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Preface

In recent years, structural control has demonstrated its value for mitigating natural
hazards and enhancing the safety and serviceability of structural systems. The
associated theory and technologies receive extensive attention and rapid develop-
ment, and are often categorized into four modalities, i.e., the passive control, the
active control, the semiactive control and the hybrid control. Nevertheless, a variety
of practical challenges still remain open as to this field, which are derived from the
strong uncertainty, high nonlinearity and large dimensionality inherent in civil
engineering structures and infrastructural systems. High-performance structural
control is thus hardly to be implemented by conventional control policies, since
these policies are typically devised based on simple linear models in a deterministic
manner or in a stochastic manner merely considering measurement noises.

A typical case refers to the vibration control of seismic structures. In practice, the
control law and the control parameters pertaining to control devices are designed
using recorded and artificial ground accelerations as the input. Due to the ran-
domness, however, inherent in the occurring time, the occurring space, and the
amplitude of earthquakes, the seismic performance of structures arises to be random
and nonlinear. It might result in a situation that the structural control system even
operates as an adverse manner when the structural system is subjected to a real
seismic ground motion that is distinguishedly different from the one referred to the
control system design. Stochastic optimal control of structures, therefore, is still a
critical challenge that needs to be circumvented in practical engineering.

As an important application of thought of the physical stochastic system, the
probability density evolution method (PDEM) has played a critical role in the fields
such as the civil engineering, mechanical engineering and ocean engineering for the
stochastic response analysis and reliability assessment of structures in the past
decades. We believe that the PDEM is also one of the most promising means for
exploring stochastic optimal control of structures.

This book is devoted to the systematic development of theory and methods of
stochastic optimal control of structures under the engineering excitations as non-
stationary and non-Gaussian random processes. In the chapter of introduction, i.e.,
Chap. 1, the advances of structural control, the history, and status of classical
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stochastic optimal control are illustrated. The challenges of structural control are
then addressed. Following that, the concept of physically based stochastic optimal
control is introduced. A brief description as to the scope of this book is included as
well. The pertinent theoretical principles are presented in Chap. 2. In this chapter,
the classical stochastic optimal control, the random vibration of structures, the
dynamic reliability of structures, and the modeling of random dynamic excitations
are illustrated. This section provides a solid foundation for the successive devel-
opment of theory and methods of stochastic optimal control of structures. The
following three chapters, i.e., Chaps. 3–5, address the basic principles, probabilistic
criteria, and generalized optimal control policy, which are the critical ingredients
of the physically based stochastic optimal control. These three chapters constitute
the core of the book. The stochastic optimal control of nonlinear structures is
discussed in Chap. 6. Applications of the physically based stochastic optimal
control are introduced in Chaps. 7 and 8, including the viscous damper control, as a
passive modality, for habitability enhancement of high-rise buildings subjected to
strong winds, the magnetorheological damper control, as a semiactive modality, for
performance improvement of seismic structures. An experimental verification upon
the theory and methods of stochastic optimal control of structures is introduced in
Chap. 9. Shaking table tests of a steel moment-resisting frame structure deployed
with optimally designed viscous dampers and subjected to random seismic ground
motions are carried out. Besides, five appendixes are provided to assist the inter-
ested reader to better understand the topics involved in this book.

This work was motivated by our interest in developing successful strategies for
structural control involving inevitable randomness inherent in dynamic excitations
so as to maintain a desired structural performance. We are indebted to many of our
colleagues who have provided invaluable assistance in preparation of the book.
Special thanks are due to Professor Alfredo H-S. Ang (University of California,
Irvine), Professor Pol D. Spanos (Rice University), Professor Georgios Deodatis
(Columbia University), Professor Satish Nagarajaiah (Rice University), Professor
Biswajit Basu (Trinity College Dublin), Professor Michael Beer (Leibniz
Universität Hannover), Professor Jianbing Chen (Tongji University), Professor
Soren R.K. Nielsen (Aalborg University), Professor John D. Sorensen (Aalborg
University), Professor Michael H. Faber (-Nielsen) (Aalborg University), Professor
Roberto Villaverde (University of California, Irvine), Professor Hector Jensen
(Santa Maria University), Professor Hanping Hong (University of Western
Ontario), and Professor Radoslaw M. Iwankiewicz (Hamburg University of
Technology) for their concerns, encouragements, and comments for the book. The
first author is particularly indebted to Professor Roger Ghanem for the impeccable
supervision and consistent support when he visited University of Southern
California from 2007 to 2009.

We wish also to take this opportunity to express our sincere gratitude to the
financial support provided by the National Natural Science Foundation of China
and the Ministry of Science and Technology of China in the past fifteen years. We
are also indebted to Elsevier, Wiley-Blackwell, SAGE, American Society of Civil

vi Preface



Engineers (ASCE), and Techno-Press, respectively, for their permissions to
reproduce copyright materials included in our previously published journal papers.

Finally, we would like to thank our families for their long-lasting support,
encouragement, and love.

Shanghai, China Yongbo Peng
Jie Li

Preface vii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Advances of Structural Control . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Stochastic Optimal Control of Structures . . . . . . . . . . . . . . . . . . . 9

1.3.1 Classical Stochastic Optimal Control . . . . . . . . . . . . . . . . . 9
1.3.2 Challenges of Structural Control in Civil Engineering . . . . 11
1.3.3 Physically Based Stochastic Optimal Control . . . . . . . . . . . 14

1.4 Scope of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Theoretical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Classical Stochastic Optimal Control . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Random Vibration of Structures . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Linear Random Vibration . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Nonlinear Random Vibration . . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 Generalized Probability Density Evolution Equation . . . . . 51
2.3.4 Historic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Dynamic Reliability of Structures . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.1 Level-Crossing Process Theory . . . . . . . . . . . . . . . . . . . . . 56
2.4.2 Equivalent Extreme–Value Event Criterion . . . . . . . . . . . . 59

2.5 Modeling of Random Dynamic Excitations . . . . . . . . . . . . . . . . . 63
2.5.1 Random Seismic Ground Motion . . . . . . . . . . . . . . . . . . . 63
2.5.2 Fluctuating Wind-Velocity Field . . . . . . . . . . . . . . . . . . . . 70

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Physically Based Stochastic Optimal Control . . . . . . . . . . . . . . . . . . 83
3.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Performance Evolution of Controlled Systems . . . . . . . . . . . . . . . 84
3.3 Scheme of Stochastic Optimal Control . . . . . . . . . . . . . . . . . . . . . 87

ix



3.3.1 Closed-Loop Control Systems . . . . . . . . . . . . . . . . . . . . . 87
3.3.2 Parameter Optimization of Control Law . . . . . . . . . . . . . . 92

3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.1 Controlled Single-Story Building Structure . . . . . . . . . . . . 93
3.4.2 Controlled Multiple-Story Building Structure . . . . . . . . . . . 103

3.5 Comparative Studies against LQG . . . . . . . . . . . . . . . . . . . . . . . . 110
3.6 Discussions and Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4 Probabilistic Criteria of Stochastic Optimal Control . . . . . . . . . . . . . 119
4.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2 Gain Matrix of Stochastic Optimal Control . . . . . . . . . . . . . . . . . 120
4.3 Probabilistic Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.1 Single-Objective Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.2 Multiple-Objective Criteria . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.3 Comparative Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.5 Discussions and Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Generalized Optimal Control Policy . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2 Unified Formula of Optimal Control Law . . . . . . . . . . . . . . . . . . 146

5.2.1 Passive Control Modality . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.2 Active Control Modality . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.2.3 Semiactive Control Modality . . . . . . . . . . . . . . . . . . . . . . 148
5.2.4 Hybrid Control Modality . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3 Probabilistic Controllability Index . . . . . . . . . . . . . . . . . . . . . . . . 152
5.4 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4.1 Probabilistic Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.4.2 Flowchart of Solution Procedure . . . . . . . . . . . . . . . . . . . . 154

5.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.5.1 Viscoelasticity Damped Structure . . . . . . . . . . . . . . . . . . . 157
5.5.2 Active Tendon Exerted Structure . . . . . . . . . . . . . . . . . . . 163

5.6 Discussions and Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6 Stochastic Optimal Control of Nonlinear Structures . . . . . . . . . . . . . 171
6.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.2 Stochastic Optimal Polynomial Control . . . . . . . . . . . . . . . . . . . . 172
6.3 Stochastic Optimal Control of Nonlinear Oscillators . . . . . . . . . . . 177

6.3.1 Performance of Active Tendon Control . . . . . . . . . . . . . . . 178
6.3.2 Comparative Studies Between Control Criteria . . . . . . . . . 185

x Contents



6.4 Stochastic Optimal Control of Hysteretic Structures . . . . . . . . . . . 188
6.4.1 Clough Hysteretic System . . . . . . . . . . . . . . . . . . . . . . . . 190
6.4.2 Bouc–Wen Hysteretic System . . . . . . . . . . . . . . . . . . . . . . 196

6.5 Discussions and Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7 Stochastic Optimal Control of Wind-Resistant Structures with
Viscous Dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.2 Equivalent Linearization of Viscously Damped Systems . . . . . . . . 206

7.2.1 Stiff Differential Equation for Viscously Damped
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.2.2 Solution of Viscously Damped Systems . . . . . . . . . . . . . . 212
7.3 Optimal Deployment of Viscous Dampers . . . . . . . . . . . . . . . . . . 218
7.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.4.1 Dimension-Reduced Model of High-Rise Building . . . . . . 223
7.4.2 Dynamics Analysis of Model . . . . . . . . . . . . . . . . . . . . . . 227
7.4.3 Wind-Induced Comfortability Control . . . . . . . . . . . . . . . . 228

7.5 Discussions and Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8 Stochastic Optimal Control of Seismic Structures with MR
Dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.2 Semiactive Stochastic Optimal Control Using MR Dampers . . . . . 236

8.2.1 Bound Hrovat Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.2.2 Parameter Design of MR Damper . . . . . . . . . . . . . . . . . . . 239

8.3 Dynamic Modeling of MR Dampers . . . . . . . . . . . . . . . . . . . . . . 241
8.3.1 Parameterized Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.3.2 Parameter Identification of Model . . . . . . . . . . . . . . . . . . . 246
8.3.3 Microscale Mechanism of MR Dampers . . . . . . . . . . . . . . 250

8.4 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.5 Discussions and Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

9 Experimental Studies of Stochastic Optimal Control . . . . . . . . . . . . 267
9.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
9.2 Design of Test Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

9.2.1 Dynamics of Test Model . . . . . . . . . . . . . . . . . . . . . . . . . 268
9.2.2 Representative Seismic Ground Motions . . . . . . . . . . . . . . 268
9.2.3 Design Parameters of Viscous Dampers . . . . . . . . . . . . . . 272

9.3 Experimental Layout and Case Verification . . . . . . . . . . . . . . . . . 273
9.3.1 Experimental Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
9.3.2 Case Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Contents xi



9.4 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.4.1 Samples and Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.4.2 Regulation of Probability Density . . . . . . . . . . . . . . . . . . . 287

9.5 Reliability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
9.6 Discussions and Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Appendix A: Bouc–Wen Model for Hysteretic Component of
Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Appendix B: Relation Between Costate and Excitation Vectors . . . . . . . 299

Appendix C: Statistical Linearization-Based LQG Control . . . . . . . . . . . 301

Appendix D: Equivalent Damping Ratio of Viscously Damped
Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Appendix E: Optimal Control of Discrete Structural Systems. . . . . . . . . 309

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

xii Contents



Chapter 1
Introduction

1.1 Preliminary Remarks

Dynamic loads acting on engineering structures typically arise a significant
randomness inherent in their occurring times, spaces, and amplitudes (Housner
1947). The mechanical behaviors of structural materials often feature a remarkable
uncertainty as well (Ang and Tang 2006). Therefore, the performance of engineering
structure under external excitations always remains a degree of randomness. Tradi-
tional deterministic methods for structural design and analysis cannot satisfy with
the developing demand of structural engineering. Since the late of 1950s, the random
vibration theory (Lin 1967; Zhu 1992) taking into account the randomness inherent
in external excitations of engineering structures and the stochastic structure theory
(Li 1996) taking into account the randomness inherent in mechanical behaviors of
structural materials have received extensive attention. These two theories serve as
the milestones of research of stochastic dynamics of structures and provide a solid
foundation for the development of new design principle of structural engineering (Li
and Chen 2009).

In order to increase the resistance of structures, on the other hand, the base iso-
lation system for seismic mitigation was pioneeringly investigated more than one
hundred years ago; while the control technology in concepts of vibration isolation,
vibration absorption, and vibration damping was first embraced by structural engi-
neering community in 1960s (Housner et al. 1997). Until to the early of 1970s (Yao
1972), the proposal of structural control concept led to the wide eye-catching and
rapid development of the associated theory and technologies with vibration mitiga-
tion of structures in practice (Soong 1990; Soong andDargush 1997; Chu et al. 2005).
Structural control thus proved its value and became as one of the promising means
that are capable of improving structural behaviors, reinforcing structural safety, and
enhancing structural performance. However, owing to the fact that there are definitely
uncertainties inherent in external excitations and in structural and control systems,
the structural control in terms of the deterministic design principle cannot guaran-

© Springer Nature Singapore Pte Ltd. and Shanghai Scientific and Technical
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2 1 Introduction

tee structural safety (Roussis et al. 2003; Cao et al. 2012). It thus arises a practical
demand of stochastic optimal control of structures in terms of the probabilistic design
principle by quantifying the randomness inherent in structural and control systems
in an elegant manner.

It has been more than half a century since the establishment of the stochastic opti-
mal control theory, which was gradually in extension from the information control
associated with the measurement noises to the structural control associated with both
the random excitations and stochastic structures. A variety of formulations underly-
ing the theory andmethods of stochastic optimal control of structures were proposed,
e.g., the linear quadratic Gaussian (LQG) control and the covariance control (Yong
and Zhou 1999). However, the classical stochastic optimal control theory just relies
upon the state equation and the Itô calculus, where the measurement noise and ran-
dom excitations are often formulated as the white noise or the filtered white noise
in mathematics. The cost function in the classical stochastic optimal control the-
ory is thus defined as a function of white Gaussian noise. However, this treatment
cannot logically contain the influence of nonstationary random excitations such as
seismic ground motions and high winds (Yang 1975). Besides, the classical random
vibration theory merely attains the probability density of linear systems or of the
extraordinary less-degree-of-freedom nonlinear systems. As to the accurate control
of general nonlinear stochastic systems, the probability density solutions are still far
from attaining in the framework of classical random vibration theory. Meanwhile,
the stochastic optimal control involving the randomness of structural materials and
control systems just focuses upon exploring the stochastic stability of systems, which
has not yet been well resolved.

For circumventing the dilemma encountered by the classical stochastic dynamics,
the probability density evolution method (PDEM) has been proposed in recent years
in terms of the probability preservation principle. The probability density evolution
method builds the essential connection between the system state evolution and the
probability density evolution. From this perspective, the deterministic system and the
stochastic system can be solved in a unified framework. On this basis, a generalized
probability density evolution equation (GDEE) was derived (Li and Chen 2006a,
2008, 2009). These advances provide a newway to attain the stochastic response and
reliability of general multi-degree-of-freedom systems, and also make it possible to
carry out the accurate control of linear and nonlinear stochastic structural systems
under nonstationary and non-Gaussian engineering excitations. This is a natural
extension, in essence, of the probability density evolution method to the optimal
control of stochastic systems. In order to differentiate from the classical stochastic
optimal control, the structural control advocated in this book from the perspective of
probability density evolution is referred to as the physically based stochastic optimal
(PSO) control.
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1.2 Advances of Structural Control

Modern control theory was originally from the Wiener filter theory and the Wiener
control theory inmid-twentieth century (Wiener 1948, 1949). It became a fairly com-
plete formulation through a rapid development in the subsequent 20 years. Beginning
with the early of 1970s, the deterministic optimal control and stochastic optimal con-
trol of structures have been developed into almost independent two branches.

Structural control is devised to reduce or mitigate the responses of structures by
utilizing the specified devices or facilities deployed in structures that are capable of
shifting, dissipating, absorbing, and supplying energy. A diagram of typical logic
of structural control is shown in Fig. 1.1. It is seen that a complete control system
involves the sensor for monitoring the external excitation and the structural response,
the controller for deducing the feedback law to regulate the structural state, and the
actuator for implementing the control gain. According to whether a moderate power
supply system is required for the operation of control system, structural control can
be categorized into four modalities, i.e., the passive control, the active control, the
semiactive control, and the hybrid control (Housner et al. 1997;Ou 2003; Teng 2009).

Passive control refers to a modality that allocates base isolation systems or energy
dissipation devices to a structure so as to enhance the damping, stiffness, and strength
of the structure. The control gain provided by passive systems just replies upon the
structural response to the external excitation, and generally does not need power
supplies. In early of 1970s, Kelly and his colleagues proposed and experimentally
proved the value of metal yield and energy dissipation component in the seismic
mitigation of structures (Kelly et al. 1972; Skinner et al. 1975). The pioneering
works played a significant role in the development of ductile design of seismic
structures, which later formulated an important branch of structural control using
energy dissipation schemes. Thereafter, an amount of energy dissipation components
and devices were invented and applied into the vibration control of engineering

External 
excitations Sensors

ControllersActuators
Controlled 
structures

SensorsStructural 
responses

Fig. 1.1 Diagram of typical logic of structural control



4 1 Introduction

structures under earthquakes and high winds, such as friction-type energy dissipation
devices derived as the principle of automobile brakes (Pall and Marsh 1982; Li and
Reinhorn 1995; Qu et al. 2001; Bhaskararao and Jangid 2006), viscoelastic dampers
early used in the fatigue control of plane body (Zhang et al. 1989; Zhang and Soong
1992; Shen et al. 1995; Palmeri and Ricciardelli 2006; Xu 2007), viscous dampers
or damping walls widely applied in the fields of military and aviation (Constantinou
et al. 1993; Reinhorn et al. 1995; Museros and Martinez-Rodrigo 2007), tuned mass
dampers (TMDs) and multiple-tuned mass dampers (MTMDs) (Villaverde 1994;
Setareh 1994; Li 2000; Guo and Chen 2007; Wong and Johnson 2009), and tuned
fluid dampers (Wakahara et al. 1992; Tamura et al. 1995; Tait et al. 2008). Until
now, the research and development of energy dissipation devices with excellent
performance are still one of the hotspot issues in the field of structural control (Chan
and Albermani 2008; Jung et al. 2010; Zhang et al. 2013; Berardengo et al. 2015;
Amjadian and Agrawal 2018).

Base isolation system is the most widely accepted passive control system, which
is often used in important buildings and bridges in high-intensity seismic zones.
Modern isolation technologies originated in the 1970s as well. Kelly proposed an
earthquake isolation system with natural rubber bearings (laminated rubber bearing)
(Kelly 1978), which was later refined to the so-called high-damping rubber bearing
(HDRB) (Kelly et al. 1987) and the lead rubber bearing (LRB) (Aiken et al. 1989).
In addition to the laminated rubber bearing, a variety of base isolation technologies,
such as the friction sliding bearing (FSB) (Dolce et al. 2007), the curved surface slider
(CSS) (Quaglini et al. 2017), and the smart base isolation system (Casciati et al. 2007),
are widely used in practice. Benefiting from the knowledge of friction-controllable
principle (Feng et al. 1993) and eddy-current damping mechanism (Kriezis et al.
1992), a sliding hydromagnetic bearing (HMB) was proposed recently (Villaverde
2017), which has been proved to be effectiveness of enhancing the capacity of the
sliding isolation system in aspects of energy dissipation and deformation constraint
(Peng et al. 2019a, b).

The associated control algorithmswith the passive controlmodality focus upon the
optimal deployment and parameter design of dampers and isolators so as to attain the
best trade-off between cost and effect. For instance, Chen et al. carried out the optimal
deployment of dampers in a truss using the simulated annealing algorithm where the
maximum cumulative energy dissipation in a finite period was considered as the
optimization criterion (Chen et al. 1991). Zhang and Soong proposed a sequential
method for the optimal deployment of viscoelastic dampers based on the concept of
controllability and the mean-square interstory drift (Zhang and Soong 1992). Using
the sequential method, Wu et al. addressed the optimal parameters and the optimal
placement of energy dissipation devices in a three-dimensional asymmetric structure
involving the coupling effect between translations and retortions (Wu et al. 1997).
Shukla and Datta analyzed the influence of the viscoelastic damper models and the
input seismic groundmotions on the device deployment by integrating the root-mean-
square interstory drift and the concept of controllability (Shukla and Datta 1999).
Takewaki et al. proposed a gradient method for the optimal damper deployment
through minimizing the amplitude of transfer function of the interstory drift to better
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the structural performance (Takewaki et al. 1999). Using the gradient method as well,
Singh and Moreschi optimized the damping coefficients of viscous and viscoelastic
dampers so as to gain a maximum reduction of structural responses (Singh and
Moreschi 2001). Kim et al. adopted the performance-based design principle and the
capacity spectrummethod to carry out the parameter design of viscous dampers (Kim
et al. 2003). In definition of the active optimal control gain as the design objective,
Ou optimized the placement and parameters of passive control devices (Ou 2003).
Since the gradient method might result in a local convergence problem, Singh and
Moreschi optimized the placement of viscous and viscoelastic dampers using the
genetic algorithm (Singh and Moreschi 2002). Park et al. employed the minimum
cost of structural systems in their life cycles as the design criterion, and optimized the
parameters, number, and placement of viscoelastic dampers by virtue of the genetic
algorithm (Park et al. 2004). Silvestri and Trombetti addressed the efficiency ofmass-
proportional damping scheme through a comparative study against the stiffness-
proportional damping scheme using the genetic algorithm, and also stressed the
importance of the objective function in the procedure (Silvestri and Trombetti 2007).
The genetic algorithm was also employed by Rama Raju et al., in addressing the
efficiency of various damper deployments (Rama Raju et al. 2014). In order to attain
a better trade-off between energy dissipation and excessive deformation prevention
of friction pendulum systems, Bucher performed probability-based optimal design
of friction coefficient and radius of curvature pertaining to the devices by applying
a Pareto-type optimization approach (Bucher 2009).

The previous works show that the parameter design and placement optimization
of energy dissipation devices and base isolation systems following the performance-
based principle are the general thought of passive control modality. Owing to the
simple logic, ready realization, and meeting with the system stability requirements,
the passive control modality has been widely used in recent years, while the practical
challenges show that this control modality lacks a sufficient efficiency for strength-
ening performance of high-rise buildings subjected to seismic ground motions and
high winds (Housner et al. 1997).

Active control provides a more efficient means to gain acquirement by exerting
a certain compensative force to reduce the structural response. It often involves an
online measurement of structural state and a real-time estimation of some physical
quantities of concern. Active control force is calculated according to the designed
control law, whereby the actuator is driven to implement the gain on the structure
(Soong 1990). During the past 40 more years, a variety of active control devices have
been researched and developed, where the active tendon system (ATS) (Roorda 1975;
Soong et al. 1988; Chung et al. 1988, 1989; Soong 1990) and the active mass damper
(AMD) (Chang and Soong 1980; Spencer and Nagarajaiah 2003) are most applied in
practice. According to the specified control law, the active modality can theoretically
implement the adaptive control (Dewey and Jury 1963), intelligent control (Fu 1971),
slidingmode control (Utkin 1977), stochastic control (Stengle 1986), optimal control
(Anderson and Moore 1990), and robust control (Suhardjo 1990).

As to the optimal control, the classical linear quadratic regulator (LQR) associated
with the linear structural system has been still the control algorithm widely used in
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practice (Chang and Soong 1980; Soong 1990; Stavroulakis et al. 2006). In this
context, Yang et al. proposed a simultaneous optimal control algorithm involving
the influence of external excitations upon the feedback control gain (Yang et al.
1987). The optimal control of nonlinear structural systems was concerned as well.
Maris et al. proposed the optimal pulse control method for reducing the vibration of
nonlinear flexible systems under general dynamic loads (Masri et al. 1981). Abdel-
Rohman and Rayfeh addressed the feasibility of the perturbationmethod for devising
the active control devices so as to mitigate the nonlinear vibration of a hinged single-
span bridge (Abdel-Rohman and Nayfeh 1987). Kamat employed a variable metric
algorithm to carry out the active optimal control of nonlinear structural systems
(Kamat 1988). Yang et al. extended the simultaneous optimal control algorithm to
the hybrid control of nonlinear and hysteretic structural systems under seismic ground
motions (Yang et al. 1992a, b). Based on the sequential expansion of performance
function and the functional framework ofHamilton–Jacobi optimal control, Suhardjo
et al. developed a family of nonlinear optimal control schemes (Suhardjo et al. 1992).
Utkin proposed a slidingmode control method suitable for the uncertainty conditions
(Utkin 1992).Yang et al. further proposed a generalized optimalmethod for linear and
nonlinear controls, where the dynamic effect of actuators was treated logically during
the optimization process so as to reduce the adverse effect of a system time delay
(Yang et al. 1994). Krishnan et al. performed the modeling, simulation, and analysis
of active control of nonlinear structural systems using the neural network algorithm
(Krishman et al. 1995). It is thus revealed that the active optimal control algorithms
have almost been settled down in the mid-1990s. While the challenges from the time
delay and from the stability associated with the active control systems still remain
open. Since then, the issues pertaining to the optimal deployment of active control
devices received extensive attention. For instance, Xu et al. proposed an optimal
method for the gain design and actuator placement in a feedback control system (Xu
et al. 1994). Furuya andHaftka optimized the actuator placement in a spatial structure
using a hybrid algorithm by integrating the generic and simulate anneal schemes
(Furuya and Haftka 1996). Using the algebraic Riccati equation solution, Hiramoto
et al. carried out the optimal deployment of actuators and sensors in a controlled
flexible structural system (Hiramoto et al. 2000). Tan et al. proposed an integrated
strategy on the actuator placement design and the gain parameter optimization of
control systems by virtue of the generic algorithm and acceleration feedback method
(Tan et al. 2005). Yan et al. developed a control method to analyze and optimize
an adaptive truss structure where the generic algorithm was employed to design the
active system (Yan et al. 2005).

Though the active control can attain a satisfactory structural performance, it often
requires high-level power supplieswhichmight be up to thousands ofwatts.However,
the power supply system probably suffers from a serious damage under the hazardous
actions such as earthquakes (Patten et al. 1998).Moreover, the entire structural system
tends to dynamic instability due to the time delay inherent in actuator dynamics
and numerical calculations, the measurement noise, and the system modeling errors
(Soong 1990). Naturally, a combination modality by virtue of the active and the
passive control systems was proposed. This modality has the advantage of reducing
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the risk derived from power requirement and dynamics instability, in the case of
meeting with the expected control gain. This concept prompted the development of
the semiactive and the hybrid control modalities since the 1990s (Chu et al. 2005).

The semiactive control aims at accommodating the stiffness and the damping
of the controlled structural system, and mitigating the vibration through the real-
time adjustment of the control device. In comparison with the active control, the
semiactive control requires less external power supply but is able to implement an
almost same control effectiveness as the active control (Jansen and Dyke 2000).
After more than 20 years’ development, the semiactive control devices have been
formed into a variety of types, such as the active variable stiffness system (Kobori
et al. 1990; Yang et al. 2007), the active variable damping system (Kawashima
et al. 1992; Mizuno et al. 1992; Shinozuka and Ghanem 1992; Patten 1997; Kobori
2003), the electrorheological damper (Ehrgott and Masri 1992; Gavin et al. 1993),
the magnetorheological damper (Spencer et al. 1996, 1997; Tu et al. 2011), the
piezoelectric actuator (Kamada et al. 1997), the piezoelectric variable friction damper
(Zhao and Li 2010), and the shape memory alloy (Aiken et al. 1993).

Due to the essential nonlinearities inherent in the semiactive control devices,
the control gain of structural systems highly relies upon the algorithm employed in
the semiactive control. Karnopp et al. pioneeringly proposed a force generator for
implementing the Skyhook variable damping feedback control (Karnopp et al. 1974).
Thereafter,Hrovat et al. addressed the concept of the semiactive control, andproposed
the so-called Hrovat algorithm thereafter for the variable damping control referring
to the Bang–Bang control of relay action (Hrovat et al. 1983). They first provided the
idea of designing a semiactive control system so as to trace the performance of an
active control system. Brogan proposed a control strategy suitable for adjusting the
electrorheological damper according to the Lyapunov stability theory, whereby the
structural response can be reduced by minimizing the changing rate of the Lyapunov
function (Brogan 1991). Sack and Patten developed a clipped-optimal control algo-
rithm suitable for the semiactive hydraulic damping devices (Sack and Patten 1994).
McClamroch and Gavin proposed a decentralized Bang–Band control algorithm so
as to minimize the total energy of structures (McClamroch and Gavin 1995). Dyke
et al. suggested an LQG clipped-optimal control strategy for strengthening the seis-
mic performance of structural systems attached with the magnetorheological damper
according to an acceleration feedback control algorithm (Dyke et al. 1996a, b). Inaudi
developed a modulated homogenous friction algorithm suitable for the variable fric-
tion damper (Inaudi 1997). Jansen and Dyke investigated various semiactive control
strategies such as the Lyapunov stability theory, the LQG clipped-optimal control,
the decentralized Band-Bang control, the modulated homogenous friction, and the
maximum energy dissipation. They proposed the maximum-energy-cost algorithm
(Jansen andDyke 2000). Following the idea of optimizing the parameters of the semi-
active control to trace the optimal active control, Ou and Li performed the parameter
design of the magnetorheological damper employed in vibration mitigation of struc-
tural systems (Ou and Li 2010). In their work, the magnetorheological damping
force was designed to approach the optimal active control force, and meanwhile, the
magnetorheological damping control effectiveness was assumed to be the same as
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the active optimal control. Xu and Li developed a multiple-step prediction strategy
for the magnetorheological damping system, so as to ensure the structural stabil-
ity and to reduce the influence of system time delay in a certain extent (Xu and Li
2008). Xu and Guo proposed a fuzzy-neuro control strategy so as to implement the
accurate and rapid definition of the current input in the magnetorheological damper.
Their work attempted to bypass the challenges associated with the accuracy and time
delay brought about by the traditional two-mode control strategy, i.e., Passive-off and
Passive-on (Xu and Guo 2008).

Hybrid control is often referred to as a combinedmodality between the passive and
active or semiactive control systems. This modality aims at enhancing the effective-
ness of the passive modality in conjunction with the active or semiactive modalities,
using as few as possible power supplies in the operation of control systems. This treat-
ment can strengthen the stability of the controlled structures (Chu et al. 2005). The
hybrid control can enlarge the benefits of active, passive, and semiactive controls,
bypassing the constraints and limitations related to the onefold control modality,
while the hybrid control needs more space in practice, which is thus often used in
the structural control for multiple-level defense systems. At present, the application
of active structural control is implemented mostly utilizing the hybrid modality. The
hybrid tuned mass damper (HTMD) and the hybrid base isolation device (HBID)
are the two main control systems in practice. For instance, a hybrid arch tuned mass
damper was developed and applied in the wind-induced vibration control of long-
span bridges and building structures, and in the swing control of steamer navigations
(Tanida et al. 1991). Cheng et al. proposed a hybrid tuned mass damper system
combining a control actuator and a passive tuned liquid damper for wind-induced
vibration control of Nanjing television tower (Cheng et al. 1994). Watakabe et al.
developed a hybrid tuned mass damper with switch mode between active and passive
control modalities, which was applied in the vibration control of high-rise building
subjected to seismic ground motions and high winds (Watakabe et al. 2001). Feng
et al. proposed a semiactive friction-controllable fluid bearing, and constructed a
hybrid base isolation system for seismic mitigation of structures (Feng et al. 1993).
Reinhorn and Riley addressed the validity of sliding base-isolated structural system
on a small-scale bridge model through theoretical analysis and experimental investi-
gations (Reinhorn and Riley 1994). Lin et al. applied themagnetorheological damper
to the large-scale base-isolated structures andproceededwith a series of shaking-table
tests (Lin et al. 2007). In recent years, Asai et al. investigated the seismic mitigation
performance of a smart base isolation system using the real-time hybrid simulation
technique by integrating the physical substructure of the magnetorheological damper
and the numerical substructure of the controlled structure (Asai et al. 2015).

Similar to the semiactive control, the hybrid control algorithm is related to the
application of control devices. In regard to the hybrid tuned mass damper, a series of
control algorithms have been proposed considering the limitations of device stroke
and output, such as the gain scheduling technique (Tamura et al. 1994) and the ad
hoc control algorithm (Niiya et al. 1994). In regard to the hybrid base isolation
system, a variety of nonlinear control strategies have been developed considering
the essential nonlinear behaviors inherent in the base isolation systems, including
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the acceleration feedback control employing the instantaneous optimal control algo-
rithm (Nagarajaiah et al. 1993), fuzzy control (Nagarajaiah 1994; Lin et al. 2007),
neural network-based control (Venini andWen 1994), the adaptive nonlinear control
(Rodellar et al. 1994), and the LQG/H2 control (Asai et al. 2015).

1.3 Stochastic Optimal Control of Structures

Since randomness inherent in the external excitations, the structural systems, and
the control devices, the traditional deterministic control cannot guarantee the safety
of structures. Stochastic optimal control of structures has thus become a challeng-
ing issue in the area of structural control (Housner et al. 1997). This topic can be
traced back to the earlier researchers on the relevant fundamental theory. In 1940s,
the stochastic differential theory had been established on the basis of the Itô calculus
(Sobczyk 1991). Until to the late of 1950s and the early of 1960s, however, the devel-
opment of the state-space method (Kalman 1960a), the maximum principle (Pon-
tryagin 1962), the dynamic programming (Bellman 1957), and the Kalman–Bucy
filtering theory (Kalman 1960b; Bucy and Kalman 1961) were eventually proposed
and developed, which underlined the establishment of the modern optimal control
theory. Stochastic optimal control then formed as a new branch of optimal control
discipline.

1.3.1 Classical Stochastic Optimal Control

The motivation of stochastic optimal control is to define the optimal control so that
the transition probability density function (Spencer and Bergman 1993) or the statis-
tical moments (Wojtkiewicz et al. 1996) are limited in a specified range of errors. In
the theoretical framework of classical LQG control, there have formed the stochastic
maximum principle (Yong and Zhou 1999) and the stochastic dynamic programming
(Stengel 1994).Meanwhile, a series of design criteria for defining the stochastic opti-
mal control law in accordancewith the optimal control gain have been developed. The
minimum variance criterion, for example, seeks for a control force with the objective
ofminimizing the variance of performance functions subjected to themean constraint
(Sain 1966). The optimal neighborhood feedback criterion involves an interaction
scheme based on an initial costate estimation in view of the control equation and
the performance objective (Stengel 1994). The statistical moment assessment crite-
rion seeks for an optimal control law in the sense of trade-off, between the statistics
of quantities of concern (Zhang and Xu 2001). The reliability-based design crite-
rion is to attain a control law leading to a minimum failure probability of structural
systems, through iteratively solving the limit state equation pertaining to the perfor-
mance objective (Spencer et al. 1994a; May and Beck 1998). The probability density
tracking criterion employs theMarkov process theory to attain the analytical solution
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of probability density of a family of specified systems, so as to define the control
law approaching the desired probability density (Elbeyli and Sun 2002; Elbeyli et al.
2005; Sun 2006).

In aspect of stochastic optimal control of linear systems, the present moment
reliability-based structural optimal control has a wide application. For example,
Spencer et al. addressed the design and optimization method of a single-degree-
of-freedom system attached with active tendon systems. In their work, a perfor-
mance function directly relevant to the failure probability was defined, and the first-
crossing principle and a stationary white noise model of seismic ground motions
were employed. Utilizing the first-order reliability method/the second-order relia-
bility method (FORM/SORM), the reliability-based control of structures was then
implemented so as to minimize the failure probability of structural displacement
(Spencer et al. 1994a). Battaini et al. further employed the FORM/SORM to carry
out the reliability assessment and experimental analysis of a controlled multi-degree-
of-freedom system (Battaini et al. 2000). It was indicated in their work that the com-
putational efficiency of moment-based reliability method was better than the Monte
Carlo simulation, while the former merely attained an approximate solution in the
case that the performance function of structures featured a high nonlinearity in the
neighborhood of checking point, or that the distribution of basic random variables
was far from the Gaussian distribution. The non-Gaussian properties of structural
response might enlarge the error between the approximate solution and the accurate
solution due to the high-order nonlinear mapping from the basic random variables to
the structural responses. Therefore, the moment-based reliability method cannot be
extended into the large-scale and complex structural systems. In 1998,May and Beck
explored the first generation of Benchmark model pertaining to the probabilistic con-
trol problem, so as to maximize the reliability of the uncertain structures and control
systems subjected to seismic ground motions. In this work, an acceleration feedback
control scheme was employed aiming at the design of optimal active mass damper;
the performance measure on the design objective includes the interstory drift, story
acceleration of structures, and the deployment positions of sensors. An approximate
expansion estimating the failure probability of structures was then proposed based
on the level-crossing process theory (May and Beck 1998). However, their work
involved the search iterations of the optimal value with respect to the approximate
expansion and of the stochastic optimal control law, which will result in an increased
computational cost.

In aspect of nonlinear stochastic optimal control, Zhu and his colleagues have
been devoted to the extension in the framework of Hamilton systems since the late
of 1990s. They proposed the optimal control strategy of nonlinear stochastic dynam-
ical systems in the reference of the stochastic averaging method and the stochastic
dynamic programming (Zhu et al. 2000, 2001, 2006).However, the nonlinear stochas-
tic optimal control of large-size engineering structures in this theoretical framework
still remains a challenge.

Beginning with the middle of 1980s, Skelton and his colleagues systematically
developed a covariance control theory (Skelton 1988). The basic idea is to seek for a
certain control law sets so as to maintain a good consistency between the covariance
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and the objective of stationary processes of linear systems (Collins and Skelton
1985; Hotz and Skelton 1987; Skelton and Ikeda 1989). Thereafter, the covariance
control theory was extended into the control of bilinear systems (Yasuda et al. 1990).
On the basis of this framework, Field and Bergman developed a linear covariance
control method with the constraint of reliability, whereby the covariance structure of
systems can be readily derived in assumption of the Poisson-process level-crossing
of stationary responses (Field and Bergman 1998). Elbeyli and Sun further proposed
a covariance control method for the nonlinear stochastic dynamical system, of which
the covariance control gain can be constructed through minimizing the performance
index relevant to the stationary probability density of structural responses (Elbeyli
and Sun 2004).

In general cases, the state estimation problem resulted from the measurement
noise is a critical issue that needs to be settled down in the stochastic optimal control
of structures. On the form of mathematics, the state estimation and optimal control of
linear systems are dual that both involve solving independently the Riccati equation
with initial values. This family of stochastic optimal control problems thus can be
circumvented by virtue of the separation principle (Astrom1970). However, in regard
to the stochastic optimal control of nonlinear systems involving the state estimation,
the associated issue becomes to be more complicated since the separation principle
is not more available (Stengel 1986; Housner et al. 1997).

In aspect of robustness assessment of stochastic systems, the reliability of system
stability is an argument of interest which is usually derived from the distribution
of real eigenvalues of the system over the positive and negative semi-planes. Due
to the fact that the distribution of eigenvalues cannot be attained through a ready
solving procedure, the random simulationmethod is a preferable means, whereby the
distribution of eigenvalues of sample structures over the complex plane is attained,
and the instability probability of controlled linear systems can be then estimated
(Stengel andRay1991).Another alternativemeans is to redefine the stability criterion
of controlled systems into the formulation of ultimate state equation, and then to solve
the issue of stochastic stability of structural systems with random parameters in the
context of classical reliability theory (Spencer et al. 1992; Spencer et al. 1994b).
Using similar methods, Field, Breitung, and Taflaidis et al. individually carried out
the analysis of stochastic stability of controlled systems (Field et al. 1995, 1996;
Breitung et al. 1998; Taflanidis et al. 2008).

1.3.2 Challenges of Structural Control in Civil Engineering

The control theory and methods were thrived in the fields of electronics and infor-
mation engineering, mechanical engineering, aerospace engineering, etc. They focus
on the state regulation of systems under distributions such as random excitations and
measurement noise, while new challenging issues have to be encountered when these
achievements are applied into the field of civil engineering. Different from the prac-
tical demands, however, as emerged in the mechanical engineering and aerospace
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engineering, there are more uncertainty and higher complexity inherent in civil engi-
neering. The structural control in civil engineering involves a variety of practical
challenges such as the structural safety, system durability, structural comfortabil-
ity, etc. Moreover, large output and high performance are claimed as to the control
devices. The challenging issues of structural control in civil engineering that are dis-
tinguished from the classical control theory and methods lie in dynamic excitations,
structural parameters, nonlinear effects, control law formulas, and controlmodalities.

(i) Challenges related to dynamic excitations

In the period of service, the civil engineering structures usually suffer from the
dynamic excitations, especially from the risk of hazardous dynamic actions. The
hazardous dynamic actions such as strong earthquakes, high winds, and huge waves
exhibit significant randomness inherent in their occurring time, occurring space, and
occurring intensity. The influences of random excitations upon the accurate quantifi-
cation of structural state and the logical design of control systems are thus prominent.
The classical stochastic optimal control theory, derived from the Itô stochastic dif-
ferential equation, is restricted to the assumption of white Gaussian noise excitations
and measurement noise. It still lacks the sufficient exploration into the case under the
general random excitations. This limitation owes to the fact the classical stochastic
optimal control theory has been mostly applied in the nonmechanical problems such
as those raised from the mechanical engineering and aerospace engineering. While
the challenges related to the random excitation become predominant, the stochastic
optimal control theory is used to deal with the mechanical problems that occur in the
civil engineering. In fact, the seismic ground motion exhibits significant nonstation-
arities, and the high wind even just the stable airflow exhibits certain nonstationari-
ties. However, the random excitations in the classical stochastic optimal control are
almost assumed to be stationary white Gaussian noise, which is obviously far from
the hazardous dynamic actions upon the civil engineering structures.

(ii) Challenges related to structural parameters

Due to the uncertainties inherent in the structural materials and manufactures, the
basic parameters of civil engineering structures usually exhibit randomness. This
brings about a series of new issues to the structural control. The influences of random
parameters upon the stochastic optimal control of structures give rise to two aspects.
One is the state estimation.TheKalmanfilter theory is a celebratedmethod for dealing
with the measurement noise and the incomplete measurement in the classical system
control. How this method is applied to state estimation of structures with random
parameters constitutes a new challenge. The other is the stability of control system.
The presence of randomparameters leads to the issue of stochastic eigenvalues,which
also brings about a new challenge to the Lyapunov stability theory based stability
analysis of classical control systems.
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(iii) Challenges related to nonlinear effects

It is well knowledged that the nonlinearities inherent in the control system of civil
engineering structures are derived from two causes, i.e., the nonlinearities of struc-
tural components and the nonlinearities of control devices, which are typically cate-
gorized into material nonlinearity and geometric nonlinearity. The structural systems
with large deformation belong to a family of systems with geometric nonlinearity,
which are usually modeled as harden and soften oscillators. The structural and con-
trol device systems with hysteretic behaviors belong to a family of systems with
material nonlinearity, which are usually represented by bilinear elastic–plastic mod-
els and Bouc–Wen differential models. The former is widely used in the modeling
of mechanical and aerospace structures, while the latter refers to as the main for-
mulation of nonlinear modeling of civil engineering structures. Nonlinear effects
especially the coupling influences between the hysteresis and the randomness result
in an extreme difficulty of stochastic optimal control of engineering structures.

(iv) Challenges related to control law formulas

In the classical stochastic optimal control, the elementary variables of control law in
modality of state feedback are usually defined as the empirical manner, which lacks
a rational criterion. Therefore, the classical stochastic optimal control often involves
a forward control law. Although the proposal of backward stochastic differential
equations provides a basis for the design of backward control law, it is still within
the theoretical framework of Itô stochastic differential equations. In fact, how to
design a logical backward control law in conjunction with the nonlinear effects of
civil engineering structures constitutes another challenging issue.

(v) Challenges related to control modality

Due to a small size of controlled objects and the controllability of working con-
ditions, the classical stochastic optimal control mostly focuses on the centralized
controlmodality.However, the civil engineering structure exhibits a large size, a com-
plex architecture, and a significant influence from the hazardous dynamic actions.
It is usually protected by a multiple-level defense system as a distributed control
modality. Therefore, the centralized control modality based traditional control the-
ory always falls short. The research on the distributed control modality or on the
distributed–centralized control modality prompts the internal demand of structural
control in civil engineering. Besides, the classical stochastic optimal control always
is concerned with a family of control systems exhibiting input and output feedbacks,
while the structural control in civil engineering has a more wide range, including a
non-feedback control system, i.e., passive modality, and an input or output feedback
control system, i.e., active, semiactive, and hybrid modalities.

In summary, the classical stochastic optimal control theory which was derived
from the Itô stochastic differential equation hinges upon a hypothesis that the exter-
nal disturbance is viewed as awhiteGaussian noise or a filteredwhiteGaussian noise.
It thus cannot rationally assess the influence of random excitations as the nonstation-
ary and non-Gaussian noise upon the optimization and design of system parameters
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of structural control. This situation results in the limitation of the classical stochastic
optimal control theory in engineering applications, especially for the optimal control
of complicated dynamic systems of nonlinear structures under strongly nonstationary
random excitations, where the desired performance is hardly to be attained. There-
fore, it is necessary to explore a new theory and associated methods suitable for the
stochastic optimal control of civil engineering structures.

1.3.3 Physically Based Stochastic Optimal Control

It is readily recognized that the relevant theory and methods of classical stochastic
optimal control are all developed on the basis of Itô calculus, which underlies the state
equation of systems. This treatment allows an exclusive assumption that the external
excitation is viewed as a white Gaussian noise or a filtered white Gaussian noise,
which is far from the real engineering excitations. This assumption thus limits the
engineering application of the classical stochastic optimal control in practice. In fact,
the assumption hinders the development of themodern theory of stochastic dynamical
system aswell. Just in view of this situation, the probability density evolutionmethod
was developed based on the probability preservation principle. The PDEM bridges
the essential relation between the probability density evolution and the physical
state evolution of systems, that is, the physical state evolution of systems drives the
probability density evolution. The deterministic system and the stochastic system
can thus be summarized into a unified framework (Li and Chen 2009). Moreover,
this progress profoundly reveals that the physical evolution mechanism of systems is
still the critical content of stochastic system researches, which underlies the theory
of physical stochastic system. In this framework, a novel theory and the associated
methods for the stochastic optimal control of structures are expected to develop.

In the end nineteenth century, the research of practical systems with random ini-
tial state formed the basis of the Gibbs-Liouville theory, and proved the celebrated
Liouville equation (Syski 1967). It is Einstein who addressed the special cases of dif-
fusion processes and established the diffusion equation for Brownian motion in 1905
(Einstein 1905). Then it was extended by Fokker and Planck who derived the clas-
sical Fokker–Planck equation (Fokker 1914; Planck 1917). In 1931, Kolmogorov
independently deduced a same formulation as the Fokker–Planck equation, and a
backward Kolmogorov equation was then derived (Kolmogorov 1931). Owing to
the rigorous mathematical basis, the Kolmogorov equation is so-called the Fokker—
Planck–Kolmogorov equation (FPK equation). Thereafter, the FPK equation and its
solutions formed the primary topics of random vibration theory. In 1957, Dostupov
and Pugachev attempted to quantify the randomness inherent in the system input
through introducing the Karhunen–Loeve decomposition (Dostupov and Pugachev
1957). It is the so-called Dostupov–Pugachev equation. It is regret; however, the
equations mentioned above are all high-dimensional and strong-coupling partial dif-
ferential equations, of which the analytical solutions are hardly derived. Li and Chen
explored the probability preservation principle in an elegant manner, and secured the
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essential relation between probability density evolution and physical state evolution
of systems. A family of decoupling probability density evolution equations, i.e., the
so-called generalized probability density evolution equation (GDEE), was then pro-
posed in the past 15 years (Li and Chen 2006a, b, c, 2008, 2009). It is recognized
that the GDEE accommodates the randomness both inherent in external excitations
and in structural systems, which provides a new way to carry out the response anal-
ysis and reliability assessment of stochastic systems subjected to general random
excitations, and also allows a potential for stochastic optimal control of linear and
nonlinear multi-degree-of-freedom systems.

It should be noted that the probability density evolution method reveals the essen-
tial relation between the deterministic evolution of sample orbits and the probability
density evolution of statistical assembles, and fulfills the decoupling and the dimen-
sion reductionof probability density evolution equationof general stochastic systems.
A ready solving procedure for the stochastic systems can be thus proposed where the
solution of physical equation and probability density evolution equation are readily
attained in a separate manner. As to the controlled stochastic dynamical system, the
physical equation includes the term of control gain, while the control gain just relies
upon the physical state of systems. Thus, the probability density evolution equation
of controlled system is a coupled equation set with respect to the system state and the
control gain, which still remains a dependence on the physical equation of controlled
systems. This finding breaks through the limitation of the Itô calculus and provides
a new way toward the stochastic optimal control of engineering structures subjected
to general random excitations such as seismic ground motions, high winds, and huge
waves.

Design and optimization of control gain is the critical task of the physically based
stochastic optimal control, in which three steps are often involved, i.e., the design
of control law, the optimization of controller parameters, and the optimization of
control device placement. The design of control law hinges upon the associated
control modalities with feedback logic such as the active, semiactive, or hybrid
controls. The formulation of control law is generally derived from Pontryagin’s
maximum principle or from Bellman’s optimality principle, while the optimization
of the controller parameters and of the control device placement serve as the two
important aspects of structural control, which are both referred to the probabilistic
criteria in function of probability density or reliability of systemquantities of concern.

1.4 Scope of the Book

In the civil engineering community, the objective of structural control is often definite,
while the loads acting on the engineering structures cannot be predicted accurately,
especially for the dynamic excitations. Therefore, the stochastic optimal control of
structures considering the randomness inherent in engineering excitations ought to
be paid sufficient attention. For this reason, the present book focuses on the haz-
ardous dynamic actions, specifically on the random seismic ground motion and the
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fluctuating wind-velocity field, and devotes to developing a novel theory and the per-
tinent successful strategies for stochastic optimal control of engineering structures,
in conjunction with the probability density evolution method. The outline is sketched
as follows: the performance evolution of controlled systems is first investigated, and
a family of probabilistic criteria in terms of structural responses is then established;
the generalized optimal control policy and the associated control law involving the
simultaneous optimization of the controller parameters and the control device place-
ment are then proposed; in order to verify the proposed methodology, a series of
engineering applications and experimental studies of controlled structures are then
introduced.

The scope of the book is illustrated as follows:
In Chap. 2, the associated theoretical principles pertaining to the physically based

stochastic optimal control are addressed, including the classical stochastic optimal
control in the framework of the stochastic maximum principle and the stochastic
dynamic programming, the random vibration of linear and nonlinear structures, the
dynamic reliability of structures, and the modeling of random dynamic excitations.
The kernel equation of the PDEM, i.e., the generalized probability density evolution
equation, is introduced as well. This chapter devotes to providing a solid foundation
for the successive developments of theory and methods of stochastic optimal control
of structures.

In Chap. 3, the probability density evolution method of stochastic optimal control
is detailed. Performance evolution of controlled structural systems is first investi-
gated. The solution of the physically based stochastic optimal control is deduced
according to Pontryagin’s maximum principle. Active stochastic optimal control
based on the probabilistic criterion on system second-order statistics evaluation is
discussed. For validating purposes, comparative studies against the classical LQG
control are carried out.

In Chap. 4, a family of probabilistic criteria for the physically based stochas-
tic optimal control is proposed, including the single-objective optimization criteria
with respect to the second-order moments such as the mean and the variance, and
with respect to the tail of probability density, i.e., the exceedance probability, of
equivalent extreme-value responses; and the multiple-objective optimization criteria
with respect to the mean and the exceedance probability of equivalent extreme-value
responses in performance trade-off and in energy trade-off, respectively. Numerical
examples are studied to prove the applicability of the proposed probabilistic criteria.

In Chap. 5, the concept of generalized optimal control policy is proposed. This
concept indicates a unified formula of the optimal control law with optimized con-
troller parameters pertaining to passive, active, semiactive, and hybrid controls, and
with optimized control device placement. In order to attain the optimal placement
of control devices at each sequential step, a probabilistic controllability index in
argument of exceedance probability is defined. Comparative studies between con-
trol device deployment strategies using the minimum controllability index gradient
criterion and the maximum controllability index criterion are then carried out.

In Chap. 6, the theory and methods of physically based stochastic optimal con-
trol are extended to the nonlinear structures. Stochastic optimal polynomial control
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of a family of hardening Duffing oscillators and two classes of nonlinear structural
systems with Clough hysteretic components and with Bouc–Wen hysteretic com-
ponents are investigated. The exceedance probability-based probabilistic criterion
is employed as well. The control effectiveness of the optimal polynomial controller
on different types of nonlinear stochastic dynamical systems is addressed. For vali-
dating purposes, comparative studies against the statistical linearization-based LQG
control are carried out.

InChap. 7, practical application of the proposedmethodology in thewind-resistant
structures with viscous dampers is addressed. Equivalent linearization techniques
for smoothing the viscously damped structures are introduced. Design criteria for
optimal deployment of viscous dampers are proposed. For illustrative purposes, the
wind-induced comfortability control of a high-rise building in the typhoon-prone
area is investigated. The details on the parameter design and placement optimization
of viscous dampers are provided. The effectiveness of mitigating wind-induced roof
acceleration and enhancing structural habitability is proved.

In Chap. 8, the stochastic optimal control of seismic structures using the
magnetorheological damper is investigated. The bound Hrovat algorithm and the
parametrized model for the magnetorheological damper are addressed, and thereby
the control law for variable damping on structures is defined. Using the technique
of molecular dynamics simulations, the bulk behaviors of microscale magnetorhe-
ological suspensions are investigated, and their relevance to the control current is
discussed as well. On this basis, the gain design, parameter optimization, and control
effectiveness analysis of a controlled structure attached with the magnetorheological
damper are carried out.

In Chap. 9, experimental studies of stochastic optimal control are introduced. A
six-story steel moment-resisting frame structure deployed with viscous dampers is
investigated. By virtue of the versatile facilities held by the State Key Laboratory of
Disaster Reduction in Civil Engineering at Tongji University, the shaking-table test
of a controlled structural model subjected to the random seismic ground motion is
carried out. Experimental investigations show the applicability and effectiveness of
the proposed theory and methods of stochastic optimal control of structures.

In order to facilitate the readers’ understanding, five appendixes related to the
topic included in this book are provided to the end.

References

Åström KJ (1970) Introduction to stochastic control theory. Academic Press, New York
Abdel-Rohman M, Nayfeh AH (1987) Active control of nonlinear oscillations in bridges. ASCE J
Eng Mech 113:335–348

Aiken ID, Kelly JM, Tajirian FF (1989)Mechanics of low shape factor elastomeric seismic isolation
bearings. Report No. UCB/EERC-89/13, Earthquake Engineering Research Center, University
of California, Berkeley, CA

Aiken ID, Nims DK,Whittaker AS, Kelly JM (1993) Testing of passive energy dissipation systems.
Earthq Spectra 9(3):335–368



18 1 Introduction

Amjadian M, Agrawal AK (2018) Modeling, design, and testing of a proof-of-concept prototype
damper with friction and eddy current damping effects. J Sound Vib 413:225–249

Anderson Brian DO, Moore J (1990) Optimal control: linear quadratic methods. Prentice-Hall,
Englewood Cliffs

Ang AH-S, TangWH (2006) Probability concepts in engineering: emphasis on applications to civil
and environmental engineering. Wiley

Asai T, Chang CM, Spencer BF Jr (2015) Real-time hybrid simulation of a smart base-isolated
building. J Eng Mech 141(3):04014128-1-10

Battaini M, Casciati F, Faravelli L (2000) Some reliability aspects in structural control. Probab Eng
Mech 15:101–107

Bellman R (1957) Dynamic programming. Princeton University Press, Princeton
Berardengo M, Cigada A, Guanziroli F, Manzoni S (2015) Modelling and control of an adaptive
tuned mass damper based on shape memory alloys and eddy currents. J Sound Vib 349:18–38

Bhaskararao AV, Jangid RS (2006) Seismic analysis of structures connected with friction dampers.
Eng Struct 28:690–703

Breitung K, Casciati F, Faravelli (1998) Reliability based stability analysis for actively controlled
structures. Eng Struct 20(3):211–215

Brogan WL (1991) Modern control theory. Prentice-Hall, Englewood Cliffs
Bucher C (2009) Probability-based optimal design of friction-based seismic isolation devices. Struct
Saf 31(6):500–507

Bucy RS, Kalman RE (1961) New results in linear filtering and prediction theory. ASME Trans J
Basic Eng 83:95–108

Cao M, Tang H, Funaki N, et al (2012) Study on a real 8F steel building with oil damper damaged
during the 2011 Great East Japan Earthquake. In: Proceeding of world conference on earthquake
engineering, Lisbon, Portugal

Casciati F, Faravelli L, Hamdaoui K (2007) Performance of a base isolator with shape memory
alloy bars. Earthq Eng Eng Vib 6(4):401–408

Chang James CH, Soong TT (1980) Structural control using active tuned mass dampers. ASCE J
Eng Mech 106(6):1091–1098

Chan RWK, Albermani F (2008) Experimental study of steel slit damper for passive energy dissi-
pation. Eng Struct 30(4):1058–1066

Chen GS, Robin JB, Salama M (1991) Optimal placement of active/passive members in truss
structures using simulated annealing. AIAA J 29(8):1327–1334

Cheng W, QuW, Li A (1994) Hybrid vibration control of Nanjing TV tower under wind excitation.
In: Proceedings of 1st world conference on structural control, Los Angeles, USA, vol 1, pp
WP2-32–WP2-41

Chu SY, Soong TT, Reinhorn AM (2005) Active, hybrid and semi-active structural control. Wiley,
New York

ChungLL, LinRC, SoongTT, ReinhornAM (1989) Experimental study of active control forMDOF
seismic structures. J Eng Mech 115(8):1609–1627

Chung LL, Reinhorn AM, Soong TT (1988) Experiments on active control of seismic structures.
ASCE J Eng Mech 114(2):241–256

Collins EG Jr, Skelton RE (1985) Covariance control of discrete systems. In: Proceedings of 24th
IEEE conference on decision and control, Ft. Lauderdale, FL, pp 542–547

Constantinou MC, Symans MD, Tsopelas P, Taylor DP (1993) Fluid viscous dampers in applica-
tions of seismic energy dissipation and seismic isolation. In: Proceedings of seminar on seismic
isolation, passive energy dissipation, and active control, Applied Technology Council, Palo Alto,
USA No. ATC-17-1, vol 2, pp 581–592

Dewey A, Jury E (1963) A note on Aizerman’s conjecture. IEEE Trans Autom Control AC-
19:482–483

Dolce M, Cardone D, Palermo G (2007) Seismic isolation of bridges using isolation systems based
on flat sliding bearings. Bull Earthq Eng 5:491–509



References 19

Dostupov BG, Pugachev VS (1957) The equation for the integral of a system of ordinary differential
equations containing random parameters. Autom i Telemekhanika 18:620–630

Dyke SJ, Spencer BF Jr, Quast P et al (1996a) Implementation of an active mass driver using
acceleration feedback control. Microcomput Civil Eng 11(5):305–323

Dyke SJ, Spencer BF Jr, SainMK, Carlson JD (1996b)Modeling and control of magnetorheological
dampers for seismic response reduction. Smart Mater Struct 5:565–575

Ehrgott RC, Masri SF (1992) Use of electrorheological materials in intelligent systems. In: Pro-
ceedings of US-Italy-Japan workshop/symposium on structural control and intelligent systems,
Sorrento, Italy, pp 87–100

Einstein A (1905) In: Furth R (ed) Investigations on the theory of the Brownian movement (1956).
Dover Publications, New York

Elbeyli O, Hong L, Sun JQ (2005) On the feedback control of stochastic systems tracking pre-
specified probability density functions. Trans Inst Meas Control 27(5):319–329

Elbeyli O, Sun JQ (2002) A stochastic averaging approach for feedback control design of nonlinear
systems under random excitations. J Vib Acoust 124:561–565

Elbeyli O, Sun JQ (2004) Covariance control of nonlinear dynamic systems via exact stationary
probability density function. J Vib Acoust 126:71–76

Feng Q, Shinozuka M, Fujii S (1993) Friction-controllable sliding isolated systems. ASCE J Eng
Mech 119(9):1845–1864

Field RV Jr, Bergman LA (1998) Reliability-based approach to linear covariance control design.
ASCE J Eng Mech 124(2):193–199

Field RV Jr, Bergman LA, Hall WB (1995) Computation of probabilistic stability measures for a
controlled distributed parameter system. Probab Eng Mech 10:181–192

Field RV Jr, Voulgaris PG, Bergman LA (1996) Probabilistic stability robustness of structural
systems. ASCE J Eng Mech 122(10):1012–1021

Fokker AD (1914) Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann
Phys (Leipz) 43:810–820 (in German)

Fu KS (1971) Learning control systems and intelligent control systems: an intersection of artificial
intelligence and automatic control. IEEE Trans Autom Control 16:70–72

Furuya H, Haftka RT (1996) Combining genetic and deterministic algorithms for locating actuators
on space structures. J Spacecr Rockets 33(3):422–427

Gavin HP, Ortiz DS, Hanson RD (1993) Testing and Modeling of a proto-type ER damper for seis-
mic structural response control. In: Proceedings of international workshop on structural control,
Honolulu, USA, pp 166–180

GuoYQ, ChenWQ (2007) Dynamic analysis of space structures withmultiple tunedmass dampers.
Eng Struct 29:3390–3403

Hiramoto K, Doki H, Obinata G (2000) Optimal sensor actuator placement for active vibration
control using explicit solution of algebraic Riccati equation. J Sound Vib 229(5):1057–1075

Housner GW (1947) Characteristics of strong-motion earthquakes. Bull Seismol Soc Am
37(1):19–31

Housner GW, Bergman LA, Caughey TK, Chassiakos AG, Claus RO, Masri SF, Skelton RE, Soong
TT, Spencer BF Jr, Yao James TP (1997) Structural control: past, present, and future. ASCE J
Eng Mech 123(9):897–971

Hotz A, Skelton RE (1987) Covariance control theory. Int J Control 46(1):13–32
Hrovat D, Barak P, Rabins M (1983) Semi-active versus passive or active tuned mass dampers for
structural control. ASCE J Eng Mech 109(3):691–705

Inaudi JA (1997) Modulated homogeneous friction: a semi-active damping strategy. Earthq Eng
Struct Dyn 26(3):361–376

Jansen LM, Dyke SJ (2000) Semi-active control strategies for MR dampers comparative study.
ASCE J Eng Mech 126(8):795–803

Jung HJ, Jang DD, Lee HJ, Lee IW, Cho SW (2010) Feasibility test of adaptive passive control
system using MR fluid damper with electromagnetic induction part. J EngMech 136(2):254–259



20 1 Introduction

Kalman RE (1960a) On the general theory of control systems. In: Proceedings of 1st IFACMoscow
congress. Butterworth Scientific Publications

Kalman RE (1960b) A new approach to linear filtering and prediction problems. ASME Trans J
Basic Eng 82:35–45

KamadaT, Fujita T,HatayamaT,ArikabeT,MuraiN,AizawaS, TohyamaK (1997)Active vibration
control of frame structures with smart structures using piezoelectric actuators (Vibration control
by control of bending moments of columns). Smart Mater Struct 6:448–456

Kamat MP (1988) Active control of structures in nonlinear response. J Aerosp Eng 1:52–62
KarnoppDC, CrosbyMJ, HarwoodRA (1974) Vibration control using semi-active force generators.
J Eng Ind 96(2):619–626

Kawashima K, Unjoh S, Iida H, Mukai H (1992) Effectiveness of the variable damper for reducing
seismic response of highway bridge. In: Proceedings of secondUS-Japanworkshop on earthquake
protective systems for bridges, PWRI, Tsukuba Science City, Japan, pp 479–493

Kelly JM(1978)Experimental results of an earthquake isolation systemusingnatural rubber bearing.
Report No. UCB/EERC-78/03, Earthquake Engineering Research Center, University of Califor-
nia, Berkeley, CA

Kelly JM, Buckle IG, Koh CG (1987) Mechanical characteristics of base isolation bearings for a
bridge deckmodel test. Report No. UCB/EERC-86/11, Earthquake Engineering Research Center,
University of California, Berkeley, CA

Kelly JM, Skinner RI, Heine AJ (1972) Mechanisms of energy absorption in special devices for use
in earthquake-resistant structures. Bull N Z Natl Soc Earthq Eng 5(3):63–88

Kim J, Choi H,MinKW (2003) Performance-based design of added viscous dampers using capacity
spectrum method. J Earthq Eng 7(1):1–24

Kobori T (2003) Past, present and future in seismic response control in civil engineering structures.
In: Proceedings of 3rd world conference on structures control. Wiley, New York, pp 9–14

Kobori T, Takahashi M, Nasu T (1990) Experimental study on active variable stiffness system-
active seismic response controlled structure. In: Proceedings of 4th world congress council on
tall buildings and urban habitat, Hong Kong, pp 561–572

KolmogorovAN (1931)Über die analytischenMethoden in derWahrscheinlichkeitsrechnung.Math
Ann 104:415–458 (in German)

Kriezis EE, Tsiboukis TD, Panas SM, Tegopoulos JA (1992) Eddy currents: theory and applications.
Proc. IEEE 80(10):1559–1589

Krishnan R, Nerves AC, Singh MP (1995) Modeling, simulation and analysis of active control of
structureswith nonlinearity using neural networks. In: Proceedings of 10th engineeringmechanics
specialty conference, vol 2. ASCE, Boulder, Colorado, pp 1054–1057

Li C (2000) Performance of multiple tuned mass dampers for attenuating undesirable oscillations
of structures under the ground acceleration. Earthq Eng Struct Dyn 29:1405–1421

Li C, ReinhornAM (1995) Experimental and analytical investigation of seismic retrofit of structures
with supplemental damping: part 2-friction devices. NCEER Report 95-0009, State University
of New York at Buffalo, Buffalo, New York

Li J (1996) Stochastic structural system: analysis andmodelling. Science Press, Beijing (in Chinese)
Li J, Chen JB (2006a) The probability density evolution method for dynamic response analysis of
non-linear stochastic structures. Int J Numer Meth Eng 65:882–903

Li J, Chen JB (2006b) The dimension-reduction strategy via mapping for probability density evo-
lution analysis of nonlinear stochastic systems. Probab Eng Mech 21(4):442–453

Li J, Chen JB (2006c) Probability density evolution method for stochastic dynamical systems. Adv
Natl Sci 16(6):712–719 (in Chinese)

Li J, Chen JB (2008) The principle of preservation of probability and the generalized density
evolution equation. Struct Saf 30:65–77

Li J, Chen JB (2009) Stochastic dynamics of structures. Wiley, Singapore
Lin PY, Roschke PN, Loh CH (2007) Hybrid base-isolation with magnetorheological damper and
fuzzy control. Struct Control Health Monit 14:384–405

Lin YK (1967) Probabilistic theory of structural dynamics. McGraw-Hill, New York



References 21

Masri SF, Bekey GA, Caughey TK (1981) On-linear control of nonlinear flexible structures. J Appl
Mech 49:871–884

May BS, Beck JL (1998) Probabilistic control for the active mass driver benchmark structural
model. Earthq Eng Struct Dyn 27:1331–1346

McClamrochNH,GavinHP (1995)Closed loop structural control using electrorheological dampers.
In: Proceedings of theAmerican control conference,AmericanAutomaticControlCouncil,Wash-
ington, D.C., pp 4173–4177

Mizuno T, Kobori T, Hirai J, Yoshinori M, Niwa N (1992) Development of adjustable hydraulic
damper for seismic response control of large structures. In: DOE facilities programs, systems
interaction, and active/inactive damping, ASME, New Orleans, LA, vol 229, pp 163–170

Museros P, Martinez-Rodrigo MD (2007) Vibration control of simply supported beams under mov-
ing loads using fluid viscous dampers. J Sound Vib 300:292–315

Nagarajaiah S (1994) Fuzzy controller for structures with hybrid isolation system. In: Proceedings
of 1st world conference on structural control, vol TA2, pp 67–76

Nagarajaiah S, Riley MA, Reinhorn AM (1993) Hybrid control of sliding isolated bridge. ASCE J
Eng Mech 119(11):2317–2332

Niiya T, Ishimaru S, Koizumi T, Takai S (1994) A hybrid system controlling large amplitude
vibrations of high-rise buildings. In: Proceedings of 1st world conference on structural control,
vol FA2, pp 43–52

Ou JP (2003) Structural vibration control: active, semi-active and intelligent modalities. Science
Press, Beijing (in Chinese)

Ou JP, Li H (2010) Analysis of capability for semi-active or passive damping systems to achieve
the performance of active control systems. Struct Control Health Monit 17(7):778–794

Pall AS, Marsh C (1982) Response of friction damped braced frames. ASCE J Struct Div
108(6):1313–1323

Palmeri A, Ricciardelli F (2006) Fatigue analyses of buildings with viscoelastic dampers. J Wind
Eng Ind Aerodyn 94:377–395

ParkKS, KohHM,HahmD (2004) Integrated optimumdesign of viscoelastically damped structural
systems. Eng Struct 26:581–591

Patten WN (1997) New life for the Walnut Creek Bridge via semi-active vibration control. Newsl
Int Assoc Struct Control 2(1):4–5

Patten WN, Mo C, Kuehn J, Lee J (1998) A primer on design of semi-active vibration absorbers
(SAVA). ASCE J Eng Mech 124(1):61–68

PengYB,DingLC,Chen JB (2019a) Performance evaluation of base-isolated structureswith sliding
hydromagnetic bearings. Struct Control Health Monit 26:e2278

Peng YB, Ding LC, Chen JB, Villaverde R (2019b) Experimental study of sliding hydromagnetic
isolators for seismic protection. J Struct Eng 145(5):04019021

PlanckM(1917)Uber einenSatz der statistichenDynamikund eineErweiterung in derQuantumthe-
orie. Sitzungberichte der Preussischen Akadademie der Wissenschaften 324–341 (in German)

Pontryagin LS (1962) The mathematical theory of optimal processes (trans: Trirogoff KN). Inter-
science, New York

Qu WL, Chen ZH, Xu YL (2001) Dynamic analysis of wind-excited truss tower with friction
dampers. Comput Struct 79:2817–2831

Quaglini V, Gandelli E, Dubini P (2017) Experimental investigation of the re-centring capability of
curved surface sliders. Struct Control Health Monit 24(2):e1870

Rama Raju K, AnsuM, Iyer NR (2014) Amethodology of design for seismic performance enhance-
ment of buildings using viscous fluid dampers. Struct Control Health Monit 21(3):342–355.

Reinhorn AM, Li C, Constantinou MC (1995) Experimental and analytical investigation of seismic
retrofit of structures with supplemental damping: part 1-fluid viscous damping devices. NCEER
Report 95-0001, State University of New York at Buffalo, Buffalo, New York

Reinhorn AM, Riley MA (1994) Control of bridge vibrations with hybrid devices. In: Proceedings
of 1st world conference on structural control, vol TA2, pp 50–59



22 1 Introduction

Rodellar J, Barbat AH, Molinares N (1994) Response analysis of buildings with a new nonlinear
base isolation system. In: Proceedings of 1st world conference on structural control, vol TP1, pp
31–40

Roorda J (1975) Tendon control in tall structures. J Struct Div 101(3):505–521
Roussis PC, Constantinou MC, Erdik M, Durukal E, Dicleli M (2003) Assessment of performance
of seismic isolation system of Bolu Viaduct. J Bridge Eng 8(4):182–190

Sack RL, PattenW (1994) Semi-active hydraulic structural control. In: Proceedings of international
workshop on structural control, University of Southern California, Los Angeles, pp 417–431

Sain MK (1966) Control of linear systems according to the minimal variance criterion-a new
approach to the disturbance problem. Trans Autom Control 118–122 (IEEE)

Setareh M (1994) Use of the doubly-tuned mass dampers for passive vibration control. In: Proceed-
ings of 1st world conference on structural control, vol 1, pp WP4-12–WP4-21

Shen KL, Soong TT, Chang KC, Lai ML (1995) Seismic behaviour of reinforced concrete frame
with added viscoelastic dampers. Eng Struct 17(5):372–380

Shinozuka M, Ghanem R (1992) Use of variable dampers for earthquake protection of bridges. In:
Proceedings of Second US-Japan workshop on earthquake protective systems for bridges, PWRI,
Tsukuba Science City, Japan, pp 507–516

Shukla AK, Datta TK (1999) Optimal use of viscoelastic dampers in building frames for seismic
force. ASCE J Struct Eng 4:401–409

Silvestri S, Trombetti T (2007) Physical and numerical approaches for the optimal insertion of
seismic viscous dampers in shear-type structures. J Earthq Eng 11(5):787–828

SinghMP, Moreschi LM (2001) Optimal seismic response control with dampers. Earthq Eng Struct
Dyn 30:553–572

SinghMP,Moreschi LM (2002) Optimal placement of dampers for passive response control. Earthq
Eng Struct Dyn 31(4):955–976

Skelton RE (1988) Dynamic systems control: linear systems analysis and synthesis. Wiley, New
York

Skelton RE, IkedaM (1989) Covariance controllers for linear continuous time systems. Int J Control
49:1773–1785

Skinner RI, Kelly JM, Heine AJ (1975) Hysteresis dampers for earthquake-resistant structures.
Earthq Eng Struct Dyn 3:287–296

Sobczyk K (1991) Stochastic differential equations: with applications to physics and engineering.
Kluwer Academic Publishers, Dordrecht

Soong TT (1990) Active structural control: theory and practice. Longman Scientific & Technical,
New York

Soong TT, Dargush GF (1997) Passive energy dissipation systems in structural engineering. Wiley,
New York

Soong TT, Reinhorn AM, Yang JN (1988) Active response control of building structures under seis-
mic excitation. In: Proceedings of 9thworld conference on earthquake engineering, Tokyo/Kyoto,
Japan, vol 8, pp 453–458

Spencer BF Jr, Bergman LA (1993) On the numerical solution of the Fokker-Planck equation for
nonlinear stochastic systems. Nonlinear Dyn 4:357–372 (in German)

Spencer BF Jr, Kaspari DC Jr, Sain MK (1994a) Structural control design: a reliability-based
approach. In: Proceedings of the American control conference, Baltimore, Maryland, pp
1062–1066

Spencer BF Jr, Sain MK, Won CH, Kaspari D Jr, Sain PM (1994b) Reliability-based measures of
structural control robustness. Struct Saf 15:111–129

Spencer BF Jr, Nagarajaiah S (2003) State of the art of structural control. J Struct Eng 845–856
(Forum)

Spencer BF Jr, Sain MK, Carlson JD (1996) Dynamical model of a magnetorheological damper.
In: Proceedings of Structures Congress XIV, ASCE, Chicago, IL, USA, pp 361–370

Spencer BF Jr, Sain MK, Carlson JD (1997) Phenomenological model of magnetorheological
damper. ASCE J Eng Mech 123(3):230–238



References 23

Spencer BF Jr, Sain MK, Kantor JC, Montemagno C (1992) Probabilistic stability measures for
controlled structures subject to real parameter uncertainties. Smart Mater Struct 1:294–305

Stavroulakis GE, Marinova DG, Hadjigeorgiou E, Foutsitzi G, Baniotopoulos CC (2006) Robust
active control against wind-induced structural vibrations. J Wind Eng Ind Aerodyn 94:895–907

Stengel RF (1986) Stochastic optimal control: theory and application. Wiley, New York
Stengel RF (1994) Optimal control and estimation. Dover Publications, New York
Stengel RF, Ray LR (1991) Stochastic robustness of linear time-invariant control systems. IEEE
Trans Autom Control 36(1):82–87

Suhardjo J (1990) Frequency domain techniques for control of civil engineering structures with
some robustness considerations. PhD Dissertation, Department of Civil Engineering, University
of Notre Dame, Notre Dame

Suhardjo J, Spencer BF Jr, Sain MK (1992) Nonlinear optimal control of a Duffing system. Int J
Non-Linear Mech 27(2):157–172

Sun JQ (2006) Stochastic dynamics and control. Elsevier, Amsterdam
Syski R (1967) Stochastic differential equations. In: Saaty TL (ed) Modern nonlinear equations
(Chapter 8). McGraw-Hill, New York

Taflanidis AA, Scruggs JT, Beck JL (2008) Reliability-based performance objectives and proba-
bilistic robustness in structural control applications. J Eng Mech 134(4):291–301

Tait MJ, Isyumov N, EI Damatty AA (2008) Performance of tuned liquid dampers. ASCE J Eng
Mech 134(5):417–427

Takewaki I, Yoshitani S, Uetani K, Tsuji M (1999) Non-monotonic optimal damper placement via
steepest direction search. Earthq Eng Struct Dyn 28:655–670

Tamura Y, Fujii K, Ohtsuki T,Wakahara T, Koshaka R (1995) Effectiveness of tuned liquid dampers
under wind excitations. Eng Struct 17:609–621

TamuraK,ShibaK, InadaY,WadaA (1994)Control gain schedulingof a hybridmass damper system
against wind response of tall buildings. In: Proceedings of 1st world conference on structural
control, vol FA2, pp 13–22

Tan P, Dyke SJ, Richardson A, Abdullah M (2005) Integrated device placement and control design
in civil structures using genetic algorithms. ASCE J Struct Eng 131(10):1489–1496

Tanida K, Koike Y, Mutaguchi K, Uno N (1991) Development of hybrid active-passive damper.
ASME Act Passive Damping, PVP-Vol. 211:21–26

Teng J (2009) Structural vibration control: theories, technologies and methods. Science Press,
Beijing (in Chinese)

Tu JW, Liu J, Qu WL, Zhou Q, Cheng HB, Cheng XD (2011) Design and fabrication of 500-kN
large-scale MR damper. J Intell Mater Syst Struct 22(5):475–487

Utkin VI (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control AC-
22:212–222

Utkin VI (1992) Sliding modes in control optimization. Springer, New York
Venini P, Wen YK (1994) Hybrid vibration control of MDOF hysteretic structures with neural
networks. In: Proceedings of 1st world conference on structural control, vol TA3, pp 53–56

VillaverdeR (1994)Seismic control of structureswith damped resonant appendages. In: Proceedings
of 1st world conference on structural control, vol 1, pp WP4-113–WP4-122

Villaverde R (2017) Base isolation with sliding hydromagnetic bearings: concept and feasibility
study. Struct Infrastruct Eng 13(6):709–721

Wakahara T, Ohyama T, Fujii K (1992) Suppression of wind-induced vibration of a tall building
using tuned liquid damper. J Wind Eng Ind Aerodyn 41–44:1895–1906

WatakabeM,TohdoM,ChibaO, IzumiN,EbisawaH,FujitaT (2001)Response control performance
of a hybrid mass damper applied to a tall building. Earthq Eng Struct Dyn 30:1655–1676

Wiener N (1948) Cybernetics: or control and communication in the animal and the machine. The
MIT Press, Paris

Wiener N (1949) Extrapolation, interpolation and smoothing of stationary time series, with engi-
neering applications. The MIT Press, Cambridge



24 1 Introduction

Wojtkiewicz SF, Spencer BF Jr, Bergman LA (1996) On the cumulant-neglect closure method in
stochastic dynamics. Int J Non-Linear Mech 31(5):657–684

Wong Kevin KF, Johnson J (2009) Seismic energy dissipation of inelastic structures with multiple
tuned mass dampers. ASCE J Eng Mech 135(4):265–275

Wu B, Ou JP, Soong TT (1997) Optimal placement of energy dissipation devices for three-
dimensional structures. Eng Struct 19(2):113–125

Xu K, Warnitchai P, Igusa T (1994) Optimal placement and gains of sensors and actuators for
feedback-control. J Guid Control Dyn 17(5):929–934

Xu LH, Li ZX (2008) Semi-active multi-step predictive control of structures using MR dampers.
Earthq Eng Struct Dyn 37:1435–1448

Xu ZD (2007) Earthquake mitigation study on viscoelastic dampers for reinforced concrete struc-
tures. J Vib Control 13(1):29–43

XuZD,GuoYQ (2008) Neuro-fuzzy control strategy for earthquake-excited nonlinearmagnetorhe-
ological structures. Soil Dyn Earthq Eng 28(9):717–727

Yan S, Zheng K, Zhao Q, Zhang L (2005) Optimal placement of active members for truss structure
using genetic algorithm. Lecture notes in computer science, No 3645. Springer, Berlin, Heidel-
berg, pp. 386–395

Yang JN (1975) Application of optimal control theory to civil engineering structures. ASCE J Eng
Mech Div 101(EM6):819–838

Yang JN, Akbarpour A, Ghaemmaghami P (1987) New optimal control algorithms for structural
control. ASCE J Eng Mech 113(9):1369–1386

Yang JN, Bobrow J, Jabbari F, Leavitt J, Cheng CP, Lin PY (2007) Full-scale experimental verifi-
cation of resetable semi-active stiffness dampers. Earthq Eng Struct Dyn 36(9):1255–1273

Yang JN, Li Z, Danielians A, Liu SC (1992a) Hybrid control of nonlinear and hysteretic systems I.
ASCE J Eng Mech 118(7):1423–1440

Yang JN, Li Z, Danielians A, Liu SC (1992b) Hybrid control of nonlinear and hysteretic systems
II. ASCE J Eng Mech 118(7):1441–1456

Yang JN, Li Z, Vongchavalitkul S (1994) Generalization of optimal control theory: linear and
nonlinear control. ASCE J Eng Mech 120(2):266–283

Yao James TP (1972) Concept of structural control. ASCE J Struct Div 98(ST7):1567–1574
Yasuda K, Kherat S, Skelton RE, Yaz E (1990) Covariance control and robustness of bilinear
systems. In: Proceedings of 29th IEEE conference on decision and control, pp 1421–1425

Yong JM, Zhou XY (1999) Stochastic controls: Hamiltonian systems and HJB equations. Springer,
New York

Zhang P, Song GB, Li HN, Lin YX (2013) Seismic control of power transmission tower using
pounding TMD. J Eng Mech 139(10):1395–1406

Zhang RH, Soong TT (1992) Seismic design of viscoelastic dampers for structural applications.
ASCE J Struct Eng 118(5):1375–1391

Zhang RH, Soong TT, Mahmoodi P (1989) Seismic response of steel frame structures with added
viscoelastic dampers. Earthq Eng Struct Dyn 18:389–396

Zhang WS, Xu YL (2001) Closed form solution for along-wind response of actively controlled tall
buildings with LQG controllers. J Wind Eng Ind Aerodyn 89:785–807

Zhao DH, Li HN (2010) Shaking table tests and analyses of semi-active fuzzy control for
structural seismic reduction with a piezoelectric variable-friction damper. Smart Mater Struct
19(10):105031

Zhu WQ (1992) Random vibration. Science Press, Beijing (in Chinese)
Zhu WQ (2006) Nonlinear stochastic dynamics and control in Hamiltonian formulation. ASME
Trans 59:230–248

ZhuWQ,YingZG,NiYQ,Ko JM (2000)Optimal nonlinear stochastic control of hysteretic systems.
ASCE J Eng Mech 126(10):1027–1032

ZhuWQ, Ying ZG, Soong TT (2001) An optimal nonlinear feedback control strategy for randomly
excited structural systems. Nonlinear Dyn 24:31–51



Chapter 2
Theoretical Principles

2.1 Preliminary Remarks

Stochastic optimal control is a subfield of control theory, which focuses upon the
stochastic systems anddevelops into a cross-discipline between the stochastic process
theory and the optimal control theory. The associated theories and technologies with
the electronics and information engineering, mechanical engineering, and aerospace
engineering, were flourished since 1960s, and just concerned the state adjustment
of systems under random disturbances such as random excitations and measurement
noise. The development in the field of civil engineering began after the seventies of
twentieth century. Different from the requirements of the fields of mechanical engi-
neering and aerospace engineering, the civil engineering structures exhibit a large
size and experience a complicated external excitation. They have to encounter a series
of challenging issues in regard to the safety, the durability, and the comfortability.
These issues becomemore serious in the case of hazardous actions with uncertainties
inherent in the occurring time, occurring space, and occurring intensity. The con-
ventional stochastic optimal control theory, however, originated from the random
process theory assumes the white Gaussian noise as the random disturbance, which
is obviously far from the hazardous actions of engineering structures. Therefore, it is
necessary to explore a logical theory and pertinent methods for the stochastic optimal
control of civil engineering structures which circumvents the dilemma encountered
by the conventional stochastic optimal control theory.

This chapter aims at addressing the theoretical principles relevant to the succeed-
ing chapters in this book. The remaining sections included in this chapter include
the classical stochastic optimal control, the random vibration of structures, and its
advances that underlies the solution methods for controlled stochastic dynamical
systems, the dynamic reliability of structures that underlies the design basis for
probabilistic criteria of stochastic optimal control of structures, and the modeling of
random dynamic excitations that underlies the uncertainty quantification and simula-
tion of hazardous actions of engineering structures. Through integrating the involved
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sections, the principle for the theory and methods of stochastic optimal control of
structures are provided.

2.2 Classical Stochastic Optimal Control

The stochastic optimal control aims at attaining the optimal control law that pro-
motes the stochastic system to an expected state through minimizing a certain cost
function by the celebrated optimal control schemes. It is well recognized that the pio-
neering work on the optimal control theory is the proposal of calculus of variations.
In history, Pierre and Fermat introduced firstly the so-called Fermat’s least action
principle to explore the minimum path of ray propagating through the optical media
in 1662. In 1755, Lagrange introduced the delta calculus, and then Euler proposed
the elementary definition of variation method. In 1930s, the Hamilton–Jacobi equa-
tion was derived in the framework of the variation method owing to Hamilton and
Jacobi’s contributions. Till the mid-twentieth century, the classical variation theory
was completely established. The research of modern optimal control theory began
from the late period of World War II. Its theoretical milestones consist of the maxi-
mum principle proposed by Pontryagin in 1956, the dynamic programming proposed
by Bellman in 1957, the state-space method, and linear filtering theory developed
by Kalman in 1960 (Yong and Zhou 1999). In early of 1960s, owing to the devel-
opments of the stochastic maximum principle (Kushner 1962) and the stochastic
dynamic programming (Florentin 1961), the research of stochastic optimal control
theory was marked as the beginning.

In state space, the equation of motion of a controlled stochastic dynamical system
can be written as

Ż(t) � g[Z(t),U(t),w(t), t], Z(t0) � z0 (2.2.1)

The output equation of the system is given by

Ẑ(t) � h[Z(t),U(t),w(t), t] (2.2.2)

The measure equation of the system is then given by

Y(t) = j[Ẑ(t),n(t),t] (2.2.3)

whereZ(t) is the 2n-dimensional column vector denoting system state; Ẑ(t) is them-
dimensional vector denoting systemoutput;U(t) is the r-dimensional vector denoting
control force; w(t) is the s-dimensional vector denoting random excitations; n(t) is
the m-dimensional vector denoting measurement noise; Y(t) is the m-dimensional
measured vector denoting system state; g(·) is the 2n-dimensional functional vector
denoting system state evolution; h(·), j(·) are the m-dimensional functional vectors
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denoting the output and measurement of systems, respectively, which both rely upon
the number of sensors.

For the ready solution, the external excitation and measurement noise termed in
the classical stochastic optimal control theory are usually assumed to be an additive
delta-correlated process, i.e., white Gaussian noise, which exhibits the properties as
follows:

E[w(t)] � 0, E[w(t)wT(τ )] � W(t)δ(t − τ ) (2.2.4)

E[n(t)] � 0, E[n(t)nT(τ )] � N(t)δ(t − τ ) (2.2.5)

whereW(t),N(t) are s×s,m×m symmetric and semi-positive spectral densitymatri-
ces, respectively; δ(·) denotes the Dirac delta function which exhibits the behaviors
as follows:

δ(t − τ ) �
{
+∞, t � τ

0, t �� τ
(2.2.6)

Since the external excitation and measurement noise are random processes, the
system state and system output are random processes as well. The cost function of
the stochastic optimal control is often defined as the mathematical expectation of
Bolza formulation (Housner et al. 1997), i.e.,

J � E

⎡
⎣φ[Z(t f ), t f ] +

t f∫
t0

L[Z(t),U(t), t]dt

⎤
⎦ (2.2.7)

where E[·] denotes the operator of mathematical expectation; φ[·] is the terminal
cost function; L[·] is the running cost function; t0 is the initial time; t f is the terminal
time; Z(t f ) is the 2n-dimensional vector denoting the system state at the terminal
moment.

It is seen from Eq. (2.2.1) that the state vector Z(t) can be determined uniquely in
the case of the known control force vectorU(t). The cost function Eq. (2.2.7) merely
relies upon the control force vectorU(t). Therefore, the problemof stochastic optimal
control can be viewed as the minimization of the cost function J by seeking for a
certain control force vector U(t) in the available domain. In fact, the minimization
of the cost function J can be implemented using the variation method involving the
dynamical constraint Eq. (2.2.1) (Lanczos 1970; Naidu 2003).

According to the Lagrange multiplier method, the introduction of costate vector
λ(t) ∈ R

n (Rn denotes the n-dimensional Euclidean space) can transfer the problem
of functional extreme value with the abovementioned constraint to a problem of
functional extreme value without constraints. This transfer is completely equivalent
if the state-control equation Eq. (2.2.1) is satisfied in a rigorous condition, i.e.,
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J � E[φ(Z(t f ), t f )] +

t f∫
t0

{
H [Z(t),U(t),λ(t), t] − E[λT(t)Ż(t)]

}
dt (2.2.8)

where H [·] denotes the Hamilton function:

H [Z(t),U(t),λ(t), t] � E[L(Z(t),U(t), t)] + E[λT(t)Ż(t)] (2.2.9)

Performing integration by parts with respect to the system state Ż(t) involved in
Eq. (2.2.8), there is

(2.2.10)

J � E[φ(Z(t f ), t f ) + λT(t0)Z(t0) − λT(t f )Z(t f )]

+

t f∫
t0

{
H [Z(t),U(t),λ(t), t] + E[λ̇

T
(t)Z(t)]

}
dt

Minimizing the cost function, i.e.,

min{J } → δ J � 0, (2.2.11a)

one could have the variation formula of the former three terms in Eq. (2.2.10):

δ
{
E[φ(Z(t f ), t f ) + λT(t0)Z(t0) − λT(t f )Z(t f )]

}

� E

[
∂φ

∂Z

∣∣∣∣
t�t f

− λT(t f )

]
δZ(t f ) (2.2.11b)

In fact, the derivation of Eq. (2.2.11b) utilizes the condition δZ(t0) � 0, i.e., the
differential of state vector is zero in the case of the given initial conditions. The
variation formulation of the fourth term is given by

δ

⎧⎨
⎩

t f∫
t0

{
H [Z(t),U(t),λ(t), t] + E[λ̇

T
(t)Z(t)]

}
dt

⎫⎬
⎭

�
t f∫

t0

{
∂H

∂Z
δZ(t) +

∂H

∂U
δU(t) + E[λ̇

T
(t)]δZ(t)

}
dt (2.2.11c)

Then it yields

δ J � E

[{
∂φ

∂Z

∣∣∣∣
t�t f

− λT(t f )

}]
δZ(t f ) +

t f∫
t0

{
∂H

∂Z
δZ(t) +

∂H

∂U
δU(t) + E[λ̇

T
(t)]δZ(t)

}
dt
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� E

[{
∂φ

∂Z

∣∣∣∣
t�t f

− λT(t f )

}]
δZ(t f ) +

t f∫
t0

{
E

[{
∂H

∂Z
+ λ̇

T
(t)

}]
δZ(t) +

∂H

∂U
δU(t)

}
dt

(2.2.12)

Therefore, the necessary condition for the minimization of the cost function J used in
the variation method is the Pontryagin’s maximum principle (Sperb 1981; Liberzon
2012). Its expression is that if the control forceU∗(t) is referred to as an optimal con-
trol, and the system state Z∗(t) corresponds to the optimal trajectory of the optimal
control, there must be a costate λ∗(t) leading to that under the random excitation
w(t), the control force U∗(t), the system state Z∗(t) and the costate λ∗(t) can simul-
taneously satisfy the conditions as follows:

λ(t f ) �
(

∂φ[Z(t f ), t f ]
∂Z

)T

(2.2.13)

λ̇(t) � −
(

∂H [Z∗(t),U∗(t),λ∗(t), t]
∂Z

)T

(2.2.14)

∂H [Z∗(t),U∗(t),λ∗(t), t]
∂U

� 0 (2.2.15)

Equations (2.2.13), (2.2.14) and (2.2.15) constitute the classical Euler–Lagrange
equation for stochastic optimal control.

In view of Eq. (2.2.9), there is

Ż(t) � ∂H [Z∗(t),U∗(t),λ∗(t), t]
∂λT (2.2.16)

It is noted that Eq. (2.2.14) is so-called costate equation, and Eq. (2.2.16) is so-
called state equation; both form into the Hamilton canonical equations. Integrating
Eqs. (2.2.14), (2.2.15) and (2.2.16), one can derive the functional relation between
the optimal control law and the system state.

Pontryagin’s maximum principle is just the necessary condition other than the
sufficient condition with respect to the existence of the optimal control. The two-
point boundary value problem, consisting of the solution of canonical equations and
the known boundary conditions, is more difficult to be dealt with than the usual
initial value problem. The challenge lies in that some boundary values are given at
the initial moment, while some boundary values are given at the terminal moment,
resulting in neither solving forward nor solving backward. The two-point boundary
value problem thus exhibits the analytical solution merely in very few situations.
Often, a numerical solution by virtue of iteration methods is preferred.

In fact, the functional based conditional extreme-value problem shown in
Eq. (2.2.8) usually involves two kinds of solving procedures (Athans and Falb
1966). One is to construct the stochastic Euler–Lagrange equation, i.e., Eqs. (2.2.13),
(2.2.14) and (2.2.15), according to the Pontryagin’s maximum principle. The other is
to derive the stochastic Hamilton–Jacobi–Bellman (HJB) equation according to the
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Bellman’s optimality principle. The necessary condition of solving the optimal con-
trol from the HJB equation is consistent with the Pontryagin’s maximum principle
(Yong and Zhou 1999).

The essence of the dynamic programming method on solving the HJB equation is
the specification of the idea that one part of the optimal path is optimal as well. As far
as the cost function Eq. (2.2.7) is concerned, the substitution of t0 with t, t ∈ [t0, t f ]
will lead to

J � E

⎡
⎣φ[Z(t f ), t f ] +

t f∫
t

L[Z(τ ),U(τ ), τ ]dτ

⎤
⎦ (2.2.17)

An optimal value function is defined as follows:

(2.2.18)

V [Z∗(t), t] � min {J } � J [Z∗(t),U∗(t), t]

� E

⎡
⎢⎣φ[Z∗(t f ), t f ] −

t∫
t f

L[Z∗(τ ),U∗(τ ), τ ]dτ

⎤
⎥⎦

of which the differential formulation is

dV [Z∗(t), t] � −E
[
L[Z∗(t),U∗(t), t]

]
dt (2.2.19)

If the measurement noise is out of concern, then

dV [Z∗(t), t] � −L[Z∗(t),U∗(t), t]dt (2.2.20)

On the other hand, the total differential formulation of the optimal value function
is written as

dV [Z∗(t), t] � E

[
∂V [Z∗(t), t]

∂t
dt +

∂V [Z∗(t), t]
∂Z

dZ(t) +
1

2
dZT(t)

∂2V [Z∗(t), t]
∂Z2 dZ(t)

]

(2.2.21)

Integrating Eq. (2.2.20) and Eq. (2.2.21), one has

−L[Z∗(t),U∗(t), t]dt � ∂V [Z∗(t), t]
∂t

dt

+ E

[
∂V [Z∗(t), t]

∂Z
dZ(t) +

1

2
dZT(t)

∂2V [Z∗(t), t]
∂Z2

dZ(t)
]

(2.2.22)

Therefore

− ∂V [Z∗(t), t]
∂t

� L[Z∗(t),U∗(t), t] + E

[
∂V [Z∗(t), t]

∂Z
Ż(t) +

1

2
ŻT(t)

∂2V [Z∗(t), t]
∂Z2 Ż(t)

]

(2.2.23)
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and

∂V [Z∗(t), t]
∂t

� −min
U

{
L[Z∗(t),U(t), t] + E

[
∂V [Z∗(t), t]

∂Z
Ż(t) +

1

2
ŻT(t)

∂2V [Z∗(t), t]
∂Z2 Ż(t)

]}

(2.2.24)

Define a Hamilton function

H [Z∗(t),U(t), t] � L[Z∗(t),U(t), t] + E

[
∂V [Z∗(t), t]

∂Z
Ż(t) +

1

2
ŻT(t)

∂2V [Z∗(t), t]
∂Z2 Ż(t)

]

(2.2.25)

then

∂V [Z∗(t), t]
∂t

� −min
U

{
H [Z∗(t),U(t), t]

}
(2.2.26)

Equation (2.2.26) is the so-called Hamilton–Jacobi–Bellman equation (HJB equa-
tion) in the context of randomness.

Solving the control problem by virtue of HJB equation often involves two steps:
first minimizing the right term of Eq. (2.2.26) to obtain the optimal control law; then
in conjunction with the state equation, i.e., Eq. (2.2.1), attaining the control gain and
the associated responses of the controlled system.

For illustrative purposes, a linear controlled stochastic dynamical system in for-
mulation of the Itô-type stochastic calculus is addressed herein:

Ż(t) � AZ(t) + BU(t) + Lw(t) (2.2.27)

where A, B, L are the n × n system matrix, the n × r matrix denoting the location
of control force, and the n × s matrix denoting the location of white Gaussian noise
excitation, respectively.

In the cost function, the terminal function and the Lagrange multiplier are both
defined as a quadratic form

φ[Z(t f ), t f ] � 1

2
ZT(t f )S(t f )Z(t f ) (2.2.28)

L[Z(t),U(t), t] � 1

2

[
ZT(t)QZ(t) + UT(t)RU(t)

]
(2.2.29)

whereS(t f ),Q are the 2n×2n semi-positive and symmetric stateweightingmatrices;
R is the r × r positive and symmetric control force weighting matrix.

SubstitutingEqs. (2.2.28) and (2.2.29) intoEq. (2.2.25), and utilizing the feature of
Itô stochastic differential equation, one can derive the Hamilton function as follows:

H [Z∗(t),U(t), t] � 1

2

(
Z∗TQZ∗ + UTRU

)
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+ E

[
∂V

∂Z

(
AZ∗ + BU + Lw

)
+
1

2

(
AZ∗ + BU + Lw

)T ∂2V

∂Z2

(
AZ∗ + BU + Lw

)]

� 1

2

(
Z∗TQZ∗ + UTRU

)
+

∂V

∂Z

(
AZ∗ + BU

)
+
1

2
Tr

(
∂2V

∂Z2 LWLT

)
(2.2.30)

where Tr(·) denotes the trace of matrix, i.e., XTAX = Tr(AXXT).
The optimal value function is assumed as follows (Li and Chen 2009):

V [Z(t), t] � 1

2
ZT(t)S(t)Z(t) + v(t) (2.2.31)

where v(t) is the correction term of stochastic optimal control against the determin-
istic optimal control.

It is readily seen from Eq. (2.2.31) that the terminal condition of the optimal value
function is

V [Z(t f ), t f ] � 1

2
ZT(t f )S(t f )Z(t f ) (2.2.32)

and

∂V

∂Z
� ZT(t)S(t),

∂2V

∂Z2
� S(t) (2.2.33)

Equation (2.2.26) is then rewritten as

∂V

∂t
� −min

U

1

2

{[
Z∗TQZ∗ + UTRU

]
+2ZTS

[
AZ∗ + BU

]
+ Tr

(
SLWLT

)}
(2.2.34)

Minimization of the right term of Eq. (2.2.34) needs to satisfy the condition
∂H/∂U � 0, then

U(t) � −R−1BTS(t)Z(t) (2.2.35)

Substituting Eqs. (2.2.35) and (2.2.31) into Eq. (2.2.34) yields

∂V

∂t
� 1

2
ZT(t)Ṡ(t)Z(t) + v̇(t)

� −1

2

{[
ZTQZ + ZTSBR−1BTSZ

]
+ 2ZTS

[(
A − BR−1BTS

)
Z
]
+ Tr

(
SLWLT

)}

� −1

2
ZT

[
Q + 2SA − SBR−1BTS

]
Z − 1

2
Tr
(
SLWLT

)
(2.2.36)

In comparison with the coefficient terms in Eq. (2.2.36), there are

Ṡ(t) � −Q − 2SA + SBR−1BTS (2.2.37)
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v̇(t) � −1

2
Tr
(
SLWLT

)
(2.2.38)

It is recognized from Eq. (2.2.37) that owing to the symmetry of S(t), the matrix
product SA is also a symmetric matrix, and there is SA � ATST � ATS, then

Ṡ(t) � −S(t)A − ATS(t) + S(t)BR−1BTS(t) − Q (2.2.39)

It is just the differential Riccati equation in the classical optimal control theory.
Therefore, the optimal value function has the formulation as follows:

V [Z(t), t] � 1

2
ZT(t)S(t)Z(t) +

1

2

t f∫
t

Tr
(
S(τ )LWLT

)
dτ (2.2.40)

In fact, the Euler–Lagrange equation, i.e., Eqs. (2.2.13), (2.2.14) and (2.2.15),
deducted from Pontryagin’s maximum principle also exhibits the solution of optimal
control law.

Substituting the Hamilton function Eq. (2.2.9) into Eq. (2.2.15), and utilizing the
nature of the Itô stochastic differential equation, we have

∂H

∂U
� UT(t)R + λT(t)B � 0 (2.2.41)

then the control law has a formulation as follows:

U(t) � −R−1BTλ(t) (2.2.42)

In conjunction with the costate equation, i.e., Eq. (2.2.14), there is

λ̇(t) � −
(

∂H

∂Z

)T

� −QZ(t) − ATλ(t) (2.2.43)

The costate and state vectors are assumed to have the relation as follows:

λ(t) � P(t)Z(t) (2.2.44)

then the control law is rewritten as

U(t) � −R−1BTP(t)Z(t) (2.2.45)

It is seen that the optimal control law derived from the Pontryagin’s maximum
principle has the same formulation as the optimal control law derived from the
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Bellman’s optimality principle. Further, substituting Eq. (2.2.44) into Eq. (2.2.43),
one has

λ̇(t) � Ṗ(t)Z(t) + P(t)Ż(t) � −[
Q − ATP(t)

]
Z(t) (2.2.46)

In view of the state-control equation; see Eq. (2.2.27), we have

Ṗ(t) � −P(t)A − ATP(t) + P(t)BR−1BTP(t) − Q (2.2.47)

where P(t) is the Riccati matrix. It is noted that Eq. (2.2.47) is so-called the matrix
differential Riccati equation, which is consistent with Eq. (2.2.39).

The abovementioned stochastic optimal control in formulation of the Itô stochastic
differential equation for white Gaussian noise excited systems just refers to as the
classical linear quadratic Gaussian (LQG) control.

2.3 Random Vibration of Structures

2.3.1 Linear Random Vibration

2.3.1.1 Spectral Transfer Matrix Method

A linear stochastic dynamical system is considered as follows:

MẌ(t) + CẊ(t) +KX(t) � F(�, t) (2.3.1)

whereM,C, andK are the n×nmass, damping, and stiffness matrices, respectively;
Ẍ(t), Ẋ(t),X(t) are the n-dimensional column vectors denoting system acceleration,
velocity, and displacement, respectively; F(�, t) is the n-dimensional column vector
denoting random excitations, and � is an n�-dimensional vector denoting random
parameters of system which exhibits the joint probability density function p�(θ).

Defining the n × n unit impulse response function matrices h(t), where the com-
ponent hi j (t) denotes the response of the ith degree in the case that the unit impulse
acts on the jth degree of the system, one can attain the system response h j (t) from
the equation of motion as follows:

Mḧ j (t) + Cḣ j (t) +Kh j (t) � I jδ(�, t) (2.3.2)

where I j � (0, 0, . . . , 0, 1︸ ︷︷ ︸
j

, 0, . . . , 0)T is n-dimensional column vectors denoting the

location of the unit impulse δ(�, t) acting on the jth degree of the system.
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According to the Duhamel integral, the solution of system displacement can be
derived as follows (Lutes and Sarkani 2004):

X(t) �
t∫

0

h(t − τ )F(�, τ )dτ (2.3.3)

Therefore, the mean and the correlation function of the system displacement are
given by, respectively,

μX(t) � E[X(t)] �
t∫

0

h(t − τ )μF(τ )dτ (2.3.4)

RX(t1, t2) � E[X(t1)XT(t2)]

� E

⎧⎪⎨
⎪⎩
⎡
⎣

t1∫
0

h(t1 − τ1)F(�, τ1)dτ1

⎤
⎦
⎡
⎣

t2∫
0

h(t2 − τ2)F(�, τ2)dτ2

⎤
⎦

T
⎫⎪⎬
⎪⎭

�
t1∫

0

t2∫
0

h(t1 − τ1)RF(τ1, τ2)hT(t2 − τ2)dτ1dτ2 (2.3.5)

where μX(t) and RX(t1, t2) are the mean and the correlation function of the random
excitation, respectively.

If the random excitation can be viewed as a stationary process, the steady solution
of the system displacement is a stationary process as well. The associated correlation
function is rewritten as

RX(τ ) �
∞∫

−∞

∞∫
−∞

h(τ1)RF(τ − τ1 − τ2)hT(τ2)dτ1dτ2 (2.3.6)

The steady solution shown in Eq. (2.3.6) can be derived from the perspective of
frequency-domain analysis. In fact, the frequency response transfer function of the
stochastic dynamical system represented by Eq. (2.3.1) is denoted by

H(ω) � (K − ω2M + iωC)−1 (2.3.7)

where i is the imaginary unit, which is defined by its property i =
√−1.

The Fourier transfer of system displacement X(ω) can thus be defined by virtue
of the transitive relation in frequency-domain analysis:

X(ω) � H(ω)F(�, ω) (2.3.8)
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where F(�, ω) is the Fourier transfer of the random excitation.
Assigning the complex conjugate on both sides of Eq. (2.3.8), there is

X∗(ω) � F∗(�, ω)H∗(ω) (2.3.9)

By multiplying Eqs. (2.3.8) and (2.3.9), setting mathematical expectation and taking
limitation with respect to the duration, there is

lim
T→∞

1

2T
E
[
X(ω)X∗(ω)

] � lim
T→∞

1

2T
E
[
H(ω)F(�, ω)F∗(�, ω)H∗(ω)

]
(2.3.10)

This formulation is just the definition of the power spectral density of system dis-
placement (Li and Chen 2009), i.e.,

SX(ω) � lim
T→∞

1

2T
E
[
X(ω)X∗(ω)

]
(2.3.11)

Further, we have

SX(ω) � H(ω)SF(ω)H∗(ω) (2.3.12)

where SF(ω) is the power spectral density of random excitation.
In view of the Wiener–Khintchine theorem (Wiener 1964; Chatfield 1989), the

autocorrelation function of a wide-sense-stationary random process has a spectral
decomposition given by the power spectrum of that process, that is, the mean-square
solution of system displacement can be denoted by

E[X(t)XT(t)] � RX(τ ) � 1

2π

∞∫
−∞

SX(ω) dω (2.3.13)

It is noted that the moment transitive relation of stochastic system is clearly revealed
by Eqs. (2.3.6) and (2.3.12).

2.3.1.2 Modal Superposition Method

In practical applications, the complexity of attaining the analytical solution of the
unit impulse response function h(t) is far more than that of the frequency response
transfer functionH(ω) for a multiple-degree-of-freedom system.Moreover, the solu-
tion procedure of mean-square responses often involves high-dimensional integrals
on the unit impulse response function and on the frequency response transfer func-
tion. The computational cost is unacceptable in most cases. In fact, for the linear
stochastic dynamical system, a workload-reduced way refers to the so-called modal
superposition method. The basic idea is that the original multiple-degree-of-freedom
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stochastic system is decoupled into a series of single-degree-of-freedom stochastic
systems, so as to significantly reduce the computational cost.

According to the principle of the modal superposition method, the equation of
motion of the stochastic dynamical system shown in Eq. (2.3.1) can be rewritten as

M̄Ü(t) + C̄U̇(t) + K̄U(t) � �TF(�, t) (2.3.14)

where M̄ � �TM�, C̄ � �TC�, K̄ � �TK� are the n × n modal mass, modal
damping, and modal stiffness matrices, respectively;U � �TX is the n-dimensional
column vector denoting modal displacement; � � [φ1,φ2, . . . ,φq ] � [φi j ]n×q

(q ≤ n) is the modal matrix.
Assuming that the damping matrix C is a proportional damping matrix,

Eq. (2.3.14) can be then decomposed into q mutually independent single-degree-
of-freedom systems, of which the equation of motion of the jth-order mode is shown
as follows:

ü j (t) + 2ζ jω j u̇ j (t) + ω2
j u j (t) � 1

m̄ j
φT
j F(�, t) � 1

m̄ j

n∑
k�1

φ jk Fk (�, t), j � 1, 2, . . . , q

(2.3.15)

where m̄ j is the jth-order modal mass; ω j is the jth-order modal frequency; ζ j is the
jth-order modal damping ratio.

By means of the Duhamel integral, the componental formulation of the displace-
ment of the linear system in the modal space can be derived as

u j (t) � 1

m̄ j

t∫
0

h j (t − τ )φT
jF(�, τ ) dτ (2.3.16)

where u j (t) is referred to as the jth-order modal displacement.
The displacement solution of the linear system in the original state space is then

given by

X(t) �
q∑
j�1

1

m̄ j

t∫
0

h j (t − τ )φ jφ
T
jF(�, τ ) dτ (2.3.17)

Further, the mean and correlation function of the displacement can be deduced as
follows:

μX(t) � E[X(t)] �
q∑
j�1

1

m̄ j

t∫
0

h j (t − τ )φ jφ
T
jμF(τ ) dτ (2.3.18)
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RX(t1, t2) � E[X(t1)XT(t2)]

� E

⎧⎪⎨
⎪⎩
⎡
⎣ q∑

j�1

1

m̄ j

t1∫
0

h j (t1 − τ1)φ jφ
T
j F(�, τ1)dτ1

⎤
⎦
⎡
⎣ q∑
k�1

1

m̄k

t2∫
0

hk (t2 − τ2)φkφ
T
k F(�, τ2)dτ2

⎤
⎦
T
⎫⎪⎬
⎪⎭

�
q∑
j�1

q∑
k�1

1

m̄ j m̄k

t1∫
0

t2∫
0

h j (t1 − τ1)hk (t2 − τ2)φ jφ
T
jRF(τ1, τ2)φkφ

T
k dτ1dτ2 (2.3.19)

When the steady response of the system can be viewed as a second-order stationary
process, the correlation function can be simplified by

RX(τ ) �
q∑
j�1

q∑
k�1

1

m̄ j m̄k

∞∫
−∞

∞∫
−∞

h j (τ1)hk (τ2)φ jφ
T
jRF(τ − τ1 − τ2)φkφ

T
k dτ1dτ2

�
∞∫

−∞

∞∫
−∞

⎛
⎝ q∑

j�1

1

m̄ j
h j (τ1)φ jφ

T
j

⎞
⎠RF(τ − τ1 − τ2)

( q∑
k�1

1

m̄k
hk (τ2)φkφ

T
k

)
dτ1dτ2

(2.3.20)

In comparison with Eq. (2.3.6), it is readily recognized:

h(t) �
q∑
j�1

1

m̄ j
h j (t)φ jφ

T
j (2.3.21)

Likewisely, the power spectral density of modal displacement of the linear system
can be derived straightforwardly from the power spectral density of the random exci-
tation according to the transfer relation in frequency-domain analysis. The element
of the power spectral density of modal displacement is given by

SUjUk (ω, t) � 1

m̄ j m̄k
H̄∗

j (ω, t)H̄k(ω, t)φT
j SF(ω)φk (2.3.22)

where SF(ω) denotes the power spectral density of the random excitation, which
is assumed to be a second-order stationary process herein; H̄ j (ω, t) denotes the
frequency response transfer function of the jth-order modal system, which is time-
dependent and usually has the formulation as follows:

H̄ j (ω, t) � Hj (ω)

{
1 −

(
cosω

j
d t +

ζ jω j + iω

ω
j
d

sinω j
d t

)
e−(ζ jω j+iω)t

}
� Hj (ω)C j (ω, t)

(2.3.23)

where Hj (ω) � 1/(ω2
j − ω2 + 2iζ jω jω); ω

j
d � ω j

√
1 − ζ 2

j ; C j (ω, t) denotes the

modulation function.
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(a) relation between norm of modulation
    function, frequency and time  

(c) relation between norm of modulation
 function and damping ratio 

(b) sectional curve of norm of modulation 
function at frequency =200 j

Fig. 2.1 Norm of the modulation function

In order to illustrate the time-variant behaviors of the frequency response transfer
function, the relation between the norm of the modulation function C j (ω, t), the
frequency ω, and the time t is addressed. A schematic on their relation is shown in
Fig. 2.1a, where the modal frequency is set as ω j � 2π rad/s, the modal damping
ratio is set as ζ j � 0.05.

Figure 2.1b shows the sectional curve of the norm of the modulation function
at the frequency ω � 200ω j . It is indicated that in the first phase, the frequency
response transfer function exposes a significant time-dependence, which is the so-
called unsteady initial effect. Therefore, the system response remains as a nonsta-
tionary process even in the case that the system is subjected to a stationary excitation.
As the time t → ∞, there exists

∣∣C j (ω, t)
∣∣ → 1, H̄ j (ω, t) → Hj (ω), and the sys-

tem response approaches to a stationary process. Besides, the damping ratio has an
influence on the modulation function as well. It is seen from Fig. 2.1c that along
with the increase of the damping ratio, the fluctuation of the modulation function
declines and approaches 1 in a shorter time interval. For this reason, whether taking
into account the unsteady initial effect of system responses or not depends upon the
system properties and the system quantities of interest.
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In the original state space, the power spectral density of the displacement can
be expressed as a formulation of complete quadratic combination (CQC) as follows
(Der Kiureghian 1981):

SX(ω, t) � �SU(ω, t)�T (2.3.24)

of which the component is

SX j Xk (ω, t) �
q∑

s�1

q∑
r�1

φ js SUsUr (ω, t)φrk

�
q∑

s�1

q∑
r�1

φ js
1

m̄sm̄r
H̄∗

s (ω, t)H̄r (ω, t)φT
s SF(ω)φrφrk (2.3.25)

As to a second-order stationary process, there is a time-independent solution of
the power spectral density when t → ∞; say

SX j Xk (ω) �
q∑

s�1

q∑
r�1

φ js
1

m̄sm̄r
H∗

s (ω)Hr (ω)φ
T
s SF(ω)φrφrk (2.3.26)

Further, the mean-square solution of the displacement can be derived according to
the Wiener–Khintchine theorem:

E[X(t)XT(t)] � 1

2π

∞∫
−∞

SX(ω) dω (2.3.27)

It is indicated that the mean-square solution of stationary response of linear sys-
tems is time-independent under the hypothesis of response duration t → ∞.

When the damping matrix C is a non-proportional damping matrix, the equation
ofmotion of the system transfers to a state equation, and the eigenvector still serves as
the basis for the state space, while the eigenvalue and eigenvector are often complex
in this case. A complex modal analysis is thus required to derive a stationary solution
of the system response (Fang et al. 1991; Zhou et al. 2004).

2.3.1.3 Pseudo-Excitation Method

When the linear system exhibits a high dimension, solving the power spectral density
(PSD) of the system response shown in Eq. (2.3.27) involves a complicated proce-
dure. The pseudo-excitation method (PEM) could be employed to obtain the PSD
solution in an elegant manner (Lin et al. 2001). This method decomposes the solving
procedure into a series of deterministic harmonic analysis through constructing a
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pseudo-harmonic excitation. This treatment can enhance the efficiency of numerical
schemes significantly.

Denoting the PSD of the random excitation F(�, t) as SF(ω), a pseudo-harmonic
excitation F � F̃√

Se
iωt can be readily constructed, where F̃√

S satisfies F̃
√
S · F̃∗√

S
�

SF(ω), i denotes the imaginary unit. Replacing the excitation in Eq. (2.3.14) by the
pseudo-excitation yields

M̄ ¨̃U(t) + C̄ ˙̃U(t) + K̄Ũ(t) � FTF̃√
Se

iωt (2.3.28)

where ¨̃U(t), ˙̃U(t), Ũ(t) are the n-dimensional column vectors denoting the corre-
sponding acceleration, velocity, and displacement to the system subjected to the
pseudo-excitation, respectively.

According to the classical random vibration theory, the stationary solution of
Eq. (2.3.28) can be deduced as

Ũ j (ω, t) � 1

m̄ j
Hj (ω)φ

T
j F̃√

Se
iωt (2.3.29)

The auto-power spectral density of system response is then derived as follows:

SŨ j Ũk
(ω) � Ũ j (ω, t)Ũ ∗

k (ω, t) � 1

m̄ j m̄k
Hj (ω)Hk(ω)φ

T
j F̃√

SF̃
∗√
S
φk

� 1

m̄ j m̄k
Hj (ω)Hk(ω)φ

T
j SF(ω)φk � SUjUk (ω) (2.3.30)

It is shown that in the calculation of spectral density function, the factor of pseudo-
harmonic excitation eiωt is always paired with its complex conjugate e−iωt which are
eventually counteracted by multiplication, revealing the time-independent behaviors
of auto- and cross-power spectral densities of stationary processes.

Further, one can attain the mean-square solution of system responses:

E[U(t)UT(t)] � 1

2π

∞∫
−∞

SU(ω) dω (2.3.31)

Projecting the generalized coordinate space onto the original coordinate space, then

E[X(t)XT(t)] � �E[U(t)UT(t)]�T � 1

2π

∞∫
−∞

�SU(ω)�T dω (2.3.32)
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In the procedure of time-domain analysis using the pseudo-excitation method,
the frequency-domain partition of the power spectral density of random excitation
SF(ω) is a critical step. The number of partition points, however, often arises up to
hundreds and even thousands, which results in a same-scale workload to the Fourier
transfer. Therefore, it cannot be accepted if all the partition points are included in
the calculation.

Although the uniform partition strategy can reduce the frequency point number
to hundreds or tens through increasing the frequency distance (spectral interval), the
equivalence between the original power spectral density and the sample-based power
spectral density would seriously lose. In order to attain a good trade-off between
accuracy and efficiency of the pseudo-excitation method, a weighted frequency-
domain partition method is used, i.e., defining a spectral window function as follows:

W (ωn) �

⎧⎪⎪⎨
⎪⎪⎩

1, ωn ∈ [ω1, ωk]
1, ωn ∈ (ωk, ωc), n � (k + 1) + αN < c, N � 0, 1, 2, . . .
0, ωn ∈ (ωk, ωc), n �� (k + 1) + αN < c, N � 0, 1, 2, . . .
1, ωn � ωc

(2.3.33)

It is indicated inEq. (2.3.33) that in the frequency intervalwith frequency components
less than or equal to the critical frequency ωk , the spectral densities exhibit larger
values and are all included in the calculation, while in the frequency interval with
frequency components larger than the critical frequency ωk and less than the trun-
cated frequency ωc, the spectral densities are utilized through spacing α frequency
components.

Figure 2.2 shows the power spectral density and the pertinent spectral window
function of a random excitation associated with specified parameters: the spacing
number α � 10, the truncated frequency point c � 1201. If the error between
the original and the reconstructed power spectral densities is set to 1%, the point
of the critical frequency is defined at k � 96. The introduction of this frequency
point-reduced technique leads to that just 208 frequency points from the total 1201
points are required. The root-mean-square errors of the original and reconstructed
power spectral densities and of the original and reconstructed random excitations are
0.2‰ and 0.3‰, respectively. It is thus revealed that merely using one-sixth of the
frequency points can attain a satisfactory result by virtue of the weight-based point
selection strategy.

Besides, from the perspective of the harmonic function in terms of random fre-
quency and random phase, it can be proved that the simulated process exhibits an
accurate power spectral density as the objective when the random frequency and
random phase both follow the uniform distribution, and the random amplitude is
positively proportional to the square root of power spectral density. A physical inter-
pretation of the pseudo-excitation method is thus further noted that just traversing
the frequency interval, the power spectral density of system response can be ready
to be attained by virtue of the amplitudes of system responses under the random
mono-harmonic excitation (Chen et al. 2011). It is indicated that only half of the
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Fig. 2.2 Power spectral
density and pertinent spectral
window function of random
excitation
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computational cost on the pseudo-excitation method is really required to gain the
power spectral density of structural responses.

2.3.2 Nonlinear Random Vibration

Without loss of generality, a nonlinear stochastic dynamical system is investigated,
of which the equation of motion is given by

MẌ(t) + f(X(t), Ẋ(t)) � F(�, t) (2.3.34)

where f(·) is the n-dimensional column vector denoting nonlinear internal force.
The nonlinear internal force is assumed to be denoted by a polynomial function

of velocity and displacement. In fact, this is a weak hypothesis, and a large family
of dynamical systems can be represented by the formulation, such as the Duffing
oscillator with nonlinear stiffness force and the van der Pol oscillator with coupling
nonlinearities between stiffness and damping forces. The componental form of the
equation is then written as

n∑
i�1

m ji ẍi (t) +
n∑

i�1

q∑
k�0

α j i,k ẋ
q−k
i (t)xki (t) � Fj (�, t) (2.3.35)

where j � 1, 2, . . . , n, m ji denotes the element of mass matrix; ẍi (t), ẋi (t), xi (t)
denote the acceleration, velocity, and displacement pertaining to the i th component,
respectively; q denotes the highest order of the polynomial function of the internal
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force; α j i,k denotes the coefficient of the polynomial function. As the highest order
q is set as 1, Eq. (2.3.35) is reduced to a linear formulation:

n∑
i�1

m ji ẍi (t) +
n∑

i�1

α j i,0 ẋi (t) +
n∑

i�1

α j i,1xi (t) � Fj (�, t) (2.3.36)

where α j i,0, α j i,1 denote the coefficients relevant to damping force and the restoring
force, respectively.

2.3.2.1 Polynomial Chaos Expansion

The solution of Eq. (2.3.35) can be represented by a truncated polynomial chaos
expansion (PCE) (Ghanem and Spanos 1991), i.e.,

xi (t) �
P∑

l�0

xil (t)
l(ξ) (2.3.37)

where ξ is the M-dimensional row vector of Gaussian random variables; P denotes
the highest order of the polynomial chaos expansion; 
l(ξ) denotes the polynomial
chaos with parameter of Gaussian random variables; xil (t) denotes the deterministic
coefficient pertaining to the polynomial chaoswhich is often referred to as the random
mode.

Substituting Eq. (2.3.37) into Eq. (2.3.35), then yields

n∑
i�1

P∑
l�0

m ji ẍil (t)
l(ξ) +
n∑

i�1

q∑
k�0

α j i,k

(
P∑

l�0

ẋil (t)
l(ξ)

)q−k( P∑
l�0

xil (t)
l(ξ)

)k

�
P∑

l�0

Fjl (t)
l(ξ) (2.3.38)

Introducing a Galerkin projection technique (Ghanem and Spanos 1991), the poly-
nomial chaos arises to pairwise orthogonal with respect to Gaussian measure, i.e.,

〈

i
 j

〉 � 〈

2

i

〉
δi j (2.3.39)

where 〈·〉 denotes the inner product; δi j denotes the Kronecker delta function with
two variables, which is 1 if the variables are equal, and 0 otherwise:

δi j �
{
1, i � j
0, i �� j

(2.3.40)

Equation (2.3.38) is thus discretized into an equation set:
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n∑
i�1

m ji ẍim(t) +
n∑

i�1

q∑
k�0

P∑
l1�0

· · ·
P∑

lq−k�0

P∑
lq−k+1�0

· · ·
P∑

lq�0

cl1···lq−k lq−k+1···lqm〈

2

m

〉
α j i,k ẋil1 (t) · · · ẋilq−k (t)xilq−k+1 (t) · · · xilq (t) � Fjm(t)

(2.3.41)

where cl1···lq−k lq−k+1···lqm � 〈

l1 · · · 
lq−k
lq−k+1 · · · 
lq
m

〉
, m � 0, 1, 2, . . . , P . The

coefficient cl1···lq−k lq−k+1···lqm and
〈

2

m

〉
can be derived from a multiple-dimensional

integral (Ghanem and Spanos 1991).
It is seen that the solution of Eq. (2.3.35) can be gained through solving the deter-

ministic nonlinear equation set shown inEq. (2.3.41) in conjunctionwithEq. (2.3.37).
Therefore, the standard schemes for solving the nonlinear equations can be readily
employed. As to the n-dimensional stochastic dynamical system, the number of non-
linear equations is n(P + 1).

Further, themean-square response of the stochastic dynamical system is presented
as follows:

E[x2i (t)] �
P∑

k�0

P∑
l�0

xik(t)xil(t)E[
k(ξ)
l(ξ)] (2.3.42)

It is indicated that the introduction of the PCE leads to that the solution of the
pertinent complex stochastic system relies on the solving of a deterministic non-
linear equation set. The numerical procedure is definitive and simple. However, an
eye-catching problem is that the number of expansion terms (P +1) will increase dra-
matically along with the dimension of random vector M and the expansion order p.
Specifically, when a white noise-driven nonlinear system is investigated, the number
of expansion terms is usually unacceptable (in this case, the dimension of random
vectorM will be up to hundreds). In fact, the number of expansion terms, the dimen-
sion of random vector, and the expansion order have the functional relation as follows
(Debusschere et al. 2004):

P + 1 � (p + M)!

p!M!
(2.3.43)

In order to reduce the computational cost, a family of adaptive polynomial chaos
expansions has beenproposed in recent years (Li andGhanem1998; Peng et al. 2010).
The benefit of the adaptive polynomial chaos expansions lies in the significant term-
number reduction of polynomial expansion through choosing the former random
variables with larger contribution to system responses and considering the high-order
modes of these randomvariables. These randomvariables are picked out according to
their ranks in all the random parameters of the polynomial chaos expansion in terms
of the maximum displacement norm or the maximum phase norm both in function of
displacement and velocity. The adaptive polynomial chaos expansion on the solution
of stochastic dynamical system; i.e., Eq. (2.3.37), can be written as
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Table 2.1 Term number of adaptive polynomial chaos expansion

Order of
expansion

K � 2 K � 4 K � 12 K � 24

p � 1 25 25 25 25

p � 3 32 55 467 2,925

p � 5 43 146 6,200 118,750

p � 7 58 350 50,400 2,629,575

x(t) � x̄(t) +
K∑
i�1

xi (t)
i (ξ) +
M∑

i�K+1

xi (t)
i (ξ) +
N∑

l�M+1

xl (t)
l(ξi |Ki�1), N ≤ P

(2.3.44)

where x̄(t) denotes the zero-order term, corresponding to the mean of the solution;
K denotes the number of the former random variables involving high-order random
modes; M denotes the total number of the random variables; N denotes the term
number of the adaptive polynomial chaos expansion.

It is seen from Eq. (2.3.44) that the right second and third parts of the expansion
denote the first-order terms, corresponding to the variance of the solution; the fourth
part of the expansion denotes the high-order terms.

Table 2.1 shows the term number of the adaptive polynomial chaos expansion
changing with the number of random variable with high-order modes, and the order
of expansion. It is seen that using the adaptive polynomial chaos expansion, the
higher the expansion order, the more remarkable the term number is reduced, and
the computational cost declines significantly. The term number of the seventh-order
polynomial expansion reaches up to 2 million by the original polynomial chaos
expansion.

It is revealed as well that the solving of the adaptive polynomial chaos expansion
needs to initially assume the first K random variables with larger contribution to the
system response, and consider the high-order random modes of these variables into
the equation set Eq. (2.3.41). The coefficients pertaining to the first-order polynomial
chaos are then attained by solving the equation set. In the following step, the ranking
of theM random variables is carried out in terms of themaximum displacement norm
or the maximum phase norm. The first K random variables are picked out with high-
order random modes. The coefficients pertaining to the second-order polynomial
chaos at the second moment are gained. Likewise, until all the coefficients of the
polynomial chaos in high-order expansion are solved.

2.3.2.2 Statistical Linearization Technique

An alternative method for random vibration analysis of nonlinear systems is the
statistical linearization technique (Roberts and Spanos 1990). This method exhibits
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a hypothesis that the structural response is viewed as a stationary Gaussian process,
thereby the equivalence between the linearized system and the original nonlinear
system is attained by minimizing their differences in the sense of mean square.
The random vibration analysis of nonlinear systems can then be carried out by the
pertinent theory and methods to the random vibration of linear systems.

Therefore, the nonlinear multiple-degree-of-freedom system, shown in
Eq. (2.3.34), can be substituted by a linearized system with equation of motion
as follows:

MẌ(t) + CeqẊ(t) +KeqX(t) � F(�, t) (2.3.45)

where Ceq,Keq are the n × n equivalent damping and equivalent stiffness matrices,
respectively.

Comparing Eqs. (2.3.34) and (2.3.45), and assuming that the linearized system
and the original system have a same response, one can define the error vector between
the internal forces of the two systems as follows:

e � f(X(t), Ẋ(t)) − CeqẊ(t) − KeqX(t) (2.3.46)

Minimization of the covariance matrix of the error vector, i.e.,

∂E[eeT]
∂Ceq

� 0 (2.3.47a)

∂E[eeT]
∂Keq

� 0 (2.3.47b)

yields the basic equations:

CeqE[ẊẊ
T
] +KeqE[XẊ

T
] � E[f(X, Ẋ)ẊT] (2.3.48a)

CeqE[ẊX
T
] +KeqE[XXT] � E[f(X, Ẋ)XT] (2.3.48b)

Given the joint probability density functions for solving the mathematical expec-
tation of responses, shown in Eqs. (2.3.48a) and (2.3.48b), the equivalent damping
and equivalent stiffness matrices can be readily attained. This treatment, however,
often refers to an iteration procedure, as shown in Fig. 2.3, where the tolerant error
can be set as the difference of response vectors or as the norm of the difference of
mean-square response vectors between the sequential steps.

As to a single-degree-of-freedom system, the basic equations with respect to the
equivalent damping and equivalent stiffness matrices are given as follows:

CeqE[Ẋ
2] + KeqE[X Ẋ ] � E[ f (X, Ẋ )Ẋ ] (2.3.49a)
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Fig. 2.3 Flowchart of
statistical linearization
technique
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CeqE[Ẋ X ] + KeqE[X
2] � E[ f (X, Ẋ )X ] (2.3.49b)

thereby the solutions are derived as

ceq � E[ f (X, Ẋ )Ẋ ]E[X2] − E[ f (X, Ẋ )X ]E[X Ẋ ]

E[Ẋ2]E[X2] − E2[X Ẋ ]
(2.3.50a)

keq � E[ f (X, Ẋ )X ]E[Ẋ2] − E[ f (X, Ẋ )Ẋ ]E[X Ẋ ]

E[Ẋ2]E[X2] − E2[X Ẋ ]
(2.3.50b)

It is seen that the equivalent damping and equivalent stiffness matrices are both time-
dependent if the system response is a nonstationary random process. In this case, the
equivalent linearized system constructed by the statistical linearization technique is
a time-dependent system, and the separation principle pertinent with system state
estimation and control law design is not suitable for the classical linear quadratic
Gaussian (LQG) control (Wonham 1968).

Moreover, the system velocity and displacement responses exhibit a certain
orthogonality when the steady response of systems gives rise to stationary random
processes, i.e., E[X Ẋ ] � 0. Equations (2.3.50a) and (2.3.50b) can thus be simplified
to be

ceq � E[ f (X, Ẋ )Ẋ ]E[X2]

E[Ẋ2]E[X2]
(2.3.51a)
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keq � E[ f (X, Ẋ )X ]E[Ẋ2]

E[Ẋ2]E[X2]
(2.3.51b)

2.3.2.3 Fokker–Planck–Kolmogorov Equation

The mean-square solution of system response under random vibration just includes
the former two-order moments information of stochastic dynamical systems, which
is insufficient to represent the stochastic response as a complete probabilistic density
function, especially for the nonlinear system, of which the probabilistic distribution
is distinguished from the normal distribution. Therefore, seeking for the probability
density of stochastic dynamical system has received extensive attention. Owing to
the contributions from Fokker, Planck, and Kolmogorov, the probability density
evolution equation related to random excitations were established in 1930s. This
is the celebrated Fokker–Planck–Kolmogorov equation, i.e., FPK equation, in the
classical random vibration theory.

Considering a randomprocessZ(t), one has the Itô stochastic differential equation
as follows:

dZ(t) � A(Z, t)dt + B(Z, t)dw(t) (2.3.52)

As for a random function f (Z) in terms of random process Z(t), the Taylor series
expansion is given by

d f (Z) �
m∑
i�1

∂ f

∂zi
dzi +

1

2

m∑
i�1

m∑
j�1

∂2 f

∂zi ∂z j
dzidz j + · · ·

�
m∑
i�1

∂ f

∂zi

⎡
⎣Aidt +

r∑
k�1

Bikdwk (t)

⎤
⎦ +

1

2

m∑
i�1

m∑
j�1

⎡
⎣ ∂2 f

∂zi ∂z j

r∑
k�1

Bikdwk (t)
r∑

s�1

B jsdws(t)

⎤
⎦ + · · ·

(2.3.53)

Taking mathematical expectation on both sides of Eq. (2.3.53), and utilizing the
product E[(dw(t))2] � Wdt, the Taylor series expansion has a truncated formulation
with respect to dt:

E[d f (Z)] � E

⎧⎨
⎩
⎡
⎣ m∑

i�1

Ai
∂ f

∂zi
+
1

2

m∑
i�1

m∑
j�1

(BWBT)i j
∂2 f

∂zi∂z j

⎤
⎦dt

⎫⎬
⎭ (2.3.54)

whereW(t) is the s× s symmetric, and semi-positive spectral density matrix, shown
in Eq. (2.2.4). It is noted as well E[dwk(t)] � 0.

Noting the conditional probability density of Z(t) as pZ(z, t |z0, t0), the derivative
of left side of Eq. (2.3.54) is given by
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dE[d f (Z)]
dt

� d

dt

∞∫
−∞

f (z)pZ(z, t |z0, t0)dz �
∞∫

−∞
f (z)

∂pZ(z, t |z0, t0)
∂t

dz (2.3.55)

Meanwhile, the derivative of right side of Eq. (2.3.54) is given by

E

⎧⎨
⎩

m∑
i�1

∂ f

∂zi
Ai +

1

2

m∑
i�1

m∑
j�1

(BWBT)i j
∂2 f

∂zi∂z j

⎫⎬
⎭

�
∞∫

−∞

⎛
⎝ m∑

i�1

Ai (z, t)
∂ f (z)
∂zi

+
1

2

m∑
i�1

m∑
j�1

(B(z, t)WBT(z, t))i j
∂2 f (z)
∂zi∂z j

⎞
⎠pZ(z, t |z0, t0)dz

(2.3.56)

Taking integration by parts, and noting that

Ai (z, t) f (z)pZ(z, t |z0, t0)
∣∣
zi→±∞ � 0 (2.3.57a)

B(z, t)WBT(z, t)
∂ f (z)
∂zi

pZ(z, t |z0, t0)
∣∣
zi→±∞ � 0 (2.3.57b)

f (z)
∂{B(z, t)WBT(z, t)pZ(z, t |z0, t0)}

∂zi

∣∣
zi→±∞ � 0 (2.3.57c)

Equation (2.3.56) is then transformed into

E

⎧⎨
⎩

m∑
i�1

Ai
∂ f

∂zi
+
1

2

m∑
i�1

m∑
j�1

(BWBT)i j
∂2 f

∂zi ∂z j

⎫⎬
⎭

�
∞∫

−∞
f (z)

⎛
⎝−

m∑
i�1

∂Ai (z, t)pZ( z, t |z0, t0)
∂zi

+
1

2

m∑
i�1

m∑
j�1

∂2{(B(z, t)WBT(z, t))i j pZ( z, t |z0, t0)}
∂zi ∂z j

⎞
⎠dz

(2.3.58)

Comparing Eq. (2.3.55) and Eq. (2.3.58), there is

∂pZ( z, t |z0, t0)
∂t

� −
m∑
i�1

∂Ai (z, t)pZ( z, t |z0, t0)
∂zi

+
1

2

m∑
i�1

m∑
j�1

∂2{(B(z, t)WBT(z, t))i j pZ( z, t |z0, t0)}
∂zi ∂z j

(2.3.59)

This equation is the so-called Fokker–Planck–Kolmogorov equation (FPK equation).
A family of particular nonlinear single-degree-of-freedom systems can be solved

byvirtue ofEq. (2.3.59).However, for themulti-degree-of-freedomsystemespecially
involved in the civil engineering, the solution of FPK equation is extremely difficult
to be attained.
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2.3.3 Generalized Probability Density Evolution Equation

Without loss of generality, a stochastic dynamical systemunder the randomexcitation
can be represented by

Ż(t) = g[Z(t),F(�, t),t], Z(t0) = z0 (2.3.60)

where F(·) is a column vector denoting the nonstationary and non-Gaussian random
excitation; � is a random parameter vector denoting the randomness inherent in the
excitation.

As to the quantity of interest such as the system state or the control force ZT �
{Zi }mi�1, the formal solution can be given by

Z(t) � H(�,Z0, t) (2.3.61)

where H is an m-dimensional column vector denoting arithmetic operator.
It is indicated in Eq. (2.3.61) that the randomness inherent in the random process

Z(t) is completely represented by the random parameter vector �. In view of the
probability preservation principle, the augmented system consisting of the quantity of
interest and the random parameter vector, i.e., (Z(t),�), thus sustains a preservative
probability, that is

D

Dt

∫
�t×��

pZ�(z, θ, t) dzdθ � 0 (2.3.62)

where pZ�(z, θ, t) denotes the joint probability density function of the augmented
system (Z(t),�); �t denotes the time domain; �� denotes the sample domain of
random parameter vector �; D(·)/Dt denotes the total derivative.

Extending Eq. (2.3.62), we have (Li and Chen 2009)

D

Dt

∫
�t×��

pZ�(z, θ, t) dzdθ

� D

Dt

∫
�t0×��

pZ�(z, θ, t)|J |dzdθ

�
∫

�t0×��

(
|J |DpZ�

Dt
+ pZ�

D|J |
Dt

)
dzdθ

�
∫

�t0×��

⎧⎨
⎩|J |

⎛
⎝∂pZ�

∂t
+

m∑
j�1

Ż j
∂pZ�

∂z j

⎞
⎠ + |J |pZ�

m∑
j�1

∂ Ż j

∂z j

⎫⎬
⎭dzdθ



52 2 Theoretical Principles

�
∫

�t0×��

⎛
⎝∂pZ�

∂t
+

m∑
j�1

Ż j
∂pZ�

∂z j

⎞
⎠|J |dzdθ

�
∫

�t×��

⎛
⎝∂pZ�

∂t
+

m∑
j�1

Ż j
∂pZ�

∂z j

⎞
⎠dzdθ (2.3.63)

where |J | denotes the Jacobian determinant of the joint probability density function
pZ�(z, θ, t).

Substituting Eq. (2.3.63) into Eq. (2.3.62) and noting the arbitrary characteristics
on the integral domain �t × ��, one has

∂pZ�(z, θ, t)
∂t

+
m∑
j�1

Ż j (θ, t)
∂pZ�(z, θ, t)

∂z j
� 0 (2.3.64)

where Ż j (θ, t) denotes the velocity of Z j (t) at the condition of the sample {� � θ},
i.e., Ż j (θ, t) � ∂Hj (θ, t)/∂t .

Equation (2.3.64) is the so-called generalized probability density evolution equa-
tion (GDEE) (Li and Chen 2004a, b, 2008), of which the initial condition is given
by

pZ�(z, θ, t)|t�0� δ(z − z0)p�(θ) (2.3.65)

where z0 denotes the deterministic initial value of Z(t); δ(·) denotes the Dirac delta
function.

Solving the initial value problem of partial differential equation, see Eqs. (2.3.64)
and (2.3.65), we can derive the joint probability density function pZ�(z, θ, t), and
further gain the marginal probability density function of the quantity of interest:

pZ(z, t) �
∫

��

pZ�(z, θ, t) dθ (2.3.66)

In general cases, the analytical solution of probability density function pZ(z, t)
is hardly to be derived. The introduction of numerical schemes is a practical choice.
In view of the information propagation, a collection of representative points is first
selected from the sample space of random variables. The probability density function
of structural responses can be then obtained by virtue of the deterministic analysis
and the finite difference method. The numerical procedure is detailed as follows (Li
and Chen 2008):
Step 1: Partition of probability-assigned space �� of random variables and deriving
the representative points θq ’s, q � 1,2, . . . , nres, where nres denotes the number of
the representative points.
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Step 2: Assigning sample value to the random variable, i.e.,� � θq , and substituting
them into Eq. (2.3.60), the numerical solution of the motion equation and its velocity
derivation Ż j (θq , tm) can be gained. Herein, tm � mt, m � 0,1,2, . . ., denotes the
time step.
Step 3: Integrating the solutions of all representative points θq :⇒ θ, and substi-
tuting their velocity derivations into the generalized probability density evolution
equation Eq. (2.3.64), the solution of the partial deferential equation pZ�(z ji , θq , tk)
is obtained utilizing the finite difference method, where z ji � z j0 + iz j , i �
0, ± 1, ± 2, . . ., z j denotes the spatial step; tk � kt̂, k � 0,1,2, . . ., t̂ denotes
the time step.
Step 4: Integral of Eq. (2.3.66), then

pZ(z ji , tk) �
nres∑
q�1

pZ�(z ji , θq , tk)Sq (2.3.67)

where Sq denotes the area measure of the sub-domain represented by the represen-
tative point θq .

The methods for the selection of representative points employed in Step 1 refer
to a series of schemes such as the dimension-reduction mapping method (Li and
Chen 2006b), tangent spheres method (Chen and Li 2008), and the number theoretic
method (Li and Chen 2007). The dynamic analysis involved in Step 2 just resorts to as
the conventional deterministic analysis. Step 3 is carried out using a finite difference
method (Li and Chen 2006a; Thomas 1995).

It is seen from Eq. (2.3.64) that the dimension m of the generalized probability
density evolution equationmerely relies upon the physical quantity of interest, which
is independent on the dimension n of the stochastic dynamical system, as shown in
Eq. (2.3.60), while the classical probability density evolution equations, such as
the Liouville equation (Gardiner 1983), the Fokker–Planck–Kolmogorov equation
(Kolmogorov 1931), and the Dostupov–Pugachev equation (Dostupov and Pugachev
1957), all have the same dimension as the stochastic system. This situation results in
an extreme difficulty of solving the problem. In contrary, the generalized probability
density evolution equation is a decoupled equation, and can be straightforwardly
reduced into a one-dimensional version:

∂pZ�(z, θ, t)
∂t

+ Ż j (θ, t)
∂pZ�(z, θ, t)

∂z j
� 0 (2.3.68)

Therefore, the physical quantities of concern can be explored individually.
The numerical schemementioned in this section for solving the generalized proba-

bility density evolution equation is an implementing means of the probability density
evolution method (PDEM).
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2.3.4 Historic Notes

It is generally recognized that the random vibration discipline originates from the
research and application of stochastic dynamics that involves two logical clues (Li
and Chen 2009). Einstein first explored the Brownian motion from a phenomeno-
logical perspective using the random process theory in 1905 (Einstein 1905), which
was later developed by Fokker (Fokker 1914), Planck (Planck 1917), and mathe-
matized by Kolmogorov (Kolmogorov 1931) that formed into the associated theory
and methods with the FPK equation. From an almost coinstantaneous physical per-
spective, Langevin investigated the motion of a Brownian particle by the Newtonian
equation (Langevin 1908), which was later developed by Wiener (Wiener 1923), Itô
(Itô 1942) and Stratonovich (Stratonovich 1963) that underlined the formulation and
solution schemes of the stochastic differential equation. Although the probabilistic
description of structural vibration was pioneered in Rayleigh’s investigation on the
random flight in the early of twentieth century (Rayleigh 1919), the random vibration
theory was widely applied in the engineering fields and gradually became to a new
discipline until the middle of twentieth century. Since then, it has gained extensive
progress from the primary linear random vibration analysis such as the random vibra-
tion with initial random conditions, the random vibration simultaneously involving
the randomness inherent in external excitations and in structural parameters, to the
nonlinear random vibration analysis (Crandall 1958; Crandall and Mark 1963; Lin
1967; Nigam 1983; Roberts and Spanos 1990; Lin and Cai 1995; Lutes and Sarkani
2004; Li and Chen 2009).

As to the classical linear random vibration analysis, an elegant theoretical for-
mula and the pertinent numerical schemes have been formed by virtue of the statis-
tical relation between the input and the output in temporal and frequency domains
(Crandall 1958), e.g., the spectral transfer matrix method (Lutes and Sarkani 2004),
the modal superposition method such as the complete quadratic combination (CQC)
(Der Kiureghian 1981; Der Kiureghian and Neuenhofer 1992), the pseudo-excitation
method (Lin et al. 2001; Li et al. 2004). However, the principle of superposition is
not suitable for the nonlinear system. The temporal and frequency-domain meth-
ods prevailing in the linear random vibration analysis cannot deal with the problem
of essentially nonlinear random vibrations. The classical Markov process method
accommodates a few specific nonlinear systems but encounters the challenge as well
in dealing with the general multi-degree-of-freedom and multidimensional systems.
It is thus a preferable choice of deriving the approximate solution or the accurate
stationary solution for the nonlinear random vibration analysis. In the past over
50 years, a collection of methods for nonlinear random vibration analysis were pro-
posed, e.g., the statistical linearization technique (Caughey 1963) and the moment
closure method (Stratonovich 1963) suitable for the weakly nonlinear systems; the
extended statistical linearization technique (Beaman and Hedrick 1981), the equiva-
lent nonlinear equation (Caughey 1986), and theMonte Carlo simulation (Shinozuka
1972) suitable for the strongly nonlinear systems. Meanwhile, the attempt of clas-
sical stochastic structure theory to the application of random vibration analysis was
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carried out. For instance, the perturbation expansion method was applied to deal with
the random vibration analysis of low-order systems (Crandall 1963); the orthogonal
function expansion was applied to deal with the random vibration analysis of white
noise-driven Duffing oscillatory systems (Orabi and Ahmadi 1987); the polynomial
chaos expansion was applied to deal with the random vibration analysis of stationary
excitation-driven Duffing systems (Li and Ghanem 1998). One might realize that the
mentioned methods cannot solve the problem of nonlinear random vibration of high-
dimensional structural systems, not even to gain the complete probability density.
In theory, the FPK equation is the most rigorous and most elegant method for the
nonlinear random vibration analysis. As far as steady solution of stochastic dynam-
ical systems is concerned, the method for solving high-dimensional FPK equation
in Hamiltonian framework attained systematic progress since 1990s (Soize 1994;
Zhu and Huang 1999; Er 2011). However, when the unsteady solution of stochastic
dynamical systems is concerned, the computational complexity will increase expo-
nentially with the dimension of systems. In this case, the solution is still hard to be
derived even employing efficiently numerical schemes and advanced computational
platforms. In recent years, the dimension reduction of FPK equation has been paid
extensive attention (Chen and Yuan 2014; Chen and Rui 2018).

The probability density evolution method (PDEM) with the kernel generalized
probability density evolution equation (GDEE) provided an efficient means for solv-
ing the stochastic dynamical system from a physical perspective. This method has
been applied into the stochastic response analysis and reliability assessment of gen-
eral nonlinear stochastic systems (Li and Chen 2004a, b, 2005, 2006a; Chen and Li
2005; Li and Chen 2008). The progress underlies the development of the physically
based stochastic optimal control of structures.

2.4 Dynamic Reliability of Structures

The primary goal of structural analysis aims at the performance-based design and
control of structures. If the random factors involved in the basic physical background
are concerned, the logical manner of structural analysis is to carry out the reliability-
based structural design and control.

As regards the assessment of dynamic reliability of structures as the first-passage
failure criterion, the primary methods include the level-crossing process theory, the
diffusion process theory and the probability density evolution method. Two families
of criteria are usually applied in the probability density evolution method, i.e.,
the absorbing boundary condition criterion and the equivalent extreme-value event
criterion. Herein, the level-crossing process theory and the equivalent extreme-value
event criterion-based probability density evolution method are introduced since the
two methods are both widely used in practice.
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Fig. 2.4 Schematic of the
level-crossing process theory
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2.4.1 Level-Crossing Process Theory

The level-crossing process theory originated from Rice’s researches on the digital
noise process in 1940s (Rice 1944, 1945). As to the b-level-crossing process, shown
in Fig. 2.4, the probability of occurring once upward level-crossing during the time
interval t < τ � t + t is given by

Pr
{
N+(t + t) − N+(t) � 1

}
� Pr{X (t + t) > b, X (t) < b}
� Pr

{
X (t) + Ẋ (t)t > b, X (t) < b

}
(2.4.1)

where N+(t) denotes the total number of upward level-crossing during the time
interval [0, t]; N+ � N+(t + t) − N+(t) denotes the number of upward level-
crossing during the time interval t < τ � t + t ; b denotes the threshold level.

The joint probability density function of random response processes X (t), Ẋ (t) is
denoted by pX Ẋ (x, ẋ, t). The probability of Eq. (2.4.1) can be derived by the integral
of the joint probability density function pX Ẋ (x, ẋ, t) over the domain (x + ẋt >

b, x < b). One has

Pr
{
N+ � 1

} � Pr
{
X (t) + Ẋ (t)t > b, X (t) < b

}
�

∫
x+ẋt>b,x<b

pX Ẋ (x, ẋ, t)dxdẋ

�
∫

x>b−ẋt,x<b

pX Ẋ (x, ẋ, t)dxdẋ

�
∞∫
0

dẋ

b∫
b−ẋt

pX Ẋ (x, ẋ, t)dx
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� t

∞∫
0

ẋ pX Ẋ (b, ẋ, t)dẋ + o(t) (2.4.2)

Herein a formulation of the mean value theorem for integrals is applied:

b∫
b−ẋt

pX Ẋ (x, ẋ, t)dx � pX Ẋ (x̃, ẋ, t)[ẋt] � ẋ pX Ẋ (b, ẋ, t)t + o(t) (2.4.3)

where x̃ ∈ [b − ẋt, b], and o(t) denotes the infinitesimal of higher order with
respect to t .

It is revealed in Eq. (2.4.3) that the probability of a level-crossing event in the
time interval t is proportional to t , and the longer the time interval t arises, the
larger of the possibility a level-crossing event occurs. Therefore, the probability of
an upward level-crossing event in the unit time is given by

α+
b (t) � lim

t→0

Pr{N+ � 1}
t

� lim
t→0

Pr
{
X (t) + Ẋ (t)t > b, X (t) < b

}
t

�
∞∫
0

ẋ pX Ẋ (b, ẋ, t)dẋ (2.4.4a)

Similarly, the probability of occurring a downward level-crossing event in the unit
time is given by

α−
b (t) � lim

t→0

Pr
{
N− � 1

}
t

� lim
t→0

Pr
{
X (t) + Ẋ (t)t < b, X (t) > b

}
t

� lim
t→0

1

t

0∫
−∞

dẋ

b−ẋt∫
b

pX Ẋ (x, ẋ, t) dx

�
0∫

−∞
−ẋ pX Ẋ (b, ẋ, t) dẋ

�
0∫

−∞
|ẋ |pX Ẋ (b, ẋ, t) dẋ (2.4.4b)

Equations (2.4.4a) and (2.4.4b) are the celebrated Rice formulae. Meanwhile, it
is revealed in Eqs. (2.4.2) and (2.4.4a) that

Pr
{
N+ � 1

} � α+
b (t)t + o(t) (2.4.5)
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i.e., the probability of occurring an upward level-crossing event in the time interval
t is α+(t)t , which is a small quantity with a same order as t .

If there occur two upward level-crossing events in the time intervalt : one occurs
in the time interval t < τ1 � t +t1; the other occurs in the time interval t +t1 <

τ2 � t +t , and meanwhile, the two upward level-crossing events are independent,
one has

Pr
{
N+ � 2

} � [α+
b (τ1)t1] · [α+

b (τ2)t2] � 1

4
α+
b (τ1)α

+
b (τ2)(t)2 � o(t)

(2.4.6)

Therefore, the probability of occurring two upward level-crossing events is the
infinitesimal of higher order with respect to t , which can be ignored safely in
comparison with the probability of occurring one upward level-crossing event. Sim-
ilarly, the probability of occurring three and more upward level-crossing events
Pr{N+ � 3} is the infinitesimal of higher order with respect to t as well. There
thus is

Pr
{
N+ � 2

} � o(t) (2.4.7)

Since
∞∑
i�0

Pr{N+ � i} � 1, there is

Pr
{
N+ � 0

} � 1 − Pr
{
N+ � 1

} −
∞∑
i�2

Pr
{
N+ � i

}

� 1 − α+
b (t)t + o(t) (2.4.8)

Integrating Eqs. (2.4.6), (2.4.7) and (2.4.8), one can recognize that the level-
crossing event in the time interval t follows the Bernoulli distribution, i.e., 0–1
distribution, owing to the fact that the level-crossing event either occurs resulting
in the structural damage or does not occur at all. Therefore, the mean of occurring
level-crossing events is calculated by

E[N+] � Pr
{
N+ � 0

} × 0 + Pr
{
N+ � 1

} × 1

� Pr
{
N+ � 1

}
� α+

b (t)t + o(t) (2.4.9)

which is denoted in formulation of the unit time as follows:

lim
t→0

E[N+]

t
� lim

t→0

Pr{N+ � 1}
t

� α+
b (t) (2.4.10)

It is indicated that α+
b (t) not only denotes the probability of occurring one upward

level-crossing event in the unit time, but also denotes the mean of occurring one
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upward level-crossing event in the unit time. The two symbols α+
b (t), α

−
0 (t) are thus

both termed as the expected level-crossing rate or the averaged level-crossing rate.
If the random process X (t) is assumed to be a stationary Gaussian process with

zero mean, the expected level-crossing rate can be derived as a specified solution
from Eqs. (2.4.4a) and (2.4.4b):

α+
b (t) � α−

b (t) � 1

2π

σẊ

σX
exp

(
− b2

2σ 2
X

)
(2.4.11)

When the threshold level b � 0, the expected level-crossing rate can be further
denoted by

α+
0 (t) � α−

0 (t) � 1

2π

σẊ

σX
(2.4.12)

where σX , σẊ denote the standard deviations of the random process X (t) and its
velocity argument Ẋ (t), respectively.

Therefore, the critical step on the dynamic reliability assessment of structures by
virtue of the level-crossing process theory is to derive the expected level-crossing
rate according to the second-order statistics of random processes. The reliability of
structural damage as the first-passage failure criterion is then derived by Eq. (2.4.13):

R(t) � L0 exp

⎛
⎝−

t∫
0

λ(τ )dτ

⎞
⎠ (2.4.13)

where L0 � R(0) denotes the dynamic reliability of structures at the initial instant of
time; λ(τ ) denotes the risk-rate function which has a relation with the expected level-
crossing rate α+

b (t) in: (i) the single-wall relevant case, λ(t) � α+
b (t); (ii) the double-

wall relevant case, λ(t) � α+
b (t) + α−

−b(t); (iii) the circle-wall relevant case, λ(t) �
α+
b

[
1 − exp(−α+

b,A/α
+
b )
]
. In these symbols, the superscript “+” denotes upward level-

crossing, the superscript “-” denotes downward level-crossing, the subscripts “b” and
“-b” denote the thresholds of upward and downward level-crossings, respectively,
and α+

b,A denotes the expected level-crossing rate of envelop processes.

2.4.2 Equivalent Extreme–Value Event Criterion

As indicated in the level-crossing process theory, the dynamic reliability assess-
ment still remains the situation utilizing the second-order statistics of structural
responses, i.e., moment-based reliability methods, owing to the limitation of the
classical random vibration theory. The critical step of the classical dynamic relia-
bility analysis relies upon the Rice formulae (Rice 1944, 1945), thereby the relation
between the expected level-crossing rate and the variance of structural responses
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can be readily derived in terms of the Gaussian stationarity assumption of struc-
tural responses. The functional relation between dynamic reliability and response
variance is then established. In this transform, however, the assumption of Gaussian
stationarity of structural responses and the assumption of Poisson (Coleman 1959)
or Markov (Chandiramani 1964) behaviors of the level-crossing events often fail for
the non-Gaussian noise-driven stochastic systems. Moreover, the system reliability
or even global reliability considered from the component reliability would result
in extremely complicated issues due to the relevance among failure modes and the
curse of dimensionality. Following the solving procedure, however, of classical sys-
tem reliability methods such as the Cornell boundmethod (Cornell 1967), the narrow
bound method (Ditlevsen 1979), and the branch and bound method (Murotsu et al.
1984) tends to be trapped in relevance analysis.

Toward the perspective of the physical stochastic system, however, one might
recognize that solving the system reliability along the nonlinearity development of
structural systems not only bypasses the relevance analysis, also gains the solution
of system reliability of structures straightforwardly. An elegant scheme, entitled as
equivalent extreme-value event criterion, was proposed in recent years that includes
the relevance information with respect to the complicated failure events represented
by the segmented or partitioned limit state functions (Li et al. 2007). This progress
shows that by virtue of the equivalent extreme-value event criterion, the system reli-
ability of structures can be readily solved utilizing the probability density evolution
method.

The definition of dynamic reliability of structures is given by

R(T ) � Pr{X (�, t) ∈ �s, 0 ≤ t ≤ T } (2.4.14)

where Pr{·} denotes the probability of random event; X (�, t) denotes the random
event; �s denotes the safe domain.

The dynamic reliability assessment of structures involves the relevance analysis
of various random variables. Assuming that the structural system relies upon two
dependent random variables X1, X2, and their joint probability density function is
denoted by pX1X2(x1, x2), one has the failure probability of the structural system as
follows:

Pr{(X1 > a) ∩ (X2 > a)} � Pr{Xmin > a} (2.4.15)

Pr{(X1 > a) ∪ (X2 > a)} � Pr{Xmax > a} (2.4.16)

where Xmin � min{X1, X2}, Xmax � max{X1, X2}.
For the extended cases, X is an n × m matrix of random variables, and there is

Pr

{
n∪

i�1

(
m∩
j

(
Xi j > a

))} � Pr
{
Xeq > a

}
(2.4.17)
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where Xeq(�, t) � max
1≤i≤n

{
min

1≤ j≤m

(
Xi j

)}
, and Xeq > a denotes the equivalent

extreme-value event of failure random event
n∪

i�1

(
m∩
j

(
Xi j > a

))
.

It is indicated in Eq. (2.4.17) that the equivalent extreme-value event criterion
reveals a fact that the various complicated failure events can be integrated into a
simple extreme-value event, where all the relevances among these random events are
included.

The dynamic reliability of structures can be derived from the integral of proba-
bility density function of extreme-value variables of structural responses, thereby an
extreme-value variable is defined:

Weq(�, T ) � ext
t∈[0,T ](Xeq(�, t)) (2.4.18)

and a pseudo-random process is introduced:

Z (τ ) � ϕ(Weq(�, T ), τ ) (2.4.19)

Z (τ )|τ�τ0� 0, Z (τ )|τ�τc� Weq(�, T ) (2.4.20)

Thereotically, the functional formulation of the pseudo-random process ϕ(·) can
be arbitrary only if the initial condition, shown in Eq. (2.4.20), is satisfied. A simple
function such as Z (τ ) � W (�, T )τ/τc can be utilized; and more robust formulation
refers to the function Z (τ ) � W (�, T ) sin(ω̄τ/τc), where the frequency argument
can be set as ω̄ � 0.5π, 2.5π, . . . , (2n + 0.5)π .

It is ready to understand that the state quantity Z (τ ) and the random parameter �

constitute a conservative system. According to the probability preservation principle
of random events, the generalized probability density evolution question with respect
to the state quantity Z (τ ) can be readily presented as follows:

∂pZ�(z, θ, τ )

∂τ
+ ϕ̇(Weq(θ, T ), τ )

∂pZ�(z, θ, τ )

∂z
� 0 (2.4.21)

where τ denotes the generalized time. The corresponding initial condition is given
by

pZ�(z, θ, τ0) � δ(z − z0)p�(θ) (2.4.22)

Using the numerical procedure shown in Sect. 2.3.3, the probability density func-
tion of extreme-value variable of system quantity Z (τ ) can be readily attained. There-
fore, the dynamic reliability of structures in the provided time length T is given by

R(T ) � Pr
{
Weq(�, T ) ∈ �s

} �
∫
�s

PZ (z, τc) dz (2.4.23)
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Fig. 2.5 Cumulative
distribution functions
(CDFs) of extreme-value and
equivalent extreme-value
(EEV) interstory drifts

Displacement (cm)
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

EEV

8th

7th

6th
1st

5th

4th
2nd
3rd

Threshold

C
D

F
where PZ (z, τc) denotes the probability density of the pseudo-random process Z (τ )
at the time instant τ � τc.

Figure 2.5 shows cumulative distribution functions (CDFs) of extreme-value and
equivalent extreme-value interstory drifts of a randomly base-excited eight-story
frame structure with hysteretic components. The structural parameters are listed as
follows: m1 � m2 � 1.0 × 105 kg, m3 � m4 � 0.9 × 105 kg, m5 � m6 � 0.9 ×
105 kg, m7 � m8 � 0.8 × 105 kg; k1 � k2 � 36 kN/mm, k3 � k4 � 32 kN/mm,
k5 � k6 � 32 kN/mm, k7 � k8 � 28 kN/mm; the heights of the interstories are
all 4.0 m. Rayleigh’s damping C � aM + bK is employed, where M, K denote
mass and stiffness matrices, respectively, a � 0.01, b � 0.005. The damping ratio of
the first vibrational mode is 1.05%. An extended Bouc–Wen model for describing
the behaviors of hysteretic components of the structure is employed; see Appendix
A. Parameters of the extended Bouc–Wen model are valued by α � 0.01, A �
1.0, β � 140.0, γ � 20.0, n � 1.0, δv � 0.002, δη � 0.001, q � 0.25, ζs �
0.95, p � 2000, ψ � 0.2, δψ � 0.005, λ � 0.1, respectively. A threshold of
interstory drift 8 cm is marked as well which distinguishes the boundary of the safe
domain�s . It is readily seen that the reliability of the top interstory drift is maximum
since the corresponding curve of cumulative distribution function mostly lies in the
safe domain and is far from the threshold. Meanwhile, the reliability of the third
interstory drift is minimum since the corresponding curve of cumulative distribution
function mostly approaches to the threshold except the equivalent extreme-value
(EEV) interstory drift. It is seen as well that as far as the interstory drift is concerned,
all the component reliabilities are larger than the system reliability. This result is
different from that of systems meeting with the weakest chain assumption where
the system reliability defined by Eq. (2.4.17) accurately equals the reliability of
the weakest component. In fact, the seismic structure is not only a spatial system
but also a temporal system, which exhibits complex failure correlated modes. The
failure modes of structural components are not completely correlated as a series
system. The classical weakest chain assumption thus does not remain herein. In
summary, the definition of equivalent extreme-value event and its integration with
PDEM, without any assumptions, provide a feasible means for accurately solving
the system reliability of engineering structures.
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2.5 Modeling of Random Dynamic Excitations

Performance-based design and control of structures not only relies upon the struc-
tural model and the computational method but also relies upon the rationality of the
modeling of random dynamic excitations of structures. Classical random process
theory usually employs the power spectral density to describe the random excita-
tions, such as the Kanai–Tajimi spectrum (Kanai 1957; Tajimi 1960) used in the
earthquake engineering community, the Davenport spectrum (Davenport 1961) used
in the wind engineering community, and the Pierson–Moskowitz spectrum (Pierson
and Moskowiz 1964) used in the marine engineering community. One might recog-
nize that the power spectral density denotes the second-order statistics of station-
ary processes in essence, which hardly reveals, however, the complete probabilistic
information of original random processes. Moreover, the measure on the power spec-
tral density of random excitations cannot be accurately delivered to the stochastic
response through nonlinear structural systems, not mentioned to carry out the logical
control of structural performance. However, a family of physically motivated ran-
dom excitation models has been developed in recent years by exploring the physical
mechanism of engineering excitations (Li 2006; 2008). For illustrative purposes, the
modeling of random seismic ground motion and of spatial fluctuating wind-velocity
field are investigated herein, and the pertinent theory and methods are introduced.

2.5.1 Random Seismic Ground Motion

It is well understood that the behaviors of seismic ground motions rely upon a series
of critical factors such as the faultmechanism, propagationmedium, and properties of
the local site (Boore 2003). Due to the uncontrollability of these factors, the observed
seismic ground motion arises to have a significant randomness. An efficient means
for exploring the seismic wave and its propagation is to establish a wave equation
with boundary conditions in conjunction with the seismic source motion (Aki and
Richards 1980).

2.5.1.1 Spectral Transfer Function

Assuming that the propagation medium is homogenous, elastic, and time-
independent, the one-dimensional seismic ground motion field is governed by a
wave equation as follows (Wang and Li 2011):

n∑
j�0

m∑
k�0

a jk
∂ j+k

∂x j∂t k
u(x, t) � 0 (2.5.1)
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where a jk is a medium-relevant parameter; u(x, t) denotes the wave displacement of
seismic ground motion. The initial and boundary conditions are given by

u(0, t) � u0(t),
∂ i u(x, t)

∂t i

∣∣∣∣
t→0

� 0,
∂ i u(x, t)

∂t i

∣∣∣∣
t→+∞

� 0, i � 0, 1, . . . , n

(2.5.2)

By virtue of the Fourier transform, the partial differential equation shown in
Eq. (2.5.1) can be transformed into an ordinary differential equation, of which the
solution has a formulation as follows:

U (x, ω) �
n∑
j�0

b j (ω) exp(−ik j (ω)x) (2.5.3)

where k j (ω) is the eigenvalue of wave displacement, which relies upon the propaga-
tion medium; b j (ω) denotes the synthetic effect of seismic source and propagation
path.

Inverse Fourier transform on the wave displacement U (x, ω), yields

u(x, t) � 1

2π

n∑
j�0

∞∫
−∞

Bj (ω, x) exp[iω(t − x

c j (ω)
)]dω (2.5.4)

where c j (ω) � ω/Re[k j (ω)]; Re[·] denotes real component.
Equation (2.5.4) can be further expanded as

u(x, t) � 1

2π

∞∫
−∞

A(b0(ω), . . . , bn(ω); k0(ω), . . . , kn(ω);ω, x)

· cos[ωt + �(b0(ω), . . . , bn(ω); k0(ω), . . . , kn(ω);ω, x)]dω (2.5.5)

It is indicated that the seismic ground motion field can be represented as a for-
mulation of superposition harmonics, of which the amplitude and phase both are
influenced by the boundary condition and the characteristics of propagation medium.

Assuming that the specific engineering site is far from the seismic source and
the fault develops extensively fast, the dislocation process of seismic source can be
viewed as irrelevance with the behaviors of the propagation path of seismic wave.
Meanwhile, the scale of the local engineering site is far less than that of the prop-
agation path of seismic wave, and the frequency scatter effect of local site on the
seismic ground motion can be ignored safely. The amplitude spectrum A(ω, x) and
the phase angle�(ω, x) in Eq. (2.5.5) can be thus written in a separation formulation
(Wang and Li 2011):
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u(x, t) � 1

2π

∞∫
−∞

As (α1, . . . , αs, ω)HAp(β1, . . . , βh, ω, x)HAs (γ1, . . . , γl , ω)

· cos[ωt + �s (α1, . . . , αs, ω) + HΦp(β1, . . . , βh, ω, x) + HΦs (γ1, . . . , γl , ω)] dω
(2.5.6)

where As(·) denotes the amplitude spectrum of seismic source displacement; HAp(·)
denotes the amplitude spectrum transfer function of propagation path; HAs(·) denotes
the amplitude spectrum transfer function of local site; �s(·) denotes the phase spec-
trum of seismic source displacement; H�p(·) denotes the phase spectrum transfer
function of propagation path; HΦs(·) denotes the phase spectrum transfer function
of local site; αi , βi , γi denote the physical parameters associated with the seismic
source model, the propagation path model and the local site model, respectively.

Equation (2.5.6) is the so-called Fourier spectrum transfer function of seismic
ground motions, which reveals the physical law governing the behaviors of seismic
ground motions. Considering the randomness inherent in the seismic source, the
propagation path and the local site, a physically motivated model of random seismic
ground motion can be represented as follows (Wang and Li 2011):

a(R, t) � ü(R, t) � − 1

2π

∞∫
−∞

ω2As(αE , ω)HAp(βE , ω, R)HAs(γE , ω)

· cos[ωt + �s(αE , ω) + H�p(βE , ω, R) + H�s(γE , ω)] dω
(2.5.7)

where αE � (α1, . . . , αs) is a s-dimensional vector of random parameters denoting
the randomness inherent in seismic source; βE � (β1, . . . , βh) is a h-dimensional
vector of random parameters denoting the randomness inherent in propagation path;
γE � (γ1, . . . , γl ) is a l-dimensional vector of random parameters denoting the
randomness inherent in local site randomness; R is the separation between seismic
source and the local site, which is a constant.

2.5.1.2 Seismic Source Model

Seismic sourcemodels in seismology aremainly classified into the kinematic models
and dynamic models (Aki and Richards 1980). The former describes the kinematic
characteristics of seismic source and focuses on themodeling of motion amplitude of
seismic source. The latter describes the dynamic characteristics of seismic source and
focuses on the modeling of dislocation and dynamic development of seismic source.
The kinematic model of seismic source is widely used in the earthquake engineer-
ing community. The most celebrated spectral models pertaining to the kinematics
of seismic source are the ω−3 model based on the Haskell rectangular dislocation
mechanism of seismic source (Haskell 1964, 1966), the ω−2 model based on the
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Haskell rectangular dislocation mechanism of seismic source (Aki 1967), and the
Brune source model based on the Brune circle dislocation mechanism of seismic
source (Brune 1970). Among these models, the Brune source model has the bene-
fits of less parameters and solid physical background, in which the fault surface is
assumed to be circular and the dislocation distributes uniformly on the fault surface,
and the shear stress wave caused by the shear stress drop propagates perpendicular
to the dislocation surface. The Fourier amplitude spectrum and the Fourier phase
spectrum on the Brune source model are thus denoted as follows (Brune 1970):

As(αE , ω) � A0

ω

√
ω2 +

(
1
τ

)2 , �s(αE , ω) � arctan

(
1

ωτ

)
(2.5.8)

where αE � (A0, τ ) denotes the random vector of physical parameters relevant to
the seismic source; A0 denotes the amplitude parameter which is a random variable
pertaining to intensity of seismic source; τ denotes the source parameter which is a
random variable pertaining to the characteristics of seismic source.

2.5.1.3 Propagation Path Effect

Physical factors influencing the amplitude and phase of seismic waves propagating
in the earth medium are mainly the geometric spreading, reflection, and refraction at
the surfaces between the layers and the attenuation caused by internal friction in the
medium (Aki and Richards 1980). The geometric spreading effect just contributes to
the amplitude of seismic waves other than the shape of the amplitude spectrum. Since
the statistical modeling involves a scale normalization on the real records of seismic
ground motion, the geometric spreading effect originated from the propagation path
can be ignored safely. Meanwhile, the influence of propagation path on the shape of
the amplitude spectrum of seismic waves mainly comes from the attenuation effect
of medium damping. The amplitude spectrum transfer function is thus written by

HAp(ω, R) � exp(−K Rω) (2.5.9)

where K is a parameter denoting the attenuation effect of medium damping.
The influence of the propagation path on the phase arises to be complicated, which

is caused by the reflection and refraction at the layer surfaces, and the attenuation
effect of medium damping. The associated frequency scatter effect can be hardly
represented by a general expression. Herein an empirical relation between wave
number and frequency is utilized to denote the transfer function of phase spectrum
(Wang and Li 2011):

HΦp(ω, R) � −Rd ln

[
(a + 0.5)ω + b +

1

4c
sin(2cω)

]
(2.5.10)
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where a, b, c, and d are empirical parameters which are defined by the realistic
relation between wave number and frequency.

2.5.1.4 Local Site Effect

The local engineering site exhibits a sound filtering effect on the seismic wave prop-
agating from the bedrock. Therefore, the local site effect is largely independent of
the propagation path effect. A logical means is to separate the two effects from the
modeling of seismic ground motion.

The local site is usually modeled as an equivalent single-degree-of-freedom
(SDOF) system (Kanai 1957). The transfer function relevant to the filtering effect of
local site is then given by

HAs(γE , ω) �
√

1 + 4ζ 2
g (ω/ωg)2

[1 − (ω/ωg)2]2 + 4ζ 2
g (ω/ωg)2

(2.5.11)

Since the geometric scale of the local site is far smaller than that of the propagation
path, a straightforward spreading effect of seismic waves is considered. Assuming
that the influence of the local site on the phase variation is small and can be ignored
safely, there is

H�s(ω) � 0 (2.5.12)

where γE � (ζg, ωg) denotes the random vector relevant to the local site; ζg denotes
the equivalent damping ratio of local site; ωg denotes the equivalent circular fre-
quency.

According to the Fourier spectrum transfer function of the random seis-
mic ground motion shown in Eq. (2.5.7), and the pertaining components, i.e.,
Eqs. (2.5.8)–(2.5.12), a complete stochastic functionmodel of seismic groundmotion
is derived as follows:

aR(t) � − 1

2π

∞∫
−∞

AR(ξE , ω) cos[ωt + �R(ξE , ω)] dω (2.5.13)

AR(ξE , ω) � A0ωe−KωR√
ω2 + (1/τ)2

·
√

1 + 4ζ 2
g (ω/ωg)2

[1 − (ω/ωg)2]2 + 4ζ 2
g (ω/ωg)2

(2.5.14)

ΦR(ξE , ω) � arctan

(
1

ωτ

)
− Rd ln

[
(a + 0.5)ω + b +

1

4c
sin(2cω)

]
(2.5.15)

where ξE � (αE , βE , γE ) � (A0, τ, ζg, ωg) is the vector of random parameters
pertaining to the seismic wave propagation from the seismic source to the local site.
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A superposition scheme of narrowband harmonics is introduced (Wong and Tri-
funac 1979), and a collection of seismic ground motion samples can be simulated.
Utilizing the acceleration records of strong seismic ground motions collected from
the NGA database of the Pacific Earthquake Engineering Research Center (PEER
NGA Database), the identification and modeling of random parameters are carried
out. These acceleration records are selected as the following rules: (i) the moment
magnitude of earthquakes is not less than 4; (ii) the peak ground acceleration is not
less than 0.35g. Total 4,438 acceleration records are selected. In order to retain the
consistency on the data processing, all the records are scaled to a same peak ground
acceleration 0.1g, of which the time interval of sampling is scaled to 0.02 s and the
upper bound of frequency is set as 25 Hz.

Figures 2.6 and 2.7 show the statistical histograms of the amplitude parameter A0

and the source parameter τ . It is readily seen that both the two random parameters
approximately follow the log-normal distribution:

f (x) � 1√
2πσ x

e− (ln x−μ)2

2σ2 , x ≥ 0 (2.5.16)
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where μ and σ denote the mean and standard deviation of the normal distribution,
respectively.

By virtue of the maximum likelihood estimation, the probability density function
of random parameters can be readily obtained: the mean and standard deviation of
the amplitude parameter A0 are−1.2712g and 0.8267g, respectively, and the relevant
significance level is 0.05; and mean and standard deviation of the source parameter τ
are −1.2403 s/rad and 1.3436 s/rad, respectively, and the relevant significance level
is 0.05 as well.

According to the Chinese Code for Seismic Design of Building Structures
(GB50011-2010), the acceleration records of seismic ground motions are grouped
in terms of the height of overlying strata and the equivalent shear velocity of site
soil. The record numbers corresponding to the site classes I, II, III, and IV are 652,
3047, 671, and 68, respectively. For illustrative purposes, the statistical histograms
of equivalent damping ratio ζg and equivalent circular frequency ωg pertaining to
site class II are provided; see Figs. 2.8 and 2.9. It is seen that both the two parameters
approximately follow the Gamma distribution:

f (x ; k, θ ) � xk−1 e−x/θ

θ k�(k)
, x ≥ 0 (2.5.17)
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Fig. 2.10 Seismic ground motion with means of random parameters pertaining to site class II

where k denotes the shape parameter; 1/θ denotes the scale parameter; �(·) denotes
Gamma function �(k) �

∞∫
0
(t k−1/et ) dt .

Similarly, the probability density functions of random parameters are identified
using the maximum likelihood estimation: the shape parameter and scale parameter
of the equivalent damping ratio of local site are 5.1326 and 0.08, respectively, and the
significance level is 0.05; the shape parameter and scale parameter of the equivalent
circular frequency of local site are 2.2415 and 7.4136 rad/s, respectively, and the
significance level is 0.05 as well.

Utilizing the superposition scheme of narrowband harmonics, the simulation of
random seismic ground motion is carried out. Figure 2.10 shows the seismic ground
acceleration with the means of random parameters pertaining to site class II. It is
revealed that the seismic ground acceleration exhibits a remarkable nonstationarity.

Further, the number theoreticmethod is employed to perform the partition of high-
dimensional probability-assigned space spanned by the physical random parameters
(Li and Chen 2009). A total of 309 samples of seismic groundmotions are simulated.
For validating purposes, the simulation of random seismic ground motion on the site
class II in Shanghai is carried out and the peak ground acceleration of frequently
occurring seismic ground motions is set as 0.035g according to the Chinese code
(GB50011-2010). Figure 2.11 shows the mean response spectrum of simulated ran-
dom seismic ground acceleration, the mean response spectrum of recorded seismic
ground acceleration, and the design response spectrum provided in the code. It is
seen that the simulated random seismic ground acceleration shows a consistency
with the recorded seismic ground acceleration and the design provisions in the sense
of mean.

2.5.2 Fluctuating Wind-Velocity Field

In the wind engineering community, the investigation of wind field mainly focuses
on the modeling of fluctuating wind velocity and spatial coherence analysis. The
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fluctuating wind velocity at an arbitrary spatial point j can be represented as its
relevance with the reference point i:

u j
(
ξW , t

) � Re

⎛
⎝√

T

Fs∫
0

|Fi (αW , f )|eiϕi(βW , f )+φi j(γW , f )d f

⎞
⎠ (2.5.18)

where ξW � (αW , βW , γW ) is the vector of random parameters pertaining to the
fluctuatingwind-velocity field; T denotes the time length of wind-velocity processes;
Fs denotes the upper bound of the sampling frequency f ; |Fi (αW , f )| denotes the
amplitude spectrum of the Fourier expansion which describes the energy distribution
of fluctuating wind-velocity processes at the reference point i; ϕi

(
βW , f

)
denotes

the phase spectrum of the Fourier expansion which governs the shape of fluctuating
wind-velocity processes at the reference point i. The relation between the shapes of
fluctuating wind-velocity processes at spatial points i and j can be represented by the
phase-delay spectrum φi j

(
γW , f

)
. Therefore, integrating the Fourier amplitude

spectrum, the Fourier phase spectrum and the phase-delay spectrum, a complete
modeling of spatial wind-velocity field can be implemented.

2.5.2.1 Modeling of Fourier Amplitude Spectrum

Atmosphere flows in the nature almost exist in the form of turbulence (Monin and
Yaglom 1971). Atmosphere turbulence can be viewed as the consisting of a series of
eddies with diverse scales. The largest eddy is directly resulted from the instability or
the boundary condition of the main flow. The large-scale eddies are broken into the
small-scale eddies, and the small-scale eddies then are broken into less-scale eddies.
Moreover, the large-scale eddies gain the kinetic energy from the interaction between
turbulence and main flow, and then progressively transfer the energy to small-scale
eddies. The kinetic energy eventually dissipates at the less-scale eddies due to viscous
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effects of flows. This is the so-called energy cascade process of atmosphere turbu-
lence. In this process, the small-scale eddies which exhibit high frequencies and
large wave numbers eventually attain to a certain statistical equilibrium state. This
equilibrium state does not rely upon the external conditions that motivate atmosphere
turbulence, but forms into the so-called local homogeneous isotropic turbulence.

According to the Navier–Stokes equation, the dynamic equation of arguments
relevant to the fluctuating velocity at the two spatial points of homogeneous shear
turbulence is given by

∂Qi, j

∂t
+

(
2Qi, j + ξ

∂Qi, j

∂ξ

)
∂Ui

∂x j
� Si, j + 2ν

∂2Qi, j

∂ξ 2
(2.5.19)

where Qi, j denotes the velocity-difference tensor between spatial points i and j;
Si,i denotes the three-order velocity tensor; ξ denotes the position-difference tensor
between the spatial points i and j; ν denotes the coefficient of kinematic viscosity of
flow.

Introducing the Fourier transform, the velocity-relevant equation shown in
Eq. (2.5.19) can be transferred into the energy-spectrum equation:

ε � 2ν

k∫
0

k2E(k)dk −
k∫

0

F(k)dk − dUi

dx j

∞∫
k

ζ (k)dk (2.5.20)

where ε � −uiu jdUi/dx j denotes the total turbulence production deduced from
the main flow, which can be viewed as the total dissipation of the turbulence;
2ν

∫ k
0 k2E(k)dk denotes the viscous dissipation of turbulence in the wave number

range [0, k]; − ∫ k
0 F(k)dk denotes the transfer term of turbulence energy from the

small-wave-number eddies to the large-wave-number eddies in the range (0, k];
−dUi/dx j

∫∞
k ζ (k)dk denotes the turbulence production in the wave number range

(k, ∞).
When the wave number range is considered as 0 < k < kc, in which kc denotes

the cutoff wave number, the eddy amount involved in the main flow has a same order
as that involved in the turbulence, and the interaction between the turbulence and the
main flow occupies a leading position in comparison with the viscous dissipation
and eddy transfer. The right former two terms of Eq. (2.5.20) can be ignored safely,
and the solution has the formulation as follows:

E(k) � 1

α′
ε

dUi
dx j

k−1 (2.5.21)

where α′ denotes a constant.
When the wave number range is considered as kc ≤ k � kd , in which kd denotes

the wave number of energy-dissipation-scale eddies, the eddy amount involved in the
main flow is far less than that involved in the turbulence, and the interaction between
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Fig. 2.12 Schematic of
relevance between energy
spectrum and multiscale
eddies in turbulence

Power ‘-1’ 

Power ‘-5/3’ 

le
li

En
er

gy
 A

m
pl

itu
de

 (l
og

) 

Wave Number (log)

kl kc ku

the turbulence and the main flow is very small. The right third term of Eq. (2.5.20)
can be ignored safely, and the solution is then given by

E(k) �
(

8

9α′′

)2/3

ε2/3k−5/3 (2.5.22)

where α′′ denotes a constant.
Therefore, the energy spectrumof atmosphere turbulence can be divided into three

sub-domains with different physical meanings according to energy transfer process
of atmosphere flow (Kaimal and Finnigan 1994). It is shown in Fig. 2.12 that the
energy-containing sub-domain with wave number range kl ≤ k < kc corresponds to
an energy-spectrum distribution submitted to the rule of power “−1” with respect to
the wave number k, in which the eddies gain the energy from the main flow so as to
yield turbulent kinetic energy. The inertial sub-domain with wave number range kc ≤
k < ku corresponds to an energy-spectrum distribution submitted to the rule of power
“−5/3” with respect to the wave number k, in which the turbulent kinetic energy
remains unchanged and is just transferred from the large-scale eddies to the small-
scale eddies. The energy-dissipation sub-domain conformswith awave number range
ku ≤ k < ∞, in which the turbulent kinetic energy dissipates to internal energy due
to the viscosity inherent in the flow. In the civil engineering community, the former
two sub-domains are of concern since they occupy a majority of turbulent energy
and cover the predominant frequencies of most engineering structures.

On this basis, the stochastic Fourier amplitude spectrum is proposed as follows
(Li et al. 2012):
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|F(αW , k)| �
{√

α1
u∗(U 10,z0)
(κzkc)1/3

k−1/2 (kl < k < kc)√
α1

u∗(U 10,z0)
(κz)1/3 k−5/6 (k ≥ kc)

(2.5.23)

where αW = (U 10, z0) is the vector of random parameters pertaining to stochas-
tic Fourier amplitude spectrum; α1 denotes the Kolmogorov constant pertaining to
the one-dimensional turbulent energy spectrum; kl denotes the lower bound of the
wave number; kc denotes the cutoff wave number between the energy-containing
sub-domain and the inertial sub-domain; κ denotes the von Karman constant; u∗(·)
denotes the shear wave velocity, u∗ � U 10κ/ ln(10/z0); z denotes the spatial height.

In view of the theoretical framework of the physical stochastic system, the ele-
mentary random variables in the stochastic Fourier amplitude spectrum merely are
related to two basic parameters, i.e., the mean wind velocityU 10 in the time interval
10min at the standard height 10m, and the surface roughness length z0 that describes
the characterizes of the local site of wind-field measurement.

For validating purposes, the elementary random variables in the stochastic Fourier
amplitude spectrum are identified utilizing the wind data collected at a certain bridge
in Hongkong. The wind-velocity indicators locate at the heights 30 m and 50 m
separated from the water surface, of which the sampling frequency is set as 4 Hz. The
statistical results show that the 10-minmean wind velocityU 10 at the standard height
10 m follows the extreme-value type I distribution, of which the position parameter
is 5.065 m/s and the scale parameter is 0.953 m/s. The surface roughness length z0
follows the log-normal distribution, of which the log-mean is −1.5795 and the log-
standard deviation is 1.4090. The 10-min mean wind velocity at the target height is
derived from that at the standard height 10mand the surface roughness length in terms
of the log-law formula ofwind profile. Figure 2.13 shows the comparison between the
modeling Fourier amplitude spectrum and themeasured Fourier amplitude spectrum,
involving the mean and standard deviation spectra. It is readily seen that both the
mean and standard deviation show a consistency between themodeling andmeasured
Fourier amplitude spectra.

2.5.2.2 Modeling of Fourier Phase Spectrum

The phase spectrum in the spectral representation for simulating wind field is usually
assumed to consist of a series of independent random initial phases which follows
the uniform distribution in the frequency domain [0, 2π) (Shinozuka and Jan 1972).
This treatment results in a large number of random variables which often attains
to 400 even 600. It seriously declines the computational efficiency of randomly
wind-induced vibration analysis of structures due to the requirement of large-size
samples in high-dimensional space of randomvariables.Moreover, the classical spec-
tral representation exclusively neglects the correlation among the phases of various
frequencies.

It is well known that the wind flow is the motion of various particles passing
through a certain spatial point. According to the Taylor’s hypothesis, if the wind-
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Fig. 2.13 Comparison between modeling and measured Fourier amplitude spectra

velocity indicator moves along the main flow with a same speed as the mean wind
velocity, the velocity of a same particle recorded at different spatial positions denotes
the fluctuatingwind velocity. In this case, the fluctuatingwind velocity can be viewed
as the longitudinal vibration velocity of the same particle in the kinetic reference
coordinate moving as the mean wind velocity. In physics, the vibration velocity of
the particle can be viewed as the superposition of a series of eddy vibrations with
different scales and different frequencies. The characteristic velocity of eddies is thus
defined as (Hinze 1975):

v( f ) �
√

|F( f )|2 f (2.5.24)

It is indicated that the ratio between the moving distance of eddies with character-
istic velocity v( f ) in time interval [t0, t1] and the perimeter of the eddy just denotes
the period number of the eddy changes in the time interval, where each period cor-
responds to a 2π phase variation. Thus, the phase variation ϕ( f ) of eddies with
different scales and different frequencies in the time interval τ can be given by

ϕ( f, τ ) � 2π
v( f )τ

2πl( f )
� v( f )k( f )τ (2.5.25)

where τ � t1 − t0; l( f ) denotes the wavelength of the eddy; k( f ) denotes the wave
number which is reciprocal to the wave length. The wave number and the natural
frequency have the relation as follows:

k( f ) � 2π
f

U
(2.5.26)

where U denotes the mean wind velocity of spatial points.
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Differential of Eq. (2.5.25) with respect to the time t, the phase evolution velocity
of the eddies with different frequencies is thus given by

ϕ̇( f ) � v( f )k( f ) (2.5.27)

It is seen that owing to the difference from vibration velocity, the phase evolution
velocity of the eddies with different frequencies is different, which is related to
the energy amplitude and the scales of the eddies. Generally, the eddies with low
frequencies and large scales exhibit a slow phase variation, while the eddies with high
frequencies and small scales exhibit a rapid phase variation. One might imagine that
the real fluctuating wind velocity can be viewed as the superposition of a collection
of harmonics, i.e., eddies, after evolution over time length Te from the same initial
phase. A simple treatment is that the same initial phase is set as zero. Therefore, the
recorded wind velocity can be viewed as the evolutionary result of eddies with the
initial zero phase over time length Te (Li et al. 2013). Here, the time length Te is
termed as the zero-phase evolution time. In the next step, one can build the phase
spectrum model based on the zero-phase evolution time:

ϕ
(
βW , f

) � v( f )k( f )Te (2.5.28)

where βW = (Te) is the vector of random parameters denoting the randomness inher-
ent in the Fourier phase spectrum.

It is indicated in Eq. (2.5.28) that the stochastic Fourier phase spectrum just
relies upon the random variable Te. By comparison with the traditional spectral
representation method, the introduction of zero-phase evolution time correlates the
phases of frequency points, and significantly reduces the number of randomvariables.
This scheme efficiently implements the reconstruction of Fourier phase spectrum of
fluctuating wind velocity.

2.5.2.3 Modeling of Phase-Delay Spectrum

Coherence function is a critical argument for representingwindfield structure. In fact,
the correlation between fluctuating wind velocities at the spatial points i and j can
be represented by the difference between the Fourier phase spectra of the fluctuating
wind velocities. Here, a phase-delay spectrum is defined as follows:

φ( f ) � ϕ j ( f ) − ϕi ( f ) (2.5.29)

The phase-delay spectrum and the coherence function exhibit the following relation-
ship:

γ ( f ) � ∣∣E[eiφ( f )
]∣∣ � |E[cos(φ( f )) + i sin(φ( f ))]| (2.5.30)
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If the spatial point i is defined as the reference point, and the phase spectrum of the
fluctuating wind velocity at the reference point ϕi ( f ) and the pertinent phase-delay
spectrum between spatial points i and j φ( f ) are provided, the fluctuating wind
velocity at the any spatial point can be readily derived by integrating the Fourier
amplitude spectrum into Eq. (2.5.18). Besides, the spatial wind field represented by
Eq. (2.5.18) is a random field, since the Fourier amplitude spectrum and the Fourier
phase spectrum both are in formula of stochastic functions.

The main factors associated with the phase-delay spectrum include: (i) the nat-
ural frequency f which has a positive relation with the phase delay; (ii) the spatial
separation along horizontal and vertical dimensions ry , rz , respectively, which has
a positive correlation with the phase delay as well; (iii) the mean wind velocity U ,
which has a negative relation with the phase delay; (iv) the shear ratio dU/dz, which
has a positive relation with the phase delay since a high friction upon the flow near to
the ground tends to cause significant wave differences. According to the dimension
analysis, the horizontal and vertical phase-delay spectra can be defined as follows
(Yan et al. 2013):

φy
(
γW , f

) � ηyry
(
f dU/dz

)0.5
U

(2.5.31)

φz
(
γW , f

) � ηzrz
(
f dU/dz

)0.5
U

(2.5.32)

where ηy , ηz are the amplification coefficients along the horizontal and vertical
dimensions, respectively. It is seen from the formula of shear ratio of main flow
dU/dz � U 10/z ln(10/z0) that the phase-delay spectrumdoes not introduce new ran-
dom variables, and the vector of random parameters still remains as γW = (U 10, z0).

In summary, the model for representing fluctuating wind field involves three ran-
dom variables, i.e., the 10-min mean wind velocity at the height 10 m, the surface
roughness length and the zero-phase evolution time. The vector of random param-
eters in Eq. (2.5.18) is thus denoted by ξW � (αW , βW , γW ) � (U 10, z0, Te). The
basic procedure for simulation of fluctuatingwind velocities at spatial points involves
four steps: (i) constructing the phase spectrum at the reference point; (ii) generating
the phase-delay spectrum of target points separated from the reference point; (iii)
gaining the phase spectrum of target points; and (iv) deriving the fluctuating wind
velocities of target points by virtue of inverse Fourier transform through integrating
with the Fourier amplitude spectra at the target points.

A first large-scale platform for strong wind measurement in a certain area of
East China was established in 2006. Four anemometer towers P1, P2, P3, and P4 are
involved in the platform, and their separations are 40m, 80m, and120m, respectively,
as shown in Fig. 2.14. Total 10 supersonic anemometers were deployed at the heights
10, 20, 28, and 43 m of the tower P1, and at the heights 10 and 20 m of the towers P2,
P3, andP4.Meanwhile, for validating purposes, a horizontalmechanical anemometer
was deployed at the height 10 m of the tower P1, which is 1 m separation from the
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Fig. 2.14 Platform for strong wind measurement at a certain area of East China

supersonic anemometer; and a vertical mechanical anemometer was deployed at the
height 20 m of the tower P2.

By virtue of the wind data, the three elementary random variables of the Fourier
spectrum model of fluctuating wind velocity are identified. Statistical results show
that the 10-min mean wind velocity U 10 at the standard height 10 m follows the
extreme-value type I distribution, of which the position parameter is 5.1746 m/s, and
the scale parameter is 0.7475 m/s. According to the power law of wind profile, the
10-min mean wind velocity at other three heights follows the extreme-value type
I distribution as well, of which the statistical parameters are given as follows: the
position and scale parameters at the height 20 m are 6.3349 m/s and 0.8286 m/s, at
the height 28 m, 6.7712 m/s and 0.8402 m/s, and at the height 43 m, 7.5151 m/s and
1.0337 m/s. The surface roughness length z0 follows the log-normal distribution, of
which the log-mean is−1.2155, and log-standard deviation is 1.0052. The zero-phase
evolution time Te follows the Gamma distribution, of which the scale parameter is
0.82 × 109s, and the shape parameter is 1.1.

According to the procedure for simulation of the fluctuating wind velocity at spa-
tial points, and taking the standard height 10 m of the tower P1 as the reference point,
the fluctuating wind velocities at the heights 20 m, 28 m, 43 m of the tower P1, and at
the height 20 m of the towers P2, P3 and P4 are simulated. The amplification factors
of the phase-delay spectrum ηy , ηz are set as 35 and 80, respectively. Figure 2.15
shows the simulated and measured fluctuating wind velocities at these target points.
It is readily seen that the simulated results have a good consistencywith themeasured
results.
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(a) heights 20m, 28m, 43m of tower P1 (b) height 20m of towers P2, P3, P4
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Fig. 2.15 Comparison between simulated and measured fluctuating wind velocities at target points
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Chapter 3
Physically Based Stochastic Optimal
Control

3.1 Preliminary Remarks

The notion of stochastic optimal control as currently defined has its roots in statistical
methods for dealingwith certain tracking and signal estimation problems arising from
the existence of uncertainties inherent either in the measurement or in the excitation
that drives the evolution of systems, which involve prediction, filtering, and data
smoothing. The pioneering work on these problems was done by the mathematician
Wiener, who is accredited as the founder of control theory (Wiener 1949). A large
number of research efforts were devoted to estimation problems of practical interest
in electronics, communications and control engineering. An important attempt was
the filtering and prediction theory by Kalman and Bucy in the early 1960s (Bucy and
Kalman 1961). Almost in the same period, the introduction of the state-spacemethod
(Kalman 1960a, b), the developments of the stochastic maximum principle (Kushner
1962), and the stochastic dynamic programming (Florentin 1961) in the context of
Itô calculus received great attention. The stochastic optimal control theorem was
then developed into a rather integrated system in the early 1970s (Åström 1970).
Thereafter, the duality methods, as a major branch of the stochastic optimal control
theory, also known as the Martingale approach, have been paid extensive attention
in recent years because they offered powerful tools for the study of some classes of
stochastic optimal control problems (Josa-Fombellida and Rincón-Zapatero 2007).

In the classical stochastic optimal control theory, the random disturbance spec-
ifying external excitations and measurement noise is typically assumed to be the
additive white Gaussian noise or the filtered white Gaussian noise, and the pertinent
schemes, such as the linear quadratic Gaussian (LQG) control and the covariance
control, which aim to seek the optimal control gain in an admissible set by minimiz-
ing or maximizing the cost function of system state and control force (Stengel 1986).
The application of the classical stochastic optimal control theory in the civil engineer-
ing has attained an extensive progress. For instance, Yang applied the LQG control
into the active optimal control of engineering structures under random excitations
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(Yang 1975). Chang and Yu developed an optimal pole assignment method in
response to the vibration control of a single-degree-of-freedom system subjected
to the white-noise excitation, i.e., using the control gain with the minimum variance,
the pole of the closed-loop system could be transferred to the prespecified complex
plane region (Chang and Yu 1998). Ho and Ma proposed a synthesis method com-
bining the LQG and input estimation schemes, which was demonstrated to be better
than the pure LQG control by a numerical simulation of active vibration control of
lumped-mass systems (Ho andMa 2007). Bani-Hani and Alawneh developed a set of
posttensioning system with active prestress for the vibration control of bridges and
utilized the LQG control in design of constant and variant control gains (Bani-Hani
and Alawneh 2007). Kohiyama andYoshida proposed a parameter designmethod for
the LQG control so as to reduce the displacement and acceleration of computational
facilities under the strong earthquakes (Kohiyama and Yoshida 2014).

The classical stochastic optimal control theory, however, implies an assumption
of weak excitations in essence (Zhu 2006). Actually, as seen in the history of stochas-
tic optimal control, the stochastic dynamics underlies its elementary substance, but
the present theoretical frame of the stochastic dynamics is exclusively based on the
white or filtered white noises and the Itô calculus (Lin and Cai 1995; Øksendal
2005). Therefore, the applicability of the classical stochastic optimal control theory
in the vibration control of civil engineering structures still remains open since the
practical excitations are nonstationary and non-Gaussian processes, such as seismic
ground motions, high winds, and huge waves (Sun 2006). As an insight into this
challenge, this chapter is devoted to developing a methodology of stochastic opti-
mal control for response reduction of structures with actively closed-loop control
systems, integrating the physically motivated random excitation model and the prob-
ability density evolution theory. The pertinent topics include the definition of control
law of stochastic optimal control of structures using Pontryagin’s maximum princi-
ple, the parameter design and optimization of controllers. Since the concern of the
methodology lies upon the probability density evolution of structural systems during
the control process, it is also referred to as the probability density evolution method
(PDEM)-based stochastic optimal control.

3.2 Performance Evolution of Controlled Systems

As mentioned in the previous chapters, the probability density evolution method
provides the theoretical foundation for the accurate analysis and design of stochastic
dynamical systems. Naturally, this method can be extended to stochastic optimal
control of stochastic dynamical systems so as to circumvent the dilemma that the
classical stochastic optimal control confronted with.

Without loss of generality, the state equation of controlled systems subjected to
random excitations is written as
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Ż � L[Z,U,�, t] (3.2.1)

where Z(t) is the 2n-dimensional column vector denoting system state; U(t) is the
r-dimensional column vector denoting control force;� is the random vector charac-
terizing the randomness inherent in the system; and L[·] denotes the 2n-dimensional
vector of operator.

It is noted that the intervention of the control force necessarily affects the evolution
trajectory of the system state, and the control force, on the contrary, needs to be
regulated by the instantaneous system state in terms of the control law in feedback
logic. In most cases, Eq. (3.2.1) is a well-posed equation and the system state Z(t)
can be determined uniquely, which is a function of � and might be assumed to take
the following form:

Z(t) � HZ(�, t) (3.2.2)

At the present stage, the explicit expression of the formal function HZ(·) is not
requisite and the sufficient condition is just its existence and uniqueness. Likewise,
the control forceU(t) is also a function of� and can be assumed to take the following
form:

U(t) � HU(�, t) (3.2.3)

The velocities of Z(t) and U(t) can be thus assumed to take the following forms:

Ż(t) � hZ(�, t) (3.2.4)

U̇(t) � hU(�, t) (3.2.5)

If the probability density function of a component ofZ(t), denoted as Z (t), without
risk of confusion, is of interest, i.e.,

Ż (t) � hZ (�, t) (3.2.6)

The augmented system (Z (t),�) sustains a conservative probability since all the
randomness involved in this system comes from �. There thus has

D

Dt

∫

�t×��

pZ�(z, θ, t)dzdθ � 0 (3.2.7)

where �t ,�� are the distribution domain of t ,�, respectively; pZ�(z, θ, t) is the
joint probability density function of (Z (t),�). Through some mathematical manip-
ulations, it follows (Li and Chen 2009)
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D

Dt

∫

�t×��

pZ�(z, θ, t)dzdθ �
∫

�t×��

(
∂pZ�

∂t
+ hZ

∂pZ�

∂z

)
dzdθ (3.2.8)

Combining Eqs. (3.2.7) and (3.2.8) and considering the arbitrary characteristics on
the integral domain �t × ��, we have

∂pZ�(z, θ, t)

∂t
+ Ż (θ, t)

∂pZ�(z, θ, t)

∂z
� 0 (3.2.9)

Equation (3.2.9) is the so-called generalized probability density evolution equation
(GDEE) for the augmented system (Z (t),�).

Likewise, for the component of control force U (t), we have

∂pU�(u, θ, t)

∂t
+ U̇ (θ, t)

∂pU�(u, θ, t)

∂u
� 0 (3.2.10)

The pertinent instantaneous PDFs of Z (t) and U (t) can be obtained by solving a
family of partial differential equations with provided initial conditions as follows:

pZ�(z, θ, t)|t�0� δ(z − z0)p�(θ) (3.2.11)

pU�(u, θ, t)|t�0� δ(u − u0)p�(θ) (3.2.12)

where δ(·) is the Dirac delta function; z0, u0 are determinative initial values of
Z (t),U (t), respectively. We then have

pZ (z, t) �
∫

��

pZ�(z, θ, t)dθ (3.2.13)

pU (u, t) �
∫

��

pU�(u, θ, t)dθ (3.2.14)

where the joint PDFs pZ�(z, θ, t) and pU�(u, θ, t) are the solutions of Eqs. (3.2.9)
and (3.2.10), respectively.

It is noted that the GDEE reveals the intrinsic relation of stochastic control sys-
tem and deterministic control system via the realization of random vector θ, which
underlies the realizability of probability-density-based optimal control for high-
dimensional stochastic systems driven by practical nonstationary and non-Gaussian
random excitations (Li and Chen 2008). One might recognize from Eqs. (3.2.9),
(3.2.10), (3.2.13), and (3.2.14) that the kernel of implementing the probability-
density-based optimal control is solving the physical quantity change Ż (θ, t), U̇ (θ, t)
of systems with respect to the realization of random vector θ. Distinguished from the
classical stochastic optimal control such as the LQG, the optimal control methodol-
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Fig. 3.1 Schematic of
deterministic control (DC),
LQG control, and physically
based stochastic optimal
(PSO) control

LQG

DC
PSO

ogy on the basis of the GDEEs is termed as the physically based stochastic optimal
control.

Figure 3.1 shows the differences from the deterministic control (DC), the LQG
control, and the physically based stochastic optimal (PSO) control upon tracing
the state evolution of controlled systems. It is ready to see that the trajectory of the
deterministic control system is from point to point, which obviously lacks the ability
of governing the system performance due to the randomness inherent in external
excitations and measurement noise. The trajectory of the control system by the LQG
is from circle to circle. It is noted that the classical stochastic optimal control is
essentially a control scheme based on the second-order statistics, which just holds
the system performance in the sense of mean-square quantities, and is incapable of
attaining the complete probability information. The trajectory of the control system
by the PSO, however, is from domain to domain, which can readily complement the
accurate control of the system performance in the sense of probability density of
quantities, owing to the advantage that the system quantities of interest are governed
by the GDEEs, i.e., Eqs. (3.2.9) and (3.2.10).

3.3 Scheme of Stochastic Optimal Control

3.3.1 Closed-Loop Control Systems

Consider an n-degree-of-freedom linear structural systemwith active control devices
and subjected to random excitations. The equation of motion is given by

MẌ(t) + CẊ(t) +KX(t) � BsU(t) + DsF(�, t) (3.3.1)
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where X(t) is the n-dimensional column vector denoting system displacement; U(t)
is the r-dimensional column vector denoting control force; F(·) is the p-dimensional
column vector denoting random excitations, which can be represented by a stochastic
function in terms of the orthogonal decomposition of random processes (Li and Liu
2006) or introducing the physical mechanism of random processes (Li and Ai 2006);
M, C, and K are n× n mass, damping, and stiffness matrices, respectively; Bs is the
n × r matrix denoting the location of control devices; and Ds is the n × p matrix
denoting the location of external excitations.

It should be noted that the random vector� is considered to represent the random-
ness inherent in external excitations, and the measurement noise is ignored in this
study since that the uncertainty arising from the measurement noise is more control-
lable compared with that arising from the random excitation. Meanwhile, although it
is somewhat cumbersome, the notation � underlies the fact that a random process is
a function defined over the space of events of which � is an element. Having noted
this, the symbol�would be dropped in the following development when the random
nature of a certain quantity is obvious from the context except in the case of special
denotation for a key quantity.

In the state space, Eq. (3.3.1) becomes

Ż(t) � AZ(t) + BU(t) + DF(�, t) (3.3.2)

with the initial condition

Z(t0) � z0 (3.3.3)

where A is the 2n × 2n system matrix; B is the 2n × r matrix denoting the location
of control devices, and D is the 2n × p matrix denoting the location of external
excitation, respectively,

Z(t) �
[
X(t)
Ẋ(t)

]
,A �

[
0 I

−M−1K −M−1C

]
,B �

[
0

M−1Bs

]
,D �

[
0

M−1Ds

]

(3.3.4)

Equation (3.3.2) is numerically tractable using time integration methods, thereby
any system quantities of interest such as displacement, velocity, acceleration, and
control force can be readily derived.

The stochastic optimal control involves maximizing or minimizing a specified
cost function. The generalized form of cost function is typically a quadratic combi-
nation of displacement, velocity, acceleration, and control force (Yang et al. 1994).
Considering the linear quadratic regulator (LQR) as the control logic of the PSO, a
standard quadratic cost function is given by (Soong 1990)
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J1(Z,U,�) � 1

2
ZT(t f )S(t f )Z(t f ) +

1

2

t f∫

t0

[ZT(t)QZZ(t) + UT(t)RUU(t)]dt

(3.3.5)

whereQZ is a 2n×2n positive semi-definite weighting matrix with respect to system
state; RU is an r × r positive definite weighting matrix with respect to control force;
t0 is the initial time; and t f is the terminal time which is usually larger than the
duration of the external excitation. As should be noted, the cost function of the
classical LQG is defined as ensemble average on the right terms of Eq. (3.3.5),
which is a deterministic function; its minimization aims to attain the optimal gain
with minimum cost under the assumption of white Gaussian noise as the external
excitation and the given parameters of control law. In this case, the optimal gain
relies upon second-order statistics of system quantities, which allows for a mean-
square solution of control system, but the probability distribution of the system state
pertaining to structural reliability is still unknown. The cost function of the PSO, i.e.,
Eq. (3.3.5), however, is a randomfunction; itsminimization aims to derive a stochastic
optimal gain with parameters of control law of which the design and optimization
through cost-effect analysis over realizations of random vector can attain the desired
probability distribution of the system state. The proposed procedure is suitable for the
optimal control of general stochastic systems, without assumption of white Gaussian
noise as the external excitation.

In brief, the procedure involves a two-step optimization; see Fig. 3.2. In the first
step, for each realization (sample) θ of the random vector �, the minimization of the
cost function Eq. (3.3.5) is carried out to build a functional mapping from the set of
parameters of control law to the set of control gains. In the second step, the optimal
parameters of control law to be used are obtained by optimizing the control gain as
a probabilistic criterion pertaining to the structural performance objective.
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Fig. 3.2 Two-step optimization of physically based stochastic optimal control
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Therefore, viewed from representative realizations, the minimization of the cost
function J1 leads to a conditional extreme-value problem. Introducing the costate
vector λ(t) ∈ R

n and utilizing the Lagrange multiplier method, we have

J1(Z,U,λ,F,�) � 1

2
ZT(t f )S(t f )Z(t f ) +

t f∫

t0

[H (Z,U,λ,F,�,t) − λT(t)Ż(t)]dt

(3.3.6)

where the Hamiltonian function is given by

H (Z,U,λ,F,�,t) � 1

2
[ZT(t)QZZ(t) + UT(t)RUU(t)] + λT(t)[AZ(t) + BU(t) + DF(�, t)]

(3.3.7)

The necessary condition for theminimization of the cost function J1(Z,U,λ,F,�)
is deduced from the celebrated Pontryagin’s maximum principle that the system state
Z∗(t) denotes the optimal trajectory if the control forceU∗(t) is referred to as an opti-
mal control, and there must exist a costate λ∗(t) that allows for the Euler–Lagrange
equation, as shown in Eqs. (2.2.13)–(2.2.15), in the presence of the random excita-
tion. Then, we have

∂H

∂U
� RUU(t) + BTλ(t) � 0 (3.3.8)

which yields

U(t) � −R−1
U BTλ(t) (3.3.9)

The costate equation Eq. (2.2.14) then turns to be

λ̇(t) � −
(

∂H

∂Z

)T

� −QZZ(t) − ATλ(t) (3.3.10)

As to a closed-open-loop control system with the state feedback and the input
feedback simultaneously (Yang et al. 1987), the linear mapping between the costate
λ(t) and the state Z(t), and the random excitation F(�, t) is deduced as (for the
details; see Appendix B)

λ(t) � P(t)Z(t) + SF(t)F(�, t) (3.3.11)

where P(t),SF(t) are undetermined matrices with the terminal conditions

P(t f ) � SF(t f ) � 0 (3.3.12)

Substituting Eq. (3.3.11) into Eq. (3.3.9), one could obtain the control law
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U(t) � −R−1
U BTP(t)Z(t) − R−1

U BTSF(t)F(�, t) (3.3.13)

Introducing Eq. (3.3.11) into Eq. (3.3.10) yields

Ṗ(t)Z(t) + P(t)Ż(t) + ṠF(t)F(�, t) + SF(t)Ḟ(�, t)

� −[QZ + ATP(t)]Z(t) − ATSF(t)F(�, t) (3.3.14)

Namely,

[Ṗ(t) + P(t)A + ATP(t) − P(t)BR−1
U BTP(t) +QZ]Z(t)

� [ṠF(t) + ATSF(t) − P(t)BR−1
U BTSF(t) + P(t)D]F(�, t) − SF(t)Ḟ(�, t)

(3.3.15)

Equation (3.3.15) is the so-called differential Riccati equation and P(t) denotes the
Riccati matrix.

It is indicated in Eq. (3.3.15) that the control law of a continuous time system
involving the input feedbackmust be computed in real time according to themeasured
data since P(t),SF(t) are both coupled with F(�, t),Z(t). As mentioned previously,
a critical task included in the proposed control scheme is the determination of proba-
bilistic criterion, which relies upon the structural performance objective and naturally
considers the influence of the random excitation. Therefore, the excitation-relevant
term can be removed safely from the expression of control law. This treatment leads
to a closed-loop control with the state feedback. The Riccati equation of the closed-
loop control is then written as

Ṗ(t) � −P(t)A − ATP(t) + P(t)BR−1
U BTP(t) − QZ (3.3.16)

It is indicated in previous studies that the Riccati matrix P(t) remains the steady
solution in a long interval after the initial time t0, and comes into the transient solution
rapidly until to zero near the final time t f (Athans and Falb 1966). The starting
time of the transient solution moves forward to t f when the final time t f → ∞.
Consequently, for the infinite-time control system, the Riccati matrix P(t) equals to
its steady solution P, and Eq. (3.3.16) thus becomes a matrix algebraic equation

PA + ATP − PBR−1
U BTP +QZ � 0 (3.3.17)

According to Eq. (3.3.13), the control law of closed-loop control is thus given by

U(�, t) � −GZZ(�, t) (3.3.18)

where GZ denotes the gain matrix of state-feedback control

GZ � R−1
U BTP (3.3.19)
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Fig. 3.3 Schematic of
probability density of system
state at typical instant of time
with and without controls

Uncontrolled

Controlled

Substituting the physical solutions of state quantity Z(t) and control force U(t)
in the equation of motion of controlled structural system; see Eq. (3.3.2), into the
generalized probability density evolution equations Eqs. (3.2.9) and (3.2.10), one
can readily derive the probability density evolution process of system quantities of
concern. Fig. 3.3 shows the schematic of probability density of system state at typical
instant of time with and without controls.

3.3.2 Parameter Optimization of Control Law

The optimal control involves minimizing or maximizing a cost function in terms of
system state and control force, either the deterministic cost function included in the
classical LQG control or the stochastic cost function included in the proposed PSO
control. The control effectiveness relies upon the derived control law pertaining to
the structural performance objective. A critical step of designing control system is the
determination of parameters of control law. It is seen fromEqs. (3.3.17)–(3.3.19) that
the effort of designing the linear quadratic regulator (LQR) ought to be paid on the
choice of cost-function weightsQZ andRU. A number of strategies for the choice of
cost-function weights were developed in the context of the classical LQG, such as the
statistical moment evaluation based on the mathematical expectation of quantities
of interest (Zhang and Xu 2001), the system robustness analysis in the sense of
optimal probability (Stengel et al. 1992), and the weighting matrices comparison in
the context of Hamiltonian theoretical framework (Zhu et al. 2001). In the context of
the PSO, a strategy for cost-function weights choice is developed which is referred to
as the system second-order statistics evaluation (Li et al. 2010), where the pertinent
performance function involving evaluation and constraint quantities is proposed as
follows:

J2 � N∪
j�1

F[W̃ j ]

∣∣∣∣
M∪
k�1

{F[Ṽk] ≤ Ṽk,con} (3.3.20)
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where W̃ j � max
t
[max

i

∣∣Wji (�, t)
∣∣] denotes the jth component of the equivalent

extreme-value vector to be evaluated; Ṽk � max
t
[max

i
|Vki (�, t)|] denotes the kth

component of the equivalent extreme-value vector used as the constraint; Ṽk,con

denotes the threshold of the kth constraint; and the hat “~” on symbols indicates
the equivalent extreme-value vector (Li et al. 2007); ∪ denotes the union opera-
tor; N , M denote the number of evaluation and constraint quantities, respectively;
andF[·] is the quantile function denoting confidence level.

Therefore, the probabilistic criterion in terms of the system second-order statistics
evaluation is defined as follows:

{Q∗
Z,R∗

U} � argmin
QZ,RU

{J2} (3.3.21)

The employment of the probabilistic criterion of Eq. (3.3.21) aims to seek the optimal
cost-function weights Q∗

Z,R∗
U, under the condition of the quantile of the constraint

less than its threshold, such that the quantile of the evaluation quantity is minimized.
Herein, the evaluation quantity could be recognized as the extreme value of a struc-
tural response, e.g., interstory drift, interstory velocity, story acceleration, interstory
shear force, and control force.

In this sense, the cost-function weights can be employed as (Soong 1990)

QZ � q

[
I 0
0 I

]
,RU � rI (3.3.22)

where q, r are coefficients of weighting matrices pertaining to system state and
control force, respectively. The ratio between the two coefficients denotes the trade-
off between the effect (mitigation ratio) and the cost.

It is worth noting that the abovementioned procedure underlies a heuristic algo-
rithm of defining the cost-function weightsQZ and RU. The details of the procedure
will be presented in the numerical examples as shown in the following section.

3.4 Numerical Examples

3.4.1 Controlled Single-Story Building Structure

A planar single-story shear frame attached with an active tendon system as sketched
in Fig. 3.4 is considered here, which is subjected to the horizontal random seismic
ground motion ẍg(�, t). The properties of the system are as follows: the mass of the
story ism � 1 × 105 kg; the circular frequency of the uncontrolled structural system
isω0 � 11.22 rad/s; the control force of the actuator is denoted by f (t); α represents
the inclination angle of the tendon with respect to the base and the acting force u(t)
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Fig. 3.4 Sketch of
single-story shear frame with
active tendon system Active Tendon

Actuator

on the structure is simulated; and the damping ratio is set as 0.05. The interstory drift
is considered as the constraint and the evaluation quantities include the interstory
drift, the story acceleration, and the control force. The quantile function is defined as
mean plus three times of standard deviation of the equivalent extreme-value variables.
The threshold of interstory drift is specified to be 10 mm. The stochastic optimal
control aims to assure the structural safety through controlling the interstory drift, to
accommodate the structural habitability through controlling the story acceleration,
and to satisfy with the systemworkability through controlling the output of the active
tendon. Numerical simulation of structural responses employs a transfer function
method, i.e., the S-transform of linear time-invariant (LTI) systems (Mathews and
Fink 2003).

The physically motivated random seismic ground motion model addressed in
Sect. 2.5.1 is employed to represent the randomseismic ground acceleration. The con-
ditional groundmotion pertaining to the background of seismic hazards is introduced
such that the influences of seismic source and wave propagation can be integrated
as the input at the bedrock. The local site is viewed as a single-degree-of-freedom
system; see Fig. 3.5. The physical relation between the surface ground motion and

Soil

Bedrock

m

k

c

Equivalent SDOF Model

Fig. 3.5 Equivalent single-degree-of-freedom model of local site
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bedrock ground motion, predominant circular frequency, and equivalent damping
ratio of local site has a theoretical formulation as follows (Li and Ai 2006):

Ẍg(�, ω) � �2
ω̄0

+ 2iΘζ̄�ω̄0ω

�2
ω̄0

− ω2 + 2iΘζ̄ �ω̄0ω
· Üb(�b, ω) (3.4.1)

where Ẍg(�, ω), Üb(�b, ω) are the frequency-domain expressions of ground
motions at the surface of engineering site and at the bedrock, respectively. The
ground motion at the bedrock is mathematically assumed to be a band-limited white
noise, of which the Fourier amplitude is defined based on the background of seismic
hazards; � � (�ω̄0 ,�ζ̄ ,�b) is the random vector characterizing the randomness
inherent in the ground motion at the surface of engineering site, which is used to
model the randomness inherent in systems, of which�ω̄0 ,�ζ̄ are the elementary ran-
dom variables denoting the uncertainty of the site soil, i.e., the predominant circular
frequency of engineering site ω̄0 and the equivalent damping ratio ζ̄ ;�b � {�b,i }sbi�1
is the random vector characterizing the randomness inherent in the ground motion
at the bedrock coming from the properties of seismic sources and wave propagation;
sb denotes the number of random variables; ω is the circular frequency; and i is the
imaginary unit.

The time history of the random ground motion then could be attained by the
inverse Fourier transform:

ẍg(�, t) � 1

2π

∞∫

−∞
Ẍg(�, ω)eiωtdω (3.4.2)

The local site is assumed to have the properties of site class III and exhibit seis-
mic fortification intensity 8 in terms of the Chinese Code for Seismic Design of
Building Structures (GB50011-2010). Following the basic principle of stochastic
modeling, the probabilistic structures and distribution parameters of the elementary
random variables, i.e., the predominant circular frequency ω̄0 and the equivalent
damping ratio ζ̄ can be derived by the data fitting of recorded seismic accelerations
using the least squares method. Numerical results show that the predominate cir-
cular frequency ω̄0 and the equivalent damping ratio ζ̄ both follow the lognormal
distribution, of which the mean and coefficient of variation of ω̄0 are 12 rad/s, 0.42,
respectively; the mean and coefficient of variation of ζ̄ are 0.1, 0.35, respectively.
Considering the seismic hazard with return period 50 years, i.e., frequently occur-
ring earthquake and peak ground acceleration 0.11g, the Fourier amplitude of ground
motion at the bedrock is set as 0.20 m/s2. Meanwhile, the initial phase angle in the
inverse Fourier transform for simulating seismic ground accelerations is assumed
to follow the normal distribution, of which mean and coefficient of variation are π ,
1.2, respectively. Utilizing the tangent spheres method to carry out the partition of
probability-assigned space, 221 representative points and the pertinent time histo-
ries of seismic ground accelerations are generated (Chen et al. 2007; Chen and Li
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2008). Sampling frequency and duration of the simulated ground motions are 50 Hz,
20.48 s, respectively.

In order to reveal the nonstationary intensity of seismic ground motions, the
following uniform modulation function is used (Li and Chen 2009):

f (t) �
⎧⎨
⎩
t2/4, t ≤ ta
1, ta<t ≤ tb
e−0.8(t−tb), tb<t ≤ T

(3.4.3)

where ta and tb are set as 2 s and 16 s, respectively and T denotes the duration of the
ground motion.

Statistical moments of the random seismic ground acceleration are shown in
Fig. 3.6. It is seen that the amplitude of the mean (approximate 0.06 m/s2) is around
8% of the amplitude of the standard deviation (approximate 0.8 m/s2), indicating
that the physically motivated random ground motion model exhibits the property of
zero mean. Time history of a representative seismic ground acceleration is shown
in Fig. 3.7. It is recognized that the random seismic ground acceleration exhibits
remarkable nonstationary behaviors both in temporal and frequency domains. Two
recorded seismic ground accelerations from the same site class, labeled as EL270
and EMC90, are shown in Fig. 3.8, of which the peak ground acceleration (PGA)
is scaled to 0.1g. For comparative purposes, the acceleration response spectra of the
random seismic groundmotion, representative, and recorded seismic groundmotions
are pictured; see Fig. 3.9. It is shown clearly that the mean plus standard deviation
of acceleration response spectrum derived from the random seismic ground motion
accommodates the acceleration response spectra derived from the recorded seismic
ground motion, indicating the moderation of the selected seismic ground motions
and the rationality of the physicallymotivated random seismic groundmotionmodel.
This knowledge owes to the fact that the physicallymotivated random seismic ground

Fig. 3.6 Mean and standard
deviation of random seismic
ground acceleration
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Fig. 3.7 Time history of representative seismic ground acceleration
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Fig. 3.8 Time histories of recorded seismic ground accelerations from the same site class

motionmodel is a self-contained sample set with respect to simulated seismic ground
motions; the selected seismic ground motions, in some sense, can be viewed as ele-
ments of another sample set of recorded seismic ground motions which has the same
background of seismic hazards to the self-contained sample set.

In order to reveal the influence of cost-function weights on the stochastic optimal
control, the relations between the equivalent extreme-value displacement, the equiv-
alent extreme-value acceleration, the equivalent extreme-value control force, and the
ratio of coefficients of weighting matrices q/r are presented in Fig. 3.10, where q
is set as 100. It is clearly seen that these relation curves are different both from the
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Fig. 3.9 Acceleration response spectra of random seismic ground motion, representative, and
recorded seismic ground motions
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Fig. 3.10 Relation between equivalent extreme-value quantities and ratio of coefficients of weight-
ing matrices
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structural responses and seismic ground motions, e.g., concerning the same seismic
ground motion, the relation between control force and the ratio q/r changes from
the structural displacement, velocity, and acceleration; concerning the same struc-
tural response, the relation between control force and the ratio q/r changes from
seismic ground motions. The optimal ratio q∗/r∗, in other words, nominally arises
to be different from samples of the random seismic ground motion and exhibits a
certain randomness.Moreover, there exists a relevance between control effectiveness
and control cost; the definition of the optimal ratio q∗/r∗ shall consider the trade-
off between system quantities of interest. One might wonder, however, which ratio
of coefficients of weighting matrices for the stochastic optimal control exhibits the
optimality in a global sense?

In fact, the control law involves a deterministic gain matrix even in the stochas-
tic optimal control, which relies upon the structural performance objective and can
be derived as a probabilistic criterion, e.g., the system second-order statistics eval-
uation. Figure 3.11 shows the relation between the mean of equivalent extreme
-value displacement, equivalent extreme-value velocity, equivalent extreme-value
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Fig. 3.11 Relation between mean, quantile of quantities, and ratio of coefficients of weighting
matrices
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Fig. 3.12 Time histories of mean and standard deviation of structural responses with and without
controls

acceleration, equivalent extreme-value control force, and the ratio q/r . The quan-
tiles of these quantities are shownaswell. It is seen that: (i) as ratioq/r ≥ 2×1012, the
quantile of the displacement is completely within its threshold as a constraint; (ii) as
ratio q/r ≥ 2×1014, the standard deviation of the displacement is minimum and the
mean decreases slowly, whereas the standard deviation of the acceleration increases
and the mean of acceleration decreases very gently; the mean and standard deviation
of the control force, however, increase significantly; (iii) as ratio q/r � 8×1012, the
standard deviation of the acceleration attains minimum, although the standard devi-
ation of the displacement is not minimum; meanwhile, the means of the acceleration
and the displacement decrease evidently. The benefit at this ratio, moreover, lies in
that the mean and standard deviation of the control force are much less than those at
the ratio q/r ≥ 2×1014. Considering the trade-off between the quantities of interest,
it is thus reasonable to take the optimal ratio q∗/r∗ � 8×1012; q∗ � 80, r∗ � 10−11

in the numerical case.
Time histories of the mean and standard deviation of structural displacement and

those of structural acceleration with and without controls are shown in Fig. 3.12. It is
seen that the structural responseswith control are reduced significantly in comparison
with those without control. Moreover, the structural responses decrease significantly
in the time interval with larger amplitudes; see the interval from 2 s to 8 s, which
indicates that the stochastic optimal control aims at enhancing the structural robust-
ness in a global sense. The amplitudes of standard deviations of the displacement
and the acceleration with control are reduced by 5 and 3 times than those without
control, respectively. It is also seen from Fig. 3.12 that the amplitude of the mean is
around 8% smaller than that of the standard deviation. It is understood that the linear
structural system is driven by the random seismic ground motion with zero mean.

Figure 3.13 shows the PDFs of the displacement of the controlled and uncontrolled
structures at typical instants of time 4 s, 7 s, and 10 s. It is seen that the variation of
the structural displacement with control is reduced significantly by comparison with
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Fig. 3.13 PDFs of structural displacement at typical instants of time
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Fig. 3.14 PDFs of structural acceleration at typical instants of time

that without control. The PDFs of the structural acceleration at typical instants of
time show similar properties to the structural displacement, as shown in Fig. 3.14. It
is revealed that the seismic performance of the structure has been enhanced greatly
after the stochastic optimal control is applied. For details of time-varying probabilis-
tic information, the probability densities of structural displacement and structural
acceleration at typical time interval from 4 s to 10 s are shown in Figs. 3.15 and 3.16,
respectively.

The mean and standard deviation of control force and PDFs at typical instants
of time are shown in Fig. 3.17. It is seen that the shapes of the mean and standard
deviation of control force and the pertinent curves of the probability density function
exhibit certain similarities to the structural displacement and structural acceleration.
These similarities are resulted from the cause that the optimal control force is pursuing
the structural response in real time, which is a weighted combination of structural
displacement and velocity as the relevant elements of the gain matrix (Chung et al.
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Fig. 3.15 Probability density of structural displacement at typical time interval
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Fig. 3.16 Probability density of structural acceleration at typical time interval
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1988). However, the generalized probability density evolution equation is essentially
a nonlinear first-order partial differential equation, which results in the differences
of PDFs between system state and control force even if the control force is linearly
mapped from the system state.

3.4.2 Controlled Multiple-Story Building Structure

An eight-story shear frame attached with fully distributed active tendon systems is
studied. The properties of the uncontrolled structure are taken from the publication
by Yang et al. (Yang et al. 1987). The story mass is mi � 3.456× 105 kg; interstory
stiffness is ki � 3.404 × 102 kN/mm; and internal damping coefficient of each
story is ci � 2.937 kNs/mm, which corresponds to a 2% damping ratio for the
first vibration mode of the entire structure. The external damping is assumed to be
zero. The calculated natural frequencies are 5.79, 17.18, 27.98, 37.82, 46.38, 53.36,
58.53, and 61.69 rad/s, respectively. The constraint quantity, evaluation quantity, and
control objective are the same as those of the case shown in Sect. 3.4.1. The quantile
function is defined as the mean plus one time of standard deviation. The threshold
of interstory drift is set as 15 mm. The random seismic ground motion model is
employed, of which the peak ground acceleration is 0.3g.

Figure 3.18 shows the relation between the mean, quantile of equivalent extreme-
value displacement, equivalent extreme-value acceleration, equivalent extreme-value
control force, and the ratio of coefficients of weighting matrices. It is shown that (i)
as ratio q/r ≥ 4 × 1013, the quantile of the displacement is completely within its
threshold as a constraint; (ii) as ratio q/r � 1 × 1014, the standard deviation of the
displacement is minimum and the mean approaches to its minimum, which are both
decreasing significantly; and themean of control force increases constantly, of which
the standard deviation, however, provisionally possesses a small value. Therefore, it
is reasonable to take the optimal ratio q∗/r∗ � 1 × 1014; q∗ � 100, r∗ � 10−12 in
this numerical case.

Figure 3.19 shows the time histories of mean and standard deviation of the first
and eighth interstory drifts with and without controls. It is seen that the interstory
drifts are reduced significantly when the structure is under control. The amplitudes
of interstory drifts with control are nearly 4 times smaller than those without control.
Similar to the displacement of the single-story structural system with control shown
in Sect. 3.4.1, the time interval with larger amplitudes gets an obvious improvement.
The interstory drift with control exhibits almost samemitigation ratio along the story
level of the structure. Story acceleration, however, does not exhibit this behavior.
Shown in Fig. 3.20 is the time histories of the mean and standard deviation of the
first and eighth story accelerations with and without controls. It is seen that the first
story acceleration remains nearly unchanged; while the eighth story acceleration is
improved significantly. The two story accelerations, however, have almost the same
variation, owing to the fact that the objective of the stochastic optimal control is

https://doi.org/10.1007/978-981-13-6764-9_3
https://doi.org/10.1007/978-981-13-6764-9_3
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without controls
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Fig. 3.20 Time histories of mean and standard deviation of story accelerations of structure with
and without controls
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Fig. 3.21 PDFs of first interstory drift at typical instants of time

to optimize the structural performance in the sense of the trade-off between system
quantities of interest.

The PDFs of the first and eighth interstory drifts at typical instants of time 3 s,
5 s, and 7 swith andwithout controls are shown in Figs. 3.21 and 3.22. By comparison
with the cases without control, the distribution range of the PDFs of interstory drifts
with control becomes narrower and the shape of the PDFs arises to be more irregular.
It is indicated that the shear frame structure with control does not move as a similar
profile to that without control since the introduction of the control force leads to
a change of contribution from vibrational modes to structural responses. Similar
control effectiveness is shown in the PDFs of the first and eighth story accelerations
at typical instants of time with and without controls; see Figs. 3.23 and 3.24. The
probability densities of the first interstory drift and story acceleration at typical time
interval from 3 s to 7 s are pictured in Figs. 3.25 and 3.26, respectively.

Time histories of the mean and standard deviation of the first and eighth interstory
control forces are shown in Fig. 3.27. It is readily seen that the first interstory control



106 3 Physically Based Stochastic Optimal Control

-20 -10 0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Displacement (mm)

P
D

F
PDF at 3.00 s
PDF at 5.00 s
PDF at 7.00 s

-20 -10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Displacement (mm)

P
D

F

PDF at 3.00 s
PDF at 5.00 s
PDF at 7.00 s

(a) without control (b) with control
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Fig. 3.26 Probability density of first story acceleration at typical time interval with control

force has certain similarities to the eighth interstory control force except the scale of
amplitude, of which the first interstory control force is 10 times larger than the eighth
interstory control force. It is also seen that the time histories of the standard deviations
of the first and eighth interstory control forces exhibit positive similarities, while the
timehistories of themeans exhibit negative similarities. In viewofFigs. 3.19 and3.20,
onemight recognize that the responses of the two stories arise to be asynchronous, and
accordingly the feedback control forces on the two stories arise to be asynchronous.
This phenomenon is also shown in the PDFs of interstory control forces at typical
instants of time; see Fig. 3.28.

Control effectiveness of extreme-value responses of the eight-story building struc-
ture by active tendon systems is shown in Table 3.1. It is seen that the interstory drift
reduces significantly, of which themean decreases about 70%, the standard deviation
decreases about 85%, and the amplitude of the response is reduced nearly the same
along story level of the structure. The reduction of acceleration from the fifth story
to the eighth story with control is remarkable as well, of which the mean decreases
50% on average and the standard deviation decreases 75% on average. It is noted
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Fig. 3.27 Time histories of mean and standard deviation of interstory control forces
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Fig. 3.28 PDFs of interstory control forces at typical instants of time

that the control effectiveness of acceleration of the low two stories is obviously less
than other stories. As it is indicated in Table 3.1, the story acceleration arises to be
more uniform along the story level of the structure after the structure is controlled.
Moreover, the higher the story level, the smaller the control force arises to be. There-
fore, more control cost is required for the low stories in order to attain a uniform
story acceleration along the story level. The ratios of extreme-value control forces,
besides, between different interstories are almost equal to those of extreme-value
interstory drift, which is due to the fact that the control force is a linear function with
respect to the interstory drift.
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3.5 Comparative Studies against LQG

In order to validate the physically based stochastic optimal control, comparative
studies against the classical LQG and the deterministic control are carried out. For
illustrative purposes, the numerical example addressed in Sect. 3.4.1 is employed.

Concerning the controlled structure with active tendon system shown in Fig. 3.4,
the equation of motion is given by

ẍ(t) + 2ζω0 ẋ(t) + ω2
0x(t) � m−1u(t) − ẍg(�, t) (3.5.1)

which can be rewritten as a formulation in state space as follows:

Ż(t) � AZ(t) + Bu(t) + Dẍg(�, t) (3.5.2)

where

Z(t) �
[
x(t)
ẋ(t)

]
,A �

[
0 1

−ω2
0 −2ζω0

]
,B �

[
0

m−1

]
,D �

[
0

−1

]
(3.5.3)

The cost function of the LQG is defined as (Chen et al. 1998)

J1(Z, u) � E

⎡
⎣S(Z(t f ), t f ) +

1

2

t f∫

t0

(ZT(t)QZZ(t) + RUu
2(t))dt

⎤
⎦ (3.5.4)

of which the constraint condition is given by

{
dZ(t) � [AZ(t) + Bu(t)]dt + Ldw(t)

Z(t0) � 0
(3.5.5)

where L is the (2 × 1) matrix denoting the location of external excitation; w(t)
denotes the one-dimensional Brownian motion, which is generally modeled as a
white Gaussian noise:

E[dw(t)] � 0,E[dw2(t)] � 2ßS0dt (3.5.6)

where S0 is the spectral intensity factor of random seismic ground motion ẍg(�, t),
which is estimated by

S0 � ā2max

f 2ωe
(3.5.7)

where āmax denotes the mean of the peak ground acceleration of random seismic
ground motion; f denotes the peak factor; and ωe denotes the spectral area pertain-

https://doi.org/10.1007/978-981-13-6764-9_3
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Table 3.2 Relation between spectral intensity factor, peak ground acceleration (PGA), and site
class

Site class/PGA I II III IV

0.11g 0.3g 0.11g 0.3g 0.11g 0.3g 0.11g 0.3g

f 2.9 2.9 3.0 3.0 3.1 3.1 3.2 3.2

ωe (rad s−1) 59.50 59.50 39.71 39.71 29.93 29.93 19.95 19.95

S0 (m2 s−3) 0.0023 0.0173 0.0033 0.0242 0.0040 0.0301 0.0057 0.0423

See Chinese Code for Seismic Design of Building Structures (GB50011-2010), 1g � 9.8 m/s2

ing to unit spectral intensity factor. Table 3.2 shows the spectral intensity factor in
the cases of peak ground accelerations āmax � 0.1g, 0.3g and typical site classes
in accordance with the Chinese Code for Seismic Design of Building Structures
(GB50011-2010).

It is seen that the mathematical formulation of the equation of motion of the
controlled structure with active tendon system, i.e., Eq. (3.5.5) is just the classical
Itô stochastic differential equation. As it is mentioned in the previous sections, the
measurement noise inherent in system state and control force is out of concern, and is
thus ignored in this study. The random seismic ground motion ẍg(�, t) is assumed to
be a wide-band excitation and mathematically modeled by a nominal white Gaussian
noise.

Transferring the constraint extreme-value problem of function Eq. (3.5.4) to an
unconstraint extreme-value problem, the solution of the control systemcan be derived
by solving Hamilton–Jacobi–Bellman equation in the context of randomness. Intro-
ducing a generalized Hamilton function as follows (Li and Chen 2009):

H [Z∗(t), u(t), t] � 1

2

(
Z∗TQZZ∗ + RUu

2
)
+

∂V

∂Z

(
AZ∗ + Bu

)
+ π S0Tr

(
∂2V

∂Z2
LLT

)

(3.5.8)

where V denotes the optimal value function and is assumed to be

V (Z(t), t) � 1

2
ZT(t)P(t)Z(t) + ν(t) (3.5.9)

of which ν(t) is a correct term with respect to the randomness associated with the
generalized Hamilton function.

Utilizing the dynamic programming method, one could gain the solution

u(t) � −R−1
U BTP(t)Z(t) (3.5.10)

ν(t) � −π S0

t f∫

t0

Tr(P(t)LLT)dt (3.5.11)
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where P(t) denotes the Riccati matrix, satisfying with the matrix algebraic Riccati
equation; see Eq. (3.3.17).

In view of Eqs. (3.5.10) and (3.3.18), the control law of the LQG has the same
formulation to the LQR-based PSO for a closed-loop system in the sense of sam-
ple trajectory, and the so-called deterministic equivalence principle is satisfied. It
is shown as well that concerning the linear time-invariant system subjected to the
white Gaussian noise, the gain matrix can be calculated offline though the Hamilton
function includes a random excitation term.

Substituting Eq. (3.5.10) into Eq. (3.5.1) and using the Fourier transform on both
sides, one has

{[(ω2
0 + m−1 �

K ) − ω2] + (2ζω0 + m−1 �

C)(iω)}x(ω) � −ẍg(�, ω) (3.5.12)

where
�

C,
�

K denote the numerical damping and numerical stiffness provided by the
control force u(t), respectively,

�

C = R−1
U (B1P12 + B2P22),

�

K = R−1
U (B1P11 + B2P21) (3.5.13)

According to the statistical relation between the input and output of linear stochas-
tic systems in frequency domain (Crandall 1958), one has

SX (ω) � S0

[(ω2
0 + m−1

�

K ) − ω2]2 + (2ζω0 + m−1
�

C)2ω2
(3.5.14)

In view of Wiener–Khintchine theorem (Wiener 1964; Chatfield 1989), the mean-
square displacement under control is then derived as follows:

E[x2(t)] �
∞∫

−∞

S0

[(ω2
0 + m−1

�

K ) − ω2]2 + (2ζω0 + m−1
�

C)2ω2
dω (3.5.15)

Concerning the integral shown in Eq. (3.5.15), a closed solution can be attained
by virtue of a class of specified rules (Roberts and Spanos 1990), which is given by

E[x2(t)] � π S0

(2ζω0 + m−1
�

C)(ω2
0 + m−1

�

K )
(3.5.16)

Obviously, there is a linear relation between system state and control force in
frequency domain, which is given as

u(ω) � [− �

C(iω) − �

K ]x(ω) (3.5.17)

Then, the mean-square control force can be derived as follows:
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Fig. 3.29 Relation between root-mean-square quantities and ratio of coefficients of weighting
matrices by means of PSO, LQG, and DC

E[u2(t)] �
∞∫

−∞

(
�

K
2

+
�

C
2

ω2)S0

[(ω2
0 + m−1

�

K ) − ω2]2 + (2ζω0 + m−1
�

C)2ω2
dω (3.5.18)

Using the rule shown in Eq. (3.5.16) once again, one has

E[u2(t)] � π S0[
�

C
2

(ω2
0 + m−1

�

K ) +
�

K
2

]

(2ζω0 + m−1
�

C)(ω2
0 + m−1

�

K )
(3.5.19)

Figure 3.29 shows the relation between root-mean-square quantities and the ratio
of coefficients of weighting matrices by means of the physically based stochastic
optimal (PSO) control, the LQG control, and the deterministic control (DC) using
random seismic ground motion, white Gaussian noise, and recorded seismic ground
motions, i.e., EL270 and EMC90, as the external excitation. In this case, the coef-
ficient of state weighting matrix is set as 100. For the LQG, the root-mean-square
quantities can be calculated directly from Eqs. (3.5.16) and (3.5.19); while for the
PSO and the DC, the root-mean-square quantities are identified as their peaks since
the derivations of these quantities are time variant and nonstationary.

It is indicated that (i) as the ratio 106 ≤ q/r < 1012, the LQG underestimates
the structural displacement, in that the stationary response of the structural system
subjected to white Gaussian noise is several times lower than the peaks of the non-
stationary response of the structural system subjected to the random and recorded
seismic ground motions. The LQG, meanwhile, underestimates the desired control
force. It is seen that the control force assessed by the LQG increases exponen-
tially along with the ratio of coefficients of weighting matrices in logarithmic scale.
The control force assessed by the PSO, however, increases logarithmically along
with the ratio of coefficients of weighting matrices in logarithmic scale; (ii) as ratio
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1012 ≤ q/r < 4 × 1014, the structural displacement controlled by the PSO declines
significantly and the peak is close to that controlled by the LQG. The difference
of control forces between the two schemes becomes large along with the ratio of
coefficients of weighting matrices in logarithmic scale; (iii) as ratio q/r ≥ 4× 1014,
the structural responses controlled by the two schemes are almost the same, but
the control force of the LQG increases exponentially and surpasses that of the PSO
rapidly; and (vi) similar to the structural displacement, the structural velocity and
structural acceleration quantified by the LQG change exponentially along with the
ratio of coefficients of weighting matrices. In summary, the LQG underestimates the
desired control force when the ratio of coefficients of weighting matrices is set at a
low level, while it overestimates the desired control force when the ratio of coeffi-
cients of weighting matrices is set at a high level. It is thus remarked that employing
the LQG with nominal white Gaussian noise as the input cannot attain a reasonable
structural control system for civil engineering structures.

It is also seen from Fig. 3.29 that by means of the deterministic control (DC),
the structural control system designed as the seismic ground motion EMC90 might
be disabled when the structure is subjected to the seismic ground motion EL270.
If the ratio of coefficients of weighting matrices is set as q/r � 2 × 1011, for
instance, the extreme value of structural displacement is within 10 mm when the
structure is subjected to the seismic ground motion EMC90. However, the structural
displacement attains 15 mm when the structure is subjected to the seismic ground
motion EL270, although the required control forces designed as the two recorded
seismic groundmotions are almost same. It is thus demonstrated that the deterministic
control cannot guarantee a safe structure; while the PSO offers an elegant means
for the logical control of structures that can secure a safe structure in the sense of
probability.

3.6 Discussions and Summaries

The relevant theory and methods for the classical stochastic optimal control such
as the LQG still remain open for the control gain design of engineering structures
subjected to the nonstationary excitations, e.g., strong earthquakes and high winds.
In essence, moreover, the classical stochastic optimal control belongs to a family of
moment-based schemes. The physically based stochastic optimal control, however,
facilitates the control gain design of engineering structures with strong nonlinear-
ities and subjected to nonstationary excitations, which circumvents the dilemma
pertaining to the classical stochastic optimal control. Moreover, the physically based
stochastic optimal control can implement the regulation of probability density of
structural systems, by virtue of the probabilistic criteria in terms of structural relia-
bility for parameter optimization of control law. The reliability-based probabilistic
criteria can be readily applied by the proposed control scheme since the PSO straight-
forwardly include the solution of probability density of structural responses provided
by the probability density evolution method.
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Fig. 3.30 Schematic diagram of differences between classical stochastic optimal control and PSO

Indeed, a probability-density-based stochastic optimal control can be imple-
mented in conjunctionwith the classical Fokker–Planck–Kolmogorov equation (FPK
equation). However, similar to the situation of the FPKequation in the field of random
vibration, the FPK equation with control force term still encounters the challenge
of solving the probability density of stochastic systems in practice. Applicability of
the FPK equation-based stochastic optimal control is far less than the LQG though
the latter merely concerns the second-order moment of structural responses. While
the generalized probability density evolution equation involved in the PSO breaks
through the dilemma,which forms into the logical basis for the theory andmethods of
stochastic optimal control of structures. A schematic diagram shows the differences
between the classical stochastic optimal control and the PSO; see Fig. 3.30.

It is worth noting that the classical stochastic optimal control is capable of imple-
menting the moment-based control and attaining probability-density-based control
in cases of extremely particular situations through defining the FPK equation involv-
ing control force terms. However, the physically based stochastic optimal control is
readily to implement the probability-density-based control by connecting two fam-
ilies of equations: one is the equation of motion of controlled stochastic systems,
e.g., Eq. (3.2.1), which is termed as the physical equation; another is the probabil-
ity density evolution equation of controlled stochastic systems, e.g., Eqs. (3.2.9) and
(3.2.10), which is termed as the evolution equation. The solving of the physical equa-
tion is carried out over realizations, which resorts to advanced techniques employed
in the deterministic optimal control, such as the linear quadratic regulator (LQR), the
optimal polynomial control (OPC), etc. Most of these techniques are optimal control
methods based on the Riccati equation and dynamic programming methods based
on the Bellman’s optimality principle.
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Chapter 4
Probabilistic Criteria of Stochastic
Optimal Control

4.1 Preliminary Remarks

As indicated in Chap. 3, the classical LQG with specified parameters of control law
just secures the structural performance in the sense of second-order moment, and
cannot be applied to design a logical control system on the basis of nominal white
Gaussian noise. The methodology of physically based stochastic optimal control of
structures was thus proposed. However, the optimization of parameters of control
law in the previous chapter relies upon a trial-and-error procedure. For instance,
Eq. 3.3.21 for parameter optimization is a statistical moment-relevant probabilistic
criterion that might not ensure the structural safety.

It is revealed in the previous study that the control effectiveness of the LQR-based
PSO straightforwardly hinges on the cost function and its deduced control law, in
which the parameters of weighting matrices play a critical role. Several strategies for
selecting weighting matrices have been developed in recent years. One involves the
performance function pertaining to the system stability, including the trial-and-error
procedure and the control criterion on Lyapunov asymptotic stability condition. For
example, Chen et al. proposed an optimization technique for designing the stabilizer
of linear power systems, where the specified weighting matrix was constructed so as
to move the dominant eigenvalues of system matrix as far as possible from the imag-
inary axis until the desired damping ratio was attained (Chen et al. 1992). Yang et al.
analyzed a variety of energy-based weighting matrices through solving the Riccati
equation, and figured out the applicability of these weighting matrices (Yang et al.
1992a, b). Although this strategy originates from the deterministic optimal control,
it is also applicable to the stochastic optimal control since the stability belongs to
the intrinsic property of structural systems. An effective algorithm, for instance, for
selecting weighting matrices was proposed in the case of optimal control under inter-
val uncertainty (Tsay et al. 1991). Another strategy is via the system second-order
statistics evaluation, which has been addressed in details in Chap. 3. It is readily seen
that these two strategies both exclude the optimization procedures and algorithms,
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and the derived parameters of weighting matrices hardly guarantee a desired per-
formance of structures. The third strategy includes optimization procedures. In the
context of the classical LQG, Stengel et al. developed a family of probabilistically
optimal criteria pertaining to system robustness of structures (Stengel et al. 1992).
Zhu et al. investigated the weighting matrices of the quadratic cost function based
on the stochastic averaging method for quasi-Hamiltonian systems represented by
the Hamilton–Jacobi–Bellman (HJB) equation (Zhu et al. 2001).

This chapter attempts to establish a family of probabilistic criteria for the phys-
ically based stochastic optimal control. The pertinent procedure of optimizing the
cost-function weights is then addressed, with the application of this family of proba-
bilistic criteria to the stochastic optimal control of randomly base-excited structures.
The proposed probabilistic criteria include a single-objective one with respect to sys-
tem state and control force, and a multiple-objective one with respect to the trade-off
between system quantities of interest. This treatment is expected to circumvent the
adverse situation for designing cost-function weights by trial-and-error procedures.

4.2 Gain Matrix of Stochastic Optimal Control

It is indicated in Eq. 3.3.18; the control law of a closed-loop system can be expressed
as follows:

U(�, t) � f(QZ,RU)Z(�, t) (4.2.1)

where f(·) denotes the gain matrix of stochastic optimal control.
The system state Z(t) and control force U(t) are governed by the generalized

probability density evolution equations; see Eqs. 3.2.9 and 3.2.10, respectively. A
probabilistic criterion based on probability density can be established, whereby the
parameters of optimal control law (Q∗

Z,R∗
U) are then attained. Figure 4.1 shows the

PDFs of structural response at the typical instant of time with different parameters
of control law.

As it is mentioned in Chap. 3, the physically based stochastic optimal control
involves a two-step optimization: the first step is minimizing the cost function so
as to build the mapping relation between the set of control parameters and the set
of control gains; the second step is minimizing the performance function so as to
derive the optimal control parameters. Therefore, utilizing the probabilistic criterion
with respect to probability density aims to seek for the potential parameters of opti-
mal control law (Q∗

Z,R∗
U) so that the performance function pertaining to structural

performance is minimum.
It has been noted that theweightingmatricesQZ andRU in the quadratic cost func-

tion are rigorously positive semi-definite and positive definite, respectively, which
is necessary for the deterministic control so as to guarantee a convex optimization
problem. While this is not true for the classical stochastic optimal control, e.g.,
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Fig. 4.1 PDFs of structural
response at typical instant of
time with different
parameters of control law
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in some stochastic LQR problems, the cost-function weights might be indefinite
(specifically, negative definite) but the problem still remains well posed when the
diffusion term in the state equation is dependent upon the control action (Chen et al.
1998). Since the proposed physically based stochastic optimal control relies upon
the deterministic realizations, the positive definite cost-function weights are prefer-
able which is well suited to search locally optimal solutions. Therefore, QZ and RU

are rigorously positive semi-definite and positive definite in this study, respectively.
Besides, the cost-function weightsQZ andRU are both theoretically time-dependent,
symmetrical, and full matrices (Leondes and Salami 1980), but practically they are
often assumed to be time-independent. Some efforts aiming at the optimization of
cost-function weights reveal that the diagonal elements are usually far larger than the
off-diagonal elements, which indicates that the cross terms between the displacement
and velocity can be ignored safely (Chen et al. 1992). It is thus reasonable to assume
the cost-function weights as the following formulation (Zhang and Xu 2001):

QZ �
[
Qd 0
0 Qv

]
, RU � Ru (4.2.2)

4.3 Probabilistic Criteria

By virtue of the sample trajectory description, the generalized probability density
evolution equation reveals the evolutionary process of stochastic systems. As to
stochastic dynamical systems, the extreme value of sample processes in probabilistic
space is a random variable. If the extreme value of system quantities of interest is
set as the objective of stochastic optimal control, an equivalent extreme-value event
including the relevance between the quantities can be readily constructed (Li et al.
2007). For instance, an equivalent extreme-value vector of system state is defined as
follows:
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Fig. 4.2 Schematic of mean
criterion
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Z̃ (�) � max
t

[
max

i
|Zi (�, t)|

]
(4.3.1)

where Zi (�, t) denotes the ith component of system state; t denotes the duration of
system state.

A variety of probabilistic criteria with physical meanings can be constructed
(Li et al. 2011a, b). In view of the statistical moments, one can readily have three
probabilistic criteria as follows:

(i) Mean criterion

min(J2) � min

{
E[W̃TW̃]

∣∣∣ M∪
k�1

{F[Ṽk] ≤ Ṽk,con}
}

(4.3.2)

where W̃ denotes the equivalent extreme-value quantity to be controlled; Ṽ denotes
the equivalent extreme-value quantity as the constraint. The physical meaning of the
mean criterion is that the ensemble average of extreme value of the control objective
is minimized. A schematic is shown in Fig. 4.2, where w̃ denotes a component of
the equivalent extreme-value quantity W̃.

(ii) Mean-standard deviation criterion

min(J2) � min

{
E[W̃TW̃] + βσ [W̃TW̃]

∣∣∣ M∪
k�1

{F[Ṽk] ≤ Ṽk,con}
}

(4.3.3)

where β denotes the coefficient of confidence level. The physical meaning of the
mean-standard deviation criterion is that the ensemble average plus β times standard
deviation of extreme value of the control objective is minimized, as shown in Fig. 4.3.
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Fig. 4.3 Schematic of
mean-standard deviation
criterion
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(iii) Exceedance probability criterion

min(J2) � min

{
PrT(W̃ − W̃thd > 0) Pr(W̃ − W̃thd > 0)

∣∣∣ M∪
k�1

{F[Ṽk] ≤ Ṽk,con}
}

(4.3.4)

where W̃thd denotes the threshold of quantity to be controlled; Pr{·} denotes the
probability of the random event. The physical meaning of the exceedance probability
criterion is that the structural safety can be guaranteed with a minimum exceedance
probability; see Fig. 4.4.

It is indicated that from the mean criterion to the exceedance probability criterion,
the involved criteria include statistical moments and local information of probability
density.Although the exceedance probability criterion does not involve the full details
of the probability density, it is widely used in practice due to its relevance directly
with the structural reliability.
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4.3.1 Single-Objective Criteria

4.3.1.1 System State Based Optimization Criteria

There is a practical issue that the remaining quantities of system state might be
uncontrollable if the probabilistic criterion is designed merely on a single quan-
tity. A penalty function is often introduced to bypass this challenge. For instance, if
the structural displacement pertaining to structural safety is defined as the control
objective, and the structural acceleration is considered as a constraint, the proba-
bilistic criteria in Eqs. (4.3.2), (4.3.3), and (4.3.4) can be specified by the following
formulations.

(i) Mean criterion

min{J2} � min
{
E[D̃] + 106 × H ( Ãmax − Ãcon)

}
(4.3.5)

where D̃(�) � max
t

[
max

i
|Di (�, t)|

]
denotes the equivalent extreme-value dis-

placement; H (·) denotes a Heaviside step function which exhibits the behaviors as
follows:

H ( Ãmax − Ãcon) �
{
0, Ãmax < Ãcon

1, Ãmax ≥ Ãcon
(4.3.6)

where Ãmax � max( Ã(�)) denotes the maximum acceleration; Ã(�) �
max

t

[
max

i
|Ai (�, t)|

]
denotes the equivalent extreme-value acceleration; Ãcon

denotes the threshold of acceleration constraint.

(ii) Mean-standard deviation criterion

min{J2} � min
{
E[D̃] + β × σ [D̃] + 106 × H ( Ãmax − Ãcon)

}
(4.3.7)

(iii) Exceedance probability criterion

min{J2} � min
{
Pr(D̃ − D̃thd > 0) + H ( Ãmax − Ãthd)

}
(4.3.8)

4.3.1.2 Control Force Based Optimization Criteria

For a controlled structural system, not only the system state pertaining to system
safety is of concern but also the control force pertaining to control cost is of concern
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in some situations. The probabilistic criteria in function of control force are provided
as follows:

(i) Mean criterion

min(J2) � min{E[Ũ ]} (4.3.9)

(ii) Mean-standard deviation criterion

min(J2) � min{E[Ũ ] + β × σ [Ũ ]} (4.3.10)

(iii) Exceedance probability criterion

min{J2} � min
{
Pr(Ũ − Ũthd > 0)

}
(4.3.11)

where Ũ (�) � max
t
[max

i
|Ui (�, t)|] denotes the equivalent extreme-value control

force; Ũthd denotes the threshold of the control force.

4.3.1.3 System State and Control Force Based Optimization Criteria

When structural displacement pertaining to the structural safety is set as the control
objective, and structural acceleration and control force are set as the constraint, the
probabilistic criteria are given by

(i) Mean criterion

min{J2} � min
{
E[D̃] + 106 × (H ( Ãmax − Ãcon) + H (Ũmax − Ũcon))

}
(4.3.12)

where Ũmax � max(Ũ (�)) denotes the maximum control force.

(ii) Mean-standard deviation criterion

min{J2} � min
{
E[D̃] + β × σ [D̃] + 106 × (H ( Ãmax − Ãcon) + H (Ũmax − Ũcon))

}
(4.3.13)

(iii) Exceedance probability criterion

min{J2} � min
{
Pr(D̃ − D̃thd > 0) + H ( Ãmax − Ãcon) + H (Ũmax − Ũcon)

}
(4.3.14)
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4.3.2 Multiple-Objective Criteria

It is recognized that if the probabilistic criterion merely relies upon a single quan-
tity, the remaining physical quantities pertaining to system performance, e.g., the
structural velocity relevant to system serviceability and the structural acceleration
relevant to system comfortability, might be neglected. These physical quantities,
however, often need to be concerned simultaneously in practice due to their mutual
constraints. Therefore, the design principle in trade-off is necessary for a logical
control. It thus leads to the proposal of multiple-objective probabilistic criteria.

4.3.2.1 Performance Trade-off Based Optimization Criteria

(i) Mean criterion

In this control criterion, the performance function is defined as the ensemble average
of the quadratic combination of system state and control force:

J2 � E

⎡
⎣

t f∫
t0

1

2
{Z̃T

t (t)QZ̃t
Z̃ t (t) + ŨT

t (t)RŨt
Ũt (t)}dt

⎤
⎦ (4.3.15)

where Z̃t (�, t) � max
i

|Zi (�, t)|, Ũt (�, t) � max
i

|Ui (�, t)| denotes the equivalent
processes of system state and control force, respectively.

Introducing the standardized form of matrix

Z̃T
t QZ̃t

Z̃ t � Tr(Z̃T
t QZ̃t

Z̃ t ) � Tr(QZ̃t
Z̃ t Z̃

T
t ) (4.3.16)

where Tr(·) denotes the trace of matrix, and considering the relation between control
force and system state; see Eq. (3.2.18), one has

J2 � 1

2
Tr

⎧⎨
⎩

t f∫
t0

((QZ̃t
+GT

Z̃t
RŨt

GZ̃t
)E[Z̃t (t)Z̃

T
t (t)])dt

⎫⎬
⎭ (4.3.17)

where the switch between the ensemble average operator and the integral operator
and the switch between ensemble average operator and the trace operator are applied.
Besides, the dimensions of weighting matrices QZ̃t

,RŨt
and of the gain matrix GZ̃t

are both consistent with the equivalent processes of system state and control force
Z̃t , Ũt , which have the forms as follows:

QZ̃t
�

[
Qd 0
0 Qv

]
,RŨt

� Ru,GZ̃t
� R−1

Ũt
BTPt (4.3.18)
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where Pt denotes the Riccati matrix.
The mean criterion with acceleration constraint is thus given by

J2 � 1

2
Tr

⎧⎨
⎩

t f∫
t0

((QZ̃t
+GT

Z̃t
RŨt

GZ̃t
)E[Z̃t (t)Z̃

T
t (t)])dt

⎫⎬
⎭ + 106 × H ( Ãmax − Ãcon)

(4.3.19)

It is readily seen that the mean criterion based on performance trade-off indicates
a minimum mean-square quantity in balance.

(ii) Exceedance probability criterion

The mean criterion can attain a performance trade-off in the sense of mean. How-
ever, it does not meet the requirement of the elaborate design of the control system.
Another performance function is defined as the exceedance probability of quadratic
combination of system state and control force:

J2 �
∞∫

L thd

p(L)dL (4.3.20)

where

L(Z̃t , Ũt ,�) � 1

2
Tr

⎧⎨
⎩

t f∫
t0

((QZ̃t
+GT

Z̃t
RŨt

GZ̃t
)[Z̃t (t)Z̃

T
t (t)])dt

⎫⎬
⎭ (4.3.21)

L thd � 1

2

[
qcorr[Fcorr(D̃)]2 + qcorr[Fcorr(Ṽ )]2 + rcorr[Fcorr(Ũ )]2

]
(t f − t0) (4.3.22)

where Ṽ (�) � max
t

[
max

i
|Vi (�, t)|

]
denotes the equivalent extreme-value velocity;

The threshold L thd is defined as the first-passage failure criterion: if the quantile of any
quantity among structural displacement, structural velocity, and control force first
attains to its threshold, the remaining quantities are assigned by their present charac-
teristic values, and meanwhile the coefficients of weighting matrices qcorr , rcorr are
defined.

The exceedance probability criterion with acceleration constraint is then given by

min(J2) � min

⎧⎨
⎩

∞∫
Lthd

p(L)dL + H ( Ãmax − Ãcon)

⎫⎬
⎭ (4.3.23)

It is readily seen that the exceedance probability criterion based on performance
trade-off indicates a minimum exceedance probability of quantities in balance.
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4.3.2.2 Energy Trade-off Based Optimization Criteria

The probabilistic criteria based on performance trade-off refer to a minimum argu-
ment consisting of system quantities. This treatment, however, does not straightfor-
wardly meet with the control demand of system quantities of interest. Alternative
criteria can be constructed based on a probabilistic measure of system quantities and
energy trade-off.

(i) Mean criterion

The performance function in terms of means of system quantities can be defined as

J2 � 1

2

t f∫
t0

{
ET[Z̃t ]QZ̃t

E[Z̃t ] + ET[Ũt ]RŨt
E[Ũt ]

}
dt (4.3.24)

which can be deduced into

J2 � 1

2
Tr{

t f∫
t0

((QZ̃t
+GT

Z̃t
RŨt

GZ̃t
)E[Z̃t ]E

T[Z̃t ])dt} (4.3.25)

The probabilistic criterion with acceleration constraint is thus given by

J2 � 1

2
Tr

⎧⎨
⎩

t f∫
t0

(
(QZ̃t

+GT
Z̃t
RŨt

GZ̃t
)E[Z̃t ]E

T[Z̃t ]
)
dt

⎫⎬
⎭ + 106 × H ( Ãmax − Ãcon)

(4.3.26)

Different from the mean criterion based on performance trade-off, the mean cri-
terion based on energy trade-off indicates a minimum mean energy in balance.

(ii) Exceedance probability criterion

In order to attain a minimum failure possibility of system quantities, the performance
function in terms of exceedance probabilities of system quantities is defined as

J2 � 1

2

t f∫
t0

[
Pr T

Z̃t
(Z̃t − Z̃t,thd > 0)QZ̃Pr Z̃t

(Z̃t − Z̃t,thd > 0) + Pr T
Ũt

(Ũt − Ũt,thd > 0)RŨ Pr Ũt
(Ũt − Ũt,thd > 0)

]
dt

(4.3.27)

where Z̃t,thd, Ũt,thd are thresholds of Z̃t , Ũt , respectively.
Obviously, the minimization of performance function Eq. (4.3.27) involves the

calculation of time-variant reliability, which dramatically increases the complexity
of the optimization problem. According to the extreme-value distribution theorem,
only the extreme values of system quantities over the duration interval [t0, t f ] are
concerned. Equation (4.3.27) can thus be simplified to be
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J2 � 1

2

[
Pr T

Z̃
(Z̃ − Z̃thd > 0)QZ̃ Pr Z̃ (Z̃ − Z̃thd > 0) + Pr T

Ũ
(Ũ − Ũthd > 0)RŨ Pr Ũ (Ũ − Ũthd > 0)

]
(4.3.28)

where Z̃ thd, Ũthd are thresholds of Z̃ , Ũ , respectively. TheweightingmatricesQZ̃ ,RŨ
in Eq. (4.3.28) are not the same as the weighting matrices QZ̃t

,RŨt
in Eqs. (4.3.15)

and (4.3.24), in that they have different dimensions. Since the performance function
consists of exceedance probabilities of system quantities,QZ̃ ,RŨ are dimensionless
arguments and can be defined simply as follows:

QZ̃ �
[
1 0
0 1

]
,RŨ � 1 (4.3.29)

The exceedance probability criterion with acceleration constraint is thus given by

J2 � 1

2
[Pr T

Z̃
(Z̃ − Z̃ thd > 0)QZ̃ Pr Z̃ (Z̃ − Z̃ thd > 0)

+ Pr T
Ũ
(Ũ − Ũthd > 0)RŨ Pr Ũ (Ũ − Ũthd > 0)] + H ( Ãmax − Ãcon) (4.3.30)

The exceedance probability criterion based on energy trade-off indicates a mini-
mum probability energy in balance.

4.3.3 Comparative Studies

For illustrative purposes, the controlled single-story shear frame shown in Sect. 3.4.1
is investigated. Optimization and design of the active tendon system subjected to ran-
dom seismic ground motion are carried out using the probabilistic criteria mentioned
in the previous section.

4.3.3.1 Single-Objective Criteria

The thresholds of structural displacement, structural velocity, structural acceleration,
and control force are denoted by 10mm, 100mm/s, 3000mm/s2, and 200 kN, respec-
tively. Coefficient of confidence level β � 1. The quantile function for assessing the
threshold of the performance function in exceedance probability criterion based on
performance trade-off is defined as themean plus three times of standard deviation. In
the cost function of optimal control, the state weighting matrixQZ � diag{Qd , Qv},
and the control forceweightingmatrixRU � Ru . The deterministic dynamic analysis
resorts to the transfer functionmethod. The toolkit function ofMATLAB, fmincon, is
used in the optimization procedure, where a sequence quadratic programming (SQR)
method solving the subproblem is involved in each iteration. The optimization pro-
cedure is essentially a scheme of local nonlinear optimization with constraints based
on the solution of the Kuhn–Tucker equation (Mathews and Fink 2003).
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The optimization results of control parameters under the single-objective criteria
are shown in Table 4.1, Table 4.2, and Table 4.3, respectively. Some remarks can be
drawn as follows.

Remark 1 The system quantities of concern attain to a trade-off step by step from the
optimization criterion groups with displacement control and acceleration constraint
(S-I) to the optimization criterion group with minimum control force (S-II) and
the optimization criterion group with displacement control and acceleration-control
force constraint (S-III), which arises to a hierarchical design of probabilistic criteria.

Remark 2 The optimal parameters of mean criterion (i) and of mean-standard devi-
ation criterion (ii) are nearly identical, either in the case of optimization criterion
group S-I, or in the cases of optimization criterion groups S-II and S-III. The dis-
crepancy between mean criterion (i) and mean-standard deviation criterion (ii) is just
3.78%. It is understood that since the first-order moment represents the main part of
probabilistic information, mean criterion (i) has thus a similar control effectiveness
to mean-standard deviation criterion (ii), indicating that mean-standard deviation
criterion, at least for this study, can be substituted by mean criterion.

Table 4.1 Optimal parameters under single-objective criteria with displacement control and accel-
eration constraint (S-I)

Parameters (i) (ii) (β � 1) (iii) (β � 1)

Qd Qv Ru Qd Qv Ru Qd Qv Ru

Initial value 100 100 10−10 100 100 10−10 100 100 10−10

Optimal value 230.2 13983.4 10−10 221.5 13984.1 10−10 101.0 195.4 10−10

Objective function 0.91 mm 1.06 mm 0.0016

Table 4.2 Optimal parameters under single-objective criteria with minimum control force (S-II)

Parameters (i) (ii) (β � 1) (iii) (β � 1)

Qd Qv Ru Qd Qv Ru Qd Qv Ru

Initial value 100 100 10−8 100 100 10−8 100 100 10−8

Optimal value 99.2 0.0 10−8 99.2 0.0 10−8 100.0 100.0 10−8

Objective function 0.11 kN 0.17 kN 0.0000

Table 4.3 Optimal parameters under single-objective criteria with displacement control and accel-
eration–control force constraint (S-III)

Parameters (i) (ii) (β � 1) (iii) (β � 1)

Qd Qv Ru Qd Qv Ru Qd Qv Ru

Initial value 100 100 10−10 100 100 10−10 100 100 10−10

Optimal value 102.6 383.2 10−10 102.5 383.2 10−10 101.0 195.4 10−10

Objective function 4.72 mm 5.67 mm 0.0016
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Remark 3 Exceedance probability criterion (iii) in the optimization criterion groups
S-I, S-II, and S-III are significantly different from mean criterion (i) and mean-
standard deviation criterion (ii). It owes to the fact the probability density exhibits
more information than the statistical moments.

Remark 4 The optimal parameters of exceedance probability criterion (iii) in the
case of the optimization criterion group S-I and those in the case of the optimization
criterion group S-III are identical, as shown in Tables 4.1 and 4.3. It is indicated that
in the optimization criterion group S-III, the control force constraint has no influ-
ence upon the optimal parameters and objective function of exceedance probability
criterion (iii); while the control force constraint has significant influence upon the
optimal parameters and objective function of mean criterion (i) and mean-standard
deviation criterion (ii), since their optimal parameters and the objective functions are
significantly different from the optimization criterion group. It is explained that mean
criterion (i) and mean-standard deviation criterion (ii) are devoted to minimizing the
first two-order moments of system displacement that needs much more control cost,
which strengthens the control force constraint. Exceedance probability criterion (iii),
however, aims tominimize the exceedance probability of displacement, which hinges
upon the detail of the PDF, especially upon the “tail” of the PDF that does not require
a minimum mean and a minimum standard deviation. For illustrative purposes, the
PDFs of two alternative cases are shown in Fig. 4.5. It is seen that the area of the “tail”
of the PDF with a larger mean or with a larger standard deviation is smaller instead,
indicating that a less control cost is needed in exceedance probability criterion. It is
thus noted that exceedance probability criterion exhibits more economic and more
obvious control effectiveness than mean and mean-standard deviation criteria.

Comparative study of optimal control of the structure using the single-objective
criteria is carried out. The numerical results are shown in Table 4.4. It is seen that
the control effectiveness seriously relies on the probabilistic criteria relevant to the
system quantities of interest. Since the control force serves as the objective quantity,
the optimization criterion group S-II attains a minimum control force whatever on

PDF

zthdz

PDF

zthdz

(a) PDFs with different mean and same standard  (b ) PDFs with same mean and different 
deviation standard deviation

Fig. 4.5 Comparison between PDFs with different means and standard deviations
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the mean or on the standard deviation. The treatment can gain a minimum control
cost but might result in a response amplification instead of response reduction. The
optimization criterion group S-I attains aminimum displacement under the condition
of the constraint, however, it is not mostly economical. In the optimization criterion
group S-III, mean criterion (i) has a better displacement and acceleration control than
exceedance probability criterion (iii). This is due to the fact that the control force
constraint imposed on the optimization criterion group S-III has no influence upon
exceedance probability criterion (iii) but has influence upon mean criterion (i). The
optimization criterion group S-III is thusmore reasonable. In summary, the stochastic
optimal control using the probabilistic criterion relevant to exceedance probability
withmultiple constraints behavesmore comprehensively than that using probabilistic
criterion relevant to statistical moments with a single constraint. Besides, exceedance
probability criterion (iii) in all the optimization criterion groups aims at themaximum
system reliability, and thus operates more effective and more economical than mean
criterion (i) and mean-standard deviation criterion (ii).

The abovementioned probabilistic criteria are devoted to minimizing the dis-
placement with constraints of the acceleration and control force. It is spontaneously
feasible by relocating the objective quantity and constraints.

Table 4.4 Comparison of control effectiveness using single-objective criteria

Equ. ext.-value Probabilistic criterion

S-I S-II S-III

(i) (iii) (i) (iii) (i) (iii)

Interstory drift
(mm)

Mn Unc. 28.47 28.47 28.47 28.47 28.47 28.47

Con. 0.91 6.23 28.94 25.57 4.72 6.23

Eff.a −96.80% −78.12% 1.65% −10.19% −83.42% −78.12%

Std.d Unc. 13.78 13.78 13.78 13.78 13.78 13.78

Con. 0.15 1.41 14.11 11.84 0.95 1.41

Eff. −98.91% −89.77% 2.39% −14.08% −93.11% −89.77%

Story acceleration
(mm/s2)

Mn Unc. 3602.66 3602.66 3602.66 3602.66 3602.66 3602.66

Con. 1075.40 1235.60 3661.74 3245.40 1157.05 1235.60

Eff. −70.15% −65.70% 1.64% −9.92% −67.88% −65.70%

Std.d Unc. 1745.59 1745.59 1745.59 1745.59 1745.59 1745.59

Con. 355.23 348.92 1786.11 1504.00 331.04 348.92

Eff. −79.65% −80.01% 2.32% −13.84% −81.04% −80.01%

Interstory control
force (kN)

Mn 106.33 86.55 0.11 10.78 92.78 86.55

Std.d 35.68 30.71 0.06 5.44 31.78 30.71

aEffectiveness is defined as (Con.-Unc.)/Unc.
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4.3.3.2 Multiple-Objective Control Criteria

The definition of the threshold of L thd in Eq. (4.3.22) refers to Fig. 3.11. It is seen
that if the quantile locates at the mean plus three times of standard deviation, the
quantiles of the equivalent extreme-value displacement and equivalent extreme-value
control force are 7.41 mm and 188.86 kN, respectively, which are less than their
thresholds when the quantile of the equivalent extreme-value velocity is beyond its
threshold 100 mm/s. The corresponding ratio of coefficients of weighting matrices
is 4×1012, and the coefficients are set as qcorr � 400, rcorr � 1×10−10, respectively.
Meanwhile, the threshold L thd is 77.71 in SI units.

The optimal control parameters under multiple-objective criteria are shown in
Table 4.5. It is noted again that the control effectiveness of structural control relies on
the physical meanings of the probabilistic criteria. The optimized control parameters
and objective functions of mean and exceedance probability criteria in optimization
criterion group on performance trade-off M-I(i), M-I(ii) and of the mean criterion
in optimization criterion group on energy trade-off M-II(i) are nearly identical. This
is owing to the fact that these criteria all involve the balance of system quantities in
physical dimensions.

Table 4.6 shows the comparison of control effectiveness using the multiple-
objective criteria. It is readily seen that the probabilistic criteria in optimization
criterion group on performance trade-off M-I aim at minimizing the probabilistic
measure of performance function; see the ensemble average and exceedanceprobabil-
ity, which does not straightforwardly underline the system quantity control andmight
result in a disabled control system. Although mean criterion M-I(i) and exceedance
probability criterion M-I(ii) exhibit less exceedance probabilities of representative
functions shown in Eq. (4.3.21) and attain a better balance between control force
and system state, they derive larger exceedance probabilities on both displacement
and velocity. Similarly, mean criterion M-II(i) in optimization criterion group on
energy trade-off M-II aims at the best balance between control force and system
state, and cannot guarantee structural safety as well. However, the exceedance prob-
ability criterion M-II(ii) in optimization criterion group on energy trade-off M-II not
only guarantees a safe structure but also remains the control cost in a rational range.
As shown in Table 4.6, the exceedance probabilities of displacement and velocity
using the probabilistic criterion M-II(ii) are significantly less than those using other
multiple-objective criteria, and meanwhile, the exceedance probability of control
force 0.0002 can be accepted as well. Besides, the acceleration, as constraint to all
the multiple-objective criteria, has an exceedance probability less than 5 × 10−5,
which indicates an effective constraint on the optimization process.

One might recognize that the performance functions included in probabilistic
criteriaM-I(i) andM-II(i) have certain similarities to the cost function in the classical
LQG. It is indicated that the traditional policy controlling the mean-square response
of system quantities cannot guarantee the structural safety; while the exceedance
probability criterion based control parameter optimization is just the key of stochastic
optimal control.



134 4 Probabilistic Criteria of Stochastic Optimal Control

Ta
bl
e
4.
5

O
pt
im

al
co
nt
ro
lp

ar
am

et
er
s
un

de
r
m
ul
tip

le
-o
bj
ec
tiv

e
cr
ite

ri
a

Pa
ra
m
et
er
s

(M
-I
)

(M
-I
I)

(i
)

(i
i)

(i
)

(i
i)

Q
d

Q
v

R
u

Q
d

Q
v

R
u

Q
d

Q
v

R
u

Q
d

Q
v

R
u

In
iti
al
va
lu
e

10
0

10
0

10
−1

0
10
0

10
0

10
−1

0
10
0

10
0

10
−1

0
10
0

10
0

10
−1

0

O
pt
im

al
va
lu
e

0.
0

80
.7

10
−1

0
3.
6

80
.7

10
−1

0
0.
0

80
.7

10
−1

0
10
73
.6

50
5.
0

10
−1

0

O
bj
ec
tiv

e
fu
nc
tio

n
35
.9
6

0.
03
86

0.
83
70

0.
01
50

×
10

−6



4.3 Probabilistic Criteria 135

Table 4.6 Comparison of control effectiveness using multiple-objective criteria

Exceedance Prob. Probabilistic criterion

Unc. M-I M-II

(i) (ii) (i) (ii)

Interstory drift Pf,d 0.9020 0.3147 0.3146 0.3147 3.60 ×
10−7

Interstory velocity Pf,v 0.8941 0.5245 0.5244 0.5245 4.88 ×
10−5

Story acceleration Pf,a 0.5735 4.46 ×
10−5

4.46 ×
10−5

4.46 ×
10−5

3.60 ×
10−7

Interstory control force Pf,u – 3.60 ×
10−7

3.60 ×
10−7

3.60 ×
10−7

1.66 ×
10−4

Representative function Pf,p 0.6745 0.0339 0.0386 0.0339 0.6981

For further investigation of probabilistic criteria, a comparison of structural opti-
mal control using the exceedance probability criterion in optimization criterion group
M-II, the exceedance probability criterion in optimization criterion group S-III, the
criterion on system second-order statistics evaluation (SSSE), and the criterion on
Lyapunov asymptotic stability condition (LASC) is carried out. The numerical results
are shown in Table 4.7. It is seen that the criterion on Lyapunov asymptotic stability
condition has the best acceleration control on the mean; while it has the worst accel-
eration control on the standard deviation, and the largest control cost on the standard
deviation. The criterion on system second-order statistics evaluation exhibits the best
displacement control on themean and standard deviation; while it exhibits the largest
control cost on the mean. The exceedance probability criterion in optimization cri-
terion group S-III has the least control cost on the mean and standard deviation;
while it has the worst displacement control on the mean and standard deviation, and
the worst acceleration control on the mean. The exceedance probability criterion in
optimization criterion group M-II exhibits the best acceleration control on the stan-
dard deviation, and it has no worse control of quantities. Moreover, the probabilistic
criterion M-II(ii) can provide accurate reliabilities of system quantities of interest
simultaneously; while other criteria fail to offer this critical information. It is thus
believed that the exceedance probability criterion in optimization criterion group on
energy trade-off accommodates the system performance to achieve a better trade-
off between response reduction and control cost, which is a preferential criterion in
structural control.

4.4 Numerical Example

For illustrative purposes, the exceedance probability criterion in optimization cri-
terion group on energy trade-off is applied to the eight-story shear frame attached
with fully distributed active tendon systems shown in Sect. 3.4.2. The thresholds of
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Table 4.7 Comparison of stochastic optimal control in terms of different criteria

Equ. ext.-value Probabilistic criterion

M-II(ii): QZ �
diag
{1073.6,505.0},
RU � 10−10

S-III(iii): QZ
� diag
{101.0,195.4},
RU � 10−10

SSSE: QZ �
diag {80,80},
RU � 10−11

LASC (Yang
et al. 1992a):
QZ � diag
{107, 109},
RU � 8 ×
10−6

Interstory drift
(mm)

Mn Unc. 28.47 28.47 28.47 28.47

Con. 4.15 6.23 3.40 5.35

Eff.a −85.42% −78.12%▼ −88.06%▲ −81.21%

Std.d Unc. 13.78 13.78 13.78 13.78

Con. 0.81 1.41 0.63 1.40

Eff. −94.12% −89.77%▼ −95.43%▲ −89.84%

Story
acceleration
(mm/s2)

Mn Unc. 3602.7 3602.7 3602.7 3602.7

Con. 1141.0 1235.6 1114.7 909.9

Eff. −68.33% −65.70%▼ −69.06% −74.74%▲

Std.d Unc. 1745.6 1745. 6 1745. 6 1745. 6

Con. 331.8 348.9 332.0 364.8

Eff. −80.99%▲ −80.01% −80.98% −79.10%▼

Interstory
control force
(kN)

Mn 94.93 86.55▲ 98.02▼ 88.78

Std.d 32.46 30.71▲ 33.12 33.51▼

aEffectiveness is defined as (Con.-Unc.)/Unc.
b▼ indicates a worse control effectiveness against other criteria
▲ indicates a better control effectiveness against other criteria

the interstory drift, interstory velocity, story acceleration, and the interstory control
force are 15 mm, 150 mm/s, 8000 mm/s2 and 2000 kN, respectively. Without con-
sideration of the cross terms between state quantities of all stories, and assigning a
same state weight to all the controllers on the stories, the cost-function weights are
set as follows:

QZ �
[
QdI 0
0 QvI

]
, RU � RuI (4.4.1)

where Qd , Qv, Ru denote the coefficients of weighting matrices with respect to
displacement, velocity and control force, respectively.

Using the same deterministic analysis and optimization technique to the previous
section, one can readily attain the optimal values of coefficients of weighting matri-
ces, as shown in Table 4.8. The exceedance probabilities of objective function and
system quantities such as interstory drift, interstory velocity, and interstory control
force are provided as well. The convergence process of the objective function along
the iteration number is shown in Fig. 4.6, which indicates a good trade-off between
response reduction and control cost. It is seen the exceedance probabilities of state
quantities and control force are in the range of 0.002 and 0.004.
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Time histories of the mean and standard deviation of the 1st interstory drift and of
the 8th interstory drift with and without controls are shown in Fig. 4.7, respectively.
It is seen that the interstory drift decreases significantly and arises to an equally
proportional reduction along story level, where the interstory drift is nearly four
times smaller than that of uncontrolled structure. Meanwhile, the interval of time
histories with significant variation is reduced more seriously than other intervals.
Time histories of the mean and standard deviation of the first story acceleration and
of the eighth story acceleration with and without controls are shown in Fig. 4.8. It is
seen that the first story acceleration with smaller peak is nearly not changed; while
the eighth story acceleration with larger peak is reduced significantly, which attains
a more smooth story acceleration along structural height. With consideration of
interstory drift, the control effectiveness relies on the applied probabilistic criterion
that the story exhibiting a larger response attains a better improvement, resulting
in the desired structural performance. In comparison with Figs. 3.19 and 3.20, the
mean-square responses of the controlled structure are almost identical both using the
exceedance probability criterion in optimization criterion group on energy trade-off
and the criterion on system second-order statistics evaluation.

A more elaborate representation is the concern with the PDFs of structural
responses. Shown in Figs. 4.9 and 4.10 are the PDFs of the first and eighth interstory
drifts and story accelerations at typical instants of time with and without controls,
respectively. It is seen that by comparison with Figs. 3.21b–3.24b, which are derived
from the system second-order statistics evaluation criterion, the application of the
exceedance probability criterion in optimization criterion group on energy trade-
off attains better displacement and acceleration controls, where the amplitude of
the PDFs becomes larger. Meanwhile, the variation of interstory drifts with control

Table 4.8 Optimization
results of cost-function
weights

Parameters Qd Qv Ru

Initial value 100 100 10−12

Optimal value 102.8 163.7 10−12

Objective function 1.122 × 10−5 (Pf,d � 0.0023, Pf,v �
0.0035, Pf,u � 0.0022)

Fig. 4.6 Convergence
process of objective function
against iteration number
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Fig. 4.7 Time histories ofmean and standard deviation of interstory driftswith andwithout controls
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Fig. 4.8 Time histories of mean and standard deviation of story accelerations with and without
controls

behaves smaller along with the instants of time than that without control, and the
PDF tail of interstory drift with control changes very gently along with the time.
This tail behavior is also exposed in the PDFs of the first story acceleration at the
typical instants of time, although the variation of the story acceleration with control
is not seriously improved comparing with that without controls. It is indicated that
these results are consistent with the physical meanings of probabilistic criteria. As
mentioned in the previous sections, the exceedance probability criterion is not for
optimization of parameters of control law on full probability density, and just the
tail of probability density function is controlled, no matter of interstory drift or of
story acceleration. Figures 4.11 and 4.12 show the surface and contour of probability
density at typical time interval of the first interstory drift and story acceleration with
control.

The time histories of mean and standard deviation of interstory control forces of
the first and eighth stories are shown in Fig. 4.13. It is seen that the time history
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with control
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Fig. 4.13 Time histories of mean and standard deviation of interstory control force

curves of control forces have some similarities in details between the two stories:
positive similarity inherent in the standard deviation and reverse similarity inherent
in the mean, except the amplitudes where the first interstory control force is almost
10 times of the eighth interstory control force, which is similar to the results shown
in Fig. 3.27. These similarities represent a coherence of feedback controls between
stories where their control forces exhibit reverse similarity, which is also indicated in
the PDFs of interstory control force between the first and eighth stories; see Fig. 4.14.
It is understood that the control force is a linear combination of the displacement and
velocity multiplying their corresponding elements of gain matrix.

The control effectiveness of extreme-value responses of the eight-story shear
frame is shown in Table 4.9. It is seen that the interstory drifts along structural height
are all reduced significantly, where the mean of extreme values decreases almost
75%, and the standard deviation of extreme values decreases almost 88%. The story
acceleration with control gains a significant improvement as well. Except the first
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Fig. 4.14 PDFs of interstory control force at typical instants of time

story acceleration with mean and standard deviation both less than 10%, the remain-
ing story accelerations gain 25–65% reduction on mean and 45–80% reduction on
standard deviation. It is revealed that although the mitigation ratio of story accel-
eration is not homogeneous along structural height, the story acceleration arises to
be more uniform after the active tendons are deployed. These characteristics have
similaritieswith the applicationof the criterionon systemsecond-order statistics eval-
uation addressed in Sect. 3.4.2: significant reduction attained on interstory drift and
better distribution attained on story acceleration. The difference, however, between
the two probabilistic criteria lies in that the former attains a better displacement
and acceleration control than the latter, and thus guarantees the structural safety and
structural comfortability to a greater extent. Of course, the former needs larger con-
trol forces acting on the stories. It is readily seen in Fig. 4.7 that the reason causing
the difference of control effectiveness between two probabilistic criteria is still the
physical meanings behind the probabilistic criteria. The quantiles of displacement
constraint and evaluation quantities in the criterion on system second-order statistics
evaluation are all defined as the mean plus one time of standard deviation, which is
really a probabilistic criterion with less failure probability. It is further revealed in the
exceedance probabilities of system quantities shown in Table 4.9 that the application
of the exceedance probability criterion in optimization criterion group on energy
trade-off gains a more reasonable structural performance.

4.5 Discussions and Summaries

Similar to the classical stochastic optimal control, a critical step in the physically
based stochastic optimal control is the design and optimization of parameters of con-
trol law. Bypassing the trial-and-error procedure for optimization of control param-
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eters, a family of probabilistic criteria for stochastic optimal control is proposed
according to the probabilistic distribution and statistical moments of equivalent
extreme-value quantities of structural systems. This treatment can implement the
ready definition of the optimal parameters of control law for the physically based
stochastic optimal control.

As to the single-objective criteria, the second-order moment and the tail of prob-
ability density of equivalent extreme-value quantities are investigated. As to the
multiple-objective criteria, the ensemble average and exceedance probability of
equivalent extreme-value quantities on performance trade-off and on energy trade-off
are addressed, respectively. It is revealed that the exceedance probability criterion on
energy trade-off can attain a rational balance between response reduction and control
cost, which is thus a preferential criterion for designing the optimal control law of
stochastic dynamical systems.

It is noted that the probabilistic criteria proposed in this chapter are not the cri-
teria for regulating the full probability density. In fact, the present criteria underlie
the control design of structural systems involving the first-passage problem, which
exhibits a broad sense since the first-passage problem is of concern for a large fam-
ily of engineering structures. As to the durability challenge, however, of structures
on the basis of cumulative damage criterion, the accurate assessment on structural
performance and the full regulation on probability density might be expected. For
instance, assuming the maximum information entropy as the most rational configu-
ration of physical quantities, a control logic tracing the desired probability density
was designed (Sun 2006). Structural control on the optimal probability density can
thus be implemented by defining the probability density with maximum entropy as
an objective.
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Chapter 5
Generalized Optimal Control Policy

5.1 Preliminary Remarks

In Chaps. 3 and 4, we proposed the methodology of stochastic optimal control in
the context of the probability density evolution method, and developed the pertinent
probabilistic criteria of stochastic optimal control, which form into a complete the-
oretical framework of the physically based stochastic optimal control. The control
effectiveness, however, relies not only upon the probabilistic criteria for optimization
of parameters of control law but also upon the constraints of the finiteness of available
structural space for control device placement. There involves a broad topic on the
stochastic optimal control of structures: how to define the control modality, how to
optimize the control parameters pertaining to the devices, and how to determine the
optimal number of control devices and their placements in the structural system. This
topic is referred to as the generalized optimal control policy. The first issue of defining
control modality is critical but often relies upon practical experiences. For instance,
the passive modality with tuned mass dampers and viscous dampers is preferable for
wind-induced vibration control of high-rise buildings; the semiactive modality with
magnetorheological dampers is preferable for wind–rain-induced vibration control
of cable-stayed bridges. The second issue has been addressed in preceding chapters,
in which the optimization of control parameters pertaining to the active modality
is carried out taking into account the randomness inherent in external excitations.
The third exhibits a multifold perspective across the former two issues, which can
be explored from two aspects. One aims at maximizing control effectiveness using
a number of available control devices through control law design, controller (con-
trol device) parameter optimization, and control device placement allocation. The
other aims at minimizing control cost to attain a similar structural performance as
the objective.

Some freedoms towards alleviating the burden of these constraints have been
gained by allowing a finite number of control devices to be arbitrarily located in
space, and considering the problem of optimal control device placement. However,
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this subject has not been investigated as extensively as the problem of control force
optimization in practical engineering (Amini and Tavassoli 2005). Criteria for opti-
mizing control device placement were proposed that included the minimization of a
modal control index (Chang and Soong 1980), the minimization of an energy index
(Chen et al. 1991), the minimization of a system failure index (Vander and Carig-
nan 1984; Ibidapo-Obe 1985), and the minimization of a performance index (Kim
et al. 2003; Park et al. 2004). Pioneering work also contributed to the control device
placement using the concept of degree of controllability (Laskin 1982; Lindberg and
Longman 1984; Cheng and Pantelies 1988; Zhang and Soong 1992).

It is commonly acknowledged that a system is either controllable or not depend-
ing on whether there is a potential control device transferring the system state to an
objective, which is often related to the stability domain of system state. However,
this knowledge cannot reveal to what extent the structural system is controlled. The
concept of degree of controllability was thus provided as an alternative index for
evaluating the controlled system, and it was primarily used to determine the opti-
mal number and placement of control devices. A controllability index for evaluating
the response reduction of seismic structures was proposed by Cheng and Pantelides
(Cheng and Pantelides 1988). In their findings, the optimal control device place-
ment shall be the structural story exhibiting a maximum interstory drift. It is readily
recognized that this scheme of designing control systems excludes the interaction
between the control device placement and the influence of randomness inherent in
seismic ground motions. In view of the limitation of the traditional controllability
index, a sequential procedure for optimal damper placement was developed, using
a matrix transfer method to solve the random seismic response of structures (Zhang
and Soong 1992).

It is indicated that the two aspects of structural control, i.e., control force design
and control device placement, can be arranged into an unified framework. For this
reason, this chapter is first devoted to addressing the unified formula of optimal
control law in the classical passive modality, active modality, semiactive modal-
ity, and hybrid modality. A generalized optimal control law, which serves as the
means implementing the generalized optimal control policy, for the physically based
stochastic optimal control is then proposed. In order to efficiently attain the optimal
placement of control devices, an exceedance probability based probabilistic control-
lability index and its gradient are introduced. A diagram of the generalized optimal
control policy (GOCP) and the generalized optimal control law (GOCL) in structural
control logic is shown in Fig. 5.1.

5.2 Unified Formula of Optimal Control Law

Consider an n-degree-of-freedom system of controlled structures subjected to ran-
dom excitations and governed by the equation of motion as follows:

MẌ(t) + CẊ(t) +KX(t) � BsU(t) + DsF(�, t), (5.2.1)
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Fig. 5.1 Diagram of generalized formulation of control policy in structural control logic

where X(t) is the n-dimensional column vector denoting structural displacement;
F(�, t) is the p-dimensional column vector denoting random excitation. M, C and
K are n × n mass, damping, and stiffness matrices, respectively; Ds is the n × p
matrix denoting the location of external excitation; Bs is the n × r matrix denoting
the location of control devices; U(t) is the r-dimensional column vector denoting
control force.

5.2.1 Passive Control Modality

Suppose that the n-degree-of-freedom system is controlled by passive control
devices, the equation of motion of controlled structures is written as

MẌ(t) + CẊ(t) +KX(t) � BspUp(t) + DsF(�, t) (5.2.2)

where Bsp is the n× r matrix denoting the location of passive control devices;Up(t)
is the r-dimensional vector denoting passive control force.

When the passive control force is modeled as a linear function of structural dis-
placement, velocity, and acceleration, the pertinent control law can be written as

Up(t) � −M̄Ẍ(t) − C̄Ẋ(t) − K̄X(t) (5.2.3)

where M̄, C̄ and K̄ aremass, damping, and stiffnessmatrices pertaining to the control
system, respectively.

The equation of motion of controlled structures is then given by

(M + BspM̄)Ẍ(t) + (C + BspC̄)Ẋ(t) + (K + BspK̄)X(t) � DsF(�, t) (5.2.4)
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It is readily seen that optimal control law of the passive control modality just
relies upon the optimal design of additional mass (physical mass) BspM̄, additional
damping (physical damping)BspC̄, and additional stiffness (physical stiffness)BspK̄.
Two aspects, i.e., the optimization of matrix denoting location of control devices
Bsp, and the optimization of parameters of control devices M̄, C̄ and K̄, ought to be
included in the control law design.

5.2.2 Active Control Modality

As to the active control, the equation ofmotion of controlled structures can bewritten
as

MẌ(t) + CẊ(t) +KX(t) � BsaUa(t) + DsF(�, t) (5.2.5)

where Bsa is the n × r matrix denoting the location of active control devices; Ua(t)
is the r-dimensional vector denoting active control force.

The formulation of optimal control law of controlled structures is given by

Ua(t) � −fM(QZ,RU)Ẍ(t) − fC(QZ,RU)Ẋ(t) − fK(QZ,RU)X(t) (5.2.6)

whereQZ denotes the 3n×3n semi-positive weighting matrix with respect to system
state; RU denotes the r × r positive weighting matrix with respect to control force;
fM(·), fC(·), fK(·) denote the components of control law pertaining to structural accel-
eration, velocity, and displacement. The equation of motion of controlled structures
is then written as

[M + BsafM(QZ,RU)]Ẍ(t) + [C + BsafC(QZ,RU)]Ẋ(t) + [K + BsafK(QZ,RU)]X(t) � DsF(�, t)

(5.2.7)

It is seen that the optimal control law of active control modality relies upon the
optimal design of artificial mass (numerical mass) BsafM(QZ,RU), artificial damp-
ing (numerical damping) BsafC(QZ,RU) and artificial stiffness (numerical stiffness)
BsafK(QZ,RU), which involves the optimization of matrix denoting the location of
control devices Bsa and the optimization of parameters of control devices QZ,RU.

5.2.3 Semiactive Control Modality

The equation of motion of semiactively controlled structural systems can be written
as
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MẌ(t) + CẊ(t) +KX(t) � BssUs(t) + DsF(�, t) (5.2.8)

where Bss is the n × r matrix denoting the location of semiactive control devices;
Us(t) is the r-dimensional column vector denoting semiactive control force.

Semiactive control is typically categorized into the active variable stiffnessmodal-
ity and the active variable damping modality. The optimal control law of controlled
structures is then given by

Us(t) � −fC(
�

C, C̄)Ẋ(t) − fK(
�

K, K̄)X(t) (5.2.9)

where
�

C, C̄ denote the tuned and non-tuned damping matrices, respectively;
�

K, K̄
denote the tuned and non-tuned stiffness matrices. The equation of motion of con-
trolled structures is then rewritten as

MẌ(t) + [C + BssfC(
�

C, C̄)]Ẋ(t) + [K + BssfK(
�

K, K̄)]X(t) � DsF(�, t) (5.2.10)

It is seen that the optimal control lawof semiactive controlmodality relies upon the
optimal design of the cross-term between additional damping (non-tuned) and arti-

ficial damping (tuned)BssfC(
�

C, C̄), and the cross-term between additional stiffness

(non-tuned) and artificial stiffness (tuned) BssfK(
�

K, K̄). The optimization of matrix
denoting the location of control devices Bss and the optimization of parameters of

control devices
�

C, C̄,
�

K, K̄ are included.

5.2.4 Hybrid Control Modality

Hybrid control is typically a combination modality of passive control and active
control (or semiactive control). The equation of motion of controlled structures is
written as

MẌ(t) + CẊ(t) +KX(t) � BshUh(t) + DsF(�, t) (5.2.11)

The formulation of optimal control law of controlled structures is given by

Uh(t) � −[fM(QZ,RU) + M̄]Ẍ(t) − [fC(QZ,RU) + C̄]Ẋ(t) − [fK(QZ,RU) + K̄]X(t)
(5.2.12)

or

Uh(t) � −M̄Ẍ(t) − [fC(
�

C, C̄) + C̄]Ẋ(t) − [fK(
�

K, K̄) + K̄]X(t) (5.2.13)
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It is readily seen that similar to the semiactive control, the hybrid control provides
the artificial mass, the artificial damping, and the artificial stiffness as the active con-
trol, and also provides the additional mass, the additional damping, and the additional
stiffness as the passive control. The parameters of control law optimization include
the matrix denoting the location of control devices Bsh and the parameters of control

devices M̄, C̄, K̄,QZ,RU,
�

C,
�

K.
One might recognize from Eqs. 5.2.3, 5.2.6, 5.2.9, and 5.2.12 that the optimal

control law has a unified formula as follows:

U(t) � −f(M̃, C̃, K̃)[ Ẍ(t) Ẋ(t) X(t) ]T (5.2.14)

where M̃, C̃, K̃ denote generalizedmass, generalized damping, and generalized stiff-
ness, respectively; f(·) denotes gain matrix of state-feedback control.

It is indicated as well that the optimal control law not only relies upon the output
actualized by the control device but also upon the deployment of the control device.
A generalized formula of optimal control law is then given by

U(t) � f(M̃, C̃, K̃,Bs)[ Ẍ(t) Ẋ(t) X(t) ]T (5.2.15)

Equations (5.2.15) is the so-called generalized optimal control law;
f(M̃, C̃, K̃,Bs) denotes the gain matrix of generalized optimal control law, which
has a general formulation f(I∗,L∗) where I∗ � [I ∗

M̃
, I ∗

C̃
, I ∗

K̃
] denotes the optimal

parameters describing the generalized mass, generalized damping, and generalized
stiffness; L∗ � [L∗

x , L
∗
y, L

∗
z ] denotes the optimal placement vector describing the

deployment of control devices in the three-dimensional space (x, y, z) of structures.
For instance, as to the control devices deployed in a two-dimensional (2D) structure
shown in Fig. 5.2, the matrix of optimal placement can be represented by the number
of column-beam lattices of structures as follows:

L∗
xz �

⎡
⎢⎢⎢⎢⎢⎣

2 0 0
0 0 0
0 0 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

T

5×3

(5.2.16)

While as to a three-dimensional (3D) structure, the axis y can be viewed as the
unfold of the axis x, and the matrix of optimal placement is given by

L∗
xyz �

⎡
⎣
1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎦

T

3×17

(5.2.17)
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Fig. 5.2 Schematic diagram of control devices deployed in structures

where the element zero indicates that there are no control devices in the column-
beam lattice; the element nonzero indicates that there is a control device with the
associated sequence of deployment in the column-beam lattice.

It has been revealed in Chaps. 3 and 4 that the critical step in the stochastic
optimal control is the derivation of optimal control law and the optimization of
control parameters. The essence of solving the generalized optimal control law is
thus the optimization of the parameters (I∗,L∗). In fact, the generalized optimal
control law of the physically based stochastic optimal control places the three-level
design objectives into an integral way: the control law design, the controller (control
device) parameter optimization and the optimal control device placement. These
design objectives correspond to the pertinent principles and probabilistic criteria,
respectively, as shown in Fig. 5.3.

For illustrative purposes, the three-level design of stochastic optimal control by
means of active modality is summarized in steps as follows:

Step 1: Using Pontryagin’s maximum principle or Bellman’s optimality principle,
the cost function is minimized so as to derive the formulation of optimal control law;
see Eq. (3.3.18).
Step 2: According to the exceedance probability criterion on energy trade-off; see
Eq. (4.3.30), the performance function pertaining to parameter optimization is min-
imized so as to gain the optimal controller parameters.
Step 3: In view of the criterion onminimum story controllability index gradient (Min-
SCIG), the performance function pertaining to placement optimization is minimized
so as to define the optimal control device deployment.
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Steps 1 and 2 have been addressed in details in Chaps. 3 and 4. The optimization
in Step 3 will be illustrated in the following sessions. Besides, as to the stochastic
optimal control by means of passive modality, just Step 2 and 3 are included since
there is no feedback logic involved.

5.3 Probabilistic Controllability Index

It is revealed from the previous sections that the optimization of parameters of the
optimal control law resorts to a certain probabilistic criterion with the specified
performance function. In order to identify the optimal placement of control devices
in structural space, a probabilistic controllability index in function of exceedance
probability of quantities is defined as follows:

ρi � 1
2 [Pr

T
Z̃i
(Z̃i − Z̃i,thd > 0)QZ̃i

Pr Z̃i
(Z̃i − Z̃i,thd > 0)

+ PrT
Ũi
(Ũi − Ũi,thd > 0)RŨi

PrŨi
(Ũi − Ũi,thd > 0)]

, i � 1, 2, . . . , n

(5.3.1)

where Z̃i � [max
t

|Xi (�, t)| max
t

∣∣Ẋi (�, t)
∣∣ max

t

∣∣Ẍi (�, t)
∣∣ ]T, Ũi � max

t
|Ui (�, t)|

denote the extreme-value state vector and the extreme-value control force of the ith
element of structural systems in the time interval [t0, t f ], respectively; Pr(·) operates
component-wise on its vector argument with denotation of exceedance probability;
Z̃i,thd, Ũi,thd are the thresholds of Z̃i , Ũi ; the weighting matricesQZ̃i

,RŨi
denote the

relative importance of system state and control force, which are defined for simplicity
in formulation with uniform weights on the quantities as follows:
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QZ̃i
�

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦,RŨi

� 1 (5.3.2)

It is indicated in Eq. 5.3.1 that the exceedance probability based probabilistic
controllability index characterizes system safety represented by the interstory drift,
system serviceability represented by the interstory velocity, system comfortability
represented by the story acceleration, and control device workability represented by
the control force and their trade-off. This definition is more comprehensive than the
previous definition of controllability index with single and deterministic quantity
(Zhang and Soong 1992).

Moreover, a controllability index gradient is defined as

J3 � �ρ
j
i � ρ

j−1
i − ρ

j
i

ρ
j−1
i

, i � 1, 2, . . . , n; j � 1, 2, . . . , r (5.3.3)

where ρ0
i denotes the probabilistic controllability index of uncontrolled structures.

In order to determine the optimal control device placement in each sequential
case, a criterion on the minimum controllability index gradient is constructed, i.e.,
the designof sequentially optimal placement of control devices involves the following
optimization problem:

L∗ � {x j,∗
i , y j,∗

i , z j,∗i } � argmin
x,y,z

{J3}, i � 1, 2, . . . , n; j � 1, 2 . . . , r

(5.3.4)

Therefore, the jth control device will be deployed next at the ith ele-
ment with the minimum controllability index gradient, i.e.,�ρ

j−1
i �

min
{
�ρ

j−1
1 ,�ρ

j−1
2 , . . . , �ρ

j−1
n

}
. The corresponding placement vector

{x j,∗
i , y j,∗

i , z j,∗i } is updated until the predetermined structural performance objective
is achieved. Since the controllability index gradient of uncontrolled structures makes
no sense, the first control device is considered to be deyployed at the ith element with
the maximum controllability index, i.e.,ρ0

i � max
{
ρ0
1 , ρ

0
2 , . . . , ρ0

n

}
. It is noted that

the control device is optimally deployed in the column-beam lattice at the current
stage, and the remaining control devices will be placed in other column-beam
lattices even if the occupied lattice needs more control devices at following stages.
Besides, the controllability index and the controllability index gradient are termed
as the story controllability index and the story controllability index gradient for
easy-to-understand cases of building structures.

It is worth noting that the criterion on maximum story controllability index
(MaxSCI) developed in previous studies (Zhang and Soong 1992) is different from
the criterion on minimum story controllability index gradient (MinSCIG) proposed
in the present study. Using the former criterion, the deployment of the jth control
device to be carried out next relies upon the maximum story controllability index at
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this stage with (j−1) control devices. The former criterion achieves the performance
objective more slowly than that of the latter criterion, which will be illustrated in
details in the following numerical examples.

Obviously, the exceedance probability in the controllability index can be readily
solved since system state Z̃i and control force, Ũi are separately governed by the
GDEEs; see Eqs. (3.2.9) and (3.2.10).

5.4 Solution Procedure

5.4.1 Probabilistic Criteria

Details are now provided in implementing the generalized optimal control law. As
was mentioned previously, the solving of the gain matrix f(I∗,L∗) of the generalized
optimal control law involves optimization procedures, including the minimization of
controllability index gradient in sequential cases to identify the optimal placement
of control devices in structural space and the minimization of performance function
to identify the optimal parameters of control devices or controllers. In view of the
discussions on probabilistic criteria in Chap. 4, an exceedance probability criterion
on energy trade-off is applied here; see Eq. (4.3.30), i.e., the definition of perfor-
mance function pertaining to parameter optimization without acceleration constraint
as follows:

J2 � 1

2
[Pr T

Z̃
(Z̃ − Z̃thd > 0)QZ̃ Pr Z̃ (Z̃ − Z̃thd > 0) + Pr T

Ũ
(Ũ − Ũthd > 0)RŨ Pr Ũ (Ũ − Ũthd > 0)]

(5.4.1)

where Ũ � max
t
(max

i
|Ui (�, t)|) denotes the equivalent extreme-value control force;

Z̃ � [max
t
(max

i
|Xi (�, t)|) max

t
(max

i

∣∣Ẋi (�, t)
∣∣) max

t
(max

i

∣∣Ẍi (�, t)
∣∣) ]T denotes

the equivalent extreme-value system state; Z̃ thd, Ũthd denote the thresholds of equiva-
lent extreme-value Z̃ , Ũ , respectively. The weighting matricesQZ̃ ,RŨ are set as the
same asQZ̃i

,RŨi
in Eq. (5.3.1) owing to the dimension similarities between the per-

formance function and the probabilistic controllability index pertaining to parameter
and placement optimizations, respectively.

5.4.2 Flowchart of Solution Procedure

The solution procedure of the generalized optimal control law is included in the
following steps:

Step 1: Computation of controllability index of uncontrolled structural systems. The
numerical solution process involves:



5.4 Solution Procedure 155

(i) Probability-assigned space partition to determine the representative point
set σ res � {θq� (θ1,q , θ2,q , · · · , θs,q )|q � 1, 2, . . . , nres } and the corre-
sponding assigned probabilitiesPq (Li and Chen 2007; Chen and Li 2008).

(ii) Deterministic dynamic analysis of controlled structural systems with respect
to the representative points using the transfer function method to attain the
system state Z (θq , t) and its derivative process Ż (θq , t), the control force
U (θq , t), and its derivative process U̇ (θq , t).

(iii) Using the finite difference method to solve the GDEEs and to attain the
numerical solutions of pZ�(z, θq , t), pU�(u, θq , t), where the modified
Lax–Wendroff difference scheme with TVD nature is applied (Li and Chen
2004; Chen and Li 2005).

(iv) Repeating (ii) and (iii) and running over all the representative points q �
1, 2, . . . , nres, the probability density solution can be readily obtained by
integral:

pZ (z, t) �
nres∑
q�1

pZ�(z, θq , t)Sq , pU (u, t) �
nres∑
q�1

pU�(u, θq , t)Sq (5.4.2)

where Sq denotes the area measure of the subdomain represented by the rep-
resentative point θq , which is relevant to the partition strategy of probability-
assigned space ��.
Having the numerical solutions of PDFs, the statistical moments and relia-
bilities of system quantities can be readily solved. However, in the canonical
scheme of reliability-based structural optimal control (Spencer et al. 1994;
May and Beck 1998), the joint probability density function for evaluating
the expected level-crossing rate in the Rice formulae must be provided first,
inevitably resulting in unguaranteed errors. It has been proved, however, that
the structural reliability can be efficiently assessed by means of the GDEEs,
as well by introducing the extreme-value distribution theorem with pseudo
random process (Chen and Li 2007).

(v) Computing the story controllability index (gradient) by Eqs. (5.3.1) and
(5.3.3).

Step 2: Placement and parameter optimization of a new control device. The numerical
procedure involves:

(i) Deploying the control device into the structural space in accordance with the
criterion of the MinSCIG.

(ii) Intializing the values of design parameters based on their physical meanings;
as to the passive control modality, for example, the design parameters are
C̄, K̄; while as to the active control modality, the design parameters are
QZ,RU.

(iii) Searching for the optimal parameters by minimizing the performance func-
tion, which involves an iterative process of performing (ii) (iii) and (iv) in
Step 1, where the toolbox function of DAKOTA, quasi-Newton based OPT
++, is used to invoke the numerical routine (Eldred et al. 2007).
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Step 3: Calculation of story controllability index of controlled structural systems,
running (ii), (iii), (iv), and (v) in Step 1 on the controlled structural system with
the newly added control device, and determining the optimal place deploying a next
control device.

Repeating Step 2 and Step 3 until the structural performance objective is achieved.
The flowchart of these steps is shown in Fig. 5.4. The hybrid programming integrating
the DAKOTA and MATLAB can be used to readily solve the generalized optimal
control law.

The proposed algorithm for sequential placement of control devices can be used to
gradually increase the reliability of structural systems until a target of reliability level
is attained. It is clear that the traditional one-stage placement of control devicesmight
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Fig. 5.4 Flowchart of solving generalized optimal control law
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be optimal for a prespecified number of control devices, which does not, however,
provide the present flexibility in terminating the control device deployment prior to
placing all the control devices.

5.5 Numerical Examples

For illustrative purposes, two randomly base-excited structures with control systems
designed as the generalized optimal control law are investigated, including a ten-
story shear frame attached with viscoelastic dampers and an eight-story shear frame
attached with active tendon systems.

5.5.1 Viscoelasticity Damped Structure

A ten-story shear frame controlled by r (1 ≤ r ≤ 10) viscoelastic dampers is inves-
tigated. The story mass and interstory stiffness of the uncontrolled structure are: m1

� m2 � 2.4 × 104 kg, m3 � m4 � 2.0 × 104 kg, m5 � m6 � 1.8 × 104 kg, m7 �
m8 � 1.6 × 107 kg, m9 � m10 � 1.2 × 104 kg; k1 � k2 � 18 kN/mm, k3 � k4 �
14 kN/mm, k5 � k6 � 12 kN/mm, k7 � k8 � 10 kN/mm, k9 � k10 � 9.6 kN/mm,
respectively. The damping ratios of the first two vibrational modes are both 0.02.
The Raleigh damping matrix C � aM + bK is employed to represent the model
damping. The computed natural frequencies of the model are 4.53, 11.92, 19.19,
25.92, 31.94, 38.82, 43.44, 47.40, 50.08, and 50.92 rad/s. The relation between the
output of the viscoelastic damper and the associated interstory drift and interstory
velocity is denoted by (Soong and Dargush 1997):

Up(t) � cD
˙̄X (t) + kD X̄ (t) (5.5.1)

where ˙̄X (t), X̄ (t) denote the interstory velocity and the interstory drift, respectively;
cD, kD denote the damping coefficient and stiffness coefficient of the interstory vis-
coelastic damper, respectively. The thresholds of interstory drift, interstory veloc-
ity, story acceleration, and damper force are assumed to 10 mm, 100 mm/s, and
3000 mm/s2, 200 kN, respectively. The physically motivated random seismic ground
motion model shown in Sect. 3.4.1 is employed to simulate the seismic ground
motions. The peak ground acceleration is set as 0.11 g. The predetermined objective
of structural optimal control is determining the parameters and placement of the least
number of viscoelastic dampers so as to attain the control effectiveness of viscoelas-
tic dampers fully distributed in the structure. As an assessment objective of structural
performance, the fully distributed viscoelastic dampers are placed in the structure
simultaneously, and their parameters are designed as the same through optimization
procedure.
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Table 5.1 Optimal placements and parameters of the newly added viscoelastic dampers in
sequences

Sequence no. Placement vector Parameters of newly added viscoelastic
dampersa

cD(kNs/mm) kD(kN/mm)

0 [0 0 0 0 0 0 0 0 0 0]T – –

1 [0 0 0 0 0 0 1 0 0 0]T 0.253 0.111

2 [0 0 0 0 0 0 1 0 0 2]T 0.100 0.100

3 [0 0 0 0 3 0 1 0 0 2]T 0.155 0.098

Fully distributed [1 1 1 1 1 1 1 1 1 1]T 0.374 0.127

aInitial values of parameters are cD � 0.1 kNs/mm, kD � 0.1 kN/mm

The optimal placement and parameters of the newly added viscoelastic dampers
in sequences are shown in Table 5.1. It is seen that with only three optimally deployed
viscoelastic dampers, a similar performance is achieved to the structural system with
fully distributed viscoelastic dampers. The three viscoelastic dampers are deployed in
the seventh interstory, the tenth interstory, and thefifth interstory in turn. Furthermore,
the parameters of generalized optimal control law are given by

(c∗
D, k∗

D, L∗) �
⎡
⎣
0 0 0 0 0.155 0 0.252 0 0 0.100
0 0 0 0 0.098 0 0.111 0 0 0.100
0 0 0 0 3 0 1 0 0 2

⎤
⎦

T

(5.5.2)

where the damping and stiffness parameters of viscoelastic dampers have been
embedded into the first and second rows of the parameter matrix. The placement
matrix of viscoelastic dampers are folded into a vector since the shear frame struc-
ture can be viewed as a one-dimensional model with lumped masses along z axis,
where zero denotes no viscoelastic dampers in the interstory and nonzero denotes
the viscoelastic damper and its deployment sequence.

Figure 5.5 shows the relation between the added viscoelastic dampers and the
controllability index. It is readily seen that the controllability index decreases very
rapidly after the viscoelastic damper with present optimal parameters is deployed on
its optimal place. Besides, the controllability index of the seventh interstory is always
maximum among those of the interstories in all the sequences; while the optimal
damper placement is not close to the interstories near to the seventh interstory. This
owes to the fact that it is the design criterion of theMinSCIGother than of theMaxSCI
employed in the present study.A comparison of control effectiveness between the two
design criteria is shown inFig. 5.6. It is seen that just using three viscoelastic dampers,
the objective of structural control is attained when the MinSCIG is employed; while
four viscoelastic dampers are required to achieve the same control effectiveness if
the MaxSCI is employed. Figure 5.7 shows the viscoelastic damper deployments as
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Fig. 5.5 Relation between
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design criteria of the MinSCIG and the MaxSCI, respectively, in which the number
denotes the sequences of viscoelastic damper placements.

The exceedance probabilities of interstory drift, interstory velocity, story acceler-
ation, and interstory control force in sequences of viscoelastic damper deployments
are listed in Table 5.2. It is seen that the exceedance probabilities of the system
quantities of concern gradually decrease along with the deployment of viscoelastic
dampers, till the objective function attains the same level with the case with fully
distributed viscoelastic dampers; say, their objective functions have the same mag-
nitude. It is revealed that the structural control has attained the system safety, system
serviceability, system comfortability, and system workability. In comparison with
the case with fully distributed viscoelastic dampers, the case of Sequence 3 exhibits
a better interstory drift control but a worse story acceleration control. This difference
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Fig. 5.7 Viscoelastic
damper deployments as
design criteria of MinSCIG
and MaxSCI
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can be seen as well from the probability density distributions of equivalent extreme
values of interstory drift and story acceleration; see Fig. 5.8. Meanwhile, it is seen
from the objective function that the control effectiveness of the case of Sequence 3
is better than the case with fully distributed viscoelastic dampers. It is thus remarked
that the structural control employing the generalized optimal control law attains a
better trade-off between system quantities than that employing traditional control
schemes.

In addition, an index relevant to mean-square control force is defined to evaluate
the control cost:

εu �
t f∫

t0

E[U(t)UT(t)]dt (5.5.3)

The control cost along with the viscoelastic damper deployment in sequences
is shown in Table 5.2 as well. It is readily seen that the control cost of the case
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Fig. 5.8 PDFs of equivalent extreme values of interstory drift and story acceleration in the case of
viscoelasticity damped structures

of Sequence 3 is minimum, and that of the case with fully distributed viscoelastic
dampers is maximum. It is explained that the control cost is related both to the
number of control devices and to the interstory drift and interstory velocity. One
might recognize that the case of Sequence 3 exhibits a better displacement control
and an almost same velocity control as the case with fully distributed viscoelastic
dampers. Therefore, the control cost of the former is nearly five times less than
that of the latter, which proves once again that the optimal control employing the
generalized optimal control law attains a better trade-off between system quantities.

The second-order moment of equivalent extreme-value interstory drift in
sequences is shown in Fig. 5.9. It is seen that the mean of interstory drift becomes
smaller along with the viscoelastic damper deployment; whereas the standard devi-
ation of interstory drift above the seventh story increases when the first viscoelastic
damper is deployed in the seventh interstory. It reduces rapidly when the second

Table 5.2 Seismic mitigation by viscoelastic dampers in sequences

Sequence no. Placement
vector

Exceedance probabilities Objective
function J2

Mean-square control
force εu (kN2)

Pf,d P f,v Pf,a P f,u

0 [0 0 0 0 0
0 0 0 0 0]T

0.9952 0.8188 0.9599 – 1.2911 –

1 [0 0 0 0 0
0 1 0 0 0]T

0.4195 0.6085 0.5483 3.60 ×
10−7

0.4235 69824.2

2 [0 0 0 0 0
0 1 0 0 2]T

0.3226 0.4373 0.1888 0.0000 0.1655 31682.6

3 [0 0 0 0 3
0 1 0 0 2]T

0.0545 0.1853 0.0671 0.0000 0.0209 20856.2

Fully
distributed

[1 1 1 1 1
1 1 1 1 1]T

0.1217 0.1886 0.0052 0.0000 0.0252 106749.0
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Fig. 5.9 Second-order moment of equivalent extreme-value interstory drift in the case of viscoelas-
ticity damped structures
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Fig. 5.10 Second-order moment of equivalent extreme-value story acceleration in the case of vis-
coelasticity damped structures

viscoelastic damper is deployed. One might realize that too few control devices may
result in a response amplification on the local stories of the structure. This is also indi-
cated in the second-order moment of equivalent extreme-value story acceleration in
sequences, as shown in Fig. 5.10. It is seen that the standard deviations of story accel-
erations of the fourth story, the ninth story, and the tenth story are larger than those
stories of the uncontrolled structure when the first viscoelastic damper is deployed.
They gradually decrease as the deployment of the next viscoelastic dampers. It is
also seen that the mean of story acceleration becomes smaller when the viscoelatic
dampers are deployed. In brief, the control effectiveness of interstory drift by the
case with the third viscoelastic damper deployment is larger than the case with fully
distributed viscoelastic dampers. The reverse is true on the control effectiveness of
story acceleration.
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5.5.2 Active Tendon Exerted Structure

The eight-story shear frame shown in Sect. 3.4.2 controlled by r (1 ≤ r ≤ 8) active
tendons is investigated as another numerical example. The thresholds of interstory
drift, interstory velocity, story acceleration, and interstory control force are 15 mm,
150mm/s, 8000mm/s2, and 2000 kN, respectively. The structural input is represented
by the physically motivated random seismic ground motion model addressed in
Sect. 3.4.1. The peak ground acceleration is set as 0.3 g. The predetermined objective
of structural control is optimizing the parameters and placements of the least number
of active tendons to attain the control effectiveness of the case with fully distributed
tendons. Similar to Sect. 5.5.1, the fully distributed tendons are deployed in the
structural space simultaneously, and their parameters are optimized as the same.

The form of cost-function weights shown in Eq. (4.2.2) is employed in this exam-
ple, where the cross terms between system states are ignored:

QZ � diag{Qd1 , . . . , Qdn , Qv1 , . . . , Qvn }, RU � diag{Ru1, . . . , Rur }.
(5.5.4)

The optimal placement and parameters of the newly added active tendons in
sequences are shown in Table 5.3. It is seen that five active tendons with optimal
parameters and optimal placements are required to attain the predetermined objective
of structural control. The five control devices are deployed in the first interstory, the
second interstory, the sixth interstory, the seventh interstory, and the fourth interstory
in turn. Thus, the parameters of generalized optimal control law are given by

(Q∗
d , Q

∗
v, R

∗
u , L

∗) �

⎡
⎢⎢⎣

155.4 14360.0 0 99.8 0 0.0 11.6 0
240.0 9.6 0 89.5 0 0.0 0.0 0
10−12 10−12 0 10−12 0 10−12 10−12 0
1 2 0 5 0 3 4 0

⎤
⎥⎥⎦

T

(5.5.5)

where the parameters and placement of active tendons have been folded into the
first, second, and third rows of the parameter matrix. In the placement vector L∗,
zero denotes no active tendons in the interstory and nonzero denotes the active tendon
and its deployment sequence.

The relation between the added active tendons and the controllability index is
shown in Fig. 5.11. It is clear that the controllability index decreases rapidly after
the active tendon with the optimal parameters is deployed in the present optimal
interstory. Comparison between the design criteria of the minimum story control-
lability index gradient (MinSCIG) and of the maximum story controllability index
(MaxSCI) is shown in Fig. 5.12. It is readily seen that the case using the five designed
active tendons can attain the almost control effectiveness as the case with fully dis-
tributed active tendons when the criterion of MinSCIG is employed. In regard to
the criterion of MaxSCI, however, six active tendons are needed to achieve a sim-
ilar control effectiveness. It is indicated, moreover, in Fig. 5.12 that the structural

https://doi.org/10.1007/978-981-13-6764-9_5
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Table 5.3 Optimal
placement and parameters of
newly added active tendons in
sequences

Sequence no. Placement
vector

Parameters of newly added
active tendonsa

Qd Qv Ru

0 [0 0 0 0 0 0 0
0]T

– – –

1 [1 0 0 0 0 0 0
0]T

155.4 240.0 10−12

2 [1 2 0 0 0 0 0
0]T

14360.0 9.6 10−12

3 [1 2 0 0 0 3 0
0]T

0.0 0.0 10−12

4 [1 2 0 0 0 3 4
0]T

11.6 0.0 10−12

5 [1 2 0 5 0 3 4
0]T

99.8 89.5 10−12

Fully
distributed

[1 1 1 1 1 1 1
1]T

118.2 163.5 10−12

aInitial values of parameters are Qd � 100, Qv � 100, Ru �
10−12

Fig. 5.11 Relation between
the added active tendons and
controllability index
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performance approaches the predetermined objective after the third active tendon is
placed employing the criterion of MinSCIG; while the structural performance with
the same number of active tendons employing the criterion ofMaxSCI is still far from
the predetermined objective. As mentioned in Sect. 5.5.1, the proposed criterion of
minimum story controllability index gradient can attain the performance objective
more efficiently than the criterion of maximum story controllability index. The active

https://doi.org/10.1007/978-981-13-6764-9_5
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Fig. 5.12 Comparison
between design criteria of
MinSCIG and MaxSCI in the
case of active tendon exerted
structures
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tendon deployments as the design criteria of MinSCIG and MaxSCI are shown in
Fig. 5.13.

The exceedance probabilities of system quantities of concern, the objective func-
tion, and the mean-square control force are presented in Table 5.4. It is seen that the
exceedance probabilities of system quantities gradually decrease towards approach-
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Table 5.4 Seismic mitigation by active tendons in sequences

Sequence
no.

Placement
vector

Exceedance probabilities Objective
Function
J2

Mean-
square
control
force
εu(kN2)

Pf,d Pf,v Pf,a Pf,u

0 [0 0 0 0
0 0 0 0]T

0.9963 0.7582 0.1992 – 0.8036 –

1 [1 0 0 0
0 0 0 0]T

0.9620 0.4519 0.0764 0.2098 0.5898 4.710 ×
108

2 [1 2 0 0
0 0 0 0]T

0.3976 0.3267 0.0181 0.1088 0.1385 3.219 ×
108

3 [1 2 0 0
0 3 0 0]T

0.0141 0.0626 0.0009 0.0002 0.0021 8.708 ×
107

4 [1 2 0 0
0 3 4 0]T

0.0134 0.0570 0.0002 3.61 ×
10−7

0.0017 8.196 ×
107

5 [1 2 0 5
0 3 4 0]T

0.0001 0.0130 0.0032 0.0004 8.95 ×
10−5

8.722 ×
107

Fully
dis-
tributed

[1 1 1 1
1 1 1 1]T

0.0022 0.0035 3.60 ×
10−7

0.0022 1.11 ×
10−5

1.737 ×
108

ing the predetermined performance objective of the structure, and the same control
level as the case with fully distributed active tendons is attained when the fifth active
tendon is deployed.Meanwhile, by comparisonwith the casewith the fully distributed
tendons, Sequence 5 exhibits a better displacement control and a worse velocity and
acceleration control, which is included as well in the comparison between the PDFs
of equivalent extreme values of interstory drift and story acceleration; see Fig. 5.14.
Besides, the objective function of Sequence 5 is larger than that of the case with fully
distributed tendons, indicating that the latter attains a better trade-off between system
quantities than the former. However, the control cost of Sequence 5 is two times less
than that of the case with fully distributed tendons, which indicates that the former is
more energy-saving than the latter. In summary, the structural control employing the
generalized optimal control law attains a better trade-off between system quantities
than the traditional control design.

The second-order moment of equivalent extreme values of interstory drift and
story acceleration varying along the height of the structure with the deployment of
active tendons are shown in Figs. 5.15 and 5.16, respectively. It is seen that the
means and standard deviations of system quantities of concern become smaller with
the active tendon deployment, and they become smoother along the height of the
structure. The response profile of the controlled structure along story level really
connects to a desired structural performance.
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Fig. 5.14 PDFs of equivalent extreme values of interstory drift and story acceleration in the case
of active tendon exerted structures
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Fig. 5.15 Second-order moment of equivalent extreme-value interstory drift in the case of active
tendon exerted structures

5.6 Discussions and Summaries

Modern building designs are not only in demand of accommodating safe residences
but also in demand of providing available spaces as possible. The optimal parameter
design and optimal placement design of control devices thus ought to be of the same
practical significance. Utilizing a less number of control devices, the cost of invest-
ment can be reduced, and the space occupied by the structural components can be
saved to a certain extent as well. On this basis, this chapter is devoted to addressing
the optimal deployment and parameter optimization of control devices in the cases
of active and passive control modalities. The control laws on both aspects are inves-
tigated and summarized into the generalized optimal control law for implementing
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Fig. 5.16 Second-ordermoment of equivalent extreme-value story acceleration in the case of active
tendon exerted structures

the generalized optimal control policy in the context of physically based stochastic
optimal (PSO) control.

By comparison with the previously defined degree of controllability in function
of single system quantity, the exceedance probability based probabilistic controlla-
bility index exhibits more benefits, which characterizes system safety denoted by the
interstory drift, system serviceability denoted by the interstory velocity, system com-
fortability denoted by the story acceleration, and control device workability denoted
by the control force and their trade-off.

By virtue of the criterion of minimum story controllability index gradient (Min-
SCIG), the optimal placement of control devices in each sequence can be attained
efficiently. In the solution procedure of the generalized optimal control law, the cri-
terion for parameter optimization can refer to as the exceedance probability criterion
on energy trade-off, which has the same physical meanings with the criterion of the
MinSCIG. Numerical examples prove that utilizing the generalized optimal control
policy can attain the objective of structural control, i.e., gaining themaximum control
effectiveness with the minimum control cost; meanwhile, the criterion of the Min-
SCIG has a better optimization capacity, which achieves the performance objective
more efficiently than the criterion of the MaxSCI currently in use.

Besides, system reliability associated with structural responses is used as the
kernel of generalized optimal control policy to aid in sequentially locating control
devices. Following the deployment of each control device, decision regarding the
policy can be updated, in amultistagemanner, before deciding onwhether to proceed
with deploying additional control devices.
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Chapter 6
Stochastic Optimal Control of Nonlinear
Structures

6.1 Preliminary Remarks

The previous chapters are devoted to the stochastic optimal control of linear structural
systems. However, since the external excitations such as strong earthquakes, high
winds, and hugewaves often arise significant randomness inherent in their occurrence
time, space, and amplitude. The response of structural systems inevitably excurses
inelastic range back and forth when subjected to these severe hazardous actions.
Therefore, it is necessary to further investigate the stochastic optimal control of
nonlinear structural systems.

The stochastic optimal control of nonlinear systems has been a challenging issue
(Housner et al. 1997). For instance, Shefer and Breakwell proposed an optimal con-
trol scheme with digital feedback logic for a family of nonlinear systems, by taking
into account the non-Gaussian characteristics of the state conditional distribution of
systems, where the state estimation involved third-order and higher order moments
(Shefer and Breakwell 1987). Yang et al. investigated a stochastic hybrid control
of a base-isolated structure under seismic ground motions using the statistical lin-
earization technique for random vibration. In their work, the seismic ground motion
is modeled as a filtered shot noise (Yang et al. 1994). Zhu et al. proposed a nonlinear
stochastic optimal control strategy for hysteretic systems under random excitations
utilizing the stochastic averaging method and the stochastic dynamic programming,
and the Itô equation describing the total energy of the system was defined as a one-
dimensional controlled diffusion process (Zhu et al. 2000).

In practice, a family of nonlinear structural systems with large deformation is
usually modeled as hardening or softening Duffing systems, e.g., the free vibration
of gyroscopes, the vibration of bridge plate with hinge joints, and the vibration of
fluid–solid coupling dynamical systems (Sekar and Narayanan 1994). The vibration
of another family of nonlinear systems gives rise to hysteretic behaviors such as the
engineering structures under serious dynamic actions. Many mathematical models
have been developed to efficiently describe the hysteretic behaviors of structures,
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of which two classes are widely used in structural engineering and materials, i.e.,
the bilinear elastoplastic model (Iwan 1961; Clough and Johnson 1966) and the
Bouc–Wen hysteretic model (Bouc 1967; Wen 1976; Baber and Wen 1981; Baber
and Noori 1985).

In conjunctionwith the optimal polynomial control, this chapter attempts to extend
the theory of physically based stochastic optimal control into the stochastic control of
nonlinear and hysteretic structural systems. For illustrative purposes, the stochastic
optimal control of typical nonlinear dynamical systems subjected to random seismic
ground motions has been carried out, including a family of hardening Duffing oscil-
lators, multi-degree-of-freedom structural systems with hysteretic behaviors repre-
sented by Clough hysteretic model and by Bouc–Wen hysteretic model, respectively.

6.2 Stochastic Optimal Polynomial Control

The scheme of optimal polynomial control is derived from the Bellman’s optimality
principle and Hamilton–Jacobi theoretical framework (Suhardjo et al. 1992), which
is an extended formulation of the LQR control in essence.

Without loss of generality, an n-degree-of-freedom nonlinear system subjected to
random excitation is investigated. The vector equation of motion is given by

MẌ(t) + f[X(t), Ẋ(t)] � BsU(t) + DsF(�, t),X(t0) � x0; Ẋ(t0) � ẋ0, (6.2.1)

whereX(t) is the n-dimensional columnvector denoting systemdisplacement;U(t) is
the r-dimensional column vector denoting control force;M is the n×n mass matrix;
f[·] is the n-dimensional column vector denoting nonlinear internal force, including
the nonlinear damping force and nonlinear restoring force; F(·) is the p-dimensional
column vector denoting random excitation.

In order to transform Eq. (6.2.1) to the equation of motion as Eq. (3.3.1) and to the
state equation as Eq. (3.3.2), an expansion on the nonlinear internal force f[·] needs
to be carried out so as to extract the system matrix. Usually, the nonlinear internal
force can be expanded into the following Maclaurin series:

f[X(t),
.

X(t)] � f[0, 0] +
(

∂f[0, 0]
∂X

· X +
∂f[0, 0]
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X
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X
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where
m· denotes m times of dot product for tensor contraction; Xm�X⊗ · · · ⊗︸ ︷︷ ︸

m

X

denotes m times of union product for tensor extension, and the union product sign
⊗ is omitted in Eq. (6.2.2).

As to a general system of nonlinear structures, the cross terms betweenXi and Ẋi

is far less than other terms on the contribution to the nonlinear internal force, which
can thus be ignored safely. Moreover, the nonlinear internal force is typically zero
when the state vector is zero, and the first term of the Maclaurin series can thus be
ignored, i.e.,

f[X(t), Ẋ(t)] �
(

∂f[0, 0]
∂X

· X0 +
1

2!

∂2f[0, 0]
∂X2

:X + · · · + 1

m!

∂mf[0, 0]
∂Xm

m· Xm−1
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X
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∂Ẋ
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1

2!

∂2f[0, 0]

∂Ẋ2
:Ẋ + · · · + 1
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∂mf[0, 0]

∂Ẋm
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Ẋ

(6.2.3)

In the state space, Eq. (6.2.1) can be written as

Ż(t) � �(Z)Z(t) + BU(t) + DF(�, t) (6.2.4)

with the initial conditionZ(t0) � z0, whereZ(t) is the 2n-dimensional column vector
denoting system state; �(Z) is the 2n × 2n gradient matrix (system matrix); B is the
2n × r matrix denoting the location of control devices, and D is the 2n × p matrix
denoting the location of external excitation, respectively:

Z(t) �
[
X(t)
Ẋ(t)

]
,B �

[
0

M−1Bs

]
,D �

[
0

M−1Ds

]

�(Z) �
⎡
⎣ 0 I

−M−1
m∑
i�1

1
i!

∂ i f[0,0]
∂Xi

i·Xi−1 −M−1
m∑
i�1

1
i!

∂ i f[0,0]
∂Ẋi

i· Ẋi−1

⎤
⎦ (6.2.5)

where m denotes the highest order of the Maclaurin’s series, which is equal to the
highest order of the nonlinear internal force. The terms of series with (m + 1) or
higher orders are all zeros.

A polynomial cost function with stochastic vector� is given by (Yang et al. 1996)

J1(Z,U,�) � φ(Z(t f ), t f ) +
1

2

t f∫
t0

[ZT(t)QZZ(t) + UT(t)RUU(t) + h(Z, t)]dt

(6.2.6)

where φ(Z(t f ), t f ) denotes the terminal cost; Z(t f ) denotes the terminal state; t0, t f
denote the initial and terminal times, respectively; QZ is the 2n × 2n positive semi-
definite weightingmatrix with respect to system state;RU is the r×r positive definite
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weighting matrix with respect to control force; h(Z, t) denotes the high-order term
of the cost function of which the orders are higher than the quadratic term. It is
readily seen that the terminal cost, together with the first two terms of the integrand
in Eq. (6.2.6) conducts the canonical LQR control; see Eq. (3.3.5).

For a given realization θ of the stochastic vector �, the minimization of the poly-
nomial cost function Eq. (6.2.6) can refer to the Euler–Lagrange equation according
to the Pontryagin’s maximum principle, also to the celebrated Hamilton–Jacobi—
Bellman equation according to the Bellman’s optimality principle. Using the Hamil-
ton–Jacobi–Bellman equation (Anderson and Moore 1990), one has

∂V (Z, t)

∂t
� −min

U
[H (Z,U, V ′(Z, t),�, t)] (6.2.7)

where the prime denotes the differentiation with respect to Z; V (Z, t) is the optimal
cost function which satisfies all the properties of a Lyapunov function (Bernstein
1993), and can be considered as

V (Z, t) � 1

2
ZT(t)P(t)Z(t) + g(Z, t) (6.2.8)

where P(t) denotes the 2n × 2n Riccati matrix; g(Z, t) denotes a positive definite
multinomial in function of Z(t). The necessary condition for the minimization of the
right-hand side of Eq. (6.2.7) is

∂H (Z,U, V ′(Z, t),�, t)

∂U
� 0 (6.2.9)

The probabilistic criterion used in the stochastic optimal control of structures
relies on the structural performance, which actually includes the influence of external
excitations. Therefore, the excitation-relevant term in the expression of feedback
logic can be safely ignored, resulting in a closed-loop control with the state feedback.
The extended Hamiltonian function is then defined as (Yang et al. 1996)

H (Z,U, V ′(Z, t),�, t) � 1

2
[ZT(t)QZZ(t) + UT(t)RUU(t) + h(Z, t)]

+ [V ′(Z, t)]T(�(Z)Z(t) + BU(t)) (6.2.10)

Substituting Eq. (6.2.10) into Eq. (6.2.8), we have

H (Z,U, V ′(Z, t),�, t) � 1

2
[ZT(t)QZZ(t) + UT(t)RUU(t) + h(Z, t)]

+ [ZT(t)P(t) + (g′(Z, t))T](�(Z)Z(t) + BU(t)) (6.2.11)

Substituting Eq. (6.2.11) into Eq. (6.2.9) leads to

RUU(t) + BTP(t)Z(t) + BTg′(Z, t) � 0 (6.2.12)
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The optimal nonlinear controller is then given by

U(t) � −R−1
U BTP(t)Z(t) − R−1

U BTg′(Z, t) (6.2.13)

It is also readily seen from Eq. (6.2.13) that

∂2H (Z,U, V ′(Z, t),�, t)

∂U2
� RU > 0 (6.2.14)

Therefore, the minimization of polynomial cost function definitely exists.
Substituting Eqs. (6.2.8), (6.2.11) and (6.2.13) into Eq. (6.2.7), and separating the

terms relevant to Z(t) and the terms relevant to g(Z, t), one obtains

−Ṗ(t) � P(t)�(Z) + �T(Z)P(t) − P(t)BR−1
U BTP(t) +QZ (6.2.15)

− ġ(Z, t) � 1

2
h(Z, t) − 1

2
(g′(Z, t))TBR−1

U BTg′(Z, t)

+ (g′(Z, t))T[�(Z) − BR−1
U BTP(t)]Z(t) (6.2.16)

The following equivalent formulation of matrices has been utilized in the deduction
of Eq. (6.2.15):

2P(t)�(Z) � P(t)�(Z) + �T(Z)P(t) (6.2.17)

In order to gain the explicit expression of nonlinear controller as Eq. (6.2.13), a
positive polynomial function of g(Z, t) is chosen as follows (Yang et al. 1996):

g(Z, t) �
k∑

i�2

1

i
[ZT(t)Mi (t)Z(t)]i (6.2.18)

where Mi (t), i � 2, 3, . . . , k denote 2n × 2n Lyapunov matrices.
Substituting Eq. (6.2.18) into Eq. (6.2.16), we then have

− 2
k∑

i�2

[ZT(t)Mi (t)Z(t)]i−1ZT(t)Ṁi (t)Z(t) � h(Z, t)

− 4

{
k∑

i�2

[ZT(t)Mi (t)Z(t)]i−1Mi (t)Z(t)

}T

BR−1
U BT

{
k∑

i�2

[ZT(t)Mi (t)Z(t)]i−1Mi (t)Z(t)

}

+ 4

{
k∑

i�2

[ZT(t)Mi (t)Z(t)]i−1Mi (t)Z(t)

}T

[�(Z) − BR−1
U BTP(t)]Z(t) (6.2.19)

If the high-order term of cost function has the formulation as follows:
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h(Z, t) � 2
k∑

i�2

[ZT(t)Mi (t)Z(t)]i−1ZT(t)QZ,i (t)Z(t)

+ 4

{
k∑

i�2

[ZT(t)Mi (t)Z(t)]i−1Mi (t)Z(t)

}T

BR−1
U BT

{
k∑

i�2

[ZT(t)Mi (t)Z(t)]i−1Mi (t)Z(t)

}
(6.2.20)

a simple analytical solution of nonlinear controllers can be obtained. In Eq. (6.2.20),
QZ,i , i � 2, 3, . . . , k denote 2n × 2n positive semi-definite weighting matrices with
respect to system state. One thus has the following formulation to solve the Lyapunov
matrix:

−Ṁi (t) � Mi (t)[�(Z) − BR−1
U BTP(t)] + [�(Z) − BR−1

U BT�T(Z)P(t)]TMi (t) +QZ,i
(6.2.21)

where the equivalent formulation of matrices shown in Eq. (6.2.17) has been utilized
here again.

It is noted that Eqs. (6.2.15) and (6.2.21) are the matrix Riccati and Lyapunov
equations, respectively.

One might recognize that the Riccati matrix and the Lyapunov matrix are both
in function of �(Z), which indicates a fact that the control law parameters of the
polynomial controller cannot be optimized in an offline manner. Hence, the analyt-
ical solution of optimal polynomial controller can be obtained analytically as the
following formulation:

U(t) � −R−1
U BTP(t)Z(t) − R−1

U BT
k∑

i�2

[ZT(t)Mi (t)Z(t)]i−1Mi (t)Z(t) (6.2.22)

It is readily seen that the polynomial controller consists of linear and nonlinear terms,
where the former is the first-order function of state quantity, and the latter is the odd
high-order functions of state quantity, e.g. cubic, quintic, etc.

Substituting the solutions of system state Z(�, t) and control force U(�, t) into
the generalized probability density evolution equations as follows:

∂pZ�(z, θ, t)

∂t
+ Ż (θ, t)

∂pZ�(z, θ, t)

∂z
� 0 (6.2.23)

∂pU�(u, θ, t)

∂t
+ U̇ (θ, t)

∂pU�(u, θ, t)

∂u
� 0 (6.2.24)

the probability density of system quantities of concern can be readily attained.
In Eqs. (6.2.23) and (6.2.24), Z (t),U (t) denote the component formulation of
Z(t),U(t), respectively.
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In regard to a family of optimal control systems with infinite time, if the gradient
matrix is not related to the time, theRiccatimatrix andLyapunovmatrix are the steady
solutions of Eqs. (6.2.15) and (6.2.21), respectively, i.e. involving the solutions of
the matrix algebraic Riccati and Lyapunov equations as follows:

P�0 + �T
0P − PBR−1

U BTP +QZ � 0, (6.2.25)

Mi (�0 − BR−1
U BTP) + (�0 − BR−1

U BTP)TMi

+QZ,i � 0, i � 2, 3, . . . , k (6.2.26)

where �0 � �(Z)|z0 denotes the value of the gradient matrix �(Z) at the initial
state z0 (Yang et al. 1996). The solving of matrices P,Mi can refer to the traditional
numerical schemes or to the toolbox functions available in MATLAB.

However, as to the issue addressed in the present study: optimal control system
with finite time and time-variant gradient matrix, the system matrix at a small time
scale of numerical integral steps can be viewed as time invariant. Therefore, the
Riccati matrix and Lyapunov matrix at the jth integral step are the approximate
solutions of the equations as follows:

P(t j )�(Z) + �T(Z)P(t j ) − P(t j )BR−1
U BTP(t j ) +QZ � 0 (6.2.27)

Mi (t j )[�(Z) − BR−1
U BTP(t j )] + [�(Z) − BR−1

U BTP(t j )]TMi (t j ) +QZ,i � 0
(6.2.28)

6.3 Stochastic Optimal Control of Nonlinear Oscillators

For illustrative purposes, the stochastic optimal control of a family of hardening
Duffing oscillators subjected to the random seismic ground motion is investigated.
The equation of motion of the nonlinear oscillator is given by

ẍ(t) + 2ζω0 ẋ(t) + ω2
0[x(t) + μx3(t)] � u(t) + F(�, t), x(t0) � ẋ(t0) � 0

(6.3.1)

where x(t) denotes the oscillator displacement; ζ, ω0 denote the damping ratio and
the vibrational frequency of the oscillator system; μ denotes the coefficient describ-
ing the nonlinearity level of the oscillator system; u(t) denotes the control force in
acceleration unit; F(·) denotes the random excitation in acceleration unit as well.

Introducing the Maclaurin series and ignoring the cross terms between displace-
ment and velocity in the nonlinear internal force, Eq. (6.3.1) can be rewritten to state
equation as follows:
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Ż(t) � �(Z)Z(t) + Bu(t) + DF(�, t) (6.3.2)

where

Z(t) �
[
x(t)
ẋ(t)

]
,�(Z) �

[
0 1

−[1 + 6μx2(t)]ω2
0 −2ζω0

]
,B �

[
0
1

]
,D �

[
0
1

]

(6.3.3)

6.3.1 Performance of Active Tendon Control

A practical problem is the randomly base-excited vibration of a bridge plate with
hinge joints and its stochastic optimal control using active tendon systems, as shown
in Fig. 6.1. This structural system can bemodeled as the controlled hardeningDuffing
oscillator, as mentioned in the previous section (Peng and Li 2011). The damping
ratio ζ and the natural frequency ω0 are assumed to be 0.02 and 2 rad/s, respectively;
the coefficient μ employs 200 and 10 to represent strong and weak nonlinearities,
respectively.

The physically motivated random seismic ground motion model is employed as
the input, of which the peak ground acceleration is set as 0.3g. Using the adaptive step
size Runge–Kutta method, the nonlinear dynamic analysis of the Duffing oscillator
is carried out. According to the criterion of minimizing the performance function in
exceedance probability, i.e., Eq. (5.4.1), the optimal parameters of control law are
defined. The thresholds of oscillator displacement, velocity, acceleration, and control
force are 50 mm, 300 mm/s, 2000 mm/s2, 5000 mm/s2, respectively. The weighting
matrices employ a diagonal form as follows:

QZ �
[
Qd 0
0 Qv

]
,QZ,i �

[
Qd,i 0
0 Qv,i

]
,RU � Ru, i � 2, 3, . . . , k (6.3.4)

The optimal parameters of the polynomial controllers acting on the Duffing oscil-
lators in two nonlinearity levels are shown in Table 6.1. It is seen that the optimal
parameters in high-order terms of nonlinear controllers (third-order and fifth-order
terms) are numerically almost zeros, and the objective function of different-order
controllers are almost the same for the Duffing oscillator with strong and weak non-
linearities. It is revealed that utilizing the criterion of minimizing the performance

Fig. 6.1 Hinge jointed
bridge plate with active
tendon systems

Active Tendon

Actuator
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Table 6.1 Optimal parameters of polynomial controllers

Nonlinearity
level

Order of
controller

Weighting matricesa Objective
function
J2

Qd Qv Qd,2 Qv,2 Qd,3 Qv,3 Ru

μ � 200 First 0.0 39.4 – – – – 1.0 0.0161

Third 0.0 39.4 0.0 0.0 – – 1.0 0.0161

Fifth 0.0 39.4 0.0 0.0 0.0 16.8 1.0 0.0161

μ � 10 First 0.0 40.4 – – – – 1.0 0.0153

Third 0.0 40.4 0.0 0.0 – – 1.0 0.0153

Fifth 0.0 40.4 0.0 0.0 0.0 0.0 1.0 0.0153

aInitial values of parameters are Qd � Qv � 100, Qd,2 � Qv,2 � Qd,3 � Qv,3 � 20, Ru � 1

(a) 1st-order controller (b) high-order controller

Fig. 6.2 State-feedback model of first-order and high-order controllers

function in exceedance probability, the linear control by means of the first-order con-
troller can implement the control effectiveness of the nonlinear control by means of
high-order controllers. One might recognize that the linear controller is a promising
control law in that the nonlinear controller may cause the dynamical system unstable
since the nonlinear controller would amplify the measurement noise and weaken the
control effectiveness.

Figure 6.2 shows the state-feedback model of the first-order and high-order con-
trollers. It is seen that the first-order controller is a linear feedback with respect to
system state; while the high-order controller is a nonlinear feedback with respect
to system state, involving the online calculation of high-order terms of oscillator
responses, which tends to result in a serious deviation from the desired control force
and an unstable structural system once the time delay occurs. The applications of lin-
ear controllers or the low-order nonlinear controllers are thus preferable in practice.
It is revealed that using the polynomial controller designed as the criterion of min-
imizing the performance function in exceedance probability, a first-order controller
with linear feedback can attain the control effectiveness of high-order controllers
with nonlinear feedback. This finding features practical significance.

Besides, the optimal weighting matrices of the oscillator system on different non-
linearity levels are very close. It is indicated that the optimal polynomial control, at
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least to the family of nonlinear oscillators, exhibits high robustness to the nonlinear-
ities of systems.

Time histories of mean and standard deviation of displacement and acceleration
of the oscillator systems with and without the first-order controllers are shown in
Fig. 6.3. It is readily seen that the displacements of oscillators both with strong
and weak nonlinearities are reduced significantly after the controller is placed on
the system. The acceleration of the oscillator with the strong nonlinearity is also
improved greatly though a slight enlargement occurs in the initial period due to
the intervention of control force; while the acceleration of the oscillator with the
weak nonlinearity has an increment other than a reduction. It is explained that the
uncontrolled nonlinear system serves as a filter, thereby the acceleration response is
filtered significantly. The filtering performance, however, becomes weaker when the
control action is posed upon the system. It is seen, moreover, that the time histories
of mean and standard deviation of the controlled oscillator with strong and weak
nonlinearities are nearly identical since the polynomial controllers, designed for the
oscillator in the two nonlinearity levels, are almost the same. It is proved again
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Fig. 6.3 Time histories of mean and standard deviation of responses of Duffing oscillators with
and without controls
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Fig. 6.4 PDFs of responses ofDuffing oscillator at typical instants of timewith andwithout controls

that the polynomial controller is insensitive to the nonlinearity level of the Duffing
oscillators.

Figure 6.4 shows the PDFs of displacement and acceleration of the oscillator
system with strong nonlinearity at typical instants of time with and without controls.
It is seen that the distribution range of PDFs of oscillator responses becomes smaller
after the oscillator is controlled, which exhibits a consistency with Fig. 6.3a, c. It is
revealed that the variation of oscillator responses is reduced significantly, especially
at the instant 15 s, the PDF no matter of the displacement or of the acceleration
approximates to be a pulse. Figures 6.5 and 6.6 further show the surface and contour
of probability density of the oscillator displacement and acceleration at the typical
time interval.

The probabilistic characteristics of optimal control force of the oscillator system
with strong nonlinearity are shown in Fig. 6.7, involving time histories of mean and
standard deviation, and the PDFs at typical instants of time. It is seen that there are
some similarities in the time histories and probability density functions between the
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Fig. 6.5 Probability density surface and contour of displacement of controlled oscillator system
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Fig. 6.6 Probability density surface and contour of acceleration of controlled oscillator system
with strong nonlinearity at typical time interval

oscillator displacement and acceleration and the optimal control force, owing to the
logic of feedback control.

The root-mean-square phase plane evolution of the oscillator system with strong
nonlinearity with and without controls is shown in Fig. 6.8. It is readily seen that the
uncontrolled oscillator moves mainly far from the initial position, which will never
come back to the neighborhood of the initial position once it moves out under the
external excitation. While the controlled oscillator is able to return to the neighbor-
hood of initial position under the control force even it moves out. This benefit is also
seen from the sample phase plane evolution; see Fig. 6.9. Besides, one might see that
the uncontrolled oscillator first forms into steady loops at the inner layer domain, and
then jumps out to the outer layer domain and moves in circularity. This phenomenon
is the so-called bifurcation, a celebrated term in the nonlinear dynamics, which can
be derived from the similarities of phase plane evolution among samples. In fact,
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Fig. 6.7 Probabilistic characteristics of optimal control force of controlled oscillator system with
strong nonlinearity
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Fig. 6.8 Root-mean-square phase plane evolution of oscillator system with strong nonlinearity
with and without controls

burfication is an essential feature of Duffing oscillators. Owing to the randomness
inherent in external excitations, burfication ofDuffing oscillators arises to be stochas-
tic. It is revealed in the sample phase plane evolution of controlled oscillator system
that the number of steady loops increases after control and most of the loops are
distributed in the neighborhood of initial position.

In order to proceed with a comparative study against the classical stochastic opti-
mal control, the statistical linearization based LQG control is investigated. As to the
nonlinear structural system shown in Eq. (6.3.1), the mean-square displacement and
the mean-square control force derived from the LQG control are given by (details of
deduction refers to Appendix C)
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Fig. 6.9 Sample phase plane evolution of oscillator system with strong nonlinearity with and
without controls
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where S0 denotes the spectral intensity factor of random seismic ground motion;
�

C,
�

K denote the numerical damping and numerical stiffness provided by the control
force u(t), as shown in Eq. (C.14) in Appendix C in which the cost-function weights
have the same design parameters as Table 6.1:

QZ �
[
0.0 0
0 40.0

]
,RU � 1.0 (6.3.7)

Figure 6.10 shows the comparison between root-mean-square quantities of con-
trolled oscillator systems in different nonlinearity levels by the stochastic optimal
polynomial control (OPC-PSO) and the statistical linearization based LQG (SL-
LQG), involving the equivalent extreme values of displacement and control force.
It is seen that when the control force weighting matrix is set as 1.0, the OPC-PSO
gains a less displacement than the SL-LQG where their difference reduces along the
increasing of nonlinearity level, and the OPC-PSO requires a larger control force.
Meanwhile, as to the Duffing system under investigation, the SL-LQG does not
exhibit good robustness, and the system response is sensitive to the nonlinearity
level: the root-mean-square displacement gradually reduces when the nonlinearity
level of oscillator system increases. If the control force weighting matrix of the SL-
LQG is set as 0.1, the root-mean-square displacement reduces significantly and is
less than the result of the OPC-PSO with control force weighting matrix 1.0, so
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Fig. 6.10 Comparison between root-mean-square quantities of controlled oscillator systems in
different nonlinearity levels by stochastic optimal polynomial control (OPC-PSO) and statistical
linearization based LQG (SL-LQG)

as the control force. When the control force weighting matrix of the OPC-PSO is
set as 0.1 as well, a less displacement and larger control force can be gained than
the SL-LQG. Similarly, the response of SL-LQG is still sensitive to the nonlinearity
level. In summary, the SL-LQG does not exhibit good robustness and underestimates
the requisite control force. Therefore, using white Gaussian noise as input cannot
logically design the control system of civil engineering structures.

6.3.2 Comparative Studies Between Control Criteria

As was mentioned previously, the linear control with the first-order controller can
implement the control effectiveness of the nonlinear control with high-order con-
trollers when the criterion of minimizing the performance function in exceedance
probability (MPFE) is employed. However, whether other criteria exhibit this feature
as well? For validating purposes, the Duffing oscillator with strong nonlinearity is
investigated, and two well-visited criteria are employed, e.g., the criterion on system
second-order statistics evaluation (SSSE) (Zhang and Xu 2001) and the criterion on
Lyapunov asymptotic stability condition (LASC) (Yang et al. 1992).

As to the criterion on SSSE, the constraint quantity is defined by the oscillator
displacement, the evaluation quantities include the oscillator displacement, acceler-
ation and control force, and the quantile function is defined as the mean plus one
time of standard deviation. The cost-function weights have the formula as follows:

QZ � q

[
1 0
0 1

]
,RU � r,QZ,2 � q

5

[
1 0
0 1

]
,QZ,i � q

10

[
1 0
0 1

]
, i � 3, 4, . . . , k

(6.3.8)
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Fig. 6.11 Relation betweenmean, quantile of quantities, and coefficient ratio ofweightingmatrices

Using the first-order controller, the relation between the statistical moments of
equivalent extreme values of oscillator responses and the ratio of coefficients of
weighting matrices q/r is shown in Fig. 6.11 (r � 1.0).

(i) As q/r � 20, the quantile of the displacement constraint is within the threshold
50mm, and itsmean and standard deviation both gradually decrease,meanwhile
the mean and standard deviation of control force increase significantly.

(ii) As q/r � 20, the mean and standard deviation of the acceleration are both
minimum under the constraint condition.

Therefore, the coefficients of the weighting matrices are taken as q � 20.0, r �
1.0.

As to the criterion on LASC, the cost-function weights have the formulation as
follows (Yang et al. 1992):

QZ � q

[
ω2
0 0
0 1

]
,RU � r,QZ,2 � q

5

[
ω2
0 0
0 1

]
,
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QZ,i � q

10

[
ω2
0 0
0 1

]
, i � 3, 4, . . . , k (6.3.9)

According to the cost-function weights defined in the criterion on SSSE, the
coefficients of weighting matrices shown in Eq. (6.3.9) are chosen as q� 10, r � 1.0.

The control effectiveness of polynomial controllers using the presented three con-
trol criteria is listed in Table 6.2. It is seen that the objective function of the linear
controller using the criterion of MPFE is less than those of nonlinear controllers
using the criteria on SSSE and LASC. The main reason underlying the difference
is that the later two criteria involve non-optimization procedures for designing the
cost-function weights, and thus at most gain the approximately optimal solution. The
former, however, accommodates the minimum failure probabilities of system quan-
tities in the sense of trade-off. Besides, the polynomial controllers with high-order
terms have better control effectiveness than the linear controllers with first-order
terms using the two criteria involving non-optimization procedures. It is revealed
that the linear controller cannot implement the control effectiveness of the nonlinear
controller when the criteria on SSSE and LASC are employed, and the nonlinear con-
troller with high-order terms has better control effectiveness. It follows the traditional
knowledge that a nonlinear optimal control is more robust and more effective than
the counterpart of linear optimal control (Bernstein 1993). Besides, the third-order
controller using the criteria on SSSE and LASC achieves the almost same control
effectiveness as the fifth-order controller, indicating that the third-order controller is
definitely satisfactory to the investigated Duffing oscillator using the criteria involv-
ing non-optimization procedures. In summary, the criterion MPFE is a preferable
criterion for stochastic optimal control of nonlinear dynamical systems.

It is seen from Table 6.2 that the control criteria have their emphases on the
response control of oscillator systems. The first-order controller using the criterion of
MPFE, for example, has a superior capacity on displacement control. The third-order
controller using the criterion on SSSE has a superior capacity on acceleration control;

Table 6.2 Control effectiveness of polynomial controllers using three control criteria

Polynomial
controller

Exceedance probabilities Objective function
J2

Pf,d Pf,v Pf,a Pf,u

First (MPFE) 0.0668 0.1474 0.0771 3.601 × 10−7 0.0161

First (SSSE) 0.0941 0.2276 0.0016 0.0000 0.0303

Third (SSSE) 0.0870 0.1969 0.0548 3.602 × 10−7 0.0247

Fifth (SSSE) 0.0869 0.1960 0.0579 3.604 × 10−7 0.0247

First (LASC) 0.1471 0.3708 0.0028 0.0000 0.0796

Third (LASC) 0.0716 0.0349 0.2339 3.603 × 10−7 0.0305

Fifth (LASC) 0.0707 0.0262 0.2458 3.601 × 10−7 0.0330

Uncontrolled 1.0000 0.9968 0.4559 – 1.1007



188 6 Stochastic Optimal Control of Nonlinear Structures

0 5 10 15 200

5

10

15

20

25

30

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

1st-order Controller (MPFE)
3rd-order Controller (SSSE)
3rd-order Controller (LASC)

0 5 10 15 200

200

400

600

800

1000

1200

Time (s)

Ac
ce

le
ra

tio
n 

(m
m

/s
2 )

1st-order Controller (MPFE)
3rd-order Controller (SSSE)
3rd-order Controller (LASC)

0 5 10 15 20
0

200

400

600

800

1000

1200

Time (s)

C
on

tro
l F

or
ce

 (m
m

/s
2

)

1st-order Controller (MPFE)
3rd-order Controller (SSSE)
3rd-order Controller (LASC)

(a) root-mean-square displacement (b) root-mean-square acceleration

(c) root-mean-square control force

Fig. 6.12 Time histories of root-mean-square quantities of controlled oscillator systemwith strong
nonlinearity in terms of three control criteria

while the third-order controller using the criterion on LASC has a superior capacity
on velocity control. It is explained that the control effectiveness is closely related
to the physical meaning of the applied criterion, which relies upon the components
of weighting matrices such as displacement, velocity component and control force,
and prompts the balance among system quantities. It is obvious that the criterion of
MPFE attains the best trade-off. Figure 6.12 shows the time histories of root-mean-
square quantities of controlled oscillator system with strong nonlinearity in terms of
the three control criteria, which exposes a consistent result with Table 6.2.

6.4 Stochastic Optimal Control of Hysteretic Structures

In conjunction with the generalized optimal control policy addressed in Chap. 5 and
the optimal polynomial control method, the stochastic optimal control of nonlinear
structural systems with hysteretic components can be readily carried out.
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Without loss of generality, the equation of motion of controlled hysteretic struc-
tures subjected to random excitation is given by

MẌ(t) + Ct Ẋ(t) + Rt (X, z) � BsU(t) + DsF(�, t), X(t0) � 0,Ẋ(t0) � 0 (6.4.1)

where Ct denotes the instantaneous damping matrix; Rt (X, z) is the n-dimensional
column vector denoting the restoring force, including the elastic component and the
hysteretic component induced by the hysteretic displacement z. The restoring force
can thus be modeled as a combination of an elastic term and a hysteretic term:

Rt (X, z) � αK0X + (1 − α)K0z (6.4.2)

where α denotes the stiffness ratio between the post-yielding stiffness K1 and the
pre-yielding stiffness K0.

The function of the hysteretic displacement z underlies the various formula of the
hysteretic model. In this chapter, two families of hysteretic structures are explored,
i.e., the Clough hysteretic system and the Bouc–Wen hysteretic system.

Using the Maclaurin series, the equation of motion of controlled hysteretic struc-
tures can be rewritten as the formulation of state equation:

Ż(t) � �(Z)Z(t) + BU(t) + DF(�, t) (6.4.3)

Z(t) �
[
X(t)
Ẋ(t)

]
,B �

[
0

M−1Bs

]
,D �

[
0

M−1Ds

]
,

�(Z) �
⎡
⎢⎣

0 I

−M−1
(

αK0 + (1 − α)K0
m∑
i�1

1
i!

∂i z(0,0)
∂Xi

i· Xi−1
)

−M−1
(
C + (1 − α)K0

m∑
i�1

1
i!

∂i z(0,0)
∂Ẋi

i· Ẋi−1
) ⎤

⎥⎦, (6.4.4)

The system matrix can be simplified into the truncated formulation with respect
to the zero-order and first-order terms of the Maclaurin series, i.e., the second-order
and higher-order terms are ignored:

�(Z)
.�

[
0 I

−M−1
(
αK0 + (1 − α)K0

∂z(0,0)
∂X

)
−M−1

(
C + (1 − α)K0

∂z(0,0)
∂Ẋ

)
]

(6.4.5)

As to the optimal polynomial control, the control law exhibits the uniform expres-
sion as follows:

U(�, t) � −f(I∗,L∗)f(Ẍ, Ẋ,X) (6.4.6)

Therefore, the essence of solving the generalized optimal control law of the nonlinear
structures is still the optimization of the parameters of control law (I∗,L∗) so that
the structural performance objective can be attained.

The probabilistic criterion of minimizing the performance function in exceedance
probability; see Eq. (5.4.1), is applied here for optimizing the parameters of control
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law. In order to prove the benefits of the generalized optimal control policy in stochas-
tic optimal control of nonlinear structures, a provided number of active tendons is
optimized on their control laws, controller parameters and their placements so as
to make the control effectiveness maximum. For comparative purposes, the case of
the same number of active tendons placed from the bottom acts as the reference, of
which controller parameters are simultaneously optimized as the same.

6.4.1 Clough Hysteretic System

A ten-story shear framewith nonlinear components represented by Clough hysteretic
model subjected to random seismic ground motion is investigated. The story mass
and story stiffness are shown in Table 6.3. The structural damping is modeled by the
Rayleigh’s damping matrix C � aM + bKt , where a � 0.01, b � 0.005, Kt denotes
the instantaneous stiffness matrix. The natural frequencies of the unyielded structure
are 3.46, 10.00, 15.83, 21.26, 26.57, 31.39, 35.25, 38.64, 41.33, and 44.44 rad/s,
respectively. The damping ratio of the first-order vibrational mode is thus 1.01%.
The physically motivated random seismic ground motion model is employed as
the input, and its peak ground acceleration is set as 0.3g. The restoring force of
structural components represented by Clough hysteretic model is shown in Fig. 6.13.
The ratio between the post-yielding stiffness and the pre-yielding stiffness of all the
interstories α � Kt/K0 is set as 0.1. The initial yielding displacement of interstories
	y is listed in Table 6.3. According to the restoring force relation of structural
components, the instantaneous stiffness matrix Kt can be evaluated. The thresholds
of the interstory drift, interstory velocity, story acceleration, and the control force are
15 mm, 150 mm/s, 8000 mm/s2, and 200 kN, respectively. The nonlinear dynamic
analysis involved in solving the generalized probability density evolution equation
resorts to the Newmark-β implicit integral scheme (Clough and Penzien 1993).

Utilizing the generalized optimal control policy addressed in Chap. 5, the con-
troller parameters and placement of the active tendons are optimized. The optimal
placement and parameters of weighting matrices of the newly added active tendon
using the first-order controller in each sequence are shown in Table 6.4. It is seen
that the six tendons are deployed in the tenth interstory, the seventh interstory, the
sixth interstory, the eighth interstory, the fifth interstory, and the third interstory in
turn. The parameters of generalized optimal control law applied in this numerical
example are given by

Table 6.3 Parameters of ten-story shear frame with nonlinear components

Story number 1 2 3 4 5 6 7 8 9 10

Mass (105 kg) 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.6

Pre-yielding stiffness (kN/mm) 48 48 45 45 45 45 45 45 40 40

Yielding displacement (mm) 10.0 10.0 8.0 8.0 8.0 8.0 8.0 8.0 6.0 6.0
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Fig. 6.13 Curve of restoring
force of structural
components represented by
Clough hysteretic model
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Table 6.4 Optimal placement and parameters of weighting matrices of newly added tendon in
Clough hysteretic system

Sequence No. Placement
vector

Design parametersa

Qd Qv Qd,2 Qv,2 Qd,3 Qv,3 Ru

0 [0 0 0 0 0 0 0 0
0 0]T

– – – – – – –

1 [0 0 0 0 0 0 0 0
0 1]T

187.2 0.0 – – – – 10−10

2 [0 0 0 0 0 0 2 0
0 1]T

84.3 217.5 – – – – 10−10

3 [0 0 0 0 0 3 2 0
0 1]T

207.9 0.0 – – – – 10−10

4 [0 0 0 0 0 3 2 4
0 1]T

0.0 532.2 – – – – 10−10

5 [0 0 0 0 5 3 2 4
0 1]T

73.3 0.0 – – – – 10−10

6 [0 0 6 0 5 3 2 4
0 1]T

0.0 62.3 – – – – 10−10

6 (Third-order) [0 0 6 0 5 3 2 4
0 1]T

0.0 62.3 0.0 0.0 – – 10−10

6 (Fifth-order) [0 0 6 0 5 3 2 4
0 1]T

0.0 62.3 0.0 0.0 0.0 1.8 10−10

Reference [1 1 1 1 1 1 0 0
0 0]T

300.0 0.0 – – – – 10−10

aInitial values of weightingmatrices Qd � Qv � 100, Qd,2 � Qv,2 � 5, Qd,3 � Qv,3 � 2, Ru �
10−10
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(Q∗
d , Q

∗
v, R

∗
u , L

∗) �

⎡
⎢⎢⎣
0 0 0.0 0 73.3 207.9 84.3 0.0 0 187.2
0 0 62.3 0 0.0 0.0 217.5 532.2 0 0.0
0 0 10−10 0 10−10 10−10 10−10 10−10 0 10−10

0 0 6 0 5 3 2 4 0 1

⎤
⎥⎥⎦

T

. (6.4.7)

The design parameters of high-order terms, i.e., the third-order and the fifth-order,
of the polynomial controllers used for the optimally deployed six active tendons are
shown in Table 6.4 as well, which are scheduled as the same for all the controllers.
It is seen the high-order terms of polynomial controllers have no contributions to
the structural control. In fact, the objective function of the high-order controllers
remains the same numerical accuracy as that of the first-order control, which has
consistent results in four effective figures. It is revealed again that using the criterion
of minimizing the performance function in exceedance probability, the linear control
with first-order controller can completely implement the control effectiveness of the
nonlinear control with high-order controllers.

The exceedance probabilities of system quantities of concern and the objective
function are shown in Table 6.5. It is revealed that due to the deployment of the
active tendons, the structural performance is enhanced gradually. Figure 6.14 shows
the sequences of the tendon placement where the number indicates the order that the
tendon is placed. Meanwhile, the reference case with the tendon placed from the bot-
tom has similar control effectiveness to the case of Sequence 3, which indicates that

Table 6.5 Seismic mitigation by active tendons in Clough hysteretic system

Sequence
No.

Placement
vector

Exceedance probabilities Objective
function J2

Pf,d Pf,v Pf,a Pf,u

0 [0 0 0 0 0 0
0 0 0 0]T

0.5016 0.6032 0.7829 – 0.6142

1 [0 0 0 0 0 0
0 0 0 1]T

0.4942 0.5822 0.7685 3.600 ×
10−7

0.5869

2 [0 0 0 0 0 0
2 0 0 1]T

0.4355 0.5420 0.7597 0.0268 0.5306

3 [0 0 0 0 0 3
2 0 0 1]T

0.3927 0.5152 0.7573 0.0364 0.4973

4 [0 0 0 0 0 3
2 4 0 1]T

0.3694 0.4330 0.7534 0.1859 0.4630

5 [0 0 0 0 5 3
2 4 0 1]T

0.3580 0.4091 0.7511 0.0326 0.4304

6 [0 0 6 0 5 3
2 4 0 1]T

0.3527 0.3918 0.7497 0.0705 0.4225

Reference [1 1 1 1 1 1
0 0 0 0]T

0.3952 0.5178 0.7596 0.0221 0.5009
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Fig. 6.14 Schematic of
tendon deployments in
Clough hysteretic system

using the criterion ofminimum story controllability index gradient, just three tendons
in optimal deployment can attain the control effectiveness of six tendons placed from
the bottom. A schematic diagram showing the similar control effectiveness between
the two schemes of tendon deployments refers to Fig. 6.15.

Figure 6.16 shows the mean and standard deviation of the extreme value of inter-
story drift that changes as the deployment of the tendons. It is seen that the statistical
moments of extreme values of interstory drift is reduced in sequences. Although the
interstory control force acting on the structure cannot be so large and the control
effectiveness is limited due to the consideration of nonlinear system stability, the
interstories with larger displacement responses gain significant improvement. The
mean and standard deviation of extreme values of story acceleration that changes
as the deployment of the tendons are shown in Fig. 6.17. Similarly, the story accel-
erations are reduced gradually in sequences, and the stories with large acceleration
response gain significant improvement. However, reduction of the standard deviation
of story accelerations is not uniform along the story level, e.g., the low stories exhibit
an acceleration reduction but the high stories exhibit an acceleration amplification
in sequences. This is due to the fact that the control force input changes the filtering
performance of the nonlinear system upon the ground accelerations. Consequently,
control effectiveness on the story acceleration is not obvious as on the interstory
drift, which is in consistency with the results shown in Table 6.5.

Figures 6.18 shows the hysteretic curves of the first and the tenth interstory com-
ponents with and without controls subjected to representative ground motion. It is
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(a) using criterion of MinSCIG (b) placed from the bottom

Fig. 6.15 Schematic of tendon deployments in Clough hysteretic system as different schemes
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Fig. 6.16 Mean and standard deviation of extreme values of interstory drift that changes as the
deployment of tendons in Clough hysteretic system
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Fig. 6.17 Mean and standard deviation of extreme values of story acceleration that changes as the
deployment of tendons in Clough hysteretic system
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Fig. 6.18 Hysteretic curves of first and tenth interstory components with and without controls
subjected to representative ground motion

seen that the interstory drifts of the structure with control become less than those
without control, and the interstory restoring forces become less as well owing to the
compensation of additional control forces. Moreover, the profile of hysteretic curves
of the interstory components with control has a similarity as that without control;
while the interstory component with control moves back and forth in a less range
from initial positions. Besides, one might recognize that the first and the tenth inter-
story components experience opposing motions when subjected to the representative
ground motion.
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6.4.2 Bouc–Wen Hysteretic System

The structural parameters of another exemplified eight-story shear frame are follows:
m1 � m2 �1.0 × 105 kg, m3 � m4 �0.9 × 105 kg, m5 � m6 � 0.9 × 105 kg, m7

� m8 � 0.8 × 105 kg; k1 � k2 � 36 kN/mm, k3 � k4 � 32 kN/mm, k5 � k6 � 32
kN/mm, k7 � k8 � 28 kN/mm. Rayleigh’s damping C � aM + bK is employed,
where a � 0.01, b � 0.005. The natural frequencies of the unyielded structure are
3.64, 10.40, 16.46, 22.45, 27.91, 31.89, 34.68, and 36.81 rad/s, respectively. The
damping ratio of the first-order vibrational mode is thus 1.05%. The physically
motivated random seismic ground motion model is employed as the input, and its
peak ground acceleration is set as 0.3g. The restoring force of structural components
is represented by Bouc–Wen hysteretic model. The formulation of Bouc–Wen
hysteretic model and the pertinent parameters refer to Appendix A. The thresholds
of the interstory drift, interstory velocity, story acceleration and the control force are
30mm, 300mm/s, 3000mm/s2 and 200 kN, respectively. An explicit time integration
method is employed in the nonlinear dynamic analysis of the hysteretic system:

Ẍ(k + 1) � M−1[BsU(k) + DsF(�, k) − CẊ(k) − Rt (X(k), z(k))] (6.4.8)

Ẋ(k + 1) � Ẋ(k) + (1 − γa)Ẍ(k)	t + γaẌ(k + 1)	t (6.4.9)

X(k + 1) � X(k) + Ẋ(k)	t + ( 12 − βa)Ẍ(k)	t2 + βaẌ(k + 1)	t2 (6.4.10)

It has been proved (Chung and Lee 1994) that the integral scheme is of second-
order accuracy when γa � 3

2 , and it is unconditionally stable when 1 ≤ βa ≤ 28
27 .

In this study, the control parameters γa � 1.5, βa � 1.0. Besides, the hysteretic
displacement z is solved employing the fourth-order Runge–Kutta method.

Table 6.6 shows the optimal placement and parameters of weighting matrices of
the newly added active tendon using the first-order controller in each sequence. It is
seen that the five tendons are deployed in the first interstory, the second interstory, the
third interstory, the fourth interstory, and the sixth interstory in turn. The parameters
of generalized optimal control law applied in this numerical example are given by

(Q∗
d , Q

∗
v, R

∗
u , L

∗) �

⎡
⎢⎢⎣
642.5 100.2 777.9 57.1 0 225.5 0 0
73.0 47.9 485.7 1072.0 0 193.1 0 0
10−9 10−9 10−9 10−9 0 10−9 0 0
1 2 3 4 0 5 0 0

⎤
⎥⎥⎦

T

(6.4.11)

In order to evaluate the control effectiveness of thefirst-order control, the nonlinear
controls with high-order controllers on the hysteretic system are also investigated.
The parameters of weighting matrices of third-order and fifth-order terms are shown
in Table 6.6 as well. It is seen that the parameters of weighting matrices of high-order
terms are almost all equal to zero, indicating once again that the high-order terms
have no contributions to improve the structural performance, and the linear control
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Table 6.6 Optimal placement and parameters of weighting matrices of newly added tendon in
Bouc–Wen hysteretic system

Sequence No. Placement
vector

Design parametersa

Qd Qv Qd,2 Qv,2 Qd,3 Qv,3 Ru

0 [0 0 0 0 0 0 0
0]T

– – – – – – –

1 [1 0 0 0 0 0 0
0]T

642.5 73.0 – – – – 10−9

2 [1 2 0 0 0 0 0
0]T

100.2 47.9 – – – – 10−9

3 [1 2 3 0 0 0 0
0]T

777.9 485.7 – – – – 10−9

4 [1 2 3 4 0 0 0
0]T

57.1 1072.0 – – – – 10−9

5 [1 2 3 4 0 5 0
0]T

225.5 193.1 – – – – 10−9

5 (Third-order) [1 2 3 4 0 5 0
0]T

225.5 193.1 0.0 0.0 – – 10−9

5 (Fifth-order) [1 2 3 4 0 5 0
0]T

225.5 193.1 0.0 0.0 0.0 0.6 10−9

Reference [1 1 1 1 1 0 0
0]T

0.0 1027.0 – – – – 10−9

aInitial values of weighting matrices Qd � Qv � 100, Qd,2 � Qv,2 � 20, Qd,3 � Qv,3 �
10, Ru � 10−9

with first-order controller can implement the control effectiveness of the nonlinear
control with high-order controllers when the criterion ofminimizing the performance
function in exceedance probability is employed.

Table 6.7 shows the exceedance probabilities of system quantities of concern
and the objective function in each sequence. It is readily seen that the exceedance
probabilities of system quantities are gradually reduced as the optimal deployment
and design of active tendons; the objective function attains the minimum until all the
five controllers are placed. The orders of active tendons deployed in the structural
interstories are shown in Fig. 6.19. The reference case with the five active tendon
placed from the bottom has similar control effectiveness to the case of Sequence
3. It is indicated that using the criterion of minimum story controllability index
gradient, just three tendons in optimal deployment can attain the control effectiveness
of five tendons placed from the bottom.A schematic diagram showing similar control
effectiveness between the two tendon deployments refers to Fig. 6.20.
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Table 6.7 Seismic mitigation by active tendons in Bouc–Wen hysteretic system

Sequence
no.

Placement
vector

Exceedance probabilities Objective
function J2

Pf,d Pf,v Pf,a Pf,u

0 [0 0 0 0 0 0
0 0]T

0.8354 0.1334 0.8441 – 0.7141

1 [1 0 0 0 0 0
0 0]T

0.5714 0.0186 0.6867 0.0000 0.3992

2 [1 2 0 0 0 0
0 0]T

0.5833 0.0210 0.6252 3.603 ×
10−7

0.3658

3 [1 2 3 0 0 0
0 0]T

0.5279 0.0585 0.3917 3.602 ×
10−7

0.2178

4 [1 2 3 4 0 0
0 0]T

0.4777 0.0919 0.1846 4.276 ×
10−7

0.1354

5 [1 2 3 4 0 5
0 0]T

0.4286 0.0756 0.1740 3.603 ×
10−7

0.1098

Reference [1 1 1 1 1 0
0 0]T

0.7125 0.1372 0.1345 0.0041 0.2723

Fig. 6.19 Schematic of
tendon deployments in
Bouc–Wen hysteretic system
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(a) using criterion of MinSCIG (b) placed from the bottom

Fig. 6.20 Schematic of tendon deployments in Bouc–Wen hysteretic system as different schemes

The mean and standard deviation of extreme values of interstory drift varying
along the height of the structure as the placement of active tendons are shown in
Fig. 6.21. It is seen that the mean and standard deviation of the extreme values
of interstory drift changes nonuniformly along the height of the structure as the
tendon deployment, and the displacement of medium interstories even occurs to
be amplified, and they are smoother along the height of the structure. One might
understand that the stability of nonlinear systems is a critical performance argument
for evaluating the optimal tendon deployment. Nevertheless, the global performance
of the hysteretic structure with control is better than that without control. Besides,
the control effectiveness on story acceleration is better than the interstory drift; see
Fig. 6.22 that shows the mean and standard deviation of the extreme values of story
acceleration varying along the height of the structure as the placement of active
tendons. It is seen that the upper stories with larger acceleration before control have
a significant performance enhancement after the control.

The hysteretic curves of the first and the eighth interstory components with and
without controls subjected to a representative ground motion are shown in Fig. 6.23.
It is seen that the hysteretic curves of the uncontrolled components and controlled
components feature the Bouc–Wen prosperities, i.e., the strength deterioration, the
stiffness degradation, and the pinching effect. The interstory drifts of the controlled
structure become smaller than those of the uncontrolled structure, andmeanwhile, the
stiffness degradation of components gains an alleviation after the control. Besides, the
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Fig. 6.21 Mean and standard deviation of extreme values of interstory drift that changes as tendon
deployments in Bouc–Wen hysteretic system
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Fig. 6.22 Mean and standard deviation of extreme values of story acceleration that changes as
tendon deployments in Bouc–Wen hysteretic system

restoring forces of components become smaller due to the compensation of control
forces.

The time histories of root-mean-square hysteretic energy dissipation of the first
and the eighth interstory components with and without controls are shown in
Fig. 6.24. It is seen that the energy dissipations of components at different interstories
are reduced significantly after the control, and eventually become into an approximate
stationary processes, which indicates a better energy-dissipation behavior pertaining
to the hysteretic system.
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(a) 1st story (b) 8th story
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Fig. 6.23 Hysteretic curves of first and eighth interstory components with and without controls
subjected to representative ground motion
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Fig. 6.24 Time histories of root-mean-square hysteretic energy dissipation of first and eighth inter-
story components with and without controls

6.5 Discussions and Summaries

In conjunction with the scheme of optimal polynomial control, the physically based
stochastic optimal control has been applied to the performance enhancement of non-
linear and hysteretic structures. The Duffing oscillator systems, the ten-story shear
frame with nonlinear components represented by Clough hysteretic model and the
eight-story shear frame with nonlinear components represented by Bouc–Wen hys-
teretic model are investigated.

The stochastic optimal control of Duffing oscillator systems with variant nonlin-
earity levels shows that using the exceedanceprobability criterionon energy trade-off,
the linear control with a first-order controller can implement the control effective-
ness of nonlinear control with high-order controllers, which bypasses the structural
instability associated with nonlinear control systems due to the time delay and unpre-
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dictable feedback errors. However, other control criteria such as the system second-
order statistics evaluation (SSSE) and the Lyapunov asymptotic stability condition
(LASC) have no such benefit. This finding exhibits practical significance. Besides,
in comparison with the statistical linearization based LQG, the stochastic optimal
polynomial control exhibits good robustness which is not sensitive to the nonlinearity
level of Duffing oscillator systems.

It is also indicated in the stochastic optimal control of hysteretic structures that
the first-order controller can implement the control effectiveness of nonlinear control
with high-order controllers. With the optimal control, the Clough hysteretic systems
and the Bouc–Wen hysteretic systems both attain a certain degree of performance
enhancement, and their hysteretic behaviors and energy-dissipation capacities gain
an obvious improvement. Meanwhile, the application of the generalized optimal
control policy with the criterion of minimum story controllability index gradient
can accommodate an structural performance objective, and implement a maximum
control effectiveness with a minimum control cost.
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Chapter 7
Stochastic Optimal Control
of Wind-Resistant Structures
with Viscous Dampers

7.1 Preliminary Remarks

The high-rise buildings experience alongwind-induced motions or acrosswind-
induced motions when they are subjected to wind actions. The occupants would
feel uncomfortable if these motions reach a certain amplitude. The structural per-
formance, in this case, is generally denoted by the habitability, which is often mea-
sured by the wind-induced acceleration of structures (Chan and Chui 2006). The
serviceability design problem of high-rise buildings associated with habitability
enhancement is one of the most concerned issues, especially during typhoon sea-
sons. The reports relevant to typhoon events in the past years often mentioned that
the strong vibration of high-rise buildings results in discomfort or even dazzling state
to occupants. Numerical investigations of TMD deployed in the building “Taipei
101” indicated that the vibration of the structure subjected to frequently occurring
wind actions with a half-year return period would exceed 30% of the design maxi-
mum acceleration if removing the control device (Chung et al. 2013). Therefore, the
serviceability-based control and design retain a practical significance to the high-rise
buildings.

The structural control for mitigating wind-induced vibration can be largely cate-
gorized into the passive and active modalities. The former is a widely applied means
due to its practical feasibility (Housner et al. 1997). Amost efficient measure for mit-
igating the wind-induced vibration of structures is the damping reinforcement. The
viscous dampers are proved to be an effective proposal of implementing the damping
reinforcement owing to their many technical advantages (Housner et al. 1997; Patil
and Jangid 2011), e.g., being insensitive to the working temperature (with steady
behaviors from −40 centidegrees to 70 centidegrees) (Symans and Contantinou
1998), remaining a visco-response in a wide frequency domain (Soong and Con-
stantinou 1994), exhibiting a damper force out of phase with displacement (Soong
and Dargush 1997), and providing considerable damper force even in case of low
structural velocity. Another highlighting feature of the viscous damper is its benefit
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in acceleration control owing to a less stiffness and a larger damping that the damper
supplies. Therefore, the viscous damper has been proved to the best control device for
the wind-induced comfortability control of high-rise and ultra high-rise buildings.
The parameter definition and placement optimization of viscous dampers are the
critical issues associated with the stochastic optimal control of wind-induced struc-
tural comfortability. However, the viscous damper is a velocity-relevant damper, and
exhibits a strong nonlinearity. The structure deployed with viscous dampers becomes
a nonlinear system in essence. The primary task for the stochastic optimal control of
viscously damped structures is thus seeking for a solving procedure with sufficient
efficiency and accuracy.

In the present chapter, the equivalent linearization techniques with respect to
the structural system attached with nonlinear viscous dampers are addressed first.
The probabilistic criteria and numerical methods for the optimal design of viscous
dampers used in randomly wind-induced vibration control of structures are provided.
For validating purposes, the optimal control ofwind-induced comfortability of a high-
rising building is investigated, of which the randomness inherent in wind excitations
is included.

7.2 Equivalent Linearization of Viscously Damped Systems

The stochastic optimal control of viscously damped structural systems involves the
design of damper parameters and the optimization of damper deployments. This fea-
tures practical significance for the high-rise building with available limited space. As
mentioned in Chap. 1, the optimization methods for damper deployments can be cat-
egorized into three classes, i.e., the sequential method (Zhang and Soong 1992), the
gradient method (Takewaki 1997; Peng et al. 2013), and the genetic algorithm based
method (Singh and Moreschi 2002). These three classes of optimization methods all
involve the iterative solution of viscously damped structures with nonlinearity. For
this reason, a highly efficient method which allows for solving the viscously damped
structures underlies the optimization and design of the viscous dampers.

The analysis methods for the damper control of structural wind-induced vibra-
tion are mainly classified into frequency-domain and time-domain methods. The
frequency-domain method is widely used in practice due to the simple algorithm and
the rigorous principle (Davenport 1961). The time-domain method can accurately
secure the response details of structures even with nonlinear behaviors, which has
been paid extensive attention in recent years. As to the reliability-based control for
wind-induced vibration mitigation of structures, the time-domain method is usually
required. It is revealed in previous investigations (Chen et al. 2017) that the equa-
tion of motion of viscously damped structural systems with low-velocity exponent
dampers often refers to stiff problem, which belongs to a family of strong nonlinear-
ities. This issue results in that the traditional equivalent linearization techniques such
as the energy-dissipation equivalent linearization method and statistical linearization
technique remain a challenge.
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7.2.1 Stiff Differential Equation for Viscously Damped
Systems

Consider a single-degree-of-freedom (SDOF) structural system attached with a vis-
cous damper, the equation of motion of the controlled structure subjected to time-
varying load F(t) is given by

mẍ(t) + cẋ(t) + kx(t) − FD(ẋ(t)) = F(t) (7.2.1)

where m, c, and k denote the mass, damping, and stiffness of the structure, respec-
tively; x(t), ẋ(t) and ẍ(t) denote the displacement, velocity, and acceleration of the
structure, respectively, which exhibit an opposing displacement and velocity as the
piston; F(t) denotes the external excitation; FD(·) denotes the damper force exerted
by the viscous damper:

FD(ẋ(t)) = −cDsgn(ẋ(t))|ẋ(t)|α (7.2.2)

where cD denotes the damping coefficient; α denotes the velocity exponent, which is
a positive quantity between 0 and 1, being closer to 0 implying stronger nonlinearity.
The velocity exponent is usually valued in the range 0.3 ≤ α ≤ 0.5 for the case of
building control, and is usually valued in the range 0.15 ≤ α ≤ 0.3 for the case of
bridge control. The sign sgn(·) is the signum function, taking value 1 for positive
argument, −1 for negative argument, and otherwise 0.

The damper force of the viscous damper represented by Eq. (7.2.2) for different
α and the same unit of damping coefficient cD = 1.0 is shown in Fig. 7.1, in
which the loaded sine wave of displacement exhibits unit amplitude and unit circular
frequency. It is seen clearly that in the case α = 1.0, it reduces to a linear damping;
whereas in the case α = 0.0, it becomes a dry-friction force. When 0 < α < 1.0,
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Fig. 7.1 Damper force of viscous damper in cases of different velocity exponents
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the smaller of the velocity exponent α, the stronger of nonlinearity that the viscous
damper exhibits. Moreover, the hysteretic curve of the damper involves from the
elliptical shape to the rectangular shape as the velocity exponent decreases. In the
case of same maximum damper force and same maximum displacement, the smaller
of the velocity exponent, the more similar to a rectangular shape with a larger area
that the hysteretic curve gives rise to, which indicates a stronger energy-dissipation
capacity of the viscous damper and a better control effectiveness on the viscously
damped structure. However, the change of the damper force as the velocity arises
to fast-varying and slow-varying behaviors. For instance, the damper force varies
very fast in the case of low velocity close to zero if the velocity exponent α = 0.3;
while it varies mildly in other velocity domains. Such coexistence of fast-varying
and low-varying behaviors of viscous dampers leads to a typical stiff system of the
controlled structure attached with viscous damper. A stiff system can be revealed by
its stiff differential equation.

To further clarify this problem, consider the case of free vibration, i.e., F(t) = 0
in Eq. (7.2.1). Substituting Eq. (7.2.2) into Eq. (7.2.1), and letting y1(t) = x(t),
y2(t) = ẋ(t) lead to the state equation as follows:

{
ẏ1(t) = y2(t)
ẏ2(t) = − c

m y2(t) − k
m y1(t) − cD

m sgn(y2(t))|y2(t)|α (7.2.3)

In a vector form

Ẏ = A(Y, t) (7.2.4)

where

Y = (y1(t), y2(t))
TA = (A1, A2)

TA1(y1(t), y2(t)) = y2(t)

A2(y1(t), y2(t)) = − c

m
y2(t) − k

m
y1(t) − cD

m
sgn(y2(t))|y2(t)|α (7.2.5)

The Jacobian matrix for Eq. (7.2.5) can thus be obtained by

J =
[

∂A1
∂y1

∂A1
∂y2

∂A2
∂y1

∂A2
∂y2

]
=
[

0 1
− k

m

(− c
m − α cD

m |y2(t)|α−1)
]

(7.2.6)

The characteristic equation can be obtained as

λ2 +
( c
m

+ α
cD
m

|ẋ(t)|α−1
)
λ + k

m
= 0 (7.2.7)

where λ denotes the eigenvalues of the Jacobian matrix. If Eq. (7.2.7) satisfies the
conditions as follows:
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{
Re(λ j ) < 0, j = 1, 2, · · · ,m

s := max
1≤ j≤m

∣∣Re(λ j )
∣∣/ min

1≤ j≤m

∣∣Re(λ j )
∣∣� 1 (7.2.8)

whereRe(·) denotes the real counterpart of the complex eigenvalues. Equation (7.2.1)
is then defined as a stiff differential equation, where s denotes the stiff ratio.

For illustrative purposes, consider Eq. (7.2.1) as the first modal equation of a
high-rise building structure, where the modal mass m = 3.75 × 107 kg, the modal
damping ratio ζ = 0.01, and the fundamental period Tn = 4.94 s. Since the stiffness
k = 4π2m

T 2
n

and the damping coefficient c = 4πζm
Tn

, Eq. (7.2.7) becomes

λ2 +
(
4πζ

Tn
+ α

cD
m

|ẋ |α−1

)
λ + 4π2

T 2
n

= 0 (7.2.9)

The two roots of Eq. (7.2.9) are given by

λ1,2 = −1

2

(
4πζ

Tn
+ α

cD
m

|u̇|α−1

)
± 1

2

√(
4πζ

Tn
+ α

cD
m

|u̇|α−1

)2

− 16π2

T 2
n

(7.2.10)

For notation convenience, let 4πζ̃D
Tn

= α cD
m |ẋ |α−1, such that

ζ̃D = α
cDTn
4πm

|ẋ |α−1 (7.2.11)

It is indicated that the argument defined in Eq. (7.2.11) is an instantaneous damping
ratio due to its relevance with velocity. Then

λ1,2 = −2π

Tn

(
ζt ±

√
ζ 2
t − 1

)
(7.2.12)

where ζt = ζ + ζ̃D , which could be noted as the instantaneous total damping ratio.
The following special cases are of interest for addressing the stiff ratio:
Case 1: If cD ≡ 0, i.e., there is no viscous dampers in the system, then ζ̃D ≡ 0,

and the two roots in Eq. (7.2.12) are thus reduced to λ1,2 = − 2π
Tn

(
ζ ±√ζ 2 − 1

)
.

The damping ratio of the structure itself is usually far less than 1.0. For instance,
it is usually less than 5% for concrete structures and in the range of 1%–3%
for steel structures. The two roots are thus conjugate complex numbers λ1,2 =
− 2π

Tn

(
ζ ± i

√
1 − ζ 2

)
, where i =

√−1 denotes the imaginary unit. In this case, the

stiff ratio s = |Re(λ1)|
/ |Re(λ2)| = 1.

Case 2: If α = 1, i.e., the viscous damper is reduced to a linear damper, there is
ζ̃D = cDTn

4πm . Generally, in engineering practice the additional “equivalent” damping
ratio ζ̃D owing to the installation of damping devicesmight be in the range of 2%–4%,
and thus the total damping ratio of the controlled structure might be in the range of
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4%–7%,which is still much smaller than 1.0. In this case, the two roots in Eq. (7.2.12)
are conjugate complex numbers, and the stiff ratio is 1 as well.

Case 3: As the damping coefficient cD increases and the other quantities keep
fixed, the instantaneous damping ratio ζ̃D will increase according to Eq. (7.2.11).
When cD is large enough, ζ 2

t − 1 ≥ 0 will occur, i.e., the system becomes an instan-

taneous over-damped system. In this case, the stiff ratio s = Re(λ1)

Re(λ2)
= ζt+

√
ζ 2
t −1

ζt−
√

ζ 2
t −1

=
(
ζt +√ζ 2

t − 1
)2
, which tends to s ≈ 4ζ 2

t , and the stiff ratio will increase very fast

against the instantaneous total damping ratio, and in turn against the increase of cD .
Case 4: As the fundamental period Tn increases when the other quantities are kept

fixed, the instantaneous damping ratio ζ̃D will increase. When Tn is large enough,
ζ 2
t − 1 ≥ 0 might occur. Similar to Case 3, the stiff ratio will be given also by

s =
(
ζt +√ζ 2

t − 1
)2
. Thus, in this case, the stiff ratio will increase very fast against

the instantaneous total damping ratio, and in turn against the increase of Tn . Generally,
high-rise buildings have longer fundamental periods. Therefore, the stiff ratio of high-
rise building structures might be large. This is just the case that the wind-induced
vibration of high-rise buildings shall be suppressed by the control systems consisting
of viscous dampers.

Case 5: As the velocity exponent α decreases and the other quantities are
fixed, the instantaneous damping ratio ζ̃D will first increase and then decrease
from some “turning point”. The derivative of ζ̃D with respect to α is given by
∂ζ̃D
∂α

= cDTn
4πm |ẋ |α−1[1 + α ln(|ẋ |)], and thus the “turning point” will occur when

∂ζ̃D
∂α

= 0, i.e., α = − 1
ln(|ẋ |) , which is related to the velocity. Therefore, with the

decrease of α from one to zero, the stiff ratio s first equals 1 when ζ 2
t − 1 ≤ 0, and

then quadratically increase to its peak at the “turning point” following the same pat-
tern as Case 3 and Case 4, afterward it decreases to 1 again in a sharp manner when
α = 0. One might recognize that the “turning point” is straightforwardly related to
the velocity that the smaller the velocity is, the closer the “turning point” approaches
to zero.

To reveal the influence parameters on the stiff ratio of the structural system intu-
itively, case studies are carried out. Since the damper force changes very fast in the
case of a small velocity, the velocity is set as ẋ = 0.1 mm/s. Shown in Fig. 7.2 are
the stiff ratios against different parameters of viscously damped structural systems,
including the damping coefficient of viscous dampers, the fundamental period of the
structural system, and the velocity exponent. It is observed that the stiff ratio quadrati-
cally increases by the order ofmagnitudes against the increase of damping coefficient
and the fundamental period; see Fig. 7.2a. As the velocity exponent decreases from
1 down to 0, however, the stiff ratio first experiences a stage with value 1.0, then
quadratic increase to the “turning point”, and decreases sharply; see Fig. 7.2b. This
result is in agreement with the discussions in Case 1–Case 5. One might recognize
that a higher damping ratio indicates a larger damper force. Clearly, if the damping
ratio is too small, the viscous damper has little effects on the response of the system,
and it could be expected that the stiff ratio will also change slightly. Therefore, only
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Fig. 7.2 Stiff ratio against different parameters of viscously damped systems

for relatively large damping coefficient its effect on stiff ratio becomes significant.
The stiff ratio being relatively large for longer fundamental period is also physically
reasonable, since a longer fundamental period indicates a lower predominant fre-
quency in the response. A higher frequency content might be compensated by the
sharp change of the damper force of viscous dampers with a moderate velocity expo-
nent α. This is extremely significant for high-rise buildings installed with viscous
damper, owing to their fundamental periods are usually longer than 2 s even as high
as nearly 10 s, and the damping component of viscous dampers is usually smaller
than 0.5 down to 0.3.

Generally, a system is denoted by a stiff differential equation if its stiff ratio is
greater than 10p (p � 1). It is seen from Fig. 7.2 that high-rise buildings with the
fundamental period longer than 2 s, attached with viscous dampers exhibiting the
damping coefficient more than 10,000 kN(s/m)α and the velocity exponent 0.3–0.5,



212 7 Stochastic Optimal Control of Wind-Resistant Structures …

are seriously stiff since their stiff ratios are typically in the order of magnitude of 102

or higher.

7.2.2 Solution of Viscously Damped Systems

The equation of motion of an MDOF structure attached with viscous dampers can
be denoted by

MẌ(t) + CẊ(t) + KX(t) + FD(Ẋ(t)) = F(�, t) (7.2.13)

where M, C, and K are the mass, damping, and stiffness matrices, respectively; X,
Ẋ, and Ẍ are the structural displacement, velocity, and acceleration, respectively;
F(�, t) denotes the random wind load; � is the random vector denoting the ran-
domness inherent in the random wind load; FD(Ẋ(t)) denotes the attached damper
force:

FD(Ẋ(t)) = S · (∣∣TẊ

∣∣α × sgn
(
TẊ

)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(7.2.14)

where S denotes the damping coefficient matrix; cD, j denotes the total damp-
ing coefficient of the jth interstory with viscous damper; TẊ denotes the inter-
story velocity vector, and

∣∣TẊ

∣∣α indicates taking the component-wise power, i.e.,∣∣TẊ

∣∣α = (∣∣TẊ ,1

∣∣α,
∣∣TẊ ,2

∣∣α, · · · ,
∣∣TẊ ,n

∣∣α)T, where TẊ , j denotes the jth component of
the vector TẊ.

It is found quite often that the equation of motion of a high-rise building installed
with nonlinear viscous dampers is surprisingly difficult to solve by conventional
numerical schemes, just due to its stiff problem as addressed previously. Most of the
widely used time integral schemes, such as the Newmark method and the Wilson
method, suffer from instability or spurious numerical spikes. In fact, as to solv-
ing ordinary differential equations, a family of backward differentiation formulae
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(BDF) is demonstrated to be efficient. The extended formulation of BDF is written
as (Shampine and Reichelt 1997)

k∑
j=1

1

j
∇ j zn+1 = hL(tn+1, zn+1) + κγk

(
zn+1 − z(0)

n+1

)
(7.2.15)

where

γk =
k∑
j=1

1

j
, zn+1 − z(0)

n+1 = ∇k+1zn+1 (7.2.16)

in which ∇ j zn = ∇ j−1zn − ∇ j−1zn−1 denotes the operator of backward differenti-
ation, ∇0zn = zn; zn denotes the system state; k denotes the computational order;
h denotes the step-length of differentiation; L denotes the system operator of initial
value problems, i.e. ż = L(t, z), z(t0) = z0;κ is a scalar parameter. Equation (7.2.15)
reduces to the standard BDF in the case κ = 0.

It is seen from Eq. (7.2.15) that although the backward differentiation formulae
for solving the nonlinear systems are accurate, their solutions involve multiple-step
schemes and are not suitable for the iterative optimization and design of viscously
damped structural systems. In practice, the equivalent linearization techniques are
usually employed which transfers the original nonlinear system into a linearized
system as a certain equivalent criterion resulting in the responses between original
nonlinear and linearized systems to be the same or in an acceptable error range.
Among those equivalent linearization techniques, the widely used is the energy-
dissipation equivalent linearization method.

The equivalent criterion of the energy-dissipation equivalent linearization method
is that the energy dissipations of attached viscous dampers to the equivalent lin-
earized system and to the original nonlinear system are equal. The additional equiv-
alent damping ratio as the energy-dissipation equivalent criterion ζ

(E-E)
k is given by

(Seleemah and Costantinou 1997):

ζ
(E-E)
k = T 2−α

k

∑
j cD, jλ

[
(uk, j − uk, j−1) cos

(
θ j
)]1+α

(2π)3−αA1−α
k

∑
i miu

2
k,i

(7.2.17)

where

λ = 22+α 
2(1 + α/2)


(2 + α)
(7.2.18)

where Tk denotes the period of the kth vibrationalmode; θ j denotes the angle between
the story and viscous damper in the jth interstory; uk, j denotes the modal displace-
ment the jth story of the kth vibrational mode; mi denotes the mass of the jth story;
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Ak denotes the roof displacement amplitude of the kth vibrational mode in unit of
modal displacement uk, j ; 
(·) denotes the Gamma function 
(z) = ∫∞

0 t z−1
/
etdt .

It is seen that the formulation of the equivalent damping ratio ζ
(E-E)
k includes

the roof displacement amplitude of the kth vibrational mode Ak , indicating that
the solution of equivalent damping ratio needs a known roof displacement ampli-
tude. However, solving the roof displacement amplitude needs to have the equivalent
damping ratio in advance. Therefore, the energy-dissipation equivalent linearization
method involves an iterative scheme.

It is noted that in the energy-dissipation equivalent linearizationmethod, the struc-
tural response is assumed to be a harmonic process, which is inconsistent with the
response characteristics of engineering structures subjected to dynamic excitations
such as seismic ground motion and wind load. Another route to solve the nonlinear
system is the stochastic equivalent linearization method, i.e., the statistical lineariza-
tion technique (Roberts and Spanos 1990). In the statistical linearization technique,
the structural response is assumed to be a Gaussian stationary process, and the dif-
ference between the linearized system and original nonlinear system is minimized
in the sense of mean square.

By virtue of the statistical linearization technique, the equivalent damping ratio
of a viscously damped structural system can be denoted by (see Appendix D)

ζ
(S-E)
k = ηkρ(α)

⎛
⎝ GF̃k (t)

(ω)(
ζ

(S-E)
k +ζk

)
ωk

⎞
⎠

(α−1)/ 2

(7.2.19)

where ρ(α) = 

(
1 + α

/
2
)√

23−απα−2; GF̃k (t)
(ω) denotes the one-sided power

spectral density of the generalized excitation F̃k(t) = φT
k F(�, t)

/(
φT
k Mφk

)
of the

kth vibrational mode; ηk = qk
/

(2m̄kωk), qk =
n∑
j=1

(
cD, j�

(k)
j + cD, j+1�

(k)
j+1

)
u2k, j −

2
n∑
j=2

cD, j�
(k)
j uk, j uk, j−1, �

(k)
j =

∣∣∣uk, j − uk, j−1

∣∣∣α−1
; m̄k denotes the modal mass of

the kth vibrational mode; ζk, ωk denote the damping ratio and the circular frequency
of the kth vibrational mode, respectively.

To verify the effectiveness and accuracy of equivalent linearization techniques and
the BDF, a 20-story shear frame controlled by viscous dampers is investigated. The
basic information of the structure is as follows: the structural height is 72mwith story
height of 3.6 m and depth–width ratio of 2.2; the mass of each story is m1 = m2 =
· · · = m20 = 2.0× 105 kg, and the interstory stiffness is k1 = · · · = k4 = 1.7× 105

kN/m, k5 = · · · = k10 = 1.5 × 105 kN/m, k11 = · · · = k16 = 1.2 × 105 kN/m,
k17 = · · · = k20 =1.0 × 105 kN/m. The damping ratios of the first two vibrational
modes are both 0.01. The structural damping is represented by Rayleigh damping
matrixC = aM+bK. The circular frequencies of the first ten vibrational modes are
2.09, 5.88, 9.74, 13.45, 17.27, 20.94, 24.28, 27.81, 30.90, and 33.93 rad/s, receptively.
The wind-induced vibration control of the structure is carried out using the viscous
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Fig. 7.3 Time history of representative wind force on the structural roof

dampers. For illustrative purposes, the viscous dampers are deployed uniformly in the
interstories along the story level. The additional damping coefficient at each interstory
is 500 kN(s

/
m)α , where the velocity exponent is valued by α = 1.0, 0.5, 0.3.

TheNewmark-β scheme on the linearized system by the energy-dissipation equiv-
alent linearization method (EEN), the Newmark-β scheme on the linearized system
by the stochastic equivalent linearization method (SEN), and the backward differ-
entiation formulae on the original nonlinear system (BDF) are employed to carry
out the time-domain analysis. The wind excitation is represented by the spatial fluc-
tuating wind-velocity field model addressed in Sect. 2.5.2. The three basic random
parameters included in the wind velocity Fourier spectrum model are valued as: the
10-min mean wind velocity Ū10 at the standard height 10 m is assumed to follow the
extreme-value type I distribution with mean 39.33 m/s and coefficient of variation
0.1; the surface roughness length z0 is assumed to follow the log-normal distribution
with mean 0.2 m and coefficient of variation 0.2; the zero-phase evolution time Te is
assumed to follow the Gamma distribution with mean 0.902 × 109 s and coefficient
of variation 0.1. A representative time history of the random wind excitation on the
structural roof is shown in Fig. 7.3. The approaching flow is assumed to be perpen-
dicular to the building surface. Under the representative wind excitation, the roof
displacement and roof acceleration of the viscously damped structure with variant
velocity exponents and using different numerical schemes are shown in Figs. 7.4,
7.5, 7.6.

It is seen that the structural responses by the three schemes match well with each
other in the case of velocity exponent 1.0. With the decreasing of velocity exponent,
the result of the energy-dissipation equivalent linearization method deviates with
that of the BDF to a larger extent, in comparison with the stochastic equivalent lin-
earization method. In the case of velocity exponent 0.3, this tendency becomes much
more significant, that is, the result of the stochastic equivalent linearization method
is much closer to the BDF, in comparison with the energy-dissipation equivalent
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Fig. 7.7 Relative errors in 2-norm and infinite-norm of roof responses with different velocity
exponents and using different schemes

linearization method. It is thus demonstrated that the stochastic equivalent lineariza-
tion method has a considerable accuracy even when the nonlinearity of the viscously
damped structural system is relatively strong, and the energy-dissipation equivalent
linearization method is shown to be conservative.

The relative errors in 2-norm and infinite-norm of roof responses with different
velocity exponents using the measure of relative error in 2-norm using the three
schemes “EEN” and “SEN” compared to the “BDF” are shown in Fig. 7.7. It is
well recognized that it is smaller than that in infinite-norm both in terms of the roof
displacement and roof acceleration; the relative errors of acceleration are more than
those of displacement by over 10 times, indicating a computational challenge inherent
in the accurate solution of the structural acceleration. It is also seen that the relative
error would increase rapidly with the reduction of velocity exponent. Meanwhile,
the relative errors of structural responses between the energy-dissipation equivalent
linearizationmethod and the BDF are always larger than those between the stochastic
equivalent linearizationmethod and theBDF, nomatter in 2-norm or in infinite-norm.

In summary, the stochastic equivalent linearization method is an elegant scheme
since it reveals the stochastic essence of structural responses to some extent by invok-
ing the Gaussian-process assumption of structural responses, and gains the equiv-
alent modal damping ratio through minimizing the mean-square error between the
linearized system and the original nonlinear system. In comparison with the energy-
dissipation equivalent linearization method, the stochastic equivalent linearization
method attains a more accurate solution that is more close to the result of the BDF.
A solution with considerable accuracy and efficiency can thus be obtained by per-
forming frequency-domain and time-domain analysis upon the linearized structural
system, especially upon the high-rise buildings structures, where intermediate non-
linear dampers are the most common ones to be installed for performance enhance-
ment. The stochastic equivalent linearization method is thus used to facilitate the
serviceability-based optimal design of viscously damped structures as both the cri-
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teria of minimizing the standard deviation and of minimizing the exceedance prob-
ability of roof acceleration.

7.3 Optimal Deployment of Viscous Dampers

As mentioned in Sect. 5.3, the comfortability is one of the critical arguments rep-
resenting the performance of structural systems, which is usually measured by the
acceleration. As to the high-rise buildings, the roof acceleration is generally far larger
than other stories. In practice, the roof acceleration control is thus an efficient means
for enhancing the structural comfortability.

Since the structural responses under the random excitations are random processes,
the probabilistic criteria similar to the proposal in Chap. 4 can be employed in the
present investigation. The probabilistic criterion of the conventional serviceability
design is usually defined as the standard deviation or the peak value of wind-induced
roof acceleration of structures (Huang et al. 2011). Considering the fundamental
value of reliability in the optimization and design of structural performance, two
families of serviceability criteria are thus employed with the minimization of single-
objective performance function as follows:

(i) serviceability criterion 1 (SC-1): minimizing the standard deviation of roof
acceleration.

c∗
D,i = argmin

cD,i

{J2} = argmin
cD,i

{
σẌn

∣∣
{∑

i

cD,i = CD,total

}}
, i = 1, 2, . . . , n

(7.3.1)

where σẌn
denotes the standard deviation of roof acceleration; c∗

D,i denotes
the optimal damping coefficient of the viscous dampers allocated in the ith
interstory;CD,total denotes the target of total cost in terms of the sum of damping
coefficient of the viscous dampers allocated in all the structural interstories. It
is thus initiated that using the serviceability criterion shown in Eq. (7.3.1), the
optimal distribution of damping coefficients related to the damper sizes and
placements can be attained.

(ii) serviceability criterion 2 (SC-2): minimizing the exceedance probability of roof
acceleration

c∗
D,i = argmin

cD,i

{J2}

= argmin
cD,i

⎧⎨
⎩Pr

⎧⎨
⎩
⋃

t∈[0,T ]

(∣∣Ẍn(t)
∣∣ > Ẍ thd

)
⎫⎬
⎭
∣∣∣∣∣∣
{∑

i

cD,i = CD,total

}⎫⎬
⎭,

i = 1, 2, . . . , n (7.3.2)
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where Ẍn(t) denotes the roof acceleration in the time interval [0, T ]; Ẍ thd denotes
threshold of the roof acceleration; Pr{·} denotes the probability of random event. It
is indicated that by virtue of the generalized optimal control policy, the serviceabil-
ity criterion shown in Eq. (7.3.2) can accommodate the optimal design of damper
parameters and placement so as to guarantee sufficient structural comfortability. One
might recognize that this serviceability criterion is constructed according to the first-
passage problem, of which the exceedance probability of roof acceleration can be
readily solved via the generalized probability density evolution equations and the
equivalent extreme-value event criterion.

The stochastic equivalent linearizationmethodhas beenproved to exhibit high effi-
ciency and accuracy for solving nonlinearmulti-degree-of-freedomsystems,which is
thus first applied to carry out the linearization of nonlinear structural systems attached
with viscous dampers. As to the linearized system, the modal superposition method
in frequency-domain and the probability density evolutionmethod with time-domain
analysis by Newmark-β schemes are employed to solve the performance function J2
in the serviceability criteria shown in Eqs. (7.3.1) and (7.3.2), respectively.

By virtue of the statistical linearization technique shown in Eq. (7.2.19), the
additional equivalent damping ratio of viscously damped structures can be gained,
and the nonlinear structural system is readily transferred into a linearized structural
system. In modal space, the linearized system can be decomposed to a series of
single-degree-of-freedom systems with independent equations of motion as follows:

ü j (t) + 2ζ (e)
j ω j u̇ j (t) + ω2

j u j (t) = F̃j (t) (7.3.3)

where F̃j (t) = φT
jF(�, t)

/
m̄ j denotes the generalized wind load of the jth vibra-

tional mode; ω j =
√
k̄ j
/
m̄ j denotes the circular frequency of the jth vibrational

mode; ζ (e)
j = ζ

(S-E)
j +ζ j denotes the sum of the inherent damping ratio and the equiv-

alent damping ratio of the jth vibrational mode; m̄ j , k̄ j denote the generalized mass
and generalized stiffness of the jth vibrational mode, respectively; φT

j denotes the jth
modal vector.

According to the modal superposition method, the cross-power spectral density
of generalized wind load between modes i and j is represented by

SF̃j F̃k
(ω) = 1

m̄ j m̄k
φT

j SF(ω)φk (7.3.4)

where SF(t) denotes the power spectral density matrix of wind load. The power spec-
tral density of generalized structural responses u j (t) can be obtained by integrating
the frequency response transfer function of systems and the power spectral density
of generalized wind load:

SUj (ω) = ∣∣Hj (ω)
∣∣2SF̃j

(ω) (7.3.5)
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where Hj (ω) denotes the frequency response transfer function:

∣∣Hj (ω)
∣∣2 = 1(

ω4
j − 2ω2

jω
2 + ω4

)
+ 4
[
ζ

(e)
j

]2
ω2

jω
2

(7.3.6)

The power spectral density of the ith story displacement then can be written as

SX j (ω) =
n∑

k=1

φ2
jk SUj (ω) =

n∑
k=1

φ2
jk

∣∣Hj (ω)
∣∣2SF̃j

(ω) (7.3.7)

where φ jk denotes the kth component of the jth modal vector of structural systems.
According to the relation between the power spectral densities of the structural

responses and their differentiated arguments, the power spectral densities of story
acceleration and those of story displacement have the relation function as follows:

SẌ j
(ω) = ω4SX j (ω) (7.3.8)

The mean-square roof acceleration of the structure is then given by

σ 2
Ẍ j

=
∞∫

−∞
ω4SX j (ω)dω =

n∑
k=1

φ2
jk

∞∫
−∞

ω4
∣∣Hj (ω)

∣∣2SF̃j
(ω)dω (7.3.9)

According to the equivalent extreme-value event criterion, the extreme value of
roof acceleration Ẍn in the time interval [0, T ] is defined by

W (�, T ) = max
t∈[0,T ]

(∣∣Ẍn(�, t)
∣∣) (7.3.10)

Introducing a pseudo random process, there is

Z(τ ) = ϕ(W (�, T ), τ ) (7.3.11)

Z(τ )|τ=τ0 = 0, Z(τ )|τ=τc = W (�, T ) (7.3.12)

According to the probability preservation principle, the joint probability den-
sity function pZ�(z, θ , τ ) of (Z(τ ),�) satisfies the generalized probability density
evolution equation as follows (Li and Chen 2009):

∂pZ�(z, θ, τ )

∂τ
+ Ż(τ )

∂pZ�(z, θ, τ )

∂z
= 0 (7.3.13)

where τ denotes the generalized time. The associated initial condition is given by
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pZ�(z, θ, τ0) = δ(z − z0)p�(θ) (7.3.14)

The joint probability density function pZ�(z, θ , τ ) can be then obtained by solving
Eq. (7.3.13), in view of the numerical procedure solving the generalized probability
density evolution equation addressed in Sect. 2.3.3. The probability density function
of extreme value of the roof acceleration Z(τc) is then obtained:

pZ (z, τc) =
∫

Ω�

pZ�(z, θ, τc)dθ (7.3.15)

where �� is the distribution space of �.
The dynamic reliability of structures is then given by

R(T ) = Pr{W (�, T ) ∈ �s} =
Ẍ thd∫
0

PZ (z, τc)dz (7.3.16)

where PZ (z, τc) denotes probability density of the virtual random process Z(τ ) at
the instant of time τ = τc.

The failure probability of roof acceleration Ẍn in the time interval [0, T ] is then
given by

Pr

⎧⎨
⎩
⋃

t∈[0,T ]

(∣∣Ẍn(t)
∣∣ > Ẍ thd

)
⎫⎬
⎭ = 1 −

Ẍ thd∫
0

PZ (z, τc)dz (7.3.17)

As mentioned in Sect. 7.2, the optimization methods for the damper deploy-
ment include the case-sequential scheme, the minimum gradient scheme, and the
genetic algorithm. The former two schemes are both explicit strategies aiming at
approaching the performance objective, which provide feasibility for the decision
maker who is able to readily define the optimal parameters and placements of the
viscous dampers in steps according to the structural performance. In comparisonwith
the case-sequential scheme, the minimum gradient method exhibits the capacity with
more expeditious convergence (Peng et al. 2013). However, the genetic algorithm is
an implicit strategy aiming at minimizing the objective function. Although a repeat
optimization might be incurred once the structural performance objective changes
and the constraint on the optimization needs to be redefined, the genetic algorithm
still has been widely used in the optimization and design of viscous dampers due
to its good adaptability and excellent global optimization capability (Silvestri and
Trombetti 2007). As to the issue of wind-induced comfortability control of high-rise
buildings, an updated scheme for gaining a higher convergence velocity is devel-
oped by integrating the genetic algorithm and the minimum gradient criterion where
the standard deviation and exceedance probability of the roof acceleration at the
searching points and their change rates, i.e., gradient, are included.
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The genetic algorithm is an iterative procedure following the rule of fittest to sur-
vive. In each generation of the population, the individuals are first selected according
to the evaluation results of the individual fitness values in the addressed problem.
The individual with larger fitness value exhibits a larger possibility of being selected.
Then the crossover and mutation similar to the genetic operator in the genetics are
carried out to yield the next generation of the population. This process results in that
the next generation has a stronger fitness in the problem domain. The individuals in
the last generation can be viewed as the optimal solution to the problem. The genetic
algorithm involves a three-step procedure, i.e., selection, crossover, and mutation.
As to the problem of viscous damper deployment with respect to the minimization of
exceedance probability of roof acceleration, the fitness evaluations of individuals in
each generation of population all involves solving the generalized probability density
evolution equations, which incurs an unacceptable computational cost. In order to
reduce the calculation efforts, the neural network algorithm is utilized.

The neural network algorithm aims at building the nonlinear mapping model
exhibiting memory and prediction capacities through the training and predicting on
the provided data (Rojas 1996). Utilizing the nonlinear mapping model, the compu-
tational cost of the objective function is saved, and the computational efficiency can
be enhanced significantly.

The support vectormachine (SVM) is employed serving as the tool formodeling of
the neural network. The SVMhas a distinguished ability for efficient prediction of the
objective function of individuals, which can significantly reduce the computational
cost (Haykin 2007). The flowchart of the SVM-based genetic algorithm is shown
in Fig. 7.8. It is seen that the individual fitness of genetic algorithm relies upon the
SVM, which thus plays a critical role in enhancing the accuracy and efficiency of
the optimization procedure.

7.4 Case Studies

As a practical application of the optimal design of viscous dampers in the wind-
induced comfortability control of high-rise buildings, a 58-story steel structure sub-
jected to random wind excitations is studied. The height of the structure is 249 m,
and the building area is 1.25 km2. According to the Chinese Code for Design Loads
of Building Structures (GB50009-2012), the structural basic wind pressure is 0.75
kN/m2, the occupant-comfortability validation wind pressure is 0.45 kN/m2, and the
ground surface roughness belongs to type A.

Using the software PKPM to carry out the finite-element modeling and the anal-
ysis, the structural wind-induced responses can be readily derived from the formu-
lae shown in the Chinese Code for Steel Structure of High-Rise Buildings (JGJ99-
1998) and in the Chinese Code for Design Loads of Building Structures (GB50009-
2012): the maximum crosswind roof accelerations along Y direction are 0.426 m/s2,
0.381 m/s2, respectively; the maximum crosswind roof accelerations along X direc-
tion are 0.399 m/s2, 0.308 m/s2, respectively. However, the threshold of structural
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Fig. 7.8 Flowchart of SVM-based genetic algorithm

roof acceleration are defined as 0.28 m/s2 for public buildings, 0.20 m/s2 for apart-
ment buildings, respectively, in terms of the Chinese code JGJ99-1998. It is seen that
the structural wind-induced roof acceleration surpasses the threshold around 50%.
Therefore, considering a successful structural control strategy such that the wind-
induced comfortability satisfies with the provisions is a critical task of structural
design.

7.4.1 Dimension-Reduced Model of High-Rise Building

The software SAP2000 is employed to perform accurate finite-element modeling
as shown in Fig. 7.9. In view of the mass matrix and stiffness matrix derived from
the finite-element model, the structural parameters such as the interstory stiffness
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Fig. 7.9 SAP finite-element
model of a high-rise building

and story mass of the two-dimensional mass-lumped system can be attained; see
Table 7.1. The damping ratio of the first two vibrational modes of the mass-lumped
systemalongX andY directions are both 0.01. TheRayleigh dampinghypothesis, i.e.,
C = aM + bK, is employed in this study. Table 7.2 shows the fundamental periods
and the roof acceleration of the finite-element model and of themass-lumped system.
In the comparative study, the basic wind pressure 0.75 kN/m2 is used.

It is seen that differences of fundamental periods and roof displacements between
the simplified mass-lumped system and SAP finite-element model are both in a
range of acceptable error. This simplifiedmodel underlies the feasibility of stochastic
analysis and optimal control of the high-rise building structure.
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Table 7.1 Interstory stiffness and story mass of mass-lumped system

Story level Interstory stiffness along X
(103 kN/m)

Interstory stiffness along Y
(103 kN/m)

Story mass
(103 kg)

1 9400 22,300 1954.6

2 5450 10,700 2478.5

3 4850 8530 2443.3

4 4590 7210 2475.0

5 4560 6800 2493.6

6 6160 8780 2210.8

7 6090 8150 2191.9

8 6030 7400 2192.0

9 6050 6910 2199.4

10 6960 7730 3550.1

11 9420 9120 3052.3

12 6450 6680 2209.4

13 5000 5510 2142.7

14 4620 5040 2143.3

15 4450 4950 2131.2

16 4330 4980 2176.1

17 4240 4660 2143.5

18 4160 4410 2144.3

19 4110 4180 2144.4

20 4040 4070 2151.5

21 4020 4000 2123.4

22 4020 3860 2124.0

23 4090 3700 2124.1

24 4680 3780 3469.2

25 6550 3870 2842.9

26 7560 4420 2949.6

27 4340 3540 2109.0

28 3400 3120 2037.5

29 3150 2930 2037.5

30 3030 2820 2038.5

31 2960 2730 2041.2

32 2910 2670 2040.9

33 2870 2640 2073.4

34 2840 2590 2040.8

35 2800 2500 2017.9

36 2800 2410 2018.3

(continued)
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Table 7.1 (continued)

Story level Interstory stiffness along X
(103 kN/m)

Interstory stiffness along Y
(103 kN/m)

Story mass
(103 kg)

37 2840 2300 1997.1

38 3180 2340 2591.8

39 5080 2710 3429.3

40 4000 2140 3014.0

41 3550 2310 1905.1

42 2720 2030 1938.8

43 2480 1920 1938.9

44 2350 1810 1939.0

45 2260 1750 1954.8

46 2170 1690 1952.1

47 2090 1620 1939.0

48 2010 1550 1938.9

49 1900 1460 1930.5

50 1680 1290 1951.8

51 1560 1180 1934.9

52 1410 1070 1935.6

53 599 514 1731.3

54 742 565 2790.3

55 559 398 1558.8

56 459 301 311.4

57 425 243 325.0

58 330 177 634.5

Table 7.2 Fundamental periods and roof displacements of SAP finite-element model and mass-
lumped system

Models Fundamental
period along X
direction

Fundamental
period along Y
direction

Alongwind roof
displacement
along X direction
(m)

Alongwind roof
displacement
along Y direction
(m)

SAP model 4.99 5.26 0.336 0.480

Mass-lumped 4.91 4.94 0.255 0.506

Error (%)a 1.6 6.1 5.7 5.4

aError = abs (Mass-lumped system − SAP model)/SAP model
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7.4.2 Dynamics Analysis of Model

Using the formulae shown in the Chinese code JGJ99-1998 and in the Chinese code
GB50009-2012, the validation of roof acceleration ofmass-lumped system subjected
to wind load with the occupant-comfortability validation wind pressure 0.45 kN/m2

is carried out. It is seen fromTable 7.3 that using the Newmark-β integral scheme, the
dynamic analysis of mass-lumped system gains similar results with the formulae in
provisions, and the roof acceleration alongY direction is always larger than that along
X direction no matter subjected to alongwind or subjected to crosswind loads. In this
study, the alongwind load is simulated by the spatial fluctuating wind velocity model
addressed in Sect. 2.5.2. The three basic random parameters included in the wind
velocity Fourier spectrum model are valued as: the 10-min mean wind velocity Ū10

at the standard height 10 m is assumed to follow the extreme-value type I distribution
with mean 26.83 m/s and coefficient of variation 0.1; the surface roughness length z0
is assumed to follow the log-normal distribution with mean 0.16 m and coefficient
of variation 0.2; the zero-phase evolution time Te is assumed to follow the Gamma
distribution with mean 0.902× 109 s and coefficient of variation 0.1. The crosswind
load is simulated by the spectral representation method in conjunction with the
experimental crosswind force spectrum and coherence function (Liang et al. 2002).
Time histories of representative roof alongwind and crosswind forces of high-rise
building are shown in Fig. 7.10. In fact, the building widths along X and Y directions
are 37.26 m and 63.34 m, and the aspect ratios are 6.68 and 3.99, respectively. It is
indicated that the crosswind effects are of the main concern since the aspect ratios
in the two main directions are larger than 3.0 (Liang et al. 2002).

The one-dimensional mass-lumped system along Y direction is investigated, of
which the wind-induced vibration and comfortability control are carried out. The
circular frequencies of the first ten vibrational modes are denoted by 1.27, 3.15,
4.86, 6.78, 8.20, 10.02, 11.37, 13.23, 14.84, and 17.27 rad/s, respectively.

Table 7.3 Validation of roof acceleration of mass-lumped system subjected to wind load

Cases Mass-lumped (m/s2) PKPM (JGJ99-1998)
(m/s2)

PKPM
(GB50009-2002)
(m/s2)

Alongwind along X 0.154 0.080 0.115

Alongwind along Y 0.255 0.132 0.183

Crosswind along X 0.361 0.399 0.308

Crosswind along Y 0.413 0.426 0.381
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Fig. 7.10 Time histories of representative roof wind forces of a high-rise building

7.4.3 Wind-Induced Comfortability Control

The desired total damping coefficient is first defined through evaluating the structural
system with uniformly deployed viscous dampers along story level. It is assumed
that the velocity exponents of all the viscous dampers are the same and set as α =
0.5. The total damping coefficient is tentatively set as CD,total = 8 × 104 kN(s/m)0.5.
In this case, the mean of additional damping ratios of the first three vibrational
modes is 0.77%, and a comparative result of the roof accelerations with and without
viscous dampers is shown in Fig. 7.11. It is seen that with the viscous damper
control, the roof acceleration of structure subjected to a representative wind force
decreases significantly, of which the maximum acceleration is around 0.21 m/s2 and
reduced to an acceptable rangedefinedby theprovisions.Therefore, the total damping
coefficient used for the proceeding optimization of parameters and deployments of
viscous dampers is set as CD,total = 8 × 104kN(s/m)0.5.

The parameter and placement optimizations of viscous dampers as both the ser-
viceability criteria SC-1 and SC-2 are carried out. The optimization as the criterion
SC-1 employs the genetic algorithm; while the optimization as the criterion SC-
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Fig. 7.12 Schematic diagrams of viscous damper deployments as serviceability criteria SC-1 and
SC-2

2 employs the SVM-based genetic algorithm. Both optimizations involve a same
parameter group of the genetic algorithm: the size of initial population is 1024, the
size of other populations is 200, the number of genetic generations is 300, number
of variable dimensions is 58, and the parameters k1, k2, k3, k4 for the adaptive
crossover and mutation are 0.5, 0.3, 0.7, 0.5, respectively.

With the optimization of the genetic algorithm, the schematic diagrams of vis-
cous damper deployments as the serviceability criteria SC-1 and SC-2 are shown
in Fig. 7.12. It is seen that if the traditional criteria on the optimization of mean-
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Fig. 7.13 Maximum and standard deviation of story acceleration along story level subjected to
representative wind force

square responses such as SC-1 is employed, the middle-level stories; see the stories
17–44 and stories 49–53, need more number of viscous dampers. However, if the
exceedance probability based serviceability criteria SC-2 is employed, the high-level
stories need more number of viscous dampers, especially at the interstories with a
large requirements of viscous dampers such as the stories 50–58.

In order to analyze the control effectiveness of the viscous dampers deployed in the
structural system, a comparative study between the wind-induced vibration control
by virtue of the optimally deployed viscous dampers as criterion SC-2 and that of
the optimally deployed viscous dampers as criterion SC-1 is carried out. Figure 7.13
shows the maximum and standard deviation of story accelerations with and without
viscous damper deployments when subjected to a representative wind force. In the
figure, the case of viscous dampers uniformly deployed along story level is labeled
as Controlled (UD); the cases of optimally deployed viscous dampers as criteria SC-
1 and SC-2 are labeled as Controlled (SC-1) and Controlled (SC-2), respectively.
All the case calculations resort to the stochastic equivalent linearization method and
Newmark-β integral scheme. It is seen that the story accelerations without control
are far larger than those with control, which proves the effectiveness of the viscous
dampers in the wind-induced comfortability control. One might recognize that the
story accelerations of the controlled structure in design as criteria SC-1 and SC-2 are
both less than that in the design of uniformly deployed viscous dampers, indicating
that the viscous damper deployment as serviceability criteria can gain better control
effectiveness, and optimization of viscous dampers exhibits a good trade-off.
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Table 7.4 Dynamic reliabilities of roof acceleration of structure subjected to different thresholds

Cases Thresholds

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28

UD 0.0026 0.0177 0.0315 0.0476 0.0814 0.1654 0.6099 0.6855 0.7600

SC-1 0.0057 0.0158 0.0328 0.0490 0.0897 0.4321 0.6497 0.7329 0.7918

SC-2 0.0779 0.1420 0.1999 0.5127 0.7595 0.8269 0.8704 0.9015 0.9326

Units of threshold are (m/s2)

In fact, the means of the additional former three-order damping ratios of viscously
damped structures as the criteria SC-1 and SC-2 are 0.79% and 1.32%, respectively,
which are both larger than that of the case with uniformly deployed viscous dampers;
i.e., 0.77%. Moreover, the maximum roof accelerations in the cases of optimally
deployed viscous dampers as serviceability criteria SC-1 and SC-2 are reduced to
10.6% and 15.7%, respectively, against the case with uniformly deployed viscous
dampers. The standard deviations of roof acceleration in the former two cases are
reduced to 8.8% and 10.1%, respectively, against the later case. It is well understood
that the serviceability criterion using the exceedance probability as the objective
argument accommodates better control effectiveness.

The PDF and CDF of equivalent extreme-value roof acceleration can be obtained
using the probability density evolution method, as shown in Figs. 7.14 and 7.15.
It is seen that the PDF and CDF of uncontrolled roof acceleration incline to the
right, and those of controlled roof acceleration as the criteria SC-1 and SC-2 incline
to the left to a large extent, by comparison with the case with uniformly deployed
viscous dampers. It is also shown that the exceedance probability based serviceability
criterion secures better structural habitability. Besides, as shown in Fig. 7.14, the 95%
quantile in the case of optimally deployed viscous dampers as criterion SC-2 is much
less than those in other two cases. In order to quantitatively assess the differences
from the cases, the dynamic reliabilities of roof acceleration subjected to different
thresholds are shown in Table 7.4.

It is seen from Figs. 7.14 and 7.15 that the probability density of uncontrolled roof
acceleration has a significant difference from those of controlled roof acceleration,
which proves again the effectiveness of viscous damper control. In the cases of
viscous damper control, the extreme value of roof acceleration as the criterion SC-2
arises to be minimum, then as the criterion SC-1, and the non-optimized case ND has
the largest roof acceleration. A straightforward comparison between the case without
control and the cases with control can be seen from the 95% quantile. Table 7.4
further shows that in the condition of the same total damping coefficient, the optimal
deployment of viscous dampers as the exceedance probability based serviceability
criterion can attain the best wind-induced comfortability.
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Fig. 7.14 PDFs of
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7.5 Discussions and Summaries

The present chapter addresses the stiff ratio of nonlinear structural systems with vis-
cous dampers, in the context of practical challenges on the wind-induced comforta-
bility control of high-rise buildings. The classical equivalent linearization methods
including the energy-dissipation equivalent linearization method and the stochastic
equivalent linearization technique are investigated. Two families of probabilistic cri-
teria for the optimal design of viscous dampers deployed in the structural system are
provided. For validating purposes, the reliability based stochastic optimal control
of wind-induced comfortability of a high-rise building in practice is detailed. Some
concluding remarks are drawn as follows:

(1) The damper force of nonlinear viscous dampers arises a fast-changing and slow-
changing behavior along with the variation of piston velocity, which results in
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a stiff problem inherent in the viscously damped structural system. This stiff
problem becomes more significant with the increasing of damping coefficient
and fundamental period of structures.

(2) Due to the essential nonlinearities inherent in viscously damped structures, the
conventional energy-dissipation equivalent linearization method fails to derive
an acceptable linearized system. The stochastic equivalent linearization tech-
nique is verified to have sufficient accuracy and efficiency in the case of thewind-
induced vibration mitigation, which enables the modal superposition method to
be used in the highly efficient optimization of nonlinear viscous dampers allo-
cated in high-rise buildings.

(3) The damper allocations as the serviceability criteria of minimum standard devi-
ation and of minimum exceedance probability of roof acceleration have the
benefit to reduce the wind-induced vibration significantly, which gain a simi-
lar control effectiveness in the case of a same total damping coefficient, and
both exhibit a better trade-off than the non-optimized case with uniformly
deployed viscous dampers. However, the traditional optimization of viscous
damper deployments based on the serviceability criterion of minimum standard
deviation of roof acceleration is a deterministic scheme in essence, which has
limitation of enhancing the wind-induced comfortability of high-rise building,
by comparison with the optimization of viscous damper deployments based on
the serviceability criterion of minimum exceedance probability of roof acceler-
ation.
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Chapter 8
Stochastic Optimal Control of Seismic
Structures with MR Dampers

8.1 Preliminary Remarks

Although the active structural control can attain a desired structural performance,
the power supply system for implementing the structural control might suffer from
a serious damage when subjected to hazardous dynamic excitations (Patten et al.
1998). Moreover, the entire structural system tends to instability due to the inevitable
modeling error, measurement noise, and time delay (Soong 1990). A refinedmeans is
to actualize the logical combination between the active and passive controlmodalities
so as to carry out a semiactive structural control. Thismodality exhibits a less demand
of external energy and a low risk of system dynamic instability, which has thus
received extensive attention in practice (Chu et al. 2005; Dan et al. 2015).

Owing to the perfect dynamic damping behaviors, the magnetorheological (MR)
damper is regarded as one of the most promising control devices for implementing
the semiactive structural control (Casciati et al. 2006). It has been an active area
of research worldwide in the past two decades. The relevant topics include semiac-
tive control algorithms and strategies (Jansen and Dyke 2000; Yoshioka et al. 2002;
Nagarajaiah andNarasimhan2006;Li et al. 2007;Xu andGuo2008;Hogsberg 2011),
modeling and dynamic performance ofMR dampers (Spencer et al. 1997; Yang et al.
2002; Tsang et al. 2006; Boada et al. 2011; Xu et al. 2012; Chae et al. 2013), novel
materials and technologies (Carlson and Jolly 2000; Tse and Chang 2004; Jung et al.
2010; Imaduddin et al. 2013), real-time hybrid simulations (Carrion et al. 2009; Cha
et al. 2013; Asai et al. 2015), etc; while a few attempts, in the theoretical framework
of stochastic optimal control, have been carried out for the design and optimization
of MR damped structures. For instance, Dyke et al. proposed a LQG clipped-optimal
control strategy implemented by MR dampers for strengthening the seismic safety
of structures (Dyke et al. 1996). Ni et al. developed a neural network controller
with MR damper, which achieved the similar gain to the LQG clipped-optimal con-
troller (Ni et al. 2002). Ying et al. proposed a non-clipped strategy of semiactive
stochastic optimal control for nonlinear structural systems with MR dampers based
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on the stochastic averagingmethod and stochastic dynamic programming (Ying et al.
2009). Using the modal-based LQG control algorithm and MR dampers, a smart
system design was addressed to enhance the seismic performance of base-isolated
buildings (Wang and Dyke 2013).

As a semiactive control device, the MR damper needs accurate dynamic models
in the application of civil engineering, so as to online predict the control law, i.e.,
input current, in each time step in view of the relation between the dynamical model,
the expected semiactive control force, and the structural state. However, the dynamic
constitutive relation of the magnetorheological fluid arises to be complicated since
its mechanical behaviors hinge upon a series of factors such as the magnetic field
intensity and the shear rate driven by the damper piston. The complex behaviors
of the MR fluid bring a challenging issue for accurate modeling of MR dampers.
The dynamic test shows as well that the hysteretic behaviors of MR dampers indeed
give rise to significant nonlinearity. Therefore, the accurate, simple, and feasible
mechanical models ought to be established so as to fulfill the performance of MR
dampers and guarantee the real-time effectiveness of the semiactive control strategy.

In this chapter, the method of stochastic optimal control usingMR dampers is first
introduced.Dynamicmodeling, input current identification, andmicrostructured sus-
pension behaviors of theMRdamper are then addressed. For illustrative purposes, the
semiactive stochastic optimal control of an MR damped structural system subjected
to random seismic ground motion is carried out.

8.2 Semiactive Stochastic Optimal Control Using MR
Dampers

A lot of semiactive control algorithms and control strategies have been developed in
recent years to fulfill the dynamic performance of MR dampers. For instance, Jansen
and Dyke investigated the effectiveness of classical semiactive control algorithms
including the Lyapunov stability theory, the LQG clipped-optimal control, the decen-
tralized Bang–Bang control, the modulated homogenous friction, and the maximum
energy dissipation (Jansen andDyke 2000). Chae et al. proposed an updatedMaxwell
nonlinear slider model for predicting the two-state control modalities ofMR dampers
subjected to random displacements, i.e., Passive-off and Passive-on, and the variant
current and damper outputs (Chae et al. 2013). A semiactive stochastic optimal con-
trol in the theoretical framework of the physically based stochastic optimal control
was developed (Peng et al. 2017). In conjunction with the bound Hrovat algorithm,
the proposed strategy of semiactive stochastic optimal control exhibits the benefits
of simplicity and effectiveness.
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8.2.1 Bound Hrovat Algorithm

For a randomly excited linear structural system attached with MR dampers, the
equation of motion is given by

MẌ(t) + CẊ(t) +KX(t) � BsUs(t) + DsF(�, t) (8.2.1)

where M,C,K are n × n mass, damping, and stiffness matrices, respectively; X
is the n-dimensional column vector denoting system displacement; Bs is the n × r
matrix denoting the location of MR dampers;Us is the r-dimensional column vector
denoting control forces pertaining toMRdampers;Ds is the n×pmatrix denoting the
location of external random excitations; and F is the p-dimensional column vector
denoting random excitation.

The control force of MR dampers typically consists of two parts: the passive
damping force that cannot be regulated by the control law and the variable damping
force that can be regulated by the control law. Considering a shear-valve mode MR
damper that is often applied in practice, the term related to the MR damper force in
Eq. (8.2.1) can thus be denoted by

BsUs(t) � −BsCDẊ(t) − BsUdc(t) (8.2.2)

whereBsCDẊ(t) denotes the passive damping force andBsUdc(t) denotes the variable
Coulombic force which can be regulated through changing the input current and the
associated magnetic field intensity which influences the yield strength of the MR
fluid. The input current is determined by system state and damper models allowing
for implementation of the expected damper force as a certain semiactive control
algorithm.

Substituting Eq. (8.2.2) into Eq. (8.2.1), one has

MẌ(t) + (C + BsCD)Ẋ(t) +KX(t) � −BsUdc(t) + DsF(�, t) (8.2.3)

Introducing the extended state vector Z(t) � [XT(t) ẊT(t)]T, Eq. (8.2.3) becomes

Ż(t) � AZ(t) + BUdc(t) + DF(�, t) (8.2.4)

whereA is the 2n×2n system matrix; B is the 2n× r matrix denoting the location of
MR dampers; andD is the 2n×pmatrix denoting the location of random excitation:

A �
[

0 I
−M−1K −M−1(C + BsCD)

]
,B �

[
0

−M−1Bs

]
,D �

[
0

M−1Ds

]
(8.2.5)

In order to attain a good agreement with the dynamic behaviors of MR damper,
a simple and efficient control strategy based on the Hrovat algorithm (Hrovat et al.
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Fig. 8.1 Relation between
MR damping force and
damper velocity at a certain
instant of time in the case of
a sample excitation
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1983) is developed for the MR damper control, of which the component formulation
is given by

Us(�, t) �

⎧⎪⎪⎨
⎪⎪⎩
cDẎ (�, t) + Udc,maxsgn(Ẏ (�, t)), Case A: UaẎ < 0 and |Ua| > Ud ,max

|Ua|sgn(Ẏ (�, t)), Case B: UaẎ < 0 and |Ua| < Ud ,max

cDẎ (�, t) + Udc,minsgn(Ẏ (�, t)), Case C: UaẎ > 0

(8.2.6)

where Us(�, t) denotes the semiactive stochastic optimal control force executed
by the MR damper; Ua(�, t) denotes the reference active stochastic optimal con-
trol force; Ud ,max(�,t) � cD

∣∣Ẏ (�,t)
∣∣ + Udc,max denotes the changeable maximum

damping force of MR damper; Udc,max,Udc,min denote the maximum and minimum
Coulombic forces of MR damper; cD denotes the viscous damping coefficient of MR
damper; and Ẏ (�,t) denotes the damper velocity, i.e., the motion velocity of piston
relative to the damper cylinder which is opposite to the interstory drift between the
stories with the MR damper. In these parameters, Udc,max,Udc,min, cD are the design
parameters pertaining to the MR damper.

Figure 8.1 shows the relation between the MR damper force Us(θ,t) and damper
velocity Ẏ (θ,t) at a certain instant of time in the case of a sample excitation θ.
The control force represented by Eq. (8.2.6) can be realized through driving the
calculated current into the MR damper. The expected input current is typically an
inverse solution of MR damper models. In application, the control effectiveness of
MR dampers highly hinges upon the accuracy and computational cost of the inverse
solution. Herein, the input current is assumed to fully implement the control gain in
demand with Eq. (8.2.6).

Substituting the formulation of control force as shown in Eq. (8.2.6) into the
equation of motion of stochastic dynamical system; say Eq. (8.2.4), one can attain
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the solutions of the state vector and the control force. Clearly, the quantities of con-
cern including the component of story velocity Ẋ (�,t), the component of semiactive
stochastic optimal control force Us(�, t), and the active stochastic optimal control
force Ua(�, t) are functions of �. Similar to Eqs. (3.2.4) and (3.2.5), these quan-
tities satisfy with the generalized probability density evolution equations (GDEEs),
respectively, as follows:

∂pẊ�(ẋ, θ, t)

∂t
+ Ẍ (θ, t)

∂pẊ�(ẋ, θ, t)

∂ ẋ
� 0 (8.2.7)

∂pUs�(us, θ, t)

∂t
+ U̇s(θ, t)

∂pUs�(us, θ, t)

∂us
� 0 (8.2.8)

∂pUa�(ua, θ, t)

∂t
+ U̇a(θ, t)

∂pUa�(ua, θ, t)

∂ua
� 0 (8.2.9)

Under the provided initial conditions

pẊ�(ẋ, θ, t)|t�0� δ(ẋ − ẋ0)p�(θ) (8.2.10)

pUs�(us, θ, t)|t�0� δ(us − us0)p�(θ) (8.2.11)

pUa�(ua, θ, t)|t�0� δ(ua − ua0)p�(θ) (8.2.12)

one can attain the probability density functions of the quantities of concern at any
instant of time as follows:

pẊ (ẋ, t) �
∫

��

pẊ�(ẋ, θ, t)dθ (8.2.13)

pUs (us, t) �
∫

��

pUs�(us, θ, t)dθ (8.2.14)

pUa (ua, t) �
∫

��

pUa�(ua, θ, t)dθ (8.2.15)

where ẋ0, us0, ua0 denotes the initial deterministic values of Ẋ (t),Us(t),Ua(t).

8.2.2 Parameter Design of MR Damper

In order to gain a similar control effectiveness as the reference active stochastic
optimal control, an MR damper design can be proceeded to facilitate the semiactive
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control system. The design principle lies in that the maximum output of the MR
damper including the viscous damping force equals to the maximum active optimal
control force, i.e., the extreme value of active optimal control force.

Assume that the MR damper control and the active optimal control have a similar
control effectiveness, for instance, a same interstory velocity at the moment of the
maximum active optimal control force:

Us,max(�) � cD
∣∣∣Ẏs|Us,max(�)

∣∣∣ + ∣∣Udc,max
∣∣ � cD

∣∣∣Ẏa|Ua,max(�)

∣∣∣ + ∣∣Udc,max
∣∣ � Ua,max(�) (8.2.16)

Since the output of the MR damper can be continuously tuned by the current-
driven magnetic field, there is

Us,max(�) � cD
∣∣∣Ẏs|Us,max(�)

∣∣∣ + Udc,max � s
(
cD

∣∣∣Ẏs|Us,max(�)

∣∣∣ + Udc,min

)
(8.2.17)

where s denotes the tunable times of damper force.
Assuming that the minimum Coulombic force Udc,min � 0, then one has

Us,max(�) � scD
∣∣∣Ẏa|Ua,max(�)

∣∣∣ � Ua,max(�) (8.2.18)

The viscous damping coefficient is thus denoted by

cD � Ua,max(�)

s
∣∣∣Ẏa|Ua,max

(�)
∣∣∣ (8.2.19)

and the maximum Coulombic force can be derived from Eqs. (8.2.17) to (8.2.19)

Udc,max � (s − 1)cD
∣∣∣Ẏa|Ua,max(�)

∣∣∣ (8.2.20)

It is shown in Eq. (8.2.20) that owing to the randomness inherent in the external
excitation, the system state and the associated optimal control force are random pro-
cesses. In this context, the parameters of control law exhibit uncertainties due to the
dispersion over the sampling space. For example, the design parameters Udc,max, cD
both rely upon �. However, the parameter design and optimization of control law is
a deterministic scheme, i.e., the design parameters of structural control ought to be
constant regardless of samples of random excitations.

It is revealed that the first step of MR damper control of structures in practice is
to gain the expected damper force for the response reduction of structures, and then
calculate the input current according to the dynamic model of MR dampers and the
real-time system state, i.e., the so-called control law for regulation ofMRdampers. In
this process, the desired structural performance controlled by the semiactivemodality
can be precisely derived in theory if the real output ofMRdampers just relies upon the
amplitude of input current and the real-time state of structural system. This situation,
however, is retained under two provided conditions: (i) no measurement noise during
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Fig. 8.2 Flowchart of implementing MR damper control of structures

the structural state monitoring and no errors inherent in the current calculation and
signal delivery to the damper; (ii) no time delays at each step from statemeasurement,
semiactive control force analysis, input current calculation, and signal delivery to the
MR damper. However, there still exist differences between the output of MR damper
and the expected semiactive optimal control force even the provided conditions are
satisfied, due to the physical constraints of MR dampers such as the complicated
rheological behaviors of MR fluids. In fact, the MR damping system belongs to a
family of feedback control systems in logic. The associated measurement noise and
time delay would exist in the control system. Moreover, the calculated current might
exhibit a large diverse from the expected due to the modeling error of MR damper.
Therefore, a set of measure system is often used in practice to monitor the real-time
output of MR damper, thereby a current compensation strategy is thus proposed to
better the control effectiveness of MR damper.

The flowchart of implementing the MR damper control of structures is shown in
Fig. 8.2. It is seen that the active control force-based semiactive controller design
and the dynamic modeling of MR dampers underly the design and optimization of
control law of semiactive control.

8.3 Dynamic Modeling of MR Dampers

8.3.1 Parameterized Model

The dynamic models of MR dampers are mainly classified into parameterized and
nonparameterized models (Yang et al. 2013). The parameterized models are mostly
the mathematical formulation of damper force derived from the fitted curves of rela-
tionships between the damper force and damper displacement or velocity, of which
the data is collected from the performance test of MR dampers. The parameterized
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models usually consist of a collection of mechanical elements such as the spring ele-
ment, the viscous damping element, and the Coulomb friction element in configura-
tion of serial and parallel systems (Spencer et al. 1997). The widely used parameter-
ized models of MR dampers are mainly the Bingham model, Gamota-Filisko model,
nonlinear bi-viscous hysteretic model, Bouc–Wen hysteretic model, their modified
versions, etc. Similarly, the nonparameterized models are derived from the data of
performance test of MR dampers, and are formulated by the intelligent algorithms
such as neural network and fuzzy logic (Chang and Roschke 1998; Xu and Guo
2008), while these two families of modelings both are built toward the phenomenol-
ogy and match with the accurate description of macroscale dynamic behaviors of
MR dampers. However, the parameterized models exhibit a more feasible extension
and a better applicability in practice.

Among the parameterized models, the modified Bouc–Wen hysteretic model is
a preferable formulation for dynamic modeling of MR dampers since it not only
reveals the hysteretic behavior inherent in the relation between damper force and
velocity but also improves the slipperiness of piecewise functional curves. Thismodel
was first proposed by Bouc (1967), and later modified by Wen (1976). It has been
widely used in modeling of hysteretic structural systems owing to its simplicity and
feasibility. However, the Bouc–Wen hysteretic model cannot simulate the roll-off
characteristics in the relation curves between damper force and velocity in the case
that the acceleration and velocity turn direction and the velocity amplitude are very
low. For this reason, a modified Bouc–Wen hysteretic model was then developed
by Spencer et al. (1997). The schematic of a shear-valve mode MR damper and its
modified Bouc–Wen hysteretic model are shown in Fig. 8.3.

The modified version consists of an original Bouc–Wen hysteretic model in series
of a damping element and then in parallel of a spring element, which has the formu-
lation with respect to the output of MR dampers as follows:

FD � c1ẏ + k1(x − x0) (8.3.1)

ẏ � 1

c0 + c1
[αz + k0(x − y) + c0ẋ] (8.3.2)

ż � −γ |ẋ − ẏ|z|z|n−1 − β(ẋ − ẏ)|z|n + A(ẋ − ẏ) (8.3.3)

where FD denotes the damper force; ẏ denotes the piston velocity; z denotes the
hysteretic component; k1 denotes the equivalent axial spring stiffness of accumula-
tors; c0 denotes the viscous damping coefficient of MR dampers in the case of large
damper velocity; c1 denotes the damping coefficient of MR dampers in the case of
small damper velocity; k0 denotes the axial stiffness of MR dampers in the case of
high damper velocity; x0 denotes the initial displacement of accumulator spring k1;
α denotes a stiffness parameter defined by the control current and the MR fluid; and
γ , β, and A are defined to govern the smoothing of damper force–velocity curves.

For illustrative purposes, the dynamic modeling of MR dampers using the experi-
mental data is carried out, whichwas derived from a dynamic test ofMR damper with
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Fig. 8.3 Schematic of shear-valve mode MR damper and its modified Bouc–Wen hysteretic model

specification MRD-100-10 (Peng et al. 2018). The specimens of the MR damper are
shown in Fig. 8.4. The two specimens are labeled by MRD-A and MRD-B, respec-
tively. This specification of MR dampers consists of cylinder, piston, MR fluid, and
coils, which is a typical single-rod damper, as shown in Fig. 8.3. When the piston
moves back and forth relative to the cylinder, the MR fluid passes through the annual
gap between the piston and the cylinder, and yields damping force. The damping
force can be readily regulated by changing the density of magnetic flux circumfused
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around the coils, which is able to be carried out using varying currents driven intoMR
dampers. The design parameters of the MR damper are listed as follows: maximum
output 10 kN, the outer diameter of cylinder 100 mm, the fabrication length 670 mm,
the length of stroke ±55 mm, the rated current 2.0 A, and the energy consumption
20 W.

The dynamic test was carried out on an electrohydraulic and servo-controlled
material testing machine; see Fig. 8.5. During the test, the active clamp drives the
motion of the piston of MR damper so that the piston executes a harmonic motion
with specified frequency and amplitude relative to the cylinder. The input current
to the MR damper, in four different levels 0.0, 0.5, 1.0, and 1.5 A, is implemented
by a DC stabilized power supply. The experimental cases with different displace-
ment amplitudes, excitation frequencies and input currents are proceeded to test the
dynamic performance of the MR damper. These experimental cases are listed in
Table 8.1.

Fig. 8.4 Two specimens of
MR damper with
specification MRD-100-10

Fig. 8.5 Setup of dynamic
test of MR dampers

M
R

D
-A

Load Cell
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Table 8.1 Experimental
cases of MR damper with
specification MRD-100-10

Amplitudes
(mm)

Frequencies (Hz) Currents
(A)0.25 0.5 0.75 1.0 1.5

5 √ 0.0, 0.5,
1.0, 1.5

10 √ 0.0, 0.5,
1.0, 1.5

15 √ √ √ √ √ 0.0, 0.5,
1.0, 1.5

20 √ 0.0, 0.5,
1.0, 1.5

25 √ 0.0, 0.5,
1.0, 1.5
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Fig. 8.6 Testing curves of MRD-A in typical loading conditions with displacement amplitude
15 mm and excitation frequency 0.5 Hz

The testing curves of the MR dampers, i.e., MRD-A and MRD-B, in typical
loading conditions with displacement amplitude 15 mm and excitation frequency
0.5 Hz are shown in Figs. 8.6 and 8.7, respectively. Since the input currents are
loaded in levels step by step, the curve loops from the inner to the outer are referred
to the current level 0.0 A, 0.5 A, 1.0 A, and 1.5 A, respectively. Meanwhile, the
relative velocity of the piston of MR damper to the cylinder is calculated through the
numerical differential of displacement data monitored in the test.

It is seen that the damper force increases with the enhancement of input current,
and the maximum of damper force in each loop arises to be of linear correlation with
the input current (the saturation of damper force does not happen since the input
current is less than the rated current of MR damper in the experimental cases). In
the case of input current 0.0 A, the MR damper possesses viscous behaviors, e.g.,
the relation curve between damper force and piston displacement approaches to be
elliptical, and the relation curve between damper force and piston velocity approaches



246 8 Stochastic Optimal Control of Seismic Structures with MR Dampers

-0.02 -0.01 0 0.01 0.02
-8

-6

-4

-2

0

2

4

6

Displacement (m)

D
am

pe
r F

or
ce

 (k
N

)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
-8

-6

-4

-2

0

2

4

6

Velocity (m/s)

D
am

pe
r F

or
ce

 (k
N

)

(a) damper force vs. displacement (b) damper force vs. velocity

Fig. 8.7 Testing curves of MRD-B in typical loading conditions with displacement amplitude
15 mm and excitation frequency 0.5 Hz

to be S shape. With the increasing of input current, however, the shear stress of MR
fluid becomes stronger as well, thereby the MR damper features a viscous–plastic
mechanics. The relation curves between damper force and piston velocity arise to be
a complicated hysteretic behavior. In the range of high velocity, the linear relation
between damper force and velocity is observed, while in the range of low velocity, a
nonlinear relation between damper force and piston velocity is observed where the
distinguished hysteretic behaviors occur. These findings are in good agreement with
the dynamic model of MR dampers; see Fig. 8.3b.

8.3.2 Parameter Identification of Model

It is seen from Eqs. (8.3.1) to (8.3.3) that the modified Bouc–Wen hysteretic model
involves the coupling of differential equations and includes the terms with high
orders, which brings about an extremely difficult for the parameter identification of
the model. There are three families of schemes for the parameter identification of
Bouc–Wen hysteretic models of MR damper. The first refers to traditional optimiza-
tion methods such as the nonlinear optimization scheme and least squares method
with additional constraints (Spencer et al. 1997; Dyke et al. 1998). The second refers
to the mathematical analysis of the relation between parameters and forced-limit
cycles of model (Ikhouane and Rodellar 2005). The third refers to the genetic algo-
rithm-based parameter identification (Charalampakis and Koumousis 2008). Com-
paring with the first two families of schemes, the third family of schemes has a
better efficiency and accuracy for the optimization of multiple parameters, and is
thus applied in this study.

For illustrative purposes, the MR damper MRD-A is considered for the parame-
ter identification of the modified Bouc–Wen hysteretic model. The testing cases of
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concern are set as follows: Case 1, loading frequency 0.25 Hz, loading amplitude
15 mm, and loading current 0.0–1.5 A; Case 2, loading frequency 0.50 Hz, loading
amplitude 15 mm, and loading current 0.0–1.5 A; and Case 3, loading frequency
1.00 Hz, loading amplitude 15 mm, and loading current 0.0–1.5 A.

Since the modified Bouc–Wen hysteretic model involves the differential equa-
tions, a four-order Runge–Kutta method is used to solve the damping force. Mean-
while, a genetic algorithm is employed for parameter identification, which can be
readily implemented by the MATLAB toolbox function ga. In each step of loop, the
assignment and optimization of model parameters are proceeded. The population
size, generations, and stall generations in the genetic algorithm toolbox are set as
100, 200, and 50, respectively. The limit of fitness variation between optimized seeds
at two neighbor generations is set as 0.001. The solution of differential equations
can be derived from the case that all the 10 model parameters are valued through
building the logical relation shown in Eqs. (8.3.1)–(8.3.3) with respect to the damper
velocity ẏ and hysteretic rate ż. For the ready conjunction with the genetic algorithm,
nine parameters except the initial displacement x0 are set as input. The input values
of the parameters are controlled in real time by the prescribed iterative scheme of
genetic algorithm toolbox. The damper force FD is set as out. All the identification
values of these parameters are evaluated by the experimental or simulated data. An
index pertaining to the degree of fitness is defined as follows (Spencer et al. 1997):

Fitness �
√

1
n

∑n
i�1 (F

exp
D,i − Ffit

D,i)
2

√
1
n

∑n
i�1 (F

exp
D,i − 1

n (
∑n

i�1 F
exp
D,i ))

2
(8.3.4)

where n denotes the number of data points in the experiments or simulations; Fexp
D,i

denotes the damper force of the ith data point; and Ffit
D,i denotes the damper force of

the ith fitted point.
The modified Bouc–Wen hysteretic model exhibits 10 parameters which might

result in a high computational cost and a low accuracy if no constraints are posed
upon the parameters. In this study, the initial displacement x0 of accumulator is set
as 0.2 m. The upper and lower bounds of the remaining nine parameters c1, k1, c0,
α, k0, γ , n, β, and A are denoted by [104, 107], [102, 104], [102, 105], [103, 105], [10,
104], [102, 105], [1, 5], [102, 105], and [10, 103], respectively.

In consideration of the complexity of solving the differential equation, the
four-order Runge–Kutta method is implemented by the solver ode4 of MAT-
LAB/Simulink. The time interval of the solver is fixed at each step so as to derive
the damper force at the setting instant of time. In this study, the time interval is set
as 0.0001 s, and the time length is set as 20 s.

In the semiactive control modality, an inverse calculation is usually required so
as to regulate the damper force through changing the input current or voltage. The
analysis of current relevance of model parameters is a critical step, aiming at the
determination of sensitive parameters and their functional relation with the input
current. The relation curves between parameters and input current reveal that except
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Fig. 8.8 Fitted curves between control parameters and input current

the parameters c1, c0, and α, the relation between the remaining six parameters and
input current is not clear. The parameters c1, c0, and α are the so-called critical
parameters for the dynamic model of the MR damper, which change linearly along
with the increasing of the current; see Fig. 8.8.

According to Eqs. (8.3.1)–(8.3.3), the identification of the remaining six param-
eters is carried out again through fixing the functional relation of c1, c0, and α with
input current. In order to reduce the computational cost, the upper and lower bounds
of the parameters to be identified are valued, respectively, by the individual minimum
and maximum in the first identification. With an iterative process, the six parameters
are eventually defined by Case 1: [k1, k0, γ , n, β, A] � [782.16, 3007.79, 61530.17,
4.35, 30746.83, 164.20], where the fitness is 0.1416; by Case 2: [k1, k0, γ , n, β, A]�
[413.68, 9562.50, 1010.11, 2.00, 1011.73, 105.87], where the fitness is 0.1326; and
by Case 3: [k1, k0, γ , n, β, A]� [3609.01, 5012.80, 1944.34, 2.00, 1660.78, 173.43],
where the fitness is 0.1410.

Using the optimized values of parameters, comparative studies between the mod-
ified Bouc–Wen hysteretic model and the experimental data associated with input
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Fig. 8.9 Comparison between modified Bouc–Wen hysteretic model and experimental data in the
case of displacement amplitude 15 mm and excitation frequency 0.25 Hz (Case 1)
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Fig. 8.10 Comparison between modified Bouc–Wen hysteretic model and experimental data in the
case of displacement amplitude 15 mm and excitation frequency 0.50 Hz (Case 2)

currents are proceeded. Themodel result (labeled as ‘Model’) and experimental result
(labeled as ‘Experimental’) in the concerned three cases are shown in Figs. 8.9, 8.10
and 8.11, respectively. One might see that the parameterized model secures a sound
fitting accuracy with the experimental data in different levels of input current, indi-
cating that identified values of model parameters are satisfied for the individual case.
Throughout the three cases, meanwhile, the control parameters, i.e., c1, c0, and α,
are viewed as the same and all submit to the linear function of input current.

According to the identified model parameters and their relations with the input
current, the current signal loaded on the MR damper can be readily generated using
the backpropagation (BP) neural network algorithm (Metered et al. 2010). Details
of the current signal generation are illustrated in conjunction with the numerical
example in Sect. 8.4.
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Fig. 8.11 Comparison between modified Bouc–Wen hysteretic model and experimental data in the
case of displacement amplitude 15 mm and excitation frequency 1.00 Hz (Case 3)

8.3.3 Microscale Mechanism of MR Dampers

The investigation of microstructured behaviors of MR suspensions exhibits a signif-
icance for revealing the physical essence of complicated dynamics of MR dampers
and carrying out the optimization of control law of semiactive modality. The refer-
ence (Peng et al. 2012) addressed this issue for the first time.

The magnetorheological fluid is viewed as an elementary material assembling
MR dampers. It consists of micrometer-sized magnetizable particles and nonmag-
netic fluid, which shows a unique ability to experience the phase separation in a
rapid and completely reversible manner. The physical origin of this behavior is that
under the external magnetic field with specified intensity, the particles acquire amag-
netic dipole moment, resulting in particle aggregation to form chain-like structures
parallel to the external magnetic field and form cluster-like and sheet-like structures
perpendicular to the external magnetic field. These properties of the phase separation
in the microstructure, moreover, are always accompanied by significant changes in
flow behavior and optical properties with the increase in the viscosity of the suspen-
sion and generation of optical anisotropy. The essence of the MR damper control is
thus setting the identified input current as the control law to drive the magnetic field
upon the magnetic fluids so that the microstructured behaviors of MR suspensions
change and prevent the flow from transporting induced by external excitations. A
schematic describing the generation of input current signal and its influence upon
the microstructured behaviors of MR suspensions is shown in Fig. 8.12.

A large-scale atomic/molecular massive parallel simulator (LAMMPS) is
employed, which provides an embedded routine for large-scale and three-
dimensional Brownian dynamics simulation. LAMMPS facilitates the simulations
of millions of particles, which may include gas, liquid, solid, and complex phases.
Its library of potential functions and force fields is extensive, and it has been
applied to the simulation of a wide spectrum of particles, including atomic polymers,
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Fig. 8.12 Schematic of input current generation and its influence upon microstructured behaviors
of MR suspensions

bead-spring polymers, organic molecules, proteins, granular materials, and point
dipolar particles. Moreover, LAMMPS can be readily parallelized for various com-
puter architectures (Plimpton 1995). The initial position and initial velocity of sus-
pensions are generated as statistically independent with a uniform distribution and
a Maxwell–Boltzmann distribution, respectively (Liu et al. 2006). The neighbor list
algorithm with the strategy of radius cutoff (truncated radius) is used to assess the
interaction between particles (Verlet 1967). The motion of MR suspensions can be
described by a Langevin equation, of which the numerical solution is derived using
the velocity Verlet integral scheme (Swope et al. 1982). These numerical techniques
can be readily implemented in conjunction with the LAMMPS.

A shear-valve mode MR damper with double rods in specification of MRD-9000
(Yang 2001) is used for the investigation. The involved MR fluid consists of the
silicone oil and the emerged double suspensions with micrometer iron carbonyl
particles. The relevant physical parameters of the simulated MR fluid are listed in
Table 8.2.
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Table 8.2 Physical
parameters of simulated MR
fluid

Physical quantities Parameter values

Volume ratio between suspensions and
matrix

0.3

Radius of particles Large particle aL 5 × 10−6 m

Small particle aS 2.5 × 10−6 m

Mass of particles Large particleML 1 × 10−13 kg

Small particleMS 1.25 × 10−14 kg

Volume ratio of bidisperse, large/small
particles

75:25

Relative
permeability

Matrix μc 1.0

Particles μp 1 × 103

Saturation magnetization of particles 2 T

Viscosity of matrix 0.3 Pa s

Density of silicon oil 3.6 × 103 kg m−3

Temperature 298 K

Magnitude of steady magnetic field H0 100 k Am−1

Fig. 8.13 Schematic of magnetic field and steady shear loading on simulated cell

According to the volume ratio between suspensions and carrier fluid, these spheres
are uniformly distributed in the space of a simulation cell with dimensions (L*

X , L
*
Y ,

L*
Z ) � (20, 10, 10), where the asterisk “*” represents dimensionless quantities. In

this study, the length, timescales, and mass in the dimensionless units have specified
relation with those in SI units; see dimensionless unit length 10−5 m, dimensionless
unit time 1.7 × 10−3 s, and dimensionless unit mass 2.43 × 10−8 kg. The amount
of particles is 3120 which includes 860 large particles and 2260 small particles.
Sheared periodic boundaries are included at X ∗ � ±L∗

X ,Y ∗ � ±L∗
Y and Z∗ � ±L∗

Z .
The shear flow is applied along the X-direction, and the magnetic field is applied
along the Z-direction. The time step length of simulations is �t∗ � 10−7. The
schematic of simulation procedure is shown in Fig. 8.13.

Figure 8.14 shows the cluster–sheet phase of the MR suspensions at 10.0 µs,
where “o” represents the large particles, and “.” represents the small particles. It is
seen that the direction of most cluster–sheet structures is parallel to the shorter axis
Y , not the longer axis X. In view of the phenomenon of nematic-like ordering of the
MR suspensions toward particular directions, one might realize that these magnetic
dipoles exhibit some intelligent behaviors, and they always align to clusters along
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Fig. 8.14 Cluster–sheet
phase of MR suspensions at
10.0 µs

Fig. 8.15 Structural
anisotropy of aggregates of
MR suspensions at shear
strain of 1.0 under steady
magnetic field and shear field
with shear rate 1000 s−1

the direction whereby the sheet tends to be formed, though the initial configuration
admits to the uniform distribution and the external magnetic fields are steady (Peng
et al. 2012).

Figure 8.15 shows the structural anisotropy of aggregates of MR suspensions
at shear strain of 1.0 under steady magnetic field and shear field with 1000 s−1.
It is seen that the suspensions move along the flow field and connect to long sheets
alongflowdirection toward restraining the transportation of the shear flow, though the
suspension structure suffers from yielding and the sheets tend to be ripped presenting
as arch structures.

In order to reveal the dynamic performance ofMR dampers from amicroscale, the
dynamic yielding stress of MR fluid is simulated. According to the previous studies,
the strain energy of macroscale yielding stress of MR fluid in a unit volume equals
the kinetic energy of microscale MR suspensions in the volume. On this principle, a
multiscale constitutive relation of MR fluids can be established (Peng and Li 2011).
Figure 8.16 shows the relation between yielding stress and shear rate of MR fluid
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Fig. 8.16 Relation between yielding stress and shear rate of MR fluid under sine displacement
loading on MR dampers

under sine displacement loading with period of 4 ms on MR dampers. It is seen
that the fitted curve on the simulated data points shows a good consistency with
the Bouc–Wen hysteretic model, which exhibits obvious similarities as the relation
curves between damper force and damper velocity shown in Figs. 8.10, 8.11 and 8.12.
These similarities, as a matter of fact, are just the representation of the macroscale
performance of MR dampers under sine displacement loading and current driving
on the microscale structured behaviors of MR fluids.

8.4 Numerical Example

The semiactive stochastic optimal control of single-story shear frame shown in
Fig. 3.4 is carried out. The physically motivated random seismic ground motion
model is used as the external excitation, of which the peak ground acceleration is set
as 0.11g. Design and optimization of a shear-valve mode MR damper are performed
for implementing the semiactive control.

In order to attain the desired structural performance, the control algorithm in for-
mulation of Eq. (8.2.6) is employed. The tunable times of the damper force are set
as s � 8. The design parameters for the MR damper control are viscous damping
coefficient and maximum Coulombic force. Since the multilinearity property of the
semiactive control algorithm, the original state equation of the structural system shall
be discretized into a discrete state equation, and the associated coefficients need to be
identified so as to derive the control gain. In this study, the coefficient identification
is performed using the precise integration method (Zhong 2004). For the purpose
of a uniform numerical framework, the calculation of the reference active optimal
control force and its relevant interstory drift refers to the methodology of physi-
cally based stochastic optimal control in kernel of discrete dynamic programming,
i.e., the solving of a so-called matrix difference Riccati equation; see Appendix E.
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The deterministic dynamic analysis with respect to the velocity quantities in the
generalized probability density evolution equations employs a first-order forward
difference scheme, as same as the discrete dynamic programming. The optimization
of weighting matrices in the cost function is carried out as the criterion on system
second-order statistics evaluation (SSSE); see Eq. (3.3.21): the interstory drift serves
as the constraint, and the quantities of evaluation include the interstory drift, story
acceleration, and interstory control force. The quantile function is defined as the sum
of mean and three times of standard deviation. The threshold of interstory drift is set
as 10 mm.

Since the structural system and seismic ground motion are consistent with the
numerical example shown in Sect. 3.4.1, the relation between the statistical moments
of equivalent extreme values of system quantities and the ratio of coefficients of
weighting matrices, see Fig. 3.11, can be used straightforwardly in this study. In
order to reduce the structural displacement in a more serious extent, the weighting
matrices pertaining to the system state and control force are denoted by

QZ � 80

[
1 0
0 1

]
,RU � 10−12 (8.4.1)

By virtue of Eq. (3.3.18), the active stochastic optimal control of structure is
proceeded. The probability density function of the extreme value of active opti-
mal control force using the parameters of control law, say Eq. (8.4.1), is shown in
Fig. 8.17.

It is seen that the reference active optimal control force exhibits a large range of
distribution, of which the mean and standard deviation are 115.44 and 34.68 kN. It
is revealed in Eq. (8.2.16) that the parameters of MR dampers are determined by
the reference active optimal control force and its relevant interstory velocity. Due
to the randomness inherent in the active optimal control force, the parameters of

Fig. 8.17 Probability
density function of extreme
value of active optimal
control force
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MR damper as the traditional deterministic control scheme give rise to uncertainty.
According to the general principle of structural design, the mean or a certain quantile
of the active optimal control force can be used as the design control force. One might
recognize that this treatment lacks the accurate assessment of structural performance.
A logical manner defining the reference active optimal control force is in conjunction
with the physical causes.

Figure 8.18 shows the maximum active control force, the maximum interstory
drift, and maximum story acceleration of semiactively controlled structure with
respect to samples. It is seen that the interstory drift changes not obviously alongwith
the active control force, which nearly distributes in the range of 2–5 mm; the story
acceleration changes positively along with the active control force. The tendancy of
third-order fitted curves in the figure shows that the application of a larger design
active control force cannot attain a further reduction of the structural displacement. It
is thus remarked that the semiactive controller and the passive controller lack ability
for significantly reducing the structural displacement. However, the active controller
exhibits a benefit of reducing the structural displacement. Besides, the fitted curve
of relation between story acceleration and active control force has the similarity as
that of actively controlled structures.

Figure 8.19 shows the relation between design parameters of MR damper and the
active optimal control force with respect to samples. In comparison with Fig. 8.18,
it is seen that the viscous damping coefficient is low and insensitive to the active
control force when the control force magnitude is more than 100 kN, indicating that
an accurate MR damper control system can be constructed using a series of low-cost
components; the maximum Coulombic force exposes to be linearly relevant to the
reference active control force owing to a linear regulation assumption with respect
to the Coulombic force.

In fact, the definition of reference active control force needs to consider the phys-
ical mechanism and practical capacity of MR dampers. For example, the most eco-
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Fig. 8.18 Relation between maximum active control force, maximum interstory drift, and maxi-
mum story acceleration of semiactively controlled structure with respect to samples
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Fig. 8.19 Relation between maximum active control force, viscous damping coefficient, and max-
imum Coulombic force with respect to samples
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nomic output of the MR damper investigated in this study is 200 kN, and a high-
viscous rheological liquid is inconvenient for maintenance. Therefore, the reference
active control force is suggested to be defined on the sample with the largest assigned
probability, i.e., with high occurrence rate, and in the neighborhood of 100 kN.
Figure 8.20 shows all the samples with the relation between maximum active control
forces and assigned probabilities. It is ready to recognize that the reference active
control force is 94.03 kN, which is around the mean of the maximum active control
force. The damping coefficient and the maximumCoulombic force are thus designed
as 0.6119 kNs/mm, 82.28 kN, respectively.

Time histories of root-mean-square displacement of the structural systemwith and
without controls are shown inFig. 8.21. It is seen that the structural performance gains
a significant improvement both using the semiactive and active stochastic optimal
controls. In comparison with the active control, the semiactive control attains an
almost same gain in the time domain with smaller response of uncontrolled structure.
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Fig. 8.21 Time histories of
root-mean-square
displacement of structural
system with and without
controls
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In the time domain with larger response of uncontrolled structure, the active control
has a better control gain than the semiactive control. This is understood that the
semiactive control algorithm employed in this study belongs to a family of bound
amplitude control schemes, due to the fact that the MR damper exhibits magnetic
saturation (Xu et al. 2012). In the case that the control requirement over the response
domain exceeds the capacity of MR damper, the semiactive control will stick on
the maximum output of the damper other than timely tracing active optimal control.
The detail of MR damper force tracing active optimal control force in root-mean-
square sense is shown in Fig. 8.22. It is seen that the bound Hrovat algorithm-based
semiactive control has the capacity of tracing the active optimal control in real time.

More accurate probabilistic representation is the probability density function, as
shown in Fig. 8.23. It is seen that the curves of PDFs of semiactive and active optimal
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Fig. 8.23 PDFs of semiactive and active optimal control forces at typical instants of time

control forces at typical instants of time are similar, where a slight difference lies in
that the output of semiactive control merely relies upon the maximum active control
force other than tracing the active control force in real time, such as the case that the
active control force has a same direction with the interstory velocity or although the
active control is opposed to the interstory velocity, the active control force is larger
than the maximum output that the MR damper is able to actualize.

Figure 8.24 shows the probability density functions of interstory drift at typical
instants of time with and without the MR damper controls. It is seen that the MR
damper control can reduce the structural displacement significantly, where the distri-
bution range of PDFs becomes narrower.Meanwhile, by comparisonwith Fig. 3.13b,
the reduction of displacement amplitude of active control arises to more significant
than that of semiactive control. One might see that the peak of PDFs of the former
approaches to 0.9, while the peak of PDFs of the later approaches to 0.45. As men-
tioned previously, the semiactive and passive controllers still remain challenges in
the displacement control of structures. Besides, the semiactive controller designed
as the ratio of coefficients of weighting matrices 8 × 1013 exhibits a worse instead
of a better control effectiveness than the active controller design as a smaller ratio of
coefficients of weighting matrices 8 × 1012.

In order to reveal the influence of the semiactive control upon the dynamic per-
formance of MR dampers, Fig. 8.25 shows the relation between the damper force
and the damper displacement, damper velocity under a sample of seismic excitation.
It is seen that the relation curves between damper velocity and damper force nearly
all distribute in the first and third quadrants, indicating that the semiactive control
force always remains an opposite direction to the damper velocity. The rationality is
thus proposed that the MR damper can change the output timely so as to trace the
active optimal control force in real time. The predictive and experimental data as
an up-scaled profile of MR damper force curves are shown in Fig. 8.25 as well. In
conjunction with the modified Bouc–Wen hysteretic model, the predictive and exper-
imental data are derived from a 3-kN MR damper in type of VersaFlo MRX-135GD
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(a) with control (b) with control

Fig. 8.24 PDFs of interstory drift at typical instants of timewith and withoutMR damping controls
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Fig. 8.25 Relation between damper force and damper displacement, damper velocity under the
sample of seismic excitation

under a narrowband excitation of white Gaussian noise (Dyke et al. 1996; Spencer
et al. 1997). It is revealed that the semiactive control can well accommodate the
dynamic performance of MR dampers, which behaves a similarity as the Bouc–Wen
hysteretic model with strength deterioration, stiffness degradation, and pinch effect
(Wen 1976).

For illustrating the generation of input currents to the MR damper, the shear-
valve modeMR damper with double rods in specification ofMRD-9000 is employed
which has a moderate performance as required by this numerical example. The sim-
ulated data of the MR damper under displacement amplitude of 25.4 mm, excita-
tion frequency of 0.5 Hz, and input current of 0.0–2.0 A is utilized. A modified
Bouc–Wen hysteretic model is applied to simulate the dynamic performance of the
MR damper. Using the parameter identification procedure addressed in Sect. 8.3.2,
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the constant parameters of the modified Bouc–Wen hysteretic model for the MRD-
9000 are denoted by [x0, k1, c0, k0, g, n, b, A] � [0.0, 158.55, 469,042.70, 612.79,
98,540.12, 2.01, 73,224.85, 9,253.30], and the current variant parameters are denoted
by c1 � –5.15 × 106I2 + 1.73 × 107I + 3.63 × 106, α � –2.42 × 105I2 + 8.71 ×
105I + 7.34 × 106.

According to the parameterized model and the system state of structures, a
numerical procedure by virtue of backpropagation (BP) neural network algorithm
is employed to generate the current signal loaded on the MR damper. The BP algo-
rithm can be readily implemented in conjunctionwith theMATLAB toolbox function
nftool. The numbers of input nodes, output nodes, and implication nodes are 7, 1, and
13, respectively. For solving the differential equations of the Bouc–Wen hysteretic
model in the numerical procedure, the four-order Runge–Kutta method is employed
here and implemented by the solver ode4 of MATLAB/Simulink as well.

Prior to the generation of input currents, a step of sample training needs to be
proceeded to activate the BP neural network-based retrorse model of MR dampers.
A 20-s time series with 1000 data points is used for training and validation, which
consists of three segments: white Gaussian noise of current and displacement in the
first 10 s, high-amplitude sine current andwhiteGaussian noise of displacement in the
next 5 s, and low-amplitude sine current and white Gaussian noise of displacement
in the last 5 s. The validation of sample data shows that the goodness of fit attains to
more than 98%.Other three different cases are addressed to verify the effectiveness of
the retrorsemodel ofMR dampers, involving Case 1: white Gaussian noise of current
and displacement, Case 2: sine current and white Gaussian noise of displacement,
and Case 3: constant current and sine displacement. The current and displacement in
each case are 20-s time series with 1000 data points. Figure 8.26 shows the expected
and identified input currents and the associated outputs of MR dampers in the three
cases. It is seen that the identified damper force matches well with the expected, of
which the errors of three cases are 3.12%, 6.93%, and 2.54%, respectively.

Similarly, if the system state and the output of MR dampers are known, one
can readily derive the input current. In this study, the identification of optimal cur-
rent for MR damper control of structures under three different samples of seismic
ground motions is carried out; see Fig. 8.27. It is seen that the optimal currents
used for semiactive control of structures arise to irregularly fluctuate in the range
of 0.0–0.6 A, which are significantly different from the samples of seismic ground
motions. One might recognize that the real-time feedback control exhibits a practi-
cal significance for improving the structural performance; the development of highly
efficient MR damper control ought to follow an accurate modality from the present
simple Bang–Bang control or Passive-on and Passive-off step controls in practice. It
is also noted that the methodology of physically based stochastic optimal control, the
probabilistic optimization and design of controller parameters, and control device
placement play an important role in this developing process.
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Fig. 8.26 Expected and identified input currents and associated outputs of MR dampers in three
cases
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Fig. 8.27 Optimal currents of MR damping control of structure under three different samples of
seismic ground motions

8.5 Discussions and Summaries

The input current as the control law of regulating MR dampers is often derived
from the inverse solution of damper models. How the dynamic performance of MR
dampers can be fulfilled relies upon the effectiveness of the damper model. This
chapter first addresses the stochastic optimal control of structures with MR dampers
by virtue of bound Hrovat algorithm. In conjunction with the provided MR damper,
the dynamic performance and parameterized models of MR dampers under input
current, loading frequency, and amplitude of sine displacement are then illustrated.
The parameter identification of MR damper model and the influence of input current
on the microstructured behaviors of MR suspensions are investigated.

Molecular dynamics simulation reveals the mechanism of microstructured behav-
iors of MR suspensions in MR dampers, which provides a new perspective for the
control law optimization and performance enhancement of MR dampers: using the
numerical simulation and experimental analysis to explore the quantitative relation-
ship between suspension structures of MR fluids, input current and material param-
eters of MR fluids such as dynamic viscosity and yield stress, and to reveal the
physical essence of influence of eddy current effect of MR fluids and of nonlinear
magnetization of MR suspensions upon the performance of MR dampers. This mul-
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tiscale scheme allows for a high-efficient regulation of MR dampers so as to attain
the desired performance of controlled structures.

For illustrative purposes, the stochastic optimal control of MR damping system
subjected to random seismic ground motion is carried out. As the control criterion
of tracing the reference active optimal control force, the parameter design of MR
dampers and identification of input current are performed. Numerical results reveal
that the appropriately designed semiactive controller can achieve almost the same
effectiveness as the active controller; the dynamic performance of MR dampers,
meanwhile, exhibits similarities to the Bouc–Wen hysteretic model with the strength
deterioration, the stiffness degradation, and the pinch effect.

References

Asai T, Chang CM, Spencer BF Jr (2015) Real-time hybrid simulation of a smart base-isolated
building. J Eng Mech 141(3):04014128-1-10

Boada MJL, Calvo JA, Boada BL, Diaz V (2011) Modeling of a magnetorheological damper by
recursive lazy learning. Int J Non-Linear Mech 46(3):479–485

Bouc R (1967) Forced vibration of mechanical system with hysteresis. In: Proceedings of 4th
conference on nonlinear oscillations, Prague, Czechoslovakia

Carlson JD, JollyMR (2000)MRfluid, foamand elastomer devices.Mechatronics 10(4–5):555–569
Carrion JE, Spencer BF Jr, Phill BM (2009) Real-time hybrid simulation for structural control
performance assessment. Earthq Eng Eng Vibr 8(4):481–492

Casciati F, Magonette G, Marazzi F (2006) The technology of semiactive devices and applications
in vibration mitigation. John Wiley & Sons, Ltd

Cha YJ, Zhang JQ, Agrawal AK, Dong BP, Friedman A, Dyke SJ, Ricles J (2013) Comparative
studies of semiactive control strategies for MR dampers: pure simulation and real-time hybrid
tests. J Struct Eng 139(7):1237–1248

Chae Y, Ricles JM, Sause R (2013) Modeling of a large-scale magneto-rheological damper for
seismic hazard mitigation. Part II: semi-active mode. Earthq Eng Struct Dyn 42(5):687–703

Chang CC, Roschke P (1998) Neural network modeling of a magnetorheological damper. J Intell
Mater Syst Struct 9(9):755–764

Charalampakis AE, Koumousis VK (2008) Identification of Bouc-Wen hysteretic systems by a
hybrid evolutionary algorithm. J Sound Vib 314(3–5):571–585

Chu SY, Soong TT, Reinhorn AM (2005) Active, hybrid and semi-active structural control. Wiley,
New York

Dan M, Ishizawa Y, Tanaka S, Nakahara S, Wakayama S, Kohiyama M (2015) Vibration character-
istics change of a base-isolated building with semi-active dampers before, during, and after the
2011 Great East Japan earthquake. Earthq Struct 8(4):889–913

Dyke SJ, Spencer BF Jr, Sain MK, Carlson JD (1996) Modeling and control of magnetorheological
dampers for seismic response reduction. Smart Mater Struct 5:565–575

Dyke SJ, Spencer BF Jr, Sain MK, Carlson JD (1998) An experimental study of MR dampers for
seismic protection. Smart Mater Struct 7(5):693–703

Hogsberg J (2011) The role of negative stiffness in semi-active control of magneto-rheological
dampers. Struct Control Health Monit 18(3):289–304

Hrovat D, Barak P, Rabins M (1983) Semi-active versus passive or active tuned mass dampers for
structural control. ASCE J Eng Mech 109(3):691–705

Ikhouane F, Rodellar J (2005) On the hysteretic Bouc-Wen model. Nonlinear Dyn 42(1):63–78
Imaduddin F, Mazlan SA, Zamzuri H (2013) A design and modelling review of rotary magnetorhe-
ological damper. Mater Des 51:575–591



References 265

Jansen LM, Dyke SJ (2000) Semi-active control strategies for MR dampers comparative study.
ASCE J Eng Mech 126(8):795–803

Jung HJ, Jang DD, Lee HJ, Lee IW, Cho SW (2010) Feasibility test of adaptive passive control
system using MR fluid damper with electromagnetic induction part. J EngMech 136(2):254–259

Li J, Chen JB, Fan WL (2007) The equivalent extreme-value event and evaluation of the structural
system reliability. Struct Saf 29(2):112–131

Liu WK, Karpov EG, Park HS (2006) Nano mechanics and materials: theory, multiscale methods
and applications. Wiley, New York

Metered H, Bonello P, Oyadiji SO (2010) The experimental identification of magnetorheological
dampers and evaluation of their controllers. Mech Syst Signal Process 24(4):976–994

Nagarajaiah S, Narasimhan S (2006) Smart base-isolated benchmark building. Part II: phase I
sample controllers for linear isolation systems. Struct Control Health Monit 13(2–3):589–604

NiYQ,ChenY,Ko JM,CaoDQ (2002)Neuro-control of cable vibration using semi-activemagneto-
rheological dampers. Eng Struct 24:295–307

Patten WN, Mo C, Kuehn J, Lee J (1998) A primer on design of semi-active vibration absorbers
(SAVA). ASCE J Eng Mech 124(1):61–68

Peng YB, Li J (2011) Multiscale analysis of stochastic fluctuation of dynamic yield of magnetorhe-
ological fluids. Int J Multiscale Comput Eng 9(2):175–191

PengYB,GhanemR, Li J (2012) Investigations ofmicrostructured behaviors ofmagnetorheological
suspensions. J Intell Mater Syst Struct 23(12):1349–1368

Peng YB, Yang JG, Li J (2017) Seismic risk based stochastic optimal control of structures using
magnetorheological dampers. Nat Hazards Rev ASCE 18(1):UNSP B4016001

Peng YB, Yang JG, Li J (2018) Parameter identification of modified Bouc-Wen model and analysis
of size effect of magnetorheological dampers. J Intell Mater Syst Struct 29(7):1464–1480

Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys
117:1–19. lammps.sandia.gov

Soong TT (1990) Active structural control: theory and practice. Longman Scientific & Technical,
New York

Spencer BF Jr, Sain MK, Carlson JD (1997) Phenomenological model of magnetorheological
damper. ASCE J Eng Mech 123(3):230–238

Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A computer simulation method for
the calculation of equilibrium constrains for the formation of physical cluster of molecules:
application to small water clusters. J Chem Phys 76(1):637–649

Tsang HH, Su RKL, Chandler AM (2006) Simplified inverse dynamics models for MR fluid
dampers. Eng Struct 28(3):327–341

Tse T, Chang CC (2004) Shear-mode rotary magnetorheological damper for small-scale structural
control experiments. J Struct Eng 130(6):904–911

Verlet L (1967) Computer “experiments” on classical fluids I: thermodynamical properties of
Lennard-Jones molecules. Phys Rev 159(1):98–103

Wang YM, Dyke S (2013) Modal-based LQG for smart base isolation system design in seismic
response control. Struct Control Health Monit 20(5):753–768

Wen YK (1976) Method for random vibration of hysteretic systems. ASCE J Eng Mech Div
102(2):249–263

XuZD,GuoYQ (2008) Neuro-fuzzy control strategy for earthquake-excited nonlinearmagnetorhe-
ological structures. Soil Dyn Earthq Eng 28(9):717–727

Xu ZD, Jia DH, Zhang XC (2012) Performance tests andmathematical model considering magnetic
saturation for magnetorheological damper. J Intell Mater Syst Struct 23(12):1331–1349

Yang G (2001) Large-scale magnetorheological fluid damper for vibration mitigation: modeling,
testing and control. PhD Thesis, University of Notre Dame, USA

Yang G, Spencer BF Jr, Carlson JD, Sain MK (2002) Large-scale MR fluid dampers: modeling and
dynamic performance considerations. Eng Struct 24(3):309–323

Yang MG, Li CY, Chen ZQ (2013) A new simple non-linear hysteretic model for MR damper and
verification of seismic response reduction experiment. Eng Struct 52:434–445

http://lammps.sandia.gov


266 8 Stochastic Optimal Control of Seismic Structures with MR Dampers

Ying ZG, Ni YQ, Ko JM (2009) A semi-active stochastic optimal control strategy for nonlinear
structural systems with MR dampers. Smart Struct Syst 5(1):69–79

Yoshioka H, Ramallo JC, Spencer BF Jr (2002) “Smart” base isolation strategies employing mag-
netorheological dampers. J Eng Mech 128(5):540–551

Zhong WX (2004) On precise integration method. J Comput Appl Math 163:59–78



Chapter 9
Experimental Studies of Stochastic
Optimal Control

9.1 Preliminary Remarks

Experimental studies provide a validating means for revealing the effectiveness of
control systems upon structures. Utilizing the shaking table to carry out the sim-
ulation of seismic response aims at exploring the damage mechanism and seismic
capacity of engineering structures. As the practical demand and the sustaining devel-
opment of shaking-table test techniques, the motivation of shaking-table tests has
been transferred to the validations of structural control and soil-structure interaction
from the traditional investigations on seismic capacity of structures and facilities for
nearly 30 years. For instance, Chung and his colleagues performed the shaking-table
test on the Clough testing model attached with active control systems (Chung et al.
1989). Spencer and Dyke carried out the shaking-table tests of structures with active
mass dampers (AMD) and active tendon systems (ATS), respectively, whereby two
scale-reduced structural models used in the tests were introduced to the benchmark
problem of structural control (Dyke et al. 1996; Spencer et al. 1998a, b). For more
than 10 years, the hybrid simulation technique and the comprehensive simulation
method have received extensive attention in the experimental studies of structural
control (Wu et al. 2007; Carrion et al. 2009; Asai et al. 2015).

It is worth noting that the previous shaking-table tests of structural control almost
employ one or several typical recorded ground motions with different peak ground
accelerations as the base excitation (Dyke et al. 1996; Nagarajaiah et al. 2000; Kim
et al. 2006; Lee et al. 2008; Jung et al. 2009). The effectiveness of vibrationmitigation
of seismic structures is mostly represented by the reduction of peak responses. The
uncertainties, however, inherent in the occurrence and propagation of earthquakes are
not taken into account. It has been proved that considering the randomness of dynamic
actions upon engineering structures is one of critical challenges for structural control.
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For this reason, this chapter devotes to the shaking-table test of structural control
considering the random seismic groundmotions for the first time, aiming at verifying
the applicability and effectiveness of the presented theory and methods of stochastic
optimal control of structures.

9.2 Design of Test Model

9.2.1 Dynamics of Test Model

The structural model used for the shaking-table test is a six-story and single-bay
steel structure with a geometrically similar constant 1:5 to the prototype structure.
Overall dimensions of the model are 1.6 m × 1.6 m in plane, 1.0 m for the height
of first story, and 0.8 m for the height of other stories. The total mass is 10.0 tons
consisting of the self-weight of 2.8 tons and the artificial mass of 7.2 tons distributed
uniformly on the six stories that consider the structural fitment and story live loads
of the prototype structure. This treatment allows for a similar dynamic behavior to
the prototype structure. The material of columns and beams both employs Q345
channel steel of which the nominal yield strength is 345 MPa. The channel steel for
the columns and for the frame and non-frame beams is M8 with height 80 mm, width
43 mm, and height 5.0 mm and M6.3 with height 63 mm, width 40 mm, and height
4.8 mm, respectively. The material of stories employs Q235 steel plate with height
10 mm, of which the nominal yield strength is 235 MPa.

The model-to-prototype ratios on time, mass, and length are 0.4472, 0.04, and
0.2, respectively. The dynamic similarity of physical quantities between the model
and the prototype are shown in Table 9.1.

Using the commercial software ANSYS, the modeling and analysis of test struc-
ture are carried out. As shown in Fig. 9.1, the finite element model includes 3000
elements, involving the column and beam elements BEAM188, the story elements
SHELL63, and the additional mass elements MASS21. The former six-order natu-
ral frequencies in unit Hz are denoted by 1.46, 4.62, 8.38, 12.46, 16.79, and 20.25,
respectively. It is shown in the modal analysis that the lateral deformation of the
model under the one-dimensional horizontal excitation gives rise to a shear-type
structure along the vibrational direction, since the in-plane stiffness of stories is far
larger than the column stiffness.

9.2.2 Representative Seismic Ground Motions

Physically motivated random seismic ground motion model is employed to generate
the representative seismic ground motions used for the shaking-table test (Peng et al.
2014). In this model, four basic random variables are involved, i.e., the amplitude
of seismic ground motion at the bedrock, the fundamental frequency of local site,
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Table 9.1 Dynamic similarity of physical quantities between model and prototype

Classes Physical
quantities

Physical
relationships

Similarity ratios Remarks

Material
property

Stress σ Sσ = SE 1

Strain ε 1 1

Elastic modulus
E

SE 1 Model control

Poisson ratio υ 1 1

Density ρ Sρ = SE/Sl 5 Model control

Geometrical
property

Length l Sl 0.2 Model control

Linear
displacement x

Sx = Sl 0.2

Angular
displacement θ

1 1

Area A SA = S2l
0.04

Moment of
inertia I

SI = S4l
0.0016

Loadings Concentrated
load P

SP = SE S2l
0.04

Linear load ω Sω = SE Sl 0.2

Area load q Sq = SE 1

Moment of force
M

SM = SE S3l
0.008

Dynamic
property

Mass m Sm = Sρ S3l
0.04

Stiffness k Sk = SE Sl 0.2

Damping c Sc = Sm/St 0.0894

Time t , Period T St = ST =
(Sm/Sk)1/2

0.4472 Loading control

Velocity ẋ Sẋ = Sx/St 0.4472

Acceleration ẍ Sẍ = Sx/S2t =
Sẍg

1 Loading control

equivalent damping ratio of local site, and the initial phase angle. In view of the
Chinese Code for Seismic Design of Building Structures (GB50011-2010) and the
engineering background of the prototype structure, the local site belongs to site class
II, the seismic fortification intensity is 7, and the Fourier amplitude of seismic ground
motion at the bedrock is set as a deterministic value through introducing the condi-
tional seismic ground motion, i.e., the earthquake occurrence period 475 years, the
peak ground acceleration of seismic groundmotions 0.1g. The associated parameters
with the random seismic ground motion model are shown in Table 9.2.
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Fig. 9.1 Finite element
model of test structure

Table 9.2 Parameters of physically motivated random seismic ground motion model

Random
variables

Fourier
amplitude

Circular
frequency

Damping ratio Initial phase
angle

Mean 0.25 (m s−2) 20 (rad s−1) 0.7 π

Coefficient of
variation

0 0.4 0.3 1.2

According to the model parameters, 120 representative seismic ground motions
and their assigned probabilities are derived by means of the tangent spheres method
(Chen and Li 2008). For illustrative purposes, the seismic ground motion with mean
parameters is denoted as the mean-parameterized seismic ground motion. All these
seismic ground motions have the same sampling frequency of 50 Hz and the same
duration of 20.48 s.

In order to validate that the testmodel always remains in a linear elastic state during
the whole experiment so that similar initial conditions of structure can be guaranteed
for each case of seismic ground motions, the peak ground accelerations of repre-
sentative ground motions need to be regulated. According to the results of dynamic
analysis of test model by ANSYS, it is found that when the mean-parameterized seis-
mic ground motion with peak ground acceleration 2.15 m/s2 (0.22g) serves as the
input, the peak of the bottom interstory drift is 12.0mm, and the vonMises stress at the
bottom column attains 307MPawhich approaches to the design strength of the Q345
steel, i.e., 310 MPa. Meanwhile, the response of test model needs to be moderate so
that the seismic mitigation of the test model with control is significant. Under these
conditions, the peak ground accelerations of the 120 representative seismic ground
motions are regulated, of which theminimum, themaximum, themean, and the coef-
ficient of variation are set as 0.39 m/s2, 2.30 m/s2, 1.09 m/s2, and 0.256, respectively.



9.2 Design of Test Model 271

(a) seismic ground motion W067 (b) seismic ground motion W105

(c) mean-parameterized seismic ground motion W000

Fig. 9.2 Time histories of representative and mean-parameterized seismic ground motions and
their Fourier amplitude spectra

The peak ground acceleration of the mean-parameterized seismic ground motion is
0.98 m/s2 (0.1g), which is in accordance with the basic design seismic acceleration
of seismic fortification intensity 7 provided by the Chinese Code for Seismic Design
of Building Structures (GB50011-2010).

Figure 9.2 shows the timehistories of two representatives, themean-parameterized
seismic ground motions, and their Fourier amplitude spectra. The two representative
seismic ground motions are labeled as W067 and W105, respectively. The mean-
parameterized seismic ground motion is labeled as W000. One might recognize that
the time histories and Fourier amplitude spectra are significantly different from each
other, which is just the consideration of randomness inherent in seismic ground
motions.
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9.2.3 Design Parameters of Viscous Dampers

Owing to the effective energy dissipation and the excellent durability, the vis-
cous dampers have been widely used in the vibration control of engineering struc-
tures (Symans and Constantinou 1998; McNamara and Taylor 2003). Three viscous
dampers, labeled VD-A, VD-B, and VD-C, respectively, are employed as the control
devices for the present shaking-table test; see Fig. 9.3. According to the results of
finite element analysis, these dampers are designed as the same specification: a max-
imum output 10 kN, a stroke range ±50 mm, a length 670 mm in their equilibrium
position, and the diameter of cylinder 85 mm. The hysteretic curves of the three
viscous dampers under the axial loading of sine displacement are shown in Fig. 9.4.
It is seen that these curves give rise to be pretty plump, indicating that the viscous
dampers exhibit a good energy dissipation behavior. Table 9.3 shows the testing data
of the dampers under the axial loading of sine displacement.

It is seen from the table that under the same loading condition, the outputs of
the three viscous dampers are slightly different. With the concern of the specimen
difference and velocity relevance, the design parameters of the viscous damper, in
conjunction with its dynamic model, are derived through an optimization analysis
(Yun et al. 2008): FD = cD V α , where FD denotes the damper force; α denotes the
velocity exponent, which is set as 0.3; cD denotes the damping coefficient, which is
set as 20 kN/(m/s)0.3; and V denotes the piston velocity. Figure 9.5 shows the testing
data and design curve of the viscous dampers.

Fig. 9.3 Photo of viscous
dampers VD-A, VD-B, and
VD-C VD-A

VD-B

VD-C

Fig. 9.4 Hysteretic curves
of three viscous dampers
under axial loading of sine
displacement
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Table 9.3 Testing data of viscous dampers under axial loading of sine displacement

Dampers Sine displacement Vmax

(mm/s)
FD,act

(kN)
FD,des

(kN)
(FD,act −
FD,des)/FD,des

(%)

On
average
(%)

Frequency
(Hz)

Amplitude
(mm)

VD-A 0.4 16.56 41.63 8.83 7.71 14.58 6.3

0.4 24.49 61.56 9.44 8.67 8.93

0.8 16.61 83.50 9.36 9.50 −1.43

1.0 17.86 112.23 10.71 10.38 3.21

VD-B 0.4 16.60 41.73 9.05 7.71 17.35 10.6

0.8 16.12 81.04 10.32 9.41 9.66

1.0 17.88 112.36 10.89 10.38 4.91

VD-C 0.4 16.60 41.73 8.77 7.71 13.72 6.9

0.8 18.09 90.94 10.21 9.74 4.80

1.0 17.84 112.11 10.59 10.37 2.09

Vmax denotes the maximum velocity; FD,act denotes the actual damper force; FD,des denotes the design damper
force

Fig. 9.5 Testing data and
design curve of viscous
dampers

9.3 Experimental Layout and Case Verification

9.3.1 Experimental Layout

The shaking-table test is carried out on the platform provided by the State Key
Laboratory of Disaster Reduction in Civil Engineering at Tongji University, China.
The experimental facility includes a 4.0m× 4.0mMTS shaking tablewith a capacity
of 2.5 × 104 kg. The motion of the shaking table involves X, Y, and Z which are the
three spatial dimensions and six degrees of freedoms. In the case of bearing 1.5 ×
104 kg specimen, the maximum accelerations exerted on the horizontal direction of
the table, X and Y, are up to 1.2g and 0.8g, respectively. The schematic and photo of
the test structural model are shown in Figs. 9.6 and 9.7, respectively.
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Fig. 9.6 Schematic of test structural model

In the shaking-table test, the data are recorded by an automatic data acquisition
system. The piezoelectric accelerometers, displacement transducers, and resistance
strain gages are employed to measure the dynamic responses of the structural model
during the shaking-table test. The displacement transducers and the piezoelectric
accelerometers are deployed both along two horizontal directions, i.e., X and Y.
X denotes the main direction of table motion, which is the input direction of the
one-dimensional seismic ground motion. The distribution of monitoring points with
displacement transducers and piezoelectric accelerometers is shown in Fig. 9.8. Dis-
placement and accelerationmeasurements involve 10monitoringpoints, respectively.
Along the direction of table motion, a displacement transducer and a piezoelectric
accelerometer are both deployed on the shaking table and each story. Perpendicular to
direction of table motion, a displacement transducer and a piezoelectric accelerom-
eter are both placed on the shaking table, the third and sixth stories. The monitoring
points along the direction X are used to assess the dynamic responses of structural
model subjected to the one-dimensional seismic ground motion, while the monitor-
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VD-B

VD-C

VD-A

Fig. 9.7 Photo of test structural model

ing points along the direction Y are used to check whether the model exhibits an
obvious vibration at the direction perpendicular to direction of table motion.

Besides, resistance strain gages are used to measure the dynamic strain at the
positions with larger stress such as at the bottom column and the joint between beams
and columns, validating whether the state of the structural model under seismic
ground motions remains in the linear elastic stage. Totally eight resistance strain
gages are used and their layout is shown in Fig. 9.9.

It has been proved in shaking-table tests that the D/A transfer of loading cell
during the test loading tends to cause an error that might result in an inconsistency
between the real input of seismic ground motion on the shaking table and the design
of seismic ground motion. In order to validate the accuracy of loading cell of the
shaking table, a representative seismic ground motion is tested. Figure 9.10 shows
the data of the design and the recorded seismic ground motion at the shaking table
subjected to the representative seismic ground acceleration W056. It is seen that
the design matches well with the recorded on both the time series and the Fourier
amplitude spectrum, revealing that the loading cell of shaking table exhibits a good
accuracy.
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Fig. 9.8 Setup of
displacement transducers
and piezoelectric
accelerometers on test model

(a) along direction of table motion (X )

(b) perpendicular direction of table motion (Y )

9.3.2 Case Verification

The cases of shaking-table test are shown in Table 9.4. Among these cases, Case
1 and Case 243 refer to the mean-parameterized seismic ground acceleration, i.e.,
W000, with the peak ground acceleration 0.1g. These two cases are considered for
identifying the parameters of the mass-lumped system so as to perform the numerical
analysis of test structural model and the optimization of damper placement. Also,
the measure on the two cases helps to validate the linear elastic state of the structural
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Fig. 9.9 Layout of
resistance strain gages

Fig. 9.10 Design and
recorded ground motions of
shaking table subjected to
W056
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Table 9.4 Cases of shaking-table tests on structural control

Cases Seismic input Peak ground acceleration (m/s2) Remark

1 W000 1.00 Without control

2–121 W001-W120 Minimum 0.39, Maximum 2.30
Mean 1.09, Std. 0.28

Passive control

122 W000 1.00 Passive control

123–242 W001-W120 Minimum 0.39, Maximum 2.30
Mean 1.09, Std. 0.28

Without control

243 W000 1.00 Without control

Fig. 9.11 Amplitude–frequency
curve of story accelerations
in Case 1

model during the entire shaking-table test. Cases 2–12 and Case 122 are defined as
the tests of controlled structures, and the viscous dampers are all deployed at the low
three interstories. Cases 123–242 are defined as uncontrolled structures which serve
as a reference for the seismic mitigation of structures with viscous dampers.

Considering that the time similarity ratio between the test and prototype structures
is 0.4472, the sampling interval of the seismic acceleration at the shaking table needs
to change to 0.0089 s from the original 0.02 s. Accordingly, the time length of seismic
acceleration process changes to 9.16 s from the original 20.48 s.

Themodal frequencies of the mass-lumped system can be derived from the ampli-
tude–frequency curve of story acceleration. For illustrative purposes, the acceleration
data of the structural model measured at Cases 1 and 243 is thus utilized to carry
out the parameter identification of test model. Figure 9.11 shows the amplitude–fre-
quency curve of the story accelerations in Case 1. One might recognize that the
frequencies corresponding to the peak of amplitude–frequency curve are related to
the modal frequencies. The former six-order modal frequencies of the structural
model are shown in Table 9.5. It is seen that the modal frequencies of the test model
change slightly during the entire shaking-table test. For instance, the fundamental
period of the structure is 1.460 Hz at Case 1 and 1.453 Hz at Case 243, revealing
that the structural fundamental period reduces 0.48% after the shaking-table test.
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Table 9.5 Identified former six-order modal frequencies of structural model

Cases Modal frequencies (Hz)

1st-order 2nd-order 3rd-order 4th-order 5th-order 6th-order

1 1.460 4.624 8.365 12.452 16.803 20.277

243 1.453 4.605 8.338 12.385 16.745 20.184

Table 9.6 Identified model parameters of structural model

Parameters Matrices

Mass matrix
M (kg)

1650.0 0.0 0.0 0.0 0.0 0.0

0.0 1640.0 0.0 0.0 0.0 0.0

0.0 0.0 1570.0 0.0 0.0 0.0

0.0 0.0 0.0 1560.0 0.0 0.0

0.0 0.0 0.0 0.0 1560.0 0.0

0.0 0.0 0.0 0.0 0.0 1570.0

Stiffness
matrix K
(N/m)

8,015,844.2 −6,684,376.6 1,453,296.1 −158,645.8 91,651.8 40,338.2

−6,684,376.6 12,082,761.6 −7,307,937.6 1,349,673.9 −248,284.3 56,120.5

1,453,296.1 −7,307,937.6 11,821,305.5 −6,988,277.6 1,390,059.2 −224,321.8

−158,645.8 1,349,673.9 −6,988,277.6 11,630,474.0 −7,012,874.1 1,155,521.9

91,651.8 −248,284.3 1,390,059.2 −7,012,874.1 11,286,009.9 −5,454,943.7

40,338.2 56,120.5 −224,321.8 1,155,521.9 −5,454,943.7 4,393,435.1

Damping
matrix C
(N/(m/s))

1018.1 −350.2 76.1 −8.3 4.8 2.1

−350.2 1227.5 −382.8 70.7 −13.0 2.9

76.1 −382.8 1188.4 −366.1 72.8 −11.8

−8.3 70.7 −366.1 1174.8 −367.4 60.5

4.8 −13.0 72.8 −367.4 1156.8 −285.8

2.1 2.9 −11.8 60.5 −285.8 799.3

Meanwhile, the first three modal frequencies almost remain unchanged. Therefore,
the test model remains the linear elastic state during the shaking-table test.

According to the identified results of the modal frequencies and shapes, one can
readily attain the model parameters of the mass-lumped system. The mass matrix is
calculated straightforwardly from the sum of story self-weight of the test model and
the additional mass. The stiffness matrix is then given by

K = [�T]−1�[�]−1 (9.3.1)

where K denotes the stiffness matrix; � denotes the modal matrix, i.e., the nor-
malized modal shape with respect to mass matrix; � denotes the diagonal matrix
with elements ω2

i ; and ωi denotes the circular frequency of the ith mode. Besides,
the structural damping is considered as the Rayleigh damping. The identified model
parameters are shown in Table 9.6.
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Fig. 9.12 Comparison of
structural responses between
shaking-table test and
dynamic analysis under Case
122

(a) bottom interstory drift

(b) top story acceleration

The model parameters are verified by virtue of the experimental data and the
numerical simulation. Figures 9.12 and 9.13 show the structural responses between
the shaking-table test and the dynamic analysis under Cases 122 and 241, respec-
tively. It is ready to see that themass-lumped systemwithmodel parameters identified
from the experimental data is reliable to reveal the dynamics of the test model.

Using the mass-lumped system, the optimization of viscous damper deployment
in the structural space under the random seismic ground motion is carried out. In the
framework of physically based stochastic optimal control, the generalized optimal
control policy is applied. The optimization of viscous damper deployments is carried
out as the probabilistic criterion onminimizing themean of equivalent extreme values
of interstory drifts, which is given by

I ∗
D,i = argmin

ID,i

{J } = argmin
ID,i

{
E[X̃(�)]

∣∣∣
{∑

i

ID,i = ND

}}
, i = 1, 2, . . . , n

(9.3.2)
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Fig. 9.13 Comparison of
structural responses between
shaking-table test and
dynamic analysis under Case
241

(a) bottom interstory drift

(b) top story acceleration

where X̃(�) = max
t

[max
i

|Xi (�, t)|], Xi (�, t) denotes the interstory drift of the ith

story; ID,i denotes an indicative function representing that there is a damper, i.e.,
ID,i = 1 or not, i.e., ID,i = 0 in the interstory drift of the ith story; and ND denotes
the total number of viscous dampers that needs to be placed.

Numerical results reveal that the preferable placement of the three dampers is
the low three interstories which can gain the best seismic mitigation. The structural
model with the viscous dampers is shown in Fig. 9.7.
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9.4 Experimental Analysis

9.4.1 Samples and Ensemble

The dynamic responses of the structural model with and without controls under three
representative seismic ground motions are shown in Figs. 9.14, 9.15 and 9.16. The
seismic mitigation ratio of the root-mean-square responses of structures is shown in
Table 9.7.

It is seen that under different representative seismic ground motions, the seismic
mitigation ratio of structural responses changes significantly even in the case of the
same damper deployment. When the representative seismic ground motion W067 is
employed as the input, the bottom interstory drift gains a significant reduction while
the top story acceleration has no such improvement.When the representative seismic
groundmotionW105 is employed as the input, the top story acceleration gives rise to
be enlarged although the bottom interstory drift gains a reduction. When the mean-

Fig. 9.14 Responses of
structural model with and
without controls under
seismic ground motion
W067

(a) bottom interstory drift

(b) top story acceleration
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Fig. 9.15 Responses of
structural model with and
without controls under
seismic ground motion
W105

(a) bottom interstory drift

(b) top story acceleration

parameterized seismic ground motion W000 is employed as the input, both the top
story acceleration and the bottom interstory drift gain a better improvement. It is thus
remarked that the randomness inherent in the seismic ground motion indeed poses
a significant influence upon the control effectiveness of viscous dampers. In fact,
the probabilistic criterion used in the deployment optimization of viscous dampers
exhibits a global trade-off; thereby the control effectiveness of structures is the most
modest as to the ensemble of seismic ground motions.

Figures 9.17 and 9.18 show the mean and standard deviation of the root-mean-
square interstory drift and the root-mean-square story acceleration along story level,
respectively. The relevant seismic mitigation ratios are shown in Table 9.8. It is seen
that the structural performance gains a significant improvement after the viscous
dampers are deployed. Therefore, the optimally designed control system considering
the randomness inherent in external excitation exhibits a robustness that prevents the
structure from potential seismic hazards in the future. The stochastic optimal control
of structures involves optimization and design with respect to control parameters, of
which the objective can be readily implemented.
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Fig. 9.16 Response of
structural model with and
without controls under
mean-parameterized seismic
ground motion W000

(a) bottom interstory drift

(b) top story acceleration

Table 9.7 Seismic mitigation ratio of root-mean-square responses of structural model

Structural responses Seismic ground
motion

Root-mean-square responses

Uncontrolled Controlled Effectivenessa

Bottom interstory drift
(mm)

W067 3.22 0.47 −85.42%

W105 2.21 0.63 −71.48%

W000 1.95 0.48 −75.38%

Top story acceleration
(m/s2)

W067 0.75 0.68 −0.10%

W105 0.57 0.80 40.79%

W000 0.69 0.59 −14.49%

aEffectiveness is defined as (Con. − Unc.)/Unc.
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Fig. 9.17 Mean and
standard deviation of
root-mean-square interstory
drift along story level

(a) mean

(b) standard deviation

Onemight recognize as well fromTables 9.7 and 9.8 that nomatter on the samples
or on the ensembles, the control effectiveness of interstory drift is pretty better than
that of story acceleration. It owes to the fact that the optimization criterion of damper
deployment used in this study is minimizing the mean of equivalent extreme values
of interstory drifts. In fact, the effectiveness of structural control highly relies upon
the physical meaning of the design criterion.

The statistical moments of root-mean-square interstory shear force varying along
story level are shown in Fig. 9.19. It is seen that the interstory shear force has received
extensive reduction, especially at the low stories, indicating a more smooth structural
performance after the control. Table 9.9 shows the statistical moments of root-mean-
square stress derived from the strain data at the measure points. It is seen that the
seismic mitigation ratio of the stress attains to around 80%, which is in consistently
with the control effectiveness of interstory drift of structures.
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Fig. 9.18 Mean and
standard deviation of
root-mean-square story
acceleration along story level

(a) mean

(b) standard deviation

According to the testing data of interstory drifts, the working performance of the
viscous dampers for seismic mitigation of structures can be analyzed. For illustrative
purposes, the testing data under the representative seismic ground motion W105 is
used. Figure 9.20 shows the time history of damper force, relations between damper
force, damper displacement, and velocity of the damper VD-A at the bottom inter-
story. It is seen that the nonlinear damper exhibits a good working performance,
which arises an excellent energy dissipation capacity even in the case of small inter-
story velocities.Moreover, the other two viscous dampers deployed at the second and
third interstories, i.e., VD-B and VD-C, exhibit a good working performance as well.
Besides, the time histories of damper forces of the three dampers have similarities
since the structural model behaves mostly in shear-type vibration as the first mode.
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Table 9.8 Mean and standard deviation of root-mean-square responses of structural model

RMS responses Story number

1 2 3 4 5 6

Interstory
drift
(mm)

Mn Unc. 2.74 1.76 1.43 1.19 0.89 0.75

Con. 0.54 0.39 0.43 0.64 0.47 0.38

Eff.a 80.3% 77.8% 69.9% 46.2% 47.2% 49.3%

Std. d Unc. 0.38 0.22 0.18 0.15 0.11 0.12

Con. 0.05 0.03 0.04 0.06 0.05 0.04

Eff. 86.8% 86.4% 77.8% 60.0% 54.5% 66.7%

Story
accelera-
tion
(m/s2)

Mn Unc. 0.39 0.43 0.47 0.52 0.56 0.65

Con. 0.49 0.53 0.56 0.53 0.55 0.69

Eff. −25.6% −23.3% −19.1% −1.9% 1.8% −6.2%

Std. d Unc. 0.06 0.05 0.06 0.07 0.06 0.08

Con. 0.07 0.08 0.08 0.05 0.05 0.07

Eff. −16.7% −60.0% −33.3% 28.6% 16.7% 12.5%

aEffectiveness is defined as (Unc. − Con.)/Unc.

9.4.2 Regulation of Probability Density

In order to reveal the control effectiveness in the sense of probability density, the
testing data of structural dynamic responses at typical instants of time is first plotted
into statistical histogram and the probability density is then estimated using Gaussian
kernel density estimation (GKDE) (Bowman and Azzalini 1997). Figures 9.21 and
9.22 show the statistical histograms and the estimated probability density curves of
the bottom interstory drift, at typical instants of time 3 s and 8 s, respectively, of the
structural model with and without controls.

It is seen that the probability densities estimated by the GKDE have a sound
consistency with the statistical histograms. Comparing the probability densities at
same instants of time, the distribution range of the bottom interstory drift of the
controlled structure is far less than that of the uncontrolled structure. It is thus revealed
that the variation of structural displacement significantly decreases and the structural
safety gains a remarkable enhancement. Therefore, the regulation of probability
density of stochastic responses of structures can be implemented through the logical
definition of probabilistic criterion.

9.5 Reliability Assessment

Interstory drift ratio is a critical index used for the reliability assessment of building
structures. In conjunctionwith the equivalent extreme-value event criterion addressed
in Sect. 2.4.2, the component and system reliabilities of the interstory drift ratio,
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Fig. 9.19 Mean and
standard deviation of
root-mean-square interstory
shear force along story level

(a) mean

(b) standard deviation

under the condition of provided thresholds, of the linear elastic structure with and
without controls can be readily assessed using the testing data of interstory drifts; see
Table 9.10. Definition of the threshold of interstory drift ratio refers to the Chinese
Code for Seismic Design of Building Structures (GB50011-2010). It is seen that the
component and system reliabilities of the interstory drift ratio both gain a significant
enhancement after the viscous dampers are deployed, revealing that the optimization
and design of damper control attains the desired structural performance.

The probability density functions (PDFs) and cumulative density functions
(CDFs) of the equivalent extreme values of interstory drift ratios of structure are
shown in Figs. 9.23 and 9.24, respectively. It is seen that the equivalent extreme
value of interstory drift ratio is much smaller after the viscous dampers are deployed.
Moreover, the distribution range of the interstory drift ratio becomes far narrower,
indicating that the system reliability of the structural model with control gains



9.5 Reliability Assessment 289

Table 9.9 Mean and standard deviation of root-mean-square stress at measure points

Measure points S1 S2 S5 S6 S7

Mean (MPa) Unc. 49.49 27.95 26.91 29.22 42.13

Con. 11.54 6.10 5.56 7.38 9.16

Eff.a 76.68% 78.18% 79.34% 74.74% 78.26%

Standard deviation (MPa) Unc. 6.04 3.39 3.23 3.60 5.12

Con. 1.02 0.55 0.54 0.67 0.77

Eff. 83.11% 83.78% 83.28% 81.39% 84.96%

aEffectiveness is defined as (Unc. − Con.)/Unc.

a significant enhancement, especially in the case that the threshold of interstory drift
ratio is valued in the range from 0.002 to 0.009. For instance, when the threshold is set
as 0.004, the system reliability of the structure approaches to 1.0 after control but is
almost 0.0 before control. It is thus revealed that the system reliability of the structure
can be enhanced significantly with the application of viscous dampers. Besides, one
might recognize that the control gain would be lost if the threshold of interstory drift
ratio was less than 0.002 rad or was more than 0.009. This range, e.g., the thresholds
0.002–0.009 in this case, is the efficient domain for the reinforcement of viscous
dampers. One might understand that a small threshold denotes a high requirement
of the interstory drift ratio; while a large threshold denotes a low requirement of the
interstory drift ratio. Therefore, a minimum design requirement needs to be satisfied
allowing for an effective control gain; and the damper control would be improvident
if a sufficient design was satisfied. According to the performance objective of struc-
tures, the decision-maker can determine whether an additional damper is needed or
not through the trade-off analysis.

9.6 Discussions and Summaries

In this chapter, the experimental studies of stochastic optimal control are carried out.
Complete shaking-table tests on a randomly base-excited framed structure with vis-
cous dampers are involved, where the physically motivated random seismic ground
motion model is employed. The control effectiveness has been verified through a
variety of aspects, including the analysis of samples and ensembles, the regulation
of probability density, and the reliability assessment. The findings are summarized
as follows:

(i) The physically based stochastic optimal control can accommodate the globally
optimal performance of controlled structure: the interstory drift and interstory
shear force become more uniform along story level than those without control.

(ii) The critical step of the stochastic optimal control of structures is the optimiza-
tion and design of parameters and placement of control devices, which just
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Fig. 9.20 Working
performance of viscous
damper VD-A for seismic
mitigation of structural
model

(a) time history of damper force

(b) damper force vs. damper displacement

(c) damper force vs. damper velocity
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(a) without control (b) with control

Fig. 9.21 Statistical histograms and estimated probability density curves of bottom interstory drift
at typical instant of time 3 s

(a) without control (b) with control

Fig. 9.22 Statistical histograms and estimated probability density curves of bottom interstory drift
at typical instant of time 8 s

Table 9.10 Component and system reliabilities of interstory drift ratio of structurewith andwithout
controls

Threshold Cases Component reliabilities System
reliability1st

story
2nd
story

3rd
story

4th
story

5th
story

6th
story

0.004 Unc. 0.0555 0.4029 0.7569 0.8736 1.0000 1.0000 0.0492

Con. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Fig. 9.23 PDFs of
equivalent extreme values of
interstory drift ratios of
structure with and without
controls
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Fig. 9.24 CDFs of
equivalent extreme values of
interstory drift ratios of
structure with and without
controls
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relies upon the probabilistic criterion linking to the performance objective of
structures. The probabilistic criterion of optimizing the deployment of viscous
dampers can attain a good control effectiveness, owing to its specified formu-
lation that is in function of the mean of equivalent extreme values of interstory
drifts.
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Appendix A
Bouc–Wen Model for Hysteretic
Component of Structures

In engineering practice, the structural system can be viewed as an assembling of a set of
components, e.g., beams, columns, etc. These components usually behave in hysteretic
states and suffer from serious damages when the structure experiences hazardous
actions. The logical representation of restoring forces of the component and system is
thus an important step for securing the dynamic behaviors of the structure. Among the
proposed hysteretic models, the Bouc–Wen model is widely used in practice due to its
ready application with equivalent linearization techniques.

The equation of motion of hysteretic structures subjected to random excitation is
given by

M€XðtÞþCt _XðtÞþRtðX; zÞ ¼ FðtÞ ðA:1Þ

where XðtÞ is the n-dimensional column vector denoting structural displacement;M
is the mass matrix; Ct is the instantaneous damping matrix; FðtÞ denotes the
external excitation; RtðX; zÞ is the n-dimensional vector denoting the restoring
force, which is a function of hysteretic displacement z. The restoring force can thus
be modeled as a combination of a linear elastic term and a hysteretic term:

RtðX; zÞ ¼ aK0Xþð1� aÞK0z ðA:2Þ

where a denotes the stiffness ratio between the post-yielding stiffness K1 and the
pre-yielding stiffness K0. It is seen that the restoring force pertinently relies upon
the definition of hysteretic displacement z.

In view of the basic formulation of Osgood–Ramberg model, a model of
restoring force in differential equation of smooth hysteretic displacement was
proposed by Bouc and later modified by Wen (Bouc 1967; Wen 1976), where a
component hysteretic displacement is given by

_z ¼ A _x� b _xj j zj jn�1zþ c _x zj jn ðA:3Þ
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where A; b; c; n denote the parameters of the basic formulation of component
hysteretic displacement.

The basic Bouc–Wen model reveals the hysteretic behaviors of restoring force, which
cannot, however, reveal the strength deterioration, stiffness degradation and pinching
effect that are usually inherent in the restoring force curves of structural components (Ma
et al. 2004). An extended Bouc–Wen model was thus developed and the updated
formulation of component hysteretic displacement is written as (Foliente 1995)

_z ¼ hðzÞ A _x� vðb _xj j zj jn�1zþ c_x zj jnÞ
g

( )
ðA:4Þ

where hðzÞ; v; g are the indices describing the pinching effect, strength deterioration,
and stiffness degradation, respectively. These indexes are all relevant to the non-
linearities evolution of structural systems, and are related to energy dissipation. An
index denoting energy dissipation is defined as

eðtÞ ¼
Z t

0

z _xdt ðA:5Þ

then

vðeÞ ¼ 1þ dve ðA:6aÞ

gðeÞ ¼ 1þ dge ðA:6bÞ

where dv; dg denote the parameters associated with the strength deterioration and
the stiffness degradation.

Further, the index describing the pinching effect is defined as

hðzÞ ¼ 1� f1e
�½zsgnð_xÞ�qzu�2=f22 ðA:7Þ

where zu denotes the extreme value of component:

zu ¼ 1
vðbþ cÞ

� �1
n

ðA:8Þ

and the two indices f1ðeÞ and f2ðeÞ take the forms, respectively, as follows:

f1ðeÞ ¼ fsð1� e�peÞ ðA:9Þ

f2ðeÞ ¼ ðwþ dweÞðkþ f1Þ ðA:10Þ

It is seen that the parameters associated with the pinching effect are q; fs; p;w; dw; k.
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(a) case of nonstationary harmonic wave  (b) case of nonstationary seismic ground motion

Fig. A.1 Typical hysteretic curves of component of structure subjected to nonstationary harmonic
wave and seismic ground motion.

Therefore, a total of 13 parameters are included in the extended Bouc–Wen
model for hysteretic components when the parameters associated with mass,
damping, and stiffness of structures at initial state are provided, i.e., a, A; b; c; n,
dv; dg, q; fs; p;w; dw; k.

For illustrative purposes, an eight-story shear frame with hysteretic components
is investigated. The structural parameters are listed as follows: m1 = m2 =
1.0 � 105 kg, m3 = m4 = 0.9 � 105 kg, m5 = m6 = 0.9 � 105 kg, m7 = m8 =
0.8 � 105 kg; k1 = k2 = 36 kN/mm, k3 = k4 = 32 kN/mm, k5 = k6 = 32 kN/mm,
k7 = k8 = 28 kN/mm; Rayleigh’s damping C ¼ aMþ bK is employed, where
K denotes stiffness matrix, a = 0.01, b = 0.005, whereby the damping ratio of the
first vibrational mode is 1.05%. The extended Bouc–Wen model describing the
behaviors of hysteretic components of the structure is employed. Parameters of the
extended Bouc–Wen model are valued by a ¼ 0:01, A ¼ 1:0, b ¼ 140:0, c ¼ 20:0,
n ¼ 1:0, dv ¼ 0:002, dg ¼ 0:001, q ¼ 0:25, fs ¼ 0:95, p ¼ 2000, w ¼ 0:2,
dw ¼ 0:005, k ¼ 0:1, respectively. Figure A.1 shows the typical hysteretic curves
of a component of the structure subjected to nonstationary harmonic wave and seismic
ground motion, respectively. It is seen that the extended Bouc–Wen model has the
benefit of revealing the strength deterioration, stiffness degradation and pinching effect.
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Appendix B
Relation Between Costate and Excitation
Vectors

If kðtÞ is uncorrelated to FðH,tÞ, the Hamiltonian function Eq. (3.3.7) under the
minimum cost function J1 satisfies

@HðZ�;U�; k�;F;H; tÞ
@F

¼ DTkðtÞ ¼ 0 ðB:1Þ

In view of the location matrix of external excitation D, one has

0
M�1Ds

� �T
k1ðtÞ
k2ðtÞ

� �
¼ 0 ðB:2Þ

Then

M�1Dsk2ðtÞ ¼ 0 ðB:3Þ

where M�1Ds denotes a matrix with full rank. The unique condition satisfying with
Eq. (B.3) is thus k2ðtÞ ¼ 0. However, the costate vector kðtÞ and the state vector
ZðtÞ exhibit a one-to-one mapping relation; while the condition of zero components
in state vector does not come into existence. Moreover, k2ðtÞ ¼ 0 would result in
the collapse of the canonical equation set; see Eqs. (2.2.14) and (2.2.16). Therefore,
the costate vector kðtÞ must have a pertinent relation with the excitation vector
FðH; tÞ in the closed-open-loop control system.

Assuming that the costate vector kðtÞ and the excitation vector FðH; tÞ are
linearly correlated for convenience of input feedback control, i.e.,

kðtÞ ¼ SFðtÞFðH; tÞ ðB:4Þ

where SFðtÞ denotes a predefined matrix, which satisfies
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@H
@F

¼ STFðtÞ½AZðtÞþBUðtÞþDFðH; tÞ� þDTSFðtÞFðH; tÞ ¼ 0 ðB:5Þ

One might recognize that there has SFðtf Þ ¼ 0 when the problem of infinite-time
optimal control is of concern.

According to the Lagrange multiplier formula, the minimum increment of the
cost function is zero, and a terminal condition exists:

kðtf Þ ¼ 1
2
@½ZTðtf ÞPðtf ÞZðtf Þ�

@Zðtf Þ ¼ Pðtf ÞZðtf Þ ðB:6Þ

Therefore, the Lagrange multiplier vector kðtÞ and the state vector ZðtÞ exhibit a
linear relation as follows (Bryson and Ho 1975):

kðtÞ ¼ PðtÞZðtÞ ðB:7Þ

where PðtÞ denotes a predefined matrix, and Pðtf Þ ¼ 0.
Consequently, as to the closed-open-loop control system, the control force UðtÞ

simultaneously by the state and the input feedbacks can be implemented through
building a linear transform between kðtÞ, ZðtÞ and FðH; tÞ:

kðtÞ ¼ PðtÞZðtÞþ SFðtÞFðH; tÞ ðB:8Þ
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Appendix C
Statistical Linearization-Based LQG
Control

As a substitute for Eq. (6.3.1), the equation of motion of the equivalent linear
system is given by

€xðtÞþ 2fx0 _xðtÞþx2
eqxðtÞ ¼ uðtÞþFðH; tÞ; xðt0Þ ¼ _xðt0Þ ¼ 0 ðC:1Þ

where xeq denotes the natural frequency of the equivalent linear system, obtained
by minimizing the expected value of the difference between Eqs. (C.1) and (6.3.1)
in a least square sense, i.e.,

d
dx2

eq
E½fx2

0½xðtÞþ lx3ðtÞ� � x2
eqxðtÞg2� ¼ 0 ðC:2Þ

Then, it yields

x2
eq ¼ x2

0 1þ l
E½x4ðtÞ�
E½x2ðtÞ�

� �
ðC:3Þ

It is seen that xeq depends on the former fourth-order statistical moments of xðtÞ,
the exact evaluation of x2

eq thus requires a knowledge of the probability density function
of xðtÞ. As an approximation to the exact solution, the process might be assumed to
be Gaussian (Roberts and Spanos 1990), and Eq. (C.3) can be simplified as

x2
eq ¼ x2

0 1þ 3lE½x2ðtÞ�� � ðC:4Þ

Here, a decomposition formula has been used for a Gaussian vector g (Kazakov 1965)

E½f ðgÞg� ¼ E½ggT�E½rf ðgÞ� ðC:5Þ

where r denotes the gradient operator defined by
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r¼ @
@g1

; @
@g2

; � � � ; @
@gn

h iT
ðC:6Þ

In the state space, Eq. (C.1) can be written as

_ZðtÞ ¼ AðtÞZðtÞþBuðtÞþDFðH; tÞ ðC:7Þ

where

ZðtÞ ¼ xðtÞ
_xðtÞ

� �
;AðtÞ ¼ 0 1

�x2
eq �2fx0

� �
;B ¼ 0

1

� �
;D ¼ 0

1

� �
ðC:8Þ

A cost function involved in the stochastic linear quadratic regulator problem is
considered (Chen et al. 1998)

JðZ; uÞ ¼ E SðZðtf Þ; tf Þþ 1
2

Ztf
t0

½ZTðtÞQZZðtÞþRUu
2ðtÞ�dt

2
4

3
5 ðC:9Þ

subjected to

dZðtÞ ¼ ½AðtÞZðtÞþBuðtÞ�dtþLdwðtÞ; Zðt0Þ ¼ 0 ðC:10Þ

where L denotes the ð2� 1Þ force influence matrix; wðtÞ denotes a one-dimensional
Brownian motion process, which is modeled by a Gaussian white noise with

E½dwðtÞ� ¼ 0;E½dw2ðtÞ� ¼ 2pS0dt ðC:11Þ

where S0 denotes the spectral intensity factor of random excitation FðH; tÞ. In the
numerical example of Duffing oscillator systems, the spectral intensity factor per-
tains to seismic ground motion, and its value refers to Table 3.2.

The minimization of the cost function Eq. (C.9) results in the Hamilton–Jacobi–
Bellman equation in stochastic scenario; see Eq. (3.5.8). Utilizing the dynamic
programming method, one has

uðtÞ ¼ �R�1
U BTPðtÞZðtÞ ðC:12Þ

where the Riccati matrix PðtÞ is a function of time since it hinges upon AðtÞ of
which xeq is related to E½x2ðtÞ�. However, the response of linearized system remains
as a Gaussian process, and its mean square is a constant, indicating that the Riccati
matrix PðtÞ is still time invariant.

Taking Eq. (C.12) into Eq. (C.1) and using Fourier transform, one has

f½ðx2
eq þK

_Þ � x2� þ ð2fx0 þC
_ÞðixÞgxðxÞ ¼ FðH; tÞ ðC:13Þ

where C
_

;K
_

denote the numerical damping and numerical stiffness provided by the
optimal control force uðtÞ, respectively.
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C
_ ¼ R�1

U ðB1P12 þB2P22Þ; K
_ ¼ R�1

U ðB1P11 þB2P21Þ ðC:14Þ

where Biði ¼ 1; 2Þ denote the elements of control force location vector; Pijði; j ¼
1; 2Þ denote the elements of the Riccati matrix.

According to the Wiener–Khintchine theorem, the mean square displacement
can be deduced as

E½x2ðtÞ� ¼
Z1
�1

S0

½ðx2
eq þK

_Þ � x2�2 þð2fx0 þC
_Þ2x2

dx ðC:15Þ

The close solution of Eq. (C.15) can be attained as a specific rule (Roberts and
Spanos 1990), i.e.,

E½x2ðtÞ� ¼ pS0

ðx2
eq þK

_Þð2fx0 þC
_Þ

ðC:16Þ

Taking into account Eq. (C.4), a single algebraic equation for E½x2ðtÞ� appears

E½x2ðtÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0 þK
_Þ2 þ 12plx2

0S0

ð2fx0 þC
_Þ

r
� ðx2

0 þK
_Þ

6lx2
0

ðC:17Þ

The relation between the state and the control force in frequency domain is

uðxÞ ¼ ½�C
_ðixÞ � K

_ �xðxÞ ðC:18Þ

and the mean square control is deduced as

E½u2ðtÞ� ¼
Z1
�1

ðK_
2
þC

_2
x2ÞS0

½ðx2
0 þK

_Þ � x2�2 þð2fx0 þC
_Þ2x2

dx ðC:19Þ

Likewise, one can readily gain the closed solution of the mean square control force

E½u2ðtÞ� ¼ pS0C
_2

2fx0 þC
_
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0 þK
_Þ2 þ 12plx2

0S0

ð2fx0 þC
_Þ

r
� ðx2

0 þK
_Þ

� �
K
_ 2

6lx2
0

ðC:20Þ
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Appendix D
Equivalent Damping Ratio of Viscously
Damped Structures

The equation of motion of structure attached with viscous dampers as shown in
Fig. D.1 can be written as

M€XðtÞþC _XðtÞþKXðtÞþ fð _XðtÞÞ ¼ FðtÞ ðD:1Þ

where M; C and K are n� n mass, damping, and stiffness matrices, respectively;
fð _XðtÞÞ denotes the damping force provided by viscous dampers; FðtÞ denotes
external excitation.

The component expression of the damping force can be figured out as

fjð _XÞ ¼ cD;j _Xj � _Xj�1

		 		ajsgnð _Xj � _Xj�1Þ � cD;j _Xjþ 1 � _Xj

		 		ajþ 1 sgnð _Xjþ 1 � _XjÞ
ðD:2Þ

where sgnð�Þ denotes the sign of arguments; cD;j denotes damping coefficient; and aj
denotes velocity exponent; see Fig. D.1.

According to the statistical linearization technique, the linearized system of
Eq. (D.1) can be expressed as (Di Paola and Navarra 2009)

M€XðtÞþC _XðtÞþCðS-EÞ _XðtÞþKXðtÞ ¼ FðtÞ ðD:3Þ

where CðS-EÞ denotes the additional equivalent damping matrix, and is assumed to
be Rayleigh’s damping matrix.

The difference between Eqs. (D.1) and (D.3) can be measured by the following
formula:

e ¼ fð _XÞ � CðS-EÞ _X ðD:4Þ

where e denotes the error vector between the original and equivalent damping
forces.
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Minimization of the covariance matrix of the error vector, i.e.,

@E eeT½ �
@CðS-EÞ ¼ 0 ðD:5Þ

The detailed expansion of e is

e ¼

cD;1 _X1

		 		a1 sgnð _X1Þ � cD;2 _X2 � _X1

		 		a2 sgnð _X2 � _X1Þ
cD;2 _X2 � _X1

		 		a2 sgnð _X2 � _X1Þ � cD;3 _X3 � _X2
		 		a3 sgnð _X3 � _X2Þ

..

.

cD;n�1 _Xn�1 � _Xn�2
		 		an�1 sgnð _Xn�1 � _Xn�2Þ � cD;n _Xn � _Xn�1

		 		ansgnð _Xn � _Xn�1Þ
cD;n _Xn � _Xn�1

		 		ansgnð _Xn � _Xn�1Þ

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

�
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1;1 CðS-EÞ

1;2 � � � 0 0
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..

. ..
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.
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0

0

� � �
� � �

CðS-EÞ
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CðS-EÞ
n�1;n

CðS-EÞ
n;n

2
6666666664

3
7777777775

_X1

_X2

..

.

_Xn�1
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8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ðD:6Þ

Substituting Eq. (D.6) into Eq. (D.5) leads to CðS-EÞ. It is observed that deducing
from the nth component backward to the first component is convenient. The nth
component is extracted to be

cD,j+1, αj+1

cD,j,αj

cD,j-1,αj-1

Xj+1

Xj

Xj-1

.

.

.

Fig. D.1 MDOF structural
system attached with viscous
dampers.
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@E cD;n _Xn � _Xn�1

		 		ansgnð _Xn � _Xn�1ÞþCðS-EÞ
n;n _Xn�1 � CðS-EÞ

n;n _Xn


 �2
� �

@CðS-EÞ
n;n

¼ 0

) CðS-EÞ
n;n ¼ cD;n �

E _Xn � _Xn�1

		 		an þ 1
h i
E _Xn � _Xn�1

� �2h i ; CðS-EÞ
n�1;n ¼ CðS-EÞ

n;n�1 ¼ �cD;n �
E _Xn � _Xn�1

		 		an þ 1
h i
E _Xn � _Xn�1

� �2h i
ðD:7Þ

Similarly, the (n − 1)th component is extracted to be

CðS-EÞ
n�1;n�2 ¼ �cD;n�1 �

E _Xn�1 � _Xn�2
		 		an�1 þ 1
h i
E _Xn�1 � _Xn�2

� �2h i ðD:8Þ

and the expression of CðS-EÞ
n�1;n�1 can be easily obtained

CðS-EÞ
n�1;n�1 ¼ cD;n �

E _Xn � _Xn�1
		 		an þ 1
h i
E _Xn � _Xn�1

� �2h i þ cD;n�1 �
E _Xn�1 � _Xn�2

		 		an�1 þ 1
h i
E _Xn�1 � _Xn�2

� �2h i ðD:9Þ

Likewise, the component of CðS-EÞ can be expressed in turn as below

CðS-EÞ
j;j ¼ cD;j �

E _Xj � _Xj�1

		 		aj þ 1
h i
E _Xj � _Xj�1

� �2h i þ cD;jþ 1 �
E _Xjþ 1 � _Xj

		 		ajþ 1 þ 1
h i
E _Xjþ 1 � _Xj

� �2h i ðD:10Þ

CðS-EÞ
j;jþ 1 ¼ �cD;jþ 1 �

E _Xjþ 1 � _Xj

		 		ajþ 1 þ 1
h i
E _Xjþ 1 � _Xj

� �2h i ðD:11Þ

Assuming the modal vector of the kth mode is /k, we have

uk ¼ /T
kX ðD:12Þ

where uk denotes the modal displacement of the kth mode. If all the viscous
dampers share a same velocity exponent a, Eqs. (D.10) and (D.11) can be written as

CðS-EÞ
j; j ¼ cD; jD

ðkÞ
j þ cD; jþ 1D

ðkÞ
jþ 1


 �
�
E uk

		 		aþ 1
h i
E uk

� �2h i ðD:13Þ

CðS-EÞ
j; jþ 1 ¼ �cD; jþ 1D

ðkÞ
jþ 1 �

E uk
		 		aþ 1
h i
E uk

� �2h i ðD:14Þ
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where DðkÞ
j ¼ uðkÞj � uðkÞj�1

			 			a�1
.

The modal equation of motion of the viscously damped structure is

€uk þ 2fkxk _uk þ 2fðS-EÞk xk _uk þx2
kuk ¼ ~Fk ðD:15Þ

where ~Fk ¼ /T
kFðtÞ= /T

kM/k

� �
denotes the generalized excitation. Substituting

Eqs. (D.13) and (D.14) into Eq. (D.15), the additional equivalent modal damping
ratio can be derived as

fðS-EÞk ¼ gk �
E uk

		 		aþ 1
h i
E uk

� �2h i ðD:16Þ

where gk ¼ qk= 2�mkxkð Þ, �mk denotes the modal mass of the kth mode, and qk has
the formulation as follows:

qk ¼
Xn
j¼1

cD;jD
ðkÞ
j þCD;jþ 1D

ðkÞ
jþ 1


 �
uðkÞ2j � 2

Xn
j¼2

cD;jD
ðkÞ
j uðkÞj uðkÞj�1; DðkÞ

nþ 1 ¼ 0

ðD:17Þ

Applying that the structural response is assumed to be a Gaussian process, there is

r2uk �
pG~Fk

ðxkÞ
4 fðS-EÞk þ fk


 �
xk

ðD:18Þ

The additional equivalent modal damping ratio of the MDOF system can be
expressed as

fðS-EÞk ¼ gkqðaÞ
G~Fk

ðxkÞ
fðS-EÞk þ fk


 �
xk

0
@

1
A

ða�1Þ=2

ðD:19Þ

where qðaÞ ¼ C 1þ a=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23�apa�2

p

Reference

Di Paola M, Navarra G (2009) Stochastic seismic analysis of MDOF structures with nonlinear
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Appendix E
Optimal Control of Discrete Structural
Systems

Without loss of generality, the system equation of a linear structure is given by

_ZðtÞ ¼ AZðtÞþBUðtÞþDFðtÞ ðE:1Þ

The equation in discrete state can be written as follows:

Z kþ 1ð Þ ¼ AdZðkÞþBdUðkÞþDdFðkÞ ðE:2Þ

where

Ad ¼ eADt;Bd ¼ eADtA�1 I� e�ADt� �
B;Dd ¼ eADtA�1 I� e�ADt� �

D ðE:3Þ

The quadratic cost function in discrete state is given by

J Z;U;Nð Þ ¼ 1
2
ZTðNÞPðNÞZðNÞþ 1

2

XN�1

k¼0

ZTðkÞQðkÞZðkÞþUTðkÞRðkÞUðkÞ� �
ðE:4Þ

where Qð�Þ; Sð�Þ denote the symmetric and semi-positive state weighting matrices;
Rð�Þ denotes the symmetric and positive control force weighting matrix.
Theoretically, these weighting matrices are all time variant. However, they are
usually defined as time-invariant parameters for the control law design in practice.

Therefore, the objective of optimal control is seeking for the optimal control
sequence U�ð0Þ;U�ð1Þ; . . .;U� N � 1ð Þ so as to gain a minimum cost function J.
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E.1 Matrix Difference Riccati Equation

In view of Pontryagin’s maximum principle, the Riccati equation is deduced from
the discrete system; see Eq. (E.2). Introducing the Hamiltonian function

H kð Þ ¼ 1
2

ZT kð ÞQZ kð ÞþUT kð ÞRU kð Þ� �þ kT kþ 1ð Þ AdZ kð ÞþBdU kð Þð Þ ðE:5Þ

the costate equation

k kð Þ ¼ � @H kð Þ
@Z kð Þ

� �T

¼ �QZ kð Þ � AT
dk kþ 1ð Þ ðE:6Þ

and the control equation

@H kð Þ
@U kð Þ ¼ UTðkÞRþ kTðkþ 1ÞB ¼ 0 ðE:7Þ

it yields

U kð Þ ¼ �R�1BT
dk kþ 1ð Þ ðE:8Þ

As to the open-closed-loop control, the state feedback and input feedback are
usually considered simultaneously, i.e.,

k kð Þ ¼ P kð ÞZ kð Þþ S k � 1ð ÞF k � 1ð Þ ðE:9Þ

Substituting Eqs. (E.8) and (E.9) into Eq. (E.2), one has

Z kþ 1ð Þ ¼ IþBdR�1BT
dP kþ 1ð Þ� ��1

AdZ kð Þ � BdR�1BT
dS kð ÞF kð ÞþDdF kð Þ� 

ðE:10Þ

It is seen that Eq. (E.10) is a backward recursive difference equation with respect to
the system state.

Substituting Eq. (E.9) into Eq. (E.6), one has

P kð ÞZ kð Þþ S k � 1ð ÞF k � 1ð Þ ¼ QZ kð ÞþAT
d P kþ 1ð ÞZ kþ 1ð Þþ S kð ÞF kð Þ½ �

ðE:11Þ

then

P kð ÞZ kð Þ ¼ �S kð ÞF kð ÞþQþAT
dP kþ 1ð ÞZ kþ 1ð ÞþAT

dS kð ÞF kð Þ ðE:12Þ

It is seen that different from Eqs. (E.10) and (E.12) is a forward recursive difference
equation with respect to the Riccati matrix P kð Þ. Eq. (E.12) is the so-called matrix
difference Riccati equation.
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Substituting Eq. (E.9) into Eq. (E.8) and considering Eq. (E.2), one has

UðkÞ ¼ � BT
dP kþ 1ð ÞBd þR

� �1
BT
dP kþ 1ð ÞAdZðkÞ

� R�1BT
d þB�1

d P�1 kþ 1ð Þ� 
P kþ 1ð ÞDd þ SðkÞ½ �FðkÞ

ðE:13Þ

which in formulation of feedback gain can be written as follows:

UðkÞ ¼ �GZðkÞZðkÞ �GFðkÞFðkÞ ðE:14Þ

where GZðkÞ denotes the gain matrix of state feedback:

GZðkÞ ¼ BT
dP kþ 1ð ÞBd þR

� �1
BT
dP kþ 1ð ÞAd ðE:15Þ

and GFðkÞ denotes the gain matrix of input feedback:

GFðkÞ ¼ R�1BT
d þB�1

d P�1 kþ 1ð Þ� 
P kþ 1ð ÞDd þ SðkÞ½ � ðE:16Þ

Besides, substituting Eq. (E.9) into control equation @HðkÞ=@FðkÞ ¼ 0, there is

@HðkÞ
@FðkÞ ¼ AdZðkÞþBdUðkÞ½ �TSðkÞþ STðkÞDd þDT

dSðkÞ
� 

FðkÞ ¼ 0 ðE:17Þ

it yields

S kþ 1ð Þ ¼ BT
d

� ��1
RB�1

d AdZ kð ÞF�1 kð Þþ ST kð ÞDdF kð ÞS�1 kð ÞF�1 kð Þ�
þDT

dS kð ÞF kð ÞS�1 kð ÞF�1 kð Þ ðE:18Þ

One might recognize from Eqs. (E.12) and (E.18) that as to the open-closed-loop
control with both considering the state feedback and input feedback, the state
weighting matrix PðkÞ and input matrix SðkÞ are related to the system state ZðkÞ
and system input FðkÞ at each instant of time. It is thus indicated that the control law
needs to be calculated in real time, which is not really convenient for the appli-
cations in practice. Therefore, the closed-loop control with consideration of the state
feedback and without consideration of the input feedback is usually concerned. The
matrix difference Riccati equation is thus given by

PðkÞ ¼ QþAT
dP kþ 1ð Þ IþBdR�1BT

dP kþ 1ð Þ� ��1
Ad ðE:19Þ

and the control force is simplified as

UðkÞ ¼ �GZðkÞZðkÞ ðE:20Þ
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E.2 Discrete Dynamic Programming

The discrete dynamic programming aims at deducing the recursive relation between
JðNÞ and J N � 1ð Þ by virtue of the Bellman’s optimality principle so as to
decompose an N-step optimal problem into N one-step optimal problem. The
optimization starts from the Nth step and moves backward to (N − 1)th step.

First considering the Nth step, the terminal condition is denoted by ZðNÞ, and
the control force U�ðNÞ is optimized so that the cost function

J Z;U;Nð Þ ¼ 1
2
ZT Nð ÞP Nð ÞZ Nð Þ ðE:21Þ

is minimum. This is ready to be recognized since the terminal condition of matrix
difference Riccati equation exists

PðNÞ ¼ 0 ðE:22Þ

Further considering the (N − 1)th step, the terminal condition is replaced by
Z N � 1ð Þ, and the control force U� N � 1ð Þ is optimized so that the cost function

J Z;U;N � 1ð Þ ¼ 1
2
ZT N � 1ð ÞQZ N � 1ð Þþ 1

2
UT N � 1ð ÞRU N � 1ð Þþ 1

2
ZTðNÞPðNÞZðNÞ

ðE:23Þ

is minimum.
Substituting Eq. (E.2) into Eq. (E.23), one has

J Z;U;N � 1ð Þ ¼ 1
2
ZT N � 1ð ÞQZ N � 1ð Þþ 1

2
UT N � 1ð ÞRU N � 1ð Þ

þ 1
2
AdZ N � 1ð ÞþBdU N � 1ð ÞþDdF N � 1ð Þ½ �T

P Nð Þ AdZ N � 1ð ÞþBdU N � 1ð ÞþDdF N � 1ð Þ½ �

ðE:24Þ

Considering @J Z;U;N � 1f g=@U N � 1ð Þ ¼ 0, one has

RU N � 1ð ÞþBT
dPðNÞ AdZ N � 1ð ÞþBdU N � 1ð ÞþDdF N � 1ð Þ½ � ¼ 0 ðE:25Þ

Since Q is semi-positive and R is positive, BTQBDt2 þR is thus positive, then

U� N � 1ð Þ ¼ � BT
dP Nð ÞBd þR

� �1
BT
dP Nð Þ AdZ N � 1ð ÞþDdF N � 1ð Þ½ � ðE:26Þ

Defining the gain matrix of state feedback
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GZ N � 1ð Þ ¼ BT
dPðNÞBd þR

� �1
BT
dPðNÞAd ðE:27Þ

and the gain matrix of input feedback

GF N � 1ð Þ ¼ BT
dPðNÞBd þR

� �1
BT
dPðNÞDd ðE:28Þ

the control force of open-closed-loop control system is written as

U� N � 1ð Þ ¼ � GZ N � 1ð ÞZ N � 1ð ÞþGF N � 1ð ÞF N � 1ð Þ½ � ðE:29Þ

Substituting Eq. (E.29) into Eq. (E.24), one has

J Z;U;N � 1ð Þ ¼ 1
2
ZT N � 1ð Þ QþGT

Z N � 1ð ÞRGZ N � 1ð Þþ Ad � BdGZ N � 1ð Þð ÞT
h

P Nð Þ Ad � BdGZ N � 1ð Þð Þ�Z N � 1ð Þ
þ 1

2
ZT N � 1ð Þ GT

Z N � 1ð ÞRGF N � 1ð Þ � Ad � BdGZ N � 1ð Þð ÞT
h

P Nð Þ BdGF N � 1ð Þ � Ddð Þ�F N � 1ð Þ
þ 1

2
FT N � 1ð Þ GT

F N � 1ð ÞRGZ N � 1ð Þ � BdGF N � 1ð Þ � Ddð ÞT
h

P Nð Þ Ad � BdGZ N � 1ð Þð Þ�Z N � 1ð Þ
þ 1

2
FT N � 1ð Þ GT

F N � 1ð ÞRGF N � 1ð Þ � BdGF N � 1ð Þ � Ddð ÞT
h

P Nð Þ BdGF N � 1ð Þ � Ddð Þ�F N � 1ð Þ
ðE:30Þ

Ignoring the external excitation and defining

P N � 1ð Þ ¼ QþGT
Z N � 1ð ÞRGZ N � 1ð Þþ Ad � BdGZ N � 1ð Þð ÞTPðNÞ Ad � BdGZ N � 1ð Þð Þ

ðE:31Þ

one can attain a similar cost function as Eq. (E.21) as follows:

J Z;U;N � 1ð Þ ¼ 1
2
ZT N � 1ð ÞP N � 1ð ÞZ N � 1ð Þ ðE:32Þ

Therefore, the parameters of control law of closed-loop system are the solutions
of the recursive equations:

GZðkÞ ¼ BT
dP kþ 1ð ÞBd þR

� �1
BT
dP kþ 1ð ÞAd ðE:33Þ

U�ðkÞ ¼ �GZðkÞZðkÞ ðE:34Þ
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PðkÞ ¼ QþGT
ZðkÞRGZðkÞþ Ad � BdGZðkÞ½ �TP kþ 1ð Þ Ad � BdGZðkÞ½ � ðE:35Þ

Equation (E.35) is the so-called matrix difference Riccati equation in Joseph
stability (Lewis and Syrmos 1995), which can be written as

PðkÞ ¼ QþAT
dP kþ 1ð Þ I� Bd BT

dP kþ 1ð ÞBd þR
� ��1

BT
dP kþ 1ð Þ

h i
Ad ðE:36Þ

According to the matrix transpose rule (Lewis and Syrmos 1995)

A�1
11 þA12A22A21

� ��1¼ A11 � A11A12 A21A11A12 þA�1
22

� ��1
A21A11 ðE:37Þ

Equation (E.36) can be readily changed to Eq. (E.19).
It is thus revealed that the Riccati controls derived from Pontryagin’s maximum

principle and from Bellman’s optimality principle are exactly the same.
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