
Chapter 3
Physically Based Stochastic Optimal
Control

3.1 Preliminary Remarks

The notion of stochastic optimal control as currently defined has its roots in statistical
methods for dealingwith certain tracking and signal estimation problems arising from
the existence of uncertainties inherent either in the measurement or in the excitation
that drives the evolution of systems, which involve prediction, filtering, and data
smoothing. The pioneering work on these problems was done by the mathematician
Wiener, who is accredited as the founder of control theory (Wiener 1949). A large
number of research efforts were devoted to estimation problems of practical interest
in electronics, communications and control engineering. An important attempt was
the filtering and prediction theory by Kalman and Bucy in the early 1960s (Bucy and
Kalman 1961). Almost in the same period, the introduction of the state-spacemethod
(Kalman 1960a, b), the developments of the stochastic maximum principle (Kushner
1962), and the stochastic dynamic programming (Florentin 1961) in the context of
Itô calculus received great attention. The stochastic optimal control theorem was
then developed into a rather integrated system in the early 1970s (Åström 1970).
Thereafter, the duality methods, as a major branch of the stochastic optimal control
theory, also known as the Martingale approach, have been paid extensive attention
in recent years because they offered powerful tools for the study of some classes of
stochastic optimal control problems (Josa-Fombellida and Rincón-Zapatero 2007).

In the classical stochastic optimal control theory, the random disturbance spec-
ifying external excitations and measurement noise is typically assumed to be the
additive white Gaussian noise or the filtered white Gaussian noise, and the pertinent
schemes, such as the linear quadratic Gaussian (LQG) control and the covariance
control, which aim to seek the optimal control gain in an admissible set by minimiz-
ing or maximizing the cost function of system state and control force (Stengel 1986).
The application of the classical stochastic optimal control theory in the civil engineer-
ing has attained an extensive progress. For instance, Yang applied the LQG control
into the active optimal control of engineering structures under random excitations
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(Yang 1975). Chang and Yu developed an optimal pole assignment method in
response to the vibration control of a single-degree-of-freedom system subjected
to the white-noise excitation, i.e., using the control gain with the minimum variance,
the pole of the closed-loop system could be transferred to the prespecified complex
plane region (Chang and Yu 1998). Ho and Ma proposed a synthesis method com-
bining the LQG and input estimation schemes, which was demonstrated to be better
than the pure LQG control by a numerical simulation of active vibration control of
lumped-mass systems (Ho andMa 2007). Bani-Hani and Alawneh developed a set of
posttensioning system with active prestress for the vibration control of bridges and
utilized the LQG control in design of constant and variant control gains (Bani-Hani
and Alawneh 2007). Kohiyama andYoshida proposed a parameter designmethod for
the LQG control so as to reduce the displacement and acceleration of computational
facilities under the strong earthquakes (Kohiyama and Yoshida 2014).

The classical stochastic optimal control theory, however, implies an assumption
of weak excitations in essence (Zhu 2006). Actually, as seen in the history of stochas-
tic optimal control, the stochastic dynamics underlies its elementary substance, but
the present theoretical frame of the stochastic dynamics is exclusively based on the
white or filtered white noises and the Itô calculus (Lin and Cai 1995; Øksendal
2005). Therefore, the applicability of the classical stochastic optimal control theory
in the vibration control of civil engineering structures still remains open since the
practical excitations are nonstationary and non-Gaussian processes, such as seismic
ground motions, high winds, and huge waves (Sun 2006). As an insight into this
challenge, this chapter is devoted to developing a methodology of stochastic opti-
mal control for response reduction of structures with actively closed-loop control
systems, integrating the physically motivated random excitation model and the prob-
ability density evolution theory. The pertinent topics include the definition of control
law of stochastic optimal control of structures using Pontryagin’s maximum princi-
ple, the parameter design and optimization of controllers. Since the concern of the
methodology lies upon the probability density evolution of structural systems during
the control process, it is also referred to as the probability density evolution method
(PDEM)-based stochastic optimal control.

3.2 Performance Evolution of Controlled Systems

As mentioned in the previous chapters, the probability density evolution method
provides the theoretical foundation for the accurate analysis and design of stochastic
dynamical systems. Naturally, this method can be extended to stochastic optimal
control of stochastic dynamical systems so as to circumvent the dilemma that the
classical stochastic optimal control confronted with.

Without loss of generality, the state equation of controlled systems subjected to
random excitations is written as
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Ż � L[Z,U,�, t] (3.2.1)

where Z(t) is the 2n-dimensional column vector denoting system state; U(t) is the
r-dimensional column vector denoting control force;� is the random vector charac-
terizing the randomness inherent in the system; and L[·] denotes the 2n-dimensional
vector of operator.

It is noted that the intervention of the control force necessarily affects the evolution
trajectory of the system state, and the control force, on the contrary, needs to be
regulated by the instantaneous system state in terms of the control law in feedback
logic. In most cases, Eq. (3.2.1) is a well-posed equation and the system state Z(t)
can be determined uniquely, which is a function of � and might be assumed to take
the following form:

Z(t) � HZ(�, t) (3.2.2)

At the present stage, the explicit expression of the formal function HZ(·) is not
requisite and the sufficient condition is just its existence and uniqueness. Likewise,
the control forceU(t) is also a function of� and can be assumed to take the following
form:

U(t) � HU(�, t) (3.2.3)

The velocities of Z(t) and U(t) can be thus assumed to take the following forms:

Ż(t) � hZ(�, t) (3.2.4)

U̇(t) � hU(�, t) (3.2.5)

If the probability density function of a component ofZ(t), denoted as Z (t), without
risk of confusion, is of interest, i.e.,

Ż (t) � hZ (�, t) (3.2.6)

The augmented system (Z (t),�) sustains a conservative probability since all the
randomness involved in this system comes from �. There thus has

D

Dt

∫

�t×��

pZ�(z, θ, t)dzdθ � 0 (3.2.7)

where �t ,�� are the distribution domain of t ,�, respectively; pZ�(z, θ, t) is the
joint probability density function of (Z (t),�). Through some mathematical manip-
ulations, it follows (Li and Chen 2009)
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D

Dt

∫

�t×��

pZ�(z, θ, t)dzdθ �
∫

�t×��

(
∂pZ�

∂t
+ hZ

∂pZ�

∂z

)
dzdθ (3.2.8)

Combining Eqs. (3.2.7) and (3.2.8) and considering the arbitrary characteristics on
the integral domain �t × ��, we have

∂pZ�(z, θ, t)

∂t
+ Ż (θ, t)

∂pZ�(z, θ, t)

∂z
� 0 (3.2.9)

Equation (3.2.9) is the so-called generalized probability density evolution equation
(GDEE) for the augmented system (Z (t),�).

Likewise, for the component of control force U (t), we have

∂pU�(u, θ, t)

∂t
+ U̇ (θ, t)

∂pU�(u, θ, t)

∂u
� 0 (3.2.10)

The pertinent instantaneous PDFs of Z (t) and U (t) can be obtained by solving a
family of partial differential equations with provided initial conditions as follows:

pZ�(z, θ, t)|t�0� δ(z − z0)p�(θ) (3.2.11)

pU�(u, θ, t)|t�0� δ(u − u0)p�(θ) (3.2.12)

where δ(·) is the Dirac delta function; z0, u0 are determinative initial values of
Z (t),U (t), respectively. We then have

pZ (z, t) �
∫

��

pZ�(z, θ, t)dθ (3.2.13)

pU (u, t) �
∫

��

pU�(u, θ, t)dθ (3.2.14)

where the joint PDFs pZ�(z, θ, t) and pU�(u, θ, t) are the solutions of Eqs. (3.2.9)
and (3.2.10), respectively.

It is noted that the GDEE reveals the intrinsic relation of stochastic control sys-
tem and deterministic control system via the realization of random vector θ, which
underlies the realizability of probability-density-based optimal control for high-
dimensional stochastic systems driven by practical nonstationary and non-Gaussian
random excitations (Li and Chen 2008). One might recognize from Eqs. (3.2.9),
(3.2.10), (3.2.13), and (3.2.14) that the kernel of implementing the probability-
density-based optimal control is solving the physical quantity change Ż (θ, t), U̇ (θ, t)
of systems with respect to the realization of random vector θ. Distinguished from the
classical stochastic optimal control such as the LQG, the optimal control methodol-
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Fig. 3.1 Schematic of
deterministic control (DC),
LQG control, and physically
based stochastic optimal
(PSO) control

LQG

DC
PSO

ogy on the basis of the GDEEs is termed as the physically based stochastic optimal
control.

Figure 3.1 shows the differences from the deterministic control (DC), the LQG
control, and the physically based stochastic optimal (PSO) control upon tracing
the state evolution of controlled systems. It is ready to see that the trajectory of the
deterministic control system is from point to point, which obviously lacks the ability
of governing the system performance due to the randomness inherent in external
excitations and measurement noise. The trajectory of the control system by the LQG
is from circle to circle. It is noted that the classical stochastic optimal control is
essentially a control scheme based on the second-order statistics, which just holds
the system performance in the sense of mean-square quantities, and is incapable of
attaining the complete probability information. The trajectory of the control system
by the PSO, however, is from domain to domain, which can readily complement the
accurate control of the system performance in the sense of probability density of
quantities, owing to the advantage that the system quantities of interest are governed
by the GDEEs, i.e., Eqs. (3.2.9) and (3.2.10).

3.3 Scheme of Stochastic Optimal Control

3.3.1 Closed-Loop Control Systems

Consider an n-degree-of-freedom linear structural systemwith active control devices
and subjected to random excitations. The equation of motion is given by

MẌ(t) + CẊ(t) +KX(t) � BsU(t) + DsF(�, t) (3.3.1)
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where X(t) is the n-dimensional column vector denoting system displacement; U(t)
is the r-dimensional column vector denoting control force; F(·) is the p-dimensional
column vector denoting random excitations, which can be represented by a stochastic
function in terms of the orthogonal decomposition of random processes (Li and Liu
2006) or introducing the physical mechanism of random processes (Li and Ai 2006);
M, C, and K are n× n mass, damping, and stiffness matrices, respectively; Bs is the
n × r matrix denoting the location of control devices; and Ds is the n × p matrix
denoting the location of external excitations.

It should be noted that the random vector� is considered to represent the random-
ness inherent in external excitations, and the measurement noise is ignored in this
study since that the uncertainty arising from the measurement noise is more control-
lable compared with that arising from the random excitation. Meanwhile, although it
is somewhat cumbersome, the notation � underlies the fact that a random process is
a function defined over the space of events of which � is an element. Having noted
this, the symbol�would be dropped in the following development when the random
nature of a certain quantity is obvious from the context except in the case of special
denotation for a key quantity.

In the state space, Eq. (3.3.1) becomes

Ż(t) � AZ(t) + BU(t) + DF(�, t) (3.3.2)

with the initial condition

Z(t0) � z0 (3.3.3)

where A is the 2n × 2n system matrix; B is the 2n × r matrix denoting the location
of control devices, and D is the 2n × p matrix denoting the location of external
excitation, respectively,

Z(t) �
[
X(t)
Ẋ(t)

]
,A �

[
0 I

−M−1K −M−1C

]
,B �

[
0

M−1Bs

]
,D �

[
0

M−1Ds

]

(3.3.4)

Equation (3.3.2) is numerically tractable using time integration methods, thereby
any system quantities of interest such as displacement, velocity, acceleration, and
control force can be readily derived.

The stochastic optimal control involves maximizing or minimizing a specified
cost function. The generalized form of cost function is typically a quadratic combi-
nation of displacement, velocity, acceleration, and control force (Yang et al. 1994).
Considering the linear quadratic regulator (LQR) as the control logic of the PSO, a
standard quadratic cost function is given by (Soong 1990)
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J1(Z,U,�) � 1

2
ZT(t f )S(t f )Z(t f ) +

1

2

t f∫

t0

[ZT(t)QZZ(t) + UT(t)RUU(t)]dt

(3.3.5)

whereQZ is a 2n×2n positive semi-definite weighting matrix with respect to system
state; RU is an r × r positive definite weighting matrix with respect to control force;
t0 is the initial time; and t f is the terminal time which is usually larger than the
duration of the external excitation. As should be noted, the cost function of the
classical LQG is defined as ensemble average on the right terms of Eq. (3.3.5),
which is a deterministic function; its minimization aims to attain the optimal gain
with minimum cost under the assumption of white Gaussian noise as the external
excitation and the given parameters of control law. In this case, the optimal gain
relies upon second-order statistics of system quantities, which allows for a mean-
square solution of control system, but the probability distribution of the system state
pertaining to structural reliability is still unknown. The cost function of the PSO, i.e.,
Eq. (3.3.5), however, is a randomfunction; itsminimization aims to derive a stochastic
optimal gain with parameters of control law of which the design and optimization
through cost-effect analysis over realizations of random vector can attain the desired
probability distribution of the system state. The proposed procedure is suitable for the
optimal control of general stochastic systems, without assumption of white Gaussian
noise as the external excitation.

In brief, the procedure involves a two-step optimization; see Fig. 3.2. In the first
step, for each realization (sample) θ of the random vector �, the minimization of the
cost function Eq. (3.3.5) is carried out to build a functional mapping from the set of
parameters of control law to the set of control gains. In the second step, the optimal
parameters of control law to be used are obtained by optimizing the control gain as
a probabilistic criterion pertaining to the structural performance objective.
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Fig. 3.2 Two-step optimization of physically based stochastic optimal control
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Therefore, viewed from representative realizations, the minimization of the cost
function J1 leads to a conditional extreme-value problem. Introducing the costate
vector λ(t) ∈ R

n and utilizing the Lagrange multiplier method, we have

J1(Z,U,λ,F,�) � 1

2
ZT(t f )S(t f )Z(t f ) +

t f∫

t0

[H (Z,U,λ,F,�,t) − λT(t)Ż(t)]dt

(3.3.6)

where the Hamiltonian function is given by

H (Z,U,λ,F,�,t) � 1

2
[ZT(t)QZZ(t) + UT(t)RUU(t)] + λT(t)[AZ(t) + BU(t) + DF(�, t)]

(3.3.7)

The necessary condition for theminimization of the cost function J1(Z,U,λ,F,�)
is deduced from the celebrated Pontryagin’s maximum principle that the system state
Z∗(t) denotes the optimal trajectory if the control forceU∗(t) is referred to as an opti-
mal control, and there must exist a costate λ∗(t) that allows for the Euler–Lagrange
equation, as shown in Eqs. (2.2.13)–(2.2.15), in the presence of the random excita-
tion. Then, we have

∂H

∂U
� RUU(t) + BTλ(t) � 0 (3.3.8)

which yields

U(t) � −R−1
U BTλ(t) (3.3.9)

The costate equation Eq. (2.2.14) then turns to be

λ̇(t) � −
(

∂H

∂Z

)T

� −QZZ(t) − ATλ(t) (3.3.10)

As to a closed-open-loop control system with the state feedback and the input
feedback simultaneously (Yang et al. 1987), the linear mapping between the costate
λ(t) and the state Z(t), and the random excitation F(�, t) is deduced as (for the
details; see Appendix B)

λ(t) � P(t)Z(t) + SF(t)F(�, t) (3.3.11)

where P(t),SF(t) are undetermined matrices with the terminal conditions

P(t f ) � SF(t f ) � 0 (3.3.12)

Substituting Eq. (3.3.11) into Eq. (3.3.9), one could obtain the control law
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U(t) � −R−1
U BTP(t)Z(t) − R−1

U BTSF(t)F(�, t) (3.3.13)

Introducing Eq. (3.3.11) into Eq. (3.3.10) yields

Ṗ(t)Z(t) + P(t)Ż(t) + ṠF(t)F(�, t) + SF(t)Ḟ(�, t)

� −[QZ + ATP(t)]Z(t) − ATSF(t)F(�, t) (3.3.14)

Namely,

[Ṗ(t) + P(t)A + ATP(t) − P(t)BR−1
U BTP(t) +QZ]Z(t)

� [ṠF(t) + ATSF(t) − P(t)BR−1
U BTSF(t) + P(t)D]F(�, t) − SF(t)Ḟ(�, t)

(3.3.15)

Equation (3.3.15) is the so-called differential Riccati equation and P(t) denotes the
Riccati matrix.

It is indicated in Eq. (3.3.15) that the control law of a continuous time system
involving the input feedbackmust be computed in real time according to themeasured
data since P(t),SF(t) are both coupled with F(�, t),Z(t). As mentioned previously,
a critical task included in the proposed control scheme is the determination of proba-
bilistic criterion, which relies upon the structural performance objective and naturally
considers the influence of the random excitation. Therefore, the excitation-relevant
term can be removed safely from the expression of control law. This treatment leads
to a closed-loop control with the state feedback. The Riccati equation of the closed-
loop control is then written as

Ṗ(t) � −P(t)A − ATP(t) + P(t)BR−1
U BTP(t) − QZ (3.3.16)

It is indicated in previous studies that the Riccati matrix P(t) remains the steady
solution in a long interval after the initial time t0, and comes into the transient solution
rapidly until to zero near the final time t f (Athans and Falb 1966). The starting
time of the transient solution moves forward to t f when the final time t f → ∞.
Consequently, for the infinite-time control system, the Riccati matrix P(t) equals to
its steady solution P, and Eq. (3.3.16) thus becomes a matrix algebraic equation

PA + ATP − PBR−1
U BTP +QZ � 0 (3.3.17)

According to Eq. (3.3.13), the control law of closed-loop control is thus given by

U(�, t) � −GZZ(�, t) (3.3.18)

where GZ denotes the gain matrix of state-feedback control

GZ � R−1
U BTP (3.3.19)
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Fig. 3.3 Schematic of
probability density of system
state at typical instant of time
with and without controls

Uncontrolled

Controlled

Substituting the physical solutions of state quantity Z(t) and control force U(t)
in the equation of motion of controlled structural system; see Eq. (3.3.2), into the
generalized probability density evolution equations Eqs. (3.2.9) and (3.2.10), one
can readily derive the probability density evolution process of system quantities of
concern. Fig. 3.3 shows the schematic of probability density of system state at typical
instant of time with and without controls.

3.3.2 Parameter Optimization of Control Law

The optimal control involves minimizing or maximizing a cost function in terms of
system state and control force, either the deterministic cost function included in the
classical LQG control or the stochastic cost function included in the proposed PSO
control. The control effectiveness relies upon the derived control law pertaining to
the structural performance objective. A critical step of designing control system is the
determination of parameters of control law. It is seen fromEqs. (3.3.17)–(3.3.19) that
the effort of designing the linear quadratic regulator (LQR) ought to be paid on the
choice of cost-function weightsQZ andRU. A number of strategies for the choice of
cost-function weights were developed in the context of the classical LQG, such as the
statistical moment evaluation based on the mathematical expectation of quantities
of interest (Zhang and Xu 2001), the system robustness analysis in the sense of
optimal probability (Stengel et al. 1992), and the weighting matrices comparison in
the context of Hamiltonian theoretical framework (Zhu et al. 2001). In the context of
the PSO, a strategy for cost-function weights choice is developed which is referred to
as the system second-order statistics evaluation (Li et al. 2010), where the pertinent
performance function involving evaluation and constraint quantities is proposed as
follows:

J2 � N∪
j�1

F[W̃ j ]

∣∣∣∣
M∪
k�1

{F[Ṽk] ≤ Ṽk,con} (3.3.20)
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where W̃ j � max
t
[max

i

∣∣Wji (�, t)
∣∣] denotes the jth component of the equivalent

extreme-value vector to be evaluated; Ṽk � max
t
[max

i
|Vki (�, t)|] denotes the kth

component of the equivalent extreme-value vector used as the constraint; Ṽk,con

denotes the threshold of the kth constraint; and the hat “~” on symbols indicates
the equivalent extreme-value vector (Li et al. 2007); ∪ denotes the union opera-
tor; N , M denote the number of evaluation and constraint quantities, respectively;
andF[·] is the quantile function denoting confidence level.

Therefore, the probabilistic criterion in terms of the system second-order statistics
evaluation is defined as follows:

{Q∗
Z,R∗

U} � argmin
QZ,RU

{J2} (3.3.21)

The employment of the probabilistic criterion of Eq. (3.3.21) aims to seek the optimal
cost-function weights Q∗

Z,R∗
U, under the condition of the quantile of the constraint

less than its threshold, such that the quantile of the evaluation quantity is minimized.
Herein, the evaluation quantity could be recognized as the extreme value of a struc-
tural response, e.g., interstory drift, interstory velocity, story acceleration, interstory
shear force, and control force.

In this sense, the cost-function weights can be employed as (Soong 1990)

QZ � q

[
I 0
0 I

]
,RU � rI (3.3.22)

where q, r are coefficients of weighting matrices pertaining to system state and
control force, respectively. The ratio between the two coefficients denotes the trade-
off between the effect (mitigation ratio) and the cost.

It is worth noting that the abovementioned procedure underlies a heuristic algo-
rithm of defining the cost-function weightsQZ and RU. The details of the procedure
will be presented in the numerical examples as shown in the following section.

3.4 Numerical Examples

3.4.1 Controlled Single-Story Building Structure

A planar single-story shear frame attached with an active tendon system as sketched
in Fig. 3.4 is considered here, which is subjected to the horizontal random seismic
ground motion ẍg(�, t). The properties of the system are as follows: the mass of the
story ism � 1 × 105 kg; the circular frequency of the uncontrolled structural system
isω0 � 11.22 rad/s; the control force of the actuator is denoted by f (t); α represents
the inclination angle of the tendon with respect to the base and the acting force u(t)
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Fig. 3.4 Sketch of
single-story shear frame with
active tendon system Active Tendon

Actuator

on the structure is simulated; and the damping ratio is set as 0.05. The interstory drift
is considered as the constraint and the evaluation quantities include the interstory
drift, the story acceleration, and the control force. The quantile function is defined as
mean plus three times of standard deviation of the equivalent extreme-value variables.
The threshold of interstory drift is specified to be 10 mm. The stochastic optimal
control aims to assure the structural safety through controlling the interstory drift, to
accommodate the structural habitability through controlling the story acceleration,
and to satisfy with the systemworkability through controlling the output of the active
tendon. Numerical simulation of structural responses employs a transfer function
method, i.e., the S-transform of linear time-invariant (LTI) systems (Mathews and
Fink 2003).

The physically motivated random seismic ground motion model addressed in
Sect. 2.5.1 is employed to represent the randomseismic ground acceleration. The con-
ditional groundmotion pertaining to the background of seismic hazards is introduced
such that the influences of seismic source and wave propagation can be integrated
as the input at the bedrock. The local site is viewed as a single-degree-of-freedom
system; see Fig. 3.5. The physical relation between the surface ground motion and

Soil

Bedrock

m

k

c

Equivalent SDOF Model

Fig. 3.5 Equivalent single-degree-of-freedom model of local site
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bedrock ground motion, predominant circular frequency, and equivalent damping
ratio of local site has a theoretical formulation as follows (Li and Ai 2006):

Ẍg(�, ω) � �2
ω̄0

+ 2iΘζ̄�ω̄0ω

�2
ω̄0

− ω2 + 2iΘζ̄ �ω̄0ω
· Üb(�b, ω) (3.4.1)

where Ẍg(�, ω), Üb(�b, ω) are the frequency-domain expressions of ground
motions at the surface of engineering site and at the bedrock, respectively. The
ground motion at the bedrock is mathematically assumed to be a band-limited white
noise, of which the Fourier amplitude is defined based on the background of seismic
hazards; � � (�ω̄0 ,�ζ̄ ,�b) is the random vector characterizing the randomness
inherent in the ground motion at the surface of engineering site, which is used to
model the randomness inherent in systems, of which�ω̄0 ,�ζ̄ are the elementary ran-
dom variables denoting the uncertainty of the site soil, i.e., the predominant circular
frequency of engineering site ω̄0 and the equivalent damping ratio ζ̄ ;�b � {�b,i }sbi�1
is the random vector characterizing the randomness inherent in the ground motion
at the bedrock coming from the properties of seismic sources and wave propagation;
sb denotes the number of random variables; ω is the circular frequency; and i is the
imaginary unit.

The time history of the random ground motion then could be attained by the
inverse Fourier transform:

ẍg(�, t) � 1

2π

∞∫

−∞
Ẍg(�, ω)eiωtdω (3.4.2)

The local site is assumed to have the properties of site class III and exhibit seis-
mic fortification intensity 8 in terms of the Chinese Code for Seismic Design of
Building Structures (GB50011-2010). Following the basic principle of stochastic
modeling, the probabilistic structures and distribution parameters of the elementary
random variables, i.e., the predominant circular frequency ω̄0 and the equivalent
damping ratio ζ̄ can be derived by the data fitting of recorded seismic accelerations
using the least squares method. Numerical results show that the predominate cir-
cular frequency ω̄0 and the equivalent damping ratio ζ̄ both follow the lognormal
distribution, of which the mean and coefficient of variation of ω̄0 are 12 rad/s, 0.42,
respectively; the mean and coefficient of variation of ζ̄ are 0.1, 0.35, respectively.
Considering the seismic hazard with return period 50 years, i.e., frequently occur-
ring earthquake and peak ground acceleration 0.11g, the Fourier amplitude of ground
motion at the bedrock is set as 0.20 m/s2. Meanwhile, the initial phase angle in the
inverse Fourier transform for simulating seismic ground accelerations is assumed
to follow the normal distribution, of which mean and coefficient of variation are π ,
1.2, respectively. Utilizing the tangent spheres method to carry out the partition of
probability-assigned space, 221 representative points and the pertinent time histo-
ries of seismic ground accelerations are generated (Chen et al. 2007; Chen and Li
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2008). Sampling frequency and duration of the simulated ground motions are 50 Hz,
20.48 s, respectively.

In order to reveal the nonstationary intensity of seismic ground motions, the
following uniform modulation function is used (Li and Chen 2009):

f (t) �
⎧⎨
⎩
t2/4, t ≤ ta
1, ta<t ≤ tb
e−0.8(t−tb), tb<t ≤ T

(3.4.3)

where ta and tb are set as 2 s and 16 s, respectively and T denotes the duration of the
ground motion.

Statistical moments of the random seismic ground acceleration are shown in
Fig. 3.6. It is seen that the amplitude of the mean (approximate 0.06 m/s2) is around
8% of the amplitude of the standard deviation (approximate 0.8 m/s2), indicating
that the physically motivated random ground motion model exhibits the property of
zero mean. Time history of a representative seismic ground acceleration is shown
in Fig. 3.7. It is recognized that the random seismic ground acceleration exhibits
remarkable nonstationary behaviors both in temporal and frequency domains. Two
recorded seismic ground accelerations from the same site class, labeled as EL270
and EMC90, are shown in Fig. 3.8, of which the peak ground acceleration (PGA)
is scaled to 0.1g. For comparative purposes, the acceleration response spectra of the
random seismic groundmotion, representative, and recorded seismic groundmotions
are pictured; see Fig. 3.9. It is shown clearly that the mean plus standard deviation
of acceleration response spectrum derived from the random seismic ground motion
accommodates the acceleration response spectra derived from the recorded seismic
ground motion, indicating the moderation of the selected seismic ground motions
and the rationality of the physicallymotivated random seismic groundmotionmodel.
This knowledge owes to the fact that the physicallymotivated random seismic ground

Fig. 3.6 Mean and standard
deviation of random seismic
ground acceleration
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Fig. 3.7 Time history of representative seismic ground acceleration
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Fig. 3.8 Time histories of recorded seismic ground accelerations from the same site class

motionmodel is a self-contained sample set with respect to simulated seismic ground
motions; the selected seismic ground motions, in some sense, can be viewed as ele-
ments of another sample set of recorded seismic ground motions which has the same
background of seismic hazards to the self-contained sample set.

In order to reveal the influence of cost-function weights on the stochastic optimal
control, the relations between the equivalent extreme-value displacement, the equiv-
alent extreme-value acceleration, the equivalent extreme-value control force, and the
ratio of coefficients of weighting matrices q/r are presented in Fig. 3.10, where q
is set as 100. It is clearly seen that these relation curves are different both from the
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ing matrices
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structural responses and seismic ground motions, e.g., concerning the same seismic
ground motion, the relation between control force and the ratio q/r changes from
the structural displacement, velocity, and acceleration; concerning the same struc-
tural response, the relation between control force and the ratio q/r changes from
seismic ground motions. The optimal ratio q∗/r∗, in other words, nominally arises
to be different from samples of the random seismic ground motion and exhibits a
certain randomness.Moreover, there exists a relevance between control effectiveness
and control cost; the definition of the optimal ratio q∗/r∗ shall consider the trade-
off between system quantities of interest. One might wonder, however, which ratio
of coefficients of weighting matrices for the stochastic optimal control exhibits the
optimality in a global sense?

In fact, the control law involves a deterministic gain matrix even in the stochas-
tic optimal control, which relies upon the structural performance objective and can
be derived as a probabilistic criterion, e.g., the system second-order statistics eval-
uation. Figure 3.11 shows the relation between the mean of equivalent extreme
-value displacement, equivalent extreme-value velocity, equivalent extreme-value
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Fig. 3.11 Relation between mean, quantile of quantities, and ratio of coefficients of weighting
matrices
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Fig. 3.12 Time histories of mean and standard deviation of structural responses with and without
controls

acceleration, equivalent extreme-value control force, and the ratio q/r . The quan-
tiles of these quantities are shownaswell. It is seen that: (i) as ratioq/r ≥ 2×1012, the
quantile of the displacement is completely within its threshold as a constraint; (ii) as
ratio q/r ≥ 2×1014, the standard deviation of the displacement is minimum and the
mean decreases slowly, whereas the standard deviation of the acceleration increases
and the mean of acceleration decreases very gently; the mean and standard deviation
of the control force, however, increase significantly; (iii) as ratio q/r � 8×1012, the
standard deviation of the acceleration attains minimum, although the standard devi-
ation of the displacement is not minimum; meanwhile, the means of the acceleration
and the displacement decrease evidently. The benefit at this ratio, moreover, lies in
that the mean and standard deviation of the control force are much less than those at
the ratio q/r ≥ 2×1014. Considering the trade-off between the quantities of interest,
it is thus reasonable to take the optimal ratio q∗/r∗ � 8×1012; q∗ � 80, r∗ � 10−11

in the numerical case.
Time histories of the mean and standard deviation of structural displacement and

those of structural acceleration with and without controls are shown in Fig. 3.12. It is
seen that the structural responseswith control are reduced significantly in comparison
with those without control. Moreover, the structural responses decrease significantly
in the time interval with larger amplitudes; see the interval from 2 s to 8 s, which
indicates that the stochastic optimal control aims at enhancing the structural robust-
ness in a global sense. The amplitudes of standard deviations of the displacement
and the acceleration with control are reduced by 5 and 3 times than those without
control, respectively. It is also seen from Fig. 3.12 that the amplitude of the mean is
around 8% smaller than that of the standard deviation. It is understood that the linear
structural system is driven by the random seismic ground motion with zero mean.

Figure 3.13 shows the PDFs of the displacement of the controlled and uncontrolled
structures at typical instants of time 4 s, 7 s, and 10 s. It is seen that the variation of
the structural displacement with control is reduced significantly by comparison with
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Fig. 3.13 PDFs of structural displacement at typical instants of time

-6000 -4000 -2000 0 2000 4000 6000
0

2

4

6

8 x 10
-4

Acceleration (mm/s2) Acceleration (mm/s2)

P
D

F

PDF at 4.00 s
PDF at 7.00 s
PDF at 10.00 s

-6000 -4000 -2000 0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 x 10
-3

P
D

F

PDF at 4.00 s 
PDF at 7.00 s 
PDF at 10.00 s

(a) without control (b) with control

Fig. 3.14 PDFs of structural acceleration at typical instants of time

that without control. The PDFs of the structural acceleration at typical instants of
time show similar properties to the structural displacement, as shown in Fig. 3.14. It
is revealed that the seismic performance of the structure has been enhanced greatly
after the stochastic optimal control is applied. For details of time-varying probabilis-
tic information, the probability densities of structural displacement and structural
acceleration at typical time interval from 4 s to 10 s are shown in Figs. 3.15 and 3.16,
respectively.

The mean and standard deviation of control force and PDFs at typical instants
of time are shown in Fig. 3.17. It is seen that the shapes of the mean and standard
deviation of control force and the pertinent curves of the probability density function
exhibit certain similarities to the structural displacement and structural acceleration.
These similarities are resulted from the cause that the optimal control force is pursuing
the structural response in real time, which is a weighted combination of structural
displacement and velocity as the relevant elements of the gain matrix (Chung et al.
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Fig. 3.15 Probability density of structural displacement at typical time interval
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1988). However, the generalized probability density evolution equation is essentially
a nonlinear first-order partial differential equation, which results in the differences
of PDFs between system state and control force even if the control force is linearly
mapped from the system state.

3.4.2 Controlled Multiple-Story Building Structure

An eight-story shear frame attached with fully distributed active tendon systems is
studied. The properties of the uncontrolled structure are taken from the publication
by Yang et al. (Yang et al. 1987). The story mass is mi � 3.456× 105 kg; interstory
stiffness is ki � 3.404 × 102 kN/mm; and internal damping coefficient of each
story is ci � 2.937 kNs/mm, which corresponds to a 2% damping ratio for the
first vibration mode of the entire structure. The external damping is assumed to be
zero. The calculated natural frequencies are 5.79, 17.18, 27.98, 37.82, 46.38, 53.36,
58.53, and 61.69 rad/s, respectively. The constraint quantity, evaluation quantity, and
control objective are the same as those of the case shown in Sect. 3.4.1. The quantile
function is defined as the mean plus one time of standard deviation. The threshold
of interstory drift is set as 15 mm. The random seismic ground motion model is
employed, of which the peak ground acceleration is 0.3g.

Figure 3.18 shows the relation between the mean, quantile of equivalent extreme-
value displacement, equivalent extreme-value acceleration, equivalent extreme-value
control force, and the ratio of coefficients of weighting matrices. It is shown that (i)
as ratio q/r ≥ 4 × 1013, the quantile of the displacement is completely within its
threshold as a constraint; (ii) as ratio q/r � 1 × 1014, the standard deviation of the
displacement is minimum and the mean approaches to its minimum, which are both
decreasing significantly; and themean of control force increases constantly, of which
the standard deviation, however, provisionally possesses a small value. Therefore, it
is reasonable to take the optimal ratio q∗/r∗ � 1 × 1014; q∗ � 100, r∗ � 10−12 in
this numerical case.

Figure 3.19 shows the time histories of mean and standard deviation of the first
and eighth interstory drifts with and without controls. It is seen that the interstory
drifts are reduced significantly when the structure is under control. The amplitudes
of interstory drifts with control are nearly 4 times smaller than those without control.
Similar to the displacement of the single-story structural system with control shown
in Sect. 3.4.1, the time interval with larger amplitudes gets an obvious improvement.
The interstory drift with control exhibits almost samemitigation ratio along the story
level of the structure. Story acceleration, however, does not exhibit this behavior.
Shown in Fig. 3.20 is the time histories of the mean and standard deviation of the
first and eighth story accelerations with and without controls. It is seen that the first
story acceleration remains nearly unchanged; while the eighth story acceleration is
improved significantly. The two story accelerations, however, have almost the same
variation, owing to the fact that the objective of the stochastic optimal control is

https://doi.org/10.1007/978-981-13-6764-9_3
https://doi.org/10.1007/978-981-13-6764-9_3
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Fig. 3.18 Relation between mean, quantile of quantities, and ratio of coefficients of weighting
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Fig. 3.19 Time histories of mean and standard deviation of interstory drifts of structure with and
without controls
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Fig. 3.20 Time histories of mean and standard deviation of story accelerations of structure with
and without controls
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Fig. 3.21 PDFs of first interstory drift at typical instants of time

to optimize the structural performance in the sense of the trade-off between system
quantities of interest.

The PDFs of the first and eighth interstory drifts at typical instants of time 3 s,
5 s, and 7 swith andwithout controls are shown in Figs. 3.21 and 3.22. By comparison
with the cases without control, the distribution range of the PDFs of interstory drifts
with control becomes narrower and the shape of the PDFs arises to be more irregular.
It is indicated that the shear frame structure with control does not move as a similar
profile to that without control since the introduction of the control force leads to
a change of contribution from vibrational modes to structural responses. Similar
control effectiveness is shown in the PDFs of the first and eighth story accelerations
at typical instants of time with and without controls; see Figs. 3.23 and 3.24. The
probability densities of the first interstory drift and story acceleration at typical time
interval from 3 s to 7 s are pictured in Figs. 3.25 and 3.26, respectively.

Time histories of the mean and standard deviation of the first and eighth interstory
control forces are shown in Fig. 3.27. It is readily seen that the first interstory control
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Fig. 3.22 PDFs of eighth interstory drift at typical instants of time
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Fig. 3.23 PDFs of first story acceleration at typical instants of time
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Fig. 3.25 Probability density of first interstory drift at typical time interval with control
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Fig. 3.26 Probability density of first story acceleration at typical time interval with control

force has certain similarities to the eighth interstory control force except the scale of
amplitude, of which the first interstory control force is 10 times larger than the eighth
interstory control force. It is also seen that the time histories of the standard deviations
of the first and eighth interstory control forces exhibit positive similarities, while the
timehistories of themeans exhibit negative similarities. In viewofFigs. 3.19 and3.20,
onemight recognize that the responses of the two stories arise to be asynchronous, and
accordingly the feedback control forces on the two stories arise to be asynchronous.
This phenomenon is also shown in the PDFs of interstory control forces at typical
instants of time; see Fig. 3.28.

Control effectiveness of extreme-value responses of the eight-story building struc-
ture by active tendon systems is shown in Table 3.1. It is seen that the interstory drift
reduces significantly, of which themean decreases about 70%, the standard deviation
decreases about 85%, and the amplitude of the response is reduced nearly the same
along story level of the structure. The reduction of acceleration from the fifth story
to the eighth story with control is remarkable as well, of which the mean decreases
50% on average and the standard deviation decreases 75% on average. It is noted
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Fig. 3.27 Time histories of mean and standard deviation of interstory control forces
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Fig. 3.28 PDFs of interstory control forces at typical instants of time

that the control effectiveness of acceleration of the low two stories is obviously less
than other stories. As it is indicated in Table 3.1, the story acceleration arises to be
more uniform along the story level of the structure after the structure is controlled.
Moreover, the higher the story level, the smaller the control force arises to be. There-
fore, more control cost is required for the low stories in order to attain a uniform
story acceleration along the story level. The ratios of extreme-value control forces,
besides, between different interstories are almost equal to those of extreme-value
interstory drift, which is due to the fact that the control force is a linear function with
respect to the interstory drift.
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3.5 Comparative Studies against LQG

In order to validate the physically based stochastic optimal control, comparative
studies against the classical LQG and the deterministic control are carried out. For
illustrative purposes, the numerical example addressed in Sect. 3.4.1 is employed.

Concerning the controlled structure with active tendon system shown in Fig. 3.4,
the equation of motion is given by

ẍ(t) + 2ζω0 ẋ(t) + ω2
0x(t) � m−1u(t) − ẍg(�, t) (3.5.1)

which can be rewritten as a formulation in state space as follows:

Ż(t) � AZ(t) + Bu(t) + Dẍg(�, t) (3.5.2)

where

Z(t) �
[
x(t)
ẋ(t)

]
,A �

[
0 1

−ω2
0 −2ζω0

]
,B �

[
0

m−1

]
,D �

[
0

−1

]
(3.5.3)

The cost function of the LQG is defined as (Chen et al. 1998)

J1(Z, u) � E

⎡
⎣S(Z(t f ), t f ) +

1

2

t f∫

t0

(ZT(t)QZZ(t) + RUu
2(t))dt

⎤
⎦ (3.5.4)

of which the constraint condition is given by

{
dZ(t) � [AZ(t) + Bu(t)]dt + Ldw(t)

Z(t0) � 0
(3.5.5)

where L is the (2 × 1) matrix denoting the location of external excitation; w(t)
denotes the one-dimensional Brownian motion, which is generally modeled as a
white Gaussian noise:

E[dw(t)] � 0,E[dw2(t)] � 2ßS0dt (3.5.6)

where S0 is the spectral intensity factor of random seismic ground motion ẍg(�, t),
which is estimated by

S0 � ā2max

f 2ωe
(3.5.7)

where āmax denotes the mean of the peak ground acceleration of random seismic
ground motion; f denotes the peak factor; and ωe denotes the spectral area pertain-

https://doi.org/10.1007/978-981-13-6764-9_3
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Table 3.2 Relation between spectral intensity factor, peak ground acceleration (PGA), and site
class

Site class/PGA I II III IV

0.11g 0.3g 0.11g 0.3g 0.11g 0.3g 0.11g 0.3g

f 2.9 2.9 3.0 3.0 3.1 3.1 3.2 3.2

ωe (rad s−1) 59.50 59.50 39.71 39.71 29.93 29.93 19.95 19.95

S0 (m2 s−3) 0.0023 0.0173 0.0033 0.0242 0.0040 0.0301 0.0057 0.0423

See Chinese Code for Seismic Design of Building Structures (GB50011-2010), 1g � 9.8 m/s2

ing to unit spectral intensity factor. Table 3.2 shows the spectral intensity factor in
the cases of peak ground accelerations āmax � 0.1g, 0.3g and typical site classes
in accordance with the Chinese Code for Seismic Design of Building Structures
(GB50011-2010).

It is seen that the mathematical formulation of the equation of motion of the
controlled structure with active tendon system, i.e., Eq. (3.5.5) is just the classical
Itô stochastic differential equation. As it is mentioned in the previous sections, the
measurement noise inherent in system state and control force is out of concern, and is
thus ignored in this study. The random seismic ground motion ẍg(�, t) is assumed to
be a wide-band excitation and mathematically modeled by a nominal white Gaussian
noise.

Transferring the constraint extreme-value problem of function Eq. (3.5.4) to an
unconstraint extreme-value problem, the solution of the control systemcan be derived
by solving Hamilton–Jacobi–Bellman equation in the context of randomness. Intro-
ducing a generalized Hamilton function as follows (Li and Chen 2009):

H [Z∗(t), u(t), t] � 1

2

(
Z∗TQZZ∗ + RUu

2
)
+

∂V

∂Z

(
AZ∗ + Bu

)
+ π S0Tr

(
∂2V

∂Z2
LLT

)

(3.5.8)

where V denotes the optimal value function and is assumed to be

V (Z(t), t) � 1

2
ZT(t)P(t)Z(t) + ν(t) (3.5.9)

of which ν(t) is a correct term with respect to the randomness associated with the
generalized Hamilton function.

Utilizing the dynamic programming method, one could gain the solution

u(t) � −R−1
U BTP(t)Z(t) (3.5.10)

ν(t) � −π S0

t f∫

t0

Tr(P(t)LLT)dt (3.5.11)
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where P(t) denotes the Riccati matrix, satisfying with the matrix algebraic Riccati
equation; see Eq. (3.3.17).

In view of Eqs. (3.5.10) and (3.3.18), the control law of the LQG has the same
formulation to the LQR-based PSO for a closed-loop system in the sense of sam-
ple trajectory, and the so-called deterministic equivalence principle is satisfied. It
is shown as well that concerning the linear time-invariant system subjected to the
white Gaussian noise, the gain matrix can be calculated offline though the Hamilton
function includes a random excitation term.

Substituting Eq. (3.5.10) into Eq. (3.5.1) and using the Fourier transform on both
sides, one has

{[(ω2
0 + m−1 �

K ) − ω2] + (2ζω0 + m−1 �

C)(iω)}x(ω) � −ẍg(�, ω) (3.5.12)

where
�

C,
�

K denote the numerical damping and numerical stiffness provided by the
control force u(t), respectively,

�

C = R−1
U (B1P12 + B2P22),

�

K = R−1
U (B1P11 + B2P21) (3.5.13)

According to the statistical relation between the input and output of linear stochas-
tic systems in frequency domain (Crandall 1958), one has

SX (ω) � S0

[(ω2
0 + m−1

�

K ) − ω2]2 + (2ζω0 + m−1
�

C)2ω2
(3.5.14)

In view of Wiener–Khintchine theorem (Wiener 1964; Chatfield 1989), the mean-
square displacement under control is then derived as follows:

E[x2(t)] �
∞∫

−∞

S0

[(ω2
0 + m−1

�

K ) − ω2]2 + (2ζω0 + m−1
�

C)2ω2
dω (3.5.15)

Concerning the integral shown in Eq. (3.5.15), a closed solution can be attained
by virtue of a class of specified rules (Roberts and Spanos 1990), which is given by

E[x2(t)] � π S0

(2ζω0 + m−1
�

C)(ω2
0 + m−1

�

K )
(3.5.16)

Obviously, there is a linear relation between system state and control force in
frequency domain, which is given as

u(ω) � [− �

C(iω) − �

K ]x(ω) (3.5.17)

Then, the mean-square control force can be derived as follows:
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Fig. 3.29 Relation between root-mean-square quantities and ratio of coefficients of weighting
matrices by means of PSO, LQG, and DC

E[u2(t)] �
∞∫

−∞

(
�

K
2

+
�

C
2

ω2)S0

[(ω2
0 + m−1

�

K ) − ω2]2 + (2ζω0 + m−1
�

C)2ω2
dω (3.5.18)

Using the rule shown in Eq. (3.5.16) once again, one has

E[u2(t)] � π S0[
�

C
2

(ω2
0 + m−1

�

K ) +
�

K
2

]

(2ζω0 + m−1
�

C)(ω2
0 + m−1

�

K )
(3.5.19)

Figure 3.29 shows the relation between root-mean-square quantities and the ratio
of coefficients of weighting matrices by means of the physically based stochastic
optimal (PSO) control, the LQG control, and the deterministic control (DC) using
random seismic ground motion, white Gaussian noise, and recorded seismic ground
motions, i.e., EL270 and EMC90, as the external excitation. In this case, the coef-
ficient of state weighting matrix is set as 100. For the LQG, the root-mean-square
quantities can be calculated directly from Eqs. (3.5.16) and (3.5.19); while for the
PSO and the DC, the root-mean-square quantities are identified as their peaks since
the derivations of these quantities are time variant and nonstationary.

It is indicated that (i) as the ratio 106 ≤ q/r < 1012, the LQG underestimates
the structural displacement, in that the stationary response of the structural system
subjected to white Gaussian noise is several times lower than the peaks of the non-
stationary response of the structural system subjected to the random and recorded
seismic ground motions. The LQG, meanwhile, underestimates the desired control
force. It is seen that the control force assessed by the LQG increases exponen-
tially along with the ratio of coefficients of weighting matrices in logarithmic scale.
The control force assessed by the PSO, however, increases logarithmically along
with the ratio of coefficients of weighting matrices in logarithmic scale; (ii) as ratio
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1012 ≤ q/r < 4 × 1014, the structural displacement controlled by the PSO declines
significantly and the peak is close to that controlled by the LQG. The difference
of control forces between the two schemes becomes large along with the ratio of
coefficients of weighting matrices in logarithmic scale; (iii) as ratio q/r ≥ 4× 1014,
the structural responses controlled by the two schemes are almost the same, but
the control force of the LQG increases exponentially and surpasses that of the PSO
rapidly; and (vi) similar to the structural displacement, the structural velocity and
structural acceleration quantified by the LQG change exponentially along with the
ratio of coefficients of weighting matrices. In summary, the LQG underestimates the
desired control force when the ratio of coefficients of weighting matrices is set at a
low level, while it overestimates the desired control force when the ratio of coeffi-
cients of weighting matrices is set at a high level. It is thus remarked that employing
the LQG with nominal white Gaussian noise as the input cannot attain a reasonable
structural control system for civil engineering structures.

It is also seen from Fig. 3.29 that by means of the deterministic control (DC),
the structural control system designed as the seismic ground motion EMC90 might
be disabled when the structure is subjected to the seismic ground motion EL270.
If the ratio of coefficients of weighting matrices is set as q/r � 2 × 1011, for
instance, the extreme value of structural displacement is within 10 mm when the
structure is subjected to the seismic ground motion EMC90. However, the structural
displacement attains 15 mm when the structure is subjected to the seismic ground
motion EL270, although the required control forces designed as the two recorded
seismic groundmotions are almost same. It is thus demonstrated that the deterministic
control cannot guarantee a safe structure; while the PSO offers an elegant means
for the logical control of structures that can secure a safe structure in the sense of
probability.

3.6 Discussions and Summaries

The relevant theory and methods for the classical stochastic optimal control such
as the LQG still remain open for the control gain design of engineering structures
subjected to the nonstationary excitations, e.g., strong earthquakes and high winds.
In essence, moreover, the classical stochastic optimal control belongs to a family of
moment-based schemes. The physically based stochastic optimal control, however,
facilitates the control gain design of engineering structures with strong nonlinear-
ities and subjected to nonstationary excitations, which circumvents the dilemma
pertaining to the classical stochastic optimal control. Moreover, the physically based
stochastic optimal control can implement the regulation of probability density of
structural systems, by virtue of the probabilistic criteria in terms of structural relia-
bility for parameter optimization of control law. The reliability-based probabilistic
criteria can be readily applied by the proposed control scheme since the PSO straight-
forwardly include the solution of probability density of structural responses provided
by the probability density evolution method.
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Linear systems

Classical stochastic optimal control
(Itô stochastic differential equation)

Moment control Forward law

White Gaussian noises

Nonlinear systems

Physically based stochastic optimal control
(Generalized probability density evolution equation)

PDF control Backward law

Non-Gaussian random excitations

Fig. 3.30 Schematic diagram of differences between classical stochastic optimal control and PSO

Indeed, a probability-density-based stochastic optimal control can be imple-
mented in conjunctionwith the classical Fokker–Planck–Kolmogorov equation (FPK
equation). However, similar to the situation of the FPKequation in the field of random
vibration, the FPK equation with control force term still encounters the challenge
of solving the probability density of stochastic systems in practice. Applicability of
the FPK equation-based stochastic optimal control is far less than the LQG though
the latter merely concerns the second-order moment of structural responses. While
the generalized probability density evolution equation involved in the PSO breaks
through the dilemma,which forms into the logical basis for the theory andmethods of
stochastic optimal control of structures. A schematic diagram shows the differences
between the classical stochastic optimal control and the PSO; see Fig. 3.30.

It is worth noting that the classical stochastic optimal control is capable of imple-
menting the moment-based control and attaining probability-density-based control
in cases of extremely particular situations through defining the FPK equation involv-
ing control force terms. However, the physically based stochastic optimal control is
readily to implement the probability-density-based control by connecting two fam-
ilies of equations: one is the equation of motion of controlled stochastic systems,
e.g., Eq. (3.2.1), which is termed as the physical equation; another is the probabil-
ity density evolution equation of controlled stochastic systems, e.g., Eqs. (3.2.9) and
(3.2.10), which is termed as the evolution equation. The solving of the physical equa-
tion is carried out over realizations, which resorts to advanced techniques employed
in the deterministic optimal control, such as the linear quadratic regulator (LQR), the
optimal polynomial control (OPC), etc. Most of these techniques are optimal control
methods based on the Riccati equation and dynamic programming methods based
on the Bellman’s optimality principle.
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