
Chapter 7
Stochastic Optimal Control
of Wind-Resistant Structures
with Viscous Dampers

7.1 Preliminary Remarks

The high-rise buildings experience alongwind-induced motions or acrosswind-
induced motions when they are subjected to wind actions. The occupants would
feel uncomfortable if these motions reach a certain amplitude. The structural per-
formance, in this case, is generally denoted by the habitability, which is often mea-
sured by the wind-induced acceleration of structures (Chan and Chui 2006). The
serviceability design problem of high-rise buildings associated with habitability
enhancement is one of the most concerned issues, especially during typhoon sea-
sons. The reports relevant to typhoon events in the past years often mentioned that
the strong vibration of high-rise buildings results in discomfort or even dazzling state
to occupants. Numerical investigations of TMD deployed in the building “Taipei
101” indicated that the vibration of the structure subjected to frequently occurring
wind actions with a half-year return period would exceed 30% of the design maxi-
mum acceleration if removing the control device (Chung et al. 2013). Therefore, the
serviceability-based control and design retain a practical significance to the high-rise
buildings.

The structural control for mitigating wind-induced vibration can be largely cate-
gorized into the passive and active modalities. The former is a widely applied means
due to its practical feasibility (Housner et al. 1997). Amost efficient measure for mit-
igating the wind-induced vibration of structures is the damping reinforcement. The
viscous dampers are proved to be an effective proposal of implementing the damping
reinforcement owing to their many technical advantages (Housner et al. 1997; Patil
and Jangid 2011), e.g., being insensitive to the working temperature (with steady
behaviors from −40 centidegrees to 70 centidegrees) (Symans and Contantinou
1998), remaining a visco-response in a wide frequency domain (Soong and Con-
stantinou 1994), exhibiting a damper force out of phase with displacement (Soong
and Dargush 1997), and providing considerable damper force even in case of low
structural velocity. Another highlighting feature of the viscous damper is its benefit
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in acceleration control owing to a less stiffness and a larger damping that the damper
supplies. Therefore, the viscous damper has been proved to the best control device for
the wind-induced comfortability control of high-rise and ultra high-rise buildings.
The parameter definition and placement optimization of viscous dampers are the
critical issues associated with the stochastic optimal control of wind-induced struc-
tural comfortability. However, the viscous damper is a velocity-relevant damper, and
exhibits a strong nonlinearity. The structure deployed with viscous dampers becomes
a nonlinear system in essence. The primary task for the stochastic optimal control of
viscously damped structures is thus seeking for a solving procedure with sufficient
efficiency and accuracy.

In the present chapter, the equivalent linearization techniques with respect to
the structural system attached with nonlinear viscous dampers are addressed first.
The probabilistic criteria and numerical methods for the optimal design of viscous
dampers used in randomly wind-induced vibration control of structures are provided.
For validating purposes, the optimal control ofwind-induced comfortability of a high-
rising building is investigated, of which the randomness inherent in wind excitations
is included.

7.2 Equivalent Linearization of Viscously Damped Systems

The stochastic optimal control of viscously damped structural systems involves the
design of damper parameters and the optimization of damper deployments. This fea-
tures practical significance for the high-rise building with available limited space. As
mentioned in Chap. 1, the optimization methods for damper deployments can be cat-
egorized into three classes, i.e., the sequential method (Zhang and Soong 1992), the
gradient method (Takewaki 1997; Peng et al. 2013), and the genetic algorithm based
method (Singh and Moreschi 2002). These three classes of optimization methods all
involve the iterative solution of viscously damped structures with nonlinearity. For
this reason, a highly efficient method which allows for solving the viscously damped
structures underlies the optimization and design of the viscous dampers.

The analysis methods for the damper control of structural wind-induced vibra-
tion are mainly classified into frequency-domain and time-domain methods. The
frequency-domain method is widely used in practice due to the simple algorithm and
the rigorous principle (Davenport 1961). The time-domain method can accurately
secure the response details of structures even with nonlinear behaviors, which has
been paid extensive attention in recent years. As to the reliability-based control for
wind-induced vibration mitigation of structures, the time-domain method is usually
required. It is revealed in previous investigations (Chen et al. 2017) that the equa-
tion of motion of viscously damped structural systems with low-velocity exponent
dampers often refers to stiff problem, which belongs to a family of strong nonlinear-
ities. This issue results in that the traditional equivalent linearization techniques such
as the energy-dissipation equivalent linearization method and statistical linearization
technique remain a challenge.



7.2 Equivalent Linearization of Viscously Damped Systems 207

7.2.1 Stiff Differential Equation for Viscously Damped
Systems

Consider a single-degree-of-freedom (SDOF) structural system attached with a vis-
cous damper, the equation of motion of the controlled structure subjected to time-
varying load F(t) is given by

mẍ(t) + cẋ(t) + kx(t) − FD(ẋ(t)) = F(t) (7.2.1)

where m, c, and k denote the mass, damping, and stiffness of the structure, respec-
tively; x(t), ẋ(t) and ẍ(t) denote the displacement, velocity, and acceleration of the
structure, respectively, which exhibit an opposing displacement and velocity as the
piston; F(t) denotes the external excitation; FD(·) denotes the damper force exerted
by the viscous damper:

FD(ẋ(t)) = −cDsgn(ẋ(t))|ẋ(t)|α (7.2.2)

where cD denotes the damping coefficient; α denotes the velocity exponent, which is
a positive quantity between 0 and 1, being closer to 0 implying stronger nonlinearity.
The velocity exponent is usually valued in the range 0.3 ≤ α ≤ 0.5 for the case of
building control, and is usually valued in the range 0.15 ≤ α ≤ 0.3 for the case of
bridge control. The sign sgn(·) is the signum function, taking value 1 for positive
argument, −1 for negative argument, and otherwise 0.

The damper force of the viscous damper represented by Eq. (7.2.2) for different
α and the same unit of damping coefficient cD = 1.0 is shown in Fig. 7.1, in
which the loaded sine wave of displacement exhibits unit amplitude and unit circular
frequency. It is seen clearly that in the case α = 1.0, it reduces to a linear damping;
whereas in the case α = 0.0, it becomes a dry-friction force. When 0 < α < 1.0,
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Fig. 7.1 Damper force of viscous damper in cases of different velocity exponents
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the smaller of the velocity exponent α, the stronger of nonlinearity that the viscous
damper exhibits. Moreover, the hysteretic curve of the damper involves from the
elliptical shape to the rectangular shape as the velocity exponent decreases. In the
case of same maximum damper force and same maximum displacement, the smaller
of the velocity exponent, the more similar to a rectangular shape with a larger area
that the hysteretic curve gives rise to, which indicates a stronger energy-dissipation
capacity of the viscous damper and a better control effectiveness on the viscously
damped structure. However, the change of the damper force as the velocity arises
to fast-varying and slow-varying behaviors. For instance, the damper force varies
very fast in the case of low velocity close to zero if the velocity exponent α = 0.3;
while it varies mildly in other velocity domains. Such coexistence of fast-varying
and low-varying behaviors of viscous dampers leads to a typical stiff system of the
controlled structure attached with viscous damper. A stiff system can be revealed by
its stiff differential equation.

To further clarify this problem, consider the case of free vibration, i.e., F(t) = 0
in Eq. (7.2.1). Substituting Eq. (7.2.2) into Eq. (7.2.1), and letting y1(t) = x(t),
y2(t) = ẋ(t) lead to the state equation as follows:

{
ẏ1(t) = y2(t)
ẏ2(t) = − c

m y2(t) − k
m y1(t) − cD

m sgn(y2(t))|y2(t)|α (7.2.3)

In a vector form

Ẏ = A(Y, t) (7.2.4)

where

Y = (y1(t), y2(t))
TA = (A1, A2)

TA1(y1(t), y2(t)) = y2(t)

A2(y1(t), y2(t)) = − c

m
y2(t) − k

m
y1(t) − cD

m
sgn(y2(t))|y2(t)|α (7.2.5)

The Jacobian matrix for Eq. (7.2.5) can thus be obtained by

J =
[

∂A1
∂y1

∂A1
∂y2

∂A2
∂y1

∂A2
∂y2

]
=
[

0 1
− k

m

(− c
m − α cD

m |y2(t)|α−1)
]

(7.2.6)

The characteristic equation can be obtained as

λ2 +
( c
m

+ α
cD
m

|ẋ(t)|α−1
)
λ + k

m
= 0 (7.2.7)

where λ denotes the eigenvalues of the Jacobian matrix. If Eq. (7.2.7) satisfies the
conditions as follows:



7.2 Equivalent Linearization of Viscously Damped Systems 209

{
Re(λ j ) < 0, j = 1, 2, · · · ,m

s := max
1≤ j≤m

∣∣Re(λ j )
∣∣/ min

1≤ j≤m

∣∣Re(λ j )
∣∣� 1 (7.2.8)

whereRe(·) denotes the real counterpart of the complex eigenvalues. Equation (7.2.1)
is then defined as a stiff differential equation, where s denotes the stiff ratio.

For illustrative purposes, consider Eq. (7.2.1) as the first modal equation of a
high-rise building structure, where the modal mass m = 3.75 × 107 kg, the modal
damping ratio ζ = 0.01, and the fundamental period Tn = 4.94 s. Since the stiffness
k = 4π2m

T 2
n

and the damping coefficient c = 4πζm
Tn

, Eq. (7.2.7) becomes

λ2 +
(
4πζ

Tn
+ α

cD
m

|ẋ |α−1

)
λ + 4π2

T 2
n

= 0 (7.2.9)

The two roots of Eq. (7.2.9) are given by

λ1,2 = −1

2

(
4πζ

Tn
+ α

cD
m

|u̇|α−1

)
± 1

2

√(
4πζ

Tn
+ α

cD
m

|u̇|α−1

)2

− 16π2

T 2
n

(7.2.10)

For notation convenience, let 4πζ̃D
Tn

= α cD
m |ẋ |α−1, such that

ζ̃D = α
cDTn
4πm

|ẋ |α−1 (7.2.11)

It is indicated that the argument defined in Eq. (7.2.11) is an instantaneous damping
ratio due to its relevance with velocity. Then

λ1,2 = −2π

Tn

(
ζt ±

√
ζ 2
t − 1

)
(7.2.12)

where ζt = ζ + ζ̃D , which could be noted as the instantaneous total damping ratio.
The following special cases are of interest for addressing the stiff ratio:
Case 1: If cD ≡ 0, i.e., there is no viscous dampers in the system, then ζ̃D ≡ 0,

and the two roots in Eq. (7.2.12) are thus reduced to λ1,2 = − 2π
Tn

(
ζ ±√ζ 2 − 1

)
.

The damping ratio of the structure itself is usually far less than 1.0. For instance,
it is usually less than 5% for concrete structures and in the range of 1%–3%
for steel structures. The two roots are thus conjugate complex numbers λ1,2 =
− 2π

Tn

(
ζ ± i

√
1 − ζ 2

)
, where i =

√−1 denotes the imaginary unit. In this case, the

stiff ratio s = |Re(λ1)|
/ |Re(λ2)| = 1.

Case 2: If α = 1, i.e., the viscous damper is reduced to a linear damper, there is
ζ̃D = cDTn

4πm . Generally, in engineering practice the additional “equivalent” damping
ratio ζ̃D owing to the installation of damping devicesmight be in the range of 2%–4%,
and thus the total damping ratio of the controlled structure might be in the range of
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4%–7%,which is still much smaller than 1.0. In this case, the two roots in Eq. (7.2.12)
are conjugate complex numbers, and the stiff ratio is 1 as well.

Case 3: As the damping coefficient cD increases and the other quantities keep
fixed, the instantaneous damping ratio ζ̃D will increase according to Eq. (7.2.11).
When cD is large enough, ζ 2

t − 1 ≥ 0 will occur, i.e., the system becomes an instan-

taneous over-damped system. In this case, the stiff ratio s = Re(λ1)

Re(λ2)
= ζt+

√
ζ 2
t −1

ζt−
√

ζ 2
t −1

=
(
ζt +√ζ 2

t − 1
)2
, which tends to s ≈ 4ζ 2

t , and the stiff ratio will increase very fast

against the instantaneous total damping ratio, and in turn against the increase of cD .
Case 4: As the fundamental period Tn increases when the other quantities are kept

fixed, the instantaneous damping ratio ζ̃D will increase. When Tn is large enough,
ζ 2
t − 1 ≥ 0 might occur. Similar to Case 3, the stiff ratio will be given also by

s =
(
ζt +√ζ 2

t − 1
)2
. Thus, in this case, the stiff ratio will increase very fast against

the instantaneous total damping ratio, and in turn against the increase of Tn . Generally,
high-rise buildings have longer fundamental periods. Therefore, the stiff ratio of high-
rise building structures might be large. This is just the case that the wind-induced
vibration of high-rise buildings shall be suppressed by the control systems consisting
of viscous dampers.

Case 5: As the velocity exponent α decreases and the other quantities are
fixed, the instantaneous damping ratio ζ̃D will first increase and then decrease
from some “turning point”. The derivative of ζ̃D with respect to α is given by
∂ζ̃D
∂α

= cDTn
4πm |ẋ |α−1[1 + α ln(|ẋ |)], and thus the “turning point” will occur when

∂ζ̃D
∂α

= 0, i.e., α = − 1
ln(|ẋ |) , which is related to the velocity. Therefore, with the

decrease of α from one to zero, the stiff ratio s first equals 1 when ζ 2
t − 1 ≤ 0, and

then quadratically increase to its peak at the “turning point” following the same pat-
tern as Case 3 and Case 4, afterward it decreases to 1 again in a sharp manner when
α = 0. One might recognize that the “turning point” is straightforwardly related to
the velocity that the smaller the velocity is, the closer the “turning point” approaches
to zero.

To reveal the influence parameters on the stiff ratio of the structural system intu-
itively, case studies are carried out. Since the damper force changes very fast in the
case of a small velocity, the velocity is set as ẋ = 0.1 mm/s. Shown in Fig. 7.2 are
the stiff ratios against different parameters of viscously damped structural systems,
including the damping coefficient of viscous dampers, the fundamental period of the
structural system, and the velocity exponent. It is observed that the stiff ratio quadrati-
cally increases by the order ofmagnitudes against the increase of damping coefficient
and the fundamental period; see Fig. 7.2a. As the velocity exponent decreases from
1 down to 0, however, the stiff ratio first experiences a stage with value 1.0, then
quadratic increase to the “turning point”, and decreases sharply; see Fig. 7.2b. This
result is in agreement with the discussions in Case 1–Case 5. One might recognize
that a higher damping ratio indicates a larger damper force. Clearly, if the damping
ratio is too small, the viscous damper has little effects on the response of the system,
and it could be expected that the stiff ratio will also change slightly. Therefore, only
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Fig. 7.2 Stiff ratio against different parameters of viscously damped systems

for relatively large damping coefficient its effect on stiff ratio becomes significant.
The stiff ratio being relatively large for longer fundamental period is also physically
reasonable, since a longer fundamental period indicates a lower predominant fre-
quency in the response. A higher frequency content might be compensated by the
sharp change of the damper force of viscous dampers with a moderate velocity expo-
nent α. This is extremely significant for high-rise buildings installed with viscous
damper, owing to their fundamental periods are usually longer than 2 s even as high
as nearly 10 s, and the damping component of viscous dampers is usually smaller
than 0.5 down to 0.3.

Generally, a system is denoted by a stiff differential equation if its stiff ratio is
greater than 10p (p � 1). It is seen from Fig. 7.2 that high-rise buildings with the
fundamental period longer than 2 s, attached with viscous dampers exhibiting the
damping coefficient more than 10,000 kN(s/m)α and the velocity exponent 0.3–0.5,



212 7 Stochastic Optimal Control of Wind-Resistant Structures …

are seriously stiff since their stiff ratios are typically in the order of magnitude of 102

or higher.

7.2.2 Solution of Viscously Damped Systems

The equation of motion of an MDOF structure attached with viscous dampers can
be denoted by

MẌ(t) + CẊ(t) + KX(t) + FD(Ẋ(t)) = F(�, t) (7.2.13)

where M, C, and K are the mass, damping, and stiffness matrices, respectively; X,
Ẋ, and Ẍ are the structural displacement, velocity, and acceleration, respectively;
F(�, t) denotes the random wind load; � is the random vector denoting the ran-
domness inherent in the random wind load; FD(Ẋ(t)) denotes the attached damper
force:

FD(Ẋ(t)) = S · (∣∣TẊ

∣∣α × sgn
(
TẊ

)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cD,1 −cD,2 0 · · · 0 0
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.
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.

.

.

.

0 0 0 · · · cD,n−1 −cD,n
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⎤
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·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.2.14)

where S denotes the damping coefficient matrix; cD, j denotes the total damp-
ing coefficient of the jth interstory with viscous damper; TẊ denotes the inter-
story velocity vector, and

∣∣TẊ

∣∣α indicates taking the component-wise power, i.e.,∣∣TẊ

∣∣α = (∣∣TẊ ,1

∣∣α,
∣∣TẊ ,2

∣∣α, · · · ,
∣∣TẊ ,n

∣∣α)T, where TẊ , j denotes the jth component of
the vector TẊ.

It is found quite often that the equation of motion of a high-rise building installed
with nonlinear viscous dampers is surprisingly difficult to solve by conventional
numerical schemes, just due to its stiff problem as addressed previously. Most of the
widely used time integral schemes, such as the Newmark method and the Wilson
method, suffer from instability or spurious numerical spikes. In fact, as to solv-
ing ordinary differential equations, a family of backward differentiation formulae
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(BDF) is demonstrated to be efficient. The extended formulation of BDF is written
as (Shampine and Reichelt 1997)

k∑
j=1

1

j
∇ j zn+1 = hL(tn+1, zn+1) + κγk

(
zn+1 − z(0)

n+1

)
(7.2.15)

where

γk =
k∑
j=1

1

j
, zn+1 − z(0)

n+1 = ∇k+1zn+1 (7.2.16)

in which ∇ j zn = ∇ j−1zn − ∇ j−1zn−1 denotes the operator of backward differenti-
ation, ∇0zn = zn; zn denotes the system state; k denotes the computational order;
h denotes the step-length of differentiation; L denotes the system operator of initial
value problems, i.e. ż = L(t, z), z(t0) = z0;κ is a scalar parameter. Equation (7.2.15)
reduces to the standard BDF in the case κ = 0.

It is seen from Eq. (7.2.15) that although the backward differentiation formulae
for solving the nonlinear systems are accurate, their solutions involve multiple-step
schemes and are not suitable for the iterative optimization and design of viscously
damped structural systems. In practice, the equivalent linearization techniques are
usually employed which transfers the original nonlinear system into a linearized
system as a certain equivalent criterion resulting in the responses between original
nonlinear and linearized systems to be the same or in an acceptable error range.
Among those equivalent linearization techniques, the widely used is the energy-
dissipation equivalent linearization method.

The equivalent criterion of the energy-dissipation equivalent linearization method
is that the energy dissipations of attached viscous dampers to the equivalent lin-
earized system and to the original nonlinear system are equal. The additional equiv-
alent damping ratio as the energy-dissipation equivalent criterion ζ

(E-E)
k is given by

(Seleemah and Costantinou 1997):

ζ
(E-E)
k = T 2−α

k

∑
j cD, jλ

[
(uk, j − uk, j−1) cos

(
θ j
)]1+α

(2π)3−αA1−α
k

∑
i miu

2
k,i

(7.2.17)

where

λ = 22+α 
2(1 + α/2)


(2 + α)
(7.2.18)

where Tk denotes the period of the kth vibrationalmode; θ j denotes the angle between
the story and viscous damper in the jth interstory; uk, j denotes the modal displace-
ment the jth story of the kth vibrational mode; mi denotes the mass of the jth story;
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Ak denotes the roof displacement amplitude of the kth vibrational mode in unit of
modal displacement uk, j ; 
(·) denotes the Gamma function 
(z) = ∫∞

0 t z−1
/
etdt .

It is seen that the formulation of the equivalent damping ratio ζ
(E-E)
k includes

the roof displacement amplitude of the kth vibrational mode Ak , indicating that
the solution of equivalent damping ratio needs a known roof displacement ampli-
tude. However, solving the roof displacement amplitude needs to have the equivalent
damping ratio in advance. Therefore, the energy-dissipation equivalent linearization
method involves an iterative scheme.

It is noted that in the energy-dissipation equivalent linearizationmethod, the struc-
tural response is assumed to be a harmonic process, which is inconsistent with the
response characteristics of engineering structures subjected to dynamic excitations
such as seismic ground motion and wind load. Another route to solve the nonlinear
system is the stochastic equivalent linearization method, i.e., the statistical lineariza-
tion technique (Roberts and Spanos 1990). In the statistical linearization technique,
the structural response is assumed to be a Gaussian stationary process, and the dif-
ference between the linearized system and original nonlinear system is minimized
in the sense of mean square.

By virtue of the statistical linearization technique, the equivalent damping ratio
of a viscously damped structural system can be denoted by (see Appendix D)

ζ
(S-E)
k = ηkρ(α)

⎛
⎝ GF̃k (t)

(ω)(
ζ

(S-E)
k +ζk

)
ωk

⎞
⎠

(α−1)/ 2

(7.2.19)

where ρ(α) = 

(
1 + α

/
2
)√

23−απα−2; GF̃k (t)
(ω) denotes the one-sided power

spectral density of the generalized excitation F̃k(t) = φT
k F(�, t)

/(
φT
k Mφk

)
of the

kth vibrational mode; ηk = qk
/

(2m̄kωk), qk =
n∑
j=1

(
cD, j�

(k)
j + cD, j+1�

(k)
j+1

)
u2k, j −

2
n∑
j=2

cD, j�
(k)
j uk, j uk, j−1, �

(k)
j =

∣∣∣uk, j − uk, j−1

∣∣∣α−1
; m̄k denotes the modal mass of

the kth vibrational mode; ζk, ωk denote the damping ratio and the circular frequency
of the kth vibrational mode, respectively.

To verify the effectiveness and accuracy of equivalent linearization techniques and
the BDF, a 20-story shear frame controlled by viscous dampers is investigated. The
basic information of the structure is as follows: the structural height is 72mwith story
height of 3.6 m and depth–width ratio of 2.2; the mass of each story is m1 = m2 =
· · · = m20 = 2.0× 105 kg, and the interstory stiffness is k1 = · · · = k4 = 1.7× 105

kN/m, k5 = · · · = k10 = 1.5 × 105 kN/m, k11 = · · · = k16 = 1.2 × 105 kN/m,
k17 = · · · = k20 =1.0 × 105 kN/m. The damping ratios of the first two vibrational
modes are both 0.01. The structural damping is represented by Rayleigh damping
matrixC = aM+bK. The circular frequencies of the first ten vibrational modes are
2.09, 5.88, 9.74, 13.45, 17.27, 20.94, 24.28, 27.81, 30.90, and 33.93 rad/s, receptively.
The wind-induced vibration control of the structure is carried out using the viscous
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Fig. 7.3 Time history of representative wind force on the structural roof

dampers. For illustrative purposes, the viscous dampers are deployed uniformly in the
interstories along the story level. The additional damping coefficient at each interstory
is 500 kN(s

/
m)α , where the velocity exponent is valued by α = 1.0, 0.5, 0.3.

TheNewmark-β scheme on the linearized system by the energy-dissipation equiv-
alent linearization method (EEN), the Newmark-β scheme on the linearized system
by the stochastic equivalent linearization method (SEN), and the backward differ-
entiation formulae on the original nonlinear system (BDF) are employed to carry
out the time-domain analysis. The wind excitation is represented by the spatial fluc-
tuating wind-velocity field model addressed in Sect. 2.5.2. The three basic random
parameters included in the wind velocity Fourier spectrum model are valued as: the
10-min mean wind velocity Ū10 at the standard height 10 m is assumed to follow the
extreme-value type I distribution with mean 39.33 m/s and coefficient of variation
0.1; the surface roughness length z0 is assumed to follow the log-normal distribution
with mean 0.2 m and coefficient of variation 0.2; the zero-phase evolution time Te is
assumed to follow the Gamma distribution with mean 0.902 × 109 s and coefficient
of variation 0.1. A representative time history of the random wind excitation on the
structural roof is shown in Fig. 7.3. The approaching flow is assumed to be perpen-
dicular to the building surface. Under the representative wind excitation, the roof
displacement and roof acceleration of the viscously damped structure with variant
velocity exponents and using different numerical schemes are shown in Figs. 7.4,
7.5, 7.6.

It is seen that the structural responses by the three schemes match well with each
other in the case of velocity exponent 1.0. With the decreasing of velocity exponent,
the result of the energy-dissipation equivalent linearization method deviates with
that of the BDF to a larger extent, in comparison with the stochastic equivalent lin-
earization method. In the case of velocity exponent 0.3, this tendency becomes much
more significant, that is, the result of the stochastic equivalent linearization method
is much closer to the BDF, in comparison with the energy-dissipation equivalent
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Fig. 7.7 Relative errors in 2-norm and infinite-norm of roof responses with different velocity
exponents and using different schemes

linearization method. It is thus demonstrated that the stochastic equivalent lineariza-
tion method has a considerable accuracy even when the nonlinearity of the viscously
damped structural system is relatively strong, and the energy-dissipation equivalent
linearization method is shown to be conservative.

The relative errors in 2-norm and infinite-norm of roof responses with different
velocity exponents using the measure of relative error in 2-norm using the three
schemes “EEN” and “SEN” compared to the “BDF” are shown in Fig. 7.7. It is
well recognized that it is smaller than that in infinite-norm both in terms of the roof
displacement and roof acceleration; the relative errors of acceleration are more than
those of displacement by over 10 times, indicating a computational challenge inherent
in the accurate solution of the structural acceleration. It is also seen that the relative
error would increase rapidly with the reduction of velocity exponent. Meanwhile,
the relative errors of structural responses between the energy-dissipation equivalent
linearizationmethod and the BDF are always larger than those between the stochastic
equivalent linearizationmethod and theBDF, nomatter in 2-norm or in infinite-norm.

In summary, the stochastic equivalent linearization method is an elegant scheme
since it reveals the stochastic essence of structural responses to some extent by invok-
ing the Gaussian-process assumption of structural responses, and gains the equiv-
alent modal damping ratio through minimizing the mean-square error between the
linearized system and the original nonlinear system. In comparison with the energy-
dissipation equivalent linearization method, the stochastic equivalent linearization
method attains a more accurate solution that is more close to the result of the BDF.
A solution with considerable accuracy and efficiency can thus be obtained by per-
forming frequency-domain and time-domain analysis upon the linearized structural
system, especially upon the high-rise buildings structures, where intermediate non-
linear dampers are the most common ones to be installed for performance enhance-
ment. The stochastic equivalent linearization method is thus used to facilitate the
serviceability-based optimal design of viscously damped structures as both the cri-
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teria of minimizing the standard deviation and of minimizing the exceedance prob-
ability of roof acceleration.

7.3 Optimal Deployment of Viscous Dampers

As mentioned in Sect. 5.3, the comfortability is one of the critical arguments rep-
resenting the performance of structural systems, which is usually measured by the
acceleration. As to the high-rise buildings, the roof acceleration is generally far larger
than other stories. In practice, the roof acceleration control is thus an efficient means
for enhancing the structural comfortability.

Since the structural responses under the random excitations are random processes,
the probabilistic criteria similar to the proposal in Chap. 4 can be employed in the
present investigation. The probabilistic criterion of the conventional serviceability
design is usually defined as the standard deviation or the peak value of wind-induced
roof acceleration of structures (Huang et al. 2011). Considering the fundamental
value of reliability in the optimization and design of structural performance, two
families of serviceability criteria are thus employed with the minimization of single-
objective performance function as follows:

(i) serviceability criterion 1 (SC-1): minimizing the standard deviation of roof
acceleration.

c∗
D,i = argmin

cD,i

{J2} = argmin
cD,i

{
σẌn

∣∣
{∑

i

cD,i = CD,total

}}
, i = 1, 2, . . . , n

(7.3.1)

where σẌn
denotes the standard deviation of roof acceleration; c∗

D,i denotes
the optimal damping coefficient of the viscous dampers allocated in the ith
interstory;CD,total denotes the target of total cost in terms of the sum of damping
coefficient of the viscous dampers allocated in all the structural interstories. It
is thus initiated that using the serviceability criterion shown in Eq. (7.3.1), the
optimal distribution of damping coefficients related to the damper sizes and
placements can be attained.

(ii) serviceability criterion 2 (SC-2): minimizing the exceedance probability of roof
acceleration

c∗
D,i = argmin

cD,i

{J2}

= argmin
cD,i

⎧⎨
⎩Pr

⎧⎨
⎩
⋃

t∈[0,T ]

(∣∣Ẍn(t)
∣∣ > Ẍ thd

)
⎫⎬
⎭
∣∣∣∣∣∣
{∑

i

cD,i = CD,total

}⎫⎬
⎭,

i = 1, 2, . . . , n (7.3.2)
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where Ẍn(t) denotes the roof acceleration in the time interval [0, T ]; Ẍ thd denotes
threshold of the roof acceleration; Pr{·} denotes the probability of random event. It
is indicated that by virtue of the generalized optimal control policy, the serviceabil-
ity criterion shown in Eq. (7.3.2) can accommodate the optimal design of damper
parameters and placement so as to guarantee sufficient structural comfortability. One
might recognize that this serviceability criterion is constructed according to the first-
passage problem, of which the exceedance probability of roof acceleration can be
readily solved via the generalized probability density evolution equations and the
equivalent extreme-value event criterion.

The stochastic equivalent linearizationmethodhas beenproved to exhibit high effi-
ciency and accuracy for solving nonlinearmulti-degree-of-freedomsystems,which is
thus first applied to carry out the linearization of nonlinear structural systems attached
with viscous dampers. As to the linearized system, the modal superposition method
in frequency-domain and the probability density evolutionmethod with time-domain
analysis by Newmark-β schemes are employed to solve the performance function J2
in the serviceability criteria shown in Eqs. (7.3.1) and (7.3.2), respectively.

By virtue of the statistical linearization technique shown in Eq. (7.2.19), the
additional equivalent damping ratio of viscously damped structures can be gained,
and the nonlinear structural system is readily transferred into a linearized structural
system. In modal space, the linearized system can be decomposed to a series of
single-degree-of-freedom systems with independent equations of motion as follows:

ü j (t) + 2ζ (e)
j ω j u̇ j (t) + ω2

j u j (t) = F̃j (t) (7.3.3)

where F̃j (t) = φT
jF(�, t)

/
m̄ j denotes the generalized wind load of the jth vibra-

tional mode; ω j =
√
k̄ j
/
m̄ j denotes the circular frequency of the jth vibrational

mode; ζ (e)
j = ζ

(S-E)
j +ζ j denotes the sum of the inherent damping ratio and the equiv-

alent damping ratio of the jth vibrational mode; m̄ j , k̄ j denote the generalized mass
and generalized stiffness of the jth vibrational mode, respectively; φT

j denotes the jth
modal vector.

According to the modal superposition method, the cross-power spectral density
of generalized wind load between modes i and j is represented by

SF̃j F̃k
(ω) = 1

m̄ j m̄k
φT

j SF(ω)φk (7.3.4)

where SF(t) denotes the power spectral density matrix of wind load. The power spec-
tral density of generalized structural responses u j (t) can be obtained by integrating
the frequency response transfer function of systems and the power spectral density
of generalized wind load:

SUj (ω) = ∣∣Hj (ω)
∣∣2SF̃j

(ω) (7.3.5)
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where Hj (ω) denotes the frequency response transfer function:

∣∣Hj (ω)
∣∣2 = 1(

ω4
j − 2ω2

jω
2 + ω4

)
+ 4
[
ζ

(e)
j

]2
ω2

jω
2

(7.3.6)

The power spectral density of the ith story displacement then can be written as

SX j (ω) =
n∑

k=1

φ2
jk SUj (ω) =

n∑
k=1

φ2
jk

∣∣Hj (ω)
∣∣2SF̃j

(ω) (7.3.7)

where φ jk denotes the kth component of the jth modal vector of structural systems.
According to the relation between the power spectral densities of the structural

responses and their differentiated arguments, the power spectral densities of story
acceleration and those of story displacement have the relation function as follows:

SẌ j
(ω) = ω4SX j (ω) (7.3.8)

The mean-square roof acceleration of the structure is then given by

σ 2
Ẍ j

=
∞∫

−∞
ω4SX j (ω)dω =

n∑
k=1

φ2
jk

∞∫
−∞

ω4
∣∣Hj (ω)

∣∣2SF̃j
(ω)dω (7.3.9)

According to the equivalent extreme-value event criterion, the extreme value of
roof acceleration Ẍn in the time interval [0, T ] is defined by

W (�, T ) = max
t∈[0,T ]

(∣∣Ẍn(�, t)
∣∣) (7.3.10)

Introducing a pseudo random process, there is

Z(τ ) = ϕ(W (�, T ), τ ) (7.3.11)

Z(τ )|τ=τ0 = 0, Z(τ )|τ=τc = W (�, T ) (7.3.12)

According to the probability preservation principle, the joint probability den-
sity function pZ�(z, θ , τ ) of (Z(τ ),�) satisfies the generalized probability density
evolution equation as follows (Li and Chen 2009):

∂pZ�(z, θ, τ )

∂τ
+ Ż(τ )

∂pZ�(z, θ, τ )

∂z
= 0 (7.3.13)

where τ denotes the generalized time. The associated initial condition is given by
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pZ�(z, θ, τ0) = δ(z − z0)p�(θ) (7.3.14)

The joint probability density function pZ�(z, θ , τ ) can be then obtained by solving
Eq. (7.3.13), in view of the numerical procedure solving the generalized probability
density evolution equation addressed in Sect. 2.3.3. The probability density function
of extreme value of the roof acceleration Z(τc) is then obtained:

pZ (z, τc) =
∫

Ω�

pZ�(z, θ, τc)dθ (7.3.15)

where �� is the distribution space of �.
The dynamic reliability of structures is then given by

R(T ) = Pr{W (�, T ) ∈ �s} =
Ẍ thd∫
0

PZ (z, τc)dz (7.3.16)

where PZ (z, τc) denotes probability density of the virtual random process Z(τ ) at
the instant of time τ = τc.

The failure probability of roof acceleration Ẍn in the time interval [0, T ] is then
given by

Pr

⎧⎨
⎩
⋃

t∈[0,T ]

(∣∣Ẍn(t)
∣∣ > Ẍ thd

)
⎫⎬
⎭ = 1 −

Ẍ thd∫
0

PZ (z, τc)dz (7.3.17)

As mentioned in Sect. 7.2, the optimization methods for the damper deploy-
ment include the case-sequential scheme, the minimum gradient scheme, and the
genetic algorithm. The former two schemes are both explicit strategies aiming at
approaching the performance objective, which provide feasibility for the decision
maker who is able to readily define the optimal parameters and placements of the
viscous dampers in steps according to the structural performance. In comparisonwith
the case-sequential scheme, the minimum gradient method exhibits the capacity with
more expeditious convergence (Peng et al. 2013). However, the genetic algorithm is
an implicit strategy aiming at minimizing the objective function. Although a repeat
optimization might be incurred once the structural performance objective changes
and the constraint on the optimization needs to be redefined, the genetic algorithm
still has been widely used in the optimization and design of viscous dampers due
to its good adaptability and excellent global optimization capability (Silvestri and
Trombetti 2007). As to the issue of wind-induced comfortability control of high-rise
buildings, an updated scheme for gaining a higher convergence velocity is devel-
oped by integrating the genetic algorithm and the minimum gradient criterion where
the standard deviation and exceedance probability of the roof acceleration at the
searching points and their change rates, i.e., gradient, are included.
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The genetic algorithm is an iterative procedure following the rule of fittest to sur-
vive. In each generation of the population, the individuals are first selected according
to the evaluation results of the individual fitness values in the addressed problem.
The individual with larger fitness value exhibits a larger possibility of being selected.
Then the crossover and mutation similar to the genetic operator in the genetics are
carried out to yield the next generation of the population. This process results in that
the next generation has a stronger fitness in the problem domain. The individuals in
the last generation can be viewed as the optimal solution to the problem. The genetic
algorithm involves a three-step procedure, i.e., selection, crossover, and mutation.
As to the problem of viscous damper deployment with respect to the minimization of
exceedance probability of roof acceleration, the fitness evaluations of individuals in
each generation of population all involves solving the generalized probability density
evolution equations, which incurs an unacceptable computational cost. In order to
reduce the calculation efforts, the neural network algorithm is utilized.

The neural network algorithm aims at building the nonlinear mapping model
exhibiting memory and prediction capacities through the training and predicting on
the provided data (Rojas 1996). Utilizing the nonlinear mapping model, the compu-
tational cost of the objective function is saved, and the computational efficiency can
be enhanced significantly.

The support vectormachine (SVM) is employed serving as the tool formodeling of
the neural network. The SVMhas a distinguished ability for efficient prediction of the
objective function of individuals, which can significantly reduce the computational
cost (Haykin 2007). The flowchart of the SVM-based genetic algorithm is shown
in Fig. 7.8. It is seen that the individual fitness of genetic algorithm relies upon the
SVM, which thus plays a critical role in enhancing the accuracy and efficiency of
the optimization procedure.

7.4 Case Studies

As a practical application of the optimal design of viscous dampers in the wind-
induced comfortability control of high-rise buildings, a 58-story steel structure sub-
jected to random wind excitations is studied. The height of the structure is 249 m,
and the building area is 1.25 km2. According to the Chinese Code for Design Loads
of Building Structures (GB50009-2012), the structural basic wind pressure is 0.75
kN/m2, the occupant-comfortability validation wind pressure is 0.45 kN/m2, and the
ground surface roughness belongs to type A.

Using the software PKPM to carry out the finite-element modeling and the anal-
ysis, the structural wind-induced responses can be readily derived from the formu-
lae shown in the Chinese Code for Steel Structure of High-Rise Buildings (JGJ99-
1998) and in the Chinese Code for Design Loads of Building Structures (GB50009-
2012): the maximum crosswind roof accelerations along Y direction are 0.426 m/s2,
0.381 m/s2, respectively; the maximum crosswind roof accelerations along X direc-
tion are 0.399 m/s2, 0.308 m/s2, respectively. However, the threshold of structural
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Fig. 7.8 Flowchart of SVM-based genetic algorithm

roof acceleration are defined as 0.28 m/s2 for public buildings, 0.20 m/s2 for apart-
ment buildings, respectively, in terms of the Chinese code JGJ99-1998. It is seen that
the structural wind-induced roof acceleration surpasses the threshold around 50%.
Therefore, considering a successful structural control strategy such that the wind-
induced comfortability satisfies with the provisions is a critical task of structural
design.

7.4.1 Dimension-Reduced Model of High-Rise Building

The software SAP2000 is employed to perform accurate finite-element modeling
as shown in Fig. 7.9. In view of the mass matrix and stiffness matrix derived from
the finite-element model, the structural parameters such as the interstory stiffness
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Fig. 7.9 SAP finite-element
model of a high-rise building

and story mass of the two-dimensional mass-lumped system can be attained; see
Table 7.1. The damping ratio of the first two vibrational modes of the mass-lumped
systemalongX andY directions are both 0.01. TheRayleigh dampinghypothesis, i.e.,
C = aM + bK, is employed in this study. Table 7.2 shows the fundamental periods
and the roof acceleration of the finite-element model and of themass-lumped system.
In the comparative study, the basic wind pressure 0.75 kN/m2 is used.

It is seen that differences of fundamental periods and roof displacements between
the simplified mass-lumped system and SAP finite-element model are both in a
range of acceptable error. This simplifiedmodel underlies the feasibility of stochastic
analysis and optimal control of the high-rise building structure.
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Table 7.1 Interstory stiffness and story mass of mass-lumped system

Story level Interstory stiffness along X
(103 kN/m)

Interstory stiffness along Y
(103 kN/m)

Story mass
(103 kg)

1 9400 22,300 1954.6

2 5450 10,700 2478.5

3 4850 8530 2443.3

4 4590 7210 2475.0

5 4560 6800 2493.6

6 6160 8780 2210.8

7 6090 8150 2191.9

8 6030 7400 2192.0

9 6050 6910 2199.4

10 6960 7730 3550.1

11 9420 9120 3052.3

12 6450 6680 2209.4

13 5000 5510 2142.7

14 4620 5040 2143.3

15 4450 4950 2131.2

16 4330 4980 2176.1

17 4240 4660 2143.5

18 4160 4410 2144.3

19 4110 4180 2144.4

20 4040 4070 2151.5

21 4020 4000 2123.4

22 4020 3860 2124.0

23 4090 3700 2124.1

24 4680 3780 3469.2

25 6550 3870 2842.9

26 7560 4420 2949.6

27 4340 3540 2109.0

28 3400 3120 2037.5

29 3150 2930 2037.5

30 3030 2820 2038.5

31 2960 2730 2041.2

32 2910 2670 2040.9

33 2870 2640 2073.4

34 2840 2590 2040.8

35 2800 2500 2017.9

36 2800 2410 2018.3

(continued)
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Table 7.1 (continued)

Story level Interstory stiffness along X
(103 kN/m)

Interstory stiffness along Y
(103 kN/m)

Story mass
(103 kg)

37 2840 2300 1997.1

38 3180 2340 2591.8

39 5080 2710 3429.3

40 4000 2140 3014.0

41 3550 2310 1905.1

42 2720 2030 1938.8

43 2480 1920 1938.9

44 2350 1810 1939.0

45 2260 1750 1954.8

46 2170 1690 1952.1

47 2090 1620 1939.0

48 2010 1550 1938.9

49 1900 1460 1930.5

50 1680 1290 1951.8

51 1560 1180 1934.9

52 1410 1070 1935.6

53 599 514 1731.3

54 742 565 2790.3

55 559 398 1558.8

56 459 301 311.4

57 425 243 325.0

58 330 177 634.5

Table 7.2 Fundamental periods and roof displacements of SAP finite-element model and mass-
lumped system

Models Fundamental
period along X
direction

Fundamental
period along Y
direction

Alongwind roof
displacement
along X direction
(m)

Alongwind roof
displacement
along Y direction
(m)

SAP model 4.99 5.26 0.336 0.480

Mass-lumped 4.91 4.94 0.255 0.506

Error (%)a 1.6 6.1 5.7 5.4

aError = abs (Mass-lumped system − SAP model)/SAP model
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7.4.2 Dynamics Analysis of Model

Using the formulae shown in the Chinese code JGJ99-1998 and in the Chinese code
GB50009-2012, the validation of roof acceleration ofmass-lumped system subjected
to wind load with the occupant-comfortability validation wind pressure 0.45 kN/m2

is carried out. It is seen fromTable 7.3 that using the Newmark-β integral scheme, the
dynamic analysis of mass-lumped system gains similar results with the formulae in
provisions, and the roof acceleration alongY direction is always larger than that along
X direction no matter subjected to alongwind or subjected to crosswind loads. In this
study, the alongwind load is simulated by the spatial fluctuating wind velocity model
addressed in Sect. 2.5.2. The three basic random parameters included in the wind
velocity Fourier spectrum model are valued as: the 10-min mean wind velocity Ū10

at the standard height 10 m is assumed to follow the extreme-value type I distribution
with mean 26.83 m/s and coefficient of variation 0.1; the surface roughness length z0
is assumed to follow the log-normal distribution with mean 0.16 m and coefficient
of variation 0.2; the zero-phase evolution time Te is assumed to follow the Gamma
distribution with mean 0.902× 109 s and coefficient of variation 0.1. The crosswind
load is simulated by the spectral representation method in conjunction with the
experimental crosswind force spectrum and coherence function (Liang et al. 2002).
Time histories of representative roof alongwind and crosswind forces of high-rise
building are shown in Fig. 7.10. In fact, the building widths along X and Y directions
are 37.26 m and 63.34 m, and the aspect ratios are 6.68 and 3.99, respectively. It is
indicated that the crosswind effects are of the main concern since the aspect ratios
in the two main directions are larger than 3.0 (Liang et al. 2002).

The one-dimensional mass-lumped system along Y direction is investigated, of
which the wind-induced vibration and comfortability control are carried out. The
circular frequencies of the first ten vibrational modes are denoted by 1.27, 3.15,
4.86, 6.78, 8.20, 10.02, 11.37, 13.23, 14.84, and 17.27 rad/s, respectively.

Table 7.3 Validation of roof acceleration of mass-lumped system subjected to wind load

Cases Mass-lumped (m/s2) PKPM (JGJ99-1998)
(m/s2)

PKPM
(GB50009-2002)
(m/s2)

Alongwind along X 0.154 0.080 0.115

Alongwind along Y 0.255 0.132 0.183

Crosswind along X 0.361 0.399 0.308

Crosswind along Y 0.413 0.426 0.381
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Fig. 7.10 Time histories of representative roof wind forces of a high-rise building

7.4.3 Wind-Induced Comfortability Control

The desired total damping coefficient is first defined through evaluating the structural
system with uniformly deployed viscous dampers along story level. It is assumed
that the velocity exponents of all the viscous dampers are the same and set as α =
0.5. The total damping coefficient is tentatively set as CD,total = 8 × 104 kN(s/m)0.5.
In this case, the mean of additional damping ratios of the first three vibrational
modes is 0.77%, and a comparative result of the roof accelerations with and without
viscous dampers is shown in Fig. 7.11. It is seen that with the viscous damper
control, the roof acceleration of structure subjected to a representative wind force
decreases significantly, of which the maximum acceleration is around 0.21 m/s2 and
reduced to an acceptable rangedefinedby theprovisions.Therefore, the total damping
coefficient used for the proceeding optimization of parameters and deployments of
viscous dampers is set as CD,total = 8 × 104kN(s/m)0.5.

The parameter and placement optimizations of viscous dampers as both the ser-
viceability criteria SC-1 and SC-2 are carried out. The optimization as the criterion
SC-1 employs the genetic algorithm; while the optimization as the criterion SC-
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Fig. 7.11 Roof acceleration of structure with and without viscous dampers subjected to represen-
tative crosswind force
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Fig. 7.12 Schematic diagrams of viscous damper deployments as serviceability criteria SC-1 and
SC-2

2 employs the SVM-based genetic algorithm. Both optimizations involve a same
parameter group of the genetic algorithm: the size of initial population is 1024, the
size of other populations is 200, the number of genetic generations is 300, number
of variable dimensions is 58, and the parameters k1, k2, k3, k4 for the adaptive
crossover and mutation are 0.5, 0.3, 0.7, 0.5, respectively.

With the optimization of the genetic algorithm, the schematic diagrams of vis-
cous damper deployments as the serviceability criteria SC-1 and SC-2 are shown
in Fig. 7.12. It is seen that if the traditional criteria on the optimization of mean-



230 7 Stochastic Optimal Control of Wind-Resistant Structures …

0 0.1 0.2 0.3 0.4 0.5

10

20

30

40

50

Acceleration (m/s

(a) maximum (b) standard deviation
2)

St
or

y 
Le

ve
l

Uncontrolled
Controlled (UD)
Controlled (SC-1)
Controlled (SC-2)

0 0.05 0.1 0.15 0.2

10

20

30

40

50

St
or

y 
Le

ve
l

Acceleration (m/s2)

Uncontrolled
Controlled (UD)
Controlled (SC-1)
Controlled (SC-2)

Fig. 7.13 Maximum and standard deviation of story acceleration along story level subjected to
representative wind force

square responses such as SC-1 is employed, the middle-level stories; see the stories
17–44 and stories 49–53, need more number of viscous dampers. However, if the
exceedance probability based serviceability criteria SC-2 is employed, the high-level
stories need more number of viscous dampers, especially at the interstories with a
large requirements of viscous dampers such as the stories 50–58.

In order to analyze the control effectiveness of the viscous dampers deployed in the
structural system, a comparative study between the wind-induced vibration control
by virtue of the optimally deployed viscous dampers as criterion SC-2 and that of
the optimally deployed viscous dampers as criterion SC-1 is carried out. Figure 7.13
shows the maximum and standard deviation of story accelerations with and without
viscous damper deployments when subjected to a representative wind force. In the
figure, the case of viscous dampers uniformly deployed along story level is labeled
as Controlled (UD); the cases of optimally deployed viscous dampers as criteria SC-
1 and SC-2 are labeled as Controlled (SC-1) and Controlled (SC-2), respectively.
All the case calculations resort to the stochastic equivalent linearization method and
Newmark-β integral scheme. It is seen that the story accelerations without control
are far larger than those with control, which proves the effectiveness of the viscous
dampers in the wind-induced comfortability control. One might recognize that the
story accelerations of the controlled structure in design as criteria SC-1 and SC-2 are
both less than that in the design of uniformly deployed viscous dampers, indicating
that the viscous damper deployment as serviceability criteria can gain better control
effectiveness, and optimization of viscous dampers exhibits a good trade-off.
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Table 7.4 Dynamic reliabilities of roof acceleration of structure subjected to different thresholds

Cases Thresholds

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28

UD 0.0026 0.0177 0.0315 0.0476 0.0814 0.1654 0.6099 0.6855 0.7600

SC-1 0.0057 0.0158 0.0328 0.0490 0.0897 0.4321 0.6497 0.7329 0.7918

SC-2 0.0779 0.1420 0.1999 0.5127 0.7595 0.8269 0.8704 0.9015 0.9326

Units of threshold are (m/s2)

In fact, the means of the additional former three-order damping ratios of viscously
damped structures as the criteria SC-1 and SC-2 are 0.79% and 1.32%, respectively,
which are both larger than that of the case with uniformly deployed viscous dampers;
i.e., 0.77%. Moreover, the maximum roof accelerations in the cases of optimally
deployed viscous dampers as serviceability criteria SC-1 and SC-2 are reduced to
10.6% and 15.7%, respectively, against the case with uniformly deployed viscous
dampers. The standard deviations of roof acceleration in the former two cases are
reduced to 8.8% and 10.1%, respectively, against the later case. It is well understood
that the serviceability criterion using the exceedance probability as the objective
argument accommodates better control effectiveness.

The PDF and CDF of equivalent extreme-value roof acceleration can be obtained
using the probability density evolution method, as shown in Figs. 7.14 and 7.15.
It is seen that the PDF and CDF of uncontrolled roof acceleration incline to the
right, and those of controlled roof acceleration as the criteria SC-1 and SC-2 incline
to the left to a large extent, by comparison with the case with uniformly deployed
viscous dampers. It is also shown that the exceedance probability based serviceability
criterion secures better structural habitability. Besides, as shown in Fig. 7.14, the 95%
quantile in the case of optimally deployed viscous dampers as criterion SC-2 is much
less than those in other two cases. In order to quantitatively assess the differences
from the cases, the dynamic reliabilities of roof acceleration subjected to different
thresholds are shown in Table 7.4.

It is seen from Figs. 7.14 and 7.15 that the probability density of uncontrolled roof
acceleration has a significant difference from those of controlled roof acceleration,
which proves again the effectiveness of viscous damper control. In the cases of
viscous damper control, the extreme value of roof acceleration as the criterion SC-2
arises to be minimum, then as the criterion SC-1, and the non-optimized case ND has
the largest roof acceleration. A straightforward comparison between the case without
control and the cases with control can be seen from the 95% quantile. Table 7.4
further shows that in the condition of the same total damping coefficient, the optimal
deployment of viscous dampers as the exceedance probability based serviceability
criterion can attain the best wind-induced comfortability.
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Fig. 7.14 PDFs of
equivalent extreme-value
roof acceleration and 95%
quantiles
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7.5 Discussions and Summaries

The present chapter addresses the stiff ratio of nonlinear structural systems with vis-
cous dampers, in the context of practical challenges on the wind-induced comforta-
bility control of high-rise buildings. The classical equivalent linearization methods
including the energy-dissipation equivalent linearization method and the stochastic
equivalent linearization technique are investigated. Two families of probabilistic cri-
teria for the optimal design of viscous dampers deployed in the structural system are
provided. For validating purposes, the reliability based stochastic optimal control
of wind-induced comfortability of a high-rise building in practice is detailed. Some
concluding remarks are drawn as follows:

(1) The damper force of nonlinear viscous dampers arises a fast-changing and slow-
changing behavior along with the variation of piston velocity, which results in
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a stiff problem inherent in the viscously damped structural system. This stiff
problem becomes more significant with the increasing of damping coefficient
and fundamental period of structures.

(2) Due to the essential nonlinearities inherent in viscously damped structures, the
conventional energy-dissipation equivalent linearization method fails to derive
an acceptable linearized system. The stochastic equivalent linearization tech-
nique is verified to have sufficient accuracy and efficiency in the case of thewind-
induced vibration mitigation, which enables the modal superposition method to
be used in the highly efficient optimization of nonlinear viscous dampers allo-
cated in high-rise buildings.

(3) The damper allocations as the serviceability criteria of minimum standard devi-
ation and of minimum exceedance probability of roof acceleration have the
benefit to reduce the wind-induced vibration significantly, which gain a simi-
lar control effectiveness in the case of a same total damping coefficient, and
both exhibit a better trade-off than the non-optimized case with uniformly
deployed viscous dampers. However, the traditional optimization of viscous
damper deployments based on the serviceability criterion of minimum standard
deviation of roof acceleration is a deterministic scheme in essence, which has
limitation of enhancing the wind-induced comfortability of high-rise building,
by comparison with the optimization of viscous damper deployments based on
the serviceability criterion of minimum exceedance probability of roof acceler-
ation.
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