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Abstract
The primarily pathogenesis of IPF, an incur-
able respiratory disease is believed to over- 
repair to lung injury. The development of new 
drugs for IPF has increased the necessity of 
identifying biomarkers for predicting clinical 
behavior and the selection of the appropriate 
treatment strategy for individual patient.

We and another group found that periostin, 
a matricellular protein expressed specifically 
in areas of ongoing fibrotic lesions, such as 
fibroblastic foci in lung tissues from human 

IPF or murine bleomycin-induced lung injury 
models. Murine bleomycin-induced lung 
injury was improved by the constant suppres-
sion of periostin expression and treatment 
with neutralizing anti-periostin antibodies at 
the fibroproliferative phase. Moreover, total 
periostin can predict both short-term declines 
of pulmonary function and overall survival in 
IPF patients. Our group also established a new 
enzyme-linked immunosorbent assay (ELISA) 
kit that is more specific for IPF compared with 
the conventional kit. This new periostin 
ELISA kit specifically detects monomeric 
form, whereas the conventional kit detects 
both monomeric and oligomeric forms. The 
monomeric periostin levels can be used to pre-
dict pulmonary function decline and to distin-
guish IPF patients from healthy controls.

In conclusion, periostin may play an impor-
tant role in fibrogenesis and could be a poten-
tial biomarker for predicting disease 
progression and therapeutic effect in IPF 
patients.
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9.1  Idiopathic Pulmonary 
Fibrosis Is a Chronic 
Respiratory Disease 
with Unknown Etiology 
and a Grave Prognosis

Interstitial lung disease (ILD) is one of respira-
tory disorders with significant morbidity and 
mortality [1]. Patients with ILD present mainly 
with chronic progressive exertional dyspnea, a 
restrictive pulmonary dysfunction, and a radio-
logical diffuse lung infiltration and/or fibrotic 
change. ILDs are classified into (1) idiopathic 
interstitial pneumonias (IIPs) with unknown eti-
ology and (2) secondary ILD with known and 
heterogeneous etiology [2]. The most common 
underlying disease of secondary ILD is a con-
nective tissue disease, such as rheumatoid arthri-
tis, scleroderma, or polymyositis/
dermatomyositis [3].

Idiopathic pulmonary fibrosis (IPF), a patho-
logically usual interstitial pneumonia (UIP), is 
the most common and incurable form of IIPs [4, 
5]. Estimates of the IPF prevalence per 100,000 
people were reported as ranging from 2 to 43 
cases worldwide [4]. Patients with IPF have a 
grave prognosis with a median survival of 
2–5 years [2, 4, 5] and the major causes of death 
being acute exacerbation (AE), gradual respira-
tory failure, and cardiovascular disease [6]. AE is 
a complication of IPF that shows rapid and lethal 
respiratory failure at a frequency of 8.5–14.2% 
per year during the clinical course of this disease 
[4, 7–9].

9.2  Understanding 
of Pathogenesis 
and Development 
of Molecular Biomarkers 
for IPF

Although the pathogenesis of IPF has not been 
fully elucidated, the primarily mechanism is 
believed to attribute to aberrant wound healing 
responses to repetitive lung injury that targets 
alveolar epithelial cells (AECs). The death and 
apoptosis of AECs trigger abundant fibroblast 

recruitment, proliferation, and activation, as well 
as extracellular matrix (ECM) protein secretion. 
Moreover, fibroblasts frequently differentiate 
into myofibroblasts that express α-smooth mus-
cle actin (α-SMA) in IPF. Myofibroblasts have 
the highly activated contractile ability, and they 
secrete ECM proteins with characteristics that 
are intermediate between fibroblasts and smooth 
muscle cells [10–12]. Small aggregates of prolif-
erating myofibroblasts and fibroblasts, termed 
fibroblastic foci (FF), play an important role in 
ongoing fibrogenesis and have been reported to 
be relevant for predicting the prognosis of IPF 
patients [13, 14].

The over-repairing environment in IPF is acti-
vated by innate and adaptive immune responses 
involving the activation of type 2 T helper (Th2) 
cytokines, M2-like macrophages, and/or growth 
factors. TGF-β1 is an important growth factor in 
the fibrotic process of IPF; it promotes myofibro-
blast differentiation as well as an anti-apoptotic 
phenotype in fibroblasts and myofibroblasts [10–
12, 15]. An inappropriate shift in the Th1/Th2 
cytokine balance, favoring the Th2 profile, can 
contribute to lung fibrosis in IPF [10]. A previous 
report revealed that the expressions of interleukin 
(IL)-4 and IL-13 receptors in the lungs were 
increased in IPF patients compared with patients 
having other IIP subtypes [16]. Lee et al. reported 
a model for lung fibrosis in which the overexpres-
sion of IL-13  in CC10-IL-13 transgenic mice 
caused lung fibrosis by selectively stimulating 
and activating TGF-β [17].

Recently, an evolving understanding of IPF 
pathogenesis has contributed to the development 
of two therapeutic drugs, pirfenidone and ninte-
danib, for which New Drug Applications had 
been approved by the U.S.  Food and Drug 
Administration [18, 19]. Moreover, ongoing or 
recently completed clinical trials of new drug 
candidates targeting lung over-repair have been 
reported. Human monoclonal antibodies target-
ing connective tissue growth factor (CTGF), a 
matricellular protein (FG-3019), a selective auto-
taxin inhibitor that reduces plasma concentra-
tions of lysophosphatidic acid (GLPG1690), and 
pentraxin 2 that inhibits M2-like macrophage dif-
ferentiation (PRM-151) were all found to slow 
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the disease progression of IPF in phase 2 ran-
domized, double-blind, placebo-controlled trials 
[20–22]. On the other hands, these paradigm 
shifts in the available therapeutic strategies for 
IPF treatment have raised the new problem of 
selecting an appropriate treatment type and inter-
vention time for individual patient.

The natural course of IPF has been described 
as a progressive decline in pulmonary function 
until eventual death [4]. The short-term progres-
sion measured via the decline of pulmonary func-
tion from baseline values has been reported as a 
promising prognostic predictor. A decline of 10% 
for forced vital capacity (FVC) and that of 15% 
for diffusing capacity of the lung for carbon mon-
oxide (DLCO) over 6 months were associated with 
the survival of IPF patients in some previous 
reports [23, 24]. It should be noted that there is 
heterogeneity in the clinical behavior of individ-
ual IPF patients, including gradual or accelerated 
progression or AE development [2, 4, 25]. There 
is no established predictor that can accurately 
determine the clinical behavior or survival of IPF 
patients. Some epithelial or macrophage-related 
proteins, such as CC-chemokine ligand-18 (CCL- 
18), matrix metalloproteinase-7 (MMP-7), Krebs 
von den Lungen-6 (KL-6), surfactant protein D 
(SP-D), and SP-A, were reported as biomarkers 
for declining pulmonary function or those for 
survival [2, 26–31]. Molecular biomarkers may 
allow the application of “precision medicine” by 
aiding in the selection of a suitable treatment for 
individual IPF patients, such as an anti-fibrotic 
drug, lung transplantation, or palliative therapy 
[2, 25, 26, 32].

9.3  Periostin, a Matricellular 
Protein, Is Involved 
in the Pathogenesis of IPF

Periostin is an ECM protein belonging to the fas-
ciclin family that acts as a matricellular protein 
modulating cell–matrix interactions via the αvβ1, 
αvβ3, or αvβ5 integrin receptor [33]. Periostin is 
secreted from fibroblasts, epithelial cells, and 
endothelial cells via stimulation by IL-4, IL-13, 
TGF-β, angiotensin II, CTGF, bone morphoge-

netic protein 2, mechanical stretch, and cancer- 
derived factors [33]. Periostin contributes to 
tissue development and wound healing by stabi-
lizing collagen cross-linking and fibrotic disease 
progression [34]. Takayama et al. suggested that 
periostin secreted from lung fibroblasts is 
involved in subepithelial fibrosis via binding to 
other ECM proteins in a murine ovalbumin- 
induced allergic asthma model [35]. Periostin 
also contributes to the development of skin fibro-
sis in scleroderma [36]. Experiments in  vitro 
showed that periostin can cooperate with TGF-β 
to promote the expression of messenger ribonu-
cleic acid (mRNA) for α-SMA and procollagen 
type-I alpha 1 on dermal fibroblasts in a bleomy-
cin (BLM)-induced murine scleroderma model. 
These mechanisms depend on the phosphati-
dylinositol 3-kinase/Akt (PI3K/Akt) pathway 
[37].

We and other groups attempted to clarify 
whether periostin is involved in the fibrotic 
mechanism in IPF [38–44]. We hypothesized that 
periostin was strongly expressed in fibroblasts, 
especially in FF areas, but not in regenerative 
alveolar epithelium, inflammatory cells, or areas 
showing established fibrosis with dense collagen 
depositions in IPF lungs (Fig. 9.1) [38]. In histo-
chemical analyses of other subtypes of IIP, peri-
ostin was strongly expressed in fibrotic 
non-specific interstitial pneumonia (NSIP), 
whereas the periostin expression was weak in 
cellular NSIP and cryptogenic organizing pneu-
monia, as well as in normal lungs [38]. Uchida 
et al. also reported the high expression of perios-
tin in lung fibrotic tissues, particularly in the 
α-SMA-positive myofibroblasts, from BLM- 
administered mice that are a representative 
murine model of IPF [39]. Naik et  al. demon-
strated that periostin localizes to FF areas as well 
as to subendothelial and subepithelial regions in 
lung tissue from IPF patients [40]. Some experi-
ments in vitro revealed that lung fibroblasts and 
circulating fibrocytes are sources of periostin in 
the circulation of IPF patients [40, 41]. Together, 
these results suggest that the expression of peri-
ostin is localized specifically to areas of ongoing 
fibrotic lesions in IPF lungs.
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Uchida et al. used periostin-deficient mice in 
which periostin expression was constantly sup-
pressed for clarifying the pathogenesis of 
IPF.  Periostin-deficient mice administered with 
BLM exhibited less lung fibrosis and mortality 
compared with wild type mice that were treated 
similarly [39]. Naik et al. reported that treatment 
of wild type mice with neutralizing antibody 
against periostin (OC-20) on 10 and 15 days after 
BLM administration protected them from lung 
fibrosis and improved survival [40]. Therefore, 
periostin suppression at only the fibroprolifera-
tive phase of the disease was able to improve 
murine BLM-induced lung injury similarly to 
constant suppression.

Previous studies suggested that periostin 
induces type 1 collagen production from lung 
fibroblasts and/or circulating fibrocytes and pro-
motes collagen deposition, mesenchymal cell 
proliferation, and wound closure in the lungs [40, 
41]. Periostin and TGF-β upregulate the produc-
tion of one another by fibroblasts and fibrocytes 
[41]. Ashley et  al. demonstrated that periostin 
promotes CTGF production from fibrocyte and 
myofibroblast differentiation, leading to pulmo-
nary fibrosis [41]. Periostin is thought to augment 
ECM protein deposition in IPF lungs via activat-
ing soluble factors, such as growth factors and 
other matricellular proteins, and mesenchymal 
cells. Nance et  al. sequenced mRNA from the 

lung tissues of eight IPF patients and seven 
healthy controls, and their results suggested that 
the spliced-out exon 21 of periostin gene 
(POSTN) occurred more highly in IPF samples 
than in control samples [42].

Some drugs, particularly chemotherapeutic 
agents, often cause an acute and lethal subtype of 
ILD with the typical histopathological features of 
diffuse alveolar damage (DAD). We revealed that 
periostin was expressed not only in IPF lungs but 
also in human lung tissue with BLM- or gefinitib- 
induced DAD. Periostin staining was evident in 
the thickened alveolar walls adjacent to α-SMA- 
positive cells in the lung tissues with either drug- 
induced ILD [39]. During day 1–7 of BLM 
administration, mouse lungs showed acute lung 
injury-like features; histologically, the accumula-
tion of inflammatory cells and upregulation of 
chemokines and pro-inflammatory cytokines 
were observed [45]. Uchida et al. found that the 
increase of chemokines, pro-inflammatory cyto-
kines, and neutrophil and macrophage recruit-
ment in the lung tissues or bronchoalveolar 
lavage fluids collected at day 7 of a murine BLM- 
induced lung injury model were impaired in 
periostin- deficient mice [39]. Therefore, perios-
tin promotes the production of chemokines and 
pro-inflammatory cytokines, followed by the 
recruitment of neutrophils and macrophages, 
subsequently leading to lung injury. Periostin 

Fig. 9.1 Immunohistochemical (IHC) findings. (This fig-
ure was quoted from Ref. [38] and modified)
Expression of periostin in lungs of a 69-years-old female 
nonsmoker (a–c), a 64-years-old male with usual interstitial 

pneumonia (UIP) (d–f). The tissues were stained with hae-
matoxylin and eosin (HE) 40×, HE 100× or periostin 100×, 
as shown
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may be important in rapidly progressive ILD 
with acute onset or AE of IPF showing a histo-
logical DAD pattern. We will investigate these 
issues in future analyses.

9.4  Periostin Is a Potential 
Prognostic Biomarker of IPF

We first reported that periostin is a potential 
prognostic biomarker for predicting the short- 
term progression of IPF patients in a single- 
center study. In that work, baseline serum levels 
of periostin were positively correlated with a 
decline of vital capacity (VC) and DLCO over 
6  months (VC: N  =  26, r  = −0.498, p  <  0.01; 
DLCO: N  =  21, r  =  −0.467, p  <  0.05) [38]. 
Moreover, we attempted to clarify whether peri-
ostin is useful for predicting long-term survival 
by analyzing 29 IPF subjects who were observed 
for at least 2  years and for up to 5  years [43]. 
Log-rank tests revealed that a higher serum peri-
ostin level was a predictor of a shortened overall 
survival (OS) and time-to-events (TTE) defined 
as a complicating AE or a relative decline in VC 
of ≥10% from the baseline (OS: relative risk 
(RR) = 3.6, 95% confidence interval (CI) = 1.3–
9.9, p < 0.01; TTE: RR = 6.0, 95%CI = 1.8–21.1, 
p < 0.01) [43]. In that study, the baseline periostin 
levels significantly correlated with an increase in 
the extent of honeycombing visible on high reso-
lution computed tomography images during 
6 months [43]. Naik et al. demonstrated that the 
baseline periostin level was able to predict 
progression- free survival within 48  weeks for 
IPF patients, as determined by the time until any 
of the following: death, complicating AE, lung 
transplant, or relative decline in FVC of ≥10% or 
in DLCO of ≥15% (N = 54, hazard ratio = 1.47, 
95%CI  =  1.03–2.10, p  <  0.05) [40]. Thus, the 
serum level of periostin can predict short-time 
disease course and survival.

Unfortunately, periostin is not a specific bio-
marker for IPF because it is upregulated in vari-
ous diseases other than IPF [36]. This fact may 
affect its accuracy as prognostic biomarker for 
IPF in patients who complicated other high- 
periostin diseases. Izuhara et al. and the Shino- 

Test established a new enzyme-linked 
immunosorbent assay (ELISA) kit that is more 
specific for IPF compared with the conventional 
kit [44]. The new periostin ELISA kit specifically 
detects the monomeric form (SS20A × SS19D, 
the capture and detection antibody), whereas the 
conventional kit detects both the monomeric and 
oligomeric forms (total periostin, 
SS18A  ×  SS17B). We found that the index of 
total periostin/monomeric periostin was signifi-
cantly lower in IPF patients (2.1, N = 40) than 
that in either patients with atopic dermatitis (14.2, 
N = 224), systemic sclerosis (11.7, N = 37), or 
bronchial asthma (7.3, N = 143), all of which are 
also high-periostin diseases [44]. These results 
suggest that a high ratio of monomeric periostin 
to total periostin is characteristic of IPF patients. 
Serum periostin mostly exists in the oligomeric 
form assembled by intramolecular disulfide 
bonds, with only small amounts existing in the 
monomeric form. The fact that monomeric peri-
ostin is predominantly upregulated compared 
with the level of total periostin may be explained 
by the aberrant redox status in IPF. We will inves-
tigate this issue in future work.

We conducted a multi-center analysis to 
examine the ability of monomeric periostin to 
serve as a prognostic biomarker of IPF.  The 
changes in VC and DLCO were inversely associ-
ated with both the monomeric periostin level 
(VC: r  = −0.492, p  <  0.01; DLCO: r  = −0.587, 
p  <  0.001) and the total periostin level (VC: 
r  =  −0.428, p  <  0.01; r  =  −0.460, p  <  0.01) 
(Fig. 9.2) [44]. We also suggested that periostin 
could be a useful diagnostic biomarker of 
IPF.  The receiver operating characteristic curve 
analyses for distinguishing IPF patients (n = 60) 
from healthy control donors (n = 137) revealed 
that monomeric periostin had the highest area 
under the curve (AUC, 0.958) among the investi-
gated biomarkers (total periostin: 0.843, KL-6: 
0.948, SP-D: 0.953, lactate dehydrogenase 
[LDH]: 0.898). When we set the cut-off values 
for monomeric periostin at 11.2 ng/mL and total 
periostin at 77 ng/mL, the sensitivities and speci-
ficities were respectively evaluated as 90.0% and 
91.2% for monomeric periostin and at 73.3% and 
79.6% for total periostin (Fig.  9.3). Therefore, 
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monomeric periostin is a potential diagnostic and 
prognostic biomarker for IPF patients that is less 
influenced by complicatied high-periostin 
diseases.

Neighbors et al. performed post-hoc analy-
ses of two replication IPF cohorts from the 
clinical trials for pirfenidone (CAPACITY and 
ASCEND). That was a comprehensive study 
evaluating the properties of biomarkers useful 
for predicting FVC changes as well as the ther-
apeutic effect as assessed by a difference in the 
FVC decline between the pirfenidone and pla-
cebo groups over 12 months [46]. Total perios-
tin measured using the Elecsys® periostin assay 
(Roche Diagnostics, Penzberg, Germany) was 
included among the analyzed biomarkers. The 
baseline serum levels of periostin and many 
other biomarkers were able to predict the spec-
ified parameters in the CAPACITY cohort but 
not in the ASCEND cohort [46]. These findings 
raise the problem that the utility of a prognos-
tic biomarker may be affected by the character-
istics of the analyzed IPF population. Their 
study indicated that evaluations with a combi-
nation of CCL18, C-X-C motif chemokine 
ligand 14, and total periostin were better at 
predicting the prognosis and  therapeutic effect 
compared with any single biomarker [46]. The 
evaluation of a combination of biomarkers 
associated with different pathologies of IPF 
may be useful for prognostic prediction. 
Periostin is also expected to be applicable as a 

Fig. 9.2 Ability of each biomarker to predict the short- 
term progression of idiopathic pulmonary fibrosis. (This 
figure was quoted from Ref. [44])
Correlations between monomeric periostin, total perios-
tin, Krebs von den Lungen-6 (KL-6), surfactant protein D 

(SP-D) or lactate dehydrogenase (LDH) and short-term 
change of vital capacity (VC, A) or diffusing capacity of 
the lung for carbon monoxide (DLCO, B) in idiopathic pul-
monary fibrosis patients (N = 44 for VC and 39 for DLCO)

Fig. 9.3 Abilities of each biomarker to diagnose as idio-
pathic pulmonary fibrosis. (This figure was quoted from 
Ref. [44])
A receiver operating characteristic curve analysis of each 
biomarker between idiopathic pulmonary fibrosis (IPF) 
patients and healthy donors. Monomeric periostin (red), 
total periostin (orange), Krebs von den Lungen-6 (KL-6), 
(black), surfactant protein D (SP-D) (green), and lactate 
dehydrogenase (LDH) (blue) between IPF patients 
(n = 60) and healthy donors (n = 137)
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biomarker for predicting the therapeutic effect 
and stratification of subjects in clinical trials 
on IPF patients.

9.5  Periostin as a Therapeutic 
Target

We and another group reported the improvement 
of murine BLM-induced lung injury via the con-
stant suppression of periostin expression [39] or 
treatment with neutralizing anti-periostin anti-
bodies at the fibroproliferative phase [40]. A pre-
vious report additionally suggested that 
osteopontin reduced murine BLM-induced lung 
injury via the αV integrin [47]. Periostin or the αV 
integrin may be a potential target in new treat-
ments for IPF.

9.6  Conclusion

Periostin may play an important role in fibrogen-
esis and be applicable as a potential biomarker 
for predicting both the disease progression and 
therapeutic effect in IPF patients. The further 
study of periostin is expected to accelerate the 
development of new diagnostic and treatment 
strategies for IPF.
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