foliar of the plants
including leaves, stems, branches, and flowers while others attacking only roots.
Also, wood-decaying fungi are another group affecting trunks of different trees.
Many fungal pathogens are opportunistic, where they are invading their hosts
through pruning wounds and newly cut surfaces. Beside all the previous fungal
pathogens, an important group of fungi responsible for decaying fruits and veg-
etables after harvest and at storage are recognized.

Fungal pathogens are highly distributed and very specific in their infection
process where there are fungal genera able to invade many host plants while
other genera are specific only for one host. Throughout history, trials for control-
ling these aggressive pathogens were increased including several ways such as
cultural, physical, chemical, and biological methods. In this chapter, some fungal
diseases of various host plants will be introduced with special demonstrations of
the biological control of them using several antagonistic microorganisms.
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3.1 Introduction

The plant disease is usually defined as any disruption of the normal status of the plant
that modifies its vital functions. There are several causal agents, either biotic or abi-
otic, which result in abnormal physiological activities that interrupt the plant’s normal
structure, growth, function, and other activities that appear in characteristic pathologi-
cal conditions or symptoms (Horst 1950; Agrios 2005; Leonberger et al. 2016). The
biotic agents responsible for infectious plant diseases include nematodes, fungi, bac-
teria, mycoplasmas, viruses, viroids, and parasitic higher plants. These diseases can
be spread between diseased and healthy members of the host plant (Lucas et al. 1992;
Sinclair and Lyon 2005). Detailed explanation is given in this chapter dealing with
plant diseases caused by fungal pathogens. Fungi are the most abundant and distrib-
uted pathogens causing plant diseases where there are thousands of them capable of
causing various plant diseases. This wide spread of fungi may be illustrated due to
formation of numerous reproductive structures such as spores, sclerotia, and rhizo-
morphs. From these structures, spores are found everywhere, in soil, air, water, plant
debris, etc. that facilitate its transformation among host plants and between diseased
and healthy members (Leonberger et al. 2016). In detail, when fungal spore contacts
a plant surface at favorable environmental conditions, it germinates, forming hyphae
which are capable of infecting plants via stomata, through wounds, or by direct pen-
etration of the plant epidermis. After infection has happened, the fungal hyphae began
to utilize nutrients from their hosts, consequently leading to host weakness and
appearance of disease symptoms (Fry 2012; Leonberger et al. 2016).

The control and management of plant diseases aim to keep disease intensity
below an economic injury threshold (Zadoks 1985; Nutter Jr et al. 1991) and thereby
prevent losses in yield and quality of the crop (Nutter and Guan 2001; Nutter 2007).
The disease control relies on five fundamental principles: exclusion, eradication,
protection, resistance, and therapy (Horst 1950; Leonberger et al. 2016). For long
time, chemical fungicides have been used for control of fungal plant diseases. But,
harmful effects on the environment, especially in long-term usage of fungicides,
had appeared because they cause pollution and leave harmful residues and resistant
strains of the pathogen may be developed with repeated use (Belete et al. 2015). As
aresult, searching for ecofriendly alternatives for plant disease management became
a serious issue. Accordingly, using of biological control agents is considered as
potential alternative method to control fungal diseases where it is safe for environ-
ment and organisms (Tewari and Bhanu 2003; Barakat and Al-Masri 2005).

The present chapter will introduce several plant diseases caused by fungi. For
instance, different types of foliar diseases affect shoot system including leaves,
stems, branches, and flowers. Also, wound diseases and post-harvest diseases will
be explained here. A special spotlight will be focused on controlling of these
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diseases by numerous antagonists such as fungi, bacteria, mycophagous insects, and
commercial products prepared using these antagonists.

3.2 Biological Control of Some Foliar Diseases
3.2.1 Leaf Spots

This type of fungal diseases affects leaves of several plants, is distributed worldwide
and is caused by different fungal pathogens: Septoria (Hansen 2009), Cercospora
(Shane and Teng 1992), Curvularia (Ou 1985), etc. One of the most common dis-
eases of this group is Septoria leaf spot, also called Septoria blight. It infects several
hosts especially plants of family Solanaceae: tomatoes, potatoes, and eggplant by
the fungus Septoria lycopersici. The fungus, Septoria spreads rapidly and can
quickly defoliate and weaken the plants, let them unable to bear fruits to maturity.
Disease symptoms usually occur in the older, lower leaves and also appear on the
stems as well as the flowers of the host plant but rarely affect the fruits (Blum 2000).
Figure 3.1 illustrates the symptoms which appeared as brown spots that develop

Fig. 3.1 Differences in
symptoms between (a) leaf
spot disease caused by
Septoria lycopersici and
(b) early blight disease
caused by Alternaria
solani (Citation: Photo (a)
from (Gleason 1995) and
photo (b) from
(El-Debaiky 2018)




50 S. A.E-K. El-Debaiky

light tan to white in the center as they age and then the leaves turn yellow and brown
and finally die (Gleason 1995). Biological control of different Septoria species has
been investigated. S. lycopersici was effectively controlled by some isolates of
Trichoderma harzianum (Sain and Pandey 2016). The pathogen S. musiva, the
causal agent of leaf spot of poplar, was inhibited by spore suspension and culture
filtrate of Phaeotheca dimorphospora (Yang et al. 1994) and the gram-positive bac-
teria Streptomyces spp. under laboratory and greenhouse conditions (Shimizu
1994). Also, the blotch disease of wheat which is caused by S. tritici is diagnosed by
necrotic lesions on leaves and stems and is considered the most damaging disease
of wheat (Ponomarenko et al. 2011). The bacterium Bacillus megaterium was tested
as a biocontrol agent of this disease and found to consistently retard the disease
development on the adult wheat plants up to 80% (Kildea et al. 2008). Moreover,
fungal antagonists have been recorded with promising results in reducing the dis-
ease where 7. harzianum and T. koningii reduced the incidence and severity of the
leaf blotching of wheat using two techniques: spore suspension and the coated seed.
But, these antagonists were effective only at early stages of the disease (Perelld
et al. 2009).

Another fungus causing leaf spot disease is Cercospora (Saccardo 1876) such as
Cercospora beticola which is considered the most destructive of foliage of sugar
beet worldwide (Weiland and Koch 2004). This pathogen was successfully con-
trolled by the antagonistic bacterium Bacillus subtilis (Collins and Jacobsen 2003)
and the fungus Penicillium frequentans which has been recorded to inhibit the
pathogen in vitro via secretion of pectinase and cellulase enzymes. It also, viewed a
marked reduction in the disease incidence in field experiment (El-Fawy et al. 2018).
Moreover, Curvularia lunata was found to cause brown leaf spot of rice plant.
Spores production of this pathogen was markedly inhibited by Chaetomium cup-
reum in the dual culture. Also, in the pot experiment, C. cupreum significantly
reduced the incidence of brown leaf spot, while in a field trial, the chemical fungi-
cide recorded the best results in all plant parameters (Tann and Soytong 2016). In
addition, leaf spot of yam caused by C. eragrostidis was successfully reduced by the
antagonist Trichoderma (Michereff et al. 1995).

3.2.2 Blights

Blights are considered another type of disease rather than leaf spots invading the
plant leaf blade. The difference between a leaf spot and a leaf blight refers to the
degree of damage happening to the leaf blade, viz., if the spots are clearly separated
from each other by green tissues, the disease is considered a leaf spot. But, when
these spots occur suddenly and fuse together to form a large area of diseased tissue,
the disease is referred to as a blight (Fig. 3.1) (Elliott 2005). Early and late blight are
widely distributed serious diseases of some vegetable plants such as potato and
tomato. The terms “early” and “late” refer to the relative time of their appearance in
the field, although both diseases can occur at the same time. Early blight is caused
by the fungus, Alternaria solani, and potentially distributed by high humidity and
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warm weather, firstly, on older leaves. While late blight is caused by Phytophthora
infestans (Mercure 1998). Along time, several researchers and studies were con-
cerned by controlling both diseases even by chemical fungicides or biologically.
Both early and late blight diseases were successfully suppressed by some isolates of
the bacterium B. subtilis and the antagonistic fungus 7. harzianum (Chowdappa
et al. 2013). On the other hand, the late blight infection of potatoes was inhibited by
Chaetomium globosum (Shanthiyaa et al. 2013). Recent study indicated that both
antagonistic fungi Aspergillus piperis and T. harzianum attacked the hyphae of A.
solani by different mechanisms illustrated in Fig. 3.2, for example, mycoparasitism
and antibiosis (El-Debaiky 2017). Also, the antagonistic fungus A. piperis exhibited

Hyphae of
Intact hypha A. piperis
of A. solani
Hypha of A.
solani
a Lysed
cell

Hyphae of A. piperis
penetrated hypha of A. solani

Hyphal net of
1. harzianum
surround
hypha of A.
solani

Attacking hyphae
of T° harzianum

Fig. 3.2 Antagonism and hyphal interactions between A. piperis and T. harzianum against A.
solani. Control (a), with A. piperis (b—d) and with T. harzianum (e and f). (Photos by Samah
El-Debaiky (El-Debaiky 2017)
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a slight reduction in early blight incidence of tomato leaflets, caused by A. solani,
in vivo, related to the control treatment (El-Debaiky 2018).

The chestnut blight is a fungal disease caused by Cryphonectria parasitica
affecting the chestnut tree causing economically losses in the trees where in the first
half of the twentieth century it destroyed about 4 billion trees. The biological con-
trol of this fungus is depending on a phenomenon called hypovirulence where there
is a viral pathogen that acts as a hyperparasite of the fungal pathogen that weakens
the fungus and helps the tree survive by inducing its own resistance (Anagnostakis
1982; Milgroom and Cortesi 2004). Also, the biological control of chestnut blight
was obtained with different degrees by some antagonists such as hypovirulent iso-
lates of C. parasitica, Trichoderma sp., Penicillium sp., and Bacillus sp. Where
Trichoderma sp. was the best antagonist followed by the hypovirulent isolates
(Akilli et al. 2011).

3.2.3 Rust Diseases

Rusts are group of plant diseases caused by obligate parasitic fungal species belong-
ing to order Pucciniales (formerly: Uredinales) where more than half of which of
genus Puccinia. Several host plants from ferns to advanced monocots and dicots are
affected by rust fungi with high specificity where each species has a very narrow
range of hosts and cannot be transmitted to non-host plants. Moreover, rust fungi
affected economically important plants such as cereals, legumes, composites, and
many trees. Some species of rust fungi were able to complete their life cycle on two
different host plants and produce different types of spores, viz., spermatogonia,
aecia, uredinia, telia, and basidiospores. So, the rust fungi derive their name from
the rust color of urediniospores (Kolmer et al. 2009; Mohanan 2010).

The biological controlling microorganisms showed effective results against the
rust fungi. Some bacterial strains of Pantoea agglomerans and Stenotrophomonas
maltophilia were effective as antagonists in many experiments in reducing bean rust
disease caused by Uromyces appendiculatus (Yuen et al. 2001). Another example of
bacterial antagonism of rust fungi was adopted by B. subtilis. The spore germination
of Puccinia pelargonii-zonalis, the causal agent of geranium rust, was inhibited by
some strains of the bacterium B. subtilis; consequently, the incidence of rust pus-
tules on the host leaves was reduced. The culture filtrate of this bacterium contains
some inhibitory agents to the pathogen so it is most effective than treatment by the
washed bacterial cells (Rytter et al. 1989). Moreover, the rust fungus of wheat,
Puccinia recondite f. sp. Tritici, was suppressed by the Pseudomonas putida strain
BK8661, which produces siderophores, antibiotics, and low levels of hydrogen cya-
nide (Flaishman et al. 1996).

In the past, the entomopathogenic fungus Verticillium lecanii (recently
Lecanicillium) showed a double potentiality in protection of chrysanthemum plant
from both insect pests and white rust disease caused by Puccinia horiana (Whipps
1993). Moreover, the hyperparasitic activity against Puccinia coronata on oat seed-
lings was tested using some fungal species. Under the experimental conditions,
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Acremonium implicatum and Verticillium spp. colonized the uredialsori of P. coro-
nata. The hyperparasitic activity of these fungi was investigated microscopically
where their mycelia penetrated the uredospores, often forming appressoria- like
structures, and then the spore walls and internal contents were degraded due to chi-
tinolytic activity (Leinhos and Buchenauer 1992).

The geneticists also have a very important role in the field of biological control
of plant diseases by induction of the self-resistance of the host plants against the
pathogens or by breeding of new generations unsusceptible to the disease occur-
rence. For instance, two new genotypes of pearl millet (Pennisetum glaucum) plant,
which is resistant to rust disease caused by Puccinia substriata, were produced by
cDNA encoding the antifungal protein AFP from the mold Aspergillus giganteus
(Girgi et al. 2006).

3.2.4 Powdery Mildews

Powdery mildews are from the most common, widespread, and destructive groups
of plant pathogens worldwide (Braun et al. 2002). They are easily recognizable
foliar diseases caused by some obligate parasitic fungi belonging to Ascomycota.
The infection and the fungal growth are favored by high humidity. Each fungal spe-
cies of powdery mildew has a specific host where it tends to grow superficially or
epiphytically on the plant surfaces except some endophytic genera which spread
internally among the host tissues. There are many fungal genera responsible for
causing powdery mildews of several plant hosts, such as Erysiphe, Leveillula,
Phyllactinia, Podosphaera (Heffer et al. 2006). Many trials for biological control of
powdery mildews were conducted using the mycoparasitic fungi such as
Ampelomyces quisqualis, Meirageula konigii (Kiss 2003; Szentivanyi and Kiss
2003; Kiss et al. 2004; Sztejnberg et al. 2004), or Lecanicillium lecanii (Dik et al.
1998; Verhaar et al. 1999). These mycoparasites invade and degrade structures of
fungal pathogen, providing adequate control of the disease mainly under green-
house conditions and moderate pathogen density (Paulitz and Bélanger 2001). For
example, the powdery mildew of grape caused by Uncinula necator was reduced by
the antagonist A. quisqualis which parasitizes the cleistothecia of the pathogen
(Falk et al. 1995). The mycoparasite Ampelomyces sp. also was observed to parasit-
ize and destroy the rubber powdery mildew (Liyanage et al. 2018). The details of
this mycoparasitism were illustrated in Fig. 3.3.

The efficacy of the biological control agents A. quisqualis, L. lecanii, and
Sporothrix flocculosa was investigated against cucumber powdery mildew caused
by Sphaerotheca fuliginea. This experiment indicated that S. flocculosa recorded
the best result in controlling the disease (Dik et al. 1998). In addition, the commer-
cial product of Lecanicillium longisporum, Vertalec®, has a potential dual role as a
microbial control agent of both aphids and powdery mildew in cucumber caused by
S. fuliginea (Kim et al. 2008). Also, other reports have demonstrated the ability of
the commercial products of the mycoparasitic fungi, A. quisqualis (AQ10®) and L.
lecanii (Mycotal®), as well as three B. subtilis strains, UMAF6614, UMAF6639,
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Fig. 3.3 Mycoparasitism of Ampelomyces sp. on rubber powdery mildew: (a) pycnidia of
Ampelomyces produced on the conidiophores of rubber powdery mildews (/. conidia of rubber
powdery mildew; 2. conidiophores of rubber powdery mildew; 3. intracellular hyphae of
Ampelomyces); (b) broken pycnidium by apical rupture; (¢) pycnidia on the surface of a rubber
leaf; (d) conidia of (/) Ampelomyces and (2) rubber powdery mildew; (e) pycnidia produced inside
the hyphae of rubber powdery mildews; (f) superficial mycelia of (/) Ampelomyces and (2) rubber
powdery mildew; (g) hyphae of Ampelomyces coiled around the catenate-type conidia of rubber
powdery mildew (/. hyphae of Ampelomyces; 2. catenated conidia of rubber powdery mildew); (h)
mycelium and conidia of Ampelomyces (1. Non-catenate conidia (Erysiphe quercicola), 2. conidia
of Ampelomyces, 3. mycelium of Ampelomyces) (scale bars: figures a, b, d-h = 10 pm, figure ¢ =
20 pm). (Cited from Liyanage et al. 2018)
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and UMAFS8561, in controlling the powdery mildew disease caused by Podosphaera
fusca on melon seedlings (Cucumis melo) (Romero et al. 2007).

Alternatively, yeast-like fungi belonging to the genera Pseudozyma (Gafni et al.
2015) and Tilletiopsis (Urquhart et al. 1994) and bacteria from the genus Bacillus
(Romero et al. 2004) have been described as biocontrol agents of cucurbit powdery
mildew by production and release of antifungal compounds that affect the viability
of powdery mildew conidia and hyphae. Although, the success of many fungal and
bacterial species as biocontrol agents, the process of biological control is not
restricted on them, where there are some mycophagous insects that can also help in
the biological control of some plant fungal diseases. For example, the mycophagous
mites, Orthotydeus lambi, can suppress the development of powdery mildew of
grape by feeding the fungal mycelia (English-Loeb et al. 1999).

3.2.5 Downy Mildews

Although there is similarity in names, confusion between downy and powdery mil-
dews must be avoided. Fungi causing powdery mildews are belonging to Ascomycota;
on the other hand, downy mildews are from Oomycota. The disease symptoms
which are characteristic of this group of diseases appear to the naked eye as grayish,
fuzzy-looking carpet or “down” of mycelia, conidiophores, and spores on the leaves
of the host plant (Beckerman 2009; Slusarenko and Schlaich 2003).

Few reviews have illustrated the biological control of downy mildew diseases.
Unexpected suppression of downy and powdery mildew diseases was developed after
spraying by T. harzianum (strain T39) (Elad 2000). Also, this strain induces the plant-
mediated resistance as well as reduces the severity of downy mildew caused by
Plasmopara viticola in susceptible grapevines (Palmieri et al. 2012). In addition,
sporulation of P. viticola was completely inhibited by the endophytic fungus Alternaria
alternate (Musetti et al. 2006). The ultrastructural analyses and cytological observa-
tions of cellular interactions between P. viticola and A. alternate showed a toxic effect
of P. viticola cells. This toxicity appeared in the form of severe ultrastructural altera-
tions, such as the presence of enlarged vacuoles or vacuoles containing electron-dense
precipitates. Also, necrotic and irregularly shaped haustoria appeared. Therefore, a
toxic action of A. alternata against P. viticola was discovered to be due to three diketo-
piperazines: cyclo(L-phenylalanine-trans-4-hydroxy-L-proline), cyclo(L-leucine-
trans-4-hydroxy-L-proline), and cyclo(L-alanine-trans-4-hydroxy-L-proline). On the
other hand, the mycoparasitic action of some strains of Fusarium proliferatum against
P, viticola was also investigated, where the hyphae of this antagonist coiled and pen-
etrated the hyphae of the pathogenic fungus (Bakshi et al. 2001).

The efficacy of various environmentally friendly products was tested for control-
ling some diseases in grapes over several years. The tested products were JMS Stylet
Oil (paraffinic oil), Serenade (B. subtilis), Croplife (citrus and coconut extract) +
Plant food (foliar fertilizer), Armicarb (potassium bicarbonate), Elexa (chitosan),
Milsana (giant knotweed extract), and AQ10 (A. quisqualis). The results indicated
that each of JIMS Stylet Oil, Armicarb, Serenade, AQ10, Elexa, and Milsana provided
moderate control of downy and powdery mildews (Schilder et al. 2002).
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3.3  Biological Control of Pruning Wounds and Wood-Decay
Diseases

Trunk wounds developed from broken bark, which is considered the first line of
defense of the tree against wood-decaying microorganisms, so the underlying tis-
sues are exposed to the pathogens (e.g., fungi and bacteria). There are several causes
leading to wounds like mechanical factors, human activities, insect pests, or animals
(Gauthier et al. 2015). In addition, pruning wounds and newly cut surfaces of tree
trunks and vines are leading to entrance of different plant pathogens, consequently
leading to death of limbs or the entire host plant (Stirling and Stirling 1997). But, it
is not necessary that all trunk wounds lead to wood decay or destruction of the trees.
Frequently, trees are able to compartmentalize the wounded tissues by formation of
internal barriers and wound wood/callus which can prevent spreading of the patho-
gens. Mainly, this self-defense depends on the plant and microbe species, vigor and
age of the tree, and season (Gauthier et al. 2015). Armillaria, Fomes, Ganoderma,
Polyporus, Trametes, and Xylaria represented some examples of wood-decay fungi
(Gauthier et al. 2015).

Also, there are various examples of wound diseases which in some cases are
destructive and causing a lot of economical loses. Some important examples of
pruning wounds are represented in trunk diseases of grapevine including dieback,
black dead arm, esca, Petri disease, and dead arm (Munkvold et al. 1994; Gubler
et al. 2005). Numerous fungal pathogens are able to invade these pruning wounds of
grapevine such as Eutypa lata, Phaeomoniella chlamydospora, and Botryosphaeria,
Phomopsis, and Phaeoacremonium (Kotze et al. 2011).

Wound prevention or protection of wounds from fungal pathogens is critical,
where, once the infection has begun by any of these fungi, there are no controls or
cures (Gauthier et al. 2015). Thus, protection of wounds have been performed using
various fungicides and/or biological control agents (Halleen et al. 2010). Many
antagonists such as Trichoderma atroviride and B. subtilis exhibited successful pro-
tection of pruning wounds of grapevine (Kotze et al. 2011). Moreover, the fungal
pathogen, Eutypa armeniacae, which causes gummosis or dieback of apricot trees
and dead arm of grapevine, was prevented biologically by Fusarium lateritium. This
antagonist colonized the newly cut surfaces and produces a nonvolatile, water-
soluble antibiotic which inhibits spore germination and growth of E. armeniacae
(Stirling and Stirling 1997).

The basidiomycete Heterobasidion annosum (formerly Polyporus annosum) is
considered the most economically important forest pathogen. It causes the annosus
root rot disease of conifers where the infection occurs through wounds such as
freshly cut stumps. The fungus is transferred among diseased and healthy trees via
root grafts (Asiegbu et al. 2005). This pathogen is excluded by Phlebiopsis gigan-
tea, which competes for nutrients and space, and also, it attacks the hyphae of the
pathogen and suppresses it by production of antibiotics (Stirling and Stirling 1997).
This antagonist shows a fully protective effect of the stumps of Pinus pinea against
spore infection by H. annosum (Annesi et al. 2005).
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Neonectria ditissima (syn. Neonectria galligena) is another fungal plant patho-
gen that causes cankers of apple and beech trees where it can kill branches of the
trees by choking them off (Castlebury et al. 2006). Research has indicated that some
fungal and bacterial antagonists (e.g., Alternaria sp., T. viride, and B. subtilis) were
used for biological control of N. ditissima where they colonize the leaf scar through-
out winter and early spring, inhibit the entry of the pathogen, and consequently
reduce the number of shoots that are susceptible to infection (Aldwinckle and Jones
1990).

Armillaria root disease is distributed worldwide in tropical warm regions. It is
one of the most destructive diseases of many species of trees and shrubs in natural
forests, plantations, orchards, and gardens throughout the world. The fungus
Armillaria mellea causes mortality, wood decay, and growth reduction of the host
trees. They infect and kill either weak or healthy trees. The pathogen either kills the
host directly or predisposes it to secondary attacks by other fungi or insects. The
disease transfers from tree to tree through rhizomorphs which grow from infected
roots through the soil to the adjacent healthy roots or by direct root contact (Fig. 3.4).
In addition, the fungus can be spread by basidiospores in which they first colonize
dead stumps or woody material and then the rhizomorphs radiate from these, to liv-
ing roots directly or through wounds (Morrison 1981). Several studies indicated that
antagonistic fungi especially 7. harzianum (Wargo and Shaw III 1985) and
Chaetomium olivaceum (Raziq and Fox 2005) were effective in attacking and

Fig. 3.4 Honey fungus or boot-lace fungus, Armillaria mellea. (a) Fruit bodies and rhizomorphs
(photo by David Moore). (b) Emerged rhizomorphs from beneath the bark of a felled log. (c)
Enlarged rhizomorphs shown in b (photos b and ¢ by Elizabeth Moore) (Moore et al. 2011)
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killing the hyphae of A. mellea-infected different hosts with root rot such as straw-
berry (Wargo and Shaw III 1985), cherry, and almond trees (Asef et al. 2008). In
these studies, the antagonists exhibited several mechanisms in attacking the patho-
gen such as hyperparasitism and antibiosis via volatile metabolites.

3.4 Biological Control of Post-Harvest Diseases

Post-harvest diseases are referred to spoilage of fruits and vegetables after harvest
which affect the crop and cause losses as great as 25-50% (Wilson et al. 1991).
Synthetic fungicides (El Ghaouth et al. 2004; Korsten 2006; Singh and Sharma
2018) and ultraviolet radiation (Stevens et al. 1997) are primarily used to control
post-harvest diseases of fruits and vegetables. But, there is a strong public and sci-
entific desire to search about safer and ecofriendly alternatives for reducing these
diseases (Mari et al. 2007). Consequently, usage of the microbial antagonists like
yeasts, fungi, and bacteria is quite a successful solution for post-harvest diseases
(Eckert and Ogawa 1988; Droby et al. 1991; Wisniewski and Wilson 1992; Droby
2005; Korsten 2006). The biological control of post-harvest diseases depends on
either using of normal microflora which occur naturally on the fruit surface or those
which can be introduced to it artificially (Sharma et al. 2009). The major mecha-
nism by which antagonists suppress the pathogens, causing fruit and vegetable
decay, is competition for nutrition and space (Droby et al. 1989; Wilson and
Wisniewski 1989).

The infection of the fruits and vegetables may occur at pre-harvest stage and con-
tinue after post-harvest during transportation or storage of fruits and vegetables.
Therefore, pre-harvest application of microbial antagonists to fruits and vegetables is
recommended to protect the wounds inflicted during harvesting from the entrance
and colonization of the pathogens (Ippolito and Nigro 2000; Janisiewicz and Korsten
2002; Ippolito et al. 2004; Irtwange 2006). However, the application of microbial
antagonists in the post-harvest stage is better, practical, effective, and useful than pre-
harvest application (Barkai-Golan 2001; Irtwange 2006). Also, the formulation pro-
cess of the biocontrol agent is very important in the protection of the fruits and
vegetables. For example, lyophilized cells of Erwinia amylovora were more effective
in colonizing pear flowers than bacterial cells harvested from fresh cultures
(Stockwell et al. 1998). Moreover, protection of variety of fresh fruits from post-
harvest diseases caused by Rhizopus stolonifer, Botrytis cinerea, and Penicillium
expansum was evaluated with an invert emulsion formulation of 7. harzianum. The
conidia of 7. harzianum in an invert emulsion reduced the occurrence of R. stolonifer
on apple, pear, peach, and strawberry; B. cinerea on grape, pear, strawberry, and
kiwifruit; and P. expansum on grape, pear, and kiwifruit (Batta 2007). In the mean-
time, combination between the antagonists and other treatments such as essential oils
improve the suppression of post-harvest pathogens. Combination between the antag-
onistic bacterium Bacillus amyloliquefaciens PPCB004 and thyme and lemongrass
essential oils has potentially controlled the post-harvest spoilage of peach fruits
caused by B. cinerea, P. expansum, and R. stolonifer (Arrebola et al. 2010).
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In the last decades, many studies are interested in production of antimicrobial
films which are used for packaging of food products and saving them from microbial
spoilage (Cha and Chinnan 2004). Therefore, in a recent study, antimicrobial cloth
films were prepared by immobilization of the degrading enzymes of T. harzianum:
chitinase, cellulase, and glucose oxidase on polyester cloth films separately. Then,
these antimicrobial films were used as coverage of tomato fruits to protect them from
black mold disease caused by A. alternata (El-Badry and El-Debaiky 2018). The best
protection of tomatoes in this study was obtained using polyester cloth films immo-
bilized by cellulase enzyme (Fig. 3.5) after 4 and 7 days. Another trial to protect the
fruits using the antimicrobial films was adopted when the strawberries were covered
by biofilm containing Cryptococcus laurentii in combination with alginate, glycerol,
palmitic acid, glycerol monostearate, and p-cyclodextrin. This biofilm containing C.
laurentii as antagonist aided inhibition of mold growth, protected the strawberries
intact throughout storage, and improved the fruit quality (Fan et al. 2009).

Infected control Glucose oxidase Cellulase

Infected control Glucose oxidase

Fig. 3.5 Effect of polyester films of enzymes of 7. harzianum on the growth of A. alternata and
black rot incidence on tomato fruits after 4 days (a) and 7 days (b). Photos by Samah El-Debaiky
(El-Badry and El-Debaiky 2018)
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Abstract

Among the biotic stresses, plant pathogens can reduce yield crop which affected
potential loss to crop productivity. Plant growth-promoting rhizobacteria (PGPR)
can help plants to be resistant against biotic stress via direct antagonism to patho-
gens or by induction of systemic resistance to pathogens. The presence of high
levels of nutrients exuded from various roots of most plants can support bacterial
growth and metabolism as well as maintain health of the plant in the growth
process. PGPR promote plant growth due to their abilities in phytohormone pro-
duction, nitrogen fixation, and phosphorus solubilization; produce several sub-
stances which are related to pathogen control, i.e., exhibiting competition with
plant pathogens, synthesis of antibiotics, antifungal metabolites and defense
enzymes, and secretion of iron-chelating siderophores; and trigger induced sys-
temic resistance (ISR) via methyl jasmonate and methyl salicylate in plants. The
ISR resembles pathogen-induced systemic acquired resistance (SAR) through
the salicylic acid-dependent SAR pathway under conditions where the inducing
bacteria and the challenging pathogen remain spatially separated. The use of
PGPR combinations of different mechanisms of action, i.e., induced resistance
and antagonistic PGPR, might be useful in formulating inoculants leading to a
more efficient use for biological control strategies to improve crop productivity.
Many PGPR have been isolated from the tissues of many plants, and various spe-
cies of bacteria, i.e., Azotobacter, Azospirillum, Alcaligenes, Arthrobacter,
Bacillus, Burkholderia, Enterobacter, Klebsiella, Pseudomonas, and Serratia,
have been reported to control several diseases and enhance plant growth. PGPR
belonging to the genera Pseudomonas and Bacillus are also well known for their
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antagonistic effects and their ability to trigger ISR. An increasingly successful
study to reduce disease severity is the use of bacteria, namely, Bacillus subtilis,
P. fluorescens, Serratia, and the fungus Trichoderma. Tea and rice plants are
cultivated in Indonesia predominantly in Java and Sumatra islands. Major con-
straints of cultivation include low fertility of soils, poor input management, low
germination, and high susceptibility to the diseases. The strategies employed by
PGPR provide promising approaches to alter agricultural crops and plantation
practices toward sustainable environmental development. Research has been
conducted to know the effect of PGPR on tea plant growth that can work opti-
mally as a biological fertilizer and plant-induced resistance to suppress blister
blight (Exobasidium vexans Massee), a major disease in tea plantation that can
decrease yield loss up to 50%. Individual PGPR strains for in vitro broad-
spectrum pathogen suppression and production of several physiological/bio-
chemical activities related to plant growth promotion have been screened.
Numerous bacterial isolates have been found to function both as biofertilizers
and biological control agents, namely, Chryseobacterium sp. Azll-1,
Acinetobacter sp., Alcaligenes sp. ES, Bacillus E65, and Burkholderia ET76.
Study about synergism among bacteria has been carried out in the laboratory test
using four combinations, i.e., (a) Chryseobacterium sp. AzII-1 + Acinetobacter
sp., (b) Chryseobacterium sp. AzII-1 + Alcaligenes sp. ES, (¢) Chryseobacterium
sp. AzII-1 + Bacillus E65, and (d) Chryseobacterium sp. AzII-1 + Burkholderia
E76. All bacterial combinations had a synergistic effect. It was shown that the
bacterial population was not significantly different with the average of the total
bacterial population (4.62 x 108 CFU/ml). The effect of bacterial combinations
to blister blight and plant growth under a tea nursery trial revealed that combina-
tion of Chryseobacterium sp. AzII-1 75% + Alcaligenes sp. ES 25% could
increase the growth of tea plant and suppress the intensity of blister blight up to
1.27%. The disease intensity of blister blight decreased in all treatments under
field trial, while the Acinetobacter sp. treatment in tea shoots was 17.26% higher
than the control. PGPR have also been isolated from cultivated rice. Serratia
SKM, Burkholderia E76, and Bacillus E65 have the potential for controlling rice
diseases and induce plant growth promotion. Under in vitro antagonistic assay, it
was shown that these isolates could suppress effectively the growth of rice patho-
gens Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB).
Kaolin formulation of these three isolates was evaluated as a foliar application on
rice. PGPR application under experimental plots resulted in enhancement of rice
growth and yield, with the yield increment on cv. Sintanur being 12.8 percent
higher compared with control (cv. Ciherang). Based on PGPR application tech-
nology which is demonstrated in farmers’ plots, the severity of BB disease was
reduced to 76.8 percent compared with the untreated plot. The farmers were
convinced with the beneficial effects of PGPR on both plant growth and yield
and reduction of BB disease incidence. PGPR technologies have the potential to
reduce agrochemical application. They can also be exploited as low in input and
environmentally friendly for sustainable plant management. PGPR is highly
diverse, and in this review, we focus on PGPR in plant growth promotion, as well
as understanding the role of PGPR in crop protection.
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4.1 Introduction

Agricultural crop production is strongly exposed to many stresses of biotic and abiotic
factors, leading to yield loss of crops. Globally, inappropriate fertilizer and high sever-
ity of plant disease factors may reduce yield that threatens food security. To keep the
stability of crop production, the current strategy is based primarily upon chemical
compounds as reliable methods. Chemical fertilizers are used to provide sufficient
nutrients for optimizing crop yields. However, the reliance on the use of synthetic
inorganic fertilizers and pesticides often creates the pathogen resistance to chemicals,
environmental pollution, and deleterious nontarget effects on humans and animals
(Waard et al. 1993). Therefore, there is a need to develop alternative control approaches
for crop protection. The interest in the use of plant growth-promoting rhizobacteria
(PGPR) that enhance plant health has increased and gained interest worldwide due to
public concern for sustainable agriculture because they can promote plant growth as
well as provide biological control (BC) of plant diseases (Kloepper and Schroth 1978;
Schnider et al. 1994; Emmert and Handelsman 1999; Beneduzi et al. 2012).

The use of organic biofertilizers or biopesticides containing PGPR isolates is an
alternative strategy to reduce chemical supplements (Subba-Rao 1993; Banerjee
et al. 2005; Chandler et al. 2011; Saharan and Nehra 2011; Amar et al. 2013).
PGPR agents, promote plant growth by several mechanisms, i.e., alteration in the
rhizosphere microbial community structure, nitrogen fixation (Bhattacharjee et al.
2008), phosphate solubilization, plant growth regulation (IAA, gibberellins, and
cytokinins) (Gilbertson et al. 2007; Setyowati et al. 2017), secretion of iron-
chelating siderophore, production of volatile organic compounds (VOC), and
exerting deleterious effects on other microorganisms (Kloepper et al. 1980; Glick
1995; Verma et al. 2011; Labuschagne et al. 2011; Liu et al. 2013).

The rhizosphere is populated by a diverse range of PGPR (Schroth and Hancock
1982). This habitat is rich in nutrients which provide organic carbon sources due to
the accumulation of a variety of plant exudates such as simple/complex sugars
(glucose, xylose, maltose, and sucrose), primary and secondary compounds includ-
ing amino acids (aspartic acid, glutamic acid, isoleucine, and leucine), organic
acids (citric acid, malic acid, lactic acid, and succinic acid), phenolic acids, flavo-
noids, enzymes, fatty acids, nucleotides, tannins, steroids, terpenoids, and alka-
loids (Campbell et al. 1990; Kaitaniemi and Honkanen 1996; Walker et al. 2003;
de Weert et al. 2004; Rudrappa et al. 2008; Gray and Smith 2005).

On the basis of plant growth effects, plant-associated bacteria can be classified into
beneficial, deleterious, and neutral groups (Dobbelaere et al. 2003). The first step for
PGPR beneficial effects is the successful colonization on the root (Choudhary and
Johri 2009; Piromyou et al. 2011). In the rhizosphere population, the bacteria that pro-
mote plant growth were found to be about 1-2% (Antoun and Kloepper 2001). A num-
ber of bacteria are found around the roots of plants, which is generally tenfold higher
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than that in the bulk soil (Weller and Thomashow 1994). The cultivable rhizosphere
bacteria were detected in soil to be approximately 10’-10° CFU/g compared with rhi-
zoplane bacteria which was approximately 10°~107 CFU/g (Benizri et al. 2001; Ugoji
et al. 2005). Thus, an important aspect of colonization has been the ability to compete
with indigenous microorganisms already present in the soil and rhizosphere of the
inoculated plant (Schroth and Hancock 1982; Waard et al. 1993). The efficient bacterial
root colonization was reported by P. putida on potato roots and by P. fluorescens
WCS365 on tomato root tips (de Weger et al. 1989; Dekkers et al. 1998).

PGPR have improved soil quality via soil remediation, increasing the availability
of nutrients for PGPR, and eliminating plant pathogens. The beneficial effects of
PGPR on plants usually are separated into two categories, i.e., biocontrol of plant
disease and growth promotion, which have a close relationship with each other
(Mariano and Kloepper 2000). The beneficial PGPR can reduce the incidence or
severity of plant diseases as BC agents are termed as microbial antagonism, whereas
those exhibiting antagonistic activity toward a pathogen are termed as antagonists
(Beattie 2006). As agents for BC, PGPR exhibit two major mechanisms, i.e., (a)
direct mode antagonism in which the PGPR produce metabolites that directly affect
the pathogen (antibiosis, competition, and hyperparasitism) (Beneduzi et al. 2012)
and (b) indirect mode (induced systemic resistance) in which the PGPR triggers plant
resistance against the pathogen (Glick 1995). PGPR can produce a wide variety of
compounds with antimicrobial activity used as defense systems. The following
PGPR environment and bacterial antagonistic activities can be highlighted: (a) syn-
thesis of hydrolytic enzymes, such as chitinases, glucanases, proteases, and lipases
that can lyse pathogenic fungal cells (Maksimov et al. 2011); (b) competition for
nutrients and suitable colonization of niches at the root surface (Dobereiner 1992;
Patten and Glick 2002; Kamilova et al. 2005); (c) regulation of plant ethylene levels
through the ACC deaminase enzyme, which can act to modulate the level of ethylene
in a plant in response to stress imposed by the infection (Glick et al. 2007; Van Loon
2007); and (d) production of siderophores, bacteriocins, and broad-spectrum antibi-
otics as antagonistic activities (Baker and Cook 1982; Riley and Wertz 2002). The
ability of PGPR to produce siderophore metabolites contributing to antibiosis has
been deeply investigated. The uptake of ferric ion via siderophore is largely used by
pathogenic and nonpathogenic microorganisms from the environments. Siderophores,
bacteriocins, and antibiotics are three of the most effective and well-known mecha-
nisms of antagonist to prevent phytopathogenic proliferation (Maksimov et al. 2011).

The recent global need for healthier foods with less contamination from chemi-
cal residues, as well as a great concern for the preservation of the environment, has
been increased; however, few BC agents are currently available in the market. An
attempt to isolate PGPR organisms from the rhizospheres of crop plants and the
compost is quite well-conducted worldwide. To support sustainable agriculture, the
interaction between PGPR and plants has been exploited commercially. Applications
of these associations have been investigated in many crops, such as soy, wheat, oat,
maize, potatoes, barley, peas, canola, tomatoes, lentils, and cucumber (Khalid et al.
2004; Gray and Smith 2005; Podile and Kishore 2006).
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Bacteria of diverse genera have been identified as PGPR, of which Bacillus spp. and
Pseudomonas spp. are important and predominant genera which are aggressive to colo-
nize the rhizosphere of various crops and have a broad spectrum of antagonistic activity
to many pathogens (Podile and Kishore 2006). Use of antagonistic PGPR strains has
been demonstrated to many plant pathogens, e.g., Fusarium spp., Pseudomonas spp.,
Pythium spp., Rhizoctonia solani, and Xanthomonas spp. (Yuan et al. 2012). A screen-
ing strategy to select root colonization mutants of B. amyloliquefaciens strain FZB42
was reported using green fluorescent protein-tagged wild type and mutants (Dietel
et al. 2013). A BC strategy on postharvest diseases in apple has been carried out by
soaking treatment with B. amyloliquefaciens strain 9001 (Li et al. 2015).

PGPR are known to affect disease reduction and plant growth; however, some
strains that are effective in vitro or in the greenhouse may not be effective under
field conditions. Various environmental factors may affect PGPR strains’ growth
and change their effects on the plant. PGPR strains that have broad-spectrum BC
activity and multiple plant growth-promoting traits are a possible approach for
allowing their adaptation to a complicated environment. Most BC studies evaluate a
single PGPR strain against a single-target pathogen (Zhang et al. 2010). However,
under environmental conditions, a single PGPR strain as BC may suppress an only
narrow range of pathogens and exhibit inconsistent performance. Therefore, mix-
tures of PGPR have been used to manage multiple plant diseases that often occur in
the field (Domenech et al. 2006; Jetiyanon and Kloepper 2002).

This paper overviews value involved in the PGPR BC of pathogens in the field
and will hopefully stimulate further investigation into advanced plant disease man-
agement as well as minimize the use of chemicals, which is essential to overcome
environmental and health concerns. In addition, several recent technologies of bacte-
rial determinants important for BC were also briefly reviewed. The review paper was
organized as follows: (1) PGPR colonization, (2) PGPR and plant growth promotion,
(3) PGPR as BC agent and their mechanism, (4) defense mechanisms of ISR medi-
ated by PGPR, and (5) current research toward the development of BC agent capacity
in understanding the microbial determinants of BC and plant responses. It also men-
tioned here an example of the results of our studies in the management of plant dis-
eases using rhizosphere microbes, with special reference to tea and rice crops.

4.2 PGPR Colonize Plant

The influence of PGPR to plant growth and disease reduction was made by direct or
indirect mechanisms; however, the successful first step leading to beneficial effects is
colonization of the root (Choudhary and Johri 2009; Piromyou et al. 2011). Therefore,
to improve the survival and competition of inoculated strains, a deep understanding
of all steps involved in the root colonization by PGPR is required (Kokalis-Burelle
et al. 2005). The colonization process by bacteria in seeds or plant parts is an active
process whereby bacteria can survive and multiply in the region surrounding the seed
or they attach to the root surfaces (Kloepper and Beauchamp 1992). Several PGPR
colonizes the rhizosphere and rhizoplane. They also act as endophytes which spread



70 Y. Suryadi et al.

inside the plant and colonize internal root and stem tissues, leaves, flowers, and fruits
(Hallmann 2001; Probanza et al. 2001; Hardoim et al. 2008). Root colonization by
the beneficial microbe is a process which is required for all mechanisms of BC. Using
plate counting, the efficiency of bacterium colonization after 15 days of plant growth
was found in a range of 1.8 x 10* CFU/g on the root of the inoculated plant, while no
bacterial colonies were recovered from uninoculated plants (Lugtenberg et al. 2001).

A variety of bacterial traits, such as motility, chemotaxis to seed and root exu-
dates, production of pili or fimbriae, production of specific cell surface components,
capacity to use specific components of root exudates and protein secretion, and
quorum sensing, contribute to the colonization process (Lugtenberg et al. 2001;
Barriuso et al. 2008; Dietel et al. 2013; Dutta and Podile 2010). PGPR move from
the rhizosphere to root surfaces guided by chemotaxis and facilitated by flagella
(Compant et al. 2010). Chemotaxis is an important competitive colonization trait.
Mutants of P. fluorescens defective in flagella-driven chemotaxis but retaining
motility exhibited strongly reduced root colonization. Chemotaxis assays using P.
Sfluorescens WCS365 showed that amino acids (L-leucine) and organic acids are
good attractants, whereas sugars have no such activity. Based on the concentrations
estimated to be present in the rhizosphere, citric acid and malic acid are suggested
as the major attractants during BC process (De Weert et al. 2002). The BC agent
such as strain P. chlororaphis PCL1391 is attracted to the Forl hyphae by chemo-
taxis toward fusaric acid (FA) secreted by Forl (De Weert et al. 2004). The bacterial
cells moved toward the fungus and kill fungal hyphae by secreting antifungal
metabolite phenazine-1-carboxamide (PCN). The over present of FA will inhibits
the synthesis of N-AHL that is required for PCN synthesis; hence, further antibiotic
synthesis is inhibited. Some Fusarium strains have been shown to deacetylate the
antibiotic 2,4-diacetyl-phloroglucinol (DAPG) to the mono-acetyl form, thereby
inactivating (detoxification) the antibiotic. Some Botrytis strains are resistant toward
phenazine because they have an active efflux pump of the antibiotic which keeps the
intracellular phenazine concentration lower.

4.3 PGPR and Plant Growth Promotion

PGPR have been shown to colonize plant roots and directly enhance plant growth by
a variety of mechanisms, such as nitrogen fixation, solubilization of mineral phos-
phate, secretion of plant hormones, and environmental stress relief (Vessey 2003;
Antoun and Prevost 2006; Lugtenberg and Kamilova 2009). PGPR of different bacte-
rial species can solubilize insoluble inorganic phosphate compounds such as dical-
cium phosphate, tricalcium phosphate, rock phosphate, and hydroxyapatite for plant
uptake (Nautiyal et al. 2000). Biofertilizer products containing living microorganisms
colonize the rhizosphere of plants subsequently increasing the supply or availability
of primary nutrients and providing a growth stimulus to the target crop. B. subtilis
GBO03 and B. amyloliquefaciens IN937a produced volatile organic compound (VOC)
3-hydroxy-2-butanone (acetoin) and 2,3-butanediol that could promote significant
plant growth promotion on Arabidopsis (Bhattacharjee and Dey 2014).
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4.3.1 Nitrogen Fixation

The improvement of soil fertility is an essential strategy for increasing agriculture
yield. PGPR present in the rhizosphere, rhizoplane, and plant tissues have the
capacity to fix N and increase the availability/solubilization of nutrients in the rhi-
zosphere (Rodriguez and Fraga 1999; Vessey 2003; Adesemoye et al. 2010).
Nitrogen (N) is the most vital nutrient for plant growth since it is required for
biosynthesis of essential molecules such as amino acids and nucleic acids (Hewitt
and Smith 1974; Wetzel and Likens 2000). Although approximately 78% of the
atmosphere is N in the form of N2, it cannot be directly used by any organism
(Delwiche 1970). The N-fixing microorganisms convert nitrogen gas (N2) from the
atmosphere into the plant utilizable form through the action of the nitrogenase
enzymatic complex during N fixation (Kim and Rees 1994).

Microorganisms such as Azospirillum, Cyanobacteria, Azoarcus, Azotobacter,
and Acetobacter diazotrophicus are examples of symbiotic nitrogen-fixing forms
which can develop soil fertility by biological N fixation (Okon and Labandera
Gonzalez 1994; Graham et al. 1998; Bhattacharjee et al. 2008). Two groups of
N-fixing microorganisms that are symbiotic with legumes and induce the formation
of nodules have been extensively studied, i.e., symbiotic N2-fixing bacteria
Rhizobium (Zahran 2001) and Bradyrhizobium (Sanchez et al. 2011; Giraud et al.
2013). The nonsymbiotic N2-fixing bacteria consist of genera Azospirillum
(Khammas et al. 1989; Fibach-Paldi et al. 2012), Acetobacter (James et al. 1994),
Bacillus (Ding et al. 2005), and Pseudomonas (Yamanaka et al. 2005).

4.3.2 Phosphate Solubilization

In agricultural soils, phosphorus (P) is an essential macronutrient for plant growth
and exists largely in unavailable forms for plants due to its insolubility. Phosphate-
solubilizing bacteria exist in the rhizosphere, where they produce organic acids for
solubilizing the inorganic mineral P (Gaur 1990; Bolan et al. 1994) or enzymes such
as phytases which release soluble phosphorus from organic compounds of soil
(Hayes et al. 2000). These processes facilitate the conversion of insoluble forms of
P to be available for the plants (Rodriguez and Fraga 1999).

The most common phosphate-solubilizing bacteria belong to the genera Azotobacter
(Kumar et al. 2001), Pseudomonas (Selvakumar et al. 2009), and Rhizobium (Sridevi
and Mallaiah 2009), which can enhance plant P uptake (Yu et al. 2012). A mixture of
PGPR strains B. amyloliquefaciens IN937a and B. pumilus T4 supplemented with 75%
of the recommended fertilizer was equivalent to N and P nutrient uptake to the full
fertilizer rate (Adesemoye et al. 2009). Bacillus sp., Klebsiella oxytoca, and P. nitrore-
ducens were capable of dissolving phosphate with a phosphate solubility index range
from 2.1 to 4.6 and able to stimulate the corn seed germination (Setyowati et al. 2017).
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4.3.3 Phytohormones

Some PGPR strains produce phytohormones such as auxins, cytokinins, and gibber-
ellins that stimulate plant growth (Garcia de Salamone et al. 2001; Bottini et al. 2004;
Khalid et al. 2004). The plant hormones (indole-3-acetic acid (IAA), gibberellins,
and cytokinins) are known to be involved in root initiation, cell division, and cell
enlargement (Bottini et al. 2004). Production of IAA by PGPR has been recognized
as a mode of action on the promotion of plant growth (Etesami et al. 2009). IAA-
producing PGPR can increase root growth and root length, resulting in a greater root
surface area which enables the plant to access more nutrients from the soil (Patten
and Glick 2002; Gilbertson et al. 2007). The corn rhizosphere was dominated by
bacilliform-shaped Gram-positive bacteria capable of producing IAA in a range
from 4.83 to 125.84 ppm (Setyowati et al. 2017). P. fluorescens which were isolated
from the rhizosphere of soybean can produce cytokinins (De Salamone et al. 2006).

The IAA phytohormone production values among isolate bacteria from rice rhi-
zosphere ranged from 6.632 to 50.053 mg/L with the highest IAA production shown
by isolate 6KJ which was followed by 4 PB (41.807 mg/L). The three potential
isolates belonged to B. aryabhattai 6KJ, belonging to B. cibi 4 PB and B. marisflavi
2 KB. Bacterial IAA increased rice seed vigour significantly compared to control.
However, bacterial inoculation with different concentrations of IAA did not signifi-
cantly affect the growth of rice plants (Lestari et al. 2015).

PGPR strains produce growth hormones containing 1-aminocyclopropane-1-
carboxylate (ACC) deaminase that have shown protection against stress via
increased growth (Grichko and Glick 2001; Shaharoona et al. 2006; Nadeem et al.
2009; Zahir et al. 2008; Zhang et al. 2008). PGPR that produce ACC deaminase can
hydrolyze ACC (the immediate precursor of ethylene) to alpha-ketoglutarate and
ammonia, to promote plant growth (Mattoo and Suttle 1991; Saleem et al. 2007).
Ethylene is an important phytohormone, but overproduction of ethylene under
stressful conditions can result in the inhibition of plant growth or even plant death,
especially for seedlings (Beyer 1976; Abeles et al. 1992).

4.4 PGPRas aBCAgent and Their Mechanisms

PGPR influence the plants’ growth, yield, and nutrient uptake, as well as exhibit BC
of plant disease (Kloepper and Schroth 1978; Udayashankar et al. 2011). The two
main genera of PGPR strains include fluorescent of Pseudomonas spp., Bacillus
spp., and Gram-positive spore-forming bacteria (Figueiredo et al. 2011). Although
the preponderance of most PGPR studies has been reported to use Pseudomonas
sp., most commercially available PGPR are bacilli because this species has dormant
endospores that are tolerant to heat, desiccation, UV irradiation, and organic sol-
vents (Brumm et al. 1991; Gates et al. 2010).

PGPR as a BC agent that protects plants exhibit several mechanisms, which can
be grouped into two general mechanisms. The first is antagonism (antibiosis, com-
petition for nutrients and niches, predation and parasitism, and inhibition of fungal
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spore germination) in which the PGPR strain exerts its primary and direct action
against the pathogen via antibiosis or competition. Antagonism is defined as actively
expressed opposition and includes antibiosis, competition, and parasitism (Cook
and Baker 1983). The basis of antagonism as a BC mechanism of PGPR has been
extensively studied (Dowling and O’Gara 1994; Whipps 2001; Lugtenberg and
Kamilova 2009; Govindasamy et al. 2011). Antibiosis appears to be the main mech-
anism by which most PGPR strains with BC activity operate (Fernando et al. 2006;
El Meleigi et al. 2014). A wide variety of PGPR metabolites, including antibiotics,
siderophores, and cell wall-degrading enzymes, are involved in BC (Fernando et al.
2006; Sayyed et al. 2013; Jha and Subramanian 2014). Among these metabolites,
antibiotics have been extensively studied (Govindasamy et al. 2011). Numerous
siderophores have been identified, while other molecules such as bacteriocins are
also used for microbial defense system purposes.

Another mechanism is the indirect mode ISR in which PGPR trigger the plant
resistance to the pathogen (Compant et al. 2005; Kloepper et al. 2004). Microbes
acting through ISR (i.e., some strains of Bacillus, Pseudomonas, and Trichoderma)
colonize the root where they send signals to the plant which prime the plant into a
stage in which it quickly reacts on the attack by a pathogen. Individual components
shown to be able to induce ISR are flagella, lipopolysaccharides, N-acyl homoserine
lactones, siderophores, antibiotics (phloroglucinol and surfactin), and volatiles such
as 2,3-butanediol produced by Bacillus spp. (Ryu et al. 2004). Signaling is systemic
to protect all plant parts. Moreover, signaling is dependent on the plant hormones
jasmonate and ethylene. ISR can protect against a variety of pathogens such as bac-
teria, fungi, and viruses and even insects (Van Wees et al. 2008). P. fluorescens
WCS365 inhibits the germination of spores of the Fusarium fungus (Kamilova et al.
2008). Besides siderophore production, the BC abilities of Pseudomonas strains
essentially depend on aggressive root colonization, ISR in the plant, and production
of antifungal antibiotics (Haas and Keel 2003).

It has advantages to use more than one mechanism to suppress diseases.
Strains acting through predation and parasitism mechanism can produce enzymes
(such as chitinase, cellulase, p-1,3-glucanase, and protease) which lyse the fun-
gal cell wall. This mechanism has the advantages that it can act without the
action of antibiotics, which makes the BC agent safer than strains acting through
antibiosis. Pliego et al. (2007) isolated 37 strains of BC agents which are not only
good competitors but also produce antibiotics. Some strains can use a variety of
mechanisms. For example, P. fluorescens WCS365 is an enhanced root colonizer
and can also use ISR and inhibition of spore germination.

4,5 PGPR-Producing Antibiotics and Bacteriocins

One of the most effective mechanisms that a PGPR can employ to prevent phyto-
pathogen proliferation is the synthesis of antibiotics which occurs at the end of the
exponential growth phase and usually requires quorum sensing, mediated by N-acyl
homoserine lactones (AHLSs). The production of one or more antibiotics is the
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mechanism most commonly associated with the ability of PGPR to act as antagonistic
agents against phytopathogens (Glick et al. 2007). Antibiotics encompass a heteroge-
neous group of organic, low-molecular-weight organic compounds produced by
microorganisms that are deleterious to the growth or metabolic activities of other
microorganisms (Duffy 2003). Six classes of antibiotic compounds are related to the
BC of root diseases: phenazines, phloroglucinols, pyoluteorin, pyrrolnitrin, cyclic
lipopeptides (all of which are diffusible), and hydrogen cyanide (HCN, which is vola-
tile) (Burkhead et al. 1994; Haas and Défago 2005; Berry et al. 2010). Numerous
types of antibiotics have been isolated from fungal and bacterial strains, and this
diversity includes mechanisms of action that inhibit synthesis of pathogen cell walls,
influence membrane structures of cells, and inhibit the formation of initiation com-
plexes on the small subunit of the ribosome (Maksimov et al. 2011). More recently,
lipopeptide biosurfactants produced by Pseudomonas and Bacillus species have been
implied in BC due to their potential positive effect on competitive interactions with
organisms including bacteria, fungi, nematodes, and plants (de Bruijn et al. 2007;
Raaijmakers et al. 2010).

Examples of the use of antibiotics for BC activity are as follows: Bacillus sp.
produced antibiotics, such as polymyxin, circulation, and colistin, which are
effective for Gram-positive/Gram-negative and pathogenic fungi (Maksimov
etal. 2011). Strains acting through the production of antibiotics can be isolated by
screening on a plate inoculated with the target pathogen. The B. cereus UW85
strain, which suppresses oomycete pathogens, produces the antibiotics zwittermi-
cin A (aminopolyol) and kanosamine (aminoglycoside), which contributes to the
BC of alfalfa damping-off (Phytophthora medicaginis) (Stabb et al. 1994; Silo-
Suh et al. 1994; He et al. 1994), Fengycin by B. subtilis strain F-29-3 used for BC
of Rhizoctonia disease (Deleu et al. 2008), and iturin A by B. amyloliquefaciens
strain B94 for BC of R. solani (Yu et al. 2002). The antibiotics synthesized by BC
pseudomonads include agrocin84, agrocin434, 24-diacetyl phloroglucinol
(DAPG), herbicolin, oomycin, phenazines, pyoluteorin, and pyrrolnitrin.

The fluorescent pigments producing pseudomonads are known to have a signifi-
cant role in the suppression of fungal pathogens, apparently via the production of
antifungal metabolites such as phenazine-1-carboxylate, DAPG, siderophore, and
hydrogen cyanide (HCN) (Haas and Keel 2003; de Souza et al. 2003). Siderophores
produced by a number of Pseudomonas spp. are attracted for their possible role in the
biocontrol of a number of plant pathogens. Hence, siderophores can act as antimicro-
bial compounds by increasing the competition for available iron in the rhizosphere.

HCN and DAPG are produced by Pseudomonas sp. strain LBUM300 for BC of
bacterial canker (Clavibacter michiganensis subsp. michiganensis) on tomato
(Lanteigne et al. 2012), phenazines by P. aeruginosa strain PNA1 for BC of root rot
(Pythium myriotylum) on cocoyam (Tambong and Hofte 2001), pyoluteorin by P.
putida strain NH-50 for BC of red rot (Glomerella tucumensis) on sugarcane
(Hassan et al. 2011), 2-hexyl-5-propylresorcinol by P. fluorescens strain PCL1606
for BC root rot (Dematophora necatrix) on avocado (Cazorla et al. 2006), and phen-
azines and cyclic lipopeptides by Pseudomonas strain CMR12a for BC of root rot
(Rhizoctonia spp.) on bean (D’aes et al. 2011). Phenazine, produced by
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pseudomonads, possesses redox activity and can suppress plant pathogens such as
F. oxysporum and G. graminis (Chin-A-Woeng et al. 2003). In the soils, P. chloro-
raphis PCL1391 strain, isolated from roots of tomato plants, synthesizes phenazine-
1-carboxamide, which is able to release soluble iron from insoluble ferric oxides at
neutral pH, thus raising the possibility to contribute to iron mobilization (Haas and
Défago 2005). Pyrrolnitrin by P. cepacia strain B37 was used for BC of dry rot (£
sambucinum) on potato (Burkhead et al. 1994), while pyrrolnitrin produced by the
P. fluorescens BLI15 strain is able to prevent the damage of R. solani damping-off
of cotton plants (Hill et al. 1994). The DAPG produced by pseudomonads, an effec-
tive and extensively studied antibiotic, causes membrane damage to Pythium spp.
and is particularly inhibitory to zoospores of fungal oomycete (de Souza et al.
2003). The BC activity of a number of strains has been shown to be directly related
to the ability of the bacterium to produce one of these antibiotics.

Regarding bacteria as BC agents to act as a biological solution, some researchers
have highlighted the use of sporulating Gram-positive species such as Bacillus and
Paenibacillus spp., which can confer higher population stability during formulation
and storage of inoculant products (Emmert and Handelsman 1999; Kokalis-Burelle
et al. 2005). In comparison to the fluorescent pseudomonads, Bacillus spp. produced
substantially fewer antibiotics. However, an antibiotic that is effective in the labora-
tory against one strain of a pathogenic agent may not prevent damage to the plant.

Other molecules used in microbial defense systems are bacteriocins that differ
from traditional antibiotics; they commonly have a relatively narrow killing spec-
trum and are only toxic to bacteria closely related to the producing strain. Almost all
bacteria may make at least one bacteriocin, and many bacteriocins isolated from
Gram-negative bacteria appear to have been created by recombination between
existing bacteriocins (Riley and Wertz 2002). The colicins, proteins produced by
some strains of Escherichia coli that are lethal for related strains, are the most rep-
resentative bacteriocins produced by Gram-negative bacteria. Other bacteriocins are
pyocins from P. pyogenes strains, cloacins from Enterobacter cloacae, marcescins
from S. Marcescens, and megacins from B. megaterium (Cascales et al. 2007).
Bacteriocins from Bacillus spp. are increasingly becoming more important due to
their sometimes broader spectra of inhibition which may include Gram-negative
bacteria, yeasts, or fungi. In addition to Gram-positive species, some of which are
known to be pathogenic to humans and/or animals (Abriouel et al. 2011).

Since one of the major ways in which PGPR act as BC agents is through the
antifungal phytopathogen activity of the antibiotics that they produce, production of
antibiotics by PGPR may be improved by cloning genes that encode antibiotics
normally produced by other bacteria. The genetic manipulation increases the
amount of antibiotic that the bacterium synthesizes. Hence, it should be possible to
extend a broad spectrum of antibiotics against many phytopathogens. The amount
of antibiotic produced by a particular bacterium might be obtained by conventional
mutagenesis and selection. The more extensive manipulation of antibiotic produc-
tion will be obtained through the use of recombinant DNA technology.
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4.5.1 PGPR Producing Siderophores

Siderophores can be defined as small peptidic molecules containing side chains
and functional groups that can provide a high-affinity set of ligands to coordinate
ferric ions (Crosa and Walsh 2002). Based on their iron-coordinating functional
groups, structural features, and types of ligands, bacterial siderophores have been
classified into four main classes (carboxylate, hydroxamates, phenol catecholates,
and pyoverdines). Bacterial siderophores are widely recognized and used by differ-
ent or species-specific microorganisms (Crowley 2006).

Iron is one of the most abundant minerals on the Earth; however, in the soil, it is
unavailable for direct assimilation by microorganisms because ferric ion or Fe**
about 10-18 M at pH 7.4 is only sparingly soluble (Neilands et al. 1987). Soil
microorganisms secrete iron-binding molecules (siderophore complex) with low
molecular mass (400-1000 daltons), which bind Fe** with a very high affinity (Kd
=10-20 to 10-50) and transport it back to the microbial cell where it is taken up by
means of a cellular receptor located in the outer cell membrane of the bacterium and
then make it available for microbial growth (Boukhalfa and Crumbliss 2002;
Andrews et al. 2003). Siderophores have been recognized as an important antago-
nistic tool for some PGPR by binding most of the Fe3+ that is available in the rhi-
zosphere with high specificity and affinity, making the iron unavailable for pathogens
and limiting their growth (Thomashow and Weller 1990; Masalha et al. 2000;
Katiyar and Goel 2004; Dimkpa et al. 2009; Gaonkar et al. 2012).

The ability of bacterial siderophores to suppress phytopathogenic organisms is
an important trait that could have a significant agronomic impact. Most plants can
grow at much lower iron concentrations than microorganisms. Pseudomonads are
known for their high affinity to the ferric ion. The potent siderophore, pyoverdin can
inhibit the growth of bacteria and fungi that present less potent siderophores in iron-
depleted media in vitro (Kloepper et al. 1980). The siderophore of bacteria such as
B. subtilis CAS15 was linked to BC of Fusarium wilt (F. oxysporum Schl. f.sp.
capsici) on pepper (Yu et al. 2011), and the siderophore of Pseudomonas spp. was
linked to BC of bacterial wilt (R. Solanaceae) on tomato (Jagadeesh et al. 2001).

Fungal phytopathogens also synthesize siderophores but generally have a lower
affinity for iron than do siderophores produced by PGPR (Crosa and Walsh 2002), so
that PGPR in effect outcompete fungal phytopathogens for available iron. A pseudo-
bactin siderophore produced by P. putida B10 strain was able to suppress F. oxyspo-
rum in soil deficient in iron; this suppression was lost when the soil was replenished
with iron, a condition that represses the production of iron chelators by microorgan-
isms (Kloepper et al. 1980). Soilborne fungal pathogens can be suppressed by fluo-
rescent pseudomonads through the release of iron-chelating siderophores (Loper
1988; Paulitz and Loper 1991; Dwivedi and Johri 2003).
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4.5.2 PGPR Producing Defense Enzymes

Many plants respond to pathogen attack by synthesizing pathogenesis-related (PR)
proteins that can hydrolyze the cell walls of some fungal pathogens (Huang et al.
2005; Xiao et al. 2009). Some PGPR strains have been found to produce enzymes
including chitinase, -1,3-glucanase, protease, and lipase that can lyse fungal cells
(Pal and Gardener 2006; Ramyabharathi et al. 2012).

The enzymes chitinase and p-1,3-glucanase produced by B. subtilis strain EPCO
16 strongly inhibited F. oxysporum f.sp. lycopersici on tomato. A strain of P.
stutzeri produced extracellular chitinase and laminarinase, which could digest and
lyse F. solani mycelia, thereby preventing the fungus from causing crop loss due to
root rot, and were able to reduce the incidence of disease caused by phytopatho-
genic fungi R. solani, S. rolfsii, and P. ultimum by using a f-1,3-glucanase-
producing strain of P. cepacia, which was able to damage fungal mycelia. Similarly,
chitinase produced by B. cereus strain 28-9 was linked to BC of Botrytis leaf blight
(Botrytis elliptica) of lily (Huang et al. 2005).

Three different strains of the BC PGPR Enterobacter agglomerans that are
antagonistic to fungal pathogens including R. solani possess a complex of four sep-
arate enzymes that is responsible for the chitinolytic activity of the bacteria. These
bacteria significantly decreased the damage to cotton plants following infection
with R. solani. Moreover, Tn5 mutants of one of these BC strains that were deficient
in chitinase activity were unable to protect the plant against damage caused by the
fungal pathogen. Since many of the enzymes (including chitinases and p-1,3-
glucanases) from BC PGPR that have been found to lyse fungal cells are encoded
by a single gene, it should be useful to isolate some of these genes and then transfer
them to other PGPR, thereby constructing BC PGPR that produce both antibiotics
and fungus-degrading enzymes (Xiao et al. 2009).

4.5.3 PGPR Producing Antifungal Metabolites and Volatile
Compounds Involved in Both Plant Growth Promotion
and BC

A wide range of low-molecular-weight metabolites with antifungal activity is pro-
duced by PGPR (Dowling and O’Gara 1994). Some pseudomonads can synthesize
HCN and are able to inhibit some pathogenic fungi. Several different microorganisms
including strains of Cladosporium werneckii, P. cepacia (B. cepacia), and P. sola-
nacearum are able to hydrolyze fusaric acid compound, the causative agent of the
damage to plants infected by Fusarium. As a consequence of the ability to hydrolyze
fusaric acid, these bacterial strains can prevent the damage that is caused by various
species of the fungus Fusarium (Van Rij et al. 2005). Cyclolanostan-3-ol, acetate,
(3.beta.)-(CAS) cycloartanyl acetate is one of secondary metabolites produced by B.
cereus 11UJ which had an activity to rice sheath blight and blast (Suryadi et al. 2015).
A variety of volatile organic compounds (VOCs) have been shown to be produced by
Bacillus  spp. including 2,3-butanediol, 2-ethyl-hexanol, 2,4-bis (2-methyl
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propyl)-phenol, 4-hydroxybenzaldehyde, 2-nonanone, and various volatile blends.
VOCs have been implicated in the BC of postharvest decay (Penicillium crustosum)
on citrus (Arrebola et al. 2010), inhibition of growth and spore germination of F. oxy-
sporum f.sp. cubense (Yuan et al. 2012), inhibition of mycelial growth of F. solani (Li
etal. 2015), induction of the systemic resistance to Erwinia carotovora subsp. caroto-
vora (Ryu et al. 2004), and growth promotion of Arabidopsis (Ryu et al. 2003).

4.6 Induced Resistance (ISR and SAR)

The choice of defense strategy may combine the advantages of enhanced disease
protection and low costs. Induced resistance can entail costs due to the allocation of
resources of defensive products (Bakker et al. 2013). Physiology and metabolic
responses are altered after the induction of ISR, leading to the enhanced synthesis
of some plant defense chemicals which limit the pathogen. PGPR cause a line of
defense against pathogen spread in the plant, such as strengthening the epidermal
and cortical cell walls as seen with B. pumilus strain SE34 in pea and tomato
(Benhamou et al. 1996, 1998) and P. fluorescens WCS417r in tomato (Duijff et al.
1997). These biochemical or physiological changes are associated with the accumu-
lation of pathogenesis-related proteins (PR proteins) and defense chemicals includ-
ing phytoalexins, phenylalanine ammonia lyase (PAL), and chalcone synthase
(Ongena et al. 2000; Dao et al. 2011; Mariutto et al. 2011).

Nonpathogenic rhizobacteria have been shown to suppress severity or incidence
of disease by inducing a resistance mechanism in the plant termed as induced sys-
temic resistance (ISR) (Van Loon et al. 1998; Jellis 1998; Ramamoorthy et al. 2001).
Induced resistance is the state of an enhanced defensive ability developed by plants
when appropriately stimulated (Van Loon et al. 1998). Pseudomonas and Bacillus
spp. are the most studied rhizobacteria that trigger ISR (Van Wees et al. 2008). ISR
was described in carnation (Dianthus caryophyllus) that was systemically protected
by the P. fluorescens strain WCS417r against F. oxysporum f.sp. dianthi (Van Peer
et al. 1991), while on cucumber (Cucumis sativus), rhizobacterial strains protected
the leaves against anthracnose caused by Colletotrichum orbiculare (Wei et al. 1991).

Rhizobacteria-mediated ISR resembles pathogen-induced systemic acquired resis-
tance (SAR) in that both types of induced resistance render uninfected plant parts
more resistant to plant pathogens, including fungal, bacterial, and viral pathogens, as
well as nematodes and insect herbivores (Zehnder et al. 1997; Van Loon et al. 1998;
Bent 2006; Pozo and Azcon-Aguilar 2007). ISR has also been demonstrated in many
plant species, e.g., bean, radish, tobacco, tomato, and Arabidopsis thaliana (Durrant
and Dong 2004; Ryals et al. 1996; Van Wees et al. 1997; Van Loon et al. 1998).

SAR and ISR protect plants through different signaling pathways. Unlike SAR
that is dependent on the salicylic acid (SA) signaling pathway and causes visible
symptoms, ISR is dependent on jasmonic acid (JA) and ethylene (ET) signaling path-
ways and does not cause visible symptoms in the plant (Knoester et al. 1999;
Maurhofer et al. 1998; Van der Ent et al. 2009; Van Loon et al. 1998; de Vleesschauwer
and Hofte 2009). In line with the development of SAR, SA was accumulated locally
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at lower levels. Application of exogenous SA also induces SAR in many plant spe-
cies (Van Loon et al. 1998). The development of tissue necrosis was used to be con-
sidered a common and necessary feature for SAR activation (de Vleesschauwer and
Hofte 2009), but SAR can also be triggered without tissue necrosis as demonstrated
in A. thaliana (Mishina and Zeier 2007). ISR and SAR can act additively in inducing
resistance to pathogens. They together provide better protection than each of them
alone (Van Wees et al. 2000). The protection mediated by ISR is significantly less
than that obtained by SAR, and a degree of dependence on plant genotype is observed
in the generation of ISR (Van Loon 2000; Bloemberg and Lugtenberg 2001).

In SAR, the first infection predisposes the plant to resist further attacks. SA acti-
vates specific sets of defense-related genes called pathogenesis-related proteins (PRs).
The enhanced defensive capacity characteristic of SAR is always associated with the
accumulation of PRs (Van Loon 2007). Treatment of tobacco roots with P. fluorescens
CHAO triggers the accumulation of SA-inducible PR proteins in the leaves (Maurhofer
et al. 1994). Some of these PRs are -1,3-glucanases and chitinases capable of hydro-
lyzing fungal cell walls, while other PRs are poorly characterized. SAR-associated
PRs suggest an important contribution of these proteins to the increased defensive
capacity of induced tissues (Van Loon et al. 1998). The PR-1 gene or protein expres-
sion appears to be inducible by SA, and it is usually taken as a molecular marker to
indicate that SAR has been induced (Van Loon and Bakker 2006). Arabidopsis plants
inoculated with P. syringae pv. tomato or sprayed with SA developed SAR and accu-
mulated PR-1, PR-2, and PR-5 mRNAs (Pieterse et al. 1996). Plant inoculated with P,
Sfluorescens WCS417r or P. putida WCS358 developed ISR; however, PR accumula-
tion of PRs was not detected (Van Wees et al. 1997). ISR can be induced in plants that
are unable to accumulate SA (NahG mutant plants). In Arabidopsis, SA and the acti-
vation of PR genes are not part of the ISR pathway (Pieterse et al. 1996).

Transduction of the SA signal requires the regulatory (activator) protein NPR1 (or
NIM1) that functions in the terminal part of the signaling pathway of SAR (Van Loon
et al. 1998). In non-induced plants, NPR1 is present as a multimer, and during SAR
induction, SA triggers the conversion of NPR1 into a monomeric form and translocated
to the nucleus (Kinkema et al. 2000; Verhagen et al. 2006). They interact with members
of the TGA/OBEF subclass of basic leucine zipper (bZIP) transcription factors that are
involved in SA-dependent activation of PR genes (Fan and Dong 2002; Zhang et al.
2003). A direct interaction between NPR1 and a specific TGA transcription factor is
required for the binding of the complex to elements within the promoter of the PR
genes (Després et al. 2000; Fan and Dong 2002). Overexpression of the NPR1 gene
leads to enhanced resistance to pathogen attack (Cao et al. 1998; Friedrich et al. 2001).
NPRI regulates defense responses mediated by different signaling pathways that func-
tion beyond the expression of PR genes, indicating that SAR and ISR converge at the
last part of the signaling pathway (Van Loon et al. 1998). In Arabidopsis, the rhizobac-
terial P. fluorescens strain WCS417r demonstrated that WCS417r-mediated ISR func-
tioned independently of SA and depended on NPR1, although requiring components of
the JA and ethylene (ET) response pathways (Pieterse et al. 1996, 1998, 2000).

Methyl jasmonate (MeJA)-induced protection is blocked in jari-1, etri-1, and
nprl-1 plants, whereas the ethylene precursor 1-aminocyclopropane-1-carboxylate
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(ACC)-induced protection is affected in etr/-1 and npri-1 plants, but not in jari-1
plants. Therefore, WCS417r-mediated ISR follows a signaling pathway in which
components from the JA and ethylene response pathways are successively engaged
to trigger a defense reaction, regulated by NPR1 (Pieterse et al. 1998).

Infected plants increased their levels of JA and ET as a sign of active defense
(De Laat and Van Loon 1982). These signaling molecules coordinate the activation
of defense responses and, when applied exogenously, can induce resistance
(Pieterse et al. 1998). The dependency of ISR on JA and ethylene is based on
enhanced sensitivity to these hormones rather than on an increase in their produc-
tion (Pieterse et al. 2000). The Arabidopsis JA response mutantjar/ and the ET
response mutant efr/ were tested in the development of ISR. Upon colonization of
the roots by P. fluorescens WCS417r bacteria, mutants jar/ and etr/were unable to
develop ISR against P. syringae pv. tomato (Pieterse et al. 1998), illustrating the
dependency of ISR signaling on these phytohormones.

One or more bacterial determinant must be recognized by specific plant recep-
tors so that resistance is induced. ISR is induced by metabolites or features of a
specific bacterial strain (de Vleesschauwer and Hofte 2009). A bacterial traits oper-
ative in triggering ISR have been identified, including cell structures such as flagella
(Meziane et al. 2005), cell envelope components like lipopolysaccharides (Leeman
et al. 1995), metabolites including SA and siderophores (Van Loon et al. 1998;
Hofte and Bakker 2007; Press et al. 2001; Ran et al. 2005), N-alkylated benzyl-
amine (Ongena et al. 2005), surfactin and fengycin lipopeptides (Ongena et al.
2007), VOCs (Ryu et al. 2004), phenolic compounds (Akram et al. 2013), and signal
molecules such as N-acyl-L-homoserine lactone (AHL) (Schuhegger et al. 2006; de
Vleesschauwer and Hofte 2009). Among these inducers, VOCs may play a putative
role in eliciting host defense and growth promotion (Ryu et al. 2004).

Bacterial determinants elicit ISR from the PGPR strain Ochrobactrum lupine
KUDC1013 and the secreted bacterial compounds phenylacetic acid, 1-hexadecene,
and linoleic acid against Pectobacterium carotovorum subsp. carotovorum (Pcc) in
tobacco seedlings. The involvement of quorum sensing (QS) in the elicitation of ISR
against Pcc and CMV by the PGPR bacteria strain S. marcescens 90—166. Fungi such
as T. asperellum strain SKT-1 can also elicit this defense response-mediated ISR
against fungal pathogens and yellow strain of CMV in Arabidopsis (Ryu et al. 2003).
The ability to develop ISR in response to certain rhizobacteria has been demon-
strated in several species of plants (Van Loon et al. 1998) and appears to depend on
the specificity of the interaction between rhizobacteria and plants. Failure to elicit
ISR in certain hosts may be due to the absence of production of inducing components
in the rhizosphere or an inability of the particular plant species to perceive such com-
pounds (Van Loon 2007). For induction of resistance, it is necessary to know specific
recognition between the plant and the rhizobacteria. Depending upon plant species,
P. putida WCS358r and P. fluorescens WCS374r act in different ways. For instance,
WCS358r elicits ISR in Arabidopsis but does not elicit ISR in radish and carnation
plants (Van Peer et al. 1991; Van Peer and Schippers 1992; Leeman et al. 1995; Van
Wees et al. 1997). WCS374r is responsive to radish, while it is not responsive to
Arabidopsis plants (Leeman et al. 1995; Van Wees et al. 1997). In Arabidopsis,
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WCS417r elicits ISR against a variety of plant pathogens such as bacterial leaf
pathogens X. campestris pv. armoraciae and syringae pv. tomato DC3000 (Pst
DC3000), the fungal leaf pathogen Alternaria brassicicola, the oomycete leaf patho-
gen Hyaloperonospora parasitica, and the fungal root pathogen F. oxysporum.
PGPR induced systemic resistance by activating the signaling pathways in plants,
such as SA, JA, or ET signaling pathways (Maurhofer et al. 1998). Different PGPR
triggered ISR dependent on different pathways. Several rhizobacteria induced sys-
temic resistances by simultaneously activating SA- and JA—/ET-dependent signal-
ing pathways. The ISR triggered by rhizobacterium B. cereus AR156 is both
involved in the SA and JA/ET signaling pathways and NPR1 (Niu et al. 2011).

4.7  Current Research Toward the Development of PGPR
as BC Agent

4.7.1 PGPR in Management of Biotic Stresses (Phytopathogens)

4.7.1.1 Relationship Between Plant Growth and BC, Broad-Spectrum
Defense Activity, Consistent Performance, and Protection
of Using PGPR
In plants, biotic stresses, such as pests and diseases, are threatening crop produc-
tion. These include many species and types of phytopathogens (fungi, bacteria, and
viruses) and other organisms. The dependency on inorganic agrochemical pest and
disease control in modern farming is responsible for environmental pollution as
well as harmful effects on nontarget organisms.

Exploiting naturally occurring PGPR as BC agents to manage the biotic
stresses represents one means of addressing the problems associated with agro-
chemical control. Damages caused by phytopathogens can be reduced by using
beneficial soil bacteria (PGPR) via different indirect mechanisms such as the pro-
duction of antibiotics, metabolites, and defense enzymes, bacterial competition,
secretion of iron-chelating siderophores, and induction of systemic resistance
(ISR) in plants (Glick 1995; Glick et al. 1999).

Although the beneficial effects of PGPR on plants are usually separated into two
categories, growth promotion and BC, there is a close relationship between them
(Mariano and Kloepper 2000). PGPR promote the growth of the entire plant, which
can result in the plant having increased tolerance to disease and, conversely of plant
diseases by PGPR, may indirectly result in the promotion of plant growth (Beneduzi
et al. 2012). Hence, individual strains of PGPR have been shown to exhibit both
growth promotion and BC through various mechanisms.

In search of efficient PGPR strains, multiple traits related to plant growth and BC
activity have been tested together during the screening process, resulting in the identi-
fication of PGPR strains that exhibited multiple functions related to crop production
(Ahmad et al. 2008; Praveen Kumar et al. 2014; Wahyudi and Astuti 2011). Some
PGPR strains have the potential to ISR against multiple plant pathogens (Ramamoorthy
et al. 2001). For example, PGPR strains P. putida 89B-27 and S. marcescens 90-166
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both elicited ISR in cucumber against anthracnose caused by Colletotrichum orbicu-
lare (Wei et al. 1991), Fusarium wilt caused by F oxysporum f.sp. cucumerinum (Liu
etal. 1995), bacterial angular leaf spot caused by P. syringae pv. Lachrymans (Liu et al.
1995), cucurbit wiltinfected by E. tracheiphila (Kloepper et al. 1992), and Cucumovirus
in cucumber and tomato (Raupach et al. 1996).

4.7.2 Forming Complex Mixtures: Individual PGPR vs. Mixtures
of PGPR

The majority of published reports of plant disease BC evaluate single PGPR strains
against a single pathogen through one main mechanism (Murphy et al. 2000;
Zhang et al. 2010). For example, Huang and his colleagues reported that the anti-
biotic-producing bacterium B. pumilis strain SQR-N43 directly inhibited damping-
off of cucumber, caused by R. solani. Antibiotic-producing rhizobacteria exhibiting
BC via antibiotic production have been reported with diverse bacteria in various
host/pathogen systems, including B. subtilis strains NH-100 and NH-160 against
red rot of sugarcane, caused by C. falcatum (Hassan et al. 2010); B. subtilis strains
PFMRI, BS-DFS, and PF9 against bacterial wilt of potato caused by R. sola-
nacearum (Aliye et al. 2008); and P. fluorescens strain FP7 against mango anthrac-
nose caused by C. gloeosporioides (Vivekananthan et al. 2004).

The synergy of different mechanisms produced the same strain BC of diseases,
while one prominent BC mechanism was exhibited by a single strain. The extracel-
lular enzyme (B-1,3-glucanase) and an antibiotic that was produced by B. subtilis
NSRS 89-24 played a synergistic role in the control of two fungal pathogens P.
grisea and R. solani on rice (Leelasuphakul et al. 2006).

Single PGPR strains with one main mechanism of action for BC have also been
selected based on the production of siderophores and elicitation of induced sys-
temic resistance (ISR). The siderophore-producing B. subtilis strain CAS 15 com-
peted for iron with the soilborne pathogen F. oxysporum f.sp. capsici and also
promoted the growth of pepper (Yu et al. 2011). With ISR, B. pumilus strain SE34
induced defense to Fusarium wilt (F. oxysporum) (Benhamou et al. 1998) and
tomato late blight (P. infestans) (Yan et al. 2002).

Despite the positive results, Pal and Gardener (2006) reported that single PGPR
strains have not been used on a wide range of plant hosts and have typically exhib-
ited inconsistent performance in the field. A single PGPR strain typically does not
have BC activity against multiple pathogens. In addition, it is not likely to be active
at a high enough level against pathogens under diverse conditions found in the field,
including competitive indigenous microorganisms, diverse environmental condi-
tions, unpredictable weather, and multiple plant diseases (EImqvist et al. 2003). The
formulation of mixtures of PGPR is one strategy to address multiple modes of
action and BC of multiple pathogens (Domenech et al. 2006).

Several studies have shown that compatible mixtures of PGPR strains can pro-
vide broad-spectrum activity against different pathogens. Compatible mixtures of
PGPR have been shown to induce a higher level of protection than individual PGPR
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strains. Mixtures of PGPR exhibited a general trend toward a more consistent and
higher magnitude disease suppression than did individual strains of PGPR (Bharathi
et al. 2004; Lucas et al. 2009). In addition, some mixtures of PGPR, selected for
elicitation of ISR, reduced disease at the same level as a commercially available
chemical elicitor (Actigard® Syngenta) (Raupach and Kloepper 1998).

Compatible mixtures of PGPR can give consistent performance. Individual PGPR
and mixtures have been tested in Thailand during the rainy season and winter season
and showed that mixtures more consistently suppressed both disease severity and dis-
ease incidence in both seasons than did individual strains (Jetiyanon et al. 2003). It also
demonstrated good efficacy of mixtures for controlling phytophthora blight of pepper
under two different field conditions with crop rotation in Korea (Kim et al. 2008).

Ji et al. (2006) used pairwise combinations of three foliar BC agents and two
selected PGPR strains against three foliar bacterial pathogens (P. syringae pv. tomato,
X. campestris pv. Vesicatoria, and X. vesicatoria) in tomato. Szczech and Dysko
(2008) mixed three different PGPR strains against two soilborne disease (F. oxyspo-
rum f.sp. radices-lycopersici and R. solani) in tomato. A mixture of PGPR was used
against different types of pathogens that included a group of fungi (Macrophomina
phaseolina, F. solani, and R. solani) and root-knot nematode (M. javanica) in tomato
(Siddiqui and Shaukat 2002). Raupach and Kloepper (1998) used a two-way or
three-way mixture against three different pathogens (C. orbiculare, P. syringae pv.
lachrymans, E. tracheiphila) in a single host (cucumber). In a study of BC pre-
screened in the greenhouse and the field to bacterial wilt of tomato, anthracnose of
pepper, damping-off of green kuang futsoi, and cucumber mosaic virus, some PGPR
mixtures caused at least a 50% disease suppression of most of these diseases com-
pared to the non-PGPR-treated control treatment (Jetiyanon and Kloepper 2002).

The formulation of strain mixtures is a key approach to increase the efficacy of
plant growth promotion and plant disease protection in the field (Choudhary and
Johri 2009). Stable formulations using different carriers such as peat and talc have
been developed for the delivery of the PGPR stains for field level application.
Nakkeeran et al. (2004) used talcum- and peat-based formulations of P. chlorora-
phis and B. subtilis for the management of turmeric rhizome rot. Talcum-based
strain mixtures were effective against rice ShB and increased plant yield under field
conditions greater than did individual strains (Nandakumar et al. 2001).

4.8 Utilization of PGPR on Tea Plant

4.8.1 Induction of Resistance for Management of Blister Blight
on Tea Plant Using PGPR

Camellia sinensis (tea) is a tree that is naturally distributed in highland plantation
parts of Indonesia. However, most of the tea plant has been damaged due to biotic
as well as abiotic factors. In addition, plant growth and survival are affected by the
fertility of the soil and by low availability of the nutrients.



84 Y. Suryadi et al.

The role of tea commodities in the economy in Indonesia is quite strategic; how-
ever, the area of tea plantations in Indonesia continues to decline. Tea production is
often faced with many factors such as weather and plant pest and disease distur-
bances. The main diseases in tea plants are blister blight caused by the fungi
Exobasidium vexans Massee. Blister blight can cause yield losses up to 40-50% and
decrease the tea quality lower to 35% (Gulati et al. 1993; Martosupono 1995).

Control of blister blight can be done by various strategies, such as technical culture,
resistant clones, and fungicide applications. Control with fungicides (especially copper
fungicide) is an effective method to control blister blight. However, the use of copper
fungicide continuously can cause a negative consequence such as increasing popula-
tion of mites (Brevipalpus phoenicis) (Oomen 1980; Venkata Ram 1974), cause dam-
age in the soil structure due to the accumulation of copper, and decrease the population
of earthworms (Shanmuganathan 1971; Shanmuganathan and Saravanapavan 1978).
Therefore, the alternative method in controlling blister blight which is more environ-
mentally friendly is required. An alternative strategy that can be done is BC because
this method is appropriate with the concept of sustainable agriculture.

A large number of commonly found microorganisms in the soil (bacteria, fungi,
actinomycetes, protozoa, algae, etc.) show the ability to utilize a wide range of ben-
eficial substances (Lynch 1990; Linderman 1992; Glick 1995; Kennedy 1998; Barea
et al. 2002). Beneficial root-colonizing rhizosphere bacteria (PGPR) are defined by
three intrinsic characteristics: (a) they must be able to colonize the root; (b) they must
survive and multiply in microhabitats associated with the root surface, in competition
with other microbiota, at least for the time needed to express their plant promotion/
protection activities; and (c) they must promote plant growth (Kloepper et al. 1992;
Van Peer and Schippers 1992). The complexity of the soil system is determined by
the numerous and diverse interactions among its physical, chemical, and biological
components, as modulated by the prevalent environmental conditions. Many micro-
bial interactions, which are regulated by specific molecules/signals, are responsible
for the maintenance of plant health and soil quality (Barea et al. 2004).

The potentiality of PGPR in agriculture is steadily increased as it offers an
attractive way to replace the use of chemical fertilizers, pesticides, and other sup-
plements (Fatima et al. 2008). A number of different PGPR include Azotobacter
species, Azospirillum species, pseudomonads, Acetobacter species, Burkholderia
species, and Bacillus species (Kloepper et al. 1992). The genus Bacillus are impor-
tant PGPR microorganisms that can produce phytohormones, such as auxin and
cytokinin, which promote root development (Erturk et al. 2010).

PGPR are important microorganisms that can increase the growth and yield of
tea plants; however, there is little information on the beneficial effects of PGPR
inoculation on the growth tea seedlings as well as control of blister blight disease
caused by Exobasidium vexans Massee that can decrease yield loss up to 50% of tea
in the field; hence, an effort to reduce blister blight, a major disease in tea plantation,
needs to be carried out. Research has been conducted to know the effect of PGPR
on tea plant growth that can work optimally as a biological fertilizer and plant resis-
tance inducer to suppress blister blight. The previous study found that bacterial
isolates have functioned as biofertilizers and can act as BC agents, namely,
Chryseobacterium sp. AzIl-1, Acinetobacter sp., Alcaligenes sp. ES, Bacillus E65,
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Fig. 4.1 Rainfall, humidity, and intensity of blister blight during the experiment

and Burkholderia E76. Molecular characterization results also indicate that the bac-
terial isolates have survival capabilities in both biotic and abiotic stress conditions
and did not cause necrosis in plants, and the detection of the presence of IAA-coded
gene genes was also found (148 bp) (Rachmiati 2015).

The experiment conducted at Gambung Experimental Garden, Research Institute
for Tea and Cinchona, West Java, Indonesia, using TRI 2024 clone was done to deter-
mine the effect of microbial application to induce plant health against blister blight.
The preliminary observations showed that, at the beginning of the trial, the condition
of blister blight was homogeneous. At the initial condition (at the third preliminary
observation) before the treatment application, the average of disease intensity was
+72.67%. In general, during the experiment, the pattern of disease intensity fluctu-
ated. Figure 4.1 showed that all blister blight intensity decrease in all treatments after
the first application. The disease intensity consistently decreased from the first (AT 1)
observation to the fourth (AT 4) observation. However, the intensity of the disease
increased after the fifth (AT 5) observation. The intensity of blister blight remained
high until the last observation, with an average of disease intensity 53.63%. This con-
dition may be influenced by rainfall or leaf wet conditions (high humidity and misty).
The amount of rainfall and humidity at the end of observation was 319 mm and 8§9%.

The environmental conditions support the development of the disease. The rainfall
and humidity conditions during the experimental period affect the intensity of blister
blight disease. The fluctuations of the intensity of blister blight disease in line with the
amount of rainfall and the average of humidity on every observation. Therefore, the
intensity of blister blight disease is still high until the final observation.

It showed that the microbial treatment on cumulative of tea fresh shoot did not sig-
nificantly change (Table 4.1). However, the cumulative tea fresh shoot on the
Acinetobacter sp. was 17.26% higher when compared with other treatments. The
decrease in the intensity of blister blight was not accompanied by increased yield of
fresh shoots. The intensity of blister blight was >50% until the end of observations. The
yield loss caused by blister blight does not relate quantitatively to disease control.
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Table 4.1 Results of cumulative of tea fresh shoot on various microbial treatments

Yield

Treatment Cumulative of fresh shoot (kg/plot)* | increase (%)
A. Alcaligenes sp. E5 2.014 —1.09

B. Bacillus E65 1.907 -6.33

C. Burkholderia E76 2.145 5.35

D. Chryseobacterium sp. AzII-1 | 2.132 4.68

E. Acinetobacter sp. 2.388 17.26
Significance NS
*Cumulative from six times of application
Table 4.2 Average of bacterial population (CFU/ml)

Average of Average of Average of total
Azotobacter sp. endophytic bacteria | bacteria population

Combination population (CFU/ml) | population (CFU/ml) | (CFU/ml)
A. Chryseobacterium sp. 2.78 x 108 2.57 x 108 5.35%x 108
AzII-1 + Acinetobacter sp.

B. Chryseobacterium sp. 2.09 x 108 1.31 x 108 3.40 x 108
AzII-1 + Alcaligenes sp. ES

C. Chryseobacterium sp. 2.51 %108 2.48 x 108 5.00 x 108
AzII-1 + Burkholderia E76

D. Chryseobacterium sp. 2.19 x 108 2.55x 108 4.74 x 108
AzII-1 + Bacillus E65

Significance NS NS NS

NS nonsignificant

The TRI 2024 clones in this study are susceptible to blister blight. In general, the
application of the inducer agent causes the plant to become rapidly sensitive in response
to pathogen infection. Moreover, endophytic bacteria have several benefits including
the N, air-inhibitor, producing phytohormones such as indole-3 acid (IAA), cytokinin,
and stimulate the growth (Setiawati et al. 2009). The test results are used as the basis
for determining the combination of active ingredients for biofertilizer.

The four formulas are not significantly different in populations of Azotobacter
sp., endophytic bacteria, as well as total bacteria (Table 4.2). This means that
the four formulations were a synergist. According to the Indonesian Ministry of
Agriculture Regulation No. 70 of 2011 on Organic Fertilizer, Biological
Fertilizer, and Soil Enhancer, the minimum required population of compound
biochemical fertilizer was 107 CFU/g.

The combination of Chryseobacterium sp. AzIl-1 + Alcaligenes sp. E5 was
tested under tea plant nursery. The intensity of blister blight during the trial was very
low. This might be due to high temperatures during the experiment (dry season);
however, the blister blight intensity in treatment D (Chryseobacterium sp. AzlI-1
75% + Alcaligenes sp. ES 25%) was significantly different compared with the other
treatments, with disease intensity at final observation of 1.27% (Table 4.3). The
results of the biochemical analysis showed that Chryseobacterium sp. AzII-1 and
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Table 4.3 The intensity of blister blight in various treatment combinations of bacteria

The intensity of the disease

Treatment (%)*
A. Control (without bacteria) 1.84%%
B. Chryseobacterium sp. Azll-1 25% + Alcaligenes sp. ES 1.84%™
75%

C. Chryseobacterium sp. Azll-1 50% + Alcaligenes sp. ES 2.09%"
50%

D. Chryseobacterium sp. AzlI-1 75% + Alcaligenes sp. E5 1.27%*
25%

E. Chryseobacterium sp. Azll-1 25% + Burkholderia E76 1.85%®
75%

FE. Chryseobacterium sp. Azll-1 50% + Burkholderia E76 2.08%°
50%

G. Chryseobacterium sp. AzI1-1 75% + Burkholderia E76 2.19%"
25%

*Mean in the column followed by the same letter is not significantly different according to
Duncan’s multiple range test at 5%
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Fig. 4.2 Climate condition during experiment

Alcaligenes sp. ES had a positive value of chitinase. The disease intensity can be
suppressed by the activity of chitinase produced by Chryseobacterium sp. AzII-1+
Alcaligenes sp. ES. This indicates that the isolates Chryseobacterium sp. AzII-1 and
Alcaligenes sp. ES are potential as a BC agent against pathogenic fungi.

The climate or weather changes will affect pathogens before infecting plants
(pre-penetration). Pathogens are highly sensitive to environmental changes, and
their development is determined by the optimum climatic or weather conditions.
Environmental conditions during the trial do not support the development of blister
blight. The average temperature and humidity approached to 30 °C and 80%,
respectively. Although the rainfall and humidity are quite high at the final experi-
ment, it did not affect blister blight development until the end of the trial period
(Fig. 4.2). The relationships between rainfall, temperature, and humidity to the
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intensity of blister blight show a strong linear regression pattern, which strongly
supports that blister blight intensity decreases with decreasing intensity of rainfall,
rising temperatures, and low humidity (Rezamela et al. 2016). The formation and
spread of basidiospores require higher relative humidity above 80%. Meanwhile,
for spores germination required moisture higher than 90% (Astuti 2013).

The combination of Chryseobacterium sp. AzIl-1 + Alcaligenes sp. E5 also affected
the tea plant growth. The parameter of plant height is one of an important factors in
determining which tea planting material is ready for planting. Stem diameter measure-
ments were performed at 4-month-old plants after planting or 1 month after bacterial
applications. The parameters of diameter of stem provide an overview of the growth
and development of tea planting material. Moreover, the leaf is one of the components
of growth which is directly related to the process of photosynthesis (Table 4.4).

The interesting result showed that all combinations of treatments can affect plant
growth. However, in the combined treatment of Chryseobacterium sp.
AzIl-1 + Alcaligenes sp. ES, the average of plant growth was higher than that of
other treatments. In addition, the higher percentage of Alcaligenes sp. E5 can
increase plant growth. The average plant height, stem diameter, number of leaves,
root length, and root volume were also higher. However, the higher the percentage
of Chryseobacterium sp. AzII-1, the lower the intensity of blister blight disease.

Using Chryseobacterium sp. AzII-1 75% + Alcaligenes sp. E5 25% treatment,
the intensity of blister blight disease was the lowest when compared to other treat-
ments, but it does not affect plant growth significantly. The plant height, stem

Table 4.4 The effect plant growth tea planting at the age of 6 weeks after application

Plant Stem Root Root
height diameter Number height volume
Treatment (cm)* (cm)* of leaves* | (cm)* (cc)*
A. Control (without bacteria) 12.6° 3.2abe 7.9° 16.40° 1.87%
B. Chryseobacterium sp. 16.93° 3.46° 9.9¢ 20.08* 2.50°
AzII-1 25% + Alcaligenes sp.
E5 75%
C. Chryseobacterium sp. 14.42:® 3.330bc 8.4° 19.92¢ 2.75°
AzIl-1 50% + Alcaligenes sp.
E5 50%
D. Chryseobacterium sp. 15.32° 3.38% 8.05° 18.25¢ 2.37%®
AzII-1 75% + Alcaligenes sp.
ES5 25%
E. Chryseobacterium sp. 12.35° 3,178 7.05%® 19.62¢ 2.25%®
Azll-1 25% + Burkholderia
E76 75%
F. Chryseobacterium sp. AzII-1 | 12.59* 3.13% 6.4 19.77* 1.50*
50% + Burkholderia E76 50%
G. Chryseobacterium sp. 12.66° 3.06° 7.75% 19.90° 2.62°
AzII-1 75% + Burkholderia
E76 25%

+The figures in the column followed by the same letter are not significantly different according to
Duncan’s multiple range test at 5%
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diameter, leaf number, root length, and root volume in Chryseobacterium sp.
AzII-1 75% + Alcaligenes sp. E5 25% treatment were 15.32 c¢cm, 3.38 cm, 8.05,
18.25 cm, and 2.37 cc, respectively.

The gene detection of the presence of IAA growth hormone on Chryseobacterium
sp. AzII-1 and Alcaligenes sp. ES bacteria was found about 148 bp in size. That
means that they have potential as a biofertilizer agent with the ability to produce
auxin substance growth boosters. The number of leaves is expected to increase the
ability of leaves to photosynthesize. If the rate of photosynthesis increases, the
growth rate will be the maximum. The rate of root and shoot growth is influenced by
internal factors, such as the supply of photosynthesis from leaves, and environmental
factors, such as temperature and soil water content. Endophytic bacteria that produce
PGPR can benefit plants through improved root function and accelerate plant growth.

Combining soil bacteria and endophytic bacteria as the active ingredient of bio-
fertilizer can increase the effectiveness of biofertilizer. With a combination of both,
biofertilizer can work optimally both as a biological fertilizer and plant resistance
inducer. Therefore, a test of synergism was done in the laboratory first before apply-
ing in the field. PGPR may affect plant growth in a variety of ways (Glick 1995;
Glick et al. 1999). The application of PGPR inoculation is an effective method to
improve the growth and nutrient uptake of tea seedlings due to the combined actions
of nutrient enhancement systems and root development.

The tea plant rhizosphere bacterial communities which are infected with
Exobassidium vexans Massee and treated by Chryseobacterium sp. Azll-1
75% + Alcaligenes sp. E5 25% have also been monitored. In the rhizobacterial com-
munities of control treatment samples without Chryseobacterium sp. Azll-1
75% + Alcaligenes sp. E5 25% through culturing method, the following bacteria
were found: Bacillus sp. (51.91%), Acidobacteria bacterium (39.42%), and
Actinobacteria sp. (8.66%). In the control treatment through metagenome analysis,
the following bacteria were found: Gemmatimonas aurantiaca (5.80%), Bacillus sp.
(42.55%), Acidobacteria bacterium (23.45%), and Actinobacteria sp. (28.20%). In
the communities treatment samples of Chryseobacterium sp. Azll-1
75% + Alcaligenes sp. ES 25% treatment, the following bacteria were found:
Gemmatimonas aurantiaca (3.58%), Bacillus sp. (30.76%), Pseudomonas sp.
(5.55%), Acidobacteria bacterium (13.94%), and Actinobacteria sp. (46.16%). In
the communities of rhizobacteria treatment samples with Chryseobacterium sp.
AzII-175% + Alcaligenes sp. ES 25% treated by metagenome, the following bacteria
were found: Bacillus sp. (10.66%), Acidobacteria bacterium (4.22%), Actinobacteria
sp. (5.48%), uncultured bacterium (1.49%), Alcaligenes sp. (36.95%), and
Chryseobacterium sp. (46.82%). The existence of Alcaligenes sp. and
Chryseobacterium sp. shows the consistency of Chryseobacterium sp. Azll-1
75% + Alcaligenes sp. ES 25% application in tea rhizosphere plant.
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4.8.2 PGPRin BC Management of Diseases on Rice

More than 70 diseases caused by fungi, bacteria, viruses, or nematodes have been
recorded on rice. The diseases are the most significant limiting factors that affect
rice production, causing estimated annual yield losses of 5% (Manandhar et al.
1998). In Indonesia in each annual planting season, pests and diseases were caus-
ing yield losses of 212,984 ton of rice.

Among rice diseases, rice blast (P. oryzae) and bacterial blight (BB) of rice
caused by X. oryzae pv. oryzae (Xoo) are considered as the major problems for the
rice cultivation in both lowland and upland rice in most of rice-growing countries
and becoming a serious constraint to rice productivity (Song et al. 2001). The
infected area by BB is second largest after rice tungro disease. Yield loss was esti-
mated at about 20% to 50% in the severely infected field and up to 10-20% when
the disease infected rice at maximum tillering stage.

The use of pesticides is costly as well as environmentally undesirable. Current
control strategies of BB disease mostly make use of resistant cultivars, which is an
economical and effective method of control. Due to the breakdown of resistance
against high pathogenic variability of the pathogen population, there is a need to
develop more strategies providing durable resistance over a broad geographic area
to improve the life span of resistant cultivars (Manandhar et al. 1998).

Currently, considerable attention has been given on the use of BC agents using PGPR
to suppress plant diseases. Since BC is a key component of integrated disease manage-
ment, it is important to search for PGPR active against diseases and evaluate this PGPR
for BC application under field conditions. The PGPR microbes suppressed the pathogen
by various mechanisms such as the production of chitinase and f-1,3-glucanase (Zhang
and Yuen 2000) and antibiotic (Nalisha et al. 2006) and by induction of systemic resis-
tance (Saikia et al. 2006). In addition to the more common antibiosis mechanisms, there
are a number of other ways in which PGPR can inhibit phytopathogens. For example,
competition for nutrients and suitable niches on the root surface may protect plants from
phytopathogens in different plant species (Compant et al. 2005)

Many PGPR with a wide range of root-colonizing bacteria can enhance plant
growth by increasing seed emergence, plant weight, and crop yields (Kloepper and
Beauchamp 1992) and influence plant health by suppressing the growth of plant
pathogens (Compant et al. 2005). Most of PGPR bacteria produce phytohormones
(auxins, cytokinins, and ethylene) in the rhizosphere that regulate and promote root
growth. When soils are alternately flooded and drained, certain bacteria are able to
double the size of plant root systems by their activity to contribute on plant growth,
increasing biological N fixation and P solubilization (Glick 1995).

Studies on BB control using PGPR had been reported and reviewed in Indonesia
(Agustiansyah et al. 2010). The combination of matrix conditioning plus a BC agent
(isolate A6) reduced Xoo population in rice plants and improved viability and vigor of
rice seeds in the glasshouse. The seed treatment and foliar spray application at 2-week
interval on rice using B. subtilis B12 with 2% concentration showed good result in
controlling BB and promoted plant growth at the greenhouse experiment. The appli-
cation also showed a better effect on suppressing the BB disease as well as increasing
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yield in the field experiment. Applications of B. subtilis B12 spore formulation
reduced BB disease by 21% and increased yield up to 50% (Wartono et al. 2014).

Gram-negative bacteria such as Lysobacter spp. were reported inhibiting a fun-
gal pathogen Bipolaris sorokiniana in the field (Kilic-Ekici and Yuen 2004).
Bacterial isolate Pseudomonas veronii PBR 3b had potential ability to hydrolyze
B-glucan. P. aeruginosa C32a also produced the largest clear zone with the glucano-
Iytic index of 2.27, with temperature and pH optimum for glucanase activity of P.
aeruginosa C32a at 40 °C and pH 6, respectively. The antagonistic test of P. aeru-
ginosa C32a against P, oryzae and R. solani showed inhibition zones of 59.11% and
37.33%, respectively. This pseudomonad isolate could be promising for BC with
broad-spectrum phytopathogens (Suryadi et al. 2014).

Strains of P. aeruginosa could induce rice resistance against sheath blight (ShB) by
producing different antifungal activities (salicylic acid and peroxidase content) (Saikia
et al. 2006). B. cepacia isolate E76 treatment was effective in suppressing the growth
of R. solani with relative inhibitory at 24 and 48 hours after incubation ranging from
31.3% to 60.2% and 28.9 to 47.8%, respectively. Rice germination and growth of
treated rice seeds were better than that of control treatment. Suspension formulation
of B. capacitate 3% concentration was suggested to be used as the recommended
concentration for further testing (Wartono et al. 2012). The bacterial culture filtrate
Burkholderia sp. E76 isolate could inhibit radial growth of fungal colonies with the R.
solani inhibition ranging from 32.9% to 99.4%. Based on chitinase assay, it was indi-
cated that Gram-negative bacteria of Burkholderia sp. E76 isolate produced the high-
est chitinolytic index (Suryadi et al. 2013a). Four bacterial isolates (C 32a, C 32b, L.
21, and I. 5) could inhibit R. solani growth. B. firmus E 65 and P. aeruginosa C 32b
have an excellent potential to be used as BC agents of R. solani on rice at the green-
houses when treated as pretreatment spraying application (Suryadi et al. 2011).

On rice cultivation with respect to BC of rice blast disease, there are complex inter-
actions between rhizobacteria and rice plants depending upon both rice cultivar and
soil type. A study in Pakistan was reported that 16 bacterial strains isolated from the
roots and rhizosphere of rice plants growing in saline and nonsaline soils were tested
for their ability to promote plant growth and reduce the incidence of rice blast (Naureen
etal. 2009). Several strains inhibited the growth of the Magnaporthe grisea, the causal
agent of rice blast at in vitro dual culture assay. However, when applied to the soil,
many of the isolated rhizobacterial strains increased seedling growth and/or sup-
pressed rice blast disease in greenhouse-grown plants of the cv. Super Basmati and cv.
Azucena, but each cultivar responded to different subsets of the bacteria. Blast resis-
tance was increased and correlated with the production rhizobacterial siderophores on
cv. Super Basmati. Direct antagonism was correlated with disease resistance in cv.
Super Basmati, but not in cv. Azucena, and direct antagonism as a cause for the
reduced disease incidence is also unlikely since no epiphytic colonization of leaves
was detected. In addition, there were also differences in the ability of some strains to
protect plants against blast depending on soil type. Rhizosphere colonization by the
bacteria in plants grown in sterile sand was correlated with disease resistance in Super
Basmati, but not in cv. Azucena (Naureen et al. 2009).
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In Indonesia, 14 endophytic fungi isolated from rhizoplane showed antibiosis
activity against P. Oryzae under in vitro inhibition test (Sucipto et al. 2015). Several
bacteria such as B. cereus 11.14, B. firmus E65, and P. aeruginosa C32b produced
chitinase and IAA growth hormone, while B. firmus E 65 isolate was very effective
in suppressing P. oryzae (18.15%) blast disease (Suryadi et al. 2011). The formula
A2 (B. firmus E65) and A6 consortium (B. firmus E65, B. cereus 11.14, and P. aeru-
ginosa C32b) significantly reduced the mycelial growth of P. oryzae with the per-
centage inhibition of 73-85% and 66-83%, respectively (Suryadi et al. 2013b).

The ethyl acetate extracts of the B. cereus 11UJ showed a better antifungal activ-
ity to P. Oryzae than those of R. solani. The inhibitory effect of the filtrate proved the
potency of the isolates to produce antifungal activity. Analysis of pyrolysis gas chro-
matography mass spectrometry showed that B. cereus 11UJ produces three major
compounds, i.e., 9,19-cyclolanostan-3-ol, acetate, (3.beta.)- (CAS) cycloartanyl
acetate (13.14%), 4-(2',2’-dimethyl-6'-methylidene-1’'-cyclohexyliden)-3-methyl-2-
butanone (9.72%), and stigmas-5-en-3-ol oleate (9.09%) which suggested to play an
important role in the suppression of rice fungal pathogens (Suryadi et al. 2015).

4.8.3 Development of PGPR Bioformulation to Control Rice
Disease Under Organic Cultivation

PGPR could change in microbial population associated with system of rice intensi-
fication (SRI) practices. Rhizosphere of SRI soils provides a conducive environ-
ment for the proliferation of antagonistic bacteria that promote plant growth (Gani
et al. 2002). In line with organic SRI practices, BC using local microorganisms can
be applied to contribute its effectiveness in the field. In the previous study, the appli-
cations of an individual antagonistic bacterium such as E 65, C 32a, C32b, and E 31
isolates suppressed BB lesion length in the screen house test. Research on BC to BB
using microbial agents such as Bacillus spp., Serratia spp., P. aeruginosa, and
Corynebacterium spp. had been done extensively in the field (Suryadi et al. 2013a).
The efficacy of consortium bacteria containing a mixture of bacterial antagonist for
controlling major rice diseases was tested under SRI practices. The experiment con-
sists of three consortium bacteria, viz., Cl (Bacillus sp. E64 + B. firmus
E65 + Burkholderia sp. E716 + B. cereus C29d + B. licheniformis CPKPP35 + Bacillus
sp. H + Bacillus sp. IR), C2 (Bacillus sp. E64 + B. firmus E65 + Burkholderia sp.
E76 + B. cereus C29d + B. licheniformis CPKPP35 + Azospirillum sp. Aj.5252),
and C3 (Bacillus sp. H + Bacillus sp. IR). The candidate’s C1 could reduce the BB
and red stripe diseases severity when compared with control treatment (untreated
plots), with the efficacy control less than chemical control, although not effective
against sheath blight disease. The yield increase obtained by C2 and C3 consortium
applications ranges from 8.7% to 12.2% (Suryadi et al. 2013a).

The main factors responsible for the yield enhancement in SRI management were
longer panicles with more grains, better grain filling, and a significant increase in
grain weight (Thakur et al. 2010). The present study indicates that use of formulation
bacteria tends to improve rice yield up to 8% compared with that of the untreated plot
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(without formulations). This result may have been due to the indirect effect of antag-
onism as well as competitions with Xoo pathogens for essential nutrients. Further
study on the use of bacterial consortium to BB disease is needed by developing suit-
able delivery technology specific for certain microorganism use as BC agents.

With regard to pathogen reduction, this may probably take place in anaerobic
conditions which indicate that minimum amount of oxygen present in the faculta-
tive anaerobic condition (static condition) was still needed for the consortium to
maintain their basic cellular activity. All isolates incubated in the mixed culture
could reduce disease severity, suggesting some degree of synergism; nevertheless,
the percentage of BB reduction by consortium formulation was slightly higher than
those of cv. Inpari 10-(SKM kaolin), cv. Inpari 13-(E76-bentonite), and cv. Sintanur-
(A2-bentonite), but lower compared with cv. Code-(A2-bentonite) treatments.

Inconsistent performances of the microbes in the field, however, had limited their
commercial uses; hence, combining several modes of actions against the pathogen
could improve their effectiveness. Currently, the uses of bioformulations of the bac-
terial mixture are gaining great interests in the BC method, and the products are used
as a supplement or as an alternative to the chemical control (Gnanamanickam 2009).

We are working toward commercial development of PGPR as a method for both
plant growth promotion and BC. Many greenhouse studies and field experiments
have been conducted to show the efficacy of PGPR in disease management, but
there are still relatively few commercial applications of PGPR for this purpose.
Bentonite formulation showed a good effect in suppressing bacterial blight lesion
length in the greenhouse test. Talc-AS formulation (B. firmus E 65 + P. aeruginosa
C32b) was effective against sheath blight and BB but showed the lower effect on
neck blast disease in the field (Suryadi et al. 2013b).

The establishment of a mix culture containing at least four distict bacterial spe-
cies are encouraging to be applied for the suppession of rice blast pathogen
(P. oryzae) (Suryadi et al. 2013b). The higher capabilities of consortium A8 and A6
to inhibit BB pathogens within a period of observation indicated that mixture cul-
ture isolates might be capable of reducing BB inoculums. One bacterial isolate
may be able to cause an inhibition of one pathogen, which consequently renders it
more accessible to another organism that otherwise is unable to reduce BB
pathogen.

The advantages of single or mixed cultures are apparent, and further exploitation of
selected bacterial consortium will be beneficial to suppress BB in the field. BC efficacy
among different rice cultivars showed BB disease reduction ranging from 10.5% to
29.4%. The consortia A6 (B. cereus 11.14 + B. firmus E65+ P. aeruginosa C32b) and A8
(B. cereus 11.14 + B. firmus E65 + P. aeruginosa C32b + S. marcescens E31) with ben-
tonite carrier reduced BB infections up to 25%. The performance of consortium
A6-bentonite formulation also gave a better effect than the individual isolate, such as
that with Burkholderia sp. E76 or S. marcescens SKM. The use of consortium bacterial
formulation increased rice yields up to 8% than that of the untreated plot.

In controlling rice diseases, it is important to develop synthetic chemicals and
minimize the dependence on pesticides. The use of stable bacterial formulations
may have been practical in terms of efficacy as well as survival rates. The bacterial
isolates were used to prepare basic ingredients for kaolin-based bioformulation
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Table 4.5 Effect of bioformulation of PGPR to BB disease and rice grain weight of cv. Inpari 13
at 14 DAI in the GH test

Mean of BB Grain dry
lesion lengths« BB disease reduction weight (g/
PGPR treatment (cm) compared to chemical (%) | pot)s
SKM + kaolin 8.6 (11) 5.6
E65+ kaolin 8.4 (12) 5.3?
E76+ kaolin 6.8° 9.3 11.2°
Without bioformulation 9.20° (17) 5.0
application (control)
Copper sulfate (CuSO,) 7.5° - 5.2%
2%

*Means followed by the same letter are not significantly different according to DMRT, P = 0.05

grown in NA medium. The bacteria grew well after 24—48-h incubation at room
temperature as shown by suitable conditions of the bacterial growth curve for each
isolate. A stable bioformulation was very important as a basis for the development
of environmentally friendly biocontrol agents to replace the use of synthetic chemi-
cals. All bacterial isolates previously showed being effective in suppressing the
growth of fungal pathogens R. solani and P. oryzae (Suryadi et al. 2011). The ability
of isolates varied in suppressing BB lesion length at 14 DAI. A kaolin-based formu-
lation containing Burkholderia sp. E76 isolate showed the highest BB disease
reduction (9.3%) than that of chemical compounds (CuSO,) (Table 4.5).

Kaolin-based formulations showed good effect in suppressing BB lesions on rice.
The addition of bentonite and CMC to bioformulations was fairly stable. The PGPR
based on kaolin formulation showed similar effects with bentonite or talcum powder,
besides it was easy and cheap, it can be further developed as an alternative carrier.
Aside from being able to suppress BB disease, E76 kaolin-based formulation showed
the good effect on grain dry weight/pot (Table 4.6). E65 and SKM in kaolin-based
formulation had no effect on grain dry weight. Nandakumar et al. (2001) reported
that field application of BC agents using P. fluorescens isolate could increase rice
yields.

The efficacy of bioformulation in the field test showed varied results. BB typical
symptoms occurred at the generative stage as shown by leaf blight disease symptoms
on rice leaves. The treatment formulation had a lower BB intensity than that of the
control treatment (untreated plot). The BB intensity on farmer’s rice plot sprayed by
bioformulations ranged from 9.7% to 19.4%. In general kaolin-based formulations
could reduce the intensity of BB more than 50%. Kaolin-based formulation treated
on cv. Inpari 20, cv. Inpari 14, cv. Mekongga, and cv. Sintanur showed BB intensity
ranging from 3.3% to 5.55% with the percentage inhibition ranging from 85.2% to
100% compared to controls without the application on cv. Ciherang. It was indicated
that on rice treated with the bacterial formulation, the BB intensity has decreased
about 84.7% compared to the control treatment without an application that might
indicate higher efficacy. Application of bioformulation had no significant effect on
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Table 4.6 Effect of mix application of PGPR kaolin bioformulations to the intensity of BB on
rice cv. Sintanur

Treatment Mean of BB intensity (%) | Inhibition over control (%)*
Plot farmer 1 (cv. Sintanur + 19.4 70.9
BEM)

Plot farmer 2 (cv. Sintanur + 12.5 81.25
BEM)

Plot farmer 3 (cv. Sintanur + 19.4 70.9
BFM)

Plot farmer 4 (cv. Sintanur + 9.7 85.45
BFEM)

Plot farmer 5 (cv. Sintanur + 16.36 75.47
BFEM)

cv. Sintanur without BFM 66.7 -
(control)

AInhibition = control — treatment/control x 100%. Sample plots were determined diagonally.
Bioformulation of BFM mix containing PGPR SKM, E76 and E65 isolates in kaolin-based ratio
(1:1:1) (¥/,,) BEM/bioformulation mixture

Table 4.7 Effect of PGPR formulation on plant height, number of tillers, number of panicles, and
grain yield

PGPR bioformulation | Number of cells (CFU/ml) Viability loss (%)*
0 mo 1 mo 2 mos 3 mos

Kaolin E 65 1.4 x10° 83x10% |42x10% |2.1x10% |9.07

Kaolin E 76 4.2 % 10° 42x10% [3x 108 1x108 16.84

Kaolin SKM 6.4 x 10° 42x10% [4x 108 22x10% 14.98

Mean 13.63 +4.05

*Viability loss (VL) was calculated using the formula VL = IV=FV/IV x 100%, where IV = initial
viability, FV = final viability

plant height, number of tillers, and number of panicles. The highest mean of grain
yield (1 x 1 m?) was shown on cv. Sintanur with an average of 413.67 g (Table 4.7).

Viability observations to bioformulation were done by counting the number of
live cells based on total plate count method. Formulation seems slightly decreased,
despite the decrease in cell viability which was not too drastic. The viability of bac-
terial isolates at the beginning approximately reached an average population of
1.4 x 10° CFU/mL. During the process of storage at room temperature, a visible cell
number of bioformulation tended to decrease with an average of 5.5 x 10¥ CFU/mL
at the first month of storage. At the second month of storage, 3.7 x 108 CFU/mL was
reached, while at the final observation of 3 months of storage, the population
reached 1.76 x 10® CFU/mL (Table 4.8). The mean average of viability loss was
approximately 13.63% (Suryadi et al. 2013b).

A range of different molecules has been identified as elicitors of ISR in different
systems, including conserved effectors such as flagellar peptides, lipopolysaccha-
rides, antibiotics, cyclic lipopeptides, and siderophores (Compant et al. 2005; Van
Wees et al. 2008). Recently, the siderophore pseudobactin was found to be an



96 Y. Suryadi et al.

Table 4.8 Bacterial cell viability test of formulations after 1-, 2-, and 3-month storage

Plant height No. of No. of Grain yield
Treatment (cm)=* tillers panicless (g)=
cv. Sintanur + BFM 107.3 24 23.4 413.67 ®
cv. Inpari 14 + BFM 98.3 18.4 18.2 333.33°
cv. Mekongga + 99.2 20.3 20.3 336.67°
BFM
cv. Inpari 15 + BFM 97.1 17.2 17.3 356.67°
cv. Ciherang 98 20 23.7 366.67°
(untreated)

Noted: =Not significant; *x*Means followed by the same letter are not significantly different
according to DMRT P = 0.05. Grain yield was calculated from rice plot of 1 x 1 m? with a spacing
of 30 x 30 cm. BFM = bioformulation mixture (E65, SKM, E6)

important determinant of ISR against blast disease in rice. They also observed that
there was not necessarily any relationship between the ability of a bacterium to
inhibit a fungal pathogen when the bacterium was grown in vitro on media that
favored the production of either antibiotics or siderophores and the BC activity of
the bacterium in vivo (Stephens et al. 1993).

Application of some PGPR strains to seeds or seedlings has also been found to lead
to a state of ISR in the treated plant (van Loon et al. 1998; Kloepper et al. 2004). The
seed that was treated using seed PGPR applications containing species of P. fluores-
cens, P. putida, B. pumilus, and S. marcescens could affect root system colonization
and protect plants against foliar diseases (Liu et al. 1995; Raupach et al. 1996;
Kloepper et al. 2004; Pieterse et al. 2000). ISR occurs when the plant’s defense mech-
anisms are stimulated and primed to resist infection by pathogens (Van Loon 2000).

The phenyl propanoid component, salicylic acid (SA), appears to be a critical plant
messenger of pathogen exposure and disease resistance, whereas jasmonic acid (JA), a
lipoxygenase pathway product, is a potent regulator that mediates plant responses to
mechanical damage and pathogenesis (Fan and Dong 2002). The role of microbial
volatile organic compounds (VOCs) in regulating plant growth and development has
been reported. The bacterial volatile components can serve as agents for triggering
growth promotion in Arabidopsis (Ryu et al. 2003). Several genera of PGPR strains
were assessed for eliciting ISR by volatiles under in vitro conditions. The volatiles
produced by selected PGPR strains Bacillus subtilis GB03 and Bacillus amyloliquefa-
ciens IN937a were characterized, and the effects of volatiles produced by PGPR strains
for eliciting ISR at different exposure times and the response of the volatiles to different
mutant lines of Arabidopsis have been evaluated. The PGPR strains were shown previ-
ously to elicit ISR on several crops against fungal, bacterial, and viral pathogens under
greenhouse and field conditions. ISR elicited by volatile chemicals was released from
PGPR and ascribes a new role for bacterial VOCs in triggering plant defense responses
(Raupach and Kloepper 1998; Murphy et al. 2000).

An important factor of the competitiveness of PGPR is the ability of the bacte-
rium to persist and proliferate. Under cold and temperate climates, many fungal
phytopathogens are most destructive when the soil temperature is low. Hence, it is
reasonable to expect that the use of PGPR that is cold tolerant will be much more
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effective in the field than mesophilic BC strains. The ability of some PGPR to
hydrolyze 1-aminocyclopropane carboxylate (ACC), the immediate precursor of
ethylene in plants and a compound naturally found in root exudates, may provide
these strains with a competitive advantage over other microorganisms in the rhizo-
sphere because they can use ACC as a source of nitrogen (Glick et al. 2007).

In an effort to engineer a more soil-persistent BC bacterium, NAH7 plasmid which
carries the gene encoding enzymes of the naphthalene and salicylate biodegradative
pathway was transferred into an established BC strain (Doke 1983). Plant roots may also
respond to colonization by PGPR by producing active oxygen species (Katsuwon and
Anderson 1990; Glick and Bashan 1997). It should, therefore, be possible to manipulate
genetic of PGPR, to increase the levels of one or more of the enzymes that reduce the
number of active oxygen species so that PGPR strains with an increased root colonizing
ability, and hence increased effectiveness against fungal pathogens might be created.

4.9 Conclusion

To achieve sustainable crop production to feed a growing global population, strategic
measures should be taken on the management of the environmental problems such as
abiotic and biotic stresses (phytopathogens and insect pests) as the major constraints to
the food production worldwide which affects yield loss of the agricultural production.

One of the approaches/strategies to reduce the use of chemical fertilizers and
pesticides in agricultural crop production has been done by large-scale application
of PGPR as inoculants to increase crop yield as well as agricultural sustainability.
In the process of healthy growth of plants, the PGPR strains made a significant con-
tribution in different ways, whereby the PGPR was localized on the surface of plant
roots and also can protect the plant from biotic stress.

The PGPR plays a very important role in helping the plant grow to adapt to the
environment. They have essential functions in microbial antagonism, as well as are
able to elicit induced resistance. Resistance-inducing and antagonistic rhizobacteria
might be useful in formulating new inoculants, offering an attractive alternative of
environmentally friendly BC of plant disease and improving the cropping systems
into which it can be most profitably applied. These new PGPR will require a sys-
tematic strategy designed to fully utilize all these beneficial factors, applying com-
binations of different mechanisms of action allowing crop yields to be maintained
or even increased while chemical treatments are reduced.

The PGPR strains can directly inhibit the pathogen by their antagonistic proper-
ties mostly for soilborne diseases, while the PGPR strains can induce systemic
resistance and trigger ISR through JA/ETH and/or SA signaling pathways for
mostly plant shoot/leaf disease. The application of some PGPR strains can induce
systemic resistance to some agricultural pests and diseases, and the process mainly
occurred by activating JA signaling pathways.

Laboratory study and field trials of PGPR have opened up a new era for the
agricultural bioinoculant industry. Development of superior or novel PGPR
strains with improved plant growth promotion traits and development of trans-
genic crop plants expressing PGPR gene with increased resistance to various
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biotic stresses are possible through genetic manipulations. These PGPR tech-
nologies can be exploited as a low-input, sustainable, and environment-friendly
technology particularly for the management of biotic stresses.
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Abstract

Increase in agriculture crop yields is needed to feed the ever-growing human
population. But, the biotic and abiotic stresses are major constraints for plant
growth, crop yield, food quality, and global food security. Different pathogens,
weeds, and insects collectively contribute to biotic stress. Biotic stress causes
adverse impacts on plants, including hormonal and nutritional imbalance, physi-
ological disorders, susceptibility to diseases, etc., and results in reduced eco-
nomic yield. The application of plant growth-promoting rhizobacteria (PGPR)
offers a cost-effective and eco-friendly mechanism for protecting plants against
the stress conditions. These microbial populations in the rhizosphere may benefit
the plant by increased recycling, solubilization, and uptake of mineral nutrients;
by synthesis of vitamins, amino acids, auxins, and gibberellins; and by antago-
nism with potential plant pathogens. Certain PGPR strains also protect the plants
against pathogens through a mechanism associated with induced systemic resis-
tance (ISR) or systemic acquired resistance (SAR). Recent progress in our
understanding on the diversity of rhizobacteria in the rhizosphere, their coloniza-
tion ability, and their mechanism of action in amelioration of biotic stress will
facilitate their application as a reliable component in the management of a sus-
tainable agricultural system. In this chapter, the effects of rhizobacteria on plant
susceptibility/resistance to potential deleterious organisms, including root and
shoot pathogens, pathogens, weeds, and phytophagous insects, will be discussed.
The application of these rhizobacteria as biofertilizers and biopesticides may
become a feasible and potential technology in the future to feed the global popu-
lation with reduced impact on environmental quality.
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5.1 Introduction

Soil and plant roots are the habitat for colonization of a variety of soil-borne patho-
gens and beneficial microorganisms. The interactions of microbes with plants in
natural habitats are crucial for proper growth and development of plants. Plant root
exudates and other chemicals released by plants attract the microbial population.
Abiotic and biotic stresses are the major challenges to the crop yield and cause vast
economic loss (Ramegowda and Senthil-Kumar 2015). Biotic stress is caused by
different pathogens, such as bacteria, viruses, fungi, nematodes, protists, and
insects. The common impacts of these biotic factors include imbalanced hormonal
regulation, nutrient imbalance, and physiological disorder resulting in a significant
reduction in agricultural yield (Haggag et al. 2015). Biotic stress also has adverse
impacts on plant co-evolution, population dynamics, ecosystem nutrient cycling,
natural habitat ecology, and horticultural plant health (Gusain et al. 2015). Global
crop yields are reduced by 20 to 40% annually due to pests and diseases (Strange
and Scott 2005; FAO 2012).

For the control of phytopathogens and insect pests in agriculture, farmers have
mostly relied on the application of synthetic pesticides, and the global pesticide
market is presently growing at a rate of 3.6% per year (Lehr 2010). However, indis-
criminate use of chemical pesticides to control the pathogens/insects has generated
several problems including resistance to insecticides/fungicides, an outbreak of sec-
ondary pests, as well as safety risks for humans and domestic animals. Moreover,
the long persistence of applied pesticides in soil leads to contamination of ground-
water and soil, and the residual toxic chemicals enter into the food chain. Excessive
pesticide application also decreases the biodiversity due to the destruction of non-
target entomofauna. Sustainable agriculture in the twenty-first century will rely
increasingly on alternative interventions for pest management that are environment-
friendly and will reduce human contact with chemical pesticides. Therefore, micro-
organisms are currently being explored for their possible use as biocontrol agents in
the integrated pest management programs.

Over the past few decades, attempts have been made to understand the molecular
mechanisms implicated in abiotic and biotic stress tolerance (Tripathi et al. 2015,
2017; Pontigo et al. 2017; Singh et al. 2017). Several microorganisms including
bacteria, actinomycetes, fungi, viruses, protozoa, and nematodes obtained from the
rhizosphere of crop plants have been found to control various root, foliage, and
postharvest diseases of agricultural crops (Glick and Bashan 1997; Sindhu et al.
2016). Many microorganisms have been found to act as potential entomopathogens
(Vega and Kaya 2012; Mascarin and Jaronski 2016; Sindhu et al. 2017). Among the
various bacterial control agents (BCAs), Bacillus thuringiensis (Bt), Pseudomonas
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Fig. 5.1 Beneficial rhizobacteria in the rhizosphere of plants contribute toward amelioration of
plant stress through various mechanisms

fluorescens, Serratia marcescens, and Streptomyces sp. are predominantly used in
plant protection (Mascarin and Jaronski 2016; Sindhu et al. 2016).

Interaction of microbes with plants causes the release of different elicitors and
triggers physiological and biochemical changes in plants. Plants inoculated by
soaking their roots or seeds overnight in cultures of PGPR exhibited enormous
resistance to different forms of biotic stress (Ngumbi and Kloepper 2016). Some of
the non-pathogenic microbes have shown the ability to suppress the diseases caused
by these pathogens. Therefore, the use of beneficial microbes as biological control
agent has been viewed as an alternative and sustainable approach to replace chemi-
cal pesticides (Fig. 5.1). Plant growth-promoting microorganisms (PGPM) have
been considered as an eco-friendly and cost-effective means for control of diseases.
The defense-related hormones, i.e., jasmonic acid (JA), ethylene, and salicylic acid
(SA), have been found to play a primary role in signal transduction and defense
mechanism (Bari and Jones 2009; Verhage et al. 2010). Co-inoculation of PGPR
with mycorrhizae also ameliorates the harmful impact of biotic stress and protects
plants from pathogens by enhancing growth attributes and reducing the susceptibil-
ity for disease (Dohroo and Sharma 2012). Biopesticides are nowadays extensively
applied in controlled and predictable environmental conditions such as greenhouse
crops to produce tomatoes, cucumbers, and sweet peppers (Chandler et al. 2011; Xu
etal. 2011) and postharvest control of fruits, vegetables, and grains (Liu et al. 2013),
whereas their use in open fields is still limited.
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5.2  Rhizosphere Biology

The plant-soil interface, termed as rhizosphere, around living roots is a narrow zone
of soil that is overwhelmingly influenced by root activities and provides a niche to
various microorganisms including fungi, bacteria, actinomycetes, algae, and nema-
todes. Microbial cell count up to 10! per gram of soil in the rhizosphere has been
reported, and the microbial population contains about 30,000 prokaryotic species
(Egamberdieva et al. 2008; Badri and Vivanco 2009). These microbial populations
of rhizosphere markedly affect interactions between plants and the soil environment
(Mendes et al. 2013). Thus, the root system in plants is populated by a complex
microbial community termed as the root microbiome (Hacquard et al. 2015). Some
plants shape their rhizosphere microbiome with the recruitment of beneficial bacte-
ria or fungi (Berendsen et al. 2012), and host genotype has also been found to influ-
ence the overall composition of these microbial communities (Badri et al. 2013;
Bulgarelli et al. 2015). Moreover, edaphic and environmental factors also affect the
composition of microbiome (Chaparro et al. 2012; Hacquard et al. 2015). Nearly 5
to 21% of all photosynthetically fixed carbon is being transferred to the rhizosphere
through root exudates (Marschner 1995; Flores et al. 1999). The population and
functional dynamics of soil microorganisms differ from rhizospheric to non-
rhizospheric zone due to the release of a multitude of organic compounds (e.g.,
exudates and mucilage) derived from photosynthesis and other plant processes
(Khalid et al. 2004; Lee et al. 2016; Kumar et al. 2017). The particular types of root
exudates released by different plant species either attract or repel specific microbes
(Grayston et al. 1998; Bertin et al. 2003; Marschner et al. 2011). For example, some
plants use root exudates to attract symbiotic microbes, which can improve their
nutrient supply (Parniske 2008; Marschner et al. 2011; Oldroyd 2013). Some
microbes in the rhizosphere produce siderophores to increase the amount of soluble
iron for uptake. Plants profit from this increased Fe™ availability and therefore select
for these beneficial microbes through their root exudates in order to improve the
availability of iron (Hartmann et al. 2009; Carvalhais et al. 2013). Some plant roots
release strigolactones to attract mycorrhizae for improving phosphate and nitrogen
supply (Akiyama et al. 2005). Legumes secrete specific kind of flavonoids to estab-
lish symbiosis with nitrogen-fixing rhizobia, respectively (Bertin et al. 2003; Hassan
and Mathesius 2011). Recently, the changing climatic conditions were found to
alter the rhizosphere biology by modifying root exudation rate, resource availabil-
ity, and biogeochemical cycling (Liu et al. 2017). In the era of sustainable crop
production, the plant-microbe interactions in the rhizosphere play a pivotal role in
transformation, mobilization, and solubilization of nutrients from a limited nutrient
pool and subsequent uptake of essential nutrients by plants. These rhizosphere bac-
teria (i) supply nutrients to crops; (ii) stimulate plant growth, e.g., through the pro-
duction of plant hormones; (iii) inhibit the activity of plant pathogens; (iv) improve
soil structure; and (v) exhibit bioaccumulation or microbial leaching of inorganics
(Ehrlich 1996). More recently, bacteria have also been used in the soil for the min-
eralization of organic pollutants, i.e., bioremediation of polluted soils (Zhuang et al.
2007; Zaidi et al. 2012).
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Recently, the use of biological approaches is becoming more popular as an addi-
tive to chemical fertilizers for improving crop yield in an integrated plant nutrient
management system. In this regard, the use of PGPR has found a potential role in
developing sustainable systems in crop production (Sturz et al. 2000; Shoebitz et al.
2009). A variety of symbiotic (Rhizobium sp.) and non-symbiotic bacteria
(Azotobacter, Azospirillum, Bacillus, Klebsiella sp., etc.) are now being used world-
wide with the aim of enhancing plant productivity (Cocking 2003; Sindhu et al.
2016). Interactions of plant roots with beneficial rhizosphere microorganisms influ-
ence plant growth and development (Berendsen et al. 2012; Panke-Buisse et al.
2015), because microbes play an important role in nutrient cycling and aid in the
acquisition of mineralized nutrients (Mishra et al. 2012; Bulgarelli et al. 2013;
Sindhu et al. 2016). Endophytic bacteria belonging to Klebsiella, Enterobacter,
Bradyrhizobium,Alcaligenes, Azospirillum, Herbaspirillum, Ideonella, Acetobacter,
and Acinetobacter have been isolated from wild rice (Oryza alta) plants, which sup-
ply nitrogen to their host plants (Baldani et al. 2000; Chaudhary et al. 2012). The
composition of microbial communities around the roots also has significant impacts
on plant growth through stress tolerance under field conditions (Yang et al. 2008;
Mendes et al. 2011; Panke-Buisse et al. 2015). In natural ecosystems, equilibrium
develops between utilization of metabolites in root exudates by microorganisms and
uptake of mineralized nutrients by the roots of the plant and microorganisms that is
affected further by seasonal changes in the environment (Whipps and Lynch 1986).
Therefore, understanding of the interactions of plants with microbial communities
is increasingly relevant in the context of increased demand for food by an expanding
human population, coupled with reductions in cultivable land and recent effects of
climate change on agricultural productivity (Alexandratos and Bruinsma 2012).
Therefore, research efforts are required in understanding the rhizosphere biology
under changing climatic conditions for harnessing beneficial interactions as low-
input biotechnology for sustainable agriculture (Dubey et al. 2016).

Plant species usually recruit their own microbiome from the soil, which influ-
ences plant competitiveness, health, and productivity (Berg et al. 2014; Hardoim
et al. 2015; Agler et al. 2016). Species of Pseudomonas, Streptomyces, and Bacillus
spp- have been found to inhibit the proliferation of pathogens (Bhattacharyya and
Jha 2012; Sindhu et al. 2016). Challenging of plants with a pathogen has been found
to alter the composition of soil microbiome via shifts in root exudation profile
(Chaparro et al. 2013). For example, the presence of the pathogenic fungus Fusarium
graminearum in the rhizosphere of barley triggers the exudation of many phenolic
compounds that prevented spore germination (Lanoue et al. 2009). Similarly, altera-
tions of phenolic compound exudation in barley infected with the oomycete Pythium
ultimum induced expression of antibiotic-related genes in Pseudomonas protegens
(Jousset et al. 2011). Two Arabidopsis mutants which were disrupted in different
branches of the jasmonate pathway, namely, myc2 and med25, showed distinct exu-
dation patterns and increased the abundance of Streptomyces, Bacillus, and
Lysinibacillus taxa in the med25 rhizosphere and Enterobacteriaceae population in
the myc?2 rhizosphere (Carvalhais et al. 2015). Thus, many commonalities, as well
as differences, exist in defense strategies employed by roots and foliar tissues
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during pathogen attack (De Coninck et al. 2015). Infection with foliar pathogen
Pseudomonas syringae pv. tomato (Pst DC3000) caused selective recruitment of the
beneficial rhizobacterium Bacillus subtilis FB17 by Arabidopsis thaliana (Rudrappa
et al. 2008). The secretion of L-malic acid by roots was shown to recruit the rhizo-
bacterium in response to infection of foliage with Pst DC3000. Transcriptome anal-
yses revealed that the interaction with B. subtilis FB17 caused an alteration in the
expression of Arabidopsis genes involved in regulation of auxin production, metab-
olism, defense, and stress responses and also caused modifications in the cell wall
(Lakshmanan et al. 2012). The populations of beneficial B. subtilis were also
increased in response to aphid attack of foliage in Capsicum annuum, and it was
correlated with reduced populations of the pathogen Ralstonia solanacearum (Lee
et al. 2012). The significance of the hormones involved in plant immunity has also
been highlighted in shaping the root microbiome (Lebeis et al. 2015). These com-
pounds enhance the availability of chemical compounds in the soil, which provide
nutrient sources for microbes in the rhizosphere (Bever et al. 2012; Miransari 2013).

53 Abiotic and Biotic Stresses

Agriculture is considered to be the most vulnerable sector that is often exposed to
the plethora of climate change. The abrupt change in climatic conditions increases
the incidence of abiotic and biotic stresses that become a major cause for the stagna-
tion of productivity in agriculture and horticulture crops (Grover et al. 2011).

5.3.1 Abiotic Stresses

Among abiotic factors, inter-seasonal climatic variability is a concern, which is usu-
ally reflected in year-to-year fluctuations in crop yields. Global warming and
changes in precipitation patterns lead to several abiotic stresses such as extreme
temperatures, drought, flooding, salinity, metal stress, and nutrient stress that cause
adverse effects on food production (Pandey et al. 2007; Barrios et al. 2008;
Selvakumar et al. 2012). The probability of occurrence of extreme climatic events
has increased in the last couple of decades, and farmers lack the management
options to sustain the agricultural productivity (Kalra et al. 2013). Climate change
models have predicted that warmer temperatures and increase in the frequency and
duration of drought during the twenty-first century will have net negative effects on
agricultural productivity (Clair and Lynch 2010). In the developing countries, it has
been estimated that, on an average, nearly two-thirds of the soils are prone to cli-
matic constraints that significantly reduce crop yields (Lal 2001). Abiotic stress
hampers growth and production of the crop, causing land degradation by making
soil nutrient deficient and more stress-prone. In one way or another, abiotic stresses
are intermingled and correlated with one another. For example, climatic variability
such as increase or decrease in rainfall and rise or fall in temperature brings drought
stress. Drought stress ultimately gives rise to salinity stress (Munns 2002). Salinity
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stress causes alkalinization of soil. In alkaline saline soil, the nutrients remain
unavailable to the plant and it leads to the nutrient-deprived situation or nutrient
stress (Maheshwari et al. 2012). Humidity is another climatic variability. In humid
areas, the rate of precipitation is high, and soil leaching decreases soil pH due to the
reduction of basic cations. The adverse effects of soil pH result in acidification
stress and the acidification stress makes nutrient unavailable to plants and further
leads to nutrient stress platform. The abiotic stresses thus are interconnected with
one another and function as a chain due to climatic variations (Grover et al. 2011).

Inoculation with beneficial rhizosphere bacteria has recently been found to alle-
viate the abiotic stress. Some bacterial species such as Paenibacillus polymyxa,
Achromobacter piechaudii, and Rhizobium tropici confer tolerance to drought stress
in Arabidopsis, tomato (Solanum lycopersicum), and common bean (Phaseolus vul-
garis), respectively, by accumulation of abscisic acid and due to degradation of
reactive oxygen species and ACC (1-aminocyclopropane-1-carboxylate) (Timmusk
and Wagner 1999; Mayak et al. 2004b; Figueiredo et al. 2008; Yang et al. 2008).
Salinity tolerance in plants is conferred by inoculation of Achromobacter piechaudii
and B. subtilis (Mayak et al. 2004a; Zhang et al. 2008; Choudhary and Sindhu
2016).

Maxton et al. (2018) studied Burkholderia cepacia and Citrobacter freundii pos-
sessing the maximal and the least plant growth-promoting efficacy under salt and
drought stress. ACC deaminase activity of purified B. cepacia, C. freundii, and
Serratia marcescens was 12.8 £0.44, 12.3 £ 0.56, and 11.7 £ 0.53 mM oKB (keto-
butyrate) mg~! min~!, respectively. Under drought stress, B. cepacia showed maxi-
mum tolerance as it produced 4.893 + 0.06 mg/mg protein of exopolysaccharide,
followed by C. freundii and S. marcescens that produced 4.23 + 0.03 and
3.46 + 0.05 mg/mg protein, respectively. Thus, bacterial inoculation mitigated the
effects of salinity by the proliferation of root system and increasing plant biomass,
thus proving to be potential bioinoculum for alleviating abiotic stress.

Treatment of pea plants with Pseudomonas sp. containing ACC deaminase par-
tially eliminated the effects of drought stress (Arshad et al. 2008). Similarly, treat-
ment of tomato (Solanum lycopersicum L.) and pepper (Capsicum annuum L.)
seedlings with Achromobacter piechaudii ARV 8 reduced the production of ethylene
(ET), which may have contributed to the observed drought tolerance (Mayak et al.
2004b). Lim and Kim (2013) showed that pepper plants treated with PGPR Bacillus
licheniformis K11 tolerated drought stress and had better survival compared to non-
treated plants. The observed drought tolerance was attributed to ACC deaminase
production by PGPR that reduced ET concentrations by cleaving ACC.

5.3.2 Biotic Stresses

Plants being sessile, their growth and yield are strongly influenced by biotic stress
caused by an infestation of insect, pathogenic fungi, weeds, etc. Microbial diseases
cause a malfunction in plants which results in the reduced capability of the plant to
survive and maintain its ecological niche. Plant diseases either result in death or
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may greatly impair the growth and yield of the plant. Pathogenic microorganisms
usually weaken or destroy plant tissues and reduce crop yields varying from 25% to
100% (Choudhary and Sindhu 2015). Among the different kinds of diseases, root
diseases are estimated to cause 10-15% yield losses annually in the world.

5.3.3 Disease Development on Plants

Plant diseases are caused by pathogenic bacteria, fungi, protozoa, and viruses, and
these diseases cause an estimated US$40 billion of losses annually worldwide
(Roberts et al. 1994). At least 20-40% of losses in crop yield are caused by patho-
genic infections (Savary et al. 2012). Some plant diseases can be highly destructive
and catastrophic on a large scale. In the 1840s, the potato late blight pathogen
Phytophthora infestans caused a major destructive disease that caused food short-
ages resulting in a million deaths and migration of 1.5 million people from Ireland
(Donnelly 2002). The annual losses of potato crops due to late blight are conserva-
tively estimated at the US$ 6.7 billion per year (Evers et al. 2007; Pimentel 2011).
Another historic example, the brown leaf spot of rice caused by Helminthosporium
oryzae, resulted in severe devastation by reducing rice yields which caused the
death of two million people in Bengal in the 1940s as the direct result of calamitous
famine (Tatum 1971; Ulstrup and Figenschou 1972). Helminthosporium maydis
was the causal agent of a severe epidemic of southern corn leaf blight in 1970 in the
USA that destroyed 15% of the US corn crop with losses estimated at US$1 billion
(Tatum 1971; Ulstrup and Figenschou 1972). There are many more historical exam-
ples of the fungal, oomycete, bacterial, and viral plant pathogens and plant-parasitic
nematodes, respectively, that are considered most significant for molecular plant
pathology (Dean et al. 2012).

5.3.4 Effect of Pathogens on Plant Protein Contents,
Photosynthesis, and Cell Structure

After entry into plant tissue, microbial pathogens disrupt normal plant function by pro-
ducing toxins, degradative enzymes, and growth regulators. Plant pathogens produce
pectinases, cellulases, and hemicellulases that result in degeneration of the plant struc-
ture, producing soft rots and other lesions. Destruction of plant growth regulators by
plant pathogens results in dwarfism, whereas microbial production of IAA, gibberel-
lins, and cytokinins by some plant pathogens results in gall formation and excessive
elongation of plant stems. Toxins produced or induced by pathogenic organisms in
plants interfere with normal metabolic activities of the plant. The toxin produced by
Pseudomonas syringae pv. tabaci, which causes tobacco wildfire disease, has been
characterized as -hydroxy-diaminopimelic acid, and it interferes with the metabolism
of methionine. Plants develop a variety of morphological or metabolic abnormalities as
a result of microbial infections and develop various kinds of diseases such as necrosis
(rots), wilt, chlorosis, hypoplasia, hyperplasia, gall, scab, canker, and blight.
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Stress caused after infection of pathogen results in altered gene expression, lead-
ing to qualitative and quantitative changes in protein content (Corthals et al. 2000;
Langham and Glover 2005). The increase in protein concentration could be due to
activation of some genes which confer resistance under stress conditions. PR pro-
teins are a category of plant proteins which are produced in plants in the event of a
pathogen attack. Seventeen families of PR proteins have been discovered and clas-
sified as PR-1 to PR-17 (Swarupa et al. 2014). Pathogen recognition receptors
(PRRs) are the most deliberated recognition proteins. These are cell exterior recep-
tors and resistance genes (R-genes). Some of these proteins are cell surface recep-
tors, but many of them are cytoplasmic proteins of the nucleotide-binding
leucine-rich repeat (Swarupa et al. 2014). Due to stress, biomolecules undergo con-
formational changes, oxidation, and rupture of covalent bonds and formation of free
radicals such as the hydroxyl and superoxide anion (Variyar et al. 2004). Molecular
properties of proteins are modified by free radicals resulting in oxidative modifica-
tions of the proteins (Wilkinson and Gould 1996). Stress causes RNA synthesis
failure and subsequent protein synthesis collapses (Bajaj 1970). The covalent bonds
of polypeptide chains are broken due to stress, and this brings irreversible changes
in conformation of protein at the molecular levels (Kume and Matsuda 1995).

Moreover, plants have evolved a cellular strategy that involves the activation of
various enzymatic antioxidants to combat against pathogen toxicity (Krishna et al.
2013). Many plants are known to produce small molecular antioxidants, for exam-
ple, phenolic compounds, ascorbate, glutathione, and tocopherols, for cellular pro-
tection (Shohael et al. 2006; Margesin et al. 2007). Under normal conditions, there
is regulation of the scavenging process and the production of both enzymes and
antioxidants (Yordanova et al. 2004). Antioxidant system modulation could reflect
a defense response to the cellular damage provoked by pathogen toxins (Singh and
Upadhyay 2014). Plant-pathogen interactions are affected by peroxidase and it
interferes with the growth of plant cells (Passardi et al. 2004). Peroxidase in the
plants is affected by special in vitro conditions including limited space, metabolic
waste products, limited exchange of gases, and medium nutritive substance content
(Svabové et al. 2011).

Infection by species of Fusarium adversely affects light as well as dark reaction
of photosynthesis (Ayres et al. 1996; Pshibytko et al. 2006). Necrosis and leaf wilt-
ing were observed due to the reduction in the chlorophyll content. The concentra-
tion of chlorophyll a was higher than chlorophyll b in untreated plants. However,
fungal-attacked plants showed higher concentrations of chlorophyll b compared to
chlorophyll a (Dehgahi et al. 2015a, b). The infectious agent also consumes fixed
carbon which could have been used for plant growth (Ayres et al. 1996). A drop in
the uptake of minerals (e.g., magnesium) required for chlorophyll synthesis will
indirectly reduce chlorophyll content in pathogen-infected plants and interfere with
the photosynthesis reaction (Murkute et al. 2006; Sheng et al. 2008). The activity of
enzymes involved in carbon assimilation including ribulose-1,5-bisphosphate car-
boxylase/oxygenase (Rubisco) (Ruiz-Lozano et al. 2012) may also be damaged by
pathogen infection (Dehgahi et al. 2015a, b).
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Inoculation with fungal toxin or culture filtrate causes plant cells to appear
abnormal, shrunk, and irregular with broken cell walls in comparison to untreated
plant cells (Dehgahi et al. 2014). Fungal-attacked cells showed symptoms of plas-
molysis, denser cytoplasm density, shrinkage, and cell wall rupture. Plant cells
attacked by fungi show the presence of storage materials which may contain protein
and starch reserves around the nucleus (Das et al. 2008). The plant cells are ruptured
and there is spillage of cytoplasmic components into the intercellular space (Dehgahi
et al. 2015a, b). In fungal toxin-treated plant cells, the chloroplasts, mitochondria,
vacuoles, cell walls, and plasma membrane structure appear damaged in compari-
son to untreated control plant cells (Wang et al. 2014; Dehgahi et al. 2015a, b).
Fungal-infected cells showed damaged plasma membrane and distorted chloro-
plasts. The swelling of the chloroplast outer membrane leads to finally rupture after
the fungal attack (Dehgahi et al. 2014). Larger plastoglobuli were found in the stro-
mal regions of swollen chloroplasts. There is a separation of plasma membrane
from the cell wall, and numerous small vacuoles are formed in the cytoplasm of the
fungal-attacked cells. Cell death is caused due to an increase of vacuole number and
later clearance of cytoplasm (Jiao et al. 2013).

5.3.4.1 Insect Infestation and Biotic Stress

Insects are among the most diverse living organisms as compared to other animals
on Earth, comprising of more than a million identified species, and these represent
more than half of all recognized living organisms (Chapman et al. 2012). Insects
have certainly adapted to live in all the terrestrial situations, and they are present in
numbers greater than other living animals. Less than 0.5% among total insect spe-
cies are considered as pests, and only some of these can become a direct threat to
humans and crops (Salam 2008). Insects destroy almost one-fifth of the total world’s
agricultural food productivity (Salam 2008) by chewing leaves; absorbing plant
juice; boring within the roots, fruits, stems, and leaves; and spreading various plant
diseases (Aetiba and Osekre 2015). Certainly, insecticides have improved the qual-
ity and yield of crops; however, their extensive and continuous applications are
responsible for the rapid development of resistance in many insects.

5.3.5 Weed Occurrence and Biotic Stress

Weeds are unwanted useless plants that compete with crop plants for space, nutri-
ents, water, sunlight, and other elements (Ferreira and Reinhardt 2016). Weeds usu-
ally cause in average ~20-37% losses of the world’s agricultural output, and
therefore, weed control is indispensable in every crop production system. About
1800 weeds species have been reported to cause serious economic losses in crop
yield, and about 300 species are found in cultivated crops throughout the world
(Ware and Whitacre 2004). Weeds are the silent robbers of plant nutrients, soil mois-
ture, and solar energy and also occupy the space which would otherwise be available
to the main crop. Weeds harbor insect-pests and disease-causing organisms leading
to a reduction in the quality of farm produce and increased cost of production.
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5.4 Characterization of Rhizobacteria Involved
in Amelioration of Biotic Stress

Among the alternatives, biological control of plant pests and pathogens appears to
be the best option for the development of low-cost, eco-friendly, and sustainable
management approaches for protecting plants and crops. Biologicals, including bio-
control microbes, are now accepted as significant tools for the control of plant dis-
eases in sustainable agriculture (Azcén-Aguilar and Barea 1997). However, a better
understanding of the complex interaction between plants, environment, and patho-
gens is necessary for further exploration of rhizobacteria.

There are several methods for controlling weeds (Sindhu et al. 2018). Weed man-
agement forces the use of large amounts of human labor and technology to prevent
crop losses (Fickett et al. 2013). Recently, labor has become unavailable and costly
due to intensification and diversification of agriculture and urbanization. Therefore,
chemical herbicides are applied under field conditions for successful weed manage-
ment. However, more health and environmental hazards have been created in nature
with the application of chemical herbicides (Soares and Porto 2009). The applica-
tion of chemical herbicides to control weed population causes spray drift hazards
and adversely affects the environment. Residual toxicity of these xenobiotics has
resulted in high incidences of cancer, hormonal and immunological disorders, and
allergies apart from the effects on reproductive ability. Moreover, continuous herbi-
cide use may lead to a shift in weed flora and the evolution of resistant weed bio-
types (Singh 2007a, b), threatening the efficacy of weed management in agriculture.
These problems necessitated the search for an alternate eco-friendly and cost-
effective method of weed management through the biological approach in which
microorganisms or their products could be used to suppress the growth or popula-
tion of the weed species (Templeton 1988; Kremer and Kennedy 1996; Gnanavel
2015).

5.4.1 Suppression of Pathogens

In agricultural soils, populations of beneficial microbes must be selectively recruited
and maintained in the rhizosphere to suppress the growth of pathogens (Doornbos and
van Loon 2012). Disease suppression by biocontrol agents occurs due to interactions
among the biocontrol agents with pathogenic members of the rhizosphere or phyllo-
sphere community. Several rhizosphere bacteria including Pseudomonas and Bacillus
species possess many traits that make them well suited as biocontrol agents.
Satisfactory biocontrol was achieved with Pseudomonas antagonists in sugar beet
(Georgakopoulos et al. 2002). Better disease biocontrol in cucumber was achieved
when bacterial antagonists were applied by drenching or by coating seed with bacteria
in a peat carrier. Pseudomonas antagonists were found superior to Bacillus antago-
nists in controlling damping-off disease in cucumber and sugar beet. Ramette et al.
(2006) found that Pseudomonas populations growing in the rhizosphere soil of
tobacco produced biocontrol compounds, viz., 2,4-diacetylphloroglucinol (DAPG)
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and hydrogen cyanide, which were suppressive to root-rot disease. P. fluorescens
strain CHAO was found to produce several secondary metabolites, notably HCN,
2,4-diacetylphloroglucinol, pyoluteorin, and indole acetic acid (Keel et al. 1992). The
combined application of P, fluorescens and B. subtilis exhibited the highest reduction
of tomato wilt disease and increased the dry weight of tomato plants up to 27% in
comparison to the non-bacterized control (Sundaramoorthy and Balabaskar 2013).

Bacillus subtilis strain Elr-j isolated from wheat roots inhibited mycelium
growth in vitro of numerous plant pathogenic fungi, especially of Gaeumannomyces
graminis var. tritici (Ggt), Coniothyrium diplodiella, Phomopsis sp., and Sclerotinia
sclerotiorum (Liu et al. 2009). Jiang et al. (2015) reported that Brevibacillus lat-
erosporus strain JX-5 isolated from the poplar rhizosphere demonstrated significant
growth inhibition of several pathogenic fungi in vitro. The fermentation broth of B.
laterosporus JX-5 and its main antifungal component, designated as component B,
reduced B. dothidea-associated canker of the excised poplar branch by 70 and 90%,
respectively. Bioactive metabolic product inhibited Botryosphaeria dothidea by
permeating the fungal membrane, fracturing the nuclei, damaging the cell wall, and
eventually killing the pathogenic fungus.

Strains of Bacillus have been found to produce several antifungal compounds
with significant inhibitory activity against Ceratocystis ulmi (Shigo et al. 1986),
Colletotrichum musae (Mahadtanapuk et al. 2007; Alvindia and Natsuaki 2009),
Colletotrichum gloeosporioides (Demoz and Korsten 2006), and Fusarium monili-
Jorme (Agarry et al. 2005). Moreover, application of biomix of PGPR strains con-
sisting of Bacillus pumilus, B. subtilis, and Curtobacterium flaccumfaciens to
cucumber seeds enhanced the biological control of several cuacumber pathogens and
also increased the plant growth (Raupach and Kloepper 1998). The presence of
AMF has also been associated with reductions in bacterial foliar pathogens (Parniske
2008). The inoculation of the prairie legume Amorpha canescens with AMF and
rhizobial bacteria produced greater increases in plant biomass than inoculation with
AMEF or rhizobia alone (Larimer et al. 2014), suggesting synergistic effects of rhi-
zobia and AMF on the growth of A. canescens. Usually, a combination of PGPR
strains has been found more effective than single treatment in either suppressing
disease or improving the plant growth (Pérez-Piqueres et al. 2006; Ahemad and
Khan 2011; Yang et al. 2011). For example, the co-inoculation of Cicer arietinum
(chickpea) with P. indica and P. striata showed that the presence of P. indica
resulted in short-term increases of P. striata in the rhizosphere (Meena et al. 2010).
The inoculation of C. arietinum with the Glomus intraradices, Pseudomonas alca-
ligenes, and Bacillus pumilus reduced the combined impact of M. phaseolina (root-
rot fungus) and M. incognita (root-knot nematode), when compared to single-strain
inoculants, dual-strain inoculants, and controls, indicating synergism between AMF
and bacterial strains for control of Macrophomina phaseolina and Meloidogyne
incognita in C. arietinum (Akhtar and Siddiqui 2008). Treatments with PGPR,
mycorrhizal fungi, and 50% fertilizer exhibited a greater yield in the field than the
control (100% fertilizer) (Hernandez and Chailloux 2004), and this combination of
beneficial microbes also showed the additive effect in stimulation of plant N and P
adsorption (Table 5.1).
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Table 5.1 List of rhizobacteria involved in the control of plant pathogens
Diseases/ Biological control
Plants pathogens microbes Mechanism/effect References
Green gram | Fungicide- Pseudomonas Solubilized Ahmad et al.
(Vigna induced aeruginosa phosphate and (2011)
radiata L..) | phytotoxicity produced IAA
siderophores,
exopolysaccharides,
HCN, and ammonia
Cabbage Black rot Paenibacillus sp. Induced systemic Ghazalibigla
(Brassica (Xanthomonas resistance et al. (2016)
oleracea) campestris)
Cucumber Cucumber Bacillus subtilis, P. | Higher peroxidase El-Borollosy
mosaic Sfluorescens, A. and p-1,3-glucanase | and Oraby
cucumovirus chroococcum enzyme activities (2012)
(CMV) Production of
pathogen-related
(PR) protein
Panax Root diseases | Bacillus Induced systemic Lee et al.
ginseng (Phytophthora | amyloliquefaciens resistance (2015)
cactorum) HK34
Rice Bacterial leaf Bacillus sp. Increased Udayashankar
blight accumulation of etal. (2011)
(Xanthomonas phenylalanine
oryzae) ammonia lyase,
peroxidase, and
polyphenol oxidase
Pepper Gray leaf spot | Brevibacterium Enhanced expression | Son et al.
disease iodinum of pathogenesis- (2014)
(Stemphylium KUDCI1716 related (PR) protein
lycopersici) genes
Arabidopsis | Pseudomonas | Bacillus cereus ISR, systemic Niu et al.
thaliana syringae pv. ARI156 acquired resistance (2011, 2016)
tomato (SAR)
DC3000
Cucumis Sphaerotheca Bacillus SAR Liet al. (2015)
sativus fuliginea amyloliquefaciens
LJO2
Potato Potato bacterial | Bacillus Ding et al.
wilt (Ralstonia | amyloliquefaciens (2013)
solanacearum) | and B. subtilis
Scab B. Meng et al.
(Streptomyces | amyloliquefaciens (2013)
spp.)

(continued)
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Table 5.1 (continued)

Diseases/ Biological control
Plants pathogens microbes Mechanism/effect References
Cotton Verticillium Paenibacillus Yang et al.
wilt xylanilyticus (2013)
YUPP-1,
Paenibacillus
polymyxa YUPP-8,
and Bacillus subtilis
YUPP-2
Cotton leaf P. aeruginosa, Ramzan et al.
curl virus Burkholderia sp., (2016)
disease and Bacillus spp.
Pearl millet | Sclerospora Bacillus pumilus Raj et al.
(Pennisetum | graminicola strains T4, SE34, (2003)
glaucum) (downy INR7, B.
mildew) amyloliquefaciens
strains IN937a,
Bacillus subtilis
strains IN937b,
GBO3 Brevibacillus
brevis strain IPC11
Several Paenibacillus elgii, | Production of Choi et al.
crops P. lentimorbus, P. antimicrobial (2008), He
polymyxa strain compounds, et al. (2007),
E681, JSa-9, enzymes, and Canova et al.
OSY-DF, and polysaccharides (2010) and
SQR-21 Deng et al.
(2011)

5.4.2 Biological Control of Insect Pests

Several microorganisms inhabiting the soil or plant rhizosphere have been identified
to act as entomopathogens (Borneman and Becker 2007; Lacey et al. 2015). Bacillus
thuringiensis (Bf) is the most studied entomopathogenic species for biological con-
trol of insect pests, and some of the toxin-producing strains have shown high mor-
tality against specific insects compared to conventional insecticides used in the
microbial pest management (Vega and Kaya 2012). The insecticidal proteins pro-
duced by B. thuringiensis are highly specific insect gut toxins and do not affect the
non-target organisms (Lacey and Goettel 1995). B. thuringiensis subsp. kurstaki
strain HD-1 (De Barjac and Lemille 1970) is most widely used for the management
of lepidopteran pests in agriculture and forestry. Strains of B. thuringiensis subsp.
aizawai (Bta) (i.e., ABTS-1857) are used against armyworms and diamondback
moth larvae. Similarly, Bacillus strains belonging to the subsp. israelensis (Bti) and
tenebrionis (Btt) have been employed for the management of mosquitoes and simu-
lids and against coleopterans, respectively (Glare and O’Callaghan 2000). Other
entomopathogenic bacteria that possess potential against diverse insect pests include
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B. popilliae with B. lentimorbus, the causal agents of milky disease in phytophagous
scarab larvae (Zhang et al. 1997). Serratia entomophila contains a specific plasmid
(pADAP) encoding genes implicated in pathogenicity against the grass grub,
Costelytra zealandica (White) (Jackson et al. 1992).

Another group of entomopathogenic bacteria includes the endosymbionts of
insecticidal nematodes, especially the members of the genera Xenorhabdus and
Photorhabdus (Burnell and Stock 2000). These entomopathogenic bacteria and the
nematodes produce a variety of metabolites that enable them to colonize and repro-
duce in the insect host. The metabolites include enzymes such as proteases, lipases,
and phospholipases to maintain a food supply during reproduction (Bowen et al.
2000). Bowen (1995) reported that a soluble protein fraction purified from P. lumi-
nescens culture medium possessed sufficient insecticidal activity to kill Manduca
sexta upon injection. The novel protein toxin secreted by bacterium Xenorhabdus
nematophila was found effective against Galleria mellonella and H. armigera, cab-
bage white caterpillar Pieris brassicae, mosquito larva Aedes aegypti, and mustard
beetle Phaedon cochleariae (Sergeant et al. 2006). These bacteria were found effec-
tive on most of the economically important lepidopteran, dipteran, and coleopteran
insect orders, suggesting the wide scope of these organisms for application in insect
pest management.

Bacillus cereus has also been found pathogenic to insects and has been isolated
from several insect species (Kuzina et al. 2001; Sezen et al. 2005). Various bacterial
isolates, i.e., B. cereus (Agsl), Bacillus sp. (Ags2), B. megaterium (Ags3),
Enterobacter aerogenes (Ags4), Acinetobacter calcoaceticus (Ags5), Enterobacter
sp. (Ags6), Pseudomonas putida (Ags7), Enterococcus gallinarum (Ags8), and
Stenotrophomonas maltophilia (Ags9), were identified from the flora of Agrotis
segetum (Sevim et al. 2010), and these isolates caused 60% insect mortality after
eight days of application. B. cereus, B. sphaericus, Morganella morganii, Serratia
marcescens, and Klebsiella species isolated from the predatory larvae of the antlion
species Myrmeleon bore (Neuroptera: Myrmeleontidae) were found to kill 80% or
more cutworms S. litura (Nishiwaki et al. 2007). The bacterial flora Leclercia
adecarboxylata of Colorado potato beetle showed highest insecticidal effect (100%
mortality) within five days (Muratoglu et al. 2009) and thus showed potential for the
control of several coleopteran pests. Pseudomonas entomophila showed insecticidal
properties against insects in different orders and triggered a systemic immune
response in Drosophila melanogaster Meigen after ingestion (Vodovar et al. 2006).
Similarly, biopesticidal potential of Brevibacillus laterosporus Laubach has been
reported against insects, such as those belonging in the orders Coleoptera (Boets
et al. 2004) and Lepidoptera (Oliveira et al. 2004), mosquitoes and black flies
(Rivers et al. 1991), and house flies (Ruiu et al. 2006), and against nematodes
(Singer 1996). Chromobacterium subtsugae showed its insecticidal potential after
ingestion against diverse insect species in different orders (i.e., Coleoptera,
Lepidoptera, Hemiptera) (Martin et al. 2007; Hoshino 2011).
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Khan et al. (1985) reported that a commercial preparation of B. thuringiensis
(Thuricide-HP concentrate) exhibited 100% mortality within 6 days of exposure
against subterranean termites, i.e., H. indicola, M. championi, and Bifiditermes
beesoni (Gardner) (Kalotermitidae). Similarly, the colonies of M. championi, H.
indicola, and B. beesoni exposed to suspensions of the spore-forming bacterium
Serratia marcescens Bizio succumbed completely 7-13 days following infection
(Khan et al. 1977). Khan et al. (1992) showed that mortality of M. championi, H.
indicola, and Coptotermes heimi (Wasmann) (Rhinotermitidae) termites ranged
from 25-52% after 7 days post-inoculation to 84—100% 25 days post-inoculation
due to the pathogenicity of P. aeruginosa (Schroeter). Osbrink et al. (2001) isolated
biological control agents from dead termites and revealed the presence of 15 bacte-
ria and 1 fungus in dead termites. Bacteria isolated from termite substrata included
Corynebacterium urealyticum Pitcher, Acinetobacter calcoaceticus/baumannii/
Gen?2 (Beijerinck), S. marcescens, and Enterobacter gergoviae Brenner. Devi et al.
(2007) observed killing of Odontotermes obesus subterranean termites under
in vitro conditions by three HCN-producing rhizobacterial species, i.e., Rhizobium
radiobacter, Alcaligenes latus, and Aeromonas caviae. Rakshiya et al. (2016)
reported that 63 bacterial isolates obtained from termite mound soils killed the ter-
mites under Petri plate conditions at 2 days of observation. Killing frequency of
different bacterial isolates was found to vary from% 40 to 90%.

5.4.3 Microorganisms Having Bioherbicidal Properties

Biological control of weeds represents an effective and innovative means to manage
troublesome weeds (Harding and Raizada 2015). It utilizes the naturally occurring
rhizosphere microorganisms with deleterious/phytotoxic activity toward the seed-
ling growth of weed due to the production of secondary metabolites (Khattak et al.
2014; Sayed et al. 2014; Boyette and Hoagland 2015; Lakshmi et al. 2015). These
compounds either kill or retard the growth of weeds so that beneficial plant species
can gain a competitive advantage (Olesen et al. 2004). Biological control of weeds
has several advantages including higher selectivity, the capacity to inhibit plant
growth, the diminished potential for resistance, lower production costs, and the
introduction of environment-friendly practices (Boyetchko and Rosskopf 2006;
Sforza and Jones 2007; Sindhu and Sehrawat 2017). Rhizobacteria have been dem-
onstrated as a novel, nonchemical approach for suppressing the weed growth
(Kennedy et al. 1991, Kremer and Kennedy 1996; Kremer 2006). Several deleteri-
ous rhizosphere bacteria (DRB) such as Enterobacter, Klebsiella, Grimontella,
Novosphingobium,  Microbacterium, Acinetobacter, Pantoea, Variovorax,
Asticcacaulis, Chryseobacterium, Herbaspirillum, Mitsuaria, Moraxella, Serratia,
Shinella, Sphingobium, Xanthomonas, Alcaligenes, Pseudomonas, etc. have been
found to inhibit weed germination and growth of seedlings (Imaizumi et al. 1997;
Mejri et al. 2013). These rhizosphere microorganisms have been found to suppress
the growth of weeds by reducing weed density, biomass, and seed production. Many
of the microorganisms have been released as commercial bioherbicides for different
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crops, and there are immense possibilities for characterizing and developing novel
microbial bioherbicides that could reduce the application of chemical herbicides for
weed control in sustainable agriculture.

Kennedy et al. (1991) screened 1000 isolates of pseudomonads for differential
inhibition of downy brome (Bromus tectorum) and winter wheat. The filtrate
obtained from eight percent of the isolates inhibited root growth of downy brome on
agar but did not affect root growth of winter wheat. When applied to soil (108 CFU
mL™") in the field, two isolates (0.2%) suppressed downy brome by ~31 to 53%, and
this treatment increased winter wheat yield by ~18 to 35%. P. fluorescens strain D7
was found to selectively inhibit growth and germination of a number of grassy
weeds (Kennedy et al. 1991, 2001; Gealy et al. 1996). Pseudomonas fluorescens and
P. syringae pv. tabaci and tagetis have also been reported to be potential biological
agents for weeds (Daigle et al. 2002; Zidack and Quimby 2002; Zdor et al. 2005).
The strain X. campestris pv. poae (JT-P482) was registered in Japan in 1997 for
control of annual blue grass (Poa annua) under the product name Camperico
(Imaizumi et al. 1997; Tateno 2000).

Rhizosphere microorganisms and their metabolites have been evaluated as weed
control agents in different crop systems (Norman et al. 1994; Mazzola et al. 1995;
Gealy et al. 1996). For example, live cultures of Pseudomonas syringae strain 3366
were found to reduce weed root growth in a controlled environment (Johnson and
Booth 1983) and in field studies (Kennedy et al. 1991). Inoculation with Bacillus
strain was found to suppress the growth of Phalaris minor weed species more effec-
tively (Phour 2012), and inoculation of bacterial isolate WHAS87 caused 21-81%
decrease in root dry weight and 33-43% decrease in shoot dry weight of
Chenopodium album at different stages of plant growth under pot house conditions
(Khandelwal 2016). Inoculation of the Pseudomonas trivialis strain X33d caused
the growth suppression of great brome weed and promoted the growth of durum
wheat (Mejri et al. 2010).

Serratia plymuthica strain A153 showed strong growth-suppressing activities
against a range of broad-leaved weeds after foliar spraying (Weissmann et al. 2003).
In field tests of S. plymuthica strain in spring wheat, spring barley, and potatoes,
variable effects were achieved on a range of weeds including Chenopodium album,
Stellaria media, Polygonum convolvulus, and Galeopsis speciosa. At one site, good
suppression of C. album was observed when the strain was applied in a tank mix
with another bacterial isolate or with reduced doses of herbicide. Li and Kremer
(2006) demonstrated that P. fluorescens strain G2-11 inoculated to wheat and soy-
bean crops suppressed the growth of Ipomea sp. and Convolvulus arvensis weeds,
while it promoted the growth of agricultural crops. Zermane et al. (2007) reported
that P. fluorescens has the potential for controlling Orobanche crenata and O.
foetida (broomrape) in Northern Tunisia. Fifteen potential deleterious rhizospheric
bacteria were characterized from the rhizosphere of Sida acuta (Patil 2014). Five of
these bacterial isolates significantly reduced the root and shoot lengths of weed
seedlings compared to the crop plants on agar plate bioassay. Xanthomonas sp. was
found to inhibit root and shoot length of crop plants in a range of ~25-36% and
8-34%, respectively. Sayed et al. (2014) isolated actinobacterium Streptomyces
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levis strain LX-65 from cultivated soil, and it was found to produce an extracellular
metabolite that exhibited effective antibacterial, antifungal, and herbicidal activity
against some weeds associated with winter wheat (Triticum aestivum L.) and maize
(Zea mays). The virulence and host range of a bacterial pathogen Xanthomonas
campestris isolate LVA987 were evaluated as a bioherbicide against Xanthium stru-
marium L. (common cocklebur) under greenhouse conditions (Boyette and
Hoagland 2013a, b, 2015). Rosette leaf stage plants were found more susceptible
than older plants, and increasing inoculum from 10° to 10° cells mL~! caused signifi-
cantly greater plant mortality and biomass reduction of plants in both the rosette and
bolting growth stages. Strain Hal isolated from brine in Bohai, China, showed the
highest herbicidal activity, and it was identified as Serratia marcescens based on
16S rDNA sequencing (Juan et al. 2015).

5.5 Mechanisms Involved in Amelioration of Biotic Stress

The contributions of PGPR include the production of hydrolytic enzymes (chitin-
ases, cellulases, proteases, etc.) and various antibiotics in response to plant patho-
gen or disease resistance, induction of systematic resistance against various
pathogen and pests, production of siderophores and VOCs, etc. (Gupta et al. 2014).

5.5.1 Antibiotic Production

Some rhizosphere bacteria such as P. fluorescens and Bacillus amyloliquefaciens
contain large gene clusters, which are involved in detoxification and production/
release of antibiotics and siderophores (Paulsen et al. 2005; Chen et al. 2007). These
antibiotics inhibit the growth of the pathogens and cause suppression of pathogens
in soils (Raaijmakers and Mazzola 2012). The production of antibiotics by PGPR
against several plant pathogens has become one of the most effective and most stud-
ied biocontrol mechanisms over the past two decades (Ulloa-Ogaz et al. 2015).
Most Pseudomonas species produce a wide variety of antifungal antibiotics, i.e.,
phenazines, phenazine-1-carboxylic acid, phenazine-1-carboxamide, pyrrolnitrin,
pyoluteorin, 2,4-diacetylphloroglucinol (2,4-DAPG), rhamnolipids, oomycin A,
cepaciamide A, ecomycins, viscosinamide, butyrolactones, N-butylbenzene sulfon-
amide, and pyocyanin (Ramadan et al. 2016). Bacillus sp. also produces a wide
variety of antifungal and antibacterial antibiotics. The ribosomal originating antibi-
otics include subtilosin A, subtilintas A, and sublancin, and those of the non-
ribosomal origin include chlorotetain bacilysin, mycobacillin, rhizocticins,
difficidin, bacillaene, etc. Bacillus sp. also produced a wide variety of lipopeptide
antibiotics, such as surfactin, iturins, bacillomycin, etc. (Wang et al. 2015).

These antimicrobial compounds and secondary metabolites play an important role
in establishing microbial communities in the rhizosphere, which may help in competi-
tive niche exclusion (Bulgarelli et al. 2013). For example, secretion of antibiotic phen-
azine-1-carboxylic acid and 2,4-DAPG by the Pseudomonas spp. caused the
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suppression of the soil-borne pathogen Rhizoctonia solani (Raaijmakers et al. 1997,
Mendes et al. 2011). Similarly, the production of lipoproteins by Pseudomonas and
Bacillus spp. inhibited the growth of a wide range of pathogens (Raaijmakers et al.
2010; Watrous et al. 2012; Zachow et al. 2015). Inoculation with Pseudomonas spp.
that synthesized 2,4-DAPG inhibited the growth of Gaeumannomyces graminis var.
tritici and resulted in control of take-all disease (TAD) in wheat (Weller et al. 2002).
Thus, microbes that produce secondary metabolites, i.e., antibiotics and toxins, may
outcompete pathogens to occupy similar niches and may establish in the rhizosphere
or inside roots (Thomashow and Weller 1988; van Loon and Bakker 2006; Kim et al.
2011). Kataryan and Torgashova (1976) reported that antibiotic 2,4-DAPG showed
phytotoxic activity resembling that of 2,4-dichlorophenoxyacetate (2,4-D) herbicide.
Phytotoxic metabolites geldanamycin and nigericin were obtained from a strain of
Streptomyces hygroscopicus, and geldanamycin showed significant pre-emergence
activity on proso millet, barnyard grass, garden cress, and giant foxtail.

5.5.2 Toxin and Phytotoxin Production

Bacillus thuringiensis has been found to produce various virulence factors includ-
ing insecticidal parasporal crystal (Cry) toxins, 6-endotoxin, vegetative insecticidal
proteins, phospholipases, immune inhibitors, and antibiotics (de Maagd et al. 2003).
Most of the insecticidal activity of B. thuringiensis is associated with the protein-
aceous toxins located in the parasporal crystals which are collectively referred to as
d-endotoxins. The activated Cry I protein after ingestion in insect gut causes pore
formation, membrane transport disruption, and cell lysis leading to the death of the
insect (Bravo et al. 2007). Vegetative insecticidal proteins (Vips) produced by B.
cereus and B. thuringiensis also showed similar activity to endotoxins. Vipl and
Vip2 are toxic to coleopteran insects and Vip3 is toxic to lepidopteran insects (Zhu
et al. 2006). Vips have excellent activity against black cutworms and armyworms
(Yu et al. 1997), S. frugiperda (Barreto et al. 2005), S. litura and Plutella xylostella
(Bhalla et al. 2005), Heliothis zea, Trichoplusia sp., and Ostrinia nubilalis (Fang
et al. 2007; Sellami et al. 2011). Lysinibacillus sphaericus produced insecticidal
toxins during the vegetative phase of growth, and mosquitoes have been found to be
the major targets of the bacterium. Sphaericolysin, a toxin from the L. sphaericus,
was also found lethal to the common cutworm S. litura (Nishiwaki et al. 2007).
Yersinia entomophaga isolated from diseased larvae of the New Zealand grass
grub, Costelytra zealandica White (Coleoptera: Scarabaeidae), secreted a multi-
subunit toxin complex (Yen-Tc) (Hurst et al. 2011). It showed homology with toxin
complexes produced by Photorhabdus sp. Tc-like proteins also identified in other
entomopathogenic bacteria such as Serratia entomophila and the nematode symbi-
ont Xenorhabdus nematophila (Morgan et al. 2001). Recently, the insecticidal activ-
ity of formulations containing Y. enfomophaga against the pasture pest porina
(Wiseana sp. larvae) has been reported under the field conditions (Ferguson et al.
2012). Khan et al. (1985) employed a commercial preparation of Bt (Thuricide-HP
concentrate) that exhibited 100% mortality of H. indicola, M. championi, and
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Bifiditermes beesoni (Gardner) (Kalotermitidae) within 6 days of exposure. Grace
and Ewart (1996) constructed recombinant cells of the bacterium P. fluorescens that
expressed the d-endotoxin genes of B. thuringiensis (Bt). Two commercial agricul-
tural formulations prepared by the CellCap process were evaluated for palatability
to the C. formosanus termite. The MVP formulation, active against Lepidoptera,
contained the P. fluorescens encapsulated d-endotoxin of Bt var. kurstaki. Similarly,
the M-Trak™ formulation, active against Coleoptera, contained the §-endotoxin of
Bt var. san diego.

Similarly, bacteria and fungi produced various phytotoxins with the potential to
be used as herbicides (Duke et al. 1991). Rhizobitoxine produced by some
Bradyrhizobium strains (Duke et al. 2011) is phytotoxic enough to act as a com-
mercial herbicide (Giovanelli et al. 1973). Since the synthesis of the essential plant
hormone ethylene is dependent on methionine, therefore, it is expected that ethyl-
ene synthesis would be greatly inhibited in plants treated with rhizobitoxine. P.
syringae pv. tagetis (Pst) produced the phytotoxin tagetitoxin, which caused the
symptom of apical chlorosis in infected plants. P. syringae strain CT99 isolated
from Cirsium arvense (Canada thistle) was found to act as a biological control agent
for this invasive weed and other weeds in the family Asteraceae. Alternatively, tag-
etitoxin may be of value as a natural herbicide because of its impact on chloroplasts
(Lydon and Patterson 2001).

5.5.3 Production of Extracellular Enzymes

Rhizosphere bacteria produce enzymes such as f-1,3-glucanase and chitinase,
which are generally involved in lysing cell walls and killing pathogens (Goswami
et al. 2016). Most of the fungal cell wall components are comprised of p-1,4-N-
acetyl-glucosamine and chitin; hence, p-1,3-glucanase- and chitinase-producing
bacteria inhibit their growth. Pseudomonas fluorescens LPK2 and Sinorhizobium
fredii KCCS5 produced p-glucanases and chitinase and suppressed Fusarium wilt
caused by Fusarium oxysporum and Fusarium udum (Ramadan et al. 2016).
Phytophthora capsici and Rhizoctonia solani, regarded as the most catastrophic
crop pathogens in the world, are also inhibited by PGPR (Islam et al. 2016).
Lysenko and Kucera (1971) showed that Serratia marcescens produced extracel-
lular proteases that could be a mode of pathogenicity of these bacteria in termites.
Osbrink et al. (2001) examined 15 bacteria and 1 fungus associated with dead ter-
mites as possible biological control agents against Formosan subterranean termites,
Coptotermes formosanus Shiraki. Bacterial isolates obtained from dead termites
were primarily Serratia marcescens Bizio that caused septicemia in C. formosanus
and found to contain proteolytic enzymes. Singh (2007a, b) reported chitinolytic
activity in some of the bacterial isolates that killed the termites. Bahar et al. (2011)
identified chitinase-producing Serratia marcescens which was found effective in
killing the coleopteran insects with more chitin in their exoskeleton. Jafri et al.
(1976) observed microsporidians in the body cavity and proventriculus of
Microcerotermes championi collected from the roots of Saccharum munja. These
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organisms passed into the midgut after ingestion with the food attacked fat body
tissues and caused the death of termites, indicating the role of lipolytic enzymes in
termite killing. Rakshiya et al. (2016) reported that some of the bacterial isolates
found effective in termite killing possessed all the three enzyme activities, i.e.,
lipase, protease, and chitinolytic activity.

1-Aminocyclopropane-1-carboxylate (ACC) deaminase-containing plant
growth-promoting rhizobacteria catalyze the conversion of ACC, the immediate
precursor of ethylene in higher plants, into ammonia and o-ketobutyrate. ACC
deaminase has been widely reported in numerous microbial species of Gram-
negative bacteria, Gram-positive bacteria (Ghosh et al. 2003), rhizobia (Uchiumi
et al. 2004), endophytes (Pandey et al. 2005; Sessitsch et al. 2005), fungi (Jia et al.
1999; Minami et al. 1998), Burkholderia (Blaha et al. 2006), Pseudomonas (Belimov
et al. 2001; Blaha et al. 2006), Ralstonia solanacearum (Blaha et al. 2006),
Sinorhizobium meliloti (Belimov et al. 2005), and Variovorax paradoxus (Belimov
et al. 2001). The plants treated with bacteria containing ACC deaminase showed
relatively extensive root growth due to less ethylene (Burd et al. 2000; Shaharoona
et al. 2006) and can better resist various stresses (Burd et al. 2000; Safronova et al.
2006). PGPR containing ACC deaminase activity have been found to promote plant
growth both under stress and normal conditions, and genetic manipulation of culti-
vars with genes expressing this enzyme has attracted much attention among the
scientists (Safronova et al. 2006; Sergeeva et al. 2006). The ACC deaminase-
containing bacteria Pseudomonas putida (WPTe) reduced the downy mildew dis-
ease severity and significantly improved the growth and yield of P. somniferum
plants (Barnawal et al. 2017). Reduced synthesis of ethylene precursor (ACC) and
abscisic acid (ABA) and enhanced production of indole acetic acid (IAA) in P. som-
niferum plants were observed upon WPTe treatments. Moreover, WPTe treatment
reduced proline and lipid peroxidation in plant leaves. These results highlighted that
the ACC deaminase-containing plant growth-promoting rhizobacteria (PGPR)
enhance the tolerance of P. somniferum plant against downy mildew.

5.5.4 Production of Secondary Metabolites and Volatile Organic
Compounds

Hydrogen cyanide (HCN) is known to be produced by many rhizosphere bacteria
and has been demonstrated to play a role in the biological control of pathogens and
pests. HCN-producing P. aeruginosa was found to have lethal effects on nematodes
(Darby et al. 1999; Gallagher and Manoil 2001). Devi et al. (2007) tested three dif-
ferent species of HCN-producing rhizobacteria for their potential to kill subterra-
nean termite O. obesus. Rhizobium radiobacter and Alcaligenes latus caused 100%
mortality of the termites following one-hour incubation. Aeromonas caviae, which
produced significantly lower amounts of HCN, caused only 70% mortality. Termites
exposed to exogenous HCN showed 80% mortality at cyanide concentrations of up
to 2 pg ml~!. The observed HCN toxicity in termites could be correlated with the
inhibition of the respiratory enzymes.
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Pseudomonas aeruginosa (HM195190) strain KC1 was isolated from the rhizo-
sphere of castor plants (Ricinus communis) indigenous to agricultural fields of Bihar
(Lakshmi et al. 2015). Strain KC1 was found to produce cyanide (4.78 nmol L)
over a period of 36 h. Seed bacterization with strain KC1 exhibited a reduction in
root and shoot length of Amaranthus spinosus and Portulaca oleracea weed seed-
lings in both laboratory and glasshouse experiments. Biomass was also significantly
reduced for the weed seedlings in glasshouse experiments. However, KCI-
inoculated crop seedlings (Triticum aestivum) were found to be less inhibitory as
compared to weed seedlings. P. fluorescens strain BRG100 produced pseudopho-
min A and B, which are cyclic lipodepsipeptides that showed suppressive activity on
the grassy weed green foxtail (Setaria viridis) (Quail et al. 2002; Caldwell et al.
2011). This strain can reduce the root growth in green foxtail by 73 to 79% and is
able to colonize root hairs and the root of green foxtail (Caldwell et al. 2011).
Gostatin, a product of Streptomyces sumanensis (Amagasa et al. 1994), is a potent
aminotransferase inhibitor that is phytotoxic (Nishino et al. 1984). The germination-
inhibiting activity of P. fluorescens strain WH6 has been attributed to the production
of a compound originally referred to as germination-arrest factor (GAF) (Banowetz
et al. 2008). The active component of GAF was identified as 4-formyl aminooxy-L-
vinylglycine (McPhail et al. 2010). The effects of cell-free supernatants (S) and
anionic fractions (Q) obtained from three different strains of Bacillus subtilis, i.e.,
DN, Car13, and a non-promoting strain PY79, were evaluated on seed germination
on pigweed (Amaranthus hybridus L.) and Johnson grass (Sorghum halepense
L. Pers) (Mendoza et al. 2012). The application of anionic fractions QCar13, QDN,
and QPY caused a drastic decrease in the germination rates of both pigweed and
Johnson grass seeds in comparison to controls. P. fluorescens strain D7, which was
isolated from roots of winter wheat, showed a reduction of downy brome (Bromus
tectorum L.) biomass production of 18-54% in the field when the strain was applied
to the soil (Ibekwe et al. 2010). This strain produced a complex of chromopeptides,
peptides, fatty acids, and a lipopolysaccharide matrix.

Volatile organic compounds (VOCs) that are produced by biocontrol strains were
found to promote plant growth, inhibit bacterial and fungal pathogens and nema-
todes, and elicit induced systemic resistance in plants against phytopathogens (Raza
et al. 2016a, b). VOC emissions are a common characteristic of a wide variety of
soil microorganisms and include cyclohexane, 2-(benzyloxy)-1-ethanamine, ben-
zene, methyl, decane, 1-(N-phenyl carbamyl)-2-morpholinocyclohexene, dodecane,
benzene (1-methylnonadecyl), 1-chlorooctadecane, tetradecane, 2,6,10-trimethyl,
dotriacontane, and 11-decyldocosane, although the quantity and identity of the
VOCs emitted vary among species (Kanchiswamy et al. 2015). Particular bacterial
species from diverse genera, including Pseudomonas, Bacillus, Arthrobacter,
Stenotrophomonas, and Serratia, produced VOCs that affected plant growth.
2,3-Butanediol and acetoin produced by Bacillus spp. are the most effective VOCs
for inhibiting fungal growth and improving plant growth (Santoro et al. 2016). It has
been reported that bacterial VOCs are determinants for eliciting plant ISR (Sharifi
and Ryu 2016). The VOCs from PGPR strains directly or indirectly mediate
increased disease resistance, abiotic stress tolerance, and plant biomass.
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5.5.5 Production of Hormones

Auxins and cytokinins have been demonstrated to act in defense responses either
depending on other defense-related hormones such as salicylic acid and jasmonic
acid or independently (Naseem and Dandekar 2012). The synthesis of auxin- and
cytokinin-like molecules by some root pathogens (Estruch et al. 1991; Argueso
et al. 2009) indicated that the production of these two hormones is not restricted to
either beneficial (symbiotic) or detrimental (pathogenic) microorganisms (Chen
et al. 2014).

5.5.5.1 Indole Acetic Acid Production

Indole acetic acid (IAA) production stimulates plant growth in lower concentra-
tions, and in contrast, if the concentration becomes higher, the elongation of root
and shoot is inhibited (Grossmann 2010). In addition, application of auxin promotes
the susceptibility of the plant to bacterial pathogens and increases disease symp-
toms (Spaepen and Vanderleyden 2011). Natural auxins have modes of action simi-
lar to many herbicides that interfere with plant growth such as
2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid (Patten and
Glick 1996). Sarwar and Kremer (1995) reported that auxins are produced in high
concentrations in the rhizosphere by deleterious rhizobacteria (DRB) that may con-
tribute to reduced root growth of weeds. An Enterobacter taylorae isolate with high
auxin-producing potential (72 mg L~! IAA-equivalents) was found to inhibit root
growth of field bindweed (Convolvulus arvensis L.) by ~91% when combined with
107> M L-tryptophan compared with non-treated control. IAA production in Bacillus
Jjaponicum isolates GD3 resulted in suppression of morning glory growth (Kim and
Kremer 2005). The specificity assay showed the suppressive activity of P. trivialis
X33d against great brome (Bromus diandrus Roth), and it caused growth-promoting
effect on most of the considered crops, especially durum wheat (Triticum durum
Desf.) (Mejri et al. 2010). The production of indole acetic acid by P. trivialis X33d
was suggested to cause growth suppression of great brome and growth promotion of
durum wheat.

Park et al. (2015) reported that two bacterial strains, I-4-5 and I-3, significantly
reduced the seedling growth of radish in comparison to their controls. The highest
rate of seedling growth inhibition was observed in bacterial isolate I-3 treatment in
lettuce and radish. In vitro study revealed that culture filtrate obtained from I-3 bac-
terial isolate and combined with tryptophan significantly decreased leaf length, leaf
width, and root length and increased the number of lateral roots of lettuce. Similarly,
ten rhizobacterial isolates, obtained from wheat rhizosphere soil, showed maximum
retardation on 5th and 10th day of seed germination of Phalaris minor on 0.8%
water agar plates (Phour 2012). At 10th day of seed germination, ~15% of bacterial
isolates showed retardation of shoot growth and ~19% of bacterial isolates retarda-
tion of root growth. Screening of these rhizobacterial isolates for production of
indole acetic acid showed that two isolates HWM49 and HWM35 produced 11.10
and 14.07 pg mL~! TAA, respectively, and significant production of TAA (>than
25 pg mL™) was observed in isolates CPS67, CP43, and HWM13.
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5.5.5.2 Aminolevulinic Acid Production

d-Aminolevulinic acid (ALA) has recently been used as a favorable biodegradable
herbicide and insecticide, and it is harmless to crops, humans, and animals (Sasikala
et al. 1994; Bhowmick and Girotti 2010; Kang et al. 2012). Zhang et al. (2006)
reported that ALA at low concentrations of 0.3-3 mg L~!' promoted development
and growth of potato microtubers in vitro and enhanced protective functions against
oxidative stresses, but ALA at 30 mg L~! and higher concentrations may induce
oxidative damage. Khandelwal (2016) showed that 96 rhizobacterial isolates
obtained from the rhizosphere of wheat and mustard showed significant retardation
effect on seed germination of weed Chenopodium album and Asphodelus tenuifo-
lius on 0.8% water agar plates. Rhizobacterial isolates WSA38, MSAS57, WSAG6S,
WSA56, MSA42, MSA39, WHA98, and MSAI11 showed >11.0 pg ml='5-
aminolevulinic acid production, which contributed to growth retardation of C.
album and A. tenuifolius. Forty-five isolates showed root growth inhibition on the
5th day of seed germination in C. album. Nine rhizobacterial isolates caused shoot
growth inhibition on the 5th day, and seven bacterial isolates caused shoot growth
inhibition at 10th day of C. album. In Asphodelus tenuifolius, 34 isolates showed
root growth inhibition on the 5th day, and 27 rhizobacterial isolates showed root
growth inhibition at 10th day of seed germination.

5.5.6 Plant Defense Mechanism

Innate immunity in plants is of two types, namely, effector-triggered immunity
(ETI) and microbial-associated molecular pattern-triggered immunity (MTI; also
called PTI). Callose deposition, reactive oxygen species production, salicylic acid
(SA) accumulation, and expression of pathogenesis-related (PR) genes take place in
PAMP-triggered immunity (PTI) (Yang and Huang 2014). However, successful
pathogens produce protein effectors to suppress PTI, leading to effector-triggered
susceptibility (ETS) (Feng and Zhou 2012). To counter the pathogen, plants have
evolved a secondary immune response, called as effector-triggered immunity.
Resistance (R) proteins trigger ETI, and these proteins can recognize specific patho-
gen effectors and suppress them. R proteins trigger hypersensitive response (HR)
and death of cells at the infection site to limit pathogen growth is mediated by HR
(Huang et al. 2016). Microbe-pathogen-associated molecular patterns (MAMPs/
PAMPs) are molecular signatures typical of whole classes of microbes. The recog-
nition of these signatures plays a key role in innate immunity. Fungal chitin, xyla-
nase or bacterial flagellin, lipopolysaccharides, and peptidoglycans are examples of
PAMP. Damage-associated molecular patterns (DAMPs) respond to a compromised
“self” and are recognized as endogenous elicitors (Boller and Felix 2009), and the
other that responds to a compromised “self” (Malinovsky et al. 2014) is recognized
by plants (Zvereva and Pooggin 2012). Transmembrane pattern recognition recep-
tors (PRRs) are involved in PAMP and DAMP recognition (Onaga and Wydra
2016).
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Interkingdom biochemical signaling between microorganisms (prokaryotes)
plays a significant role in pathogen-host specificity, host defense response induc-
tion, and antagonism between pathogens and biocontrol microorganisms (Venturi
and Fuqua 2013; Clinton and Rumbaugh 2016; Kan et al. 2017). Plants trigger the
mitogen-activated protein kinase (MAPK) cascades on the perception of the patho-
gens, or their associated signals by specific plant receptors and hormone (jasmo-
nates and ethylene)-dependent and hormone-independent signaling are activated,
which results in mounting of a defense response against the invading necrotrophs.
This response involves the activation of specific transcription factors that result in
the production of antifungal proteins (plant defensins) or the accumulation of defen-
sive secondary metabolites (phytoalexins). The perception and communication
mechanisms triggered by pathogen-associated molecular patterns and the hormones
are coordinated by the MAPK signaling cascades which integrate various aspects of
the multi-layered plant defense response (Pandey et al. 2016).

Defense responses are more evident in the plant’s production of pathogen-related
(PR) proteins that are induced in pathological or related situations (Antoniw et al.
1980). The major families of PR proteins have been organized into 11 different
classes, primarily on the basis of their amino acid sequence identity (van Loon et al.
1994). Many PR proteins have been shown to possess antimicrobial activity. In vitro
studies of chitinases (PR-3 class) and p-1,3-glucanases (PR-2 class) showed that
these proteins can inhibit fungal growth (Mauch et al. 1988; Sela-Buurlage et al.
1993), presumably by hydrolytic degradation of fungal cell walls. In addition, trans-
genic studies with constitutively upregulated expression of various PR proteins such
as chitinases, f-1,3-glucanases, tobacco PR-1, and type I barley ribosome-
inactivating protein (Alexander et al. 1993; Jach et al. 1995) resulted in plants hav-
ing decreased disease severity after infection by fungal pathogens. These results
demonstrated that PR proteins are important for active defense against disease.
Following pathogen attack, PR-10 proteins are also induced in a wide variety of
plant species including pea (Barral and Clark 1991), potato (Matton and Brisson
1989), soybean (Crowell et al. 1992), and sorghum (Lo et al. 1999). These PR-10
proteins share homology to a ribonuclease (RNase) isolated from phosphate-starved
ginseng cells (Moiseyev et al. 1994), suggesting that PR-10 proteins may possess
such activity.

5.5.6.1 Pathogen- or Microbe-Associated Molecular Pattern-
Triggered Immunity

Communication between plants and microbes takes place by using different signal-
ing molecules during their interaction (Kan et al. 2017). Plants recognize certain
compounds released by microbes and mount first line of active plant inducible
defense PTI (Schwessinger and Zipfel 2008). In PTI, conserved microbial elicitors
known as PAMPs are recognized by membrane-bound extracellular receptors PRRs
consisting of either the receptor-like proteins (RLPs) or receptor-like kinase (RLK)
families (Nurnberger and Kemmerling 2009). In direct recognition of pathogens,
plants can detect extracellular molecules referred to as PAMPs/MAMPs, e.g., bacte-
rial flagellin, EF-Tu proteins, lipopolysaccharides, and peptidoglycans (Boller and
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Felix 2009; Freeman and Beattie 2008), and/or intracellular effector proteins, e.g.,
Avr3a, Avrk, and Avral0 proteins, or tissue damage using pattern recognition recep-
tor (PRR) proteins located on the cell surface or intracellularly (Rivas and Thomas
2005; Boller and Felix 2009).

The bacterial flagellum is composed of flagellin which is so far the best charac-
terized PAMP in plants. The N-terminal part of the flagellin of Pseudomonas syrin-
gae has 22-amino-acid (fig22) peptide-spanning regions in the N-terminal part. This
region elicits a typical immune response in a broad variety of plants (Felix et al.
1999). Flagellin perception in the model plant Arabidopsis thaliana is due to the
leucine-rich repeat receptor-like kinase (LRR-RLK) FLAGELLIN-SENSING 2
(FLS2) PRR. In some species of plants, flagellin appears to be recognized by other
means. In rice, the PRR activation is not allowed by flg22 epitope, but flagellin
causes cell death (Takai et al. 2008). Another flagellin, fliglI-28, has been identified
in Solanaceae (Cai et al. 2011), though the corresponding PRR is yet to be identi-
fied. A stretch of 33-amino-acid residues physically links both flg22 and figlI-28,
indicating that detection of both molecules is brought about by the same receptor,
FLS2 (Clarke et al. 2013).

Elongation factor Tu (EF-Tu) is the most prevalent bacterial protein. It was first
isolated from Escherichia coli. It plays the role of PAMP in Brassicaceae family
including A. thaliana (Kunze et al. 2004). Defense responses in plants are triggered
by the conserved N-acetylated epitope elf18 (first 18 amino acids of the protein). As
an elicitor, the shorter peptide, elf12 (first 12 N-terminal amino acids), comprising
the acetyl group is inactive but acts as a specific antagonist for EF-Tu-related elici-
tors. EF-Tu is recognized by the LRR-RLK EF-Tu RECEPTOR (EFR) of the same
subfamily (LRRXII) as FLS2 (Zipfel et al. 2006).

The major constituent of fungal cell walls is chitin which is a homopolymer of
(1,4)-linked N-acetylglucosamine (GIcNAc) unit and is a classical PAMP (Dodds
and Rathjen 2010). Breakdown of microbial chitin polymers by plant chitinases
(hydrolytic enzymes) takes place when pathogen comes in contact with the host.
Different plants employ mechanisms that have common factors to perceive chitin,
and this could be the possible reason for the evolution of pathogen’s countermea-
sures, e.g., in the fungal pathogen Cladosporium fulvum (Jashni et al. 2015). The
lysine motif (LysM)-RLP was the first chitin-binding PRR that was identified in rice
and named chitin elicitor-binding protein (CEBiP) (Shimizu et al. 2010). CEBIP is
a glycoprotein that is localized in the plasma membrane. After binding with chitin,
CEBiP homodimerizes and there is the formation of a hetero-oligomeric complex
with the chitin elicitor receptor kinase 1 (OsCERK1), the rice ortholog of Arabidopsis
AtCERKI. A sandwich-type receptor system for chitin is formed due to binding
(Hayafune et al. 2014), and the mechanism of perception, however, varies between
plant species.

Plants can sense DAMP molecules and they are available for recognition only
after cell/tissue damage. DAMP perception in plants bears striking similarities to
DAMP perception in animals (Lotze et al. 2007). Cell wall components derived
from the enzymatic activity of highly specific microbial homogalacturonan (HGA)
are a good example of DAMPs (Liu et al. 2014a, b). The enhanced production of



5 Amelioration of Biotic Stress by Application of Rhizobacteria for Agriculture... 137

oligogalacturonic acid (OGA) fragments from plant cell walls potentially acts as
DAMP, which is perceived by receptors such as RLK THESEUS1 (THE1), ER, and
WAKI. Thus, a good approach to have a strategy to improve plant protection is to
study the expression of endogenous molecules and microbial cell wall-degrading
enzymes and their inhibitors, e.g., polygalacturonases (PGs) and polygalacturonase-
inhibiting proteins (PGIPs) (Schacht et al. 2011).

The Ca** and mitogen-activated protein (MAP) kinase signaling cascades and
transcriptome reprogramming are triggered by these PAMPs (Boller and Felix
2009), leading to defense responses such as oxidative burst, ethylene production,
and plant cell wall modifications (Asai et al. 2002). As a countermeasure, plants
have acquired additional receptors, known as resistance (R) proteins, which recog-
nize pathogen effectors to induce a response called ETI, which ultimately triggers
HR cell death in plants (Liu et al. 2007). In addition, the induction of defense signal-
ing is mediated by plant hormones such as jasmonic acid, ethylene, or salicylic acid
on perception of the pathogen or its associated pattern (Broekaert et al. 2006; Meng
and Zhang 2013), and these plant hormones act as secondary messengers in signal-
ing networks triggered during PTT and ETT in the plant cell (Jones and Dangl 2006;
Meng and Zhang 2013). For example, host innate immunity to Pythium is conferred
by the jasmonic acid (JA) and ethylene (ET) signal pathways in roots, and the trig-
gers of these pathways include cell surface components of the pathogen, metabo-
lites, and protein effectors (Okubara et al. 2016). Roots also can mount chemical
(metabolite-based) defenses against specific Pythium spp., and reciprocally, Pythium
can degrade defense metabolites. In contrast, P. oligandrum is a mycoparasite of
other Pythium species and also sends signals that trigger defense responses in plants.

5.5.6.2 Effect of Hormones on Defense Signaling

Two mutually antagonistic hormones, salicylic acid (SA) and jasmonic acid (JA),
control the defense responses in plants in response to infection by different types of
pathogenic microbes, and they orchestrate a different and complex transcriptional
reprogramming that eventually leads to plant resistance. The attack of insect herbi-
vores on the plant roots and leaves imposes different selection pressures on plants,
which in turn produces contrasting responses in terms of gene expression and pro-
duction of secondary metabolites and wound hormones (Johnson et al. 2016).
Different kinds of plant defenses are reported against root herbivores as compared
with foliar herbivores (Johnson and Rasmann 2015). Following herbivore recogni-
tion, plants configure their metabolism through changes in the phytohormonal net-
works (Johnson et al. 2016). Jasmonates, which are widely viewed as the master
regulators of plant responses to herbivores, are less inducible in the roots than the
leaves (Erb et al. 2012; Lu et al. 2015). Salicylic acid signaling can buffer the jas-
monic acid response aboveground (Gilardoni et al. 2011). Root herbivore attack
induces a different signal signature compared with leaf attack. For instance, attacked
rice roots do not increase the biosynthesis of abscisic acid and ethylene (Lu et al.
2015), two important synergistic signals in the wound response of leaves. The dif-
ference may be explained by the fact that both hormones strongly influence root
growth and architecture. Plants may, therefore, be able to maintain root
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development under herbivore attack by maintaining abscisic acid and ethylene
homeostasis. Thus, it is apparent that roots respond to pathogen or insect attack dif-
ferently than shoots and regulate the defenses through modulating their phytohor-
monal networks in a tissue-specific manner.

5.5.6.3 Salicylic Acid

Characterization of genes functioning in SA biosynthesis, conjugation, accumula-
tion, signaling, and cross-talk with other hormones has justified its role in the finely
tuned immune response network (An and Mou 2011). Salicylic acid has also been
found important in providing a basal defense to Solanum tuberosum against
Phytophthora infestans (Halim et al. 2007). Transduction of the SA signal leads to
the activation of genes encoding pathogenesis-related (PR) proteins, some of which
have antimicrobial activity (van Loon et al. 2006). The regulatory protein non-
expressor of PR genes 1 (NPR1) was required for transduction of the SA signal
because mutations in the NPR1 gene rendered the plant largely unresponsive to
pathogen-induced SA production (Dong 2004). SA-mediated suppression of
JA-inducible gene expression was blocked in nprl mutant plants, demonstrating a
crucial role for NPR1 in the cross-talk between SA and JA signaling (Spoel et al.
2003, 2007). A similar function of NPR1 in the cross-talk was reported in rice
(Oryza sativa) (Yuan et al. 2007). Overexpression of cytosolic OsNPR1 suppressed
JA-responsive transcription and enhanced the level of susceptibility to insect her-
bivory. Interestingly, NPR1-silenced wild tobacco (Nicotiana attenuata) plants
demonstrated that these transgenic plants accumulated increased levels of SA upon
insect herbivory and were highly susceptible to herbivore attack (Rayapuram and
Baldwin 2007). Therefore, it was proposed that in wild-type plants NPR1 is required
to negatively regulate SA production during herbivore attack and thus it suppressed
SA/JA cross-talk to allow induction of JA-mediated defenses against herbivores.

Many plant pathogens manipulate host auxin biosynthesis to interfere with the
normal developmental process of the host (Chen et al. 2007), and conversely, plants
have evolved mechanisms to repress auxin signaling during pathogenesis. SA appli-
cation caused global repression of auxin-related genes, resulting in stabilization of
the Aux/IAA repressor proteins and inhibition of auxin responses (Wang et al.
2007). Application of exogenous ABA prevented SA accumulation and suppressed
resistance to P. syringae in Arabidopsis (Mohr and Cahill 2003). A loss-of-function
mutation in the Arabidopsis MPK4 gene, which encodes a mitogen-activated kinase,
was found to impair JA signaling and simultaneously conferred enhanced resistance
against bacterial and oomycete pathogens due to constitutive activation of SA sig-
naling (Petersen et al. 2000).

Most wilt-causing pathogen strains of the R. solanacearum species were found
to degrade SA via gentisic acid to pyruvate and fumarate. R. solanacearum strain
GMI1000 expressed this SA degradation pathway during tomato pathogenesis
(Lowe-Power et al. 2016). Transcriptional analysis revealed that subinhibitory SA
levels induced the expression of the SA degradation pathway, toxin efflux pumps,
and some general stress responses. Interestingly, SA treatment repressed expression
of virulence factors, including the type III secretion system, suggesting that this
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pathogen may suppress virulence functions when stressed. These results suggested
that R. solanacearum degrades plant SA to protect itself from inhibitory levels of
this compound and also to enhance its virulence on plant hosts like tobacco that uses
SA as a defense signal molecule (Lowe-Power et al. 2016).

5.5.6.4 Jasmonic Acid

Jasmonic acid plays a key role in modulating many physiological processes and is a
key cellular signal involved in the activation of immune responses to most insect
herbivores and necrotrophic microorganisms (Glazebrook 2005). Cyclic precursors
of jasmonic acid, the cyclopentenones, have also been reported to function as potent
signals of plant defense responses (Farmer and Ryan 1992). Similarly, volatile
derivatives of JA, such as methyl jasmonate (meJA) and cis-jasmone, can act as
airborne signals stimulating plant defenses and repelling insects (Birkett et al.
2000). Together, JA and ethylene are required for defense against necrotrophic
pathogens (Thomma et al. 2001) and associated gene expression (Xu et al. 1994;
Lorenzo et al. 2003). The transcription factor ethylene response factorl (ERF1) has
been proposed to act as a convergence point in synergistic signaling of JA/ethylene
(Lorenzo et al. 2003). Therefore, a good understanding of the interaction of plant
roots with the microorganisms in the rhizosphere would be important to engineering
resistance against root pathogens without negatively altering root-beneficial microbe
interactions. The understanding and exploitation of the signals between plant and
microorganisms could become the basis for crop improvement and protection.

5.5.6.5 Inducible Defense

Plants have the ability to induce both local and systemic resistance to subsequent
attack by the same or different pathogens (Walters et al. 2005). This induced resis-
tance (IR) may control the pathogens or damaging factors, completely or partially
(Kuc 1982; Chen et al. 2014). Genes expressed during IR responses produce pro-
teins with chitinase, glucanase, and other enzymatic activities that are involved in
defense reactions to a wide array of pathogens (van Loon et al. 2006). Production of
reactive oxygen species (ROS) and oxidative burst is an important mechanism for
biotic stress tolerance (Miller et al. 2010). There are two common ways to manage
the activation of defense mechanism in the plant, which are called induced systemic
resistance (ISR) and systemic acquired resistance (SAR) (Pieterse et al. 2012).
Their differentiation is done on the basis of regulatory pathways involved and the
nature of the elicitor as demonstrated in model plant system (Uknes et al. 1992;
Pieterse et al. 1998; Knoester et al. 1999; Yan et al. 2002).

Induced systemic resistance triggered by P. aeruginosa TNSK2 was found to be
iron-regulated and involved three siderophores, i.e., pyoverdine, pyochelin, and
salicylic acid. SA is also a precursor in the production of SA-containing sidero-
phores such as pseudomonine in P. fluorescens WCS374 and pyochelin in P. aeru-
ginosa TNSK2 (Audenaert et al. 2002). A mutant of 7NSK2 that lacked SA and
pyochelin production no longer induced resistance, and a mutant defective in pyo-
cyanin biosynthesis could not trigger ISR in tomato against B. cinerea. On the other
hand, treatment with the mixture of two mutants showed significant suppression of
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B. cinerea (Audenaert et al. 2002). The production of the volatile 2,3-butanediol
triggered Bacillus-mediated ISR in Arabidopsis (Kloepper et al. 2004). However,
the signaling pathway activated in Bacillus was found dependent on ethylene, but it
was found independent of salicylic acid and jasmonic acid signaling (Ryu et al.
2004). Induced ethylene biosynthesis and subsequent intracellular signaling were
found to induce the expression of a cascade of transcription factors consisting of
primary EIN3-like regulators and downstream ERF-like transcription factors
(Broekaert et al. 2006).

The ISR may be strengthened by non-pathogenic root-associated plant growth-
promoting microbes, while plant exposure to virulent, avirulent, and non-pathogenic
microbes can trigger SAR. SAR involves a change in molecular gene expression
and is associated with pathogenesis-related (PR) protein and SA accumulation, and
the time required for this accumulation depends on the plant and elicitors. Induction
and expression of the gene in both ISR and SAR are different which depend on
elicited and regulatory pathway (Nawrocka and Matolepsza 2013). ISR relies on
pathways regulated by jasmonate and ethylene under biotic stress (Bari and Jones
2009; Salas-Marina et al. 2011). Reactive oxygen species and nitrogen oxygen spe-
cies (NOS) highly influence SA, JA, or ET production and form a complex network
to modulate pathogens (Bari and Jones 2009; Choudhary and Johri 2009). The elici-
tors released by non-pathogenic microbes and interaction of these molecules deter-
mine the induction of resistance in plants.

Induced systemic resistance (ISR) by rhizobacteria is activated upon coloniza-
tion of roots by selected strains of non-pathogenic rhizobacteria (van Loon et al.
1998), and wound-induced resistance is typically elicited upon tissue damage such
as that caused by insect feeding (Kessler and Baldwin 2002; Howe 2004). Specific
strains of B. amyloliquefaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B.
mycoides, and B. sphaericus caused significant reductions in the incidence or sever-
ity of various diseases on a diversity of hosts under greenhouse or field conditions
(Kloepper et al. 2004). These strains induced systemic resistance (ISR) in tomato,
bell pepper, muskmelon, watermelon, sugar beet, tobacco, Arabidopsis sp., cucum-
ber, loblolly pine, and two tropical crops (long cayenne pepper and green kuang
futsoi). Moreover, ISR induced by Bacillus spp. protected the plants against leaf-
spotting fungal and bacterial pathogens, systemic viruses, a crown-rotting fungal
pathogen, root-knot nematodes, and a stem-blight fungal pathogen as well as
damping-off, blue mold, and late blight diseases. ISR elicited by several strains of
Bacillus spp. was found independent of salicylic acid, but it was dependent on jas-
monic acid, ethylene, and the regulatory gene NPRI.

ISR is also induced by strains belonging to genus Pseudomonas that cause no
apparent damage to the plant’s root system (van Loon and Glick 2004). Unlike
SAR, ISR does not involve the accumulation of salicylic acid or pathogenesis-
related proteins but jasmonate and ethylene signaling molecules (Pieterse et al.
2002; Yan et al. 2002). Lee et al. (2015) reported that root-associated B. amylolig-
uefaciens strain HK34 effectively induced resistance against P. cactorum. In addi-
tion, Pseudomonas and Bacillus strains manage plant disease in many crops through
induced systemic resistance. Paenibacillus P16 performed as an effective biological
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control agent in cabbage for black rot (Xanthomonas campestris) disease and has
the potential ability to confer induced systemic resistance (Ghazalibigla et al. 2016).

5.5.6.6 Engineering of Plants and Microbes

The rhizosphere is the zone of soil around roots that is influenced by root activity.
The intimacy of this interface between plants and their environment is essential for
the acquisition of water and nutrients and for beneficial interactions with soil-borne
microorganisms. Yet, this same intimacy increases the vulnerability of plants to a
range of biotic and abiotic stresses. Plants have evolved a variety of strategies to
modify the rhizosphere to lessen the impact of these environmental stresses, and an
understanding of the involved processes will suggest ways in which the rhizosphere
can be manipulated to improve plant health and productivity. Rhizosphere engineer-
ing may ultimately reduce our reliance on agrochemicals by replacing their func-
tions with beneficial microbes, biodegradable biostimulants, or transgenic plants.
Rhizosphere can be engineered through appropriate selection of crop species and
varieties, by the introduction of microorganisms or soil amendments, and by genetic
modification of plant and microbial biological activities. Plants could be selected by
breeders with favorable traits or microorganisms can be engineered that increase
nutrient accessibility, minimize biotic and abiotic stresses, suppress pathogenic
microbes, or encourage the persistence of beneficial microorganisms (Weller 2007;
Dey et al. 2009; Sindhu et al. 2009a, b). The emergence of molecular techniques
now allows the direct manipulation of genes that influence rhizosphere functions,
and continuing advances in biotechnology ensure more progress for the future.
Metagenomics approach will benefit from the remarkable development of mass
sequencing procedures and will enable us to explore the microbial diversity of the
rhizosphere more rapidly and in greater detail (Rup Lal 2011).

5.5.6.7 Transgenic Plants

Transgenic plants have been produced with genes involved in different pathways to
enhance disease resistance against fungal pathogens. An approach would be the
expression of pathogenesis-related genes and defensins for controlling diseases.
Defensins are small cysteine-rich peptides which have antimicrobial activity. The
transgenic expression of plant defensins protects vegetative tissues against pathogen
attack (Sanghera et al. 2011). Enhanced resistance in tobacco plants against
Rhizoctonia solani has been shown by the chitl gene from the entomopathogenic
fungus Metarhizium anisopliae, encoding the endochitinase Chit42 (Kern et al.
2010). Three genes, ech42, nag70, and gluc78, encoding hydrolytic enzymes from
a biocontrol fungus Trichoderma atroviride were introduced in rice. Gluc78-
overexpressing transgenic plants showed enhanced resistance to Magnaporthe gri-
sea (Sanghera et al. 2011). Rizhsky and Mittler (2001) used the Halobacterium
halobium bacterio-opsin (bO) gene under the control of the wound-inducible pro-
moter Pin2 to develop transgenic tobacco plants resistant to Pseudomonas syringae
pv. tabaci via Agrobacterium-mediated transformation. Bacterio-opsin activates the
self-defense mechanisms in plants by enhancing proton pumping across the cell
membrane (Mittler et al. 1995). Transgenic tobacco plants produced a
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hypersensitive response (HR) due to the expression of the bO gene, and there was
enhanced expression of different types of defense-related proteins such as chitinase,
glucanase, and salicylic acid. The transgenic tobacco plants expressing the bO gene,
when challenged with P. syringae pv. tabaci, slowed down the pathogen growth
(Sanghera et al. 2011).

Agarwal and Agarwal (2016) highlighted the significance of a pathogenesis-
related gene, JcPR-10a, from the biofuel crop Jatropha curcas L. toward stress/
defense tolerance. The JcPR-10a recombinant protein exhibited RNase and DNase
activity, and the protein also possessed antifungal activity against collar rot-causing
fungus Macrophomina phaseolina. Furthermore, the overexpression of JcPR-10a
gene resulted in improved shoot regeneration, salinity tolerance, and reduced fungal
susceptibility in transgenic tobacco. The transgenics also showed enhanced endog-
enous cytokinin level as compared to wild-type plants, which further increased with
salinity. Therefore, JcPR-10a gene can serve as an important candidate to engineer
stress tolerance in Jatropha as well as other plants susceptible to collar rot by
Macrophomina.

The release of organic anions such as citrate and malate has been reported to
improve the availability of poorly soluble organic and inorganic phosphorus
(Richardson et al. 2001; Ryan et al. 2001). Citrate as many other forms of dissolved
carbon (e.g., glucose) is also an important source of energy for most microorgan-
isms. Accordingly, when soluble carbon is available for microbial respiration and
growth, P immobilization by microbes can directly affect P availability by removing
PO* from the soil solution (Biinemann et al. 2004; Olander and Vitousek 2004). A
bacterial citrate synthase gene was reported to increase exudation of organic acids
and P availability to the plant when expressed in tobacco roots (Lopez-Bucio et al.
2000). Citrate-overproducing plants yielded more leaf and fruit biomass when
grown under P-limiting conditions and required less P fertilizer to achieve optimal
growth. This showed the putative role of organic acid synthesis genes in P uptake in
plants.

5.5.7 Microbiome Engineering

Individual microbes or entire beneficial microbial consortia could be engineered to
improve the growth of crop plants in different soil types. As a result, plant-/soil-
optimized microbes can be used as inoculum for different crops in different soils.
There is evidence that soil microbiomes adapt to their crops over time leading to
improved plant-microbe interactions (Berendsen et al. 2012). Substantial evidence
supports the major role of the naturally occurring plant microbiome in disease
development and suppression in plants (Bulgarelli et al. 2013).

Among the nitrogen-fixing systems, the legume-Rhizobium symbiosis alone
accounts for 70-80% of the total N fixed biologically on a global basis per annum
and one-third of the total N input needed for world agriculture. The symbiotic rhi-
zobia have been found to fix N ranging from 57 to 600 kg ha™' annually (Elkan
1992). Annual inputs of fixed nitrogen are calculated to be 2.95 million tons (Tg) for
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the pulses and 18.5 Tg for the oilseed legumes (Herridge et al. 2008). Due to host
specificity characteristics of rhizobia, attempts have been made to broaden the host
range of rhizobia by transfer of cloned nodulation genes, symbiotic plasmids, and
mutational approaches as well as through protoplast fusion (Sindhu and Dadarwal
1985, 1993; Sindhu et al. 2003). Manipulations of common nodulation genes to
improve the bacterial competition have usually resulted in either no nodulation,
delayed nodulation, or inefficient nodulation (Devine and Kuykendall 1996).
Mendoza et al. (1995) enhanced NH,"-assimilating enzymes in R. etli through
genetic engineering, by adding an additional copy of glutamate dehydrogenase
(GDH), which resulted in total inhibition of nodulation on bean plants. However,
nodule inhibition effect was overcome when gdhA expression was controlled by
NifA and thereby delaying the onset of GDH activity after nodule establishment
(Mendoza et al. 1998).

Biotechnological approaches used to enhance N, fixation and crop productivity
(Hardarson 1993; Sindhu et al. 2009a, b) under field conditions have been of limited
use. Attempts to develop self-fertilizing crops for N have also been a failure, mainly
because of the complexity of the nitrogenase enzyme complex to be expressed in
absence of an oxygen protection system in eukaryotes (Dixon et al. 1997). Moreover,
induction of nodule-like structures or pseudonodules using lytic enzymes or hor-
mone treatment in wheat (Triticum aestivum) and rice (Oryza sativa) showed nitro-
genase activity and "N, incorporation, but the activity expressed was >1% of the
value observed for legumes (Cocking et al. 1994). Fox et al. (2016) expanded the
nitrogen-fixing ability to major cereal crops. The use of the efficient nitrogen-fixing
rhizobacterium Pseudomonas protegens Pf-5 X940 was demonstrated as a chassis
to engineer the transfer of nitrogen fixed by BNF to maize and wheat under non-
gnotobiotic conditions. Inoculation of maize and wheat with Pf-5 X940 largely
improved nitrogen content and biomass accumulation in both vegetative and repro-
ductive tissues, and this beneficial effect was positively associated with high nitro-
gen fixation rates in roots. >N isotope dilution analysis showed that maize and
wheat plants obtained substantial amounts of fixed nitrogen from the atmosphere.
Pf-5 X940-GFP-tagged cells were always reisolated from the maize and wheat root
surface but never from the inner root tissues. Confocal laser scanning microscopy
confirmed root surface colonization of Pf-5 X940-GFP in wheat plants, and micro-
colonies were mostly visualized at the junctions between epidermal root cells.
Genetic analysis using biofilm formation-related Pseudomonas mutants confirmed
the relevance of bacterial root adhesion in the increase in nitrogen content, biomass
accumulation, and nitrogen fixation rates in wheat roots.

Ortiz-Marquez et al. (2014) studied the biological nitrogen fixation carried out
by some bacteria and archaea. The effect of controlling the maximum activation
state of the Azotobacter vinelandii glutamine synthase by a point mutation at the
active site (D49S mutation) was compared. Strains bearing the single D49S muta-
tion were more efficient ammonium producers under carbon-/energy-limiting con-
ditions and sustained microalgae growth at the expense of atmospheric N, in
synthetic microalgae-bacteria consortia. However, citrate as many other forms of
dissolved carbon (e.g., glucose) is also an important source of energy for most
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microorganisms. Accordingly, when soluble carbon is available for microbial respi-
ration and growth, P immobilization by microbes can directly affect P availability
by removing PO* from the soil solution (Biinemann et al. 2004; Olander and
Vitousek 2004).

Expression of the mineral phosphate-solubilizing (mps) genes in a different host
could be influenced by the genetic background of the recipient strain, the copy num-
ber of the plasmids present, and metabolic interactions. Thus, genetic transfer of
any isolated gene involved in MPS to induce or improve phosphate-dissolving
capacity in PGPB strains is an interesting approach. An attempt to improve MPS in
PGPR strains, using a PQQ synthase gene from E. herbicola, was carried out
(Rodriguez et al. 2001). This gene was subcloned in a broad-host-range vector
pKT230. The recombinant plasmid was expressed in E. coli and transferred to
PGPR strains of Burkholderia cepacia and Pseudomonas aeruginosa. Several of the
ex-conjugants that were recovered in the selection medium showed a larger clearing
halo in medium with tricalcium phosphate as the sole P source. This indicates the
heterologous expression of this gene in the recombinant strains and gave rise to
improved MPS ability in these PGPR.

P. fluorescens strain BL915 synthesized the antifungal compound pyrrolnitrin. In
one derivative, the regulatory gene gacA was constitutively expressed on a multi-
copy plasmid in BL915. This regulatory derivative produced about 2.5-fold more
pyrrolnitrin than the parent strain (Ligon et al. 2000). A second derivative in which
the entire four-gene prnABCD operon was constitutively expressed from a plasmid
produced fourfold more pyrrolnitrin. When both the plasmids were expressed in the
same cells, antibiotic production was increased to tenfold level over those of the
parental strain. In greenhouse trials, the derivative strains were protective of cucum-
ber in soil infested with R. solani and P. ultimum, while on cotton protection was
better than that provided by BL915 and not significantly different from chemically
treated and healthy controls.

In another study aimed at improving strain efficacy, a cassette containing the
PCA operon from P. fluorescens strain 2-79, expressed from a tac promoter, was
transposed into random sites in the genome of P. fluorescens SBW25 (Timms-
Wilson et al. 2000), which itself has no antibiotic activity. PCA-producing deriva-
tives of SBW25 gave significantly better control of damping-off disease of pea
caused by Pythium ultimum than did SBW25. Moreover, pre-treatment of the soil
with the engineered strain effectively decontaminated it and reduced the disease
incidence. In P. fluorescens Q8r1-96, a superior root colonizer that produces the
unrelated antibiotic 2,4-diacetylphloroglucinol and controls take-all disease of
wheat (Raaijmakers and Weller 2001), and recombinants expressing the PCA cas-
sette produced more DAPG than did wild-type Q8r1-96 and more PCA than P. fluo-
rescens 2-79. The recombinant strains suppressed not only take-all disease but also
Rhizoctonia root rot and were effective at only 10> CFU per seed, an inoculum dose
one to two orders of magnitude less than the dose of Q8r1-96 required for compa-
rable control (Huang et al. 2004). In 3 years of field trials, wheat treated with the
recombinant strains consistently had yields 8-20% greater than those from treat-
ments with Q8r1-96.



5 Amelioration of Biotic Stress by Application of Rhizobacteria for Agriculture... 145

P. fluorescens strain CHAO transformed with ACC deaminase gene from P.
putida UW4 (formerly classified as Enterobacter cloacae) provided improved pro-
tection of cucumber against Pythium, demonstrating the involvement of ethylene in
this plant-pathogen interaction (Wang et al. 2012). Moreover, transformed
Pseudomonas also increased root length of canola seedlings. Recombinant strains
of R. meliloti have been constructed which carry genes to produce chitinase and
express it during symbiosis in alfalfa roots (Sitrit et al. 1993). Downing et al. (2000)
transformed cloned chiA genes of Serratia marcescens and crylAc7 genes of
Bacillus  thuringiensis in the sugarcane-associated endophytic bacterium,
Herbaspirillum seropedicae. Expression of the genes resulted in biocontrol of sug-
arcane borer Eldana saccharina.

A study using appropriate mutant strains of Bacillus amyloliquefaciens FZB42
was performed recently, demonstrating that difficidin and bacilysin are efficient
against two different Xanthomonas oryzae pathovars, causative agents of damaging
rice diseases (bacterial blight and bacterial leaf streak). Agar diffusion tests per-
formed with several FZB42 mutant strains revealed that the inhibitory effect of
mutant CHS8 (Adfn) deficient in production of difficidin was clearly reduced com-
pared to wild-type FZB42. The double mutant RS06 (Asfp Abac) was completely
unable to suppress X. oryzae pv. oryzae and X. oryzae pv. oryzicola suggesting that
difficidin and bacilysin act as antagonists of the pathogenic Xanthomonas strains
(Wu et al. 2015).

5.6 Conclusion

With the increase in the world’s population, the demand for agriculture crop yield
has increased tremendously. The use of fertilizers and pesticides in the agricultural
fields has caused degradation of soil quality and fertility; thus the availability of
agricultural land with fertile soil is limited. Reliable environment-friendly tech-
niques are needed to sustainably meet growing global food demands. On the other
hand, stressful environments deteriorate soil structure and also affect crop produc-
tivity. Increasing concerns for a safe environment and minimizing the use of agro-
chemicals in modern agriculture necessitate the search for the eco-friendly
alternatives. Therefore, there is now a strong push to develop low-input and more
sustainable agricultural practices that include alternatives to chemicals for provid-
ing nutrients and controlling pests and plant pathogens. Rhizobacteria have been
found to enhance plant growth by a wide variety of mechanisms like biological
nitrogen fixation, phosphate solubilization, siderophore production, production of
ACC deaminase, phytohormone production, exhibition of antifungal activity, pro-
duction of volatile organic compounds (VOCs), induction of systemic resistance,
promotion of beneficial plant-microbe symbioses, and interference with pathogens
by antibiotic or toxin production. Some plant-microbe interactions can alleviate
stress, with the application of PGPR. New bacterial traits conferring strain survival
in the rhizosphere have been found and opened a way to better understand specific
signaling and the regulatory processes governing the plant-beneficial bacterial
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association (Matilla et al. 2007). Use of molecular techniques in genetic modifica-
tion of microbial and plant biological activities allows their better functioning in the
rhizosphere (Ryan et al. 2009) leading to substantial improvement in the sustain-
ability of agricultural systems.

The multipartite interactions in the rhizosphere involving microbes, crop plants,
and weeds lead to assembly and maintenance of highly complex and specific root
microbiome (Lareen et al. 2016; Rasmann and Turlings 2016). In addition to patho-
gens, plant roots interact with a plethora of non-pathogenic and symbiotic microor-
ganisms. A good understanding of how plant roots interact with the microbiome
would be particularly important to engineering resistance to root pathogens without
negatively altering root-beneficial microbe interactions. Therefore, it is important to
understand the role of these microbes in promoting growth (as biofertilizers) and
controlling diseases (as biopesticides) under the field conditions, whose success in
the field is still inconsistent. Farming methods that support the recruitment and
maintenance of beneficial microbial communities in the rhizosphere could provide
benefits to agriculture in the form of enhanced crop yields and suppression of dis-
eases and growth of the weeds. Many more plant-microbe interactions remain to be
uncovered, and a good understanding of the mechanisms and ecological implica-
tions could become the basis for exploitation and manipulation of these interactions
for weed, pest, and disease control leading to improved crop productivity for sus-
tainable agriculture. This review focuses on how biocontrol agents modulate plant
defense mechanisms, deploy biocontrol actions in plants, and offer new strategies to
control plant pathogens, weeds, and pests. In particular, new approaches of using
“plant-optimized microbiomes” (microbiome engineering) and establishing the
genetic basis of beneficial plant-microbe interactions will enable breeding of
“microbe-optimized crops.” The integration of microbial biofertilizers, biocontrol
microbes, optimized microbiomes, soil amendments, and microbe-optimized crops
for different soil types would be the ultimate goal to benefit most from positive
plant-microbe interactions. This largely untapped area holds the promise to improve
crop yields and address food security in an environment-friendly and sustainable
manner.
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Role of Serratia sp. as Biocontrol Agent 6
and Plant Growth Stimulator,

with Prospects of Biotic Stress

Management in Plant

Lakshmibala Kshetri, Farjana Naseem, and Piyush Pandey

Abstract

Serratia species is a member of the Enterobacteriaceae family and found to be
ubiquitous in the environment. There are several plants associated with Serratia
sp. that are reported as endophytes or thriving in the rhizosphere of host plants.
Many such isolates are known to have plant growth-promoting (PGP) abilities
and/or biocontrol potential based on the antibiosis (production of prodigiosin
and pyrrolnitrin) and production of lytic enzymes (chitinases and p-1,3-
glucanases) against soilborne fungal pathogens that infect various crops. Serratia
sp. colonized plant roots and within the plant tissues and induced plant growth.
Among the mechanisms by which the genus Serratia exerts beneficial effects on
plants are facilitating the uptake of nutrients such as phosphorus via phosphate
solubilization and siderophore production (secretes catecholate siderophore
enterobactin) and synthesizing stimulatory phytohormones like indole-3-acetic
acid (IAA) (both auxin-dependent and auxin-independent signaling pathways)
that are involved in plant growth promotion. Serratia sp. also elicits induced
systemic resistance (ISR) where enhancement of the plant’s defensive capacity
against diverse plant pathogens and pests is acquired after appropriate stimula-
tion. Bacteria of the genus Serratia have created tremendous interest in research-
ers as such strains showed high potential for biofertilization and plant growth
promotion, contributing better yield of the diverse field and agricultural crops.
Some of the species such as S. plymuthica, S. liquefaciens, S. proteamaculans, S.
grimesii, S. nematodiphila, and S. rubidaea had acquired the attention of
researchers due to their benefits to plants. Some other uncommon species of
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Serratia, like S. ficaria, S. fonticola, S. odorifera, S. entomophila, and S. quiniv-
orans, have been recognized for their role in plant growth stimulation. With the
continuation of interest and research on Serratia as PGPR and biocontrol agents,
the formulations based on Serratia sp. will be instrumental for sustainable
agriculture.

Keywords
Serratia - Biocontrol - Endophytes - PGPR - Indole-3-acetic - Siderophore

6.1 Introduction

The global necessity to enhance agricultural yields to meet the requirement of an
incessantly increasing population has placed considerable strain on the fragile eco-
system. To enhance agricultural productivity, the utilization of biological inoculants
has been increased to reduce chemical fertilizer inputs. Beneficial microorganisms
are used with the aim of improving crop yields because these are believed to aug-
ment nutrient availability, enhance plant growth, and provide protection to plants
from diseases and pests. The bacteria that colonize in the rhizosphere of plants and
enhance growth and yield of crop plants are considered as plant growth-promoting
rhizobacteria (PGPR). The large-scale application of PGPR to crops as inoculants is
an attractive alternative as it would substantially reduce the use of chemical fertil-
izers and pesticides, which often pollute the environment. Kloepper and Schroth
(1981) introduced the term “rhizobacteria” to the soil bacteria which flourish in the
rhizosphere of plants that competitively colonized plant roots and stimulated growth
and thereby reducing the incidence of plant diseases. They termed these beneficial
rhizobacteria as plant growth-promoting rhizobacteria (PGPR). PGPR can be
defined as the indispensable part of rhizobacteria biota that when grown in associa-
tion with host plants can stimulate the growth of the host. Plant roots produce sec-
ondary metabolites, indicating the presence of the roots in the soil and activating the
bacterial genes and the bacterial movement toward the roots (Lutenberg and
Kamilova 2009).

Martinez-Viveros et al. (2010) went a step further and classified PGPR into
extracellular plant growth-promoting rhizobacteria (¢PGPR) and intracellular plant
growth-promoting rhizobacteria (iPGPR). The ePGPRs may exist in the rhizo-
sphere, on the rhizoplane, or in the spaces between the cells of the root cortex; on
the other hand, iPGPRs are generally located inside the specialized nodular struc-
tures of root cells. The bacterial genera such as Agrobacterium, Arthrobacter,
Azotobacter, Azospirillum, Bacillus, Burkholderia, Caulobacter, Chromobacterium,
Erwinia, Flavobacterium, Micrococcus, Pseudomonas, and Serratia belong to
ePGPR (Gray and Smith 2005). The iPGPR includes the endophytes and Frankia
species, both of which can symbiotically fix atmospheric N, with the higher plants
(Verma et al. 2010).
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The genus Serratia comprises Gram-negative bacterium  (family
Enterobacteriaceae), which are ubiquitous and can be found in water, soil, plants,
and animals (including humans). Some of the species are plant-associated that com-
prise both endophytes and free-living species in the rhizosphere (Hallmann et al.
1997). It has also been reported to promote plant growth by inducing resistance
against plant pathogens (Kloepper et al. 1993), production of antagonistic sub-
stances (de Queiroz and de Melo 2006), and solubilization of phosphates (Tripura
et al. 2007).

Several PGPR inoculants including Serratia sp. and PGPR-based biofertilizers
have been commercialized and achieved consistent results in terms of crop produc-
tivity under field conditions and/or provide protection to the crop from pests and
diseases. Several rhizobacterial inoculants are able to supply the importan