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Abstract. In this work, we discuss the synergy between Evolutionary
Computation (EC) and Multi-Agent Systems (MAS) when both are used
together to enhance the process of solving optimization problems. Evo-
lutionary algorithms are inspired by nature and follow Darwin theory
of the fittest. They are usually applied where there is no specific algo-
rithm which can solve optimization problems in a reasonable time. Multi-
Agent Systems, in their turn, are collections of autonomous entities,
named agents, that sense their environment and execute some actions in
the environment to meet their individual or common goals. When these
two techniques are applied together, one can create powerful approaches
to better solve optimization problems. This paper presents an overview
of this combined approach, considering both mono-objective and multi-
objective approaches. In particular, we stress the importance of hyper-
heuristic approaches, i.e., heuristics that help to choose the best EC
algorithm among a candidate set.
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1 Introduction

An optimization problem is the problem of finding the best possible solution
among a set of candidate solutions. More precisely, it aims to find a solution in
the feasible region that minimizes (or maximizes) the value of a certain objective
function [2]. In an optimization problem, solutions are composed of a set of
decision variables s = (x1, . . . , xn), whose values belong to a set of domains
D = (D1, . . . , Dn). These domains can be either continuous (D = R) or discrete
(D = Z). Thus, solutions can solve discrete or continuous optimization problems.
In order to determine which solution better solves a given optimization problem,
it is necessary to define a fitness function f(s) that evaluates the quality of each
solution.

c© Springer Nature Singapore Pte Ltd. 2019
F. Koch et al. (Eds.): GEAR 2018, CCIS 999, pp. 27–41, 2019.
https://doi.org/10.1007/978-981-13-6936-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6936-0_4&domain=pdf
http://orcid.org/0000-0002-4623-7244
http://orcid.org/0000-0001-8924-9643
https://doi.org/10.1007/978-981-13-6936-0_4


28 V. R. de Carvalho and J. S. Sichman

However, many real-world problems are multi-criteria, and thus need the
specification of multiple fitness functions in order to evaluate their solutions. This
is the case, for example, of buying a car considering price and fuel consumption.
These problems are called Multi-Objective Problems (MOPs), where the solu-
tions should optimize different and often conflicting criteria [16]. Usually, clas-
sical exact optimization methods cannot be used to deal with MOPs and more
sophisticated techniques are required. In this paper, evolutionary algorithms and
hyper-heuristics are addressed to solve both mono-objective and multi-objective
optimization problems.

2 Evolutionary Computation

According to Pearl [38], heuristics can be defined as criteria, methods or princi-
ples for deciding which among several alternatives courses of action promises to
be the most effective in order to achieve some goal. Heuristics do not guarantee
optimal solutions; in fact, they do not guarantee any solutions at all: all that can
be said for a useful heuristic is that it offers solutions which are good enough
most of the time [20].

Meta-heuristics, in turn, can be defined as an iterative generation process
which guides a subordinate heuristic by combining intelligently different con-
cepts for exploring and exploiting the search space, using strategies to struc-
ture information in order to find efficiently near-optimal solutions [35]. Usually,
heuristics are specialized in solving problems for one particular domain, while
meta-heuristics are more generic and adaptive in several domains.

One of the most used meta-heuristics are classified as Evolutionary Computa-
tion (EC) algorithms. It is the general term for several optimization algorithms
that are inspired by the Darwinian principles of nature’s capability to evolve liv-
ing beings well adapted to their environment [7]. These algorithms are also called
as Evolutionary Algorithms (EA), and they all share a common underlying idea
of simulating the evolution of individual (or solution) structures via processes of
selection, recombination, and mutation reproduction, thereby producing better
solutions [7].

2.1 Evolutionary Algorithms

In the literature, we can find some algorithms that implement the concept of an
evolutionary algorithm. That is the case of Genetic Algorithm [22] and of Genetic
Programming [25]. In a genetic algorithm, individuals from the population com-
pete and generate offspring using crossover and mutation. Genetic Programming
employs more complex data representation than GA, such as a tree, to represent
individuals. Thus, allowing individuals to have different lengths.

Both algorithms are focused on mono-objective optimization, that means,
one single value to represent the quality of a given solution. However, sev-
eral real-world problems considerate more than one fitness value in order to
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properly evaluate an individual quality. In this scenario, Multi-objective Evo-
lutionary Algorithms (MOEAs) are able to find good solutions for this kind of
problems [16].

Choosing an algorithm to solve a particular optimization problem is not
a trivial task. Usually, a tuning method is necessary, if there is no previous
knowledge about which algorithm to use and what is the recommended algorithm
configuration to solve a given optimization problem. The tuning process consists
in solving an optimization problem using different algorithm running instances
(where each instance represent a different configuration), taking their results,
and finding the best according to a quality indicator. The tuning task has to be
executed for several times, since meta-heuristics are not deterministic algorithms.
Some research has been proposed in order to reduce this difficult task. That is
the case of hyper-heuristics [8].

2.2 Hyper-Heuristics

The motivation for proposing hyper-heuristic came from the “No Free Lunch
Theorem” which establish that “for any algorithm, any elevated performance
over one class of problems is an offset by diminished performance over another
class” [45].

Hence, hyper-heuristics are defined as a high-level methodology that—given
a particular problem instance or class of instances, and some low-level heuris-
tics (LLH), or components—automatically produces an adequate combination
of them to solve the problem efficiently [8].

Most of the research focuses on the selection of online hyper-heuristics, mean-
ing that the process of finding solutions for the optimization problem tries to
figure out which LLH should be given more time to execute. These works usually
consider heuristics such as differential evolution, crossover, and mutation as low-
level heuristics (LLH). However, there are some works which consider the whole
algorithms as LLHs. The majority of research in this area has been limited to
focus on single-objective optimization problems [27].

Evolutionary algorithms and hyper-heuristics have been developed along the
years, most of the times considering centralized implementations. Given their
number of complex components, they could be built as a multi-agent system. In
the next section, we analyze how these areas have been applied together.

3 Multi-Agent Systems

According to Wooldridge [46], an agent is a computer system that is situated in
some environment, and that is capable of autonomous action in this environment
in order to meet its delegated objectives. An agent perceives the environment by
sensors. Thus, based on his perceptions and considering his internal knowledge
and beliefs, the agent can plan how to act, that means, using his actuators
in order to update the environment. A multi-agent system (MAS) is one that
consists of a number of agents, which interact with one another, typically by
exchanging messages through some computer network infrastructure [46].
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4 Combining Multi-Agent Systems and Evolutionary
Computation

Evolutionary algorithms can be used by an agent in order to perform some
tasks, such as learning, parameter estimations, or to support coordination of
some group (team) activity, e.g. planning [39]. On the other hand, evolution-
ary algorithms can be built using the MAS background, which can provide the
mechanisms for a decentralized search.

4.1 Multi-Agent Systems and Evolutionary Algorithms

Several approaches have been proposed for combining MAS and Evolutionary
Algorithms. We can classify them as the following:

– Solutions as passive agents: in this case, solutions may act autonomously for
instance, by selecting which partner would be more interesting to generate
new offspring. In this category, agents are passive and do not perform any
operation, but the algorithm perform operations;

– Solutions as active agents: in this case, solutions are agents which actively
can generate new offspring. In this case, agents contain operations such as
crossover and mutation;

– Algorithms or algorithm components as agents: in this case, complete algo-
rithms instances are considered to generate hybrid approaches where algo-
rithms agents share their solutions along the search;

– Multi-objective: to identify which approach deals with multi-objective
optimization;

– Specially Organized: means if agents are organized in a specific structure,
such as lattice and neighborhood.

Solutions as Passive Agents: In most research, agents represent a complete
feasible solution (an individual in the population) to a given optimization prob-
lem. Thus, agents can cooperate (usually by crossover reproduction), compete for
survival, observe and communicate with the environment. In this case, instead
of the centralized view of a population of solutions, these works consider a pop-
ulation of agents, each one representing a solution. Using this concept, Eiben
et al. [19] solved Travel Salesman Person problem by implementing a black-
board system which allowed the interchange among agents. Thus, each agent
could access other agent’s current solution by means of the blackboard mecha-
nism.

In [39], solution agents also considered a non-renewable resource named life
energy, which is increased or decreased based on how well an agent solve the
given problem. This kind of agent representation was also applied in [47] for
dynamic optimization problems, where the goal of an algorithm is no longer to
find an optimal solution but to track the moving optima in the search. In [15]
propose an approach to solve multi-objective problems: in this approach, each
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agent is invited to be a mate and can accept or decline the proposal according
to its own strategy. These agents can be part of a society of agents, and can
only accept agents from the same society as mates. Offspring are assigned to a
certain society according to a dominance concept. In [43], the authors present
an agent-based memetic algorithm for solving nonlinear optimization problems
with equality constraints, where agents can be either cooperative or competi-
tive through the simulated binary crossover or a proposed Life Span Learning
Process. Chalupa [13] proposes a Multi-agent evolutionary algorithm (MEA). In
this approach, each agent has its lifespan assigned when the solution is created.
MEA performs many short-term local search subroutines, instead of long-term
local search. After that, a collection of promising solutions are stored in the
elite list. Thus, MEA relies on a well-tuned process of highly organized restarts
from promising solutions and performing short-term local search subroutines
to improve these solutions. In [44] the knowledge-based multi-agent evolution-
ary algorithm (KMEA) is proposed for solving the semiconductor final testing
scheduling problem. KMEA has two phases: mutual-learning and competition.
In the mutual-learning, each agent learns from the best one of its neighbors to
obtain a better solution. In the competition, each agent competes with its cur-
rent best neighbor. If it loses the competition, it will be replaced by a new agent
generated according to the knowledge base.

Some research defined how solution agents should be set in the agent com-
munity. That is the case of [6], where agents reside in a grid, and each cell
in the grid contains one agent. A similar approach was employed by Sun and
Zhou [40], where the authors found solutions for the multi-objective energy
resource scheduling of micro-grid, by considering a micro-grid as agents. In [37],
all agents live in a lattice-like environment and die when the energy finishes. They
can only interact with their neighbors. The local environments of all the agents
are constructed by a social acquaintance net. Zeng et al. [48] also set agents in
a lattice in order to find solutions for the Assembly Sequence Planning.

Solutions as Active Agents: Like in mentioned researches, some studies
treat solution as agents, but they also consider the operator which generate
the solution as a component. That is the case of [30], where agents have addi-
tional capacities of decision, learning, and cooperation, by using several operators
which are scheduled by an adaptive decision process. The decision rules of the
agents are adapted during the optimization process by reinforcement learning
and mimetism. In [24] proposed a novel multi-agent multi-objective evolution-
ary framework based on trust where each solution is represented as an intelligent
agent, and evolutionary operators and control parameters are represented as ser-
vices. Agents select services in each generation based on trust that measures the
competency or suitability of the services for solving particular problems. Huang
et al. [23] propose an approach to solve the software module clustering problem
(SMCP). They designed three evolutionary operators as agents: neighborhood
competition operator, the mutation operator, and the self-learning operator.
They also employed a similar energy concept used in earlier works. In [26] they
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solved the 3-D protein structure prediction using an approach which considers
crossover and swap operations as agents. Each agent work with the complete
protein (torsional angles) representation, called solutions, like in an evolution-
ary algorithm [26]. Drezewski and Siwik [18] designed a co-evolution multi-agent
system, where an agent is a combination of the solutions and operations it can
perform, such as clone, recombination and resources management. This approach
was evaluated using ZDT benchmark, a multi-objective optimization benchmark.

Algorithms or Algorithm Components Agents: Some research treats other
evolutionary components or even a full algorithm instance as agents. Zheng
et al. [49] treat the whole population of solutions as an agent. This approach
also keeps a master-agent is responsible for evolving the solutions for the original
problem, and it is modeled as a top-level agent that is an asynchronous team,
consisting of a population of complete solutions and a set of sub-agents working
on the population. The authors evaluated their approach using mono-objective
optimization problems such as Rosenbrock and Sphere. In [4] agents are the
one which finds solutions for the optimization problem. There are two types of
agents: master and slave. A master agent generates the population and divides
them into sub-populations. It sends them to slave agents, responsible for execut-
ing conventional genetic algorithm steps on their sub-population, and periodi-
cally return their best partial results to the master agent. The master stores the
partial results in lists. Denzinger and Offerman [17] present TECHS approach
(TEams for Cooperative Heterogeneous Search), where Genetic Algorithms and
Branch-and-Bound are considered as agents to solve the mono-objective job-
shop-scheduling problem. Each agent gets the whole instance of the problem
to solve, tries to solve the instance according to its search paradigm, and peri-
odically interrupts its search in order to send information to other agents and
to receive information from them. Chatzinikolaou and Roberteson [14] designed
agents to contain a standard, canonical GA that acts on a local population of
solutions, performing standard crossover and mutation on them. This paper also
investigates the effectiveness with which reputation can replace direct fitness
observation as the selection bias in an evolutionary multi-agent system. This
is performed by implementing a peer-to-peer, self-adaptive genetic algorithm,
in which agents act as individual GAs that, in turn, evolve dynamically them-
selves in real-time (namely the parameters employed by them). The evolution
of the agents is implemented in two alternative ways: First, using the tradi-
tional approach of direct fitness observation (self-reported by each agent), and
second, using a simple reputation model based on the collective past experi-
ences of the agents. The authors validated their approach applying Rastringin,
a mono-objective benchmark problem.

In [33], considered a genetic algorithm and a set of search techniques as
agents to solve the mono-objective flexible job shop scheduling problem (FJSP).
The genetic algorithm is employed for global exploration of the search space, the
search set agents guide the research in promising regions of the search space and
to improve the quality of the final population.



EC Meets MAS for Better Solving Optimization Problems 33

In [21] proposed a multi-agent hybrid algorithm composed by two agents:
MOEA/D with a resource allocation mechanism (an evolutionary algorithm)
and a local search method for the two-objective deteriorating scheduling.

Table 1 summaries all agent-based evolutionary algorithms, by classifying
them according to how they implement agents in their design, if they implement
these concepts on solutions, heuristics operator, algorithms instances. We can
see that most papers employs solutions as agents and are designed for mono-
objective optimization.

4.2 Multi-Agent Systems and Hyper-Heuristics

Several approaches have been proposed for combining MAS and Hyper-
Heuristics. We can classify them as the following:

– Heuristic as agent: approaches which consider operators such as crossover and
mutation as agents;

– Algorithm as agent: where a complete algorithm instance is considered as an
agent;

– Both algorithms and heuristics as agents: approaches which consider as agents
both different algorithm instances and heuristics as agents;

– Multi-objective: to identify which approach deals with multi-objective
optimization;

– Cooperative or Competitive: if agents try to cooperate with each other or
compete for computational resources.

Heuristic as Agent: Ouelhadj and Petrovic [36] employed search operators,
such as Swap, Inversion, Insertion, and Permutation, as LLH agents to solve
Permutation Flow Shop. This is a cooperative hyper-heuristic, where the heuris-
tic agents perform a local search through the same solution space starting from
the same or different initial solution and using different low-level heuristics. The
agents exchanges their best solutions. After a generation, the best solutions are
selected from all agents. This approach performs a greedy selection strategy to
select an LLH to execute.

Meignan et al. [31] propose a selection hyper-heuristic where agents are
responsible for concurrently explore the search space of an optimization prob-
lem in a cooperative way, where agents organized in a coalition cooperate by the
exchanging of information about the search space and their experiences in order
to improve agents behaviors. In order to generate new solutions, an agent uses
several heuristics which are scheduled by an adaptive decision process, based
on heuristic rules adapted along the optimization process by individual learn-
ing and. In this approach, a search agent keeps three solutions: the current, the
best-found solution of the agent and the best solution of the entire coalition,
and it can employ several operators on its current solution. This approach was
applied to solve the Vehicle Routing Problem (VRP).
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Table 1. Meta-heuristics papers classification

Paper Solution as
passive agent

Solution as
active agent

Algorithms or
components as
agent

Multi-
objective

Specially
organized

Eiben et al. [19] �
Socha and
Kisiel-
Dorohinicki [39]

�

Yan et al. [47] �
Chira et al. [15] � � �
Ullah et al. [43] �
Chalupa [13] �
Wang and
Wang [44]

� �

Belkhelladi
et al. [6]

� �

Sun and
Zhou [40]

� �

Pan and
Chen [37]

� �

Zeng et al. [48] � �
Meignan
et al. [30]

�

Jiang et al. [24] � �
Huang
et al. [23]

�

Corrêa
et al. [26]

� �

Drezewski and
Siwik [18]

� �

Zheng et al. [49] �
Balid and
Minz [4]

�

Denzinger and
Offerman [17]

�

Chatzinikolaou
and
Robertson [14]

�

Nouri et al. [33] �
Fu et al. [21] � �
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Algorithm as Agent: Cadenas et al. [9] introduced a cooperative multi-agent
meta-heuristic approach, where agents communicate their best solutions using a
common blackboard. This blackboard is monitored by a coordinator agent who
is responsible to modify meta-heuristic agents behaviors based on fuzzy rules
which take in account algorithms performance in the search. The authors tested
their approach using 0/1 knapsack problems.

Malek [28] proposes a multi-agent hyper-heuristic to solve several combina-
torial problems by considering GA, TS, SA, PSO, ACO as algorithm agents. In
this approach, there is also a Problem agent, a Solution Pool agent (responsible
to keep all solutions), and Adviser agent, an agent who provides parameter set-
tings for the algorithms and receives reports from them. All algorithm agents of
the same kind are associated with a common Adviser agent.

de Carvalho and Sichman [10,12] propose a Multi-Objective Agent-Based
Hyper-Heuristic (MOABHH), an agent-based multi-objective hyper-heuristic
focused on selecting the most suitable multi-objective evolutionary algorithm
during execution time. MOABHH used the concept of voting to define which
algorithm should receive a bigger participation in the generation of solutions. As
a voting procedure, they applied the Copeland voting method and employed a
set of voter agents responsible for evaluating algorithms (composed by NSGA-II,
IBEA, and SPEA2) performance according to different quality indicators (com-
posed by Hypervolume, Spread, RNI, GD, and IGD); these are usually used by
the MOP community to compare the performance of MOEAs. After the voting,
the most voted candidate received a bigger participation on the next offspring
generation. In [11], the authors extended their work to solve four real-world engi-
neering optimization problems. In this work, IGD and GD were replaced by HR
and ER due to the fact of these indicators need previous problem knowledge, to
make the approach applicable to real-world problems. This paper also set GDE3
as MOEA agent.

Acan and Lotfi [1] propose a collaborative hyper-heuristic architecture
designed for multi-objective real-parameter optimization problems. In their app-
roach, the population of solutions is split into sub-populations based on Pareto
dominance, and then these sub-populations are assigned each one to a meta-
heuristic agent, based on a cyclic or round-robin order, making meta-heuristics
agents in this approach each operates on a sub-population in subsequent ses-
sions. Meta-heuristic agents have their own population of non-dominated solu-
tions extracted in a session, while there is also a global population of solutions
keeping all non-dominated solutions found in the search. This study set MOGA,
NSGAII, SPEA2, MODE, IMOPSO, AMOSA as meta-heuristic agents, and it
was evaluated considering the CEC2009 benchmark.

Nugraheni and Abednego [34] propose an approach to select one of three
agent Hyper-heuristics based on Genetic Programming (GPHH agent), Genetic
Algorithm Hyper-Heuristic (GAHH agent), and Simulated Annealing Hyper-
Heuristics (SAHH agent). These HH agents choose some low-level heuristics and
work in search space of heuristics rather than a space of solutions directly.
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Both Algorithms and Heuristics as Agents: Talukdar et al. [42] propose
A-Teams, a synergistic team of problem-solving methods which cooperates by
sharing a population of candidate solutions. In this approach, there is no coordi-
nation or planning mechanism, solutions are shared, through the central memory
mechanism, allowing other agents to use these solutions in order to guide the
search through promising search space, thus reducing the chances of being stuck
at a local optimum. Aydin and Fogarty [3] extended A-Teams approach for solv-
ing Job Shop Scheduling. They employed as problem solving agents: SA (Sim-
ulated Annealing), TS (Taboo Search), HC (Hill Climbing), CSA (Simulated
Annealing), CTS (Taboo Search), CHC (Hill Climbing), CHC2 (Hill Climb-
ing), GA (Genetic Algorithm), NT (Improved version of CTS), and Damage.
Barbucha [5] also extended the A-Team approach in order to create an Agent-
Based Cooperative Population Learning Algorithm for the Vehicle Routing Prob-
lem with Time Windows. In his approach, the search is treated into stages, and
different search procedures are used at each stage. The first stage is organized
as an A-Team, where agents are used for improving the individuals stored in the
common memory. In the second stage, the individuals in the population (com-
mon memory) are divided into subpopulations and allocated to a different set
of A-Teams. In this level, each A-Team uses the same heuristics working under
the same cooperation scheme. In the third stage, the sub-populations and the
team of A-Teams architecture are also being employed. However, the process
of communication among the set of A-Teams is used. The author evaluated his
approach setting five problem-specific heuristics in the first stage, and a set of
four Tabu Search and simulated annealing in the higher level.

Milano and Roli [32] presented the Multi-agent Meta-heuristic Architecture
(MAGMA), a four-level architecture, with one or more agents at each level, where
each level one or more agents act. The first level contains solution builders agents,
responsible for providing feasible solutions for upper levels. The second level
contains solution improvers, responsible for providing local search and solution
improvements until a termination condition is verified. The third-level agents
have a global view of the search space, or, at least, their task is to guide the search
towards promising regions trying to avoid local optima. In the last level (Level-3)
higher level strategies are described, such as a cooperative search and any other
combination of meta-heuristics. The authors showed the three first levels are
enough to describe standalone meta-heuristics and then evolutionary algorithms.
Besides that, Level-3 can model coordinated cooperative hybrid meta-heuristics.

Talbi and Bachelet [41] propose a hybrid approach to solve the quadratic
assignment problem by applying Tabu Search, Genetic Algorithm e KO (kick
operator) as cooperative agents. The three heuristic agents run simultaneously
and exchange information via an adaptive memory (AM). Each algorithm has a
role: the Tabu Search is used as the main search algorithm, the Genetic Algo-
rithm is in charge of the diversification and the Kick Operator is applied to
intensify the search.

Martin et al. [29] propose a multi-agent hyper-heuristic where each agent
implements a different meta-heuristic/local search combination. These agents
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also adapt itself along the search by using a proposed cooperation protocol
based on reinforcement learning and pattern matching. Two kinds of agents
are employed: launcher and meta-heuristic agents. The launcher is responsible
for instantiating and keep the optimization problem, set up algorithms, and cre-
ate initial solutions. The meta-heuristic agent contains an algorithm responsible
for searching collectively for good quality solutions. The authors evaluated their
approach using the mono-objective problems: Permutation Flow Shop, CVRP e
Nurse Rostering and employing RandCWS, RandNEH as meta-heuristic agents.

Table 2 summaries all agent-based hyper-heuristics, by classifying them
according to how they implement agents in their design. These paper are classi-
fied according to how they employ agents, if they are designed for multi-objective
optimization, and if they are cooperative and competitive. Most of the research
deals with mono-objective optimization and are cooperative.

Table 2. Hyper-heuristics papers classification

Paper Heuristic
as agent

Algorithm
as agent

Algorithm
and heuristic
as agent

Multi-
objective

Cooperative Competitive

Talukdar
et al. [42]

� �

Aydin and
Fogarty [3]

� �

Barbucha [5] � �
Milano and
Roli [32]

� �

Talbi and
Bachelet [41]

� �

Cadenas
et al. [9]

� �

Malek [28] � �
Ouelhadj and
Petrovic [36]

� � �

Meignan
et al. [31]

� �

Martin
et al. [29]

� �

de Carvalho and
Sichman [10,11]

� � � �

Acan and
Lotfi [1]

� � �

Nugraheni and
Abednego [34]

� �
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5 Conclusions

This paper presented the synergy between Evolutionary Computation (EC) and
Multi-Agent Systems (MAS) when both are used together to enhance the process
of solving optimization problems.

We have proposed a criteria to characterize how agent theory is considered in
order to design evolutionary algorithms, hybrid algorithms and hyper-heuristics
by identifying which component is considered an agent and how this agent acts.

One can notice that this synergy has shown several interesting results, espe-
cially concerning the case of hyper-heuristics, due to the fact these approaches
combine different heuristics and algorithm in order to better explore the search
space. This set of components can naturally be designed as an agent-based
system.

Acknowledgements. This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. Vini-
cius Renan de Carvalho was also supported by CNPq, Brazil, under grant agreement
no. 140974/2016-4.

References

1. Acan, A., Lotfi, N.: A multiagent, dynamic rank-driven multi-deme architecture
for real-valued multiobjective optimization. Artif. Intell. Rev. 48(1), 1–29 (2017)

2. Atallah, M.J.: Algorithms and Theory of Computation Handbook. CRC Press,
Boca Raton (1998)

3. Aydin, M.E., Fogarty, T.C.: Teams of autonomous agents for job-shop scheduling
problems: an experimental study. J. Intell. Manuf. 15(4), 455–462 (2004)

4. Balid, A., Minz, S.: Improving multi-agent evolutionary techniques with local
search for job shop scheduling problem. In: 2008 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology, vol. 2,
pp. 516–521, December 2008

5. Barbucha, D.: A cooperative population learning algorithm for vehicle routing
problem with time windows. Neurocomputing 146, 210–229 (2014). Bridging
Machine learning and Evolutionary Computation (BMLEC) Computational Col-
lective Intelligence

6. Belkhelladi, K., Chauvet, P., Schaal, A.: An agent framework with an efficient
information exchange model for distributed genetic algorithms. In: 2008 IEEE
Congress on Evolutionary Computation (IEEE World Congress on Computational
Intelligence), pp. 848–853, June 2008

7. Boussaid, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf.
Sci. 237, 82–117 (2013)

8. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64(12), 1695–1724 (2013)

9. Cadenas, J.M., Garrido, M.C., Munoz, E.: A cooperative system of metaheuristics.
In: 7th International Conference on Hybrid Intelligent Systems (HIS 2007), pp.
120–125, September 2007

10. de Carvalho, V.R., Sichman, J.S.: Applying copeland voting to design an agent-
based hyper-heuristic. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, pp. 972–980 (2017)



EC Meets MAS for Better Solving Optimization Problems 39

11. de Carvalho, V.R., Sichman, J.S.: Solving real-world multi-objective engineering
optimization problems with an Election-Based Hyper-Heuristic. In: International
Workshop on Optimisation in Multi-agent Systems (OPTMAS 2018) (2018)

12. de Carvalho, V.R., Sichman, J.S.: Multi-agent election-based hyper-heuristics. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence,
pp. 5779–5780 (2018)

13. Chalupa, D.: Adaptation of a multiagent evolutionary algorithm to NK landscapes.
In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolu-
tionary Computation, GECCO 2013, Companion, pp. 1391–1398. ACM, New York
(2013)

14. Chatzinikolaou, N., Robertson, D.: The use of reputation as noise-resistant selec-
tion bias in a co-evolutionary multi-agent system. In: Proceedings of the 14th
Annual Conference on Genetic and Evolutionary Computation, GECCO 2012, pp.
983–990. ACM, New York (2012)

15. Chira, C., Gog, A., Dumitrescu, D.: Exploring population geometry and multi-
agent systems: a new approach to developing evolutionary techniques. In: Pro-
ceedings of the 10th Annual Conference Companion on Genetic and Evolutionary
Computation, GECCO 2008, pp. 1953–1960. ACM, New York (2008)

16. Coello, C.: Evolutionary Algorithms for Solving Multi-objective Problems.
Springer, New York (2007). https://doi.org/10.1007/978-0-387-36797-2

17. Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms
and other search paradigms. In: Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), vol. 3, p. 2324 (1999)

18. Drezewski, R., Siwik, L.: Agent-based multi-objective evolutionary algorithm with
sexual selection. In: 2008 IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence), pp. 3679–3684, June 2008

19. Eiben, E.A., Schoenauer, M., Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo,
J.J.: Exploring selection mechanisms for an agent-based distributed evolutionary
algorithm. In: Proceedings of the 9th Annual Conference Companion on Genetic
and Evolutionary Computation, GECCO 2007, pp. 2801–2808. ACM, New York
(2007)

20. Feigenbaum, E.A., Feldman, J., et al.: Computers and Thought. ACM, New York
(1963)

21. Fu, Y., Wang, H., Tian, G., Li, Z., Hu, H.: Two-agent stochastic flow shop dete-
riorating scheduling via a hybrid multi-objective evolutionary algorithm. J. Intell.
Manuf., 1–16 (2018)

22. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach.
Learn. 3(2), 95–99 (1988)

23. Huang, J., Liu, J., Yao, X.: A multi-agent evolutionary algorithm for software
module clustering problems. Soft Comput. 21(12), 3415–3428 (2017)

24. Jiang, S., Zhang, J., Ong, Y.S.: A multiagent evolutionary framework based on
trust for multiobjective optimization. In: Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012, vol.
1, pp. 299–306, International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC (2012)

25. Koza, J.R.: Evolution of subsumption using genetic programming. In: Proceedings
of the First European Conference on Artificial Life, pp. 110–119 (1992)
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