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Abstract This work is concerned with the use of artificial neural network as a
simulation tool for optimizing the performance of four-stroke single-cylinder diesel
engine, operating at various conditions for this performance, test on a four-stroke
diesel engines is conducted and the performance parameters are calculated with stan-
dard formulae. The output values obtained from the conventional method are used
as input for training artificial neural networks in combination with backpropagation
algorithm has been performed using MATLAB. The results obtained from the practi-
cal networks are compared with the conventional values and the errors are estimated
for each parameter. The error deviation obtained against each parameter indicates
the net variation of engine output, and accordingly the corrective actions may be
initiated with the engine for the improvement of performance parameters.

Keywords Artificial neural network - Backpropagation algorithm - MATLAB -
CI Engine

1 Introduction

ANN is an efficient approach amid the black-box design approach that is extensively
used in different engineering applications in recent years [ 1]. This craft aims to greatly
decrease dynamometer analysis, thereby developing scientific models of the engine
outputs using a smaller subset of experimental data. Once the scientific models
have been refined, the errors can be minimized using techniques such as gradient
procedures [2], different approaches are included for using ANN to boost up modeling
and graduate of engines [3]. The capability of ANN as a system testimony tool is pre-
owned to represent the nonlinear performance of engine operations. Many analysts
used ANN for predicting twisting moment, brake power, total fuel consumption, and
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smoke formation including engine speed and diesel injection pressure [1, 4, 5, 6 7,
8] found the ANN adds accuracy and ease in the inquiry of the engine performance.
GISCA and WU described how effectively ANN is used for deciding the operating
parameters of the compression ignition engine, being internal pressure in cylinders
or the fuel-air ratio [9, 10]. But in ANN design draft of network topology, the
trigger function, learning rule, and the permissible error for stopping the training
phase is crucial and done by the engineer. So, it is tough to frame the size of the
network as there is no fixed method to do it. Even though the neural networks based
results is very dynamic in terms of evolution, time, and resources. By practicing and
being employed on different planning, weights, and designs, we can afford actual
solutions. By conducting accurate research by using various innovations and selected
the best one that gives efficient output by considering input details. Depending upon
the experimental data, ANN correlates various engine operating parameters with the
input data. Garg explained a broad literature review and different utilizations of ANN
[11]. Thus, actual-time activity and averaging of complex, nonlinear, and dynamic
patterns in engine operations are challenges to be met in today’s engine advancement.
Neural networks architectures, combinations of networks, and different algorithms
play an important role in the execution. There is a need to use ANN as an execution
critical tool that optimizes cost and time in advancing new models and techniques
for overall engine performance. Further, it will support in achieving which algorithm
is perfect for the appropriate situation.

2 Experimental Setup and Engine Specifications

The below line diagram represents the engine along with various parts incorporated
in it (Fig. 1).

Fig. 1 Experimental setup of engine. 1. Alamgir engine, 2. T alternators, 3. Diesel tank,
4. Air filter, 5. Three-way valve, 6. Exhaust pipe, 7. Probe, 8. Exhaust gas analyzer, 9. Fuel tank,
10. Burette, 11. Three-way valve, 12. Control panel
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2.1 Engine Specifications

See Table 1.

Table 1 Specifications of engine

Make

Alamgir Industries Ltd.

Ignition system

Compression ignition

Arrangement of cylinder Vertical
Cooling Air cooled

Bore 0.102 m

Stroke 0.116 m
Compression ratio 19.5

Speed 1500 rpm

Rated power 9 HP

Fuel Diesel
Lubricant SAE 20/SAE 40

Table 2 Standard formulae to calculate performance parameters

1. Brake power (B.P)

VI COS @/mtran x ngen x 1000 (units kW)

Where V Voltage, volts

I Current, amp

ntran Transmission Efficiency = 0.8
ngen Generator Efficiency = 0.9
COS ¢ Power factor = 1

. Total fuel consumption (TFC)

20*0.85*3600/t*1000 (units kg/h)

. Brake-specific fuel consumption

TFC/BP (units kg/kW-h)

. Heat input

TFC* calorific value of fuel (units kJ/kg)

. Frictional power (F.P)

From Williams line method

B.P + F.P (units kW)

. Mechanical efficiency (Mmech)

B.P/L.P

. Indicated thermal efficiency (n1Th)

I.P/Heat input

2
3
4
5
6. Indicated power (I.P)
7
8
9

. Brake thermal efficiency (N Th)

B.P/Heat Input

10. Brake mean effective pressure (BMEP)

B.P*60/LANK (units kN/m?)

11. Indicated mean effective pressure (IMEP)

LP*60/LANK (units kN/m?)

12. Volumetric efficiency

Actual air intake/Theoretical air intake
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2.2 Formulae

See Table 2.

2.3 Experimental Values for Diesel

See Table 3.

3 Working with MATLAB

MATLAB is widely used in scientific estimations. It integrates computation, per-
ception, and programming in a simple manner in which questions and answers are
revealed in simple mathematical notation.

3.1 Feeding Inputs and Outputs in MATLAB

The input values are entered in command window, which is scaled in between 0 and
1 for minimizing the error.

Speed = [0.1500 0.1500 0.1500 0.1500 0.1500 0.1500]
Voltage =[0.270 0.260 0.250 0.230 0.215 0.200]

Input = [Speed; Voltage]

Bp =[0.0765 0.153 0.240 0.312 0.377 0.408]

Tfc =[0.076 0.105 0.13 0.153 0.174 0.191]

The output is entered in the same form of input data by varying the neurons
according to the preference of the user.

For example, if the user prefers 2 neurons, then the output should be assigned as

Outputl = [Bp; Tfc]

Likewise, all other individual output parameters are grouped as 2 rows and initial-
ized in the MATLAB command window. Similarly, for the same individual output
variable, various neurons are selected and initialized in the same manner as shown
above. As soon as they entered, they are recorded as a matrix in the workspace and
it is saved with the file extension MAT.
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3.2 Working with Neural Network

To invoke the neural network toolbox, a command, tool is entered in the command
window. The following window pops up as shown in Fig. 2.

The input values are given by clicking the import button in this window. The
following window pos up (Fig. 3).

All initialized data are automatically stored in the data manager scroll box and
for giving the input the variable inputl is selected and is to be imported as inputs.
Similarly, variables output 1 and output 2 are selected as target values which have to
be optimized depending upon the neurons.

Now all the selected data are imported in neural network toolbox, next a network
is to be formed. For this, new network icon in the neural network manager is clicked.

Merwo rkMata Manager

iJ start ® o [ Ass 20003, [ wendows M Pa. G tutonel b - WL

"':. WY YT - [ =]

Fig. 3 Data manager
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Fig. 4 Training a network

In that dialog box, various networks types are available in that we have selected
“FEED FORWARD BACK PROPAGATION” network type with the training func-
tion as trained. The ranges for the input can be taken from the variable inputl. The
number of layers to be specified here is the total number of hidden layers and neurons
for output data’s. For each layer, the number of neurons is specified and the suitable
transfer function of purelin is chosen and by clicking create button in the dialog box,
new network is created, next, the network has to be trained. There is an icon available
in the network manager. The following window pops up (Fig. 4).

The training data are taken from input 1 and output 1, by scrolling down the pull-
down menu. The training parameters specify the numbers of epochs, goal, etc., are
also given. The network is then trained. A window with the training graph appears.
The training stops if the goal is reached or if the number of epochs exceeds or
if one intentionally stops the training. Confirmatory values are simulated and it is
displayed in the network output dialog box of network manager toolbox and similarly
the trained error values are displayed in network error of network manager toolbox.
The network error and output values are in scaled form.

3.3 Trained Values for Diesel with Network 2 Hidden Layers
2 Neurons

See Table 4.

3.4 Error Values for Diesel

See Table 5.
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Table 4 Trained values for diesel

S. No. Parameters | Trail 1 Trail 2 Trail 3 Trail 4 Trail 5 Trail 6

1 B.P 0.076755 0.153521 0.216788 0.312402 0.3771 0.397027
2 1P 0.236848 0.313689 0.341977 0.472522 0.53712 0.559671
3 T.EC 0.085204 0.123424 0.132431 0.149023 0.171052 0.181499
4 SEC 0.992878 0.741593 0.543347 0.503409 0.475381 0.469018
5 B.Th 0.0863 0.128712 0.154048 0.178341 0.183833 0.18525
6 L. Th 0.265759 0.255004 0.255005 0.255004 0.255003 0.255002
7 Vol Eff 0.604222 0.664712 0.665765 0.665796 0.6658 0.6658

8 Mech Eff 0.34087 0.499495 0.604254 0.645813 0.675763 0.685874
9 BMEP 0.008587 0.136874 0.207421 0.285753 0.321876 0.334208
10 IMEP 0.203629 0.252193 0.314663 0.421597 0.464949 0.475287

Table 5 Error values for diesel

S. No. Parameters | Trail 1 Trail 2 Trail 3 Trail 4 Trail 5 Trail 6

1 B.P —2.55E-04 | —5.21E-04 0.023212 | —4.02E-04 | —1.00E-04 0.010973
2 1P —3.48E-04 | —6.89E-04 0.058023 | —5.22E-04 | —1.20E-04 0.008329
3 T.EC —9.20E-03 | —0.01842 —0.00243 0.003977 0.002948 9.50E-03
4 SEC 1.22E-04 | —0.05559 —0.00175 —0.01341 —1.44E-02 | —0.00102
5 B.Th —8.29E-09 | —3.31E-03 0.004252 | —0.00364 0.001967 | —2.05E-03
6 LTh 0.001141 1.50E-03 0.008795 0.009396 0.009697 | —2.40E-06
7 Vol Eff —0.01962 0.001088 3.49E-05 3.50E-06 3.48E-07 8.33E-08
8 Mech Eff —1.75E-02 | —0.0107 —0.00425 0.015187 0.026237 3.21E-02
9 BMEP —0.00246 —0.00774 —0.00486 —0.02243 —0.0037 1.01E-02
10 IMEP —4.02E-03 0.011979 0.022937 | —0.02323 —0.01173 4.10E-03

4 Results and Discussion

Graph between Experimental Values and Theoretical values:

From Graph 1 brake power values obtained from experimental and theoretical
results are compared, error is calculated, and the error is minimum for trail 4 and
maximum for trail 6, the maximum value of brake power by theoretical method is
0.4052 for trail 2 and by experimental method is 0.408 for trail 6, so in order to
reduce the error the number of hidden layers has to be increased.

From Graph 2 indicated power values obtained from experimental and theoretical
results are compared, error is calculated and the error is minimum for trail 2 and
maximum for trail 6, the maximum value of indicated power by theoretical method
is 0.364 for trail 1 and by experimental method is 0.537 for trail 5, so in order to
reduce the error the number of hidden layers has to be increased.
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Brake power

il

1 2 3 4 5 6
B Experimental | 0.0765 | 0.153 0.24 0.312 | 0.377 | 0.408

m Theoritical  0.080844| 0.4052 0.3948390.2814420.1214490.082241
W Error -0.00434/ -0.2522 |-0.154830.0305570.2555500.325759
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Graph 1 Error for brake power

Indicated power
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m Experimental| 0.2365 | 0313 | 04 | 0.472 | 0537 |0.2365
m Theoritical  .3642050.2365050.236501| 0.2365 | 0.2365 | 0.2365
® Error -0.127700.0764950.1634990.2354990.3004990.331499

Graph 2 Error for indicated power

From Graph 3 total fuel consumption obtained from experimental and theoretical
results are compared, error is calculated and the error is minimum for trail 1 and
maximum for trail 2, the maximum fuel consumption by theoretical method is 0.1909
for trail 6 and by experimental method is 0.191 for trail 5, error is minimum in this
case and no need to change the hidden layers.

From Graph 4, brake thermal efficiency values obtained from experimental and
theoretical results are compared, the error is calculated and the error is minimum all
the trails, the maximum efficiency is obtained for trail 6 in both the cases and no
need to change the hidden layers.
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T.F.C
0.2
0.15
0.1
0.05
0
-0.05 =
g 2 3 4 5 6
W Experimental| 0.076 | 0.105 | 0.13 | 0.153 | 0.174 | 0.191
mTheoritical | 0.076 0.0766590.110721/0.17787 0.1905080.190945
® Error -5.20E-0(0.0283410.019279}4-0.02487|-0.01650(5.50E-05

Graph 3 Error for total fuel consumption

Brake Thermal Efficiency
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® Experimental | 0.0863 | 0.1254 | 0.1583 | 0.1747 | 0.1858 | 0.1832

m Theoritical  0.0869620.1247850.1626030.1767780.1821110.183385
W Error -6.62E-0|6.15E-04-0.00430/-0.002070.003688-1.85E-0

Graph 4 Error for brake thermal efficiency

From Graph 5, mechanical efficiency values obtained from experimental and
theoretical results are compared, error is calculated, and the error is minimum for
trail 1 and maximum for trail 3, the maximum value of mechanical efficiency by
theoretical method is 0.717 for trail 6 and by experimental method is 0.718 for trail
6, so in order to reduce the error the number of hidden layers has to be increased.

From Graph 6, volumetric efficiency values obtained from experimental and the-
oretical results are compared, error is calculated and the error is minimum for trail 2
and maximum for trail 5, the maximum value of volumetric efficiency by theoretical
method is 0.663 for trail 1 and by experimental method is 0.665 for trail 6, so in
order to reduce the error the number of hidden layers has to be increased.
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Mechanical Efficiency
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H Experimental | 0.3234 | 0.4888 0.6 0.661 | 0.702 | 0.718

m Theoritical  0.3234000.3234050.3257230.5330420.7157140.717944
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Graph 5 Error for mechanical efficiency

Volumetric Efficiency
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® Experimental | 0.5846 | 0.6658 | 0.6658 | 0.6658 | 0.6658 | 0.6658

m Theoritical  D.6639360.6626480.5997050.5847770.5846020.584600
m Error -0.079330.0031510.0660940.0810220.0811970.081199

Graph 6 Error for volumetric efficiency

5 Conclusions

The experimental data is trained in MATLAB using neural networks by backpropaga-
tion algorithm and all the error values are measured. By measuring the error deviation
between experimental values and trained values engine performance parameters are
optimized and required changes are suggested in the experimental setup which can
improve the performance of engine so that error values are minimized further. ANN
will be a very good tool to optimize the engines in the future.
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