
Chapter 8
Stochastic Optimal Control of Seismic
Structures with MR Dampers

8.1 Preliminary Remarks

Although the active structural control can attain a desired structural performance,
the power supply system for implementing the structural control might suffer from
a serious damage when subjected to hazardous dynamic excitations (Patten et al.
1998). Moreover, the entire structural system tends to instability due to the inevitable
modeling error, measurement noise, and time delay (Soong 1990). A refinedmeans is
to actualize the logical combination between the active and passive controlmodalities
so as to carry out a semiactive structural control. Thismodality exhibits a less demand
of external energy and a low risk of system dynamic instability, which has thus
received extensive attention in practice (Chu et al. 2005; Dan et al. 2015).

Owing to the perfect dynamic damping behaviors, the magnetorheological (MR)
damper is regarded as one of the most promising control devices for implementing
the semiactive structural control (Casciati et al. 2006). It has been an active area
of research worldwide in the past two decades. The relevant topics include semiac-
tive control algorithms and strategies (Jansen and Dyke 2000; Yoshioka et al. 2002;
Nagarajaiah andNarasimhan2006;Li et al. 2007;Xu andGuo2008;Hogsberg 2011),
modeling and dynamic performance ofMR dampers (Spencer et al. 1997; Yang et al.
2002; Tsang et al. 2006; Boada et al. 2011; Xu et al. 2012; Chae et al. 2013), novel
materials and technologies (Carlson and Jolly 2000; Tse and Chang 2004; Jung et al.
2010; Imaduddin et al. 2013), real-time hybrid simulations (Carrion et al. 2009; Cha
et al. 2013; Asai et al. 2015), etc; while a few attempts, in the theoretical framework
of stochastic optimal control, have been carried out for the design and optimization
of MR damped structures. For instance, Dyke et al. proposed a LQG clipped-optimal
control strategy implemented by MR dampers for strengthening the seismic safety
of structures (Dyke et al. 1996). Ni et al. developed a neural network controller
with MR damper, which achieved the similar gain to the LQG clipped-optimal con-
troller (Ni et al. 2002). Ying et al. proposed a non-clipped strategy of semiactive
stochastic optimal control for nonlinear structural systems with MR dampers based
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on the stochastic averagingmethod and stochastic dynamic programming (Ying et al.
2009). Using the modal-based LQG control algorithm and MR dampers, a smart
system design was addressed to enhance the seismic performance of base-isolated
buildings (Wang and Dyke 2013).

As a semiactive control device, the MR damper needs accurate dynamic models
in the application of civil engineering, so as to online predict the control law, i.e.,
input current, in each time step in view of the relation between the dynamical model,
the expected semiactive control force, and the structural state. However, the dynamic
constitutive relation of the magnetorheological fluid arises to be complicated since
its mechanical behaviors hinge upon a series of factors such as the magnetic field
intensity and the shear rate driven by the damper piston. The complex behaviors
of the MR fluid bring a challenging issue for accurate modeling of MR dampers.
The dynamic test shows as well that the hysteretic behaviors of MR dampers indeed
give rise to significant nonlinearity. Therefore, the accurate, simple, and feasible
mechanical models ought to be established so as to fulfill the performance of MR
dampers and guarantee the real-time effectiveness of the semiactive control strategy.

In this chapter, the method of stochastic optimal control usingMR dampers is first
introduced.Dynamicmodeling, input current identification, andmicrostructured sus-
pension behaviors of theMRdamper are then addressed. For illustrative purposes, the
semiactive stochastic optimal control of an MR damped structural system subjected
to random seismic ground motion is carried out.

8.2 Semiactive Stochastic Optimal Control Using MR
Dampers

A lot of semiactive control algorithms and control strategies have been developed in
recent years to fulfill the dynamic performance of MR dampers. For instance, Jansen
and Dyke investigated the effectiveness of classical semiactive control algorithms
including the Lyapunov stability theory, the LQG clipped-optimal control, the decen-
tralized Bang–Bang control, the modulated homogenous friction, and the maximum
energy dissipation (Jansen andDyke 2000). Chae et al. proposed an updatedMaxwell
nonlinear slider model for predicting the two-state control modalities ofMR dampers
subjected to random displacements, i.e., Passive-off and Passive-on, and the variant
current and damper outputs (Chae et al. 2013). A semiactive stochastic optimal con-
trol in the theoretical framework of the physically based stochastic optimal control
was developed (Peng et al. 2017). In conjunction with the bound Hrovat algorithm,
the proposed strategy of semiactive stochastic optimal control exhibits the benefits
of simplicity and effectiveness.
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8.2.1 Bound Hrovat Algorithm

For a randomly excited linear structural system attached with MR dampers, the
equation of motion is given by

MẌ(t) + CẊ(t) +KX(t) � BsUs(t) + DsF(�, t) (8.2.1)

where M,C,K are n × n mass, damping, and stiffness matrices, respectively; X
is the n-dimensional column vector denoting system displacement; Bs is the n × r
matrix denoting the location of MR dampers;Us is the r-dimensional column vector
denoting control forces pertaining toMRdampers;Ds is the n×pmatrix denoting the
location of external random excitations; and F is the p-dimensional column vector
denoting random excitation.

The control force of MR dampers typically consists of two parts: the passive
damping force that cannot be regulated by the control law and the variable damping
force that can be regulated by the control law. Considering a shear-valve mode MR
damper that is often applied in practice, the term related to the MR damper force in
Eq. (8.2.1) can thus be denoted by

BsUs(t) � −BsCDẊ(t) − BsUdc(t) (8.2.2)

whereBsCDẊ(t) denotes the passive damping force andBsUdc(t) denotes the variable
Coulombic force which can be regulated through changing the input current and the
associated magnetic field intensity which influences the yield strength of the MR
fluid. The input current is determined by system state and damper models allowing
for implementation of the expected damper force as a certain semiactive control
algorithm.

Substituting Eq. (8.2.2) into Eq. (8.2.1), one has

MẌ(t) + (C + BsCD)Ẋ(t) +KX(t) � −BsUdc(t) + DsF(�, t) (8.2.3)

Introducing the extended state vector Z(t) � [XT(t) ẊT(t)]T, Eq. (8.2.3) becomes

Ż(t) � AZ(t) + BUdc(t) + DF(�, t) (8.2.4)

whereA is the 2n×2n system matrix; B is the 2n× r matrix denoting the location of
MR dampers; andD is the 2n×pmatrix denoting the location of random excitation:

A �
[

0 I
−M−1K −M−1(C + BsCD)

]
,B �

[
0

−M−1Bs

]
,D �

[
0

M−1Ds

]
(8.2.5)

In order to attain a good agreement with the dynamic behaviors of MR damper,
a simple and efficient control strategy based on the Hrovat algorithm (Hrovat et al.
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Fig. 8.1 Relation between
MR damping force and
damper velocity at a certain
instant of time in the case of
a sample excitation
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1983) is developed for the MR damper control, of which the component formulation
is given by

Us(�, t) �

⎧⎪⎪⎨
⎪⎪⎩
cDẎ (�, t) + Udc,maxsgn(Ẏ (�, t)), Case A: UaẎ < 0 and |Ua| > Ud ,max

|Ua|sgn(Ẏ (�, t)), Case B: UaẎ < 0 and |Ua| < Ud ,max

cDẎ (�, t) + Udc,minsgn(Ẏ (�, t)), Case C: UaẎ > 0

(8.2.6)

where Us(�, t) denotes the semiactive stochastic optimal control force executed
by the MR damper; Ua(�, t) denotes the reference active stochastic optimal con-
trol force; Ud ,max(�,t) � cD

∣∣Ẏ (�,t)
∣∣ + Udc,max denotes the changeable maximum

damping force of MR damper; Udc,max,Udc,min denote the maximum and minimum
Coulombic forces of MR damper; cD denotes the viscous damping coefficient of MR
damper; and Ẏ (�,t) denotes the damper velocity, i.e., the motion velocity of piston
relative to the damper cylinder which is opposite to the interstory drift between the
stories with the MR damper. In these parameters, Udc,max,Udc,min, cD are the design
parameters pertaining to the MR damper.

Figure 8.1 shows the relation between the MR damper force Us(θ,t) and damper
velocity Ẏ (θ,t) at a certain instant of time in the case of a sample excitation θ.
The control force represented by Eq. (8.2.6) can be realized through driving the
calculated current into the MR damper. The expected input current is typically an
inverse solution of MR damper models. In application, the control effectiveness of
MR dampers highly hinges upon the accuracy and computational cost of the inverse
solution. Herein, the input current is assumed to fully implement the control gain in
demand with Eq. (8.2.6).

Substituting the formulation of control force as shown in Eq. (8.2.6) into the
equation of motion of stochastic dynamical system; say Eq. (8.2.4), one can attain
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the solutions of the state vector and the control force. Clearly, the quantities of con-
cern including the component of story velocity Ẋ (�,t), the component of semiactive
stochastic optimal control force Us(�, t), and the active stochastic optimal control
force Ua(�, t) are functions of �. Similar to Eqs. (3.2.4) and (3.2.5), these quan-
tities satisfy with the generalized probability density evolution equations (GDEEs),
respectively, as follows:

∂pẊ�(ẋ, θ, t)

∂t
+ Ẍ (θ, t)

∂pẊ�(ẋ, θ, t)

∂ ẋ
� 0 (8.2.7)

∂pUs�(us, θ, t)

∂t
+ U̇s(θ, t)

∂pUs�(us, θ, t)

∂us
� 0 (8.2.8)

∂pUa�(ua, θ, t)

∂t
+ U̇a(θ, t)

∂pUa�(ua, θ, t)

∂ua
� 0 (8.2.9)

Under the provided initial conditions

pẊ�(ẋ, θ, t)|t�0� δ(ẋ − ẋ0)p�(θ) (8.2.10)

pUs�(us, θ, t)|t�0� δ(us − us0)p�(θ) (8.2.11)

pUa�(ua, θ, t)|t�0� δ(ua − ua0)p�(θ) (8.2.12)

one can attain the probability density functions of the quantities of concern at any
instant of time as follows:

pẊ (ẋ, t) �
∫

��

pẊ�(ẋ, θ, t)dθ (8.2.13)

pUs (us, t) �
∫

��

pUs�(us, θ, t)dθ (8.2.14)

pUa (ua, t) �
∫

��

pUa�(ua, θ, t)dθ (8.2.15)

where ẋ0, us0, ua0 denotes the initial deterministic values of Ẋ (t),Us(t),Ua(t).

8.2.2 Parameter Design of MR Damper

In order to gain a similar control effectiveness as the reference active stochastic
optimal control, an MR damper design can be proceeded to facilitate the semiactive
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control system. The design principle lies in that the maximum output of the MR
damper including the viscous damping force equals to the maximum active optimal
control force, i.e., the extreme value of active optimal control force.

Assume that the MR damper control and the active optimal control have a similar
control effectiveness, for instance, a same interstory velocity at the moment of the
maximum active optimal control force:

Us,max(�) � cD
∣∣∣Ẏs|Us,max(�)

∣∣∣ + ∣∣Udc,max
∣∣ � cD

∣∣∣Ẏa|Ua,max(�)

∣∣∣ + ∣∣Udc,max
∣∣ � Ua,max(�) (8.2.16)

Since the output of the MR damper can be continuously tuned by the current-
driven magnetic field, there is

Us,max(�) � cD
∣∣∣Ẏs|Us,max(�)

∣∣∣ + Udc,max � s
(
cD

∣∣∣Ẏs|Us,max(�)

∣∣∣ + Udc,min

)
(8.2.17)

where s denotes the tunable times of damper force.
Assuming that the minimum Coulombic force Udc,min � 0, then one has

Us,max(�) � scD
∣∣∣Ẏa|Ua,max(�)

∣∣∣ � Ua,max(�) (8.2.18)

The viscous damping coefficient is thus denoted by

cD � Ua,max(�)

s
∣∣∣Ẏa|Ua,max

(�)
∣∣∣ (8.2.19)

and the maximum Coulombic force can be derived from Eqs. (8.2.17) to (8.2.19)

Udc,max � (s − 1)cD
∣∣∣Ẏa|Ua,max(�)

∣∣∣ (8.2.20)

It is shown in Eq. (8.2.20) that owing to the randomness inherent in the external
excitation, the system state and the associated optimal control force are random pro-
cesses. In this context, the parameters of control law exhibit uncertainties due to the
dispersion over the sampling space. For example, the design parameters Udc,max, cD
both rely upon �. However, the parameter design and optimization of control law is
a deterministic scheme, i.e., the design parameters of structural control ought to be
constant regardless of samples of random excitations.

It is revealed that the first step of MR damper control of structures in practice is
to gain the expected damper force for the response reduction of structures, and then
calculate the input current according to the dynamic model of MR dampers and the
real-time system state, i.e., the so-called control law for regulation ofMRdampers. In
this process, the desired structural performance controlled by the semiactivemodality
can be precisely derived in theory if the real output ofMRdampers just relies upon the
amplitude of input current and the real-time state of structural system. This situation,
however, is retained under two provided conditions: (i) no measurement noise during
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Fig. 8.2 Flowchart of implementing MR damper control of structures

the structural state monitoring and no errors inherent in the current calculation and
signal delivery to the damper; (ii) no time delays at each step from statemeasurement,
semiactive control force analysis, input current calculation, and signal delivery to the
MR damper. However, there still exist differences between the output of MR damper
and the expected semiactive optimal control force even the provided conditions are
satisfied, due to the physical constraints of MR dampers such as the complicated
rheological behaviors of MR fluids. In fact, the MR damping system belongs to a
family of feedback control systems in logic. The associated measurement noise and
time delay would exist in the control system. Moreover, the calculated current might
exhibit a large diverse from the expected due to the modeling error of MR damper.
Therefore, a set of measure system is often used in practice to monitor the real-time
output of MR damper, thereby a current compensation strategy is thus proposed to
better the control effectiveness of MR damper.

The flowchart of implementing the MR damper control of structures is shown in
Fig. 8.2. It is seen that the active control force-based semiactive controller design
and the dynamic modeling of MR dampers underly the design and optimization of
control law of semiactive control.

8.3 Dynamic Modeling of MR Dampers

8.3.1 Parameterized Model

The dynamic models of MR dampers are mainly classified into parameterized and
nonparameterized models (Yang et al. 2013). The parameterized models are mostly
the mathematical formulation of damper force derived from the fitted curves of rela-
tionships between the damper force and damper displacement or velocity, of which
the data is collected from the performance test of MR dampers. The parameterized
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models usually consist of a collection of mechanical elements such as the spring ele-
ment, the viscous damping element, and the Coulomb friction element in configura-
tion of serial and parallel systems (Spencer et al. 1997). The widely used parameter-
ized models of MR dampers are mainly the Bingham model, Gamota-Filisko model,
nonlinear bi-viscous hysteretic model, Bouc–Wen hysteretic model, their modified
versions, etc. Similarly, the nonparameterized models are derived from the data of
performance test of MR dampers, and are formulated by the intelligent algorithms
such as neural network and fuzzy logic (Chang and Roschke 1998; Xu and Guo
2008), while these two families of modelings both are built toward the phenomenol-
ogy and match with the accurate description of macroscale dynamic behaviors of
MR dampers. However, the parameterized models exhibit a more feasible extension
and a better applicability in practice.

Among the parameterized models, the modified Bouc–Wen hysteretic model is
a preferable formulation for dynamic modeling of MR dampers since it not only
reveals the hysteretic behavior inherent in the relation between damper force and
velocity but also improves the slipperiness of piecewise functional curves. Thismodel
was first proposed by Bouc (1967), and later modified by Wen (1976). It has been
widely used in modeling of hysteretic structural systems owing to its simplicity and
feasibility. However, the Bouc–Wen hysteretic model cannot simulate the roll-off
characteristics in the relation curves between damper force and velocity in the case
that the acceleration and velocity turn direction and the velocity amplitude are very
low. For this reason, a modified Bouc–Wen hysteretic model was then developed
by Spencer et al. (1997). The schematic of a shear-valve mode MR damper and its
modified Bouc–Wen hysteretic model are shown in Fig. 8.3.

The modified version consists of an original Bouc–Wen hysteretic model in series
of a damping element and then in parallel of a spring element, which has the formu-
lation with respect to the output of MR dampers as follows:

FD � c1ẏ + k1(x − x0) (8.3.1)

ẏ � 1

c0 + c1
[αz + k0(x − y) + c0ẋ] (8.3.2)

ż � −γ |ẋ − ẏ|z|z|n−1 − β(ẋ − ẏ)|z|n + A(ẋ − ẏ) (8.3.3)

where FD denotes the damper force; ẏ denotes the piston velocity; z denotes the
hysteretic component; k1 denotes the equivalent axial spring stiffness of accumula-
tors; c0 denotes the viscous damping coefficient of MR dampers in the case of large
damper velocity; c1 denotes the damping coefficient of MR dampers in the case of
small damper velocity; k0 denotes the axial stiffness of MR dampers in the case of
high damper velocity; x0 denotes the initial displacement of accumulator spring k1;
α denotes a stiffness parameter defined by the control current and the MR fluid; and
γ , β, and A are defined to govern the smoothing of damper force–velocity curves.

For illustrative purposes, the dynamic modeling of MR dampers using the experi-
mental data is carried out, whichwas derived from a dynamic test ofMR damper with
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Fig. 8.3 Schematic of shear-valve mode MR damper and its modified Bouc–Wen hysteretic model

specification MRD-100-10 (Peng et al. 2018). The specimens of the MR damper are
shown in Fig. 8.4. The two specimens are labeled by MRD-A and MRD-B, respec-
tively. This specification of MR dampers consists of cylinder, piston, MR fluid, and
coils, which is a typical single-rod damper, as shown in Fig. 8.3. When the piston
moves back and forth relative to the cylinder, the MR fluid passes through the annual
gap between the piston and the cylinder, and yields damping force. The damping
force can be readily regulated by changing the density of magnetic flux circumfused
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around the coils, which is able to be carried out using varying currents driven intoMR
dampers. The design parameters of the MR damper are listed as follows: maximum
output 10 kN, the outer diameter of cylinder 100 mm, the fabrication length 670 mm,
the length of stroke ±55 mm, the rated current 2.0 A, and the energy consumption
20 W.

The dynamic test was carried out on an electrohydraulic and servo-controlled
material testing machine; see Fig. 8.5. During the test, the active clamp drives the
motion of the piston of MR damper so that the piston executes a harmonic motion
with specified frequency and amplitude relative to the cylinder. The input current
to the MR damper, in four different levels 0.0, 0.5, 1.0, and 1.5 A, is implemented
by a DC stabilized power supply. The experimental cases with different displace-
ment amplitudes, excitation frequencies and input currents are proceeded to test the
dynamic performance of the MR damper. These experimental cases are listed in
Table 8.1.

Fig. 8.4 Two specimens of
MR damper with
specification MRD-100-10

Fig. 8.5 Setup of dynamic
test of MR dampers

M
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D
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Load Cell
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Table 8.1 Experimental
cases of MR damper with
specification MRD-100-10

Amplitudes
(mm)

Frequencies (Hz) Currents
(A)0.25 0.5 0.75 1.0 1.5

5 √ 0.0, 0.5,
1.0, 1.5

10 √ 0.0, 0.5,
1.0, 1.5

15 √ √ √ √ √ 0.0, 0.5,
1.0, 1.5

20 √ 0.0, 0.5,
1.0, 1.5

25 √ 0.0, 0.5,
1.0, 1.5
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Fig. 8.6 Testing curves of MRD-A in typical loading conditions with displacement amplitude
15 mm and excitation frequency 0.5 Hz

The testing curves of the MR dampers, i.e., MRD-A and MRD-B, in typical
loading conditions with displacement amplitude 15 mm and excitation frequency
0.5 Hz are shown in Figs. 8.6 and 8.7, respectively. Since the input currents are
loaded in levels step by step, the curve loops from the inner to the outer are referred
to the current level 0.0 A, 0.5 A, 1.0 A, and 1.5 A, respectively. Meanwhile, the
relative velocity of the piston of MR damper to the cylinder is calculated through the
numerical differential of displacement data monitored in the test.

It is seen that the damper force increases with the enhancement of input current,
and the maximum of damper force in each loop arises to be of linear correlation with
the input current (the saturation of damper force does not happen since the input
current is less than the rated current of MR damper in the experimental cases). In
the case of input current 0.0 A, the MR damper possesses viscous behaviors, e.g.,
the relation curve between damper force and piston displacement approaches to be
elliptical, and the relation curve between damper force and piston velocity approaches
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Fig. 8.7 Testing curves of MRD-B in typical loading conditions with displacement amplitude
15 mm and excitation frequency 0.5 Hz

to be S shape. With the increasing of input current, however, the shear stress of MR
fluid becomes stronger as well, thereby the MR damper features a viscous–plastic
mechanics. The relation curves between damper force and piston velocity arise to be
a complicated hysteretic behavior. In the range of high velocity, the linear relation
between damper force and velocity is observed, while in the range of low velocity, a
nonlinear relation between damper force and piston velocity is observed where the
distinguished hysteretic behaviors occur. These findings are in good agreement with
the dynamic model of MR dampers; see Fig. 8.3b.

8.3.2 Parameter Identification of Model

It is seen from Eqs. (8.3.1) to (8.3.3) that the modified Bouc–Wen hysteretic model
involves the coupling of differential equations and includes the terms with high
orders, which brings about an extremely difficult for the parameter identification of
the model. There are three families of schemes for the parameter identification of
Bouc–Wen hysteretic models of MR damper. The first refers to traditional optimiza-
tion methods such as the nonlinear optimization scheme and least squares method
with additional constraints (Spencer et al. 1997; Dyke et al. 1998). The second refers
to the mathematical analysis of the relation between parameters and forced-limit
cycles of model (Ikhouane and Rodellar 2005). The third refers to the genetic algo-
rithm-based parameter identification (Charalampakis and Koumousis 2008). Com-
paring with the first two families of schemes, the third family of schemes has a
better efficiency and accuracy for the optimization of multiple parameters, and is
thus applied in this study.

For illustrative purposes, the MR damper MRD-A is considered for the parame-
ter identification of the modified Bouc–Wen hysteretic model. The testing cases of
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concern are set as follows: Case 1, loading frequency 0.25 Hz, loading amplitude
15 mm, and loading current 0.0–1.5 A; Case 2, loading frequency 0.50 Hz, loading
amplitude 15 mm, and loading current 0.0–1.5 A; and Case 3, loading frequency
1.00 Hz, loading amplitude 15 mm, and loading current 0.0–1.5 A.

Since the modified Bouc–Wen hysteretic model involves the differential equa-
tions, a four-order Runge–Kutta method is used to solve the damping force. Mean-
while, a genetic algorithm is employed for parameter identification, which can be
readily implemented by the MATLAB toolbox function ga. In each step of loop, the
assignment and optimization of model parameters are proceeded. The population
size, generations, and stall generations in the genetic algorithm toolbox are set as
100, 200, and 50, respectively. The limit of fitness variation between optimized seeds
at two neighbor generations is set as 0.001. The solution of differential equations
can be derived from the case that all the 10 model parameters are valued through
building the logical relation shown in Eqs. (8.3.1)–(8.3.3) with respect to the damper
velocity ẏ and hysteretic rate ż. For the ready conjunction with the genetic algorithm,
nine parameters except the initial displacement x0 are set as input. The input values
of the parameters are controlled in real time by the prescribed iterative scheme of
genetic algorithm toolbox. The damper force FD is set as out. All the identification
values of these parameters are evaluated by the experimental or simulated data. An
index pertaining to the degree of fitness is defined as follows (Spencer et al. 1997):

Fitness �
√

1
n

∑n
i�1 (F

exp
D,i − Ffit

D,i)
2

√
1
n

∑n
i�1 (F

exp
D,i − 1

n (
∑n

i�1 F
exp
D,i ))

2
(8.3.4)

where n denotes the number of data points in the experiments or simulations; Fexp
D,i

denotes the damper force of the ith data point; and Ffit
D,i denotes the damper force of

the ith fitted point.
The modified Bouc–Wen hysteretic model exhibits 10 parameters which might

result in a high computational cost and a low accuracy if no constraints are posed
upon the parameters. In this study, the initial displacement x0 of accumulator is set
as 0.2 m. The upper and lower bounds of the remaining nine parameters c1, k1, c0,
α, k0, γ , n, β, and A are denoted by [104, 107], [102, 104], [102, 105], [103, 105], [10,
104], [102, 105], [1, 5], [102, 105], and [10, 103], respectively.

In consideration of the complexity of solving the differential equation, the
four-order Runge–Kutta method is implemented by the solver ode4 of MAT-
LAB/Simulink. The time interval of the solver is fixed at each step so as to derive
the damper force at the setting instant of time. In this study, the time interval is set
as 0.0001 s, and the time length is set as 20 s.

In the semiactive control modality, an inverse calculation is usually required so
as to regulate the damper force through changing the input current or voltage. The
analysis of current relevance of model parameters is a critical step, aiming at the
determination of sensitive parameters and their functional relation with the input
current. The relation curves between parameters and input current reveal that except
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Fig. 8.8 Fitted curves between control parameters and input current

the parameters c1, c0, and α, the relation between the remaining six parameters and
input current is not clear. The parameters c1, c0, and α are the so-called critical
parameters for the dynamic model of the MR damper, which change linearly along
with the increasing of the current; see Fig. 8.8.

According to Eqs. (8.3.1)–(8.3.3), the identification of the remaining six param-
eters is carried out again through fixing the functional relation of c1, c0, and α with
input current. In order to reduce the computational cost, the upper and lower bounds
of the parameters to be identified are valued, respectively, by the individual minimum
and maximum in the first identification. With an iterative process, the six parameters
are eventually defined by Case 1: [k1, k0, γ , n, β, A] � [782.16, 3007.79, 61530.17,
4.35, 30746.83, 164.20], where the fitness is 0.1416; by Case 2: [k1, k0, γ , n, β, A]�
[413.68, 9562.50, 1010.11, 2.00, 1011.73, 105.87], where the fitness is 0.1326; and
by Case 3: [k1, k0, γ , n, β, A]� [3609.01, 5012.80, 1944.34, 2.00, 1660.78, 173.43],
where the fitness is 0.1410.

Using the optimized values of parameters, comparative studies between the mod-
ified Bouc–Wen hysteretic model and the experimental data associated with input
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Fig. 8.9 Comparison between modified Bouc–Wen hysteretic model and experimental data in the
case of displacement amplitude 15 mm and excitation frequency 0.25 Hz (Case 1)
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Fig. 8.10 Comparison between modified Bouc–Wen hysteretic model and experimental data in the
case of displacement amplitude 15 mm and excitation frequency 0.50 Hz (Case 2)

currents are proceeded. Themodel result (labeled as ‘Model’) and experimental result
(labeled as ‘Experimental’) in the concerned three cases are shown in Figs. 8.9, 8.10
and 8.11, respectively. One might see that the parameterized model secures a sound
fitting accuracy with the experimental data in different levels of input current, indi-
cating that identified values of model parameters are satisfied for the individual case.
Throughout the three cases, meanwhile, the control parameters, i.e., c1, c0, and α,
are viewed as the same and all submit to the linear function of input current.

According to the identified model parameters and their relations with the input
current, the current signal loaded on the MR damper can be readily generated using
the backpropagation (BP) neural network algorithm (Metered et al. 2010). Details
of the current signal generation are illustrated in conjunction with the numerical
example in Sect. 8.4.
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Fig. 8.11 Comparison between modified Bouc–Wen hysteretic model and experimental data in the
case of displacement amplitude 15 mm and excitation frequency 1.00 Hz (Case 3)

8.3.3 Microscale Mechanism of MR Dampers

The investigation of microstructured behaviors of MR suspensions exhibits a signif-
icance for revealing the physical essence of complicated dynamics of MR dampers
and carrying out the optimization of control law of semiactive modality. The refer-
ence (Peng et al. 2012) addressed this issue for the first time.

The magnetorheological fluid is viewed as an elementary material assembling
MR dampers. It consists of micrometer-sized magnetizable particles and nonmag-
netic fluid, which shows a unique ability to experience the phase separation in a
rapid and completely reversible manner. The physical origin of this behavior is that
under the external magnetic field with specified intensity, the particles acquire amag-
netic dipole moment, resulting in particle aggregation to form chain-like structures
parallel to the external magnetic field and form cluster-like and sheet-like structures
perpendicular to the external magnetic field. These properties of the phase separation
in the microstructure, moreover, are always accompanied by significant changes in
flow behavior and optical properties with the increase in the viscosity of the suspen-
sion and generation of optical anisotropy. The essence of the MR damper control is
thus setting the identified input current as the control law to drive the magnetic field
upon the magnetic fluids so that the microstructured behaviors of MR suspensions
change and prevent the flow from transporting induced by external excitations. A
schematic describing the generation of input current signal and its influence upon
the microstructured behaviors of MR suspensions is shown in Fig. 8.12.

A large-scale atomic/molecular massive parallel simulator (LAMMPS) is
employed, which provides an embedded routine for large-scale and three-
dimensional Brownian dynamics simulation. LAMMPS facilitates the simulations
of millions of particles, which may include gas, liquid, solid, and complex phases.
Its library of potential functions and force fields is extensive, and it has been
applied to the simulation of a wide spectrum of particles, including atomic polymers,



8.3 Dynamic Modeling of MR Dampers 251

Control Law

Suspension Motion

Time (s)

Structural State 0 

0 

0 

Displacement (m)

Current (A) 

Kinetic energy (J) 

Time (s)

Time (μs)

Current generated by 
semiactive controller

Structural Level

Element Level

Material Level

Microstructured behaviors 
of MR suspensions 

Fig. 8.12 Schematic of input current generation and its influence upon microstructured behaviors
of MR suspensions

bead-spring polymers, organic molecules, proteins, granular materials, and point
dipolar particles. Moreover, LAMMPS can be readily parallelized for various com-
puter architectures (Plimpton 1995). The initial position and initial velocity of sus-
pensions are generated as statistically independent with a uniform distribution and
a Maxwell–Boltzmann distribution, respectively (Liu et al. 2006). The neighbor list
algorithm with the strategy of radius cutoff (truncated radius) is used to assess the
interaction between particles (Verlet 1967). The motion of MR suspensions can be
described by a Langevin equation, of which the numerical solution is derived using
the velocity Verlet integral scheme (Swope et al. 1982). These numerical techniques
can be readily implemented in conjunction with the LAMMPS.

A shear-valve mode MR damper with double rods in specification of MRD-9000
(Yang 2001) is used for the investigation. The involved MR fluid consists of the
silicone oil and the emerged double suspensions with micrometer iron carbonyl
particles. The relevant physical parameters of the simulated MR fluid are listed in
Table 8.2.
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Table 8.2 Physical
parameters of simulated MR
fluid

Physical quantities Parameter values

Volume ratio between suspensions and
matrix

0.3

Radius of particles Large particle aL 5 × 10−6 m

Small particle aS 2.5 × 10−6 m

Mass of particles Large particleML 1 × 10−13 kg

Small particleMS 1.25 × 10−14 kg

Volume ratio of bidisperse, large/small
particles

75:25

Relative
permeability

Matrix μc 1.0

Particles μp 1 × 103

Saturation magnetization of particles 2 T

Viscosity of matrix 0.3 Pa s

Density of silicon oil 3.6 × 103 kg m−3

Temperature 298 K

Magnitude of steady magnetic field H0 100 k Am−1

Fig. 8.13 Schematic of magnetic field and steady shear loading on simulated cell

According to the volume ratio between suspensions and carrier fluid, these spheres
are uniformly distributed in the space of a simulation cell with dimensions (L*

X , L
*
Y ,

L*
Z ) � (20, 10, 10), where the asterisk “*” represents dimensionless quantities. In

this study, the length, timescales, and mass in the dimensionless units have specified
relation with those in SI units; see dimensionless unit length 10−5 m, dimensionless
unit time 1.7 × 10−3 s, and dimensionless unit mass 2.43 × 10−8 kg. The amount
of particles is 3120 which includes 860 large particles and 2260 small particles.
Sheared periodic boundaries are included at X ∗ � ±L∗

X ,Y ∗ � ±L∗
Y and Z∗ � ±L∗

Z .
The shear flow is applied along the X-direction, and the magnetic field is applied
along the Z-direction. The time step length of simulations is �t∗ � 10−7. The
schematic of simulation procedure is shown in Fig. 8.13.

Figure 8.14 shows the cluster–sheet phase of the MR suspensions at 10.0 µs,
where “o” represents the large particles, and “.” represents the small particles. It is
seen that the direction of most cluster–sheet structures is parallel to the shorter axis
Y , not the longer axis X. In view of the phenomenon of nematic-like ordering of the
MR suspensions toward particular directions, one might realize that these magnetic
dipoles exhibit some intelligent behaviors, and they always align to clusters along
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Fig. 8.14 Cluster–sheet
phase of MR suspensions at
10.0 µs

Fig. 8.15 Structural
anisotropy of aggregates of
MR suspensions at shear
strain of 1.0 under steady
magnetic field and shear field
with shear rate 1000 s−1

the direction whereby the sheet tends to be formed, though the initial configuration
admits to the uniform distribution and the external magnetic fields are steady (Peng
et al. 2012).

Figure 8.15 shows the structural anisotropy of aggregates of MR suspensions
at shear strain of 1.0 under steady magnetic field and shear field with 1000 s−1.
It is seen that the suspensions move along the flow field and connect to long sheets
alongflowdirection toward restraining the transportation of the shear flow, though the
suspension structure suffers from yielding and the sheets tend to be ripped presenting
as arch structures.

In order to reveal the dynamic performance ofMR dampers from amicroscale, the
dynamic yielding stress of MR fluid is simulated. According to the previous studies,
the strain energy of macroscale yielding stress of MR fluid in a unit volume equals
the kinetic energy of microscale MR suspensions in the volume. On this principle, a
multiscale constitutive relation of MR fluids can be established (Peng and Li 2011).
Figure 8.16 shows the relation between yielding stress and shear rate of MR fluid
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Fig. 8.16 Relation between yielding stress and shear rate of MR fluid under sine displacement
loading on MR dampers

under sine displacement loading with period of 4 ms on MR dampers. It is seen
that the fitted curve on the simulated data points shows a good consistency with
the Bouc–Wen hysteretic model, which exhibits obvious similarities as the relation
curves between damper force and damper velocity shown in Figs. 8.10, 8.11 and 8.12.
These similarities, as a matter of fact, are just the representation of the macroscale
performance of MR dampers under sine displacement loading and current driving
on the microscale structured behaviors of MR fluids.

8.4 Numerical Example

The semiactive stochastic optimal control of single-story shear frame shown in
Fig. 3.4 is carried out. The physically motivated random seismic ground motion
model is used as the external excitation, of which the peak ground acceleration is set
as 0.11g. Design and optimization of a shear-valve mode MR damper are performed
for implementing the semiactive control.

In order to attain the desired structural performance, the control algorithm in for-
mulation of Eq. (8.2.6) is employed. The tunable times of the damper force are set
as s � 8. The design parameters for the MR damper control are viscous damping
coefficient and maximum Coulombic force. Since the multilinearity property of the
semiactive control algorithm, the original state equation of the structural system shall
be discretized into a discrete state equation, and the associated coefficients need to be
identified so as to derive the control gain. In this study, the coefficient identification
is performed using the precise integration method (Zhong 2004). For the purpose
of a uniform numerical framework, the calculation of the reference active optimal
control force and its relevant interstory drift refers to the methodology of physi-
cally based stochastic optimal control in kernel of discrete dynamic programming,
i.e., the solving of a so-called matrix difference Riccati equation; see Appendix E.
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The deterministic dynamic analysis with respect to the velocity quantities in the
generalized probability density evolution equations employs a first-order forward
difference scheme, as same as the discrete dynamic programming. The optimization
of weighting matrices in the cost function is carried out as the criterion on system
second-order statistics evaluation (SSSE); see Eq. (3.3.21): the interstory drift serves
as the constraint, and the quantities of evaluation include the interstory drift, story
acceleration, and interstory control force. The quantile function is defined as the sum
of mean and three times of standard deviation. The threshold of interstory drift is set
as 10 mm.

Since the structural system and seismic ground motion are consistent with the
numerical example shown in Sect. 3.4.1, the relation between the statistical moments
of equivalent extreme values of system quantities and the ratio of coefficients of
weighting matrices, see Fig. 3.11, can be used straightforwardly in this study. In
order to reduce the structural displacement in a more serious extent, the weighting
matrices pertaining to the system state and control force are denoted by

QZ � 80

[
1 0
0 1

]
,RU � 10−12 (8.4.1)

By virtue of Eq. (3.3.18), the active stochastic optimal control of structure is
proceeded. The probability density function of the extreme value of active opti-
mal control force using the parameters of control law, say Eq. (8.4.1), is shown in
Fig. 8.17.

It is seen that the reference active optimal control force exhibits a large range of
distribution, of which the mean and standard deviation are 115.44 and 34.68 kN. It
is revealed in Eq. (8.2.16) that the parameters of MR dampers are determined by
the reference active optimal control force and its relevant interstory velocity. Due
to the randomness inherent in the active optimal control force, the parameters of

Fig. 8.17 Probability
density function of extreme
value of active optimal
control force
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MR damper as the traditional deterministic control scheme give rise to uncertainty.
According to the general principle of structural design, the mean or a certain quantile
of the active optimal control force can be used as the design control force. One might
recognize that this treatment lacks the accurate assessment of structural performance.
A logical manner defining the reference active optimal control force is in conjunction
with the physical causes.

Figure 8.18 shows the maximum active control force, the maximum interstory
drift, and maximum story acceleration of semiactively controlled structure with
respect to samples. It is seen that the interstory drift changes not obviously alongwith
the active control force, which nearly distributes in the range of 2–5 mm; the story
acceleration changes positively along with the active control force. The tendancy of
third-order fitted curves in the figure shows that the application of a larger design
active control force cannot attain a further reduction of the structural displacement. It
is thus remarked that the semiactive controller and the passive controller lack ability
for significantly reducing the structural displacement. However, the active controller
exhibits a benefit of reducing the structural displacement. Besides, the fitted curve
of relation between story acceleration and active control force has the similarity as
that of actively controlled structures.

Figure 8.19 shows the relation between design parameters of MR damper and the
active optimal control force with respect to samples. In comparison with Fig. 8.18,
it is seen that the viscous damping coefficient is low and insensitive to the active
control force when the control force magnitude is more than 100 kN, indicating that
an accurate MR damper control system can be constructed using a series of low-cost
components; the maximum Coulombic force exposes to be linearly relevant to the
reference active control force owing to a linear regulation assumption with respect
to the Coulombic force.

In fact, the definition of reference active control force needs to consider the phys-
ical mechanism and practical capacity of MR dampers. For example, the most eco-
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Fig. 8.18 Relation between maximum active control force, maximum interstory drift, and maxi-
mum story acceleration of semiactively controlled structure with respect to samples
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Fig. 8.19 Relation between maximum active control force, viscous damping coefficient, and max-
imum Coulombic force with respect to samples
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nomic output of the MR damper investigated in this study is 200 kN, and a high-
viscous rheological liquid is inconvenient for maintenance. Therefore, the reference
active control force is suggested to be defined on the sample with the largest assigned
probability, i.e., with high occurrence rate, and in the neighborhood of 100 kN.
Figure 8.20 shows all the samples with the relation between maximum active control
forces and assigned probabilities. It is ready to recognize that the reference active
control force is 94.03 kN, which is around the mean of the maximum active control
force. The damping coefficient and the maximumCoulombic force are thus designed
as 0.6119 kNs/mm, 82.28 kN, respectively.

Time histories of root-mean-square displacement of the structural systemwith and
without controls are shown inFig. 8.21. It is seen that the structural performance gains
a significant improvement both using the semiactive and active stochastic optimal
controls. In comparison with the active control, the semiactive control attains an
almost same gain in the time domain with smaller response of uncontrolled structure.
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Fig. 8.21 Time histories of
root-mean-square
displacement of structural
system with and without
controls
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In the time domain with larger response of uncontrolled structure, the active control
has a better control gain than the semiactive control. This is understood that the
semiactive control algorithm employed in this study belongs to a family of bound
amplitude control schemes, due to the fact that the MR damper exhibits magnetic
saturation (Xu et al. 2012). In the case that the control requirement over the response
domain exceeds the capacity of MR damper, the semiactive control will stick on
the maximum output of the damper other than timely tracing active optimal control.
The detail of MR damper force tracing active optimal control force in root-mean-
square sense is shown in Fig. 8.22. It is seen that the bound Hrovat algorithm-based
semiactive control has the capacity of tracing the active optimal control in real time.

More accurate probabilistic representation is the probability density function, as
shown in Fig. 8.23. It is seen that the curves of PDFs of semiactive and active optimal
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Fig. 8.23 PDFs of semiactive and active optimal control forces at typical instants of time

control forces at typical instants of time are similar, where a slight difference lies in
that the output of semiactive control merely relies upon the maximum active control
force other than tracing the active control force in real time, such as the case that the
active control force has a same direction with the interstory velocity or although the
active control is opposed to the interstory velocity, the active control force is larger
than the maximum output that the MR damper is able to actualize.

Figure 8.24 shows the probability density functions of interstory drift at typical
instants of time with and without the MR damper controls. It is seen that the MR
damper control can reduce the structural displacement significantly, where the distri-
bution range of PDFs becomes narrower.Meanwhile, by comparisonwith Fig. 3.13b,
the reduction of displacement amplitude of active control arises to more significant
than that of semiactive control. One might see that the peak of PDFs of the former
approaches to 0.9, while the peak of PDFs of the later approaches to 0.45. As men-
tioned previously, the semiactive and passive controllers still remain challenges in
the displacement control of structures. Besides, the semiactive controller designed
as the ratio of coefficients of weighting matrices 8 × 1013 exhibits a worse instead
of a better control effectiveness than the active controller design as a smaller ratio of
coefficients of weighting matrices 8 × 1012.

In order to reveal the influence of the semiactive control upon the dynamic per-
formance of MR dampers, Fig. 8.25 shows the relation between the damper force
and the damper displacement, damper velocity under a sample of seismic excitation.
It is seen that the relation curves between damper velocity and damper force nearly
all distribute in the first and third quadrants, indicating that the semiactive control
force always remains an opposite direction to the damper velocity. The rationality is
thus proposed that the MR damper can change the output timely so as to trace the
active optimal control force in real time. The predictive and experimental data as
an up-scaled profile of MR damper force curves are shown in Fig. 8.25 as well. In
conjunction with the modified Bouc–Wen hysteretic model, the predictive and exper-
imental data are derived from a 3-kN MR damper in type of VersaFlo MRX-135GD
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Fig. 8.24 PDFs of interstory drift at typical instants of timewith and withoutMR damping controls
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Fig. 8.25 Relation between damper force and damper displacement, damper velocity under the
sample of seismic excitation

under a narrowband excitation of white Gaussian noise (Dyke et al. 1996; Spencer
et al. 1997). It is revealed that the semiactive control can well accommodate the
dynamic performance of MR dampers, which behaves a similarity as the Bouc–Wen
hysteretic model with strength deterioration, stiffness degradation, and pinch effect
(Wen 1976).

For illustrating the generation of input currents to the MR damper, the shear-
valve modeMR damper with double rods in specification ofMRD-9000 is employed
which has a moderate performance as required by this numerical example. The sim-
ulated data of the MR damper under displacement amplitude of 25.4 mm, excita-
tion frequency of 0.5 Hz, and input current of 0.0–2.0 A is utilized. A modified
Bouc–Wen hysteretic model is applied to simulate the dynamic performance of the
MR damper. Using the parameter identification procedure addressed in Sect. 8.3.2,
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the constant parameters of the modified Bouc–Wen hysteretic model for the MRD-
9000 are denoted by [x0, k1, c0, k0, g, n, b, A] � [0.0, 158.55, 469,042.70, 612.79,
98,540.12, 2.01, 73,224.85, 9,253.30], and the current variant parameters are denoted
by c1 � –5.15 × 106I2 + 1.73 × 107I + 3.63 × 106, α � –2.42 × 105I2 + 8.71 ×
105I + 7.34 × 106.

According to the parameterized model and the system state of structures, a
numerical procedure by virtue of backpropagation (BP) neural network algorithm
is employed to generate the current signal loaded on the MR damper. The BP algo-
rithm can be readily implemented in conjunctionwith theMATLAB toolbox function
nftool. The numbers of input nodes, output nodes, and implication nodes are 7, 1, and
13, respectively. For solving the differential equations of the Bouc–Wen hysteretic
model in the numerical procedure, the four-order Runge–Kutta method is employed
here and implemented by the solver ode4 of MATLAB/Simulink as well.

Prior to the generation of input currents, a step of sample training needs to be
proceeded to activate the BP neural network-based retrorse model of MR dampers.
A 20-s time series with 1000 data points is used for training and validation, which
consists of three segments: white Gaussian noise of current and displacement in the
first 10 s, high-amplitude sine current andwhiteGaussian noise of displacement in the
next 5 s, and low-amplitude sine current and white Gaussian noise of displacement
in the last 5 s. The validation of sample data shows that the goodness of fit attains to
more than 98%.Other three different cases are addressed to verify the effectiveness of
the retrorsemodel ofMR dampers, involving Case 1: white Gaussian noise of current
and displacement, Case 2: sine current and white Gaussian noise of displacement,
and Case 3: constant current and sine displacement. The current and displacement in
each case are 20-s time series with 1000 data points. Figure 8.26 shows the expected
and identified input currents and the associated outputs of MR dampers in the three
cases. It is seen that the identified damper force matches well with the expected, of
which the errors of three cases are 3.12%, 6.93%, and 2.54%, respectively.

Similarly, if the system state and the output of MR dampers are known, one
can readily derive the input current. In this study, the identification of optimal cur-
rent for MR damper control of structures under three different samples of seismic
ground motions is carried out; see Fig. 8.27. It is seen that the optimal currents
used for semiactive control of structures arise to irregularly fluctuate in the range
of 0.0–0.6 A, which are significantly different from the samples of seismic ground
motions. One might recognize that the real-time feedback control exhibits a practi-
cal significance for improving the structural performance; the development of highly
efficient MR damper control ought to follow an accurate modality from the present
simple Bang–Bang control or Passive-on and Passive-off step controls in practice. It
is also noted that the methodology of physically based stochastic optimal control, the
probabilistic optimization and design of controller parameters, and control device
placement play an important role in this developing process.
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(b) Case 2: sine function of current and Gaussian noise of displacement
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Fig. 8.26 Expected and identified input currents and associated outputs of MR dampers in three
cases
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Fig. 8.27 Optimal currents of MR damping control of structure under three different samples of
seismic ground motions

8.5 Discussions and Summaries

The input current as the control law of regulating MR dampers is often derived
from the inverse solution of damper models. How the dynamic performance of MR
dampers can be fulfilled relies upon the effectiveness of the damper model. This
chapter first addresses the stochastic optimal control of structures with MR dampers
by virtue of bound Hrovat algorithm. In conjunction with the provided MR damper,
the dynamic performance and parameterized models of MR dampers under input
current, loading frequency, and amplitude of sine displacement are then illustrated.
The parameter identification of MR damper model and the influence of input current
on the microstructured behaviors of MR suspensions are investigated.

Molecular dynamics simulation reveals the mechanism of microstructured behav-
iors of MR suspensions in MR dampers, which provides a new perspective for the
control law optimization and performance enhancement of MR dampers: using the
numerical simulation and experimental analysis to explore the quantitative relation-
ship between suspension structures of MR fluids, input current and material param-
eters of MR fluids such as dynamic viscosity and yield stress, and to reveal the
physical essence of influence of eddy current effect of MR fluids and of nonlinear
magnetization of MR suspensions upon the performance of MR dampers. This mul-
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tiscale scheme allows for a high-efficient regulation of MR dampers so as to attain
the desired performance of controlled structures.

For illustrative purposes, the stochastic optimal control of MR damping system
subjected to random seismic ground motion is carried out. As the control criterion
of tracing the reference active optimal control force, the parameter design of MR
dampers and identification of input current are performed. Numerical results reveal
that the appropriately designed semiactive controller can achieve almost the same
effectiveness as the active controller; the dynamic performance of MR dampers,
meanwhile, exhibits similarities to the Bouc–Wen hysteretic model with the strength
deterioration, the stiffness degradation, and the pinch effect.
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