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Foreword

 

 

Achieving sustainable agricultural production while keeping the environmental 
quality, agroecosystem functions, and biodiversity is a real challenge in the present 
agricultural scenario. The traditional use of chemical inputs (fertilizers, pesticides, 
nutrients, etc.) poses serious threats to crop productivity, soil fertility, and the nutri-
tional value of farm produce. Global concern over the demerits of chemicals in 
agriculture has diverted the attention of researchers toward sustainable agriculture 
by utilizing the potential of plant growth-promoting rhizobacteria (PGPR). 
Therefore, management of pests and diseases, agroecosystem well-being, and 
health issues for humans and animals has become the need of the hour. The use of 
PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant 
health managers has gained considerable attention among researchers, agricultur-
ists, farmers, policymakers, and consumers.

The application of PGPR as a bioinoculant can help in meeting the expected 
demand of global agricultural productivity to feed the world’s booming population, 
which is projected to reach around 9 billion by 2050. However, to be a useful and 
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effective bioinoculant, PGPR strain should possess high rhizosphere compe-
tence,  usefulness to soil rhizobacteria, broad-spectrum activity and tolerance to 
various biotic and abiotic stresses. PGPR-mediated plant growth promotion and 
biocontrol is now gaining worldwide importance and acceptance as eco-friendly 
and effective bioinoculants for sustainable agriculture. However, the performance 
of PGPR is subject to various abiotic factors such as salinity, temperature (high/
low), drought, metal ions, and presence of various toxic compounds. Only those 
PGPR that establish themselves and can manage such abiotic stress can perform 
better as plant growth-promoting and biocontrol agents.

This book, which has 17 chapters encompassing the influence of various abiotic 
factors on the performance of PGPR and written by different experts from India and 
abroad, is to highlight salient features on the application of PGPR in agricultural 
crop plants to lend a hand to scientists working in this field. PGPR in abiotic stress 
management is a timely effort for sustainable agriculture. I compliment the authors 
and hope the teachers and researchers working in this area will make use of this 
publication.

 
RLB Central Agricultural University Prof. Panjab Singh
Jhansi, Uttar Pradesh, India
panjabsingh03@yahoo.com 

Foreword
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Preface

The future of agriculture greatly depends on our ability to enhance crop productivity 
without sacrificing long-term production potential. Agriculture primarily depends 
on the use of natural resources such as land, soil, water, and nutrients. As demand 
for food increases and climate change and natural ecosystem damage imposes new 
constraints, sustainable agriculture has an important role to play in safeguarding 
natural resources, reducing greenhouse gas emissions, halting biodiversity loss, and 
caring for valued agricultural practices. Agricultural productivity rests on the foun-
dation of microbial diversity in the soil. The application of microorganisms, such as 
the diverse bacterial species of plant growth-promoting rhizobacteria (PGPR), rep-
resents an ecologically and economically sustainable strategy for agriculture. PGPR 
are associated with plant roots and augment plant growth and disease management, 
elicit “induced systemic resistance” to salt and drought, and increase nutrient uptake 
from soils, thus reducing the need for fertilizers and preventing the accumulation of 
nitrates in soils. Increased incidences of abiotic and biotic stresses impacting agri-
cultural productivity in principal crops are being witnessed all over the world. 
Extreme events like prolonged droughts, intense rains and flooding, heat waves, and 
frost damages are likely to further increase in the future due to climate change. 
Enhancement of plant drought stress tolerance by PGPR has been increasingly doc-
umented in the literature. However, most studies to date have focused on PGPR- 
plant root interactions, but very little is known about PGPR’s role in mediating 
physiochemical and hydrological changes in the rhizospheric soil that may impact 
plant drought stress tolerance. A reduction in fertilizer use would lessen the effects 
of water contamination from fertilizer runoff and lead to savings for farmers.

There is a need to develop simple and low-cost biological methods for the man-
agement of abiotic stress, which can be used on short-term basis. PGPR could play 
a significant role in this respect if we can exploit their unique properties of tolerance 
to extremities, their ubiquity and genetic diversity, and their interaction with crop 
plants and develop methods for their successful deployment in agriculture 
production.

With the advent of climate change, global agriculture faces a multitude of chal-
lenges. The most prominent among these are abiotic stresses imposed by increased 
incidences of drought, extremes of temperature, and unseasonal flooding. Such 
atmospheric threats, coupled with edaphic stresses, pose severe challenges to food 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nitrate
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/agricultural-soil
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production. While several agronomic and plant breeding strategies have been pro-
posed to overcome these phenomena, the utilization of PGPR is receiving increased 
attention globally.

Achieving sustainable agricultural production while keeping the environmental 
quality, agroecosystem function, and biodiversity is a real challenge in the current 
agricultural practices. The traditional use of chemical fertilizers and pesticides 
poses serious threats to crop productivity, soil fertility, and the nutritional value of 
farm produce. Global concern over the demerits of chemicals in agriculture has 
diverted the attention of researchers toward sustainable agriculture by utilizing 
PGPR. Therefore, management of pests and diseases, agroecosystem well-being, 
and health issues for humans and animals has become the need of the hour. The use 
of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant 
health managers has gained considerable attention among researchers, agricultur-
ists, farmers, policymakers, and consumers.

The application of PGPR as biostimulants can help in meeting the expected 
demand of global agricultural productivity to feed the world’s booming population, 
which is predicted to reach around 9 billion by 2050. However, to be a useful and 
effective bioinoculant, PGPR strains should possess high rhizosphere competence, 
safety to the environment, plant growth promotion and biocontrol potential, com-
patibility with agronomic practices with broad-spectrum activity, and tolerant to 
various biotic and abiotic stresses. In view of this, the need for a better PGPR to 
complement the increasing agro-productivity as one of the crucial drivers of the 
economy has been highlighted.

PGPR-mediated plant growth promotion and biocontrol is now gaining world-
wide importance and acceptance as eco-friendly and effective bioinoculants for sus-
tainable agriculture. However, the performance of PGRR is subject to various 
abiotic factors such as salinity, temperature (high/low), drought, metal ions, and 
presence of various toxic compounds. Only those PPGR that establish themselves 
and can manage such abiotic stress can perform better as plant growth-promoting 
and biocontrol agents.

The prime aim and objective of this book is to highlight salient features on the 
application of PGPR in agricultural crop plants to lend a hand to scientists through-
out the world working in this field. PGPR in abiotic stress management is a timely 
effort for sustainable agriculture. These also provide excellent tools for understand-
ing the stress tolerance, adaptation, and response mechanisms that can be subse-
quently engineered into crop plants to cope with climate change-induced stresses.

This book is composed of 17 chapters encompassing the influence of various 
abiotic factors on the performance of PGPR to comprehend the information that has 
been generated on the abiotic stress-alleviating mechanisms of PGPR and their abi-
otic stress alleviation potential. Agricultural crops grown on saline soils suffer on an 
account of high osmotic stress, nutritional disorders and toxicities, poor soil physi-
cal conditions, and reduced crop productivity. The various chapters in this book 
focus on the enhancement of productivity under stressed conditions and increased 
resistance of plants against salinity stress by the application of PGPR.

Preface
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1The Role of Plant Growth-Promoting 
Rhizobacteria to Modulate Proline 
Biosynthesis in Plants for Salt Stress 
Alleviation

Shamim Ahmed, Aritra Roy Choudhury, 
Poulami Chatterjee, Sandipan Samaddar, Kiyoon Kim, 
Sunyoung Jeon, and Tongmin Sa

Abstract
Soil salinization causes serious problem to environmental resources and human 
health in many countries. Around 1.5 billion hectares of cultivated lands are pres-
ent in the world. It is estimated that almost 5% of the cultivated land (77 million) 
and 6% of total surface land is affected by salinity. Agricultural crops and their 
productivity are severely affected by salt stress. Many physiological mechanisms 
within the plants are regulated when exposed to salt stress. The salinity tolerance 
measurement has a great demand to asses the regulatory variations, growth, and 
survival parameters. Microorganisms that colonize the roots could play a signifi-
cant role in this aspect. Rhizobacteria which possess properties such as salt toler-
ance, nutrient uptake ability, synthesis of compatible solutes, production of plant 
growth-promoting hormones, biocontrol potential, and their interaction with 
crop plants is known as plant growth-promoting rhizobacteria (PGPRs). Proline 
is one of the essential compatible solute for both plant and bacteria to respond 
against osmotic imbalance and ionic toxicity. Proline biosynthesis occurs in 
cytosol and mitochondria of a cell and modulates their functions in various cel-
lular physiological pathways. It can also influence the proliferation and apoptosis 
of cell and regulate specific gene expression to alleviate salt stress. Rhizobacteria 
having plant growth promoting characteristics can be  used as a suitable bio- 
inoculant to promote growth and productivity through different mechanisms in 
addition to the accumulation of proline as osmoregulators.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6536-2_1&domain=pdf
mailto:tomsa@chungbuk.ac.kr
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1.1  Introduction

The recent adversity of salinity is one of the ferine factors for crop production 
around the globe. In addition to global climate change, salt stress causes serious 
reduction of crop production, which accounts up to 20–50% of yield loss (Shrivastava 
and Kumar 2015). Intensive breeding of tolerant varieties, farm improvement, and 
quality resource management can help to overcome salinity stress. Nowadays, these 
technologies are quite intensive, tardy, and prolix (Grover et al. 2011) being less 
eco-friendly to solve that matter. The production of agrochemicals is energetically 
expensive and dependent on fossil fuels that are nonrenewable resources, which 
makes it no longer sustainable.

In agricultural point of view, it is essential to develop an easily applicable tech-
nique for the farmers. Cost-effective biological methods for salinity stress manage-
ment within a short-term basis might be the appropriate alternative. To enhance the 
availability of essential plant nutrients and their mobilization (especially phospho-
rus) for crop production, biological inoculation (living organisms containing strains 
of specific bacteria, fungi, or algae) has high demand. The recent concern is to 
improve the existing bio-inoculation techniques for the development of next- 
generation biofertilizer.

1.2  Salt Stress

Researchers have been studying the various responses of plants to abiotic stress for 
developing techniques which can ramify the stress effect. Salinity stress affects the 
growth and survival of the plant. Due to increase in poor irrigation facilities and soil 
salinization, the soil becomes saline (EC >4 dSm−1) or sodic (EC < 4dSm−1). Sodium 
absorption ratio in saline soil is less than 13 (pH < 8.5) and in sodic soil is more than 
13 (pH < 8.5) (Selvakumar et al. 2014). The plant’s exposure to salinity results in 
negative impact on various physiological and biochemical pathways which affects the 
growth and survivability. Hence, it is important to measure the degree of salinity of a 
particular cultivable land (Albaladejo et al. 2017).

1.2.1  Adverse Effects of Salt Stress in Plant

Salt stress negatively affects the plants in three distinct ways, viz., osmotic imbal-
ance, ionic toxicity, and reduction in nutrient uptake (Selvakumar et  al. 2014). 
Osmotic imbalance due to high salinity condition makes plants harder to take up 
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water by root from that soil. The immediate effect of salt exposure results in loss of 
turgidity, cell dehydration and ultimately cell death. On the other hand, adverse 
effects of salinity on plant growth may also result to impairment of the supply of 
photosynthetic assimilates or hormones to the growing tissues (Ashraf 2004). Under 
salt stress, ionic toxicity occurs through the replacement of K+ by Na+ which induces 
conformational changes in proteins (Maathuis and Amtmann 1999). For several 
enzymes, K+ acts as a cofactor and cannot be substituted by Na+ (Pessarakli 2016). 
Na+ and Cl−ions are mostly uptaken by the cell vacuoles and organic solutes which 
are compatible with metabolic activity even at high concentrations are accumulated 
in the cytosol (Baetz et al. 2016). These compatible solutes helps to balance the 
osmotic pressure of the ions in the vacuoles (Flowers and Colmer 2008). Many cur-
rent studies reported that salt stress not only adversely affects the growth and devel-
opment of plant but also hinders their seed germination, seedling growth, and 
enzyme activity (Seckin et al. 2009). High salinity has been reported to induce ROS 
formation and accumulation in the plant cell (Chawla et al. 2013). Overall, salinity 
has adverse effect on plethora of biochemical and physiological activities of plants 
(Tabur and Demir 2010).

1.2.2  Adverse Effects of Salt Stress in Bacteria

Microbial diversity, composition, and their abundance are also affected by soil 
salinity (Borneman et al. 1996). The bacterial and actinobacterial abundance was 
observed to be drastically reduced when salinity level increased about 5% (Omar 
et al. 1994). NifH expression and nitrogenase activity level were inhibited by nitro-
gen fixation in Azospirillum sp. under salt-containing rhizospheric soil (Tripathi 
et al. 2002). Root exudation and decomposition of organic matter by microorgan-
isms were also affected by increasing salinity of the soil (Ondrasek et al. 2010).

1.3  Potential Use of Bio-inoculant for Salt Stress Alleviation

Microorganisms, which can colonize the roots, might play a significant role for the 
alleviation of salt stress. The exploitation of their unique properties for salt toler-
ance can be considered for development of effective bio-inoculant for plant growth 
promotion and salt stress alleviation. The general properties for the development of 
a potential bio-inoculant should include salt tolerance, production of plant growth- 
promoting hormones, genetic diversity, synthesis of compatible solutes, and their 
positive interaction with crop plants. An increasing number of farmers are choosing 
biofertilizers (Chatzipavlidis et al. 2013) since they are harmless for the soil and can 
help reduce the negative impact of global climate change. Biofertilizers can supple-
ment nutrients to plants, particularly micronutrients, and contribute to increasing 
soil organic matter, in addition to being active in small numbers and able to self- 
multiply (Berg 2009).

1 The Role of Plant Growth-Promoting Rhizobacteria to Modulate Proline…
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1.4  Microorganisms for the Alleviation of Salt Stress

Beneficial soil microorganisms can promote growth and increase productivity 
through various mechanisms such as nutrient mobilization, hormone secretion, and 
disease suppression (Table 1.1). It is also becoming clear that their effects will be 
more far-reaching. Diverse halotolerant bacterial groups mostly belong to four 
phyla, δ-Proteobacteria, α-Proteobacteria, Bacteroidetes, and Verrucomicrobia, 
which are involved in alleviating salt stress. The genera Microbulbifer 
(Alteromonadales), Pelagibius (Rhodospirillales), Halomonas (Oceanospirillales), 
Marinoscillum (Sphingobacteriales), Fulvivirga (Flexibacteraceae), Haloferula 
(Verrucomicrobiales), Pelagicoccus (Puniceicoccales), and Marinobacter 
(Alteromonadales) were exclusively enriched in the rhizospheric soil, with the 
exception that Marinobacter was more abundant in the root endosphere than in the 
bulk or rhizosphere soil (Yuan et al. 2016) (Table 1.1).

1.5  The Role of Plant Growth-Promoting Rhizobacteria 
(PGPRs) for the Alleviation of Salt Stress

Plant growth-promoting rhizobacteria (PGPRs) could enhance crop yield under 
salinity conditions through nutrient uptake and plant growth-promoting characteris-
tics (Fig. 1.1). PGPR as rhizo-remediators could prevent the deleterious effects of 
xenobiotics and act as biocontrol agents by producing antibiotics (Bouizgarne 
2013). They can trigger induced local or systemic resistance for biotic and abiotic 
stress tolerance (Jacobsen 1997; Somers et al. 2004; Aseri et al. 2008; Glick et al. 
2007; Van Loon 2007). Instead of using chemical fertilizer, their application as bio- 
inoculants for agricultural purposes would be a suitable alternative (Bloemberg and 
Lugtenberg 2001; Vessey 2003). The dominant α-Proteobacteria and γ-Proteobacteria 
communities in bulk soil and root endosphere tend to be phylogenetically clustered 
and contribute to salt stress acclimatization, nutrient solubilization, and competitive 
root colonization (Yuan et al. 2016). The effective existence of bacteria in the saline 
environment due to excessive accumulation of secondary metabolites may result in 
better root colonization and plant growth. Accumulation of small organic molecules 
also known as compatible solutes in response to salinity is reported in all living 
groups to a variable extent (Saharan and Nehra 2011).

1.6  Importance of Compatible Solutes to Mitigate Salt 
Stress After Inoculation of PGPRs

Compatible solutes are usually nontoxic, low molecular weight organic compounds 
and easily soluble at high cellular concentrations (Hayat et al. 2012). At low con-
centrations, these solutes presumably have another role, perhaps in stabilizing the 
tertiary structure of proteins, and function as osmoprotectants. These solutes pro-
vide protection to plants from stress by contributing to cellular osmotic adjustment, 
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Table 1.1 List of bacterial endophytes with the possible mechanism of alleviating salt stress

Pathway Bacteria Plants References
Cytokinin signaling 
and stimulation of 
shoot biomass

Bacillus subtilis Lactuca sativa Arkhipova et al. 
(2007)

Expression of salt 
stress-related RAB18 
plant gene

Root-associated plant 
growth-promoting 
rhizobacteria (PGPRs)

Oryza sativa Jha et al. (2014)

Tissue-specific 
regulation of sodium 
transporter HKT1

Bacillus subtilis GB03 Arabidopsis 
thaliana

Zhang et al. (2008)

SA-dependent pathway Pseudomonas syringae 
DC3000, Bacillus sp. 
strain L81, Arthrobacter 
oxidans

Arabidopsis 
thaliana

Barriuso et al. (2008)

4-Nitroguaiacol and 
quinoline promoter

Pseudomonas simiae Soybean seed 
germination

Vaishnav et al. (2016)

Phytohormones as 
elicitor molecule

Cyanobacteria and 
cyanobacterial extracts

Oryza sativa, 
Triticum 
aestivum, Zea 
mays, 
Gossypium 
hirsutum

Singh (2014)

Reduction in Na+ level 
and increase in K+ 
level

Pseudomonas koreensis 
strain AK-1

Glycine max 
L. Merrill

Kasotia et al. (2015)

High hydraulic 
conductance, increased 
root expression of two 
ZmPIP isoforms

Bacillus megaterium Zea mays Marulanda et al. 
(2010)

High osmotic root 
hydraulic conductance 
due to increased active 
solute transport 
through roots

Glomus intraradices 
BEG 123

Phaseolus 
vulgaris

Aroca et al. (2007)

Increased root but 
decreased shoot proline 
concentrations

Glomus etunicatum Glycine max Sharifi et al. (2007)

Reduction of proline 
content

Brachybacterium 
saurashtrense, 
Brevibacterium casei, 
Haererohalobacter sp.

Peanut (Arachis 
hypogaea)

Shukla et al. (2012)

Increased accumulation 
of proline

Burkholderia, 
Arthrobacter, and 
Bacillus

Vitis vinifera, 
Capsicum 
annuum

Barka et al. (2006)

Phytohormone 
production and proline 
accumulation

Azospirillum sp. Wheat (T. 
aestivum)

Zarea et al. (2012), 
Bal et al. (2013)B. aquimaris SU8

(continued)
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Table 1.1 (continued)

Pathway Bacteria Plants References
Accumulation of 
carbohydrates

Glomus fasciculatum Phragmites 
australis

Al-Garni (2006), 
Porcel and Ruiz- 
Lozano (2004)Glomus intraradices Glycine ma

High stomatal 
conductance and 
photosynthesis

Azospirillum brasilense 
and Pantoea dispersa 
(co-inoculation)

Capsicum 
annuum

del Amor and 
Cuadra-Crespo (2012)

Decreased root and 
shoot Na+ 
accumulation and 
enhanced root K+ 
concentrations

Glomus intraradices 
BAFC 3108

Lotus glaber Sannazzaro et al. 
(2006), Rabie (2005), 
Daei et al. (2009), 
Kaya et al. (2009)

Vigna radiata,. 
Capsicum 
annuum,. 
Triticum 
aestivum

Glomus clarum
Glomus etunicatum

Decreased root 
transcriptional 
expression of a 
high-affinity K+ 
transporter (AtHKT1) 
decreasing root Na+ 
import

Bacillus subtilis Arabidopsis Zhang et al. (2008)

Exopolysaccharide 
production, and 
reduced availability of 
Na+ for plant uptake

Exopolysaccharide- 
producing bacteria, i.e., 
Bacillus, Burkholderia, 
Enterobacter, 
Microbacterium, 
Paenibacillus

Wheat (T. 
aestivum)

Ashraf and Harris 
(2004), Ashraf (2004), 
Kohler et al. (2006), 
Nadeem et al. (2010), 
Upadhyay et al. 
(2011), Aroca et al. 
(2008)

Mung bean

Reduced concentration 
of ABA

Glomus intraradices 
BEG121

Lactuca sativa Aroca et al. (2008), 
Yao et al. (2010)

Pseudomonas putida 
Rs-198

Gossypium 
hirsutum

Stimulation of 
persistent exudation of 
flavonoids

Azospirillum brasilense 
strain Cd

Phaseolus 
vulgaris

Dardanelli et al. 
(2008)

Root-to-shoot 
cytokinin signaling and 
stimulation of shoot 
biomass

Bacillus subtilis Lactuca sativa Arkhipova et al. 
(2007)

Enhanced antioxidant 
responses through 
ROS-scavenging 
enzymes

Bacillus safensis, 
Ochrobactrum 
pseudogregnonense 
Enterobacter sp. UPMR1

Wheat (Triticum 
aestivum)

Chakraborty (2013), 
Habib et al. (2016)

Okra

(continued)
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Table 1.1 (continued)

Pathway Bacteria Plants References
Degrading ACC 
produced and therefore 
reduced elevated 
ethylene level

Pseudomonas putida, 
Enterobacter cloacae, 
Serratia ficaria, and P. 
fluorescens

Wheat (T. 
aestivum)

Nadeem et al. (2013), 
Karthikeyan et al. 
(2012), Ali et al. 
(2014)

Catharanthus 
roseus
Avocado 
(Persea 
gratissima)

Achromobacter 
xylosoxidans
Arthrobacter 
protophormiae
AUM54 Pseudomonas 
fluorescens YsS6

Rice (Oryza 
sativa)

P. migulae8R6
Bacillus sp., Variovorax 
sp.
Alcaligenes faecalis, 
Bacillus pumilus, 
Ochrobactrum sp.

Ascorbate peroxidase 
(APX), catalase (CAT), 
and glutathione 
reductase (GR) activity

B. subtilis, Arthrobacter 
sp.

Wheat (T. 
aestivum)

Upadhyay et al. (2012)

Biofilm, 
exopolysaccharide, and 
accumulated osmolytes

Staphylococcus 
saprophyticus (ST1)

Lens esculenta 
var. masoor 93

Arevalo-Ferro et al. 
(2005)

Nematodes carry more 
bacteria on their cuticle 
and increase 
colonization

P. fuorescens10586, P. 
fluorescens SBW25

Triticum 
aestivum var. 
Savannah

Knox et al. (2003)

B. subtilis
P. corrugata

Increased stomatal 
conductance and 
transpiration rate

B. drentensis Mung bean Mahmood et al. 
(2016), Ahmad et al. 
(2013)

Phytohormone 
production

P. extremorientalis, P. 
chlororaphis

Common bean 
(Phaseolus 
vulgaris)

Egamberdieva et al. 
(2011)

Production of gluconic 
acid, ACC deaminase, 
phytohormones

P. pseudoalcaligenes, B. 
pumilus

Rice (O. sativa) Jha et al. (2013), 
Rojas-Tapias et al. 
(2012)Azotobacter 

chroococcum
Maize (Z. mays)

Indolyl-3-acetic acid 
(IAA) and auxin 
increased

Streptomyces sp. Wheat (T. 
aestivum)

Sadeghi et al. (2012)

Reduced production of 
ethylene and increased 
uptake of phosphorous 
and potassium

Achromobacter 
piechaudii

Tomato (L. 
esculentum)

Mayak et al. (2004)

1 The Role of Plant Growth-Promoting Rhizobacteria to Modulate Proline…
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ROS detoxification, protection of membrane integrity, and enzyme/protein stabili-
zation (Hayat et al. 2012). Very important compatible solutes are proline, ectoine, 
trehalose, polyols, and sucrose and quaternary ammonium compounds (QACs) such 
as glycine betaine, proline, alanine, and percolate.

Accumulation of these osmolytes in bacteria and plants is an indicator of salt 
tolerance in response to salt stress (Bremer 2000; Gul et al. 2013). Many species of 
bacteria respond to increase in osmotic pressure by accumulating osmoregulatory 
solutes, so-called compatible solutes, up to high intracellular concentrations for 
coping with high external salinity. In many halophytes, proline or glycine betaine 
occurs at sufficiently high concentrations in leaves to compensate the osmotic stress 
on the cell. The concentration of compatible solutes rise up to 40 mM/tissue water 
when the osmotic pressure rises above 01. MPa (Flowers et al. 1977). To maintain 
turgor pressure in highly saline environments, considerable concentrations of sol-
utes need to be accumulated in the cells (Imhoff 1986).

Fig. 1.1 Mechanism of plant salt tolerance induced by plant growth-promoting rhizobacteria 
(PGPRs)

S. Ahmed et al.
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1.7  Proline as an Influential Compatible Solute for Stress 
Responses After PGPR Inoculation

Plants usually produce substantial amount of various compatible organic solutes 
under stress conditions, most commonly proline and glycine betaine (Serraj and 
Sinclair 2002). Proline as an osmoprotectant was discovered first in bacteria, and 
the relationship between proline accumulation and salt tolerance was also noticed 
(Csonka et  al. 1988; Csonka and Hanson 1991). A wide variety of bacteria and 
plants respond to osmotic stress or dehydration by increasing their cellular proline 
levels. Proline accumulation is a sensitive physiological index for the response of 
plants to salt and other stresses (Liang et al. 2013) to maintain higher leaf water 
potential and to keep plants protected against oxidative stress (Lutts et al. 1999). On 
the other hand, proline also stabilizes many functional units such as ribulose bispho-
sphate carboxylase/oxygenase (RUBISCO) enzymes and complex II electron trans-
port (Mäkelä et  al. 2000). Proline helps the plant cell to alleviate salt stress by 
stabilizing subcellular structures like proteins and membranes (Huang et al. 2009). 
Proline also helps in scavenging free radicals and buffering cellular redox potential 
(Ashraf and Foolad 2007; Kohler et al. 2009). Increased total soluble sugar (TSS) 
content of plants under salinity stress is another vital defense strategy to cope with 
salinity stress. An increased amount of proline and total soluble sugar in wheat 
plants inoculated with PGPR significantly contributed to their osmotolerance 
(Upadhyay et al. 2012).

It is suggested that proline accumulation is a symptom of salt stress injury in rice 
and that its accumulation in salt-sensitive plants results from an increase in ornithine- 
δ- aminotransferase (OAT) activity and an increase in the endogenous pool of its 
precursor glutamate (Mansour and Ali 2017). Proline concentration in leaves, stems, 
and roots will increase under salt stress conditions. Proline also acts as a signaling 
molecule for antioxidative defense pathway and has metal chelating activity. The 
enzymes ∆1-pyrroline-5-carboxylate synthetase (P5CS) and ∆1-pyrroline-5- 
carboxylate reductase (P5CR) are responsible for proline biosynthesis from its pre-
cursor, glutamate. The other pathway to synthesize proline is from ornithine, which 
is converted via ornithine-δ-aminotransferase (OAT) to γ-glutamate-semialdehyde 
(GSA) into ∆1-pyrroline-5-carboxylate (P5C) (Liang et al. 2013). The enzymes pro-
line dehydrogenase (PDH) and P5C dehydrogenase (P5CDH) catabolize proline 
back to glutamate.

1.7.1  Proline Biosynthesis Under Stress Order

Ubiquitous pathway for proline biosynthesis is to derive glutamate via phosphoryla-
tion to γ-glutamyl phosphate by the activation of the γ-glutamyl kinase enzyme. The 
biosynthesis of proline from glutamate is catalyzed by three enzymatic reactions 
which are catayzed by γ-glutamyl kinase (GK; proB product), γ-glutamyl phos-
phate reductase (proA product), and Δ1-pyrroline-5-carboxylate reductase (proI 
product). In general, proI on the chromosome is so distant from the operon 
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constituted by proB and proA genes. Three proline transport systems including pro-
line permease gene (PutP), ProP, and ProU were possessed by gram-negative bacte-
ria E.coli and S. typhimurium (Sleator and Hill 2002). Proline was individually 
transported as a carbon or nitrogen source by PutP system (Sleator and Hill 2002), 
which plays little role in osmoadaptation. The PutP is a high affinity system which 
has significant homologies with PutP of E. coli, which is responsible for transport-
ing proline in the cellular system. Proline was uptaken by this system, which acts 
independently to osmotic stimulation.

Proline accumulation in plants under stress condition usually occurred from two 
different precursors, glutamate and ornithine. Proline converted from glutamate is 
the first pathway, which involves two successive reductions: catalyzed (i) pyrroline- 
5- carboxylate synthase (P5CS) and (ii) pyrroline-5-carboxylate reductase (P5CR), 
respectively. P5CS is a bifunctional enzyme catalyzed first from the activation of 
glutamate by phosphorylation and second the reduction of the labile intermediate 
γ-glutamyl phosphate into glutamate semialdehyde (GSA), which is in equilibrium 
with the P5C form (Hu et al. 1992). Mitochondrial enzyme ornithine is an alterna-
tive precursor for Proline biosynthesis. It can be transaminated by ornithine-δ- 
amino transferase (OAT) to P5C. Glutamate pathway is the central pathway during 
osmotic stress. However, in young Arabidopsis plants, the ornithine pathway seems 
to contribute, and δ-OAT activity is enhanced (Roosens et al. 1998).

1.7.2  Proline Degradation

Proline degradation is a rate-determining step of its pathway similar to proline bio-
synthesis. Proline can be degraded by proline dehydrogenase (PDH) and P5C dehy-
drogenase (P5CDH) enzymes. Proline degradation takes place in the mitochondria, 
while biosynthesis occurs in the cytosol and the plastids of the green tissues (e.g., 
chloroplasts) (Elthon and Stewart 1981; Rayapati et al. 1989; Szoke et al. 1992). 
Most of the plants like Arabidopsis have two functional Proline dehydrogenase 
(PDH) isoforms, (i) Proline dehydrogenase-1 (PDH1) and (ii) Proline dehydroge-
nase- 2 (PDH2), which are localized in the mitochondria (Funck et al. 2010; Kiyosue 
et al. 1996). PDH1 is predominant isoform in plant and present in higher amount 
than PDH2. It is mainly expressed in the vasculature of leaves (Funck et al. 2010). 
Funck et al. (2010) suggested that proline degradation in the vasculature may pro-
vide essential energy for the plant during stress exposure.

Proline acts as a vital energy source for recovery phase under salinity stress 
(Szabados and Savoure 2010; Hare and Cress 1997). The salient feature of proline 
catabolism is to drive the oxidative phosphorylation in plants. The PDH1 mutant 
Arabidopsis showed significantly lower oxygen consumption in the root apex 
(Sharma et al. 2011). The recovering tissues in mitochondria get help to drive oxida-
tive phosphorylation and ATP synthesis from proline oxidative metabolism. PDH 
and P5CDH expression are similarly increased during stress recovery phase 
(Kiyosue et al. 1996).

S. Ahmed et al.
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1.7.3  Importance of Proline to Alleviate Stress

In response to environmental stress, proline is accumulated naturally in plants simi-
lar to other microorganisms including protozoa and algae and bacteria (Csonka 
1981a; Matysik et al. 2002; Szabados and Savoure 2010; Verbruggen and Hermans 
2008). Plants recover from stress condition by the accumulation of proline as a sig-
naling molecule. Proline can leverage cell proliferation or cell death and mitochon-
drial stress functions and regulate specific gene expression. Genetic modification of 
proline metabolism could escort new opportunities to boost plant tolerance from 
environmental stresses. The intracellular proline levels have been increased by more 
than 100-fold in plants during stress (Handa et al. 1983; Verbruggen and Hermans 
2008). The plants tend to accumulate proline during salt stress (Yoshiba et al. 1995), 
drought stress (Barnett and Naylor 1966; Choudhary et al. 2005), heavy metal stress 
(Chen et al. 2001), UV radiation exposure (Saradhi et al. 1995), pathogen infection 
(Fabro et al. 2004) and oxidative stress (Yang et al. 2009). Exo- and endogenously 
manipulating proline levels (Hare et  al. 1999) under stress conditions in plants 
involve reciprocal regulation of P5CS and PDH (Liang et al. 2013). Overexpression 
of P5CS in tobacco results in higher levels of proline, enhanced osmotolerance, 
flower development, and increased root biomass (Hare et  al. 1999; Hong et  al. 
2000). Proline plays a vital role in scavenging hydroxyl radicals (Smirnoff and 
Cumbes 1989), chelating heavy metals (Farago and Mullen 1979), and reducing 
metal uptake (Wu et al. 1998) in the cytoplasm.

Proline has since been shown to accumulate high intracellular concentrations in 
a variety of bacteria, following exposure to osmotic stress (Measures 1975). 
Intracellular proline pool of many gram-positive bacteria has been shown to increase 
by cellular biosynthesis (Cayley et al. 1992; Whatmore and Reed 1990), whereas 
gram-negative bacteria achieve higher proline concentration by enhanced transport 
system during osmotic stress (Sleator and Hill 2002). Proline has been accounted as 
the most substantial part of amino acid accumulation in response to osmotic stress 
for gram-negative and gram-positive bacterial strains (Imhoff 1986; Hua et  al. 
1982). The intracellular proline level was elevated with increase in osmolarity of the 
medium (Perroud and Le Rudulier 1985; Imhoff 1986).

The primary response to high salinity in bacterial cell (E. coli) is the accumula-
tion of K+ and glutamate. The K+ accumulation in the cell takes place through the 
action of Kdp (ion-motive P-type ATPase) and Trk (Potassium transport proteins) 
system (Sasaki et al. 2013). The accumulation of proline or glycine betaine in the 
cytosol upregulates the activity of Kef system (Potassium efflux system) which in 
turn depletes the glutamate pool (Sasaki et al. 2013). In various non-halophilic bac-
teria, the total amino acid pool increases with the increase in external osmolarity, 
and specifically it was noticed that proline accumulation is significant (Imhoff 
1986). In general, bacterial species which accumulate proline are more salt tolerant 
than those which do not. Accumulation of osmolytes in bacterial strains at higher 
salinity might be involved for their adaptation to saline environments in the soil for 
improving plant growth.

1 The Role of Plant Growth-Promoting Rhizobacteria to Modulate Proline…

https://en.wikipedia.org/wiki/Potassium_ion_channels
https://en.wikipedia.org/wiki/Transport
https://en.wikipedia.org/wiki/Protein


12

1.7.4  Proline Acts as ROS Scavenger as Well as Signaling 
Molecule

The hydrogen peroxide and hydroxyl ions can react with free and polypeptide- 
bound proline (pH 7–8) to form stable free radical adducts of proline and hydroxy-
proline (e.g., 4-hydroxyproline and 3-hydroxyproline) (Floyd and Nagy 1984; Kaul 
et al. 2008; Requena et al. 2001; Rustgi et al. 1977; Trelstad et al. 1981). The reac-
tion of hydrogen peroxide and proline has been evidenced as a very slow process, 
which is also reported for reaction withO2

.−. On the other hand, the facile reaction of 
proline with singlet oxygen (1O2) is an essential ROS-scavenging mechanism for 
stress alleviation.

Ali et al. (2014) reported that the production of 1O2 in the thylakoids from the 
cotyledons of Brassica juncea was dramatically suppressed by proline when the 
plants were exposed in high illumination (Saradhi and Mohanty 1997). Due to its 
action as a 1O2 quencher, proline may help stabilize proteins, DNA, and membranes 
(Matysik et  al. 2002). Prolyl residues in proteins also provide protection against 
oxidative stress caused by 1O2 (Fig. 1.2).

1.7.5  Distinct Attribute of Proline Metabolism During Stress

Proline has an advantage of being the terminal product of analogously short and high 
regulated pathway compared to other amino acids (Hare and Cress 1997). Proline 
and its immediate precursor P5C are not interconvertible, but by the action of two 
distinct enzymes with different mechanisms, proline catabolism can occur in a dis-
tinct subcellular compartment (Phang 1985). Therefore, since a single equilibrium 
reaction does not link proline and P5C, the final product of the proline biosynthetic 

Fig. 1.2 ROS scavenging mechanisms of proline
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pathway is not necessarily in equilibrium with its immediate precursor, as its 
α-nitrogen is a secondary amine. Proline cannot participate in the transamination or 
decarboxylation reactions common to other amino acids (Phang 1985). Furthermore, 
oxidation of proline results in the formation of 30 ATP equivalents, which is stored 
in the cells as energy currency (Hare and Cress 1997). These two features are likely 
to have contributed substantially to a role for proline in plants as a resource of value 
either in the acclimation to stress or in recovery upon relief from stress.

1.7.6  Characteristic Feature of Proline Under Stress Condition

The molecular mechanisms of how proline protects cells during stress are not fully 
understood but appear to involve its chemical properties and effects on redox sys-
tems such as the glutathione (GSH) pool. Its property often explains the function of 
proline in stress adaptation as an osmolyte and its ability to balance water stress 
(Delauney and Verma 1993). However, adverse environmental conditions often per-
turb to intracellular redox homeostasis and hence counteract oxidative stress. Thus, 
protective mechanisms of proline have also been proposed to involve the stabiliza-
tion of proteins and antioxidant enzymes, direct scavenging of ROS, balance of 
intracellular redox homeostasis (e.g., ratio of NADP+/NADPH and GSH/GSSG), 
and cellular signaling promoted by proline metabolism.

1.8  Proline Accumulation Thought to Be an Alternative 
to Mitigate Salt Stress Through PGPR Inoculation

The accumulation of proline is beneficial for survival during osmolarity imbalance 
in bacteria, because mutants of such bacteria confer proline overproduction, which 
enhanced tolerance during osmotic stress (Csonka 1981b). Increased accumulation 
of proline has been reported in soybean and wheat plants upon inoculation with 
PGPR strains which alleviated salinity stress and improved growth (Han and Lee 
2005; Zarea et al. 2012). Azospirillum inoculation has also been reported to accu-
mulate proline (Bashan 1999; Casanovas et al. 2003) in plants during salinity stress 
conditions. Maximum accumulation of proline (298 μgg−1 fresh weights) was 
observed at 1.5 M NaCl stress for the strain Staphylococcus haemolyticus (ST-9), 
and further accumulation decreased toward increasing salt concentrations (Qurashi 
and Sabri 2013). Generally, there was a maximum accumulation of proline as com-
pared to glycine betaine and choline in bacterial strains except for a few cases, i.e., 
0.5 M for Staphylococcus haemolyticus (ST-9) and Bacillus subtilis (RH-4) and 1 M 
for Bacillus subtilis (RH-4) where glycine betaine accumulation was maximum 
(Qurashi and Sabri 2013). The previous studies have showed that the accumulation 
of proline during salt stress conditions tend to enhance the salt tolerance ability of 
plants and bacteria. Hence, proline has its noteworthy disposition to alleviate salt 
stress on plants as well as microorganisms.
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1.9  Conclusion and Future Prospects

Overexpressing proline via transgenic approaches usually resulted in elevated con-
centrations and improved stress tolerance. PGPRs can alleviate plethora of abiotic 
stresses such as drought and salt stress through multiple mechanisms. The accumu-
lation of osmolytes such as proline is one of those mechanisms which is believed to 
play an important role in amelioration of such stress conditions. Moreover, the bal-
ance between biosynthesis and degradation of Proline is also thought to be essential 
in the determination of the osmoprotective and developmental functions of this 
compatible solute. Other protective functions have been suggested for low proline 
levels, as it may stabilize proteins and membranes, scavenge ROS, and thus mini-
mize cell damage. Halophytic PGPRs have their own mechanisms for osmotoler-
ance and significant beneficiary activities to the plant under salt stress through 
proline accumulation.

Inoculation of PGPRs increases salt tolerance through a plethora of mechanisms. 
Proline accumulation is an important compatible solute which has been proposed to 
play an important role.

Proline can act as a signaling molecule to modulate mitochondrial functions, 
influence cell proliferation or cell death, and provoke specific gene expression, 
which can be essential for plant recovery from stress. Understanding the interaction 
between a consortium of microbial inoculants and plant systems will pave a way to 
harness more benefits from inoculation as well as proline accumulation to improve 
plant growth and enhance tolerance to stress.
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Abstract
A large number of studies have indicated that salinity stress and saline soils are 
cruel environmental limiting factors that retard the growth of crop plants. Present 
scenario of climate change will further increase the border of the area affected by 
saline soils, and therefore this phenomenon will threaten the productivity of 
crops leading to depletion of food sources of human societies. Various strategies 
including soil quality management policies, improving crop resistance against 
salinity stress, detoxification of noxious ions, improving the quality of irrigation 
water, and many other effects need to be examined to decrease the detrimental 
consequences associated with saline soils. In this context, the use of microorgan-
isms especially plant growth-promoting rhizobacteria (PGPR) has been proposed 
as a sustainable way to fortify the quality of soils to help crop plants grow under 
salinity stress. Recent advances in molecular soil biology studies suggested that 
PGPR are involved in the important physiological process associated with plant 
growth and development. Among the other mechanisms, improvement in water 
and nutrient uptake, decrease in the toxicity of hazardous ions, amelioration of 
photosynthesis, improvement in nitrogen fixation, regulation/modulation of 
physiological signaling networks are the common features exhibited by PGPR to 
enhance the growth of plants in saline soils. Thus, it should be noted that these 
miracle bacterial species are legendary soil guards to protect both soil texture 
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and crop plants from salinity stress in the light of present and upcoming global 
climate changes.

Keywords
PGPR · Salt stress · Phytohormones · Osmoregulation

2.1  Introduction

The upcoming global climate changes have drastically affected the productivity of 
crop plants. The increased weather temperature, an imbalance in CO2 concentration, 
the delayed winter rainfall pattern, the drought stress, the modified micro- and 
macro-ecosystems, and more importantly soil salinity are the key issues associated 
with global climate changes. The constant erosion of the earth’s crust causes the 
worldwide geological changes. The main, and perhaps most important, consequent 
associated with earth erosion is the exchange of soil ion contents. An enormous 
number of chemical compounds including sodium, calcium, chloride sulfate, car-
bonate, manganese, and other mineral and non-mineral elements are deformed or 
widely spread throughout the soil texture.

The presence of these elements in the soil will change the quality of soils (espe-
cially those are currently used to cultivate crop plants), and therefore they will lose 
their potential to provide water and nutritional elements for plants to grow 
(Amozadeh and Fazeli-Nasab 2012). In addition to the earth’s crust erosion, the 
quality of irrigation water is another important factor to change the portion of toxic 
ions in soils. Many studies have reported that the excessive irrigation and poor/
inadequate drainage are two factors that increase the salinity of soils (Ilangumaran 
and Smith 2017). Though the amount of stored salts in the soil structure is directly 
dependent on soil type, nonetheless the quality and quantity of water for irrigation 
can enhance the soil salinity by changing the total amount of ions present in each 
layer of soils (Phogat et al. 2018).

Normally, irrigation water contains 0.1–4 kg m−2 salt, and this amount of water 
is used annually in 1–1.5 m. So, an annual amount of 1–160 tons per hectare of salt 
is added to agricultural land. Irrigation water evaporates and its salts remain in the 
soil. For saltiness, these salts should be removed from the root area of the plants by 
leaching and drainage techniques. There is also evidence that farmers traditionally 
replaced resistant plants with susceptible plants, in dealing with the salinity prob-
lem. However, use of substitute plants to deal with salinity is likely to be used as a 
method for a long time before the leaching technique. Substitution of saline- resistant 
plants is used instead of susceptible plants in saline soils in the world. Some plants, 
such as sugar beet, barley, cotton, sugarcane, asparagus, and dates, have a high 
resistance to salinity (Kafi and Mahdavi-Damghani 2005).

The increasing demand for food production (especially for cereal plants) with a 
significant reduction in the use of chemical agents including herbicides, fungicides, 
pesticides, and synthetic fertilizers is a huge global concern to affect the future of 

B. Fazeli-Nasab and R. Z. Sayyed



23

agricultural systems. A huge number of scientific studies have reported that PGPR 
are environmental friendly microorganisms to increase the productivity of crop 
plants in modern agriculture epoch. In addition to their roles in the preparation of 
mineral and other chemical compounds for plant root system, they also exhibit their 
biological activities through direct and/or indirect interaction with other soil micro-
organisms to provide specific environment to fortify the growth of plants (Vejan 
et al. 2016). PGPR can protect plants from the harmful effects of pertaining to the 
environmental stresses including flooding, drought, salinity, heavy metals, and phy-
topathogens (Mayak et  al. 2004; Yildirim et  al. 2006) and also manage some of 
these operates through specific enzymes, which stimulate physiological changes in 
plants at the molecular level. Among these enzymes, ACC deaminase regulates 
plant hormones such as ethylene (Glick 2005; Arshad and Frankenberger 2012); on 
the other hand, PGPR stimulate plant growth through the activity of the enzyme 
ACC deaminase, which causes lower plant ethylene levels resulting in longer roots 
(Shah et al. 1998).

2.2  Salinity

Salinity is one of the major limiting factors that cause osmotic stress and decrease 
plant growth and crop productivity in arid and semiarid regions. In salinity process, 
increase in concentration of soluble salts in the root zone is one of the major com-
plications, and also the rhizospheric populations affect the plant productivity (Cicek 
and Cakirlar 2002; Tank and Saraf 2010; Fazeli-Nasab 2018).

2.3  Adverse Effects of Salinity

2.3.1  Physiological and Morphological Disturbances

Salt stress reduces many aspects of plant metabolism like growth and yield. Salinity 
stress increases Na+, which eventually decreases Ca2+ and K+ (Yildirim et al. 2006). 
Accumulation of Na+ can cause metabolic disturbances in some processes where 
Na+ (low) and K+ or Ca+2 (high) are required for optimal functioning and growth 
(Marschner 1995; Xu et al. 1999). The ability of cells to save salts is exhausted; salts 
build up in the intercellular space and then kill cells and organs (Sheldon et  al. 
2004). At higher status of available salt, the leaf area, size, and leaf production are 
reduced leading to the death of the plant (Suárez and Medina 2005).

2.3.2  Disturbances in Photosynthesis

Increasing salinity in the soil decreased some plant mechanisms like photosynthe-
sis, chlorophyll content, and stomatal conductance, and all of these mechanisms 
will decrease photosynthetic capacity due to the osmotic stress and partial closure 
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of stomata (Drew et al. 1990; Han and Lee 2005; Azad et al. 2017). Accumulation 
of Cl− disrupts photosynthetic cycle.

2.3.3  Effects on Plant Growth and Crop Yield

Soil salinity limits plant growth and crop production in many parts of the world, 
particularly in arid and semiarid areas. However plants can suffer from membrane 
destabilization and general nutrient imbalance (Hasegawa et al. 2000; Parida and 
Das 2005). Plants after exposure by salt accumulate different molecules in their 
organics like proline, glucose, and glycine betaine.

Salinity tolerance can be defined by maintaining plant growth in an environment 
containing NaCl or a mixture of salts. Bray (1997) defined salt tolerance as having 
a negative effect on the growth of plants that store salt in their tissues, and also Maas 
and Hoffman classified crops into four groups on the basis of their tolerance to 
salinity: (i) relatively tolerant plants, (ii) resistant plants, (iii) semi-sensitive plants, 
and (iv) sensitive plants (Table 2.1).

2.3.4  Mechanisms to Combat Salinity Stress

Most of the salinity problems in higher plants are due to an increase in sodium chlo-
ride, which has spread to soils in the dry and coastal areas and their water resources. 
The high salinity of sodium chloride causes at least three types of problems in 
higher plants: (1) The osmotic pressure of the external solution results in an increase 
in the osmotic pressure of the plant cells, which requires osmotic regulation of the 
plant cells in order to avoid waste. (2) Removal and transfer of nutrients such as 
potassium and calcium ions are interrupted by excess sodium. (3) High levels of 
sodium and chlorine produce direct toxic effects on membrane and enzyme 

Table 2.1 Grain tolerance to salinity in some important crops (Maas and Hoffman 1977)

Crop Salinity level threshold ds/m Crop Salinity level threshold ds/m

(i) Relatively tolerant plants (ii) Resistant plants
Cowpea 4.9 Sugar beet 7
Soybean 5 Cotton 7.7
Wheat 6 Barley 8
Durum wheat 5.7 Chicken 6.9
Sorghum 6.8 Wheat grass 7.5
(iii) Semi-sensitive plants (iv) Sensitive plants
Alfalfa 2 Bean 1
Corn 1.7 Carrot 1
Rice 3 Orange 1.7
Tomato 2.5 Peach 1.7
Sugarcane 1.7 Apricot 1.6
Lettuce 1.3 Plum 1.5
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systems. Osmotic stress is induced in plants under drought stress conditions, and 
since about 100 years ago, the term salinity stress is a form of physiological drought 
(Rengel 1992; Ding et al. 2018).

Some of the mechanisms for avoiding salinity are presence of small leaves to 
reduce transpiration, fewer stomata per leaf area, the presence of thick cuticle, and 
an increase in root-to-crown ratio. In the atmosphere, by regulating the osmotic 
content of sugars, the Na+ and Cl− levels are limited to the limb (Reich et al. 2017).

Resistance to salinity can be elevated through five major strategies:

 1. Resistance to salinity in plants by improving traditional breeding and selection.
 2. In the development of plants, along with their ancestors, they may acquire the trait of salinity 

resistance.
 3. Farming of species that have salt tolerance (halophytes) can be identified, cloned, and inocu-

lated by modification and selection for the development of their agronomic characteristics.
 4. Salinity resistance genes.
 5. Salinity-resistant plant growth-promoting rhizobacteria (Carter et al. 2012).

Plant growth responds to salinity in two stages: (1) a rapid stage (osmotic phase 
that inhibits growth of young leaves) and (2) a slower stage (ionic stage that acceler-
ates senescence of mature leaves) (Munns and Tester 2008). The ability of plants-
against  salt condition is determined by  several biochemical pathways that make 
easy retention and/or acquisition of water, protect chloroplast functions, and main-
tain ion homeostasis (Parida and Das 2005).

2.3.5  Production of Phytohormones

Studies have shown that indoleacetic acid and cytokinin are produced from amino 
acids such as tryptophan and adenine which secreted from the roots. Ethylene pre-
cursor is hydrolyzed to 1- amino cyclopropane, 2-carboxylic acid (1- aminocyclopr
opane- 1-caboxylic, ACC) by enzyme ACC deaminase (Zahir et al. 2004). Activities 
of PGPR cause physiological changes in the morphology of the plant, and the set of 
these changes have a positive effect on growth, nutrition, and plant health.

2.3.6  Plant Hormones

2.3.6.1  Ethylene
The evolution of roots approximately 400 million years ago opened up the biologi-
cal colonization of the land (Jackson 2017). Ethylene is a gaseous plant growth 
hormone produced endogenously by almost all plants and even in soil that plays a 
key role in inducing several physiological functions (Saleem et al. 2007).

The hormone ethylene also known as a stress hormone is released as a physi-
ological response to different stresses such as edaphic and adaphic. Salinity can 
increase biosynthesis rate of ethylene via elevated levels of ACC, which may 
lead to physiological changes in plant tissues. Any check on this accelerated 
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ethylene production in plants can improve growth of plants under salt stress 
(Hontzeas et al. 2004).

2.3.6.2  The Effect of Ethylene in Root Growth and Development
Ethylene was known as a stress hormone that is released by the plant as a physio-
logical response when exposed to a different kind of stresses. It has been observed 
that plants inoculated with PGPR having ACC deaminase activity are more resistant 
to the deleterious effect of stress ethylene synthesized as a consequence of stress 
conditions (Penrose and Glick 2003; Zahir et al. 2004). Ethylene is of great impor-
tance in plant growth and development and also in some functions like inhibition of 
seed germination and root growth (Nordström and Eliasson 1984). As after germi-
nation, high level of ethylene would inhibit root elongation. Inhibition of the root 
elongation has been prevented due to inoculation of PGPR capable of containing 
ACC deaminase even in the presence of high (6%) concentration of salts, NaCl 
(Tank and Saraf 2010). PGPR inoculation helped in seed germination followed by 
lowering the plant’s ethylene concentration, thereby decreasing the ethylene inhibi-
tion of seedling root length, while in many plants a burst of ethylene is required to 
break seed dormancy (Nascimento 2003).

2.3.6.3  Stress/Wound Ethylene
The term stress is used for an external factor capable of inducing a potentially injuri-
ous strain in living organisms. Stress ethylene is one of the general phenomena 
observed in plant tissues subjected to various unfavorable conditions (Hyodo 2017). 
Several kinds of stress are related to ACC such as effects of phytopathogenic bacte-
ria and resistance to stress from polyaromatic hydrocarbons and from heavy metals 
(Glick et al. 2007). Plant seed inoculated with biocontrol bacteria strongly decreases 
plant diseases level and may help to protect fieldworkers from exposure to patho-
gens (Egamberdieva et al. 2008).

Bacterial strains containing ACC deaminase can, in part, at least alleviate the 
stress-induced ethylene-mediated negative impact on plants (Glick et  al. 1998; 
Glick 2005; Safronova et al. 2006). It reported that ACC deaminase bacteria con-
ferred salt tolerance onto plants by lowering the synthesis of salt-induced stress 
ethylene and promoted the growth of canola in the saline environment, and also it is 
related that in plants Cd is the strongest heavy element inductor of ethylene biosyn-
thesis (Cheng et al. 2007).

Ethylene production in plants is induced by various environmental factors such 
as wounding, physical load, disease, drought, waterlogging, chilling temperature, 
and exposure to various chemicals (Hyodo 2017). There is evidence that treatment 
with aminoethoxy vinyl glycine (AVG) prevents ethylene inhibition of root elonga-
tion (Hall et al. 1996) and also ethylene inhibitors can decrease the negative effect 
and the expression of stress symptoms induced by ethylene in plants (Rost et al. 
1986; Elad 1990).
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2.3.6.4  ACC Deaminase and Its Biochemistry
Inoculation of PGPR in pepper, bean, canola, and lettuce under salt stress has 
been used for mitigating the effects of salinity. Reports also showed an improve-
ment of squash plant when applied directly or as a transplant under salinity stress 
(Yildirim et al. 2006).

The enzyme ACC deaminase cleaves ethylene, and also for many plants a burst 
of ethylene is required to break seed dormancy and germination; however, higher 
levels of ethylene inhibits the root elongation (Ali-Soufi et  al. 2017; Soni et  al. 
2018). Plants that are treated with ACC deaminase-producing PGPR have been 
shown to exhibit more resistant to the deleterious effects of stress ethylene synthe-
sized as a consequence of stressful conditions such as flooding (Grichko and Glick 
2001), heavy metals (Grichko et al. 2000), the presence of phytopathogens (Wang 
et al. 2000), drought, and high salt conditions (Penrose and Glick 2003).

The activity of ACC deaminase has been widely reported in different species of 
Gram-negative bacteria (Wang et  al. 2000; Babalola et  al. 2003), Gram-positive 
bacteria (Belimov et al. 2001; Ghosh et al. 2003)), rhizobia (Ma et al. 2003), endo-
phytes (Pandey et al. 2005), and fungi (Jia et al. 1999). ACC deaminase is prevalent 
in different kinds of bacteria, viz., Agrobacterium and Azospirillum (Blaha et al. 
2006), Alcaligenes and Bacillus (Belimov et al. 2001), Burkholderia (Blaha et al. 
2006), Enterobacter (Penrose and Glick 2001), Methylobacterium (Madhaiyan 
et al. 2006), Pseudomonas (Belimov et al. 2001), Ralstonia solanacearum (Arshad 
and Frankenberger Jr 2012), Rhizobium (Ma et al. 2003), Rhodococcus (Stiens et al. 
2006), Sinorhizobium meliloti (Belimov et  al. 2001), and Variovorax paradoxus 
(Glick 2005). Owing to ACCD activity, these bacteria are known to help plant grow 
under biotic and abiotic stresses condition by decreasing the level of “stress ethyl-
ene” which is inhibitory to plant growth (Singh et al. 2015). The ACC deaminase 
enzyme produced by several rhizobacteria catalyzes and reduces the deleterious 
ethylene level (Soni et al. 2018) that acts as a sink for ACC and protects stressed 
plants from deleterious effects of stress ethylene (Glick 2005). Reports also showed 
that inoculation of plant with ACC deaminase containing PGPR has also resulted in 
enhanced chlorophyll contents of maize and lettuce (Han and Lee 2005; Tank and 
Saraf 2010).

The ability of a newly isolated ACC-utilizing bacterium, Kluyvera ascorbata 
SUD165, to improve the growth of canola, tomato, and Indian mustard seedlings 
treated with toxic concentrations of nickel, lead, and zinc has recently been demon-
strated (Shah et al. 1998; Burd et al. 2000; Safronova et al. 2006).

2.4  Mechanisms of Salt Tolerance

2.4.1  Cytoplasmic Osmotic Regulation

Halophilic bacteria accumulate more salt in the protoplasm than those that are pres-
ent in the external solvent medium through active ion harvesting; therefore, the 
intracellular water pressure remains negative in comparison with the external 
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solution and its enzymatic systems evolved in a manner that is carried out under 
conditions of high salt levels in the protoplasm. Marine algae also use their own 
special organic solutions for osmotic regulation to keep their sodium cytoplasm 
concentration low (Ashraf and Wu 1994; Cao et al. 2017). One of the problems of 
salt stress is the reduction of the osmotic potential of the soil solution, so that the 
plant can absorb water from the soil. It should reduce the osmotic potential to less 
than the osmotic potential of the soil.

2.4.2  The Accumulation of Substances in Vacuole

Most of the high salinity plants accumulate sodium and potassium for osmotic regu-
lation in vacuole. However, some grasses may also use organic solvents in vacuole 
(Srinivas et al. 2018). In this method, sodium transfer from cytoplasm to vacuole 
and also the return of potassium from vacuole to cytoplasm are performed by 
pumps. In this way, in addition to reducing the toxicity of sodium ion in the cyto-
plasm, the osmotic potential of the cell also decreases (due to the accumulation of 
salts in the vaccine), and this way the plant will be able to absorb water and salts 
from the soil. The mechanism of this problem is energy, that is, the transfer of 
sodium from the cytoplasm to the vaccine and the transfer of potassium from vac-
cine to cytoplasm with energy.

2.4.3  Absorption and Replacement of Ions

The first line of defense against the addition of excess sodium into the plant is the 
plasma membrane of the root cell, which has low sodium permeability in all studied 
species. Conversely, root cells have shown a high tendency to absorb potassium, 
which can accumulate unlike concentration slopes (Pitman et al. 1981; Mangalassery 
et al. 2017). Plants that tolerate low salinity under high concentration of sodium in 
the root environment show a significant reduction in potassium uptake and increase 
sodium uptake in the shoot (Rains 1969; Makhlouf et al. 2015).

2.4.4  Movement Paths Along the Root

Water and salts can enter the root through two paths of  symplast and apoplasts. 
Symplast is through the cytoplasmic pathway of the root cells, which extends from 
the epidermis to the root of the brain and is related through the connections between 
the adjacent cells. Apoplasts transfer material through cell walls. Entering the sym-
plast route is the most important control point for entering salt into the plant. The 
water entering the apoplastic pathway is more similar to that of the intracellular 
solution than with the solution outside the root, although the concentration of apo-
plastic  salt can be corrected by absorbing into the cells along the path and by 
exchanging the ion walls of the cell (Tester and Davenport 2003; Reddy et al. 2017). 
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If the only route for the transfer of salts to the xylem is apoplastic pathway, air 
organs should be full of salt, however, the existence of a casparian strip makes this 
necessary that salts and water should pass through endoderm via the entrance of the 
symplastic system. It has been determined that thoracic plants often have a thick 
layer of cork, or dendritic cellulose cells have endoderm, while mesophytes often 
have a thin layer of casparian strip (Esashi 2017; Zarayneh et al. 2018).

2.4.5  Recovery of Sodium from Transpiration

When the water and soluble substances reach the root from the symplast they will 
be transfered from xylem to the air organs. Xylem parenchyma not only prevents the 
entrance of salts into the transpiration system, but also can reduce salts concentra-
tion in Sap via reabsorption of salts from transmitance of root to air oragns in tran-
spiration system. The sodium in xylem is transmited to the Phloem in the base of 
stem by active transport which significantly reduces the amount of sodium in the 
transpiration. This conclusion was achived based on the experiments that aerial 
parts of the stem were wounded in a circular manner so that the phloem were dis-
connected but xylem left in a natural state. Then, Na22 was applied to the environ-
ment and it was observed that the plants with injured stem transmitted higher 
radioactive sodium to the leaves (about 84%) compared to the uninjured stems. 
Probably, the readsorbed salts are returned to the tip of the root inside the phloem 
(Gleason et al. 2017; Keisham et al. 2018).

2.4.6  Control of Salinity Levels in Leaves

The amount of salt in the transpiration pathway is lower than that of the extra-
root solution even from salt accumulation pools, for example, barley, grown in 
150 mM of NaCl in its transpiration pathway, has about 5 mM of sodium chloride 
(Rains 1969; Makhlouf et al. 2015). Rice, wheat, and barley have two adaptation 
methods to tolerate salts that reach the air organs – (1) salting by growth and (2) 
distribution of salts to older leaves – after the accumulation of salt in older leaves, 
they disappear, and thus the amount of salt in the plant decreases (Munns 1993; 
Sarabi et al. 2017).

2.4.7  Tubers and glandular trichomes 

Susceptible plants often have specific methods for managing salt in the leaves. 
Examples of these mechanisms are the tubers and  glandular trichomes for the 
removal of salts to the outer surfaces of the leaves. Salt glands are known in at least 
11 plant families (10 dicotyledons and 1 cotyledon family, Gramminae). Salt tubers 
in gramminae contain two cells, one of which is base and the other is a warhead cell. 
Solar cells are collected by the base cell and driven out of the warhead cell. Both 
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cells have dense cytoplasm with a large number of mitochondria and lack central 
vasculature. Anatomical sacks are distinguished from salt glands in the spinach 
family. Particularly in Atriplex, where all 200 species have salt bags that contain 
outburst cavities that include a long and narrow leg and a cell-like cell at the top of 
the epidermis, different species of Atriplex can be identified from the shape of their 
salt bags.  The salt solution is transmited from mesophilic cells to glandular tri-
chomes through stem cells agianst the gradient concentration. The salt accumulates 
in the central vacuolic glandular trichomes, which is eventually torn and is released 
at the surface of the leaf. Accumulated salts in the surface of the leaf may reduce 
transpiration and increase light reflection; more than 80% sodium chloride entering 
the Atriplex leaves may be removed through glandular trichomes (Akbar et al. 1972; 
Hairmansis et al. 2017).

2.4.8  Broiling to Regulate Osmotic Pressure in Leaves

All salt-tolerating plants are not able to excrete salts. Many salinity-resistant 
and nonsaline plants tolerate temporary increase of salt in apoplasts by increas-
ing the amount of mesophilic cell water and therefore dilutes the salts and 
increases their capacity to absorb the salt from the apoplast solution (Kramer 
1984; Joshi et al. 2015).

2.5  Conclusion

The salinity stress and saline soils are cruel factors that adversely affect the growth 
of crop plants leading to decrease in agriculture productivity and hence depletion of 
food sources of human societies. Salinity is one of the major limiting factors that 
cause osmotic stress and decrease plant growth and crop productivity in arid and 
semiarid regions. Salt stress reduces many aspects of plant metabolism like growth 
and yield. Most of the salinity problems in higher plants are due to an increase in 
sodium chloride which has spread to soils in the dry and coastal areas and their 
water resources. More importantly salinity in the soil decreases plant mechanisms 
like photosynthesis, chlorophyll content, stomatal conductance, membrane destabi-
lization, and general nutrient imbalance. To mitigate the salinity, many strategies 
including soil quality management policies, use of saline resistance varieties, detox-
ification of noxious ions, improvement in the quality of irrigation water etc. have 
been in practice. However all these strategies pose limitations and are not sustain-
able; in this context, the use of microorganisms especially PGPR has been proposed 
as a sustainable and eco-friendly way to fortify the quality of soils to help crop 
plants grow under salinity stress. PGPR are involved in the important physiological 
process associated with plant growth and development under salinity. Among the 
various strategies adopted to elevate salinity use of halophilic, PGPR seems to be 
the best alternatives. PGPR elevate salinity or exhibit tolerance to salinity through 
the regulation of production of stress hormone ethylene under the influence of ACC 
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deaminase, osmotic regulation, and accumulation of salts in their cytoplasm and 
absorption and replacement of ions. PGPR are responsible for increasing nutrient 
uptake, decreasing the toxicity of hazardous ions, amelioration of photosynthesis, 
improvement in nitrogen fixation, regulation/modulation of physiological signaling 
networks, etc. These miracle bacterial species are legendary soil guards to protect 
both soil texture and crop plants from salinity stress.
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3Dark Septate Endophytes and Their Role 
in Enhancing Plant Resistance to Abiotic 
and Biotic Stresses

Iman Hidayat

Abstract
In recent years, dark septate root endophytes (DSE) emerge as one of the poten-
tial microbial groups in enhancing plant health and resistance to environmental 
stresses. In this chapter, we describe the diversity of DSE, host specificity, and 
their role in nutrient uptake by the plant. The mechanism of plant stress tolerance 
to environmental stresses and possible application of DSE isolates in agricultural 
practices are also elucidated. Estimation of DSE diversity is difficult due to their 
sporulating and non-sporulating life forms of which generates problems in the 
DSE identification. In addition, majority members of DSE fungi showed no host 
specificity with their associated plant. During plant-DSE association, hyphae 
have shown to be important in nutrient transfer from the DSE to their host plant. 
Nutrients obtained by the hyphae from the soil will be translocated inter- and 
intracellularly into plant cells through various mechanisms. In extreme environ-
mental condition, such as high Cd (cadmium), DSE affects plant physiology by 
regulating GSH (glutathione) metabolism and thiol compound contents in the 
host plant to alleviate Cd toxicity. Due to their potential for increasing crop pro-
ductivity and resistance to abiotic and biotic stresses, the studies now focus on 
developing a simple and low-cost standardized formulation that is applicable to 
agricultural practices. It is supported by the fact that members of DSE are easily 
cultured and propagated in the laboratory. Current effective application of DSE 
involves the development of superior plant seedling through inoculation of the 
DSE isolates during plant propagation by tissue culture or seeds.
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3.1  Introduction

Maintaining crop productivity in a current environmental condition is a difficult 
task for farmers and agricultural practitioners worldwide. Climate change and vari-
ous abiotic stresses such as drought, floods, extreme temperatures, soil salinity, defi-
ciency of nutrients, and high soil toxic levels provide huge impacts on crop 
productivity, either directly or indirectly. Therefore, climate change becomes a 
major factor in the decline of food production, in particular in developing countries, 
and directly threatens world food security. For example, IPCC report in 2007 noted 
that production of maize and rice will decrease up to 20% and 10%, respectively, at 
the same time with 2 °C increase of air temperature (IPCC 2007).

Several attempts have been conducted to mitigate the effects produced by cli-
mate change to crop productivity, especially drought and heat. These include (1) 
developing new crop varieties that are tolerant to drought, heat, and salt via breed-
ing, genetic modification, or other methods (Umezawa et  al. 2006; Akhter et  al. 
2010; Bunnag and Ponthai 2013; Kumar et al. 2014; Swain et al. 2017; Zu et al. 
2017); (2) planting time management (Cantelaube and Terres 2005; Cardoso et al. 
2010; Bussay et al. 2015; Martins et al. 2018); (3) irrigation adjustment and optimi-
zation (Ćosić et  al. 2015; Djurovic et  al. 2016; Lopez et  al. 2017; Winter et  al. 
2017); and (4) developing suitable fertilizer or symbiotic agents for particular envi-
ronment (Wang et al. 2007; Boari et al. 2016; Bahrami-rad and Hajboland 2017). 
Among these attempts, developing suitable fertilizer or plant symbiotic agents for 
particular crops in particular environments is considered as one of the important 
factors in alleviating climate change threats to global food production and food 
security, especially in the current condition where soil bearing capacity to support 
crop productivity has been decreasing.

Plant symbiotic agents such as plant growth-promoting rhizobacteria (PGPR) 
(Kaushal and Wani 2016; Vurukonda et al. 2016), vesicular-arbuscular mycorrhiza 
(VAM) (Sullia 1991), and dark septate endophytes (DSE) (Jumpponen and Trappe 
1998; Liu et  al. 2017) have been known for their capability in enhancing plant 
health, plant productivity, and plant resistance to biotic and abiotic stresses through 
various mechanisms. Among them, members of DSE have relatively been unknown 
for their identity among other microorganisms, diversity across various hosts and 
habitats, biology, and their mechanism in supporting plant tolerance to environmen-
tal stresses. Therefore, this chapter will describe and elucidate various aspects of 
DSE such as distribution and specificity of the DSE from various hosts, their roles 
in affecting plant physiological and biochemical processes to resist environmental 
stresses, mechanism of macro- and micronutrients acquisition by the DSE from soil 
to plant cells, and their application in the management of good agricultural 
practices.
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3.2  Definition, Diversity, and Specificity of DSE

The term DSE (dark septate endophyte) was firstly introduced by Read and 
Haselwandter (1981) who introduced “dark septate hyphae” term for sterile, dark, 
septate hyphae and microsclerotia of fungal isolates colonized various alpine plant 
roots. Many definitions of DSE have further been introduced from several authors 
(Grünig et al. 2011). One of the most commonly used definitions is the definition 
published by Jumpponen and Trappe (1998) which states that DSE is conidial or 
sterile fungi (Deuteromycotina, Fungi imperfecti) likely to be ascomycetous and 
colonizing plant roots. However, in this chapter, DSE is defined as a fungal endo-
phyte with melanin hyphae and living in plant roots without causing any visible 
symptoms. DSE belong to Class 4 of endophytes and possess a capability to exit the 
root and spread in the soil to aid the plant in nutrients acquisition, especially P 
(Mandyam and Jumpponen 2005). The presence of melanin in the hyphae is a dis-
tinct character of DSE, separated from other endophytic and symbiotic fungi living 
in plant roots. Many fungal endophytes are characterized by having white hyphae 
such as Fusarium, Colletotrichum, Phoma, Phomopsis, Pestalotiopsis, and so on. In 
fact, these fungal taxa with white hyphae are typically fast growing on artificial 
media and, therefore, very often found from various reports of fungal endophytic 
research (Hyde and Soytong 2008; Rodriguez et al. 2009; Ko Ko et al. 2011). In 
contrast to fungal endophytes with white hyphae, melanized hyphae taxa of DSE 
belong to a slow-growing group of fungi. They are often overgrowth by whitish 
hyphae fungi during isolation processes. In addition, lack of sporulation of many 
DSE taxa hampers identification process, although molecular-based identification 
method is available. Limitation of a molecular method is DNA sequence quality and 
database information which contains sequences from noncultivated environmental 
samples that may lead to the erroneous names. Therefore, estimating species num-
ber of fungi which belongs to DSE is a difficult task for a mycologist.

Research reports that estimate DSE diversity is still rare. In general, the study of 
DSE is more focused on its application in improving plant immunity against plant 
disease and increasing plant growth in various environmental conditions. One of the 
information containing DSE diversity estimation data and the list of DSE taxa was 
reported by Grünig et  al. 2011). Majority of these taxa belong to asexual fungi 
(Hyphomycetes and Coelomycetes) of Helotiales and Pleosporales (Table  3.1). 
Helotiales is a fungal order which contains about 10 families, 501 genera, and 3881 
described species, while Pleosporales contains about 23 families, 332 genera, and 
4764 described species (Kirk et al. 2008).

Distribution of DSE on various plant species was reported by Jumpponen and 
Trappe (1998) who noted that nearly 600 plant species from 320 genera and 114 
families are colonized by DSE fungi. These include lower plant and higher plant, 
from cold temperate area, such as arctic or alpine regions (Schadt et  al. 2001; 
Ruotsalainen et al. 2002; Newsham et al. 2009; Walker et al. 2010), to warmer tem-
perate area like Japan (Usuki and Narisawa 2007) and also tropical regions (Rains 
et al. 2003; Diene et al. 2010; Takashima et al. 2014). However, DSE diversity from 
the warmer and tropical area is still unexplored.
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Table 3.1 List of common fungal genera belonging to DSE

Genera Host plant References
Chloridium, Phialocephala, Phialophora Betula alleghaniensis, Picea 

rubens, Pinus resinosa
Wilcox and 
Wang (1987)

Phialocephala sp. Betula pendula, Pinus sylvestris Menkis et al. 
(2004)

Acephala Pinus sylvestris, Picea abies Grünig and 
Sieber 
(2005)

Heteroconium Triticum aesticum Kwaśna and 
Bateman 
(2007) and 
Narisawa 
et al. (2007)

Phaeomollisia Picea abies, Vaccinium spp. Grünig et al. 
(2009)

Leptodonthium, Mollisia, Rhizoscyphus Colobanthus quitensis, 
Deschampsia antarctica, 
Colobanthus quitensis

Upson et al. 
(2009)

Helminthosporium Sorghum bicolor Diene et al. 
(2010)

Acephala, Cadophora, Chloridium, 
Cryptosporiopsis, Dermea, Didymella, 
Didymosphaeria, Embellisia, 
Gaeumannomyces, Herpotrichia, 
Leptodontidium, Leptosphaeria, 
Macrophomina, Meliniomyces, 
Monodictys, Nectria, Neonectria, 
Oidiodendron, Periconia, Phialocephala, 
Phialophora, Phoma, Pseudocercospora, 
Saccharicola, Taeiniolella, Vibrissea

Picea abies, Pinus spp., Cassiope 
mertensiana, Alnus viridis, Populus 
sp., Sorbus aucuparia, Vaccinium 
spp., Leucorchis albida, Calluna 
vulgaris, Aralia nudicaulis, Carex 
spp., Myricaria prostata, 
Rhododendron albiflorum, Tsuga 
heterophylla, Nothofagus procera, 
Quercus spp., Betula pubescens, 
Gaultheria shallon, Ledum 
groenladicum, Platanthera 
hyperborea, Pedicularis bracteosa, 
Abies alba, Alnus rubra, Erica 
tetralix, Paja brava, Linum sp., Poa 
pratensis, Oryza sativa, Salix 
oppositifolia, Solanum tuberosum, 
Elymus farctus, Tilia petiolaris, 
Holcus lanatus, Cyclamen 
persicum, Triticum aesticum, 
Chrysanthemum morifolium, 
Malus sylvestris, Saussurea 
involucrata, Humulus lupulus, 
Saccharum officinarum, 
Heteropappus semiprostratus

Grünig et al. 
(2011)

Cadophora, Phialophora, Rhizopycnis, 
Periconia, Curvularia, Microdochium

Ailanthus altissima, Ambrosia 
artemisiifolia, Asclepias syriaca, 
Ephedra dystachia, Festuca 
vaginata, Fumana procumbens, 
Helianthemum ovatum, Juniperus 
communis, Medicago minima, 
Populus alba, Stipa borysthenica

Knapp et al. 
(2012)

(continued)
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Host specificity in fungal endophytes, especially DSE, is debatable. Jumpponen 
and Trappe (1998) suggested that little or no host specificity in DSE-plant associa-
tion due to many DSE species colonizes more than one host plants. For example, 
Chloridium paucisporum was found on Betula alleghansis, Picea rubens, and Pinus 
resinosa (Jumpponen and Trappe 1998). However, it was also reported that the same 
endophytic fungal species that colonizes different host plants produce specific 
metabolites the same or similar to their hosts (Hidayat et al. 2016). Fusarium oxys-
porum is a common endophytic fungus from many hosts, but only F. oxysporum from 
Cinchona calisaya was capable of producing quinine and cinchonidine (Hidayat 
et al. 2016). This information shows that fungal physiology is affected by the com-
pounds produced by their host. The specific physiological characters of fungal endo-
phytes provide a significant contribution to their taxonomical rank. In addition, host 
specificity in fungal endophytes is actually found on grass endophytes. Several taxa 
belong to clavicipitaceous fungi such as Epichloë typhina and Neotyphodium coeno-
phialum which is specific to grass (Tsai et al. 1994; Schardl 1996). Kageyama et al. 
(2008) also noted the presence of specificity among several DSE taxa on particular 
hosts. In their study, host preference or specificity was identified when RFLP groups 
were limited to a single host. For example, RFLP groups of the Pezizales were exclu-
sively obtained from Bouteloua gracilis, whereas the RFLP groups of the Helotiales 
were obtained from Gutierrezia sarothrae (Kageyama et  al. 2008). Grünig et  al. 

Table 3.1 (continued)

Genera Host plant References
Pseudosigmoidea None (soil) Diene et al. 

(2013)
Scolecobasidium Solanum lycopersicum cv. Gohobi Mahmoud 

and 
Narisawa 
(2013)

Cadophora, Cladophialophora, 
Cryptosporiopsis, Leohumicola, 
Leptodontidium, Phialocephala, 
Pseudoclathrosphaerina, unidentified 
Helotiales

Huperzia selago, H. serrata and 
Lycopodium clavatum 
(Lycopodiaceae)

Takashima 
et al. (2014)

Aquilomyces, Darksidea, Flavomyces, 
Periconia

Stipa borysthenica, Festuca 
vaginata, Bromus tectorum

Knapp et al. 
(2015)

Alternaria, Ascochyta, Cladosporium, 
Coniothyrium, Nigrospora, 
Microdiplodia, Hypoxylon, Curvularia, 
Paraphaeosphaeria, Phoma, 
Cladophialophora, Dokmania, 
Cytospora, Leptosphaerulina, Exophiala, 
Leohumicola, Nigrospora

Euterpe edulis, Cecropia glaziovii, 
Guapira opposita, Bathysa 
australis, Mollinedia schottiana, 
Coussarea sp., Myrcia spectabilis

Bonfim et al. 
(2016)

Cladosporium, Cyphellophora, and 
Phialophora

Various plants belong to 
Amaranthaceae, Caryophyllaceae, 
Chenopodiaceae, Commelinaceae, 
Cruciferae, Cyperaceae, Juncaceae, 
Polygonaceae

Liu et al. 
(2017)
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(2011), in the review of distribution and host specificity of the Phialocephala fortinii 
s.lat-Acephala applanata species complex (PAC), noted that PAC species host speci-
ficity is low or lacking because most species were found from a broad range of 
woody plants, except A. applanata on Pinaceous plants. Although several species of 
DSE showed specificity to their hosts, we found that the majority of the DSE fungi 
are generalists. For example, Leptodontidium orchidicola, Piriformospora indica, P. 
fortinii, and H. chaetospira have been known to be associated with a wide range of 
hosts (Fernando and Currah 1996; Franken 2012; Narisawa et al. 2000). Weishample 
and Bedford (2006) also showed that some beneficial DSE isolated from monocots 
could be transferred to eudicots plants and still function as mutualists, indicating the 
non-host specificity of the DSE. It is probably related to the high adaptability of DSE 
to form a symbiosis with various plant species as their hosts from different environ-
mental conditions. This evidence is supported by the presence of conspecific species, 
where the same species in different hosts are capable of producing different metabo-
lite compounds according to their hosts.

3.3  Development of DSE-Root Association

It has been known that DSE (non-mycorrhizal fungi), together with mycorrhizal 
fungi, colonized the plant root system (Mandyam and Jumpponen 2005; Schmidt 
et  al. 2008; Lukešova et  al. 2015). They are very important for plants nutrients 
acquisition and survival. However, a mycorrhizal-plant association is well under-
stood than those of DSE-plant association because the DSE does not produce struc-
tures like mycorrhizal morphology (Trappe 1998). In addition, methods in observing 
DSE colonization in the roots need to be developed in order to obtain more under-
standing about DSE colonization in the root system. DSE-pant association in root 
system is microscopically examined by staining roots with biological stains such as 
trypan blue, acid fuchsin, chlorozol black, or Sudan IV, which specifically bind to 
chitin in the fungal walls (Kormanik et al. 1980; Phillips and Hayman 1970; Barrow 
and Aaltonen 2001). Barrow and Aaltonen (2001) also noted that fungus-specific 
staining method is important as they found that extensive hyaline hyphae coloniza-
tion in the roots was not evident by using conventional staining methods.

Several studies reported that hyphae of DSE colonize plant roots in the epidermis 
and the cortex and formed microsclerotia in the cells of the roots without causing 
diseased symptom to the plants (Hashiba and Narisawa 2005; Usuki and Narisawa 
2007; Andrade-Linares et al. 2011). In the study of DSE-host symbiosis develop-
ment using Heteroconium chaetospira and Chinese cabbage as host, Hashiba and 
Narisawa (2005) found that H. chaetospira hyphae penetrate through the outer epi-
dermal cells which pass into the inner cortex, and the cortical cells, including the 
root tip region. Once the fungal hyphae get to the cortical cells, the nutrients will be 
absorbed from the hyphae through the symplastic pathway and/or the coupled trans- 
cellular pathway (Barberon and Geltner 2014). The development of H. chaetospira 
hyphae in the epidermis and outer cortical layer of the Chinese cabbage root were 
found within 3 weeks after inoculation but few in the inner cortical layer. Heavy 
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colonization of epidermis and cortical layers were found at 8 weeks after inocula-
tion, and microsclerotia or irregular lobes were also formed. This hyphal penetra-
tion of H. chaetospira does not produce pathogenic symptoms and resistance 
responses from the Chinese cabbage. It is related to the colonization capacity of H. 
chaetospira that does not pass through the vascular system of the host. The vascular 
system colonization of the host by fungal hyphae is an essential indicator in differ-
entiating many of benefiting fungi and plant pathogenic fungi. In most of plant 
pathogenic fungi, for example, Fusarium wilt disease or other soilborne diseases, 
vascular system colonization by fungal diseases generally occur (Li et al. 2011). In 
banana, the hyphae of Fusarium oxysporum f.sp. cubense (Foc) enter the host 
through a similar mechanism with DSE fungi and further colonize the vascular sys-
tem, in particular xylem, and block water transport from root to other plant organs. 
Lack of water supply causes wilting in the leaves and reduces photosynthesis activ-
ity and other physiological processes (Ghag et al. 2015).

Although many DSE fungal species colonization does not reach a vascular sys-
tem of the roots, however, a few cases showed penetration of the vascular tissue of 
host roots, such as in Phialocephala fortinii (Yu et al. 2001). In this case, DSE can 
have detrimental effects on the host plant, depending on the environmental condi-
tion (Jumpponen and Trappe 1998). In root colonization by P. fortinii as summa-
rized by Jumpponen and Trappe (1998), initial colonization is started by superficial 
hyphae (Currah and Van Dyk 1986; Hashiba and Narisawa 2005) that grow along 
the depressions between adjacent epidermal cells and pass through adjoining epi-
dermal cell walls by narrow penetration tubes which occasionally arise from struc-
tures similar to appressorium (Currah and Tsuneda 1993; Hashiba and Narisawa 
2005). The hyphae can further grow in the space between cortical cells, parallel to 
the main axis of the host root, and from cell to cell within the epidermis (Barrow and 
Altonen 2001). During this superficial colonization, “a loose hyphal network on the 
root surface” (Stoyke and Currah 1993) or “loose wefts of hyphae” (O’Dell et al. 
1993) will develop. The hyphae further penetrate through the outer part of cortical 
cells (Stoyke and Currah 1993; O’Dell et  al. 1993). Within cortical cells, DSE 
hyphae usually form rounded, chlamydospore-like structures or clusters of cells 
with inflated, rounded, and thick-walled structures. These structures are often dark 
in color due to the incorporation of melanin and called as “thick pseudoparenchy-
matic mass” (Robertson 1954), “groups of swollen cells” (Deacon 1973), “sclero-
tia” (Stoyke and Currah 1993), “microsclerotia” (Haselwandter 1987; Jumpponen 
et al. 1998), or “sclerotial bodies” (Wilcox and Wang 1987). However, in several 
hosts, these structures are often expressed in different forms, mostly resembling 
mycorrhizal form (Stoyke and Currah 1991; Currah et al. 1993). These reports showed 
that host plant control (Wilcox and Wang 1987) plays important roles in determin-
ing the structures of DSE clusters of cells within cortical cells. In addition, time is 
also an important factor in determining the mature state of these structures. To sim-
plify and generalize terminology in various phases of DSE hyphae development 
during colonization of plant roots, Jumpponen and Trappe (1998) propose several 
terms such as “runner hyphae” for the individual superficial fungal hyphae between 
epidermal cells, “superficial net” for the superficial colonization, “appressorium” 
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for the swollen structure preceding penetration through a host cell wall, “penetra-
tion tube” for the thin structure penetrating through the cell wall, and “microsclero-
tia” for the intracellular groups of rounded and thick-walled cells.

Different morphological structures formed in a different stage of root coloniza-
tion by DSE showed that the DSE is a polymorphic fungal group. The colonization 
of DSE in the root system is often visible as hyaline hyphae penetration in the cortex 
cells at the early stage, followed by melanized hyphopodia or microsclerotia 
(Jumpponen and Trappe 1998) formation in the cortex and on the root surface 
(Barrow and Aaltonen 2001) such as the colonization of Vulpia ciliata ssp. ambigua 
by Philophora graminicola (Newsham 1999). Different to arbuscular mycorrhizae 
colonization in the roots which form thin-walled arbuscules in the cortex, DSE 
fungi interface the cortex and further grow into sieve elements (primary plant tissue 
for carbon transport) as thin-walled hyphae with a  very small diameter. Hyaline 
hyphae and melanized hyphae are, in fact, continuous (Newsham 1999; Barrow and 
Aaltonen 2001). In the study of DSE colonization of Atriplex canescens, Barrow 
and Aaltonen (2001) found that internal DSE fungal tissue comprises four distinct 
types, namely, (1) microsclerotia, (2) melanized hyphae, (3) hyaline hyphae minus 
lipids, and (4) hyaline hyphae plus lipids of which related to their physiological 
activities. The microsclerotia which contain thick melanized walls are the structure 
that are frequently found in dormant plants and, therefore, are considered as vegeta-
tive propagules that protect DSE during environmental stress until conditions are 
favorable for germination. External melanized hyphae allow DSE to function in dry 
soil. Hyaline hyphae are considered as the most active form of DSE and usually 
characterized by thin-walled and lack of chitin and melanin which allow them to 
penetrate among root cells and more permeable with increased potential for resource 
exchange with the host. Lipid accumulation in vacuoles of hyaline hyphae is 
strongly related to DSE physiological activity, and this suggests as a potential site 
for carbon exchange between the host and the DSE fungi. When the host is physi-
ologically active, lipid-containing vacuoles in DSE hyaline or melanized hyphae 
become visible. Not only in the cortex, but this form is also often found in the vas-
cular cylinder when the plant roots are physiologically active. The decrease in vacu-
ole size and lipid content is correlated to decreases in physiological activities 
(Barrow and Aaltonen 2001).

3.4  Effect of DSE on Plant Acquisition of Nutrients from Soil

It has been known that members of DSE fungi possess symbiotic mutualism interac-
tion with their hosts. For example, Heteroconium chaetospira was able to promote 
Chinese cabbage growth and enhance their resistance to pathogen (Usuki and 
Narisawa 2007), Piriformospora indica in promoting the growth of various crops 
such as barley and rice (Varma et al. 2012; Jogawat et al. 2013), Cladorrhinum for-
cundissimum on cotton (Gasoni and De Gurfinkel 1997), Helminthosporium veluti-
num strain 41-1 that is capable in promoting sweet sorghum (Diene et al. 2010), etc. 
Plant growth-promoting activity through symbiosis mutualism between DSE and 
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their hosts is apparently related to the mechanism of nutrient transfer from soil to 
plant cells via DSE activity. The mechanism includes macro- and micronutrients 
exchange.

Nutrients acquisition from soil to plant cells through DSE activity involving the 
works of hyaline hyphae, dark and pigmented (melanized) hyphae, and their micro-
sclerotia inside the plant roots. The DSE is hyphae generally capable of colonizing 
root tissues intro- and intercellularly without causing pathologies (Andrade-Linares 
et al. 2011). DSE fungi are also capable of accessing macronutrients such as carbon 
(C), nitrogen (N), phosphorus (P), and organic compounds such as amino acids 
from the soil and transferring the readily absorbed nutrients to their host plant 
(Jumpponen and Trappe 1998; Mandyam and Jumpponen 2005; Reeve et al. 2008). 
The readily absorbed nutrients provided by DSE are available due to the DSE fungi 
capability in degrading various organic compounds such as cellulose, starch, pro-
teins, lipids, amino acids, and other organic compounds (Caldwell et  al. 2000; 
Mandyam et al. 2010; Surono and Narisawa 2017). Barrow and Aaltonen (2001) 
showed that the most active thin-walled hyphae take an essential role in this nutrient 
transfer by actively growing into cortex and sieve elements of which the latter part 
is important in carbon exchange between DSE and host plant.

DSE produce various degrading enzymes that are capable in degrading organic 
matter in the soil such as cellulases, laccases, amylases, lipases, pectinases, xyla-
nases, proteolytic enzymes, tyrosinases, and polyphenol oxidases and transfer the 
products into plant roots (Mandyam and Jumpponen 2005). For example, insoluble 
P solubilization by Aspergillus ustus through phosphatase activity was able to 
increase the P content and biomass of its host, Arctostaphylos canescens grown on 
the rock (Mandyam and Jumpponen 2005). In addition, Phialocephala fortinii inoc-
ulation resulted in increased levels of leaf P, N uptake from the soil, and higher plant 
biomass in Pinus contorta (Jumpponen et  al. 1998). Inoculation of Phialophora 
graminicola onto the grass Vulpia ciliate also increases plant biomass and elevates 
the levels of N and P (Newsham 1999).

Macronutrients such as N are one of the limiting factors for plant growth and 
development because the plant needs a larger quantity of N (over 50% N in the leaf) 
than P during photosynthesis; therefore, N is crucial for carbon fixation (Field and 
Mooney 1986; Yoneyama et al. 2007). Atmospheric N exist in the forms of N2, NO, 
and NO3

−. Although some of these forms are readily deposited into a terrestrial 
ecosystem, however, N requires fixation by soil and/or plant symbiotic microbes, 
called diazotrophic microbes (Steppe 1996). After N is fixed in the terrestrial eco-
systems, the N is further transformed into organic matter and must be mineralized 
into inorganic N to be readily absorbed by plants. In the soil, N is more abundant in 
the organic form than inorganic form (Aerts and Chapin 2000).

N mineralization in the soil is largely mediated by soil fungi and endophytic 
fungi including DSE. In AM and DSE fungi, both fungal groups excrete exo-enzyme 
such as proteases to break down organic matter and provide N in the soil to the plant 
(Schimel and Bennett 2004). Most of the fungi are usually capable of absorbing 
organic matter such as peptides, proteins, and amino acids through enzymatic activ-
ity. In addition, inorganic N in the soil is absorbed by fungal extraradical hyphae as 
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nitrates (NO3
−) or ammonium (NH), converted into arginine, and transported into 

the intraradical hyphae (Ngwene et  al. 2010, 2013). The arginine is further con-
verted into ammonium through the urease cycle before transferring into the plant 
(Cruz et al. 2007). This hypothetical pathway is supported by the increase of argi-
nine in plant roots associated with symbiotic fungi (Tian et al. 2010). These nitrates 
and ammonium are considered as main pathways in N transfer during plant- fungal 
symbioses (Behie and Bidochka 2014).

Similar to N acquisition in the soil, P can be a limiting factor in some ecosys-
tems. However, the P cycle differs from the N cycle because it is not influenced by 
the atmospheric level of P (Ruttenberg 2003). P is generally attached to rocks or 
minerals and released to the soil in P ions forming through geological processes 
such as weathering. Less than 1% of soluble P is available in the soil, and organic P 
is mainly available in the form of inositol phosphates, phospholipids, and nucleic 
acids. Therefore, conversion of organic P by extracellular enzymes from microbes 
such as DSE is very important for the plant (Smith and Read 1997). Although AM 
fungi roles in P conversion are more commonly known than DSE, however, in 
extreme environmental condition, DSE may replace AM in improving P supply to 
the host plant (Mandyam and Jumpponen 2005).

Plant generally absorbed P from the soil, directly or through association with 
AM and endophytes, in form PO4

3− (orthophosphate). In a condition where P is 
lacking in the soil, plants adjust root and shoot accordingly through a phosphate 
starvation response (PSR) system (Poirier and Bucher 2002). In DSE-plant symbio-
sis, P transfer from soil involves the conversion of insoluble P or polyphosphate 
back into inorganic P through the enzymatic process by fungal hyphae (phospho-
monoesterases and phosphatases) and then transported into host plant cortex (Smith 
and Smith 2011).

Transport of P from AM and fungal endophytes to host plant is usually via two 
transporters, viz., the first to enable P uptake and transport from the fungus and the 
second to mediate P uptake by the plant. In AM fungi such as Glomus intraradices 
and its host (Medicago truncatula), coordination of P transport is specifically via 
GmosPT and GvPT (specific to AM fungi) in the fungus and MtPt4  in the plant 
(Harrison and Van Buuren 1995; Benedetto et al. 2005). In non-mycorrhizal fungal 
endophytes, this process usually occurs via PiPT. In the PiPT system, P uptake from 
the soil is started from external hyphae and then induced host P transporters such as 
in the case of Piriformospora indica and maize (Zea mays) (Yadav et  al. 2010). 
However, host specificity of P. indica and PiPT gene is unresolved because in several 
cases such as in potato, P. indica is not involved in the transfer of P to the host plant 
(Yadav et  al. 2010). In Colletotrichum tofieldiae, an endemic endophyte of 
Arabidopsis thaliana, the endophytic fungus transfers P to shoots and promotes plant 
growth only under P-deficient condition (Hiruma et al. 2016). The phosphate starva-
tion response (PSR) system of A. thaliana controls C. tofieldiae growth and coloniza-
tion in the roots to facilitate a beneficial form of C. tofeildiae (Hiruma et al. 2016).

Micronutrients are needed by plants in small quantity, but relatively abundant in 
soils of most ecosystems, and available in the soils in the way P transfer to the soils. 
Mechanism of micronutrients acquisition from the soil through DSE involves 

I. Hidayat



45

chelating agents or enzymes works released by the DSE hyphae (Vergara et  al. 
2017). For example, acquisition of iron (Fe) by the  plant  roots associated  with 
DSE. The Fe is one of the micronutrients that is not easily accessible by plants in 
the environment and very important for the mitochondria and chloroplast metabo-
lism of the plant. This micronutrient exists as the insoluble ferric oxides form that is 
not ready for assimilation by plants, especially in higher soil pH. However, at lower 
pH, the Fe becomes more available for uptake by plant roots due to being freed from 
the oxide. In general, plants utilize two strategies in managing Fe deficiency at 
higher soil pH (Marschner and Römheld 1994). The first strategy involves the 
induction of a plasma membrane-bound reductase by enhanced net excretion of 
protons. This mechanism usually occurs in all plant species except grasses. In the 
second strategy, which commonly occurred on grasses, the plants increase biosyn-
thesis and secretion of phytosiderophores (PS) which form chelates with Fe (III), 
and the Fe-PS complexes are then transported back into the roots (Bienfait 1989). 
The second strategy, in fact, has many similarities with the microbial siderophore 
system  (the third strategy) (Bienfait 1989). In the Fe uptake by plant roots via 
Phialocephala fortinii, especially in the Fe-deficient soil, the hyphae of the P. forti-
nii synthesized high-affinity Fe-chelating siderophore hydroxamate (ferrichrome-
type siderophore) to bind Fe from the soil. This led to the increase of Fe 
bioaccumulation in P. fortinii hyphae. Many fungal species, in fact, produce other 
types of siderophores and facilitators, such as fusarinine, coprogen, rhodotorulic 
acid, and rhizoferrin (Leong and Winkelmann 1998). The  Fe oxidation further 
occurred in the hyphae to reduce iron cytotoxicity and to maintain intracellular 
homeostasis. The processes in fungal hyphae involve three features: (1) relies on 
redox cycling, (2) includes high- and low-affinity pathways; and (3) all processes 
are auto-regulating to maintain intracellular iron homeostasis (Kosman 2003). In 
the redox chemistry of Fe, first, the ferric iron system starts by reducing Fe3+ to Fe2+ 
through the iron reductase action (Kosman 2003). The Fe3+ insoluble in water at 
neutral pH is kinetically “labilize” and becomes soluble in the form of Fe2+. In 
Saccharomyces cerevisiae model, the Fe2

+ is reoxidized into Fe3
+ (ferroxidation) by 

a multicopper oxidase enzyme or ferroxidases (Frieden and Osaki 1974).
There are limiting information regarding other micronutrient transfer from soil 

to host plant via DSE-plant symbiosis; however, chelating agents or enzymatic pro-
cess probably takes an important role in the other micronutrient transport by DSE to 
host plant. The fungal ability to solubilize and accumulate metal minerals could be 
related to metal tolerance of the fungal strains which include DSE. In the solid metal 
solubilization by fungi, Burgstaller and Schinner (1993) noted that this process gen-
erally involves four mechanisms: (1) acidolysis, (2) complexolysis, (3) redoxolysis, 
and (4) the mycelium functioning as a “sink.” The acidolysis and complex lysis are 
also called “heterotrophic leaching” that occurs as a result of several processes such 
as the discharge of protons from hyphae, the production of siderophores (for Fe), 
and the production of organic acids (Gadd 2000). The production of organic acids 
generates protons for solubilization and a metal-chelating anion that bind the metal 
cation (Gadd 1999). Fomina et al. (2004) reported that proton-promoted dissolu-
tion, complexolysis or ligand-promoted dissolution, and metal accumulation by the 
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biomass play important roles in zinc phosphate solubilization by the plant- symbiotic 
fungi. The organic acids such as carboxylic acids are important in a metal complex-
ing process by fungi in the soil depending on the number and dissociation properties 
of their carboxylic groups. Di- and tricarboxylic acids are examples of strong chela-
tors that can transform metals such as Al, Fe, and K from insoluble compounds in 
the soil (Gadd 1999; Ahonen-Jonnarth et al. 2000).

3.5  Mechanism of DSE in Increasing Plant Tolerance 
to Environmental Stress

3.5.1  Drought and High Temperatures

Drought and extreme environmental temperatures are two related major environ-
mental stresses causing plant stress such as osmotic and oxidative stress causing 
physiological and biochemical metabolism changes in plants and finally resulting in 
plant deaths or significant crop productivity loss. Drought can cause a shortage of 
groundwater, resulting in dehydration of the plant cells. This condition obstructs the 
process of plants cell division and development. In addition, extremely high tem-
perature resulting in plants shriveled, chlorotic or die. In the drought or water defi-
cits condition, plants usually respond by  osmotic adjustments, production of 
antioxidants, and altered transcriptional and translational regulation and modify 
stomatal activity (Griffiths and Parry 2002).

DSE symbiosis benefits to plants are not only in nutrient uptake and diseases 
protection but also in increasing tolerance to drought stresses through water uptake 
and relations mechanisms in the root. Several studies on increasing plant resistance 
to drought and high temperature via symbiosis with DSE usually involve habitat- 
specific fungi (Rodriguez et al. 2004; Márquez et al. 2007). For example, Curvularia 
protuberata, an endophytic fungus from Dichanthelium lanuginosum that can con-
fer heat tolerance (up to 65  °C) to its host, is isolated from geothermal soil of 
Yellowstone National Park (Redman et al. 2002). Nurdebyandaru et al. (2013) also 
reported that Helmithosporium velutinum 41-1 and Veronaeopsis simplex Y34 could 
promote chili at relatively high-temperature conditions (up to 35  °C) (Fig.  3.1). 
Rodriguez et al. (2008) noted that the ability to confer heat resistance plant is spe-
cific to DSE fungi isolated from geothermal plants or similar habitats and possibly 
a habitat-adapted phenomenon (Rodriguez and Redman 2008). The mechanism of 
heat tolerance in the plant through symbiosis with DSE is not fully understood. 
However, Márquez et al. (2007) reported one of the mechanisms where the fungus 
induces plant’s heat tolerance via fungal RNA virus, namely, CThTV (Curvularia 
thermal tolerance virus). It was hypothesized that the symbiotic virus is providing 
biochemical functionality to the fungus, not the virus that directly confers heat tol-
erance (Márquez et al. 2007).

The mechanism of DSE or other symbionts conferred drought tolerance to the 
host plants is also not fully understand. Kaushal and Wani (2016) indicated that 
modulating hormonal balance of the plants can enhance plant growth under a 
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stressed condition. For example, in the drought tolerance assay of Trifolium repens 
induced by PGPR, Marulanda et al. (2009) found that production of indole-3-acetic 
acid (IAA) in inoculated plants increased shoot and root biomass and increased 
water uptake resulting in plant growth and survival during drought condition. A 
similar mechanism is also found in AM fungi (Marulanda et al. 2009) and probably 
also occurs in plant drought tolerance mechanism via DSE. The reason behind the 
influence of hormones in plant drought tolerance via hormonal balance is that well- 
developed root system will have the greatest ability to absorb water from soils 
(Marulanda et al. 2003, 2007). In the DSE-plant symbiosis, extraradical hyphae of 
DSE possibly grow and exploit into the soil matrix and absorb water from the soils 
and transport into the root cells (Bryla and Duniway 1997). Melanized hyphae of 
DSE are also important during this process because melanins might protect DSE 
hyphae from unfavorable soil conditions (Zhan et  al. 2011). This mechanism is 
similar to AM fungi mechanism in transporting water and nutrients to their hosts. 
Plants will be benefiting by their increase in photosynthetic and other physiological 
activities for their growth, and in exchange, fungi will obtain C (carbon) from solu-
ble sugars translocated from photosynthetic organs into host roots, thus increasing 
fungal growth and their activity in the roots. In addition, enhanced IAA synthesis 
due to the indole-3-pyruvate decarboxylase regulation gene in symbiotic microbes 
yields the coleoptile xylem architecture change (wider xylem vessels) in inoculated 
wheat, and this leads to enhanced water conductance in coleoptiles that enabled the 
plant to cope with osmotic stress (Pereyra et al. 2012). In another hormonal mecha-
nism, maintaining the stability of the abscisic acid (ABA) level causes the balance 
in the stomatal closure to minimize transpirational loss of water via stomata and 
induces root branching to increase water uptake, as shown in the experiment 
of Azospirillum lipoferum inoculation to maize (Cohen et al. 2009, 2015). Another 
hormone, jasmonic acid (JA) and salicylic acid (SA), protects the plants from oxida-
tive stress damages (Iqbal and Ashraf 2010).

Another plant drought tolerance mechanism through symbiosis with fungi 
involves induction of gene that maintains or facilitates transport of water between 
cells, called aquaporins. In AM fungi-plant symbiosis, drought-sensitive plants 
obtained physiological benefit through downregulation of eight aquaporin genes 

Fig. 3.1 A growth of chili treated with DSE fungi at 35 °C for 3 weeks. (From Nurdebyandaru 
et al. 2013). (a) Inoculated with V. simplex Y34. (b) Inoculated with H. velutinum 41-1
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(ZmPIP1;1, ZmPIP1;3, ZmPIP1;4, ZmPIP1;6, ZmPIP2;2, ZmPIP2;4, ZmTIP1;1, 
and ZmTIP2;3) by the AM symbiosis, and in three aquaporin genes (ZmPIP1;6, 
ZmPIP2;2, and ZmTIP4;1) were regulated by the AM fungi in the induced maize 
cultivars (Quiroga et al. 2017). This result showed that fungal symbionts of plants 
are capable in regulating water loss of their hosts through downregulation of aqua-
porins (Quiroga et  al. 2017). In DSE-plant symbiosis, P. indica colonization of 
Chinese cabbage under drought condition promoted root and shoot growth and lat-
eral root formation through upregulation of peroxidases (POX), catalases (CAT), 
and superoxide dismutases (SOD) in the leaves within 24 h (Sun et al. 2010). The 
drought resistance genes such as DREB2A, CBL1, ANAC072, and RD29A were 
upregulated in the DSE-colonized plants. The CAS mRNA level and the CAS pro-
tein level were also increased. Sun et  al. (2010) also conclude that antioxidant 
enzyme activities, drought-related genes, and CAS (calcium-sensing receptor) are 
crucial targets of P. indica in Chinese cabbage leaves during the drought tolerance 
establishment.

In high-temperature condition, heat shock proteins (HSPs) that are widely dis-
tributed in fungi, animals, and plants possibly play important roles in heat stress 
response. Heat induces the production of reactive oxygen species (ROS) that can 
chemically alter or inactivate proteins, lipid membranes, and DNA (Zhang et  al. 
2017). In fungi, pyruvate molecules play important roles that scavenge heat-induced 
reactive oxygen species (ROS) (Zhang et al. 2017). By using Metarhizium robertsii 
as a model, Zhang et al. (2017) showed that pyruvate accumulation is the fastest 
mechanism of several M. robertsii scavenge ROS that efficiently reduce protein 
carbonylation, stabilize mitochondrial membrane potential, and promote fungal 
growth. Mastouri et al. (2010) reported that Trichoderma harzianum strain T22 was 
capable of reducing oxidative damages from the accumulation of ROS in stressed 
plants. Plant seedling inoculated with T. harzianum strain T22 grows well under 
multiple abiotic stresses (osmotic, salt, or suboptimal temperatures), biotic stress 
(Pythium ultimum disease treatment), and physiological stress (poor seed quality 
induced by seed aging) (Mastouri et al. 2010). It is clear that eliminate accumulation 
of ROS in host plant might be a possible way of inducing heat tolerance in plants by 
symbiotic fungi.

3.5.2  Heavy Metals in Soil

Heavy metal (HM) pollution in soils by anthropogenic activities causes severe 
threats to plant survival worldwide. Several plant species can survive in this envi-
ronmental condition through complex physiological traits, adapting metabolic path-
ways, and perform symbiosis with beneficial microbes (Xu et al. 2015). AM and 
DSE symbiotic fungi are considered important for plant growth and survival in 
heavy metals contaminated soils due to their ability in accumulating HMs and/or 
converting them into readily absorbed minerals by the plant (Ban et al. 2012; Babu 
et  al. 2014). Melanin in DSE hyphae is hypothesized as one of the important 
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components in the fungal cell wall to reduce HMs toxicity due to the fungal melanin 
capacity in binding HM ions (Larsson and Tjälve 1978).

In AM fungi-plant symbiosis system, AM fungi are capable of translocating and 
distributing metal inner parenchyma cells of roots (Kaldorf et al. 1999), via the fol-
lowing mechanism: (1) extracellular biosorption/precipitation of metals, (2) active 
efflux pumping of metals out of the cell via transporter system, (3) sequestration of 
metals in intracellular compartments (mainly cell vacuole), (4) exclusion of metal 
chelates into the extracellular space, and (5) enzymatic redox reaction through con-
version of metal ion into a non-toxic or less toxic state (Umar 2017). Similar to AM 
fungi, DSE fungi involve several ways in adapting to high HMs invested soils. The 
first step is similar to the acquisition of Fe from soils where DSE produce extracel-
lular chelating compounds or binding of HMs to cell wall constituents to prevent 
entrance of HMs into cells. This step is followed by a series of intracellular pro-
cesses, such as complexation and peptide binding, transportation, compartmentaliza-
tion, ROS scavenging, etc. Zhang et al. (2008) and Diao et al. (2013) reported that 
superoxide dismutase (SOD) and catalase (CAT) (antioxidases) were significantly 
upregulated under Cd or Zn stress and showed the role of fungal melanin in cell wall 
to combat HMs stress (Zhan et al. 2011). Zhao et al. (2015) elucidated the process of 
Cd detoxification by DSE fungus, Exophiala pisciphila, that involves (1) extracellu-
lar function such as extracellular metal ion binding and cell wall integrity mainte-
nance and (2) intracellular processes, such as metal ion binding and transportation, 
organic acid metabolic processes, organic acid transportation, ROS scavenging, 
redox balance, transcription factor production, sulfate assimilation, and DNA repair.

Zhao et al. (2015) also detected 104 metal binding and 32 metal transport genes 
associated with HMs acquisition and homeostasis among 575 differentially 
expressed genes (DEGs). These include Zn2+, Fe2+, Cu2+, Mn2+, and Ca2+ binding 
genes. Three metallothionein (MT) genes, a family of cysteine-rich polypeptides 
involved in intracellular Cd detoxification, were also detected in E. pisciphila. Wu 
et al. (2012) reported that Cd2+ entered cells through Fe2+, Ca2+, or Zn2+ transporters; 
therefore, eliminating the transporters may become one of the most effective mech-
anisms to keep toxic metals outside of cells (Pócsi 2011). In E. pisciphila mecha-
nism, Zn2+, Fe2+, and Ca2+ transporters were downregulated, indicating a strategy for 
the inhibition of Cd passage through the membrane cell of E. pisciphila. In the same 
study, Zhao et al. (2015) also noted that amino and organic acids are important mol-
ecules due to their role in preventing the metal’s entry into cells or by facilitating 
intracellular HMs detoxification through the chelation of various ligands (Lin and 
Aarts 2012). The DSE fungus E. pisciphila also synthesizes and upregulates various 
antioxidants, such as SOD and CAT in response to oxidative stresses (Zhang et al. 
2008; Ban et al. 2012).

All these studies have shown that DSE fungi apparently influence their host plant 
response to the high HMs environment and enhance their host plant tolerance to 
heavy metal stress. However, whether DSE-plant tolerance to heavy metals can be 
attributed to the DSE fungi or the result of symbiosis is still unknown. Therefore, 
understanding the mechanisms by which DSE fungi help their hosts adaptation to 
the HMs environment is more important in future studies.
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3.5.3  Plant Defense and Immunity to Phytopathogens

Members of DSE are capable of colonizing the plant roots and proliferating endo-
phytically in the root cells without causing disease symptoms to their host. They can 
enhance hosts growth performance and immunity to plant pathogen attacks. Many 
studies have reported improvement of crops due to the application of DSE that 
enhance plant performance such as nutrient uptake and adaptation to various envi-
ronmental stresses. These include adaptation to abiotic factors such as drought, high 
temperature, poor soil quality, heavy metal’s infestation in the soils (Rodriguez 
et al. 2004, 2008; Zhang et al. 2008; Márquez et al. 2007; Mastouri et al. 2010; Sun 
et al. 2010; Zhan et al. 2011; Ban et al. 2012; Wu et al. 2012; Zhao et al. 2015; 
Zhang et  al. 2017) and protection from biotic factor like phytopathogen attacks 
(Narisawa et  al. 1998, 2002, 2004; Andrade-Linares et  al. 2011; Khastini et  al. 
2012, 2014). Cadophora sp. (Khastini et  al. 2014), H. chaetospira, P. fortinii 
(Narisawa et al. 1998, 2002, 2004), Leptodontidium orchidicola (Andrade-Linares 
et  al. 2011), Meliniomyces variabilis LtVB3 (Ohtaka and Narisawa 2008), 
Piriformospora indica (Kumar et al. 2009), and Veronaeopsis simplex Y34 (Khastini 
et al. 2012) are among DSE species that is capable to increase resistance of several 
crops such as tomato, eggplant, Chinese cabbage against phytopathogens such as 
Fusarium wilt, Verticillium yellow, Clubrot, Pseudomonas syringae pv. macricola 
(bacterial leaf spot), and Alternaria brassicae (Alternaria leaf spot), etc.

Mechanisms of DSE protecting their hosts against plant pathogen attack involve 
antimicrobial metabolites production (Gunatilaka 2006), fungal competition for 
nutrients (Serra-Witling et al. 1996), competition for infection sites and root coloni-
zation (Mandeel 2007), and plant systemic resistance induction (Kogel et al. 2006). 
Mandyam and Jumpponen (2005) also noted three possible mechanisms of which 
DSE inhibit plant pathogen attack or minimize pathogens impact on plant growth: 
(1) the first mechanism is competition for site colonization of plant photosynthates, 
(2) production of antimicrobial compounds, and (3) plant defense induction to sub-
sequent pathogen infection.

Among these mechanisms, induction of plant defense through DSE symbiosis 
and siderophore production is the most common mechanisms found during green-
house and field trial. Induced systemic resistance (ISR) can be defined as defensive 
capacity developed by plants when appropriately stimulated through activation or 
induction by diverse agents, including fungal symbiont (Van Loon et al. 1998). In the 
study of Meliniomyces variabilis LtVB3 application to suppress Verticillium yellow 
attacks on Chinese cabbage, after inoculated with M. variabilis LtVB3, the host 
developed wall appositions and thickenings in the epidermal and cortical layers 
(Narisawa et al. 2004). The cell wall modification and changes are possibly a signal 
that is followed by producing antimicrobial substances. Benhamou and Garand 
(2001) reported that cell wall modification is related to the production of secondary 
metabolite and accumulation of pathogenesis-related proteins. Production of phenyl-
alanine ammonia-lyase and H2O2 were also signal of plant defense system activation 
(War et al. 2011). A similar mechanism was found on V. simplex Y34 application to 
Chinese cabbage in mitigating Fusarium disease attacks, by which V. simplex 
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restricted F. oxysporum penetration into Chinese cabbage roots by activating the 
defense system (Khastini et al. 2012). Kumar et al. (2009) also found that DSE fun-
gus, Piriformospora indica, protects its host (maize) through the oxidative defense, 
but not antibiotic production. In the host plant protection that involves siderophore 
production by DSE symbionts, the DSE fungi excrete the siderophores to bind Fe 
with high affinity from the soil, thus limiting the growth of other microorganisms in 
the rhizosphere. In the application of V. simplex Y34 to the Chinese cabbage root, 
Khastini et al. (2012) reported that V. simplex Y34 chelated Fe and supplied Fe to its 
host, at the same time, making Fe unavailable to F. oxysporum. This mechanism was 
also found in P. fortinii (Bartholdy et al. 2001; Narisawa et al., 2002).

3.6  DSE Application and Commercialization

Although reports on successful DSE application on various hosts were reported at 
the laboratory and greenhouse scales by which nutrition and environmental condi-
tion are under control, it does not negate the possibility of application in a large- 
scale application in the field or natural ecosystems. Successful DSE inoculants or 
other biocontrol agent inoculants have to be able to colonize the hosts (rhizosphere, 
phyllosphere, or plant organs), compete with other microorganisms, and persist in 
various local abiotic and biotic conditions in various settings to meet commercial 
inoculants requirements. It is not guaranteed that successful DSE colonizing their 
host will persist over time.

3.7  Factors Affecting the Scale-Up of Fungal Endophytes

Several limiting factors to scale up fungal endophytes, especially DSE, into practi-
cal use or commercial scales are needed to overcome. These include:

3.7.1  Host and Pathogen Specificity

Host and pathogen specificity is a very important concern in developing biological 
control at commercial scale because it affects the effectiveness of biological control 
agents to mitigate various pathogens on various hosts and the risks of affecting non- 
target organisms in the field. Therefore, several authors noted narrow host specificity 
as a limiting factor for the commercialization of biological control agents. Commercial 
products of biocontrol formula generally required a broad spectrum of target patho-
gens and crops. Since most of DSE members are generalists to host plants, host 
specificity of the DSE for a large-scale application is not a bottleneck. For example, 
P. indica is one of common DSE that is successfully applied and enhance various 
plants such as Spilanthes calva, Withania somnifera, Arabidopsis thaliana, Adhatoda 
vasica, Nicotiana attenuata, N. tabacum, Hordeum vulgare, Triticum aestivum, 
Solanum lycopersicum, Chlorophytum sp., Cicer arietinum, C. arietinum, Phaseolus 
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aureus, Brassica campestris, Piper nigrum, Glycine max, Foeniculum vulgare, 
Thymus vulgaris, Vigna mungo Fragaria x ananassa, and Centella asiatica (Franken 
2012). Broad-spectrum biocontrol activity of P. indica has been reported against 
Blumeria graminis f. sp. tritici, Pseudocercosporella herpotrichoides, and Fusarium 
culmorum (Serfling et al. 2007). In addition, P. indica also reported capable of reduc-
ing egg density of the soybean cyst nematode (SCN), Heterodera glycines (Bajaj 
et al. 2015). Hashiba and Narisawa (2005) also reported successful inoculation and 
symbiosis between H. chaetospira and 19 host plant species. The DSE fungus H. 
chaetospira also successfully suppresses Pseudomonas syringae pv. macricola and 
Alternaria brassicae attack on Chinese cabbage leaves (Hashiba and Narisawa 
2005), indicating the broad-spectrum nature of this fungus.

Since a majority of DSE possesses a capacity to establish a new host and new 
environment, it will possibly create a risk to non-target species, directly or indi-
rectly (Brodeur 2012). Although environmental risks due to biological control are 
difficult to estimate, however, the risks can be reduced by conducting the selection 
of specific biological control agents and gathering information regarding host and 
pathogens range of the biological control agents. Brodeur (2012) also noted that the 
level of risk that is acceptable depending on the importance of the diseases problem 
and the presence of ecologically and economically important non-target species 
(e.g., endangered species, crop plants, and pollinators) in the environment where the 
biological control agent is to be released.

3.7.2  Inoculation Technique and Symbiosis Sustainability

Finding the best microbes to enhance plant growth and increase their immunity to 
plant pathogens, including DSE, is hard, and optimizing their potential in the field 
scale is harder to carry out. The DSE cannot be applied in the field as spore suspen-
sion, but need a precise delivery system such as powdered or liquid formulation 
through seed treatment, root dip, etc. Therefore, determining the correct method and 
time to inoculate DSE into host plants is crucial to the success of DSE applications. 
Microbe coating of seeds with promising microbes (Ab Rahman et al. 2018), includ-
ing inoculation for fungal endophytes, is one of the best options for optimizing plant-
microbe interactions at the field scale. The benefit of this method for a large- scale and 
field application is that the inoculants can be stored/cryopreserved for a long period 
and cultured at any time before being applied to the seeds. The important phase to 
inoculate the DSE isolate is during seed germination or during embryogenesis in tis-
sue culture. This report provides an indication of potential P. indica for large-scale 
application. Bhagobaty and Joshi (2009) reported that fungal endophyte Penicillium 
verruculosum RS7PF was able to induce germination of Vigna radiata and Cicer ari-
etinum. The endophytic fungus may provide carbon for the seed germination through 
degradation of cellulose in the cuticle. In the orchid’s germination, seedlings of 
orchids, in fact, nutritionally depend on fungal endophytes that colonize their cells 
(Bidartondo and Read 2008). It is called “myco- heterotrophic” (Leake 1994).
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Several methods to effectively inoculate DSE fungus into host plants have been 
reported at various scales (Varma et al. 1999; Usuki et al. 2002). In the application 
of P. indica fungus into Spilanthes calva and Withania somnifera, the mycelium of 
P. indica was homogenized in sterile water and was further applied at 1% of seed 
(Rai et  al. 2001). The results showed that not only increase in all plant growth 
parameters was found but also drought tolerance adaptation of S. calva and W. som-
nifera during the hot March–June summer season (day temperature above 40 °C). 
Tefera and Vidal (2009) in the study of Beavueria bassiana inoculation into sor-
ghum noted that colonization by B. bassiana endophytically depended upon the 
inoculation method, specificity of fungal isolate, and plant species. In their study, 
seed coating with conidial suspension followed by planting in vermiculite and ster-
ile soil could improve the colonization of B. bassiana on sorghum. In the study of 
fungal biocontrol inoculation into tissue culture of banana, Paparu et  al. (2004) 
noted that potentially PGP fungal endophytes must be present in plant tissue at the 
time the plants are attacked by pathogens. Successful colonization of plant roots by 
fungal endophytes and continual symbiosis from the time of inoculation onward 
(until field planting) is crucial in the application of the fungal endophytes. In the 
micro-propagated plants, DSE can be inoculated during somatic embryogenesis 
(Niemi et al. 2004; Jie et al. 2009). The in vitro colonization of tissue culture plants 
can increase adaptation to ex vitro conditions and to acclimatization.

3.8  Conclusion and Future Direction

The potential of DSE in enhancing plant overall performance has been discussed 
and elucidated, from nutrient uptake, adaptation to the extreme environment, and 
protection from plant pathogen threats. However, further difficult tasks for scientists 
to face are moving forward this huge potential into large-scale application or com-
mercial application to meet world demand for foods. A rapid increase in human 
population will have to meet the current and future environmental condition such as 
less land, less water, and high temperature. Therefore, every opportunity and poten-
tial to increase food production must be explored. Since the DSE fungal application 
for commercial scale has several limitations, the future research should be focused 
on (1) examination of host specificity, pathogen specificity, and symbiosis sustain-
ability of the potential DSE with various hosts; (2) optimization of DSE application 
methods at various environmental conditions, such as tropic, sub-tropic, temperate, 
etc.; and (3) development of DSE co-inoculation method on a commercial scale.
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Abstract
With ongoing climate change, the severity, frequency and duration of different 
abiotic stresses have threatened the agricultural productivity around the globe. 
Major abiotic stresses like drought and salinity have reduced agricultural land 
both in the arid and semiarid regions of the world. Further decline in yield is 
inculcated by plant pathogens. Excessive use of chemical fertilizers induced 
heavy metal as secondary stress. Therefore, use of environmentally friendly 
approach based on plant growth-promoting rhizobacteria is a promising one to 
alleviate the adverse effect of stresses and improve growth of plants under such 
conditions. These are the natural inhabitants of diverse environment an integral 
part of natural ecosystem and exhibit enormous plant growth promotional capa-
bilities. They colonize plant roots, can modulate phytohormone levels and induce 
local and systemic mechanism in plants that offer resistance against biotic and 
abiotic stress factors. When applied as biofertilizers, counteract osmotic stress, 
oxidative stress, provide bioprotection against heavy metals thus enhance toler-
ance against salinity, metal toxicity and drought stress. They change heavy metal 
bioavailability in soil through major processes of immobilization, transforma-
tion, acidification, precipitation, chelation, complexation, redox reactions and 
distribution. These bacteria also affect the physiochemical properties of saline 
soil by increasing organic matter content, NO3-N, available P and K of the soil, 
and decrease in the ECe, CEC and SAR of rhizosphere soil renders the saline soil 
productive. This chapter provides a brief overview of PGPR-mediated stress- 
tolerance responses in plants and the molecular and the cellular mechanisms 
responsible to alleviate drought, salt and heavy metal stresses.
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4.1  Introduction

4.1.1  PGPR Effect on Growth and Development of Plants

PGPR escalate plant nourishment through modification of root architecture and 
their effectiveness and reciprocate to abiotic stresses. Besides growth enhancement, 
they produce phytohormones and nutrient uptake, solubilize mineral deposits and 
synthesize siderophores, an iron chelator to make iron available to plant roots (Glick 
1995). Mineralization, decomposition, storage and/or discharge of nutrients medi-
ated by complex PGPR community inculcates a crucial role in soil richness 
(Bunemann et al. 2004; Khan et al. 2018a). They work as a sink for phosphorous in 
the presence of liable carbon, as it rapidly immobilizes phosphorous in soil having 
low content of phosphorous and surge its availability to plant roots (Kang et  al. 
2002; Khan and Bano 2016a). They also improve plant growth by boosting the effi-
cacy of biological N2-fixation and augment the approachability of trace elements 
(Ponmurugan and Gopi 2006) (Figs. 4.1 and 4.2).

Rhizobium is a well-reported PGPR that resides inside the roots of non- 
leguminous plant and induces phytohormone production, solubilizes insoluble 
phosphate and to some degree acts as nitrogen fixer (Afzal and Bano 2008; Matiru 
and Dakora 2004). Inoculation of such bacterium in field enriched soil fertility and 

Fig. 4.1 Mechanisms of Plant growth promoting rhizobacteria (García-Fraile et al. 2015)
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decreased production cost of nitrogen fertilizers for next crop (Ahmad et al. 2006). 
Examples include genera, i.e. Achromobacter, Aeromonas, Azotobacter, 
Azospirillum, Bacillus, Enterobacter, Klebsiella, Pseudomonas and Variovorax 
(Pishchik et  al. 2002; Sorty et  al. 2016). Current modern agriculture technology 
relies on use of PGPR especially in stress-affected regions of the world. A summary 
of action mechanism adopted by PGPR is shown in Table 4.1.

4.1.2  Drought, Salinity and Heavy Metal Stresses

Abiotic stresses created by adverse climatic conditions are amongst the primary 
restrictive that decline crop productivity in different areas of the world. Report pre-
sented by FAO clearly illustrates that 3.5% of the total land area has been left unpre-
tentious by major environmental constraint such as drought that has affected 64% of 
global land area, 6% salinity affected area, flood (13%), mineral deficiency 9%, 
acidic soils 15% and cold 57%. Riadh et al. reported that out of the 5.2 billion ha of 
agriculture land, 3.6 billion ha is affected by the erosion, soil degradation and 
salinity.

Shahbaz et al. reported that salinity causes major reductions in cultivated land 
area, crop productivity and quality.

Globally, more than 831 Mha of land is affected, either by salinity (397 Mha) or 
by sodicity (434 Mha) (Martinez-Beltran and Manzur 2005). Salinity and sodicity 

Fig. 4.2 PGPR mediated abiotic stress tolerance in plants (Bharti et al. 2016)
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Table 4.1 PGPR interaction effects in crop plants under salinity stress

PGPR species Crop plant Effects References
Pseudomonas 
pseudoalcaligenes, Bacillus 
pumilus

Rice (Oryza 
sativa)

Augment the 
concentration of 
glycine betaine

Raoultella planticola Rs-2, 
Streptomyces sp. strain PGPA39

Cotton ‘Micro 
tom’ tomato

ACC deaminase 
activity and production 
of IAA

Wu et al. (2012)

Acinetobacter sp. and 
Pseudomonas sp

Barley and oats Production of ACC 
deaminase and 
indole-3-acetic acid 
production

Pseudomonas 
pseudoalcaligenes

Salt-sensitive 
rice GJ-17

Reduce lipid 
peroxidation and SOD 
activity

Jha and 
Subramanian 
(2014)Bacillus pumilus

Brachybacterium saurashtrense 
(JG-06), Brevibacterium casei 
(JG-08) and Haererohalobacter 
(JG-11)

Groundnut 
(Arachis 
hypogaea L.)

Increase K+/Na+ and 
Ca2+, ration and the 
accumulation of P and 
N

Shukla et al. 
(2012)

Rhizobium phaseoli and PGPR 
(Pseudomonas syringae, Mk1; 
Pseudomonas fluorescens, 
Mk20; and Pseudomonas 
fluorescens Biotype G, Mk25)

Mung bean 
(Vignaradiata 
L.)

ACC deaminase 
activity and increased 
WUE

Rhizobium and Pseudomonas Mung bean 
(Vignaradiata 
L.)

Responsible for the 
synthesis of IAA

Pseudomonas putida, 
Enterobacter cloacae, 
Serratiaficaria and 
Pseudomonas fluorescence

Wheat Enhance % 
germination and 
improve the nutrient 
status in wheat plant

Pseudomonas simiae AU Glycine max Decrease in root NaCl 
accumulation and 
increase in proline and 
chlorophyll content

Pseudomonas putida UW4 
(ACC deaminase)

Solanum 
lycopersicum

Increased shoot 
growth and expression 
of Toc GTPase

Dietzianatro nolimnaea Triticum 
aestivum

Responsible for the 
modulation of ABA 
signalling cascade

Bharti et al. 
(2016)

Enterobacter sp. UPMR18 
(ACC deaminase)

Abelmoschus 
esculentus

Increase antioxidant 
enzyme activities and 
upregulation of ROS 
pathway genes

(continued)
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increase heavy metal toxicity as secondary stress. Metals and metalloids having 
specific weight greater than >5 g cm3 are generally referred as heavy metals. In biol-
ogy heavy metals include those elements which cause toxicity to human beings and 
environment (Tchounwou et  al. 2012). They are classified into three categories, 
including toxic metals (e.g. Hg, Cr, Pb, Zn, Cu, Ni, Cd, As, Co, Sn, etc.), precious 
metals (e.g. Pb, Pt, Ag, Au, Ru, etc.) and radionucleids (e.g. U, Th, Ra, Am, etc.) 
(Wang and Chen 2006; Thateyus and Ramya 2016). Heavy metals that reach haz-
ardous levels comprised of Pb, Cr, Hg, U, Se, Zn, As, Cd, Ag, Ni, Au and Cu (Ahalya 
et al. 2003; Vieira and Volesky 2000). Rhizoremediation of such metals has gained 
an attracted attention and considerable research.

Weathering of enriched metal rocks naturally releases heavy metals in the soil 
(Smith 2009). Addition of anthropogenic activities, i.e. extensive use of metal-based 
pesticides, biosolids and manures, exploitation of mining and industrial wastes, 
municipal and industrial waste water, military training and weapons, etc. can result 
into heavy metal toxicity in soil.

Plants adaptation to salinized land polluted with heavy metals is an increasingly 
important problem of the world (Kholodova et al. 2010; Khan and Bano 2016b). In 
alkaline salt-affected soil, the damaging effect on plants is more severe (Heshmatpur 
and Rad 2012). Metal toxicity effect the soil physio-chemical properties like pH, 
soil texture and the accumulation of macronutrients as well as micronutrients hence 
effects the overall plant growth. It also has an inhibitory effect on plant growth, root 
development, photosynthetic activity and accumulation of mineral nutrient (Sen 
et al. 2013; Garg and Bhandari 2011).

Salinity-induced osmotic stress leads to precipitation and renders the unavail-
ability of essential elements such as K, Ca, Fe and Zn, causing nutrient deficiency 
to plants. Wang et al. (2013) reported that maize shoot and root is highly reduced in 
the presence of Cd. Toxicity of Pb causes reduction in germination, suppressed 
growth, reduces length and dry mass of root and shoot, disturbs mineral nutrition 
and decreases protein content in maize (Ghani et al. 2010; Hussain et al. 2013).

Table 4.1 (continued)

PGPR species Crop plant Effects References
Bacillus thuriengenesis NEB17 Glycine max Regulate the activity 

of PEP carboxylase, 
pyruvate kinase and 
antioxidant 
glutathione-S- 
transferases

Subramanian 
et al. (2016)

Bacillus amyloliquefaciens 
SQR9

Zea mays Upregulation of 
RBCS, RBCL and 
NHX1

Chen et al. 
(2016)

Bacillus amyloliquefaciens 
SN13

Oryza sativa Upregulation of SOS1, 
EREBP, SERK1, 
NADP-Me2
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4.1.3  Drought Tolerance

PGPR induce drought tolerance in plants by many mechanisms (Farooq et al. 2009; 
Khan and Bano 2016b). Parenthetically, compounds that exudate by rhizosphere 
bacteria also contain such osmolytes. Production of glycine-betaine by rhizobacte-
ria acts in coordination with glycine-betaine produced by the roots of plant against 
environmental stresses and thus enhances tolerance in plants to varied stresses. In 
connection with this, the advantageous effects of osmolyte producing rhizobacteria 
on the seedling of rice were more momentous under severe stress condition that 
positively affected shoot and root dry weights. These bacteria were also tested for 
the production of IAA, thus helping in root proliferation and apparently improving 
water uptake.

Bacteria that synthesize ACC-deaminase can enhance the tolerance of root and 
leaf to water scarcity, ostensibly by the induction of ethylene signalling (Stenglein 
and Harris 2006). The ACC deaminase action of Achromobacter piechaudi was 
revealed to enhance the drought tolerance of tomato and pepper, instigating signifi-
cant surges in their fresh and dry weights. PGPR inoculation reduces the production 
of ethylene in PGPR-treated plants as compared to control and improves the retrieval 
from water deficiency, though bacterial treatment did not affect relative water con-
tent (Mayak et al. 2004).

By 2030, the available freshwater will not keep up with the demand, and without 
more active managing practices for water resources, the complications will increase 
and food production will decrease in many countries of the world. Water supply 
directly affects the agricultural GDP. Major reservoirs (i.e. 70%) of the global fresh-
water are used for agriculture, thus creating chances and potentials for agro- 
technologist to propose solutions in order to professionally use the available 
freshwater sources (Ahmadi 2009; Khan et al. 2019a).

4.1.4  Mechanisms of Bacteria-Mediated Stress Tolerance

Plant growth-promoting rhizobacteria are recognized for their role in making of 
phytohormones. These phytohormones show a key role in altering the mechanism 
of plants to ecological stresses (Potters et al. 2007). The foremost important hor-
mone produced by these rhizosphere bacteria is IAA, and treatment of plants with 
such bacterial species results augmented root growth and increases in the creation 
of horizontal roots and root hairs (Khan et al. 2017, 2018b). This increase in the 
growth of roots is responsible for a greater root surface and thus enhances water 
absorption and uptake of essential nutrients.

Another extensive distinct character used by endophytes and rhizosphere bacte-
ria is the assembly of ACC deaminase, as ACC deaminase is chief mechanism of 
rhizobacteria for imparting useful effects on abiotic ally-stressed plants (Naseem 
et al. 2018; Saleem et al. 2007). Bacteria owning this enzyme can employ the instant 
ethylene precursor ACC as a source of nitrogen. ACC deaminase activity not only 
leads to reduction in ethylene level but also causes variations in root morphology 
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(Molina-Favero et al. 2008). This decrease in the production of ethylene modifies 
the overall stress eminence of the plant, as ethylene shows a crucial role in stress-
related signal transduction pathways. Like ethylene, proline is also produced by 
certain PGPR species interaction to plentiful abiotic and biotic stresses (Hare and 
Cress 1997). Proline production has been noted to increase in stressed plants inocu-
lated with Burkholderia, Arthrobacter and Bacillus (Sziderics et al. 2007).

Rhizobacteria are also known for the induction of induced systematic resistance 
(ISR) in plants (Chakraborty et al. 2006) which is another mechanism of increased 
lenience to abiotic stresses. In addition, reasonable vagaries in gene expression in 
Arabidopsis thaliana, treated with P. polymyxa under drought or infected with E. 
carotovora, support the supposition that genes intricate with plant responses to dif-
ferent stresses may be co-regulated by PGPR (Timmusk and Wagner 1999). In con-
nection with this, the expression of Osmyb4 gene encodes for transcription factor in 
rice that complicate in cold acclimation instigated by higher lenience of transgenic 
A. thaliana to both abiotic and biotic stresses. Xiong and Yang (2003) demonstrated 
that resistance to plant diseases and abiotic stresses in rice plant are controlled by an 
ABA-inducible mitogen- activated protein kinase (MAPK). This MAPK is attracted 
by both abiotic and biotic stressors and increases tolerance environmental stresses 
when present in higher concentration (Yang et al. 2009a, b).

Studies on plant-microbe interactions at various levels (i.e. biochemical, physi-
ological and molecular) documented that plant-microbial associations generally 
direct plant reactions towards stresses. For studying profounder interactive mecha-
nisms and linking the distinctions at molecular level with the leniency retorts against 
stresses, biological data was generated based on multi-omics approaches. The data 
generation and examination were sustained by the improvements in the high-end 
instrumentation and computational addition which assisted to decode separate sig-
nal molecules, proteins, genes and gene cascades to relate them with the gene net-
work pathways for their function depiction. Technological extensions also alleviated 
the knowledge of gene-editing systems and metabolic profiling to unveil enormous 
molecular information that abetted in purifying our understanding of microbe inter-
ceded stress mitigation strategies. Multi-omics methodologies have ascended as a 
complete and combined investigative approaches for the partition of one of the most 
composite and active living systems of microbial interactions with plants and mod-
erating the significances in the plants to benefit them by overcoming different envi-
ronmental stresses (Belimov et al. 2007).

4.1.5  Physiological Mechanism Mediated by Rhizobacteria 
Against Salinity

Rhizospheric zone has greatest diversity of microorganisms and serves as an essen-
tial ecological niche where utmost microbial activities take place as compared to 
rest of bulk of soil. Diverse mechanisms have been adopted by PGPR that promote 
plant growth under saline condition. These include N2- fixation, solubilization of 
insoluble phosphates and production of siderophores (Khan et  al. 2018a, b, c). 
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Stress alleviation is ensured through antagonistic activity against pathogens, degra-
dation of organic pollutant and bioremediation of heavy metal toxicity (Chowdhury 
et al. 2015; Smith et al. 2015).

4.1.5.1  Osmotic Balance and Ion Homeostasis
Marulanda et al. (2010) performed an experiment on maize plant inoculated with 
Bacillus megaterium. He noticed that root hydraulic conductivity was increased in 
inoculated maize compared to uninoculated plants when exposed to 2.59 dS m−1 
salinity level. In another study it was reported that wheat inoculated Bacillus aqui-
maris strains showed increased total soluble and reducing sugars under saline con-
dition (ECe 5.2  dS m−1). In field conditions it was observed that inoculation of 
Bacillus aquimaris resulted in higher shoot biomass, nitrogen, phosphorous and 
potassium accumulation and reduced Na content in leaves (Upadhyay and Singh 
2015). PGPR maintain ion homeostasis by reducing Na and Cl accumulation in 
leaves and their exclusion via root. Rojas-Tapias et al. conducted pot experiment to 
evaluate the role of PGPR on amelioration of saline stress in maize. The two most 
tolerant PGPR candidates, Azotobacter strains C5 (auxin producing) and C9, were 
selected. After 4 weeks ion uptake was evaluated. Inoculation of bacteria in maize 
plants under salt stress improved K uptake and Na exclusion, thereby enhancing K/
Na ratio in maize.

4.1.5.2  Phytohormone Signalling
Under stress saline plant-microbe interaction is regulated by phytohormone signal-
ling which contribute to increased salt tolerance. One of the most commonly studied 
bacterial signalling molecules is IAA produced by PGPR. It has been reported that 
IAA producing PGPR could produce siderophores and can solubilize inorganic 
phosphate, thus promoting the growth of tomato under 2% NaCl, respectively (Tank 
and Saraf 2010).

ABA is a stress hormone and its accumulation in plants under saline condition 
increases and hampers growth of plant. It was investigated that Pseudomonas putida 
Rs-198 inoculated to cotton plant (Gossypium hirsutum) showed increase concentration 
of endogenous IAA level and reduced ABA accumulation (Yao et al. 2010). In another 
study it was reported that Arthrobacter protophormiae SA3 and B. subtilis LDR2 when 
inoculated to wheat plants showed increase concentration of IAA, while ABA and ACC 
deamiase activity were reduced at 100 mM NaCl (Barnawal et al. 2017).

Glick et al. investigated that PGPR could lower plant endogenous ethylene level 
under saline stress and enhance the production of IAA to promote plant growth. 
Pseudomonas fluorescens and Enterobacter spp., both are ACC deaminase produc-
ing bacteria. These bacteria were inoculated to maize grown in salt-affected soil and 
data related to Na, K and P was recorded. Higher K/Na ratio and NPK uptake was 
recorded in inoculated maize compared to control plants (Nadeem et  al. 2009). 
Another bacterium known as Pantoea dispersa PSB naturally produces IAA and 
ACC deaminase enzyme. Upon inoculation to Cicer arietinum cv. GPF2, it was 
observed that plant biomass, pod number, pod weight, seed number and seed weight 
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were significantly increased under 150 mM NaCl. Similarly, a significant increase 
in leaf relative water and chlorophyll content as well reduction in NaCl uptake and 
electrolyte leakage was also recorded (Panwar et al. 2016).

4.1.5.3  Extracellular Molecules
A variety of extracellular compounds are secreted by PGPR to manipulate signal 
pathways under salt stress. These include exopolysaccharide, proteins, polyamines 
(PAs), volatile organic compounds (VOCs), etc. Exopolysaccharides secreted by 
bacteria are responsible for maintenance of soil structures and increased water hold-
ing capacity and cation exchange capacity (Upadhay et al. 2011).

Cicer arietinum var. CM-98 inoculated with Halomonas variabilis HT1 and 
Planococcus rifietoensis RT4 showed enhanced growth under 200 mM Nacl salt 
concentrations (Qurashi and Sabri 2012). Lipochito-oligosaccharides are extracel-
lular substances secreted by PGPR and induce seed germination and root organo-
genesis in barley (Miransari and Smith 2009). PGPR produce and secrete 
antimicrobial peptides known as bacteriocins. Thuricin 17, a bacteriocin isolated 
from B. thurengensis NEB17, enhanced physiological tolerance of Arabidopsis to 
250 m MNaCl (Subramanian et al. 2016). Polyamines are low molecular weight 
organic compounds that have pronounced effect on antioxidant activity under salt 
stress (Balal et  al. 2017). Examples are spermidine, spermine, putrescine, etc. 
Inoculation of spermidine-producing Bacillus megaterium BOFC 15 to Arabidopsis 
thaliana resulted in greater biomass and enhanced antioxidant activity and robust 
root architecture (Zhou et al. 2016).

4.1.6  Role of PGPR in Alleviation of Heavy Metal Stress

PGPR have developed several mechanisms to overcome metal toxicity. These are 
discussed below.

4.1.6.1  Metal Detoxification
Rhizoremediation is the uses of inocula of natural and recombinant PGPR to remedi-
ate heavy metals from polluted soil (Dixit et al. 2015). Bioaccumulation and biosorp-
tion are two basic strategies adopted by microbes to alleviate heavy metal toxicity 
(Ahemad 2014; Ma et al. 2011). They secrete low molecular weight chelators called 
siderophore. Chelators form complexes with metals such as cadmium, copper, lead, 
iron and zinc (Schalk et al. 2011). Under stressful environment of heavy metal con-
tamination, microbes experience a high level of metal toxicity. In such circumstances, 
PGPR have adopted different mechanisms. Some are listed below.

4.1.6.2  Biosorption
Biosorption is a cost-effective, environmentally friendly approach and possesses 
excellent adsorbability. Two decades ago, heavy metal- contaminated soil exceeded in 
volume due to industrial and agriculture sources. It is reversible and passive (faster) 
metabolic independent process that does not require energy.
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Several genera of PGPR have been tested as potential biosorbents. They possess 
chemosorption sites in their cell wall and associated functional groups. These recep-
tors have tendency for biosorption of Cd, Cu, Hg and Pb concentration. In the sec-
ond step, these metals are detoxified, sequestered or compartmentalized in different 
subcellular organelles. It has been reported by Ayangbenro and Babola that different 
compounds belonging to extracellular polymeric substances are secreted by rhizo-
spheric bacteria and play a key role in the removal or recovery of metals from con-
taminated site. Extrapolymeric substances include polysaccharides, glycoprotein, 
lipopolysaccharide and soluble peptide. They also act as biosurfactants and are 
commonly used to remediate heavy metals.

4.1.6.3  Bioaccumulation
Bioaccumulation mediated by PGPR is the process in which intracellular accumula-
tion of metals occurs either passively (physical and chemical absorption) or through 
active biosorption (Chojnacka 2010). The former one don’t require any energy it is 
achieved either through physical absorption or chemical adsorption, while the latter 
one is an energy-dependent process that requires energy for the accumulation and 
formation of metal complexes. It also assists in precipitation of metals intracellular 
or extracellular or their sequestration. In one study it has been reported that bioac-
cumulation is dependent on metal concentration, as high concentration of heavy 
metals adversely affects the bacterial growth and their accumulation capacity 
(Chojnacka 2010).

4.1.6.4  Bioleaching
Roy and Roy (2015) reported that PGPR is used to eliminate heavy metals from 
contaminated area through acidification as well as solubilization of heavy metals. 
Examples include Acidithiobacillus ferrooxidans, Acidithiobacillus thioosidans and 
Bacillus circulans. Yang et al. (2009a, b) investigated that acidophilic and neutro-
philic microbes have the potential to remediate heavy metals from sludge, sediment 
and municipal solids. Sulphate-reducing bacteria such as Desulfovibrio desulfuri-
cans are a sulphur-reducing bacteria and could convert sulphate to hydrogen sul-
phate which then reacts with heavy metals and form their insoluble sulphides 
(Chibuike and Obiora 2014). Citric acid, gluconic acid, fumaric acid, lactic acid and 
malic acids are groups of organic acids secreted by PGPR. They interact with heavy 
metals forming metallo-organic complexes, thus chelate them or solubilize metal 
compounds and ease leaching from their surfaces.

4.1.6.5  Bioexclusion
It is the process in which essential and non-essential metals such as cadmium, cop-
per and arsenic are effluxed from the cytoplasm through transporter proteins. 
Different kinds of heavy metal exporting proteins are present in microbes, which 
mediate efflux of toxic metals from cytoplasm. These include ATPase, cation diffu-
sion facilitator proteins, chromate proteins and NreB- and CnrT-like resistance fac-
tors, respectively.
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4.1.6.6  Metal Solubilization
Phytoextraction is directly related to the solubilization capacity of heavy metals 
(Ma et  al. 2011). There are some PGPR that remediate heavy metal toxicity by 
releasing acids, proton or metal-binding compounds known as chelators.

4.1.6.7  Acidification
The solubility and mobility of metals is dependent on soil pH. Plant roots exudates and 
microbial secondary metabolites which are composed of low molecular weight organic 
compounds (LMWOAs) significantly reduce soil pH by twofold over that in bulk soil 
(Boddy et al. 2007; Khan et al. 2018). Acidic pH enhances the mobility and bioavail-
ability of heavy metals in soil solution (Khan et al. 2019b).

4.1.6.8  Protonation
PGPR residing in the rhizosphere secrete protons that replace heavy metal cation 
sites for binding. Such explanation was supported by Naseem et  al. (2018) who 
performed an experiment on Rhodobacter sphaeroides that contain carboxylate 
moieties on surface. Analysis was based on protonation-induced ATR-FTIR spec-
troscopy. It was inferred from results that carboxylate meioties play a significant 
role in extracellular biosorption of Ni2+ by establishing a weak coordinate bond.

4.1.6.9  Chelation
Several organic acids have been identified as chelator agent that are secreted by 
PGPR.  These include glycolic acid, tartaric acid, piscidic acid, oxalic acid, etc. 
(Panhwar et  al. 2013). Similarly, there are some metal-binding compounds, acid 
anions, biosurfactants, siderophores and metallophoers secreted by microbes that 
enable the incorporation of mineral cation into their complex ring structure. Schalk 
et al. (2011) reported three different types of siderophores, namely, hydroxamate 
siderophores, chatecholate siderophores and carboxylate siderophores that possess 
iron-chelating ability.

4.1.7  Metal Immobilization

4.1.7.1  Precipitation and Complexation
PGPR secrete metal-binding compounds that help in precipitation and complex-
ation of heavy metals which may be dependent or independent on cellular metabo-
lism of microbes (Comte et al. 2008). The secretion of exopolysaccharides by PGPR 
is another strategy to protect microbes from damaging effects of metals due to their 
metal-binding properties (Fang et al. 2010). The metal-binding behaviour of exo-
polysaccharide helps in adsorption and precipitation. Gupta and Diwan (2017) 
reported that biofilm formation was induced by exopolysaccharides that act as a 
protective sheath in response to heavy metal toxicity.
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4.1.7.2  Metal Transformation
Redox reactions carried out by microbes play a crucial role in transforming heavy 
metals into bioavailable state necessary for phytotransformation (Amstaetter et al. 
2010). Heavy metals such as copper and mercury are more soluble in their lower 
oxidation state as compared to their higher oxidation state. Bacillus sp. and 
Geobacillus sp. isolated from arsenic-contaminated site possess the ability to con-
vert more toxic and mobile form of arsenic (As+3) to immobile less toxic form (As+5) 
(Khan and Bano 2016). Other heavy metals such as chromium, mercury, manganese 
and selenium have been reported to be immobilized and less toxified through this 
mechanism (Olegario et al. 2010).

4.2  Conclusion

It is concluded that PGPR are very effective in enhancing drought tolerance in 
plants, alone or in consortium, which is mediated through the production of exo-
polysaccharides and induction of new protein. The production of ACC deaminase 
enzymes by PGPR plays a pivotal role in alleviation of abiotic stress. Besides this, 
PGPR have also been revealed to encourage systematic resistance (ISR) and pro-
mote root growth under abiotic stress condition.
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Abstract
An incessant increase in global population along with a continuous augmenta-
tion in abiotic stress conditions, such as temperature, pH, salinity, etc., and limi-
tation of natural resources has posed a serious threat to developing nations in 
terms of food security and enhanced nutritional value of the yield. Substantial 
crop losses in both qualitative and quantitative aspects due to the several preva-
lent phytopathogens are adding severity to the existing trouble. Confrontation 
with this ongoing problem initially led to the application of chemical fertilizers. 
However, hazardous aftereffects of the chemical fertilizers on the ecosystem 
have instigated a demand for a promising eco-friendly substitute that deals with 
both biotic and abiotic stresses. Rhizospheric microorganisms can be utilized as 
an effective alternative because they reside in soil and have the intrinsic property 
of upholding balanced ecosystem. These plant growth-promoting rhizobacteria 
(PGPRs) enhance plant growth even in poor and stressed environmental condi-
tions by the formation of beneficial associations with the host through biological 
nitrogen fixation, phosphate solubilization, siderophore and hormone produc-
tion, etc. They can also trigger host defense mechanism through induced sys-
temic resistance (ISR). These PGPRs are also helpful for phytoremediation by 
various processes such as direct absorption, accumulation, etc. PGPRs are uti-
lized in the fields of phytostimulation, biofertilization, and biocontrol activities. 
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In the current chapter, we would aim to uphold the mechanisms opted by PGPR 
for effective plant growth promotion and defense under various abiotic as well as 
biotic stress conditions. In this context, we would also aim to delve in detail 
about the host-PGPR cross talk during the onset of stress conditions.

Keywords
Biotic stresses · Abiotic stresses · PGPR · Phytoremediation · Biocontrol

5.1  Introduction

By observing the steep increase in population growth curve with respect to time, it 
is very easy to predict the upcoming demand of food, fiber, fodder, and biomass by 
continuously decreasing arable land due to various anthropogenic activities 
(Abhilash et  al. 2013). With an enormously growing population and limited 
resources, a major problem in front of developing countries is to provide food secu-
rity with ecosystem stability. Both biotic such as pathogenic microorganisms, pests, 
weeds, etc. and abiotic stresses including low and high temperature, drought, salin-
ity, flooding, ultraviolet light, air pollution, heavy metals, etc. are adding pressure to 
the crop production. Approximately 7–15% of the crops are damaged by various 
soilborne fungi, oomycetes, bacteria, and nematodes through various mechanisms 
such as destroying and damaging of root tips and root hairs, the release of toxins, 
etc. (Oerke 2005; Singh et al. 2014; Mishra et al. 2015). Increasing salt level in both 
land and irrigating water is the main problem faced by arid and semiarid areas due 
to which plant shows stunted growth as the photosynthetic unit becomes unable to 
work properly. Similar physiological modulations can be observed in plants against 
other abiotic stresses which ultimately lead to crop loss. These stresses cause a 
noticeable decrease of 50–82% in agricultural productivity and raise hindrance for 
the cultivation of new crops. To cope up with the abovementioned problems of the 
food crisis, malnutrition, etc., producers become inclined toward the unbalanced 
use of agrochemicals as an economically reliable substitute for crop protection. The 
enormous application of these chemical agents has led to severe negative impacts 
which include the development of pathogen resistance against applied agents, accu-
mulation in the ecosystem due to non-degradation of the compounds, and therefore 
entry into the food chain. There is an urgent need to sustainably enhance the quality 
of crop production to meet future requirements and also protect the remaining cul-
tivable soil from further degradation and contamination. Further, owing to the 
increasing awareness among people about harmful effects of these residues as well 
as the unavailability of chemical solutions against some phyto ailments apart from 
the continuously and rampantly increasing cost of pesticides, the search for a safer 
and eco-friendly alternative started which gave rise to biological control measures.

Currently, biological measures are one of the most emerging and sustainable 
methods among both agronomist and environmentalists for integrated plant growth 
and nutrient management systems to ease the burden on the environment. Among 
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the numerous practices employed, application of plant growth-promoting rhizobac-
teria (PGPRs) is a potential measure as it prevents the plant from various phyto-
pathogens as well as enhances the plant growth-promoting attributes due to their 
strong colonization affinity.

5.2  Plant Growth-Promoting Rhizobacteria (PGPRs)

The rhizosphere upholds a variety of microorganisms which can be deleterious, 
neutral, or beneficial (Fig. 5.1). Among numerous microfauna present in the soil, 
about 2–5% of free-living and rhizosphere-competent microbes providing plant 
growth promotional attributes even in the presence of competing microbes and phy-
topathogens are known as the PGPRs (Kloepper and Schroth 1978). Along with 
nutrients and water uptake, the root system of the host plants also secretes a variety 
of compounds in the rhizosphere (Walker et  al. 2003) The rhizosphere PGPRs 
enhance the sustainability of soil for production of crops through various biotic 
activities that increase the nutrient turn over which in turn improve the soil struc-
ture. The main property of the PGPR which makes them more efficient is turning 
over of nutrients through their mobilization which enhances the sustainability for 
cultivation (Ahemad et al. 2009; Chandler et al. 2008). Further, several reports jus-
tify the sequestration of heavy metals and degradation of xenobiotics such as herbi-
cides, pesticides, etc. by PGPRs, thereby leading to effective bioremediation 
(Ahemad 2012; Ahemed and Malik 2011; Hayat et al. 2010; Glick 2012). In this 
context, it is significant to notify the pursual of research on a global scale to yield 
biocontrol agents with numerous beneficial traits such as management of phyto-
pathogens, plant growth promotion, heavy metal detoxification, abiotic stress toler-
ance, pesticide tolerance, etc. for the enhancement of sustainable agriculture 
(Chaudhary et al. 2012; Vaishnav et al. 2014). With all the promising plant growth 
promotional and biocontrol attributes, PGPRs can be used as an effective and 

Fig. 5.1 Comparative assessment of beneficial attributes of PGPR as a respite against biotic and 
abiotic stress condition
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eco-friendly tool for enhancing the sustainability of production, restoration of con-
taminated land, nutritional and food security, carbon sequestration, phytoremedia-
tion of heavily contaminated soils, and biofuel and biomass production. Presently 
numerous symbiotic microbes such as Rhizobium spp. and Bradyrhizobium spp. as 
well as nonsymbiotic microbes including Pseudomonas, Bacillus, Azotobacter, 
Azospirillum, and Alcaligenes are known globally for their application as inoculants 
possessing plant growth and stress-tolerant attributes (Ma et al. 2011a, b; Wani and 
Khan 2010; Mayak et al. 2004; Ray et al. 2016a, b, 2018b).

5.3  Mechanisms Implicated by PGPR

5.3.1  Root Colonization

A significant drawback consistently associated with PGPRs is their poor field per-
formance owing to the inconsistency of rhizosphere colonization, particularly under 
field conditions (Schroth and Hancock 1981; Thomashow 1996a, b). Efficient root 
colonization is the primary step for effective proliferation and survival in the pres-
ence of other rhizospheric microflora as well as for establishing competence that 
provides effective biocontrol, plant-microbe cross talk, and enhanced PGPR effi-
ciency (Parke 1991; Wipps 1997; Lugtenberg and Dekkers 1999). As the rhizo-
spheric soil behave as sink for nutrients, plants release root exudates with diverse 
chemical compounds such as specific sugars, organic acids, amino acids, etc. which 
act as chemoattractants for numerous active soil microbes and synchronize the 
microbial presence in close proximity of root surface (Rovira 1965; Welbaum et al. 
2004; Dakora and Phillips 2002). Due to the presence of these exudates, the symbi-
otic association takes place with the nearby rhizospheric microbial communities 
that promote plant growth and in turn obtaining major nutrients, such as carbon, 
nitrogen, phosphorus, etc., through the chemical compounds released by roots and 
root hairs (Nardi et al. 2000). When the PGPRs reach the root through their motile 
structures in response to the exudates which is known as rhizospheric effect (Hiltner 
1904), some of them colonize the surface of roots and root hairs without causing 
harmful effects, thereby inhibiting the invasion of phytopathogens by means of 
nutrient and niche competition, whereas many of them have the ability to enter 
endodermis after crossing the barrier and exist as endophytes in different organs of 
the host plant (Hallman et al. 1997; Duffy 2001; Turnbull et al. 2001; Compant et al. 
2005; Gray and Smith 2005; Ray et al. 2018a).

5.3.2  Growth-Promoting Attributes

Post-effective establishment and colonization, PGPRs enhance the growth and 
increase the productivity of host plant through various direct and indirect methods 
such as nutrient acquisition, regulating plant hormone and synthesis of various ben-
eficial metabolites (Glick 2012).

J. Singh et al.



85

5.3.2.1  Biological Nitrogen Fixation
With 78% of the fraction in the atmosphere, nitrogen is the most essential macro-
molecule required for plant growth and development which is fixed in plant utiliz-
able forms through biological nitrogen fixation (BNF). In this process, atmospheric 
nitrogen is converted to ammonia with the help of microorganism borne nitrogenase 
enzyme system (Kim and Rees 1994). Nitrogenase is a two-component complex 
metalloenzyme system comprising of dinitrogenase reductase as iron protein and 
dinitrogenase as a metal cofactor, and on their basis, three different nitrogen-fixing 
systems have been reported, namely, Mo-nitrogenase, V-nitrogenase, and 
Fe-nitrogenase (Dean and Jacobson 1992; Kim and Rees 1994). Majority of BNF is 
performed by Mo-nitrogenase present in most of the PGPRs carrying nitrogen fixa-
tion in nonleguminous plants through the establishment of nonobligate interaction 
(Glick et al. 1999; Bishop and Jorerger 1990). Microorganism involved in BNF can 
be broadly divided into (a) symbiotic association with leguminous and (b) nonlegu-
minous plants and (c) free-living as well as associate nonsymbiotic endophytes such 
as Acetobacter, Azospirillum, Bacillus, Pseudomonas, etc. which fix a minor por-
tion of atmospheric nitrogen. Majority of unavailable atmospheric nitrogen is fixed 
through symbiotic nitrogen fixers such as Rhizobia in leguminous and Frankia in 
the nonleguminous plant (Saxena and Tilak 1998; Bhattacharya and Jha 2012; Glick 
2012). A number of studies revealed two third biological fixation of atmospheric 
nitrogen globally, and remaining requirements are fulfilled by the Haber-Bosch 
method (Rubio and Ludden 2008). Treatment of plants and soil with PGPRs having 
the nitrogen-fixing ability is an economical and ecologically sustainable substitute 
of chemical fertilizers (Ladha et al. 1997).

5.3.2.2  Phosphate Solubilization Activity
The soil is the most abundant reservoir of both organic and inorganic form of phos-
phorus, the most essential macronutrient for plant growth promotion after nitrogen 
(Khan et al. 2009). Regardless of such an enormous reservoir, plants, in general, 
face scarcity of phosphorus as the roots only absorb monobasic and dibasic forms 
of the ion, while a major portion of phosphorus present in insoluble forms such as 
inositol phosphate, phosphomonoester, and triesters remain unutilized (Bhattacharya 
and Jha 2012). To deal with unavailability, farmers apply numerous phosphatic fer-
tilizers, but only a little amount is absorbed by the plant with the remaining portion 
being turned into insoluble complexes (Mckenzie and Roberts 1990). Among 
numerous rhizospheric microflora, phosphate-solubilizing microorganisms (PSM) 
including Bacillus, Enterobacter, Pseudomonas, Burkholderia, Flavobacterium, 
Rhizobium, Microbacterium, Serratia, etc. can be applied as a substitute for sustain-
able agriculture since they can convert unavailable form of phosphorus to available 
form through the activity of low molecular weight organic acids produced by PSM 
(Zaidi et al. 2009). These PSM also synthesize numerous phosphatases for mineral-
ization of organic phosphorus through phosphoric ester hydrolysis (Glick 2012). 
Numerous beneficial effects such as mineralization, enhanced efficiency of BNF 
through nodule formation, increased uptake of trace elements, etc. have been 
observed in the host plants treated with single or amalgamated PGPRs having 
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phosphate-solubilizing property (Ahemad and Khan 2012; Vikramal and 
Hamzehzarghani 2008; Zaidi et al. 2009; Ahmad et al. 2008).

5.3.2.3  Production of Phytohormones
Plant hormones are the organic compounds which act as chemical messengers gen-
erated through various metabolic processes in one portion and get distributed all 
over the system. They are concentration and target specifically for optimum growth 
and development of a plant in different environmental conditions and therefore also 
termed as a plant growth regulator. On the basis of previous studies, phytohormones 
have been classified into five major classes: auxins, cytokinins, gibberellin, abscisic 
acid, and ethylene. Among these, IAA is the supreme indigenous auxin which regu-
lates cellular processes (such as division, expansion, and differentiation), regulation 
of genes, organ development, pigment formation, metabolite synthesis, stress resis-
tance, and several tropic responses (Ryu and Patten 2008; Ashrafuzzaman et  al. 
2009). Previous studies have reported the production and release of IAA by approx-
imately 80% of rhizospheric microorganism as their secondary metabolite which 
may alter the intrinsic production of phytohormone and also change the permeabil-
ity of plant cell wall for enhanced release of root exudates (Glick 2012; Spaepen 
et al. 2007). Apart from growth and development processes, IAA is also involved in 
defense mechanism and plant-microbe interaction (Santner and Estelle 2009; 
Spaepen and Vanderleyden 2011). Numerous microflora such as Pseudomonas, 
Mycobacterium, Rhizobium, Bacillus, and Rhizobia uphold the ability to produce 
IAA and influence the numerous processes of host plant ranging from phytostimula-
tion to pathogenesis (Mandal et al. 2007). PGPRs with IAA-producing abilities can 
be applied as biofertilizer and/or bioenhancers as they elevate root expansion 
through lateral and adventitious root formation, thereby increasing surface area for 
increased uptake of nutrient and water. Apart from regulating cellular processes, 
IAA also stimulates vascular bundle formation and nodule formation (Glick 2012). 
Enhancement in seed germination and physio-morphological changes have been 
reported in the orchids which were treated with IAA-producing PGPRs such as 
Azospirillum brasilense and Bradyrhizobium japonicum (Cassa’na et al. 2009).

5.3.2.4  ACC Deaminase
As a plant growth hormone, ethylene is a crucial metabolite generated endogenously 
by almost all plants and involved in conventional growth and development of host 
plant. Besides being involved in growth, ethylene is also confirmed as stress hor-
mone as it affects plant growth through defoliation and other noticeable changes 
mainly in seedlings during biotic and/or abiotic stress conditions (Saleem et  al. 
2007; Bhattarcharya and Jha 2012). Numerous PGPRs including Acinetobacter, 
Achromobacter, Agrobacterium, Alcaligenes, Azospirillum, Bacillus, Burkholderia, 
Enterobacter, Pseudomonas, etc. enhance plant growth through ACC deaminase 
activity. ACC deaminase is a pyridoxal 5-phosphate (PLP)-dependent polymeric 
enzyme which was initially reported in soil bacterium Pseudomonas (Honma and 
Shimomura 1978). A remarkable amount of ACC is released by the plant as root 
exudates in the soil to maintain the endogenous and external balance which in turn 
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is utilized by PGPRs having ACC deaminase activity, thereby enhancing their pro-
liferation (Glick et al. 1998). The enzyme utilizes the immediate precursor of ethyl-
ene and 1-aminocyclopropane-1-carboxylate and hydrolyzes it to α-ketobutyrate 
and ammonia which is further consumed as carbon and nitrogen sources by PGPRs 
(Arshad et  al. 2007; Glick et  al. 1998; Honma and Shimomura 1978). Further, 
according to Glick (2005), ACC deaminase activity varies in different organisms, 
and those with high activity bind inclusively to plant surfaces. Due to ACC deami-
nase activity of PGPRs, the endogenous level of ethylene reduces which in turn 
provides resistance against several stresses such as drought, salinity, flooding, high 
temperature, heavy metals, aromatic hydrocarbons, high radiations, wounding, 
insect predation, phytopathogens, etc. (Glick 2012; Lugtenberg and Kamilova 
2009). Root elongation, shoot growth promotion, enhanced uptake of NPK, and 
increased nodulation with mycorrhizal colonization are some of the observable 
changes seen in plants inoculated with PGPRs (Nadeem et al. 2007, 2009; Glick 
2014; Kumari et al. 2016).

5.3.3  Synthesis of Allelochemicals

Along with the growth promotion, PGPRs provide biocontrol activity through the 
secretion of allelochemicals which includes antibiotics, siderophores, biocidal vola-
tiles, lytic enzymes, etc. (Bais et  al. 2004; Glick 1995; Sturz and Christie 2003; 
Vaishnav et al. 2015, 2017).

5.3.3.1  Siderophore Production
Iron is an essential nutrient for all living forms with certain exceptions (Neiland 
1995). In the rhizospheric region under aerobic environment, the ferric form of iron 
gets converted into insoluble hydroxides and oxyhydroxides, thereby raising the 
problem of iron scarcity (Rajkumar et al. 2010). Under limiting and competitive 
environment, rhizospheric microorganisms synthesize intra- and extracellular 
water-soluble peptidic iron chelator of low molecular weight, i.e., siderophore with 
different side chains and functional groups behaving as ligands with a different 
affinity (Crosa and Walsh 2002). Different edaphic and environmental factors such 
as amount and type of iron, pH of the soil, availability of macronutrients, the con-
centration of trace elements, etc. can regulate the synthesis of siderophores (Duffy 
and Defago 2000). These molecules can be classified into three major groups, 
namely, catecholates, hydroxamates, and carboxylates, on the basis of ligands uti-
lized in ferric ion chelation (Xie et al. 2006). The efficiency of siderophore depends 
on the association constant of their complex formation with ferric ions. Rhizospheric 
siderophores uphold the higher value of association constant, thereby generating a 
severe iron-deficient condition for the pathogenic microorganism. Siderophores 
function as solubilizing agents for iron under limiting condition by reducing ferric 
ions to a ferrous ion which are further transported to cell interior through the gated 
membrane system. After this phenomenon, siderophores either get recycled or 
destroyed (Indiragandhi et al. 2008; Rajkumaret al. 2010; Neilands 1995). Along 
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with iron sequestration, siderophores uphold the ability to form stable complexes 
with hazardous heavy metals such as Pb, Cd, Zn, Cu, Al, and Ga and radionuclide 
such as U, Np, etc. which are of alarming concern to the environment (Neubauer 
et al. 2000; Kiss and Farkas 1998).

5.3.3.2  Lytic Enzymes
Production and secretion of numerous enzymes from rhizospheric microorganism 
are involved in disrupting pathogenic membranes through hyperparasitic activity 
(Chernin and Chet 2002). Previous studies revealed that different enzymes includ-
ing hydrolase, chitinase, lipases, pectinase, etc. attack pathogenic microorganisms 
through different mechanisms. Chitinase inhibits further spread of pathogen through 
hindering elongation of germ tube and spore germination (Frankwoski et al. 2001; 
Ordentlich et  al. 1988). Some of the specific enzymes such as laminarinase are 
released by PGPRs alone or in combination with other enzymes to restrict specific 
pathogenic microorganism (Lim et al. 1991). Certain forms of glucanase, i.e., β1–3, 
β1–4, and β1–6, along with certain proteases directly target the glucans present in 
the fungal cell wall and destroy its integrity (Valois et al. 1996; Simons et al. 1997; 
Frankowski et al. 2001; Kamensky et al. 2003).

5.3.3.3  Antibiotic Production
Among the various methods applied by rhizospheric microorganisms to check pro-
liferation of phytopathogens, antibiosis including the production and secretion of 
antibiotics is most commonly applied (Glick et  al. 2007a, b; Lugtenberg and 
Kamilova 2009; Whipps 2001). Antibiotics are low molecular weight heteroge-
neous organic compounds, or metabolites primarily governed by nutrient availabil-
ity and other environmental factors (Thomashow 1996; Duffy 2001). Even at low 
concentrations, these metabolites possess antimicrobial, antiviral, insecticidal, cyto-
toxic, antioxidant, antitumor, antihelminthic, and plant growth-promoting proper-
ties (de Bruijn et al. 2007; Raaijmaker et al. 2010). Broadly, these antibiotics can be 
classified into volatile and nonvolatile compounds which are further grouped into 
various subclasses. Nonvolatile antibiotics include polyketides, heterocyclic nitrog-
enous compounds, phenylpyrrole, cyclic lipopeptides, lipopeptide, and amino poly-
ols, whereas hydrogen cyanide, aldehydes, alcohols, ketones, and sulfides are 
grouped under volatile antibiotics (Defago 1993; de Souza et al. 2003; Nielsen and 
Sorensen 2003; Raaijmakerset al. 2002). Pseudomonas, Bacillus, Streptomyces, 
Burkholderia, Brevibacterium, and several other microorganisms have been reported 
to produce and secrete antibiotics of a broad spectrum range (Keel et al. 1997; Haas 
and Keel 2003; Bender et al. 1999; Sutherland et al. 1985; Anjaiah et al. 1998).

5.4  PGPR Resistance to Biotic and Abiotic Stresses

A thorough understanding of the various mechanisms undertaken by PGPRs, par-
ticularly to resist biotic or abiotic stresses, is of paramount importance, more so 
because of the congregative nature of stress imposition. This would include not only 
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the molecular identification of the bacterial strains involved but also the physiologi-
cal as well as molecular mechanisms employed during the host-PGPR interaction.

5.4.1  Biotic Stress

Rhizospheric microbiota, particularly PGPRs, enable the augmentation of the inher-
ent ability of plants to defend themselves against phytopathogens, apart from being 
a suitable alternative against chemical fertilizers (Sarma et al. 2015; Jain et al. 2012; 
Spence et  al. 2014). In this context, management of phytopathogens through a 
microbial consortium or the use of endophytes has shown much promise. While 
endophytes have the inherent ability to provide plant protection and immunity 
enhancement due to their tendency of remaining sheltered within the plant interior 
(Ray et al. 2018a, b), microbial consortia remain in the vicinity of environmental 
stress but a strong promise to combat phytopathogens (Whipps 2001; Gossen et al. 
2001; Stockwell et al. 2011). Several reports justify the plant growth promotional 
and improved disease resisting potential of PGPRs, such as Pseudomonas spp., 
Trichoderma spp., Bacillus spp., etc., on a variety of host plants, such as chickpea, 
pea, pigeon pea, okra, radish, tomato, wheat, pepper, Arabidopsis, etc. (Duffy et al. 
1996; Rudresh et al. 2005; Jetiyanon 2007; Kannan and Sureendar 2009; Jain et al. 
2012; Singh et al, 2013; Chauhan and Bagyaraj 2015).

The chief mechanism behind stimulation of the innate defense response of host 
plants by PGPRs is through induction of induced systemic resistance, operating in 
response to a microbial elicitor (Shoresh et al. 2010). In this context, Jain et al. 
(2012) reported enhancement of defense enzymes, particularly peroxidase, poly-
phenol oxidase, superoxide dismutase, glucanase, chitinase, etc., as well as phenol 
accumulation and lignin deposition in response to priming with a consortial mix-
ture of PGPRs. In another study by Jain et al. (2015), the microbial consortia have 
been reported to recuperate the oxidative burst pathway inhibited by oxalic acid, 
the chief pathogenic factor of Sclerotium rolfsii/Sclerotinia sclerotiorum. Thus, the 
above studies clearly justify that PGPRs not only induce an augmented form of 
defense response within the host but also enable the quenching of factors respon-
sible for induction of oxidative stress response within the host (Hammerschmidt 
2005; Singh et al. 2013).

5.4.2  Abiotic Stress

Stress in nature is not a single phenomenon but a cumulative effect of various minor 
and major factors acting in togetherness (Mahajan and Tuteja 2005). While several 
natural stresses, such as drought, salt, flooding, and high/low temperature, have 
resulted in lowering of plant growth, certain anthropogenic activities have led to an 
additional confrontation with heavy metal stress, thereby declining crop yield and 
productivity by a significant level (Ramegowda and Senthil-Kumar 2015). Further, 
heavy metals sediment in soils and lead to groundwater contamination, thereby 
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causing human health hazards. In other words, abiotic stresses may be considered as 
a root cause of loss of yield of several major crops (Bray 2004).

5.4.2.1  Drought Stress
Incessant reduction of rainfall year after year has led to a significant lowering of soil 
moisture content. Currently, even temperate regions are devising novel strategies to 
enhance the use of soil moisture content (Bray 2004; Farooq et  al. 2009; Azcon 
et al. 2013; Panwar et al. 2014). Plant photosynthesis and nutrient uptake depend on 
a large scale on water availability in soil. Drastic reduction of soil moisture content 
or appearance of drought conditions severely hampers the basic requirements of the 
plant. For instance, water scarcity simultaneously increases the solute concentration 
within the plant cells, or a reduction in water potential, which in turn affect shoot 
and root elongation of plants. Further, water deficiency lowers carbon dioxide 
access by plants, thereby resulting in reactive oxygen species formation, such as 
superoxide, peroxide, and hydroxyl radical within plant cells, which in turn leads to 
apoptotic cell death of the plant (Sgherri et al. 2000).

In the above context, PGPR, such as Pseudomonas mendocina and Glomus intr-
aradices or G. mosseae, was reported to release catalase enzyme and quench ROS 
produced within lettuce plants grown under severe drought conditions (Kohler et al. 
2008). Thus PGPR may be considered as augmentation of defense enzymes in 
plants, such as peroxidase, polyphenol oxidase, etc. which further lead to protection 
of plant cell membrane and genomic DNA from oxidative damage (Bowler et al. 
1992). Apart from individual PGPR, microbial consortia play a greater role in 
redemption from drought stress and in the improvement of plant growth. For 
instance, according to Figueiredo et al. (2008), a consortial mixture of beneficial 
PGPRs improved the overall health and nodulation of Phaseolus vulgaris under 
drought conditions as compared to inoculation with Rhizobium only. While report 
suggested PGPR treatment recuperated leaf water potential, biomass content, as 
well as sugar, proline, and amino acid content and loss of electrolyte leakage from 
plants (Sandhya et al. 2010; Vaishnav et al. 2018), treatment with consortial mixture 
of PGPR (Bacillus lentus, Pseudomonadales sp., and Azospirillum brasilense) aug-
mented antioxidant activity as well as photosynthetic capacity along with the afore-
mentioned properties in Ocimum basilicum (Heidari and Golpayengani 2012). 
Moreover, according to Stefan et  al. (2013), consortial inoculation of PGPR 
improved superoxide dismutase and peroxidase activity in runner bean.

5.4.2.2  Salinity Stress
Presence of excessive amount of cations, such Na+, K+, Ca2+, Mg2+, etc., as well as 
anions, such as Cl−, CO3

2−, NO3
−, SO4

2−, and HCO3
−, in agricultural soils may be 

defined as saline stress (Yadav et al. 2011). As per the US Department of Agriculture 
(USDA) standards, soil having an electrical conductivity (EC) 4 dS m−1 or higher 
may be considered as saline soil (Seidahmed et al. 2013). Numerous reports imply 
saline stress as the chief cause of (a) development of drought-like situation on owing 
to shortage of water; (b) development of the payment of high ionic content in plants, 
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thereby perturbing the normal physiological pathway; and (c) unavailability of other 
soil nutrients due to high salt concentration (Vaishnav et al. 2016). Munns (2002) 
reported stunted growth in plants exposed to salt stress due to lowering of water 
content with a simultaneous elevation in salt content. Further, accumulation of Na+ 
ion content within host tissues led to additional necrosis (Parida and Das 2005) 
apart from interfering with the root cell plasma membrane, thereby causing stunted 
root growth and nutrient uptake (Yadav et al. 2011).

In the above context, priming of plants with PGPRs offers a plausible respite 
against salt stress (Kumari et al. 2015). Han and Lee (2005) reported that priming of 
lettuce plants with Serratia sp. and Rhizobium sp. did not adversely affect the 
growth and physiological parameters of the plant under salt stress conditions. 
Similarly, an enhanced nodule formation was observed in common bean and soy-
bean at 25 mM salt concentrations upon priming with a consortial mixture of R. 
tropici (CIAT899) or R. etli (ISP42) and Ensifer fredii (Sinorhizobium) SMH12 and 
HH103 with Chryseobacterium balustinum Aur9 (Estevezi et al. 2009). In another 
report by Bano and Fatima (2009), priming of maize varieties with Pseudomonas 
sp. and Rhizobium sp. augmented plant growth promotional parameters even under 
salt stress. Similarly, a significant increase in growth promotional parameters of 
wheat plants under salinity stress was observed upon priming with a consortium of 
Pseudomonas fluorescens, Enterobacter cloacae, Serratia ficaria, and P. putida 
(Nadeem et al. 2013a, b).

5.4.2.3  Heavy Metal Stress
The industrial revolution, as well as some of the anthropogenic activities, has 
resulted in a significant increase in heavy metals and radionuclides in the soil. Few 
among these such as molybdenum (Mo), iron (Fe), and manganese (Mn) are reported 
to be essential for the photosystem, yet others, such as cadmium (Cd), mercury 
(Hg), chromium (Cr) etc., are particularly considered as nonessential elements. 
Extreme accumulation of particularly the nonessential elements not only affects the 
soil microflora (Oliveira and Pampulha 2006; Wani and Khan 2010; Cheng 2003) 
but also get translocated to different photo organelles, thereby causing disruption of 
membranes and simultaneous disintegration of cell organelles as well as a complete 
collapse of the essential physiological functions, such as photosynthesis, protein 
synthesis, etc. (Bray 2004; Morsy et  al. 2013). Various studies have particularly 
focused on PGPR as effective bioremediation as well as enhancers of plant growth 
(He and Yang 2007; Madhaiyan et  al. 2007). Dary et  al. (2010) suggested aug-
mented yield, biomass, as well as nitrogen content in plants treated with consortia 
of Bradyrhizobium sp., Ochrobactrum cytisi, and metal-tolerant Pseudomonas sp. 
In yet another report by Singh et al. (2010), mung bean treated with metal-tolerant 
PGPR exhibited augmentation in growth and biomass when grown in cadmium-
infected soil. Similarly, Marques et al. (2013) reported lower metal accumulation 
within tissues of Helianthus annuus treated with Ralstonia eutropha and 
Chryseobacterium hispalense when grown in Cd- and Zn-infected soil.
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5.5  Application and Future Prospects

Application of PGPR such as Pseudomonas spp., Bacillus spp. Rhizobium spp., 
Mesorhizobium, Bradyrhizobium, Azospirillum, Azotobacter, etc. has been reported 
to increase seed weight, yield, plant height, leaf area, shoot dry weight, and root 
growth significantly in several crops, such as maize, mung bean, soybean, wheat, 
groundnut, chickpea, cotton, and Brassica spp. (Ahemad and Khan 2010; Ahemad 
and Kibret 2014; Gholami et  al. 2009; Zahir et  al. 2010). Mechanisms, such as 
nitrogen fixation, phosphate solubilization, potassium solubilization, siderophore 
biosynthesis, IAA production, ACC deaminase synthesis, cytokinin, and gibberellin 
production, are responsible for plant growth promotion and enhanced crop yield 
(Bashan and Holguin 1997). Plant disease management mediated by PGPR will 
curtail the pesticide load and reduce disease in an eco-friendly manner, particularly 
by posing competition for nutrients, induced systemic resistance, metabolites pro-
duction, etc. (Lugtenberg and Kamilova 2009). Accumulation of hazardous sub-
stances possesses a major threat to the environment. Phytoremediation involves the 
use of plants or plant product to degrade hazardous substances accumulated in the 
environment (Cunningham et al. 1995). The compromised growth of plants at con-
taminated sites can be overcome by application of PGPR (Burd et al. 2000). PGPRs, 
such as Agrobacterium radiobacter, Azospirillum spp., Pseudomonas spp., 
Enterobacter spp., have been reported to speed up detoxification of contaminants, 
including cadmium, lead, nickel, chromium, and zinc by increased uptake as well as 
promotion of growth and biomass accumulation in barley, maize, rye, canola, and 
tomato grown on contaminated site (Belimov et al. 1998; Belimov and Dietz 2000; 
Hoflich and Metz 1997; Burd et  al. 1998; Lucy et  al. 2004). Further, PGPR can 
survive and promote plant growth in a colder climate with the help of antifreeze 
proteins and aid in survival under salinity and drought stress by ACC deaminase 
mediated lowering of ethylene level (De Freitas and Germida 1990; Hamaoui et al. 
2001; Vaishnav et al. 2016). PGPR has the ability to promote plant growth under 
abiotic stresses such as drought, flood, extreme temperature, high light, the presence 
of toxic metals and organic contaminants, and radiation and biotic stresses: insect 
predation, the nematodes, fungi, bacteria, and viruses (Glick 2012). Thus the above 
property of PGPR equips it as potential biofertilizer, biocontrol agent, psychostimu-
lant, and phytoremediator.

Continuously increasing demand for food grain production, the simultaneous 
buildup of chemical residue in the food chain has led to environmental pollution. 
The shift toward environmental friendly methods of disease management has thus 
become the need of the hour. In this context, according to Tewari and Arora (2013), 
future research needs to be directed toward bioengineering of rhizospheric biology 
to achieve the desired level of crop yield by manipulating microbes as well as their 
microclimate. Development of ready-to-use formulation of microbial consortia 
could be quiet effective over its single products in plant stress reduction. Researches 
need to be focused on optimizing shelf life, conditions for growth, enhanced crop 
yield, tolerance to unfavorable environmental conditions, and development of 
cost-effective PGPR products affordable to farmers. The molecular and 
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biotechnological approaches need to be exploited to explore the rhizospheric biol-
ogy and attain the desired level of microbial disease control. Bioinoculants of 
higher efficacy need to be developed for high-value crops such as flowers, fruits, 
and vegetables. Further, according to Nadeem et al. (2013), the low-temperature 
stress may be recuperated by exploiting ice-nucleating plant growth-promoting 
rhizobacteria (Nadeem et al. 2013). In addition, researches need to be focused on 
potassium- solubilizing plant growth-promoting rhizobacteria for an augmented 
utilization of potassium, the third most essential macronutrient after nitrogen and 
phosphorus. A better understanding of plant growth-promoting rhizobacteria needs 
to be developed regarding the mechanism of action, plant growth promotion, ecol-
ogy, and growth-stimulating effect on the plant. These will help us in the identifi-
cation, screening, and development of potential commercial formulations to 
combat phytopathogens and maintain a sustainable agroecosystem (Nelson 2004; 
Gupta et al. 2015).

5.6  Conclusion

After having a glance of applications and future prospects, we can conclude that 
PGPRs have a multidimensional approach in favor of living organisms and the envi-
ronment. Their efficiency can further be enhanced through their optimization and 
acclimatization in the provided space. Different inoculation system can be applied 
on PGPR to maintain their establishment and improve their efficiency. After the 
competency test, strains with the different feature can be used in combination to 
survive diverse and extreme environmental condition. Further detailed studies will 
come up with a more potent rhizobacterial strain to survive diverse ecological situ-
ations. Studies at the genetic level can provide us with a next-generation solution 
through forward or reverse genetics. On a precise note, PGPRs either in combina-
tion or alone could be a better and safer alternative to the chemical means.
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Abstract
Global climate change is one of the most serious challenges facing us today. 
Plant growth promotion and productivity are affected due to abiotic stresses 
which are specifically critical in arid and semiarid regions of the world. Abiotic 
stresses such as drought, salinity, metal toxicity, etc. are affecting adversely the 
agricultural crops. The major abiotic stresses in India are drought stress and soil 
moisture stress. Various abiotic stress management procedures are implemented 
to reduce these stresses. However, as such strategies are long and costly, there is 
a need to develop simple and low-cost biological methods for managing drought 
stress. Plant growth-promoting rhizobacteria (PGPR) manage these stresses by 
various mechanisms, viz., tolerance to stresses, adaptations, and response mech-
anisms that can be subsequently engineered into plants to deal with climate 
change-induced stresses. These affect almost two-thirds of the farming areas of 
the arid and semiarid ecosystems. Production of indole acetic acid (IAA), gib-
berellins, and certain unknown determining factors by rhizospheric microflora 
results in enhanced root length, surface area, and number of root tips, leading to 
improved uptake of nutrients, thereby enhancing plant health under drought 
environments. Rhizospheric microflora enhances plant stress tolerance through 
1-aminocyclopropane-1-carboxylate (ACC) deaminase and provides protection 
to agricultural crops from the damage caused by drought stress. These rhizo-
spheric bacteria enhance plant resistance to various biotic and abiotic stresses. 
Plant growth-promoting rhizobacteria mitigate the influence of drought on crops 
through a process called induced systemic resistance (ISR), which comprises (a) 
cytokinin production, (b) antioxidant production, and (c) ACC degradation by 
bacterial ACC deaminase. Implementation of the rhizospheric microorganisms 
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together with novel technologies for their monitoring and risk assessments can 
contribute to solve food security problems caused by climate change. Present 
review captures the recent work on the function of microorganisms in helping 
plants to deal with drought stress which is the major stress caused by climate 
change.

Keywords
Abiotic stress · Drought · PGPR · ACC · Agricultural crops

6.1  Introduction

The world population is increasing at a faster rate, and sufficient food production is 
a major challenge for the twenty-first century (Kaushal and Wani 2016). However, 
chemical fertilizers used in agriculture to increase crop productivity create critical 
environmental and health hazards (Kaushal and Wani 2016). This is even more 
intensified by climate change that causes environmental stresses such as drought 
and salinity which are major restraints to plant growth responsible for decreased 
agricultural productivity (Kaushal and Wani 2016, Zhang et al. 2010b). Drought can 
be defined as a prolonged period of dry weather when an area gets less rain than 
normal, which is a crucial problem to promoting plant growth and increasing pro-
ductivity in many parts of the world (Ngumbi and Kloepper 2016, Vinocur and 
Altman 2005). Drought may range from moderate and short to very severe and 
prolonged periods, restricting plant yields (Vurukonda et al. 2016). Drought stress 
has a main impact on plant growth limiting crop production worldwide. It has been 
estimated that almost one-third of soils are too dry to support normal plant develop-
ment and productivity (Calvo-Polanco et al. 2016, Golldack et al. 2014). Drought is 
predicted to cause serious plant growth problems on more than 50% of the earth’s 
arable lands by 2050 (Vinocur and Altman 2005). Moreover, global climate change 
is spreading the problem of water scarcity to regions where drought was negligible 
in the past (Calvo-Polanco et al. 2016; Trenberth et al. 2014).

Drought is a major abiotic stress that adversely affects plant growth and yield 
potential (Tiwari et al. 2016). Water deficit caused by drought decreases soil water 
potential, causing cell dehydration and ultimately inhibiting cell expansion and cell 
division (Kaushal and Wani 2016). In addition, reactive oxygen species (ROS) pro-
duced during drought causes oxidative stress in plants (Kaushal and Wani 2016). 
There is a requirement to find solutions that enhance plant tolerance to drought 
stress and allow the productivity of crops that satisfy food demands under limited 
water condition (Ngumbi and Kloepper 2016; Mancosu et al. 2015).

Plant growth-promoting rhizobacteria (PGPR) are a group of bacteria which 
naturally occur in the soil that colonize plant roots and promote plant growth and 
yield. PGPR are generally known to improve plant growth and maintaining sustain-
ability in harmless environments. PGPR genera having plant growth-promoting 
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attributes are Bacillus, Pseudomonas, Rhizobium, Azotobacter, Azospirillum, etc. 
(Singh 2013).

PGPR seems to promote growth by one of the following mechanisms:

• Destruction of plant diseases (bio-protectants).
• Improved nutrient procurement (bio-fertilizers).
• Production of phytohormones (bio-stimulants).

Crop growth promotion rhizobacterial activities have been reported during 
drought stress in cucumber (Wang et al. 2012), mung bean (Sarma and Saikia 2014), 
and maize (Vardharajula et al. 2011), as well as during salinity stress in tomato, 
maize (Bano et  al. 2013),  (Mayak et  al. 2004), and wheat (Tiwari et  al. 2011, 
Kaushal and Wani 2016). Plant growth-enhancing rhizobacteria bring about drought 
stress tolerance in plants by the induced systemic tolerance (IST) process that 
involves certain physiological and biochemical changes (Kaushal and Wani 2016; 
Yang et  al. 2009). It involves phytohormone production (Liu et  al. 2013; Cohen 
et al. 2015), defense through antioxidant production (Wang et al. 2012), osmolyte 
production (Sarma and Saikia 2014), stress-related enzymes (Kim et al. 2012), bac-
terial exopolysaccharide (EPS) (Vardharajula et  al. 2011; Timmusk et  al. 2014), 
volatile organic compounds (Zhang et  al. 2010a), 1-aminocyclopropane-1- 
carboxylate (ACC) deaminase, and HCN that can recover stress tolerance in plants 
(Fig. 6.1). The present chapter is an effort to provide insight into the mechanism 
shown by rhizobacteria that promote plant productivity and growth by enhanced 
drought tolerance.

Fig. 6.1 Mechanism revealed by rhizobacteria which enhances growth of plants
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Drought affects plant water potential which disturbs the typical functions, chang-
ing physiological and morphological characters in plants (Vurukonda et al. 2016). 
Drought is a multidimensional stress which affects the various compartments of 
cells or the whole plant (Vurukonda et al. 2016; Rahdari and Hosseini 2012; Rahdari 
et al. 2012). Growth decrease under drought stress has been studied in some plants, 
viz., rice, maize, and wheat (Vurukonda et  al. 2016). Moreover, drought stress 
affects the bioavailability and transport of soil nutrients to the roots of plants by 
water. In this manner, drought stress lowers diffusion of water-soluble nutrients 
such as nitrate, sulfate, calcium, magnesium, and silicon (Vurukonda et al. 2016, 
Selvakumar et al. 2012). The formation of plant-associated bacterial communities 
in the rhizosphere is altered in response to abiotic stress, which improves resistance 
against stressors to promote stress (drought) tolerance of plants (Schmidt et  al. 
2014; Cherif et al. 2015; Vurukonda et al. 2016). Drought also influences free radi-
cals for antioxidant defenses and reactive oxygen species like superoxide radicals, 
hydroxyl radicals, and hydrogen peroxide radicals (Vurukonda et al. 2016). When 
the reactive oxygen species (ROS) level is high, it can damage certain systems, viz., 
lipid peroxidation, membrane deterioration, and degradation of proteins, lipids, and 
nucleic acids in plants (Vurukonda et al. 2016).

Drought stress is one of the main limitations for production of food worldwide, 
and it is predicted to decrease cereal production by 9–10% (Lesk et  al. 2016). 
Worldwide extensive research is being carried out to develop strategies to cope with 
drought stress, and most of these technologies are expensive (Khan et al. 2018). 
Nowadays, microbes are helpful for plants to deal with various (drought) stresses 
(Venkateswarlu and Shanker 2009).

6.2  Consequence of Drought Stress on Plants and Their 
Adaptation

Water scarcity is a serious environmental problem that affects crop growth, develop-
ment, and productivity (Kiranmai et al. 2018). Drought causes high evapotranspira-
tion. Drought stress conditions cause gathering of salts and ions in the first layer of the 
soil around the roots that leads to osmotic stress and ion toxicity (Fathi and Barari 
2016). The size and number of leaves and fruits also decrease during such conditions. 
Water scarcity causes discoloration of leaf, stomatal closure on the leaf surface, and 
shrinkage of root and shoot of the plant. Nitrogen metabolism, photosynthetic rate, 
and protein synthesis in the plant are negatively affected by drought stress.

Resistance to drought is the ability of crops to grow and survive during periods of 
drought stress (Huang et al. 2014). Plants develop certain mechanisms to deal with 
drought stress. During this condition, the plant root sends a signal to the whole plant. 
This signal is the production of abscisic acid (ABA) at the root tip. This includes opti-
mization of water resources, osmotic adjustment, morphological adaptations, and 
antioxidant systems that reduce the harmful effects of ROS linked with drought stress-
responsive genes and proteins (Ngumbi and Kloepper 2016, Farooq et al. 2009).
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Adaptations of plants are as below.

 1. Drought escape, in which the plant completes its life cycle before the start of 
drought and undergoes inactivity before beginning of the dry season (Ngumbi 
and Kloepper 2016).

 2. Drought avoidance and phenotypic flexibility, which is the capability of a plant 
to tolerate its normal water status under drought conditions (Blum 2005). This 
can be fulfilled when the plant obtains more water from the soil or decreases 
water loss via transpiration (Ngumbi and Kloepper 2016).

 3. Drought tolerance, which occurs when normal growth of the plant and metabolic 
activities are maintained even under water stress conditions (Ngumbi and 
Kloepper 2016).

Adaptation of the plant in response to drought includes molecular, morphologi-
cal, and cellular modifications to avoid damage (Fig. 6.2). (a) Certain major causes 
alter the physiology of plant which may reduce vegetative growth of crops under 
water stress. (b) Molecular mechanisms regulate the expression of stress-reactive 
genes of the plant under abiotic stress (Dos Reis et al. 2016). In plants, water scar-
city triggered by drought decreases development and growth, arising from reduction 
of the water level, reduced water potential, leaf turgor loss, stomatal closure, and 
reduction in cell enlargement and growth (Jaleel et al. 2009). Response of a plant to 
abiotic stresses, which involves the extracellular stress signal by receptors of the 
plant cell, after that many stress regulatory networks which includes signal trans-
duction and transcriptional regulation of stress-reactive gene expression that result 
in physiological response of resistance to the plant stress (Huang et al. 2012).

Fig. 6.2 Adaptation of plants to drought stress
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6.3  Effective Function of Plant Growth-Promoting 
Rhizobacteria for Protecting Plants Against Drought 
Stress

Soil microbes including beneficial soil bacteria experience drought (Ngumbi and 
Kleopper 2016; Schimel et  al. 2007). Drought stress disturbs soil bacteria via 
osmotic stress and source competition (Chodak et al. 2015) and can result in nucleic 
acid compensations that may occur through chemical modifications, cross-linking, 
and base removal (Ngumbi and Kleopper 2016). Tolerance to this stress is assess-
able in nature and includes accretion of many stress metabolites, like proline, poly-
sugars, abscisic acid, and glycine betaine, and upregulation in the synthesis of 
enzymatic and nonenzymatic antioxidants, viz., superoxide dismutase, catalase, 
ascorbate peroxidase, glutathione reductase, ascorbic acid, α-tocopherol, and gluta-
thione (Gouda et al. 2018). Drought stress creates accumulation of free radicals due 
to changes in the conformational protein, efficiency of restricted enzymes, and elec-
tron transport chain (Ngumbi and Kleopper 2016; Berard et al. 2015). Gathering of 
free radicals induces protein denaturation and lipid peroxidation that finally leads to 
lysis of cells (Ngumbi and Kleopper 2016).

Indole acetic acid (IAA) is a synthetic hormone formed in the plant stem and 
transported down to the root ends (Dimpka et al. 2009). If IAA is produced in low 
concentrations in the root, it will enhance cell elongation, which will result in 
increased root growth. In addition, IAA is involved in the promotion of growth of 
lateral roots. Nevertheless, high amounts of IAA in the root ends have a preventive 
effect on root development. This prevention could be either directly or indirectly 
associated with ethylene synthesis associated with auxin (Dimpka et al. 2009). For 
instance, various studies specified the association between IAA and the ethylene 
precursor 1- aminocyclopropane-1-carboxylic acid (Glick 2003). By looking 
through the many literature, a sufficient number of cases where Root-associated 
PGPR may enhance the growth of plant root exudates, by producing IAA. The dif-
ferent plant species, which were inoculated with such PGPR, displayed root growth 
enhancement and improved formation of lateral roots and root, thereby promoting 
more tolerance against drought stress (Table 6.1).

Table 6.1 Microbially facilitated plant tolerance to abiotic (drought) stress

Microbial inoculum Plant species Reference
Azospirillum Wheat (Triticum aestivum) Creus et al. 

(2004)
Azospirillum brasilense Common bean (Phaseolus vulgaris) German et al. 

(2000)
Azospirillum brasilense Maize (Zea mays) Casanovas et al. 

(2002)
Achromobacter piechaudii Tomato (Lycopersicon esculentum), 

pepper (Capsicum annuum)
Mayak et al. 
(2004)

Osmotolerant bacteria (not 
completely characterized)

Rice (Oryza sativa) Yuwono et al. 
(2005)
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Furthermore, drought stress can induce conformational changes in proteins and 
disturb the membrane characteristics of microbes through phospholipid fatty acid 
composition changes (Berard et  al. 2015). Soil microorganisms are small and in 
close contact with soil water and have semipermeable membranes (Schimel et al. 
2007). As water potentials decrease and soils dry because of drought, cells have to 
accumulate solutes to lower their internal water potential to avoid dehydration and 
death (Ngumbi and Kleopper 2016). To survive in drought condition and protect 
cell structures and organelles, the soil bacteria employ a variety of physiological 
mechanisms including accumulation of compatible solutes, EPS production, and 
spore production (Schimel et al. 2007; Berard et al. 2015). Gathering of compatible 
solutes such as proline, glycine betaine, and trehalose enhances thermo-tolerance of 
enzymes, inhibits thermal denaturation of proteins, and helps in maintaining mem-
brane integrity (Ngumbi and Kleopper 2016).

Plant-associated microbes can function as drought tolerance (Fig. 6.3) through 
improved root system architecture, improved biological processes, improved physi-
ological processes, and modification of plant growth substances (Ngumbi and 
Kleopper 2016). Microorganisms also synthesize heat shock proteins (HSPs) that 
identify with and bind to other proteins if they are in non-native conformations 
(Ngumbi and Kleopper 2016).

Alternatively, some microbes store high amounts of ribosomes, which permit 
them to respond with rapid synthesis of proteins when the stress is released (Placella 

Fig. 6.3 PGPR and drought stress tolerance mechanism
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et al. 2012). Other mechanisms that benefit bacteria to deal with water stress are 
increased efficiency of source use and reallocation within microbial cells and the 
production of exopolysaccharide (EPS). Exopolysaccharide serves to defend the 
cell as well as the local environment in which the cell is embedded (Ngumbi and 
Kleopper 2016).

The strategies used by soil microbes to endure drought stress have also been 
reported as some of the key adaptation strategies that are employed by plants to 
survive drought. Many of the compatible solutes that are helpful to bacteria to deal 
with drought stress also help plants to have drought stress tolerance (Ngumbi and 
Kleopper 2016).

6.4  Function of ACC Deaminase-Producing Rhizobacteria 
in Tolerance to Drought Stress

Activities of plants are regulated by ethylene levels. Ethylene biosynthesis is regulated 
by biotic and abiotic stresses (Hardoim et al. 2008). In the biosynthetic pathway of 
ethylene, S-adenosyl methionine (S-AdoMet) is converted by 1-aminocyclopropane-
1-carboxylate synthase (ACS) further into 1- aminocyclopropane- 1-carboxylate 
(ACC), the precursor of ethylene. Under stress environments, ethylene, the plant hor-
mone, endogenously controls plant homeostasis resulting in decreased root develop-
ment and shoot growth. Plant ACC is requisitioned and degraded by ACC 
deaminase-producing microbes to provide nitrogen and energy. Moreover, by remov-
ing ACC, bacteria reduce the deleterious effect of ethylene, amending plant stress and 
enhancing plant growth (Vurukonda et  al. 2016). ACC deaminase-producing plant 
growth-enhancing rhizobacteria Achromobacter piechaudii ARV8 significantly 
improved both the fresh weights and dry weights of tomato seedlings and reduced the 
production of ethylene under water stress (Mayak et al. 2004). Under water-deficit 
condition, rhizobacterial growth in dry regions is likely to be major stress-adapting 
and enhances the growth of plants than those bacterial population where water 
resources are ample. The seedlings treated with Achromobacter piechaudii ARV8, 
isolated from an arid region, exhibited significantly better growth than the seedlings 
treated with strain Pseudomonas putida GR12–2 that was initially isolated from the 
grass rhizosphere in the high Canadian Arctic areas where water is rich (Vurukonda 
et al. 2016). There are certain ACC deaminase-producing PGPR which are used to 
mitigate drought stress in plants (Table 6.2).

The rhizobacterial presence of ACC deaminase enzyme on the roots decreases 
the quick synthesis of endogenous ethylene and thus enhances plant growth and 
yield. Seed inoculation with competitive rhizobacteria having ACC deaminase 
could be the most effective method for growth promotion of seedlings under control 
environment conditions. Since the bacterial enzyme ACC deaminase decreases the 
ethylene level in roots, therefore, inoculation with rhizobacteria having ACC deami-
nase might be an efficacious tool for the elevation of growth in crops. The use of 
PGPR containing ACC deaminase can be beneficial in developing strategies to 
amplify plant growth under drought environments.
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Though plant growth-enhancing bacteria use a large variety of mechanisms to 
promote plant growth, the bacterial attribute which is key in amplifying plant growth 
is the tenure of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase 
(Glick 2013). This enzyme is responsible for the breakdown of the plant ethylene 
precursor, ACC, into ammonia and α-ketobutyrate (Honma and Shimomura 1978). 
By decreasing ACC levels in plants, ACC deaminase-producing organisms decrease 
plant ethylene levels. Ethylene when present in high concentrations can cause plant 
growth inhibition (Nascimento et al. 2014).

In response to the occurrence of tryptophan and other small molecules in the root 
exudates of plants, the attached bacteria produce and release the phytohormone 
IAA, which is used by plants. It can stimulate plant cell enlargement, and it can 
induce the transcription of plant enzyme ACC synthase that catalyzes the construc-
tion of ACC (Glick 2013). ACC deaminase containing PGPR can lower the ethylene 
level in plant development following a varied range of biotic and abiotic stresses. 
ACC oxidase has a greater attraction for ACC than does ACC deaminase. When 
ACC deaminase-producing bacteria are existing, plant ethylene levels are depen-
dent upon the fraction of ACC oxidase to ACC deaminase. As an outcome, crops 
can grow in association with ACC deaminase-containing plant growth-enhancing 
bacteria normally having longer roots and shoots and being more resistant to growth 
inhibition by various ethylene-inducing stresses (Glick 2013).

6.5  Conclusion

Drought stress may be serious environmental problem that affects agricultural pro-
ductivity. Plant growth-enhancing rhizobacteria play a crucial role in drought stress 
tolerance of plants and have the potential in resolving future food security issues. 
PGPR elicit various mechanisms in confirming plant survival under drought stress. 

Table 6.2 ACC deaminase-producing PGPR in mitigating plant drought stresses

ACC deaminase- 
producing PGPR

Plant 
species Effect Reference

ACC deaminase- 
producing 
rhizobacteria

Wheat Increased root and shoot length, biomass, 
and lateral root number

Shakir et al. 
(2012)

Achromobacter 
piechaudii ARV8

Tomato 
and 
pepper

Reduced production of ethylene and 
improved fresh weight and dry weight

Mayak et al. 
(2004)

Bacillus 
licheniformis K11

Pepper Higher gene expression of Cadhn, VA, sHSP, 
and CaPR-10

Hui and 
Kim (2013)

Enterobacter 
cloacae,
Enterobacter 
cancerogenus

Jatropha 
curcas

Lower levels of ACC resulting in lower 
levels of endogenous ethylene, which 
removes the potentially inhibitory properties 
of stress-induced higher ethylene
content or homeostasis regulation

Jha et al. 
(2012)
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The development of drought-tolerant agricultural plant varieties via genetic engi-
neering and plant breeding is important, but it is a lengthy process, whereas applica-
tion of PGPR on plants could improve tolerance to drought stresses in dry land 
agroecosystem. Taking into account the current stats available, intensive future 
research is required in terms of identifying the proper solution (technique) for field 
examination of potent microorganisms for drought stress tolerance of plants. PGPR 
plays a vital role in improving plant development and can change plant-microbe 
interactions by altering microbial ecology and bio-geochemical cycles. It is summed 
up for this chapter that rhizobacteria generally adapt very diverse and multiple 
approaches to ameliorate drought tolerance in plants like production of phytohor-
mones like auxin, cytokinin, gibberellin, ABA, etc., active enzymes such as 1- amin
ocyclopropane- 1-carboxylate deaminase, and bacterial products like exopolysac-
charide, biofilm, and volatile organic compounds; activation of antioxidants; and 
increased accumulation of osmolytes like proline, betaine, etc. Application of recent 
tools and techniques can improve PGPR’s role in sustainable agriculture by enhanc-
ing soil fertility, plant tolerance, plant productivity, and preserving a balanced nutri-
ent cycle. More studies on selecting suitable rhizobacteria and functional biological 
strategies can provide new creations and opportunities with huge potential. However, 
there is still a need to understand the exact mechanism of rhizobacteria- mediated 
tolerance to abiotic stresses and its intricacy.
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7Quorum Sensing Molecules 
of Rhizobacteria: A Trigger 
for Developing Systemic Resistance 
in Plants

Mahejibin Khan, Prachi Bhargava, and Reeta Goel

Abstract
Induced systemic resistance (ISR) is a widespread phenomenon by which plants 
develop resistance against various pathogens. A number of plant growth- 
promoting rhizobacteria are reported to evoke ISR in plants through their surface 
components, secretion of metabolites, or production of volatile compounds. 
These compounds in return activate the signaling pathway in plant and allow 
plants to withstand pathogen attack. Quorum sensing (QS), which is defined as 
the intercellular communication process, is a crucial feature of rhizobacteria to 
sense the ecological niche and distribute their population. Signaling process 
involves the exchange of diffusible signal molecules that serve as autoinducers. 
The concentration of these QS molecules is a key factor in mediating the gene 
expression for EPS production, biofilm formation, extracellular enzyme produc-
tion, etc. and helps bacteria to adapt in a particular environmental condition. In 
general bacteria have a conserved QS system with central components such as 
LuxR-type regulator and LuxI-type protein as receptors. At low population den-
sity, bacteria produce a low level of QS signals, which are then released in the 
environment. N-acyl homoserine lactones (AHLs) are the major signaling mol-
ecules in Gram-negative bacteria, and cyclic peptides serve as signaling mole-
cules in Gram-positive bacteria. Recent studies revealed that AHL molecules 
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play important role in plant growth and defense. In this chapter, we will discuss 
the role of different signaling molecules in inducing plant defense and their 
mechanism.

Keywords
Rhizobacteria · Quorum sensing · ISR · Signaling molecules

7.1  Introduction

Plants counter a number of challenges for their survival and growth. It includes both 
abiotic factors (extreme temperature and water conditions) and biotic factors (attack 
of microbial pathogens, insects, etc.). To deal with these adverse conditions, plants 
have evolved a well-defined defense mechanism through which they are capable to 
recognize and combat potential pathogens. The defense system is either host resis-
tance system which is regulated by host R gene, and avr gene in pathogen, known 
as the gene for gene concept (Flor 1971). Another defense mechanism, effective 
against a wide range of pathogens, is called nonhost system (Gill et al. 2015). To 
deal with the primary attack, plants have a constitutive defense system that com-
prises physical barriers such as cell wall, cuticle, epidermis, and chemical barriers, 
viz., secondary metabolites, antimicrobial proteins, enzymes, etc. Once the patho-
gens overcome the physical and chemical barriers, inducible defense mechanism 
gets activated in plants through pathogen recognition and stimuli.

Based on the stimulus, plant defense system can be classified as systemic 
acquired resistance (SAR) activated by the virulent, avirulent, or nonpathogenic 
microorganism. SAR results in accumulation of pathogenesis-related protein and 
salicylic acid. Another type of defense mechanism is induced systemic resistance 
(ISR) that does not involve the accumulation of pathogenesis-related molecules but 
activates specific pathways in the host. ISR is generally induced by beneficial 
microorganism inhabitant of plant’s own rhizosphere. Plant secrets root exudates 
that attract the beneficial microorganism. These microorganisms utilize the nutri-
ents available in root exudates and multiply and colonize in the rhizosphere. These 
rhizobacteria release the antagonistic compounds that inhibit the growth of soil 
pathogens and also elicit systemic resistance in plants against plant pathogens, thus 
suppressing the disease in plants.

Soil rhizobacteria communicate with each other and also with the plants through 
the small signaling molecules. Bacterial cell to cell communication/signaling is 
known as quorum sensing (QS). It is a well-understood phenomenon which defines 
that some of the bacterial genes are only expressed when bacteria are densely popu-
lated (Sperandio et al. 2003). QS involve the exchange of diffusible signal mole-
cules that act as autoinducers. Quorum sensing systems are broadly classified into 
different signaling systems on the basis of their autoinducer signal and mechanism 
used for its detection. First class of QS signalling molecules is acylated homoserine 
lactone (AHL), bacteria release, sense, and react to the accumulation of these 
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molecules for synchronizing certain sets of genes that allow adaptation to the envi-
ronmental changes. This system is common in Gram-negative bacteria and has been 
identified in more than 70 species of gram-negative bacteria (von Rad et al. 2008; 
Liu et al. 2012). Another class of signaling molecules is modified oligopeptides. 
These oligopeptides are synthesized as a precursor and used as autoinducers. These 
are recognized by histidine kinases sensors and process it to control transcription of 
quorum sensing target genes. This mechanism is well known in Gram-positive bac-
teria. Other types of signaling molecules are furanosyl borate autoinducer-2 (AI-2), 
autoinducer-3 (AI-3), polypeptides, and diffusible signal factors (DSFs), 4-hydroxy- 
2-alkylquinolines (HAQs), and diketopiperazines, which acts as autoinducing sig-
nals (Boyen et al. 2009; Rajput et al. 2016).

These small signaling molecules regulate various traits such as virulence factors, 
bioluminescence, sporulation, swarming, degradation enzymes, siderophore pro-
duction, biofilm formation, and plasmid transfer. AHL molecules also help plants to 
attain priming state which is a self-protection mechanism of plants against micro-
bial pathogens. In this chapter, we have discussed the various signaling compounds 
released by rhizobacteria and their role in plant defense.

7.2  Rhizobacteria

The area of soil which is directly influenced by plant root exudates and colonized by 
high microbial population is known as rhizosphere. It is a dynamic nutrient-rich 
habitat harboring a vast variety of microorganisms (bacteria, fungus, and others). 
These microbes may have neutral, advantageous, or deleterious effects on the plant 
growth and development (Berendsen et al. 2012). Different genera of bacteria like 
Pseudomonas, Azospirillum, Azotobacter, Klebsiella, Enterobacter, Alcaligenes, 
Arthobacter, Burkholderia, Bacillus, Serratia, and many more comprise the group 
of microorganisms that augment the plant growth known as plant growth-promoting 
rhizobacteria (PGPR). These rhizobacteria colonize either at the root surfaces or 
within the roots and promotes plant growth directly by providing them with the 
plant growth-promoting substances synthesized by the bacterium or help plant to 
uptake certain plant nutrients from the environment. Some of PGPR also promote 
plant growth indirectly through their antagonistic behavior against one or more phy-
topathogenic microorganisms (Schippers et al. 1987). Rhizobacteria can perform 
biodegradation, N2 fixation, phosphate solubilization, improve soil fertility, and 
plant growth promotion. Thus, rhizosphere is a village where a combination of dis-
similar advantageous microbes synchronizes mutually with the rest of the environ-
ment (Bhargava et al. 2017).

Plant roots also secrete different type of organic nutrients (phytosiderophores, 
amino acids, vitamins, sugars, organic acid nucleosides, mucilage) and some signal-
ing molecules that attracts microbes. These microorganisms metabolize the plant- 
exuded compounds and proliferate (Drogue et al. 2013). Carbon availability is one 
of the major growth-limiting factors for most of the soil microorganisms. Plants fix 
atmospheric carbon photosynthetically and transport approximately 40% of fixed 
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carbon through their root system (Bais et al. 2006). Microbes present in close vicin-
ity of roots utilize this carbon and proliferate faster than the microbes present in the 
surrounding bulk soil. This ultimately leads to many fold increase in the microbial 
population in the rhizosphere and results in a significantly distinct microbial popu-
lation in rhizospheric soil. This phenomenon is explained as the rhizosphere effect 
(Bakker et al. 2013). Various application of plant growth-promoting rhizobacteria is 
shown in Fig. 7.1.

7.3  Activation of Induced Systemic Resistance in Plants 
Through Rhizobacteria

Since time immemorial, plants have continuously been exposed to the pathogen 
attacks. Nature has given the plants innate surveillance mechanism that makes them 
capable to fight against the attempted invasions. Sometimes these mechanisms fail to 
work when a virulent pathogen succeeds in infecting the plant as it circumvents trig-
gering the defense mechanisms and escapes the plant immune system. To combat 
such incidences, nonpathogenic soilborne microorganisms, such as AMF and PGPR, 
come as saviors where they can revamp and boost plant performance by triggering 
the systemic defense responses that bestow resistance to plant pathogens and insect 
herbivores having very broad spectrum (Ryals et al. 1992). The inherent immune 
system of plants depends heavily on two interrelated branches, called PAMP-
triggered immunity (PTI) and effector-triggered immunity (ETI). PTI is stimulated 

Fig. 7.1 Flowchart depicting the major benefits of rhizobacteria
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by identification and acceptance of microbe- or pathogen-associated molecular pat-
terns (MAMPs/PAMPs), which is found in almost all pathogenic and nonpathogenic 
microbes and act as conserved molecular signatures (Jones and Dangl 2006; Eulgem 
and Somssich 2007). Systemic tissues show mildly effective immune responses 
when activated by different microbe-associated molecular patterns (MAMPs). 
Recognition and identification of MAMPs by pattern recognition receptors (PRRs) 
at the surface of the cells trigger a pool and cascade of defense responses which con-
fers the plant a threshold level of immunity to combat (Chisholm et al. 2006).

Systemic resistance is the latent resistance regulated by dominant single gene 
and exhibits broad applying spectrum including fungal, bacterial, and viral diseases. 
Beneficial rhizobacteria can confer ISR in plants even when the inducing microbe is 
far away spatially from the disease-causing pathogen. Phenotypically the ISR shows 
similarity to another kind of pathogen-induced immunity called systemic acquired 
resistance (SAR). However, rhizobacteria-induced systemic resistance (ISR) term is 
used for the enhanced state of resilience in plants activated and boosted by root 
colonization and chemical/biological inducers, which fortify non-exposed plant 
parts against any attack by a broad spectrum of challenging pathogenic microorgan-
isms in the future. Induced resistance alludes to the actuation of latent combating as 
well as defense mechanisms that are manifested upon by a subsequent stimulus 
(Lugtenberg and Kamilova 2009).

The induced resistance can be either systemic or localized. When specifically the 
tissues which come in direct contact to the primary invader exhibit more resilience 
then it is termed as localized acquired resistance. Both SAR and LAR can target a 
range of pathogens. Studies reveal that a particular signal responsible to propagate 
and amplify the induced defensive capacity and spread it throughout the host is 
absent in LAR which differentiates it from SAR. Usually, salicylic acid (SA) also 
induces phenotypic responses which are similar to SAR, but studies reveal that jas-
monic acid (JA) and ethylene (ET) signaling proteins are more involved in the 
rhizobacteria- mediated induced systemic resistance (ISR).When the studies on 
leaves of the induced plants inoculated by pathogens were done, it was found that 
there was an increase in expression of SA pathway genes on the leaves which 
expressed SAR, whereas leaves expressing ISR showed enhanced expression of 
JA-/ET-responsive genes. Therefore, both ISR and SAR work in harmony and give 
a synergistic effect to protect the plant against pathogens that are smart enough to 
resist both pathways and increase the periphery of the spectrum of protection against 
pathogens when compared to the conditions where only ISR or SAR was present 
(Van Loon 2007).

Varied factors play role in the elicitation of systemic resistance in different time 
frames and situations ranging from structural components like flagellin, lipopoly-
saccharides, and exopolysaccharides to their metabolic products like siderophores 
and antibiotics. Volatile organic compounds (VOCs), like acetoin and 2,3- butanediol, 
secreted by Bacillus subtilis GB03 have also been reported to activate an ISR path-
way in seedlings of Arabidopsis which were inoculated with Pectobacterium caro-
tovorum (syn. Erwinia carotovora subsp. carotovora) (Ryu et  al. 2004; De 
Vleesschauwer and Hofte 2009). ISR can also be induced by certain quorum 

7 Quorum Sensing Molecules of Rhizobacteria: A Trigger for Developing Systemic…



122

sensing (QS) molecules like acyl-homoserine lactones (AHLs), which are known to 
regulate the expression of those genes which are responsible for a number of physi-
ological functions in various Gram-negative bacteria in a cell density-dependent 
manner. Various juxtacrine communication signals are exchanged among rhizobac-
teria cells, and paracrine signals are sent among other microbes be it bacteria or 
fungi which predominantly reside in the rhizosphere which helps the microbes to 
keep a check on their density and coordinate gene expression only when a quorum 
of cells is achieved (Zavilgelsky and Manukhov 2001; Miller and Bassler 2001; 
Schuhegger et al. 2006). Other bacterial signals that regulate gene expression inde-
pendently of the cell density are also present.

7.4  Triggering Factors for ISR

The eliciting factors secreted by ISR-triggering rhizobacteria are different from the 
elicitors of pathogen as they don’t cause any localized necrosis. A number of factors 
are responsible for the elicitation of resistance that include pathogens in avirulent 
forms, nonpathogenic microbes, certain chemicals, or in some cases the virulent 
pathogens. They act, respectively, in different time zones and places. These activa-
tors of innate immune response include dead microbial cell wall preparations; cell 
surface components, viz., outer membrane lipopolysaccharide (LPS) and flagella; 
and metabolites like siderophores which can also trigger defense-associated reac-
tions in suspension-cultured plant cells and leaves. Different time periods are 
required for different sets of host plants and their elicitors, to accumulate 
pathogenesis- related proteins (chitinase and glucanase) and salicylic acid which 
helps to trigger and establish the resistance (Gómez-Gómez and Boller 2002; Erbs 
and Newman 2003). ISR is supported by plant growth-promoting rhizobacteria 
(PGPR) in a huge amount, and some characterized strains of Pseudomonas show 
the best of the results showing no visible damage to the plant’s root system. Some 
major triggering factors (Fig. 7.2) have been discussed below.

7.4.1  Flagella

The innate immunity of plants stands tall upon the pillars of two interrelated 
branches, termed PAMP-triggered immunity (PTI) and effector-triggered immunity 
(ETI). PTI is triggered by specific conserved molecular signatures present in many 
pathogenic as well as nonpathogenic microbes called PAMPs/MAMPs (Eulgem and 
Somssich 2007). These signatures are present in bacterial flagellum and prove their 
worth in cells motility, virulence capacity of bacterial pathogens, and process of 
root colonization by rhizobacteria (Ramos et al. 2004). A conserved 15–22 amino 
acid stretch in Flg22 lying close to the conserved N-terminal domain of flagellin is 
perceived as a PAMP by the innate immune systems of many plants and animals. 
Flg22 is an robust elicitor in cell cultures of different plant species such as tomato, 
tobacco, Arabidopsis, potato, etc. (Felix et  al. 1999). In the plant model of 
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Arabidopsis, flagellin is recognized through its direct interaction with the trans-
membrane leucine-rich repeat receptor kinase (LRR-RK) FLS2. Though Flg22-type 
sequences are universally found in flagellins in divergent families of bacteria, 
including Pseudomonas putida and Ps. Aeruginosa, however the flagellins of the 
plant-associated bacteria Agrobacterium and Rhizobium show the presence of a 
highly different flagellin sequence which do not have the ability to stimulate the 
flagellin perception system (Felix et al. 1999; Chinchilla et al. 2006).

The early response to flg22 directly involves the onset of several cascades of the 
JA, ET, and SA defense signaling pathways, while the late responses involve activa-
tion of SA-regulated processes (Denoux et al. 2008). The experiments done on iso-
lated flagella and non-motile mutants of Pseudomonas putida strain WCS358 which 
lacked flagella using Arabidopsis, bean, and tomato as hosts also established the 
involvement of flagella in ISR (Meziane et al. 2005). Thus flagella, among the other 
pathogen-associated molecular patterns (PAMPs), have a major contribution in trig-
gering the plant defense response which leads to substantial decrease in the num-
bers of the pathogen in plants.

Fig. 7.2 Factors which can trigger induced systemic resistance in plants
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7.4.2  Lipopolysaccharides

Lipopolysaccharides (LPS) are complex molecules which can be both hydrophilic 
as well as lipophilic in nature. Besides constituting the major structural component 
giving tensile strength to the outer membrane of almost all Gram-negative bacteria, 
they also play a number of important roles in the interactions of bacteria with 
eukaryotic. They serve as a prototype role model for PAMP in almost all resistance- 
related experiments. They serve as important virulence factors in pathogenesis trig-
gered in plants by nonhost and avirulent bacteria owing to their capacity to curb 
hypersensitive responses. Their response is called “localized induced resistance” or 
“response” and is visible in various plants like tobacco, pepper, turnip, and 
Arabidopsis. LPS also alter and signal plant tissues to respond more rapidly or to a 
greater extent to phytopathogenic bacteria. After adhesion to cell wall components, 
LPS binds to specific plasma membrane receptors which sensitize and signal a 
series of events for accelerated synthesis of antimicrobial hydroxycinnamoyl- 
tyramine conjugates, which are associated to a family of pathogenesis-related (PR) 
proteins (Dow et al. 2000; Erbs and Newman 2003).

LPS owe their inducing capacity to highly conserved lipid A core region which 
can also trigger the production of nitric oxide. Lipid A and core oligosaccharides 
derived from the lipooligosaccharide from Xanthomonas campestris pv. campestris 
show elicitation of PR1 and PR2  in Arabidopsis and prevent the hypersensitive 
response (HR) triggered by certain avirulent bacteria (Zeidler et  al. 2004; Silipo 
et  al. 2005). LPS-induced resistance has been observed in carnation against 
Fusarium wilt by Pseudomonas fluorescens WCS417. Likewise, LPS of Ps. fluore-
scens strains WCS 374 and WCS 417 elicit systemic resistance in radish against F. 
oxysporum f. sp. raphani (Leeman et al. 1995). LPS of WCS 417r and mutant of 
WCS 417r lacking O-antigen side chain of LPS are shown to induce defense mecha-
nism in Arabidopsis (Van Wees et  al. 1997). Similarly, Van Loon et  al. in 1998 
showed that bacterial mutants lacking the O-antigen (OA) trigger systemic resis-
tance in radish. LPS from Burkholderia cepacia had an insulating effect on the 
Nicotiana tabacum-Phytophthora nicotianae interaction, and LPS of the pathogen 
P. solanacearum induced systemic disease resistance in tobacco leaves (Coventry 
and Dubery 2001).

7.4.3  Siderophores

Siderophores are low-molecular-weight metabolites having high affinity for iron 
(III) (Kf> 1030), exuded by almost all aerobic and facultative anaerobic microbes. 
Their biosynthesis is up- or downregulated by iron levels in the environment mostly 
soil. They supply iron to the cell to entrap little traces of ferric iron [Fe(III)] in the 
surrounding niche and supply that the iron to the cell. Usually there is a shortage of 
iron concentration in rhizosphere, and competition for iron through the production 
of siderophores is used as a mechanism of bacterial antagonism against soilborne 
pathogens. ISR-eliciting rhizobacteria profusely produce siderophores that serve 
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two purposes in disease suppression: one it deprives resident pathogens of iron, and 
second it induces systemic resistance in the plant. Most of the pathogenic microor-
ganisms can control the regulation of siderophore production and virulence factors 
during process of the disease production depending on the iron status of the host. 
All bacterial siderophores have the capacity to sequester iron, and some of them can 
elicit ISR also.

One of the predominant soilborne bacterium Pseudomonas aeruginosa 7NSK2 
produces two important siderophores, namely, pyoverdine and pyochelin. Buysens 
et al. in 1996 proved that pyochelin is known to reduce the damping-off disease 
caused by Pythium splendens on tomato produced by Ps. aeruginosa 7NSK2. In 
tomato seedlings, a bacterial mutant unable to produce both pyochelin and pyover-
dine was found to be less resilient against disease than the WT strain. After pyoche-
lin complements were brushed on the mutant, it regained its defensive property in 
tomato, indicating that pyochelin plays a major role in immunity against damping- 
off in tomato. These results show direct competition for iron between Ps. aerugi-
nosa and Ps. splendens, but they also pave the path for the possibility of stimulation 
of defense mechanisms in plants by siderophores.

Pseudobactin (PSB), also termed pyoverdin or fluorescein, works in a complex 
autoregulatory manner and elicits their own synthesis and uptake in a cell density- 
dependent manner. They give maximum expression of the cognate synthesis and 
receptor genes in the presence of siderophores (Visca et al. 2007). PSB siderophore 
of WCS374 induces ISR against Fusarium wilt. Most reports indicate that the ISR 
involves ET and JA pathway proteins and exclude SA in their mechanism 
(Vleesschauwer and Hofte 2009). Ran et al. in 2005 proved that microbes coloniz-
ing the aerial parts of the plants can also produce siderophores as shown by Ps. fluo-
rescens which can trigger ISR on Eucalyptus urophylla against bacterial wilt caused 
by Ralstonia solanacearum. Besides playing their crucial role as elicitors, they can 
also disturb the plant hormone balance and induce strong changes in heavy metal 
distributions in the plant.

7.4.4  Antibiotics

Antibiotics consist of a heterogeneous group of chemicals which are organic in 
nature and have low-molecular-weight whose function is to inhibit the growth or 
metabolic activities of other microorganisms (Duffy et al. 2003). The mechanism of 
antibiosis is based on the secretion of certain inhibitory molecules which are com-
monly associated with the ability of plant growth-promoting bacteria to act as 
antagonistic agents against phytopathogens (Glick et al. 2007).

Antibiotics are beneficial to plants as they circumvent the growth of pathogens 
(Weller et al. 2002). Antibiotics like 2,4-diacetylphloroglucinol (DAPG) are known 
to trigger the induced systemic response in Arabidopsis. The signaling route of the 
DAPG-induced resistance is unique in the sense that it is independent of master 
transcriptional regulator NPR1 and the functional JAR1 protein (Iavicoli et  al. 
2003). Heterocyclic N-containing blue phenazine pigment pyocyanin has been 
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found to play a determining role in rhizobacteria-elicited ISR (Britigan et al. 1997). 
Audenaert et al. in 2002 showed that pyocyanin produced by the rhizobacterium Ps. 
aeruginosa 7NSK2 works synergistically with the SA-derivative pyochelin in trig-
gering systemic resistance in bean and tomato against Bo. cinerea. Likewise, in 
Arabidopsis, this antibiotic triggers ISR in conjunction with the pyochelin sidero-
phore, 2,4-diacetylphloroglucinol (DAPG), establishing it as an triggering determi-
nant of Ps. fluorescens strains CHA0 and Q2-87 (Iavicoli et al. 2003; Weller 2007). 
Siddiqui and Shaukat in 2003 observed that Ps. fluorescens CHA0 induces resis-
tance in tomato, against the root-knot nematode Meloidogyne javanica. These find-
ings suggest that rhizobacterial DAPG can elicit ISR, opening the doors to explore 
more antibiotics that may be capable of eliciting ISR implants. Besides showing 
antagonism antibiotics also enhance the overall defensive capacity of plants.

7.4.5  Volatiles

Volatile organic compounds (VOCs) effectively promote plant growth and elicit 
host defense mechanisms in a number of plants. Rhizosphere emits certain VOCs in 
the periphery of root-colonizing bacteria as low-molecular-weight compounds 
(Pare’ et al. 2005). Many low-molecular-weight compounds like growth-promoting 
volatile 2R, 3R-butanediol have been found from complex bacterial emissions of 
many dominant bacterial strains with the help of gas chromatographic analysis (Ryu 
et al. 2004). Later it was found that the production of 2R,3R-butanediol is directly 
proportional to rate of elicitation of systemically induced resistance against Er. car-
otovora in tobacco by Ps. chlororaphis O6 (Han et al. 2006).

Other volatiles produced by rhizobacteria include acetoin (3-hydroxy-2 buta-
none), produced by Bacillus subtilis and Bacillus amyloliquefaciens and some 
strains of Streptomyces (Farag et al. 2006; Li et al. 2010). They protect the plant by 
reducing the severity of disease besides curbing the proliferation of pathogens in the 
leaves. However they pose some serious challenges to apply in the field owing to 
their low efficacy and evaporative nature as compared to other chemical pesticides; 
nevertheless, some volatile compounds have been used successfully in the field to 
control plant disease (Song and Ryu 2013). Researches are in full swing to explore 
signaling pathways to establish the role of microbial volatiles in regulating a series 
of cellular processes, including plant growth and development, pathogen defense, 
and abiotic stress adaptation (Cho et al. 2008).

7.5  Bacterial Signaling Molecules: Acyl Homoserine 
Lactone

Rhizosphere comprises soil, plant roots, microorganism, and host to complex plant- 
microbe and microbe-microbe and plant-insect interactions. Plant roots take up 
nutrients from the soil and release vitamins and minerals as root exudates to main-
tain a nutrient-rich environment. The composition of root exudates varies among the 
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plant’s cultivar and is dependent on plant health status and their environmental con-
ditions. Signaling molecules or secondary metabolites secreted from rhizobacteria 
as well as plants exudates secreted by roots are recognized and serve as communica-
tion media. The ecologic features and physical nature of the rhizosphere are defined 
by the root exudates released and the interactions in the rhizosphere. This interac-
tion may be (i) bacteria-bacteria communication via bacterial-derived signaling 
molecules and (ii) plant-microbe communication via plant-secreted small signaling 
molecules or microbe-secreted signaling molecules which are sent to the host 
(Venturi and Keel 2016).

Among all the signaling molecules, AHLs are the well-characterized autoinducers. 
These are widely produced by various microbial genera such as Agrobacterium, Brucella, 
Burkholderia, Chromobacterium, Enterobacter, Erwinia, Hafnia, Methylobacter, 
Paracoccus, Pseudomonas, Ralstonia, Rhodobacter, Rhizobium, Mesorhizobium, 
Sinorhizobium, Rhanella, Serratia, Vibrio, and Yersinia (Williams et al. 2007).

Besides rhizobacteria, many endophytes have also been reported to secret QS 
compounds. Burkholderia phytofirmans produces 3-hydroxy-C8-HSL (Sessitsch 
et  al. 2005); Serratia plymuthica secretes high amount of C4–C8-HSL and also 
3-oxo derivatives of HSL (Liu et al. 2011). Epiphyte (Pantoea agglomerans) and 
endophyte (Erwinia tolerance) of olive plant secrete AHL-like compounds which 
were reported to interfere with the Pseudomonas savastanoi pv. savastanoi viru-
lence causing knot disease in olive plants (Hosni et al. 2011). Signaling molecules 
produced by general PGPR strains are summarized in Table 7.1.

The molecular structure of AHLs varies from organisms to organisms and 
secretes in concentration range of pM to nM. Most of the AHL-producing organ-
isms possess a conserved QS system consists of LuxR- and LuxI-type protein and 

Table 7.1 Signaling molecules produced by PGPR strains

AHL Organism Reference
C6-HSL, C8-HSL Burkholderia sp. Chen et al. (2013)
3-hydroxy C8HSL Burkholderia phytofirmans Ryan et al. (2015)
3-Oxo-C6-HSL Erwinia carotovora McGowan et al. (1995)
3-Oxo-C10-HSL, 
3-oxo-C12-HSL

Pseudomonas putida Fekete et al. (2010)

3-Oxo-C10-HSL, C6-HSL, 
C8-HSL

Pseudomonas fluorescens Khan et al. (2005)

3-oxo-C12-HSL Ps. aeruginosa Mellbye and Schuster (2014)
C6-HSL, 3-oxo-C6-HSL, 
C7-HSL, C8-HSL

Serratia marcescens Ryu et al. (2013)

C4-C8 HSL, 3-oxo C8 HSL Serratia plymuthica Pang et al. (2009)
C4 HSL S. liquefaciens Schuhegger et al. (2006)
3-Oxo-C8-HSL Agrobacterium tumefaciens Zhang et al. (2002)
HSL, 3-Oxo-C6-HSL Rhizobium sp. Sanchez-Contreras et al. (2007)
C8-HSL Mesorhizobium huakuii Wang et al. (2004)
C8- and C12-HSL Gluconacetobacter 

diazotrophicus
Nieto-Peñalver et al. (2012)

3-Oxo-C16-HSL Sinorhizobium meliloti Mathesius et al. (2003)
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an AHL synthase, respectively. When the concentration of AHL reaches to a thresh-
old, it binds with the LuxR-type proteins and control transcription of target genes. 
All the naturally occurring AHL molecules contain homoserine lactone ring which 
is N-acylated with a fatty acyl group at the α-position (Chhabra et al. 2005). The 
chain length of AHL varies in side chain length which is consists of 4–14 carbon 
atoms and may also vary in saturation level. Some AHL has unsaturation at C3 
atom, whereas some contain unsaturation at 5 or 7 carbon atom. Therefore, different 
AHL shows quite different physicochemical properties. It is reported that bacterial 
QS not only used for communication within the same species but QS signals are 
involved in cross-talk with other bacterial species (interspecies) and also with host 
and organisms of different kingdoms (interkingdom) (Williams 2007).

7.5.1  Role of AHL in Plant Development and Defense

In the recent past, several lines of data demonstrated that the plant development and 
wide communication occur between plants and naturally occurring rhizobacteria 
colonizing the roots of plants through signaling molecules of both the partners. 
Elasri et al. (2001) observed that rhizospheric soil was more populated with AHL- 
producing bacteria than bulk soil. This observation advocates that plants could 
select their microbial partners through the secretion of selective root exudates. In 
return, these rhizobacteria secrete QS molecules that coordinate with the plants and 
control several morphological traits in plants (Pierson et al. 1998; Chin-A-Woeng 
et al. 2003; Liu et al. 2007). The biological activity of AHLs varies with the C chain 
and their lipid side chains. Short-chain (4–10 carbons) AHLs improve plant growth 
(Gao et al. 2003; von Rad et al. 2008). Bai et al. (2012) observed the application of 
AHL substituted at the C3 position with ketone group (oxoC10-homoserine lac-
tone) in mung bean which activates auxin-induced adventitious root formation 
using H2O2- and NO-dependent cyclic GMP signaling. Ortíz-Castro et al. (2008) 
established the fact through postembryonic root development studied in A. thaliana 
that C10-HSL influence the cell division in the meristem and affects the primary 
root development and lateral root formation. Furthermore, 6-μM C6-HSL treatment 
of seedlings for 11 days also resulted in improvement of root and shoot biomass. 
The modulation of a number of growth traits in A. thaliana was reported through the 
interaction of AHL with each other as well as with prokaryote domain (Zhao et al. 
2013). Moreover, Palmer et al. (2014) suggested that L-homoserine is released by 
the degradation of AHLs by the fatty acid amide hydrolase. L-homoserine helps 
plants to uptake more water and minerals and consequently improves plant growth. 
Latest finding of Venturi and Keel (2016) revealed that the complex process of rhi-
zospheric nitrogen mineralization and nitrogen cycling in legumes plants is also 
controlled by density-dependent behaviors of AHL-producing 
alpha-proteobacteria.

In the earlier work, it is reported that AHLs can be perceived by plants and mod-
ulate plant defense and cell growth responses, metabolism, and root and shoot 
growth through modification in gene expression. It is evident from several reports 
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that AHLs induce resistance in plants and play an important role in plant immunity. 
The changes at the transcription level upon AHL treatment of Medicago truncatula 
roots were reported for the first time in the studies of Mathesius et al. (2003), where 
the author found that the treatment of Medicago truncatula roots with N-3-oxo- 
hexadecanoyl homoserine lactone (3-oxo-C16-HSL) and N-3-oxo-dodecanoyl 
homoserine lactone (3-oxo-C12-HSL) resulted in the modification of the quantity of 
150 proteins that were related to the phytohormone production, defense and stress 
management, and metabolic regulation. Microarray studies conducted with AHL- 
treated and AHL-untreated roots of tomato plants indicate that expression of many 
defense-related proteins is induced in the shoots of treated plants (Hartmann et al. 
2004). In another study, Barriuso et al. (2008) studied the role of AHL producing a 
strain of Burkholderia graminis M12 and M14 in plant growth promotion as well as 
initiation of plant defense against salt stress in tomato plants and their transgenics 
expressing yen I (short-chain AHL producer) and LasI (long-chain AHL producer). 
Results indicate that both the strains were not capable to improve plant defense and 
growth promotion in all the conditions, but M12 could improve plant growth in wild 
type and stimulate salt resistance in LasI transgenic line, whereas M14 enhanced 
plant growth only in LasI transgenic line and induced resistance against salt stress 
in wild type.

AHL-producing bacterial strains mediated induced resistance in A. thaliana, 
tomato, and barley against biotrophic, necrotrophic, and hemibiotrophic pathogens, 
respectively, by eliciting SA-dependent pathways which was also studied in other 
dicotyledonous plants (Schuhegger et al. 2006; Schikora et al. 2011; Schenk and 
Schikora 2015). Serratia liquefaciens MG1, an AHL-producing strain, provide 
immunity to A. thaliana against the fungal pathogen Alternaria alternata 
(Schuhegger et al. 2006). Another AHL-producing strain of Pseudomonas putida 
was also reported to enhance systemic resistance of tomato plants in response to the 
fungal leaf pathogen, Alternaria alternate (Schuhegger et al. 2006), while Serratia 
plymuthica reduced the symptoms of gray mold disease in tomato and bean plants 
(Pang et al. 2009) and also stimulated defense reactions in cucumber plants against 
the damping-off disease caused by Pythium aphanidermatum. Similar findings were 
reported in the studies of Benhamou et  al. (2000), where endophytic bacterium 
Serratia plymuthica containing cucumber seedlings could prevent fungal attack 
more efficiently than the untreated control indicating the activation of induced resis-
tance in cucumber seedlings. Liu et al. 2007 isolated antibiotic pyrrolnitrin produc-
ing. S. plymuthica HRO-C48 strain producing C4-/C6- and OHC4-/OHC6 from the 
rhizosphere of oilseed rape confers ISR-like systemic protection of bean and tomato 
plants against the fungal leaf pathogen Botrytis cinerea.

Schikora et al. (2011) reported that AHL-induced resistance is mediated through 
modified activation of MPK6, the mitogen-activated protein kinases MPK3. It was 
observed that root exposure to C12- and C14 N-acyl-AHLs, activated MPK6 which 
induced higher resistance in A. thaliana and barley toward obligate biotrophic fun-
gus Golovinomyces orontii and Blumeria graminis f. sp. hordei, respectively. 
Further studies also revealed increased expression of the defense-related transcrip-
tion factorsWRKY26 and WRKY29 as well as the PR1gene in the A. thaliana. 
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Schenk et al.(2012) concluded that short and medium side chain AHL affects the 
root development, whereas long side chain AHLs elicit systemic resistance in A. 
thaliana.

In transgenic tobacco plants, Ryu et al. (2013) reported the Serratia marcescens 
90–166 mediated modification in the induced systemic resistance during constitu-
tive expression of QS genes. Differential regulation of the cytoskeleton and defense- 
related 53 proteins were also observed in oxo-C8-HSL-treated Arabidopsis seedlings 
(Miao et al. 2012). Nieto-Peñalver et al. (2012) demonstrated that sugarcane endo-
phyte Gluconacetobacter diazotrophicus produces C8- and C12-HSL that could be 
involved in enhancing the resistance in sugarcane against Xanthomonas albilineans. 
Root treatment of Hordeum vulgare with C8- and C12-HSL resulted in a systemic 
reduction of the biotrophic pathogen Xanthomonas translucent in leaves compared 
to controls. It was found that application of short- and long-chain HSL initially 
showed slow response, but after 4  h of incubation, the highest of SA level was 
attained, thus confirming the enhanced AHL-mediated systemic resistance against 
the pathogen. Zarkani et al. (2013) also reported the inhibition of tomato bacterial 
speck caused by Pseudomonas syringae pv. tomato DC3000 by oxo-C14-HSL- 
producing Sinorhizobium meliloti Rm2011 strain (Table 7.2).

7.5.2  Mechanism of AHL-Induced Resistance in Plants

The physiological stage of plants in which they act more efficiently to activate their 
defense response against abiotic or biotic stress is known in the primed stage of 
plants, and the mechanism through which plants enter to the primed stage is prim-
ing. The modified response does not require the activation of a complex cascade of 
genes, but it is a process of augmentation of defense-related signals (Conrath 2009; 
Slaughter et al. 2012). A variety of factors, viz., colonization of plant roots with 
beneficial rhizobacteria, infection with pathogens, or application of some natural or 
synthetic organic volatile compounds, can induce priming in plants (Conrath et al. 
2006). However priming is not completely understood at molecular level, two 
mechanisms have been postulated. According to Beckers et al. (2009) inactive mito-
gen that activated protein kinases plays as important role in priming of plants. 
Inactive mitogen-activated protein kinases get activated through secondary stimula-
tion and induce priming. Another report claimed the acetylation (H3K9, H4K5, 
H4K8, and H4K12) and methylation (H3K4me3 and H3K4me2) of histone protein 
in the promoter regions of the defense-associated (WRKY6, WRKY26, and 
WRKY53) transcription factors (Jaskiewicz et al. 2011). The priming state can be 
divided into pre-challenged, post-challenged, and transgenerational primed state 
(Balmer et al. 2015).

During the last decades, several reports claimed that AHLs that serve as signal-
ing molecules in bacteria enhance plant defense response against forthcoming 
pathogens through priming (Schikora et al. 2011; Pieterse et al. 2014). Plants have 
a well-defined defense mechanism to defend the pathogen attack. These mechanism 
used by the plants is either jasmonic acid (JA) and ethylene (ET) dependent or 
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salicylic acid (SA) dependent based on the pathogens. Involvement of SA-dependent 
defense in AHL-mediated priming was reported in tomato plants where AHL- 
producing Serratia liquefaciens strain MG1 enhances the accumulation of SA in 
plants upon pathogen attack (Hartmann et al. 2004; Schuhegger et al. 2006). These 
results were further supported when treatment of tomato plants with pure C6- and 
C4-HSL leads to the higher expression of two chitinase genes and pathogenesis-
related 1a (PR1a) gene. It is important to mention that expression of PR1a is 

Table 7.2 AHL molecules and their role in different plants

AHL type Plant reaction Plant species References
C6-HSL Primary root elongation, 

transcriptional and 
metabolism regulation

A. thaliana von Rad et al. 
(2008)

C6-HSL Upregulation of defense 
genes

Lycopersicon 
esculentum

Schuhegger 
et al. (2006)

Oxo-C6, oxo-C8 Root growth and 
development

A. thaliana Liu et al. 
(2012)

3-oxo-C6 (Serratia 
plymuthica)

Triggering plant immunity Cucumis sativa 
Lycopersicon 
esculentum

Pang et al. 
(2009)

C6, C8, C10 Root and shoot growth Hordeum vulgare Götz et al. 
(2007)

3-O-C10 Adventitious root formation Vignaradiata Bai et al. 
(2012)

C12- HSL Root hair development A. thaliana Ortíz-Castro 
et al. (2008)

3-oxo-C16-HSL, 
3-oxo-C12-HSL

Defense and stress 
management

Medicago 
truncatula

Mathesius 
et al. (2003)

C4-/C6-andOHC4- /OHC6 ISR-like systemic 
protection

Bean and tomato Liu et al. 
(2007)

C12- and 
C14-N-acyl-AHLs

Induced resistance against 
pathogen

A. thaliana and 
Barley

Schikora et al. 
(2011)

Oxo-C8-HSL Regulation of cytoskeleton 
and defense-related 
proteins

A. thaliana Miao et al. 
(2012)

C8-C10, C12, C14-HSL 
(endophyte 
Gluconacetobacter 
diazotrophicus)

Induced resistance Sugarcane Nieto- 
Peñalver et al. 
(2012)

oxo-C14-HSL Inhibition of tomato 
bacterial speck

Tomato Zarkani et al. 
(2013)

C8- and C12-HSL Root elongation, defense Barley Rankl et al. 
(2016)

3-oxo-C14-HSL, Increase in root nodulation Medicago 
truncatula

Veliz-Vellajos 
et al. (2014)

C6-C8, C10-HSL Modulate activity of 
glutathione S transferase 
and dehydroascorbate 
reductase

Barley Gotz-Rosch 
et al. (2015)
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regulated by SA and ET. Similar results were also reported in Rankl et al. (2016), 
where exposure of barley roots with C8- and C12-HSL results in the accumulation 
of SA and ABA barley leaves, whereas JA and isoleucine contents were unaffected. 
During the study, another interesting observation made was the accumulation of 
nitric oxide (NO) in HSL-treated roots. It was interpreted that NO could be the sec-
ond messenger leading to SA accumulation in leaves. Therefore, it was concluded 
that AHL induced systemic resistance via defense gene priming in response to bio-
trophic pathogen Xanthomonas translucens pv. cerealis in barley (Fig. 7.3).

Joseph and Phillips (2003) observed that treatment of roots of bean plants with 
10 nM of homoserine lactone improves the stomatal conductance and rate of tran-
spiration up to 30% in the shoot of the plant. This increased transpiration could be 
due to the increased flow of water and nutrients from the bulk soil to the rhizo-
sphere. Schikora et al. (2011) found the better formation of papillae in oxo- C14- 
HSL-pretreated barley plants than the untreated plant when challenged with 
pathogenic fungus Blumeria graminis sp. hordei. These results were further sup-
ported by Schenk et al. (2012), where a researcher found that AHL pretreatment in 
A. thaliana increases the callose deposition, lignins, and accumulation of phenolic 
compounds in the cell wall, and the expression of genes in the cell wall and 

Fig. 7.3 Role of AHL in plant defense. Short- and long-chain AHL molecules secreted from bac-
teria are recognized by plants and enhanced nutrients uptake, shoot and root biomass, and root 
development. AHL signals leading to priming effects on plants and enhanced defense response. 
Short-chain AHLs are transported also to the distal part of plants and activate defense pathway
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glycoprotein functional categories was also enhanced. Moreover, a higher number 
of closed stomata and reduction in open stomata indicated SA-dependent pathways 
activate the stomatal defense response. These results concluded that AHL applica-
tion primed plants for cell wall reinforcement (nAHL prime plant for cell wall).

7.6  Concluding Remarks

The mutualistic relationship between plant and microorganisms in rhizosphere has 
been the major area of study and interest for both plants and microbiologist. Use of 
various microorganisms in the latest agricultural applications is the outcome of 
these researches. Research carried out in the last two decades in the area of plant- 
microbe interaction have shown that soil organisms communicate with each other 
through intercellular signaling and with the host by interkingdom signaling. It is an 
established fact that plants are able to shape their own microbiome through root 
exudates that attract various microorganisms (bacteria, fungi, and viruses), nema-
todes, etc.; on the other hand, rhizobacteria secretes small signaling molecules that 
are recognized by the plants. Plants respond to the bacterial signals and establish a 
relationship.

Quorum sensing is a well-known phenomenon for bacterial communication, 
where AHL molecules are released from bacteria and act as a communication 
medium. It is evident from the results that application of N-acyl-D/L-homoserine 
lactones (AHLs) plays a vital role in nutrition assimilation, development, and also 
inactivation of the defense system in various plants, but the exact mechanism is still 
unrevealed. Therefore, there is great need to study and understand the role of QS 
molecules in plant-microbe interaction and root microbe dynamics which will open 
the new avenues to design custom-made consortia and help to improve agriculture 
productivity.
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8Zinc-Solubilizing Bacteria: A Boon  
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Abstract
The continuous rise in world population requires more food to feed people. To 
fulfill this demand, farmers apply different agrochemicals, especially fertilizers, 
in indiscriminate quantity in fields to increase production per unit time per unit 
area. Blind and imbalanced doses of fertilizers cause various adverse effects on 
environmental conditions through the accumulation of various minerals and bio-
magnifications in different ecosystems. Generally, all macroelements are applied 
through high-analysis fertilizers. But micronutrients are neglected, not directly 
involved in yield expansion, and zinc (Zn) is one of them. Zinc (Zn) is a key 
micronutrient, required for all living forms including plants, humans, and micro-
organisms for their development. Humans and other living organisms require 
zinc in their lives in little amounts for proper physiological functions. Zinc is a 
crucial micronutrient for plants which plays various important functions in their 
life cycle. The deficiency of zinc in the soil is one of the very common 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6536-2_8&domain=pdf


140

 micronutrient deficiencies and results in decreased crop production. Majority of 
the agricultural soil is either zinc deficient or contains zinc in a fixed form which 
is unavailable to plants, as a result reflecting zinc deficiency in plants and soils. 
Therefore, to solve the above problem, there is a requirement for alternative and 
eco-friendly technology such as plant growth-promoting rhizobacteria (PGPR) 
and organic farming practices to enhance zinc solubilization and its availability 
to plants. Zinc-solubilizing bacteria (Zn-SB) are promising bacteria to use for 
sustainable agriculture. Zn-SB have various plant growth-promoting (PGP) 
properties such as Zn solubilization, P solubilization, K solubilization, nitrogen 
fixation, and production of phytohormones like kinetin, indole-3-acetic acid 
(IAA), and gibberellic acid, besides production of 1-aminocyclopropane-1- 
carboxylate (ACC) deaminase and siderophores, hydrogen cyanide, and ammo-
nia. Zn-SB secrete different organic acids that solubilize the fixed form of zinc to 
available form, which enhances plant growth promotion, yield, and fertility sta-
tus of the soil. This chapter covers the efficient application of Zn-SB, the Zn 
solubilization mechanism, and their application to increase crop production. The 
indigenous Zn-SB have proved their effectiveness over exogenous ones in the 
various cropping systems or crop rotations for which they are intended.

Keywords
Zinc · PGPR · Phytohormones · Sustainable agriculture · Crop yield

8.1  Introduction

Zinc is a very crucial micronutrient for crops that plays various important functions 
in their life cycle (Hirschi 2008). Plant growth, development, maturity, vigor, and 
yield are directly or indirectly affected by zinc. Humans and other living organisms 
require zinc in their lives in very little amounts to maintain their proper physiologi-
cal functions. Zn is a vital mineral for biological and public health (Hambidge and 
Krebs 2007). After iron, it is the second most abundant metal in living organisms 
and also appears in all the enzyme classes (King 2006; Broadley et  al. 2007). 
Therefore, its consumption through various foods is essential. Biofortification is a 
process of enriching zinc nutritional values in grains through agronomical and bio-
technological breeding programs. Stein (2010) reported the increased availability of 
Zn and Fe in the staple crops through biofortification. The deficiency of Zn is a very 
common problem in developing countries, and it can be resolved by biofortification 
(Cakmak 2008). The basic aim of biofortification is to produce plants which have an 
augmented content of bioavailable nutrients in their edible portions (Abaid-Ullah 
et al. 2015). It is grown in about 8.26 Mha with production being 19.3 Mt. (Ministry 
of Agriculture, Government of India). There are various reasons for zinc deficiency 
in soil such as poor recycling of crop residues, excessive fertilization, high-yielding 
crop cultivars, less organic matter, and intensive cropping pattern (Hafeez et  al. 
2013). Zinc is among the deficient metals in human beings that negatively 
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influences up to one-third of the worldwide population mainly preschool children 
and women (Hotz and Brown 2004; Zhang et  al. 2012; Stein 2010). Therefore, 
increasing zinc content through various sources is becoming an important phenom-
enon. Mostly, fertilizer is the most common source of zinc, but it’s not ecological to 
apply with its chemicals; therefore, an alternative source are zinc-enriching microbes 
which would play an important role in biofortification. The use of these bacteria 
through the intermediation of different compounds, biofertilizers, and, most com-
monly, rhizobacteria in soils is cheap, sustainable, and eco-friendly for zinc avail-
ability, either through solubilizing native zinc or making available zinc from a 
remote area of the rhizosphere.

PGPR have plant growth promotion properties which play an important role in 
plant growth and yield through direct and indirect mechanisms (Glick 1995). Direct 
mechanisms of plant growth promotion include zinc solubilization, solubilization of 
insoluble phosphates, potassium solubilization, fixation of atmospheric nitrogen, 
and secretion of hormones such as IAA, gibberellic acid, and kinetin, besides 
1-aminocyclopropane-1-carboxylate (ACC) deaminase production. Indirect mecha-
nisms include induced systemic resistance (ISR), parasitism, competition for nutri-
ents, antibiosis, and production of metabolites (hydrogen cyanide, siderophores) 
that suppress deleterious rhizobacteria and enhance plant growth. Zinc-solubilizing 
bacteria (Zn-SB) may convert the insoluble form of zinc in the soil to a soluble form 
making it easily bioavailable to plants for their growth, development, and final yield 
while well maintaining soil health and fertility for yielding in a sustainable way. The 
solubility of Zn in the soil has been mainly dependent upon soil pH and moisture. 
In the Indian agroecosystems, the arid and semiarid regions are often zinc deficient. 
The nature and amount of various organic acids produced through different soil 
microorganisms are mainly dependent upon the medium pH, carbon source, and 
buffering capacity (Mattey 1992). Zinc-solubilizing microorganisms produce vari-
ous organic acids through acidification in the soil that sequester zinc cations and 
consequently decrease the pH in the nearby soil (Alexander 1997). Moreover, it is 
found that anions can also chelate zinc and increase zinc solubility (Jones and 
Darrah 1994). Zinc solubilization includes the siderophores production (Saravanan 
et al. 2011) and proton, oxidoreductive systems on cell membranes and chelating 
ligands (Chang et al. 2005; Wakatsuki 1995). Several beneficial bacterial strains are 
reported to cause solubilization of zinc on laboratory scale like Pseudomonas aeru-
ginosa (Fasim et  al. 2002), Pseudomonas striata, Burkholderia cenocepacia, 
Bacillus spp., Pseudomonas fluorescens (Pawar et  al. 2015), Gluconacetobacter 
diazotrophicus (Saravanan et al. 2007), Bacillus thuringiensis, S. marcescens, and 
Serratia liquefaciens (Abaid-Ullah et al. 2015).

Wheat is an important staple food in various developing countries and provides 
up to 45 mg kg-1 in grains which is used as a supplement for Zn source in the diet 
of a human being (Stein 2010; Zou et al. 2012; Cakmak 2008; Zhang et al. 2012). 
Enhancement of Zn content in the Zn deficiency wheat grain has been due to the 
involvement of different transgenic and breeding approaches in cereals. However, 
political and socioeconomic issues and long time span make difficult its adaptation 
in field conditions from the trial room. The use of chemical fertilizers is a very fast 
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method to increase the content of zinc in grains, but it is non-sustainable and expen-
sive (Bulut 2013; White and Broadley 2011; Bahrani et al. 2010; Hafeez et al. 2013; 
Cakmak et al. 2010). The biofortification approach is one of the important strategies 
that would be a socially acceptable and economically viable tool for increasing Zn 
and Fe content in the major crops (Stein 2010). In biofortification, the major draw-
backs are the root or shoot barriers and the process of grain filling. A major under-
standing of the zinc mechanism is needed to have insight in increasing grain quality 
and alleviating any accumulation of hazardous elements (Upadhyay and Srivastava 
2014).

In this chapter, the results are summarized highlighting the efficient application 
of Zn-SB, the Zn solubilization mechanism, and their use to increase sustainable 
crop production. Eradication of Zn malnutrition and undernutrition from humans, 
plants, animals, and soils would be possible through Zn-SB through better bioavail-
ability of zinc and other important micronutrients with their eco-friendly, beneficial, 
and economical nature. Indigenous Zn-SB are very effective in the various cropping 
systems under sustainable agriculture.

8.2  Zinc Status of Soil and its Availability to Plants

Around 50% of the agricultural soils in China have been deficient in zinc. At the 
same time, Indian zinc-deficient soils have covered almost 50% of the agricultural 
part, and the same situation has been observed in Turkey (FAO WHO 2002). About 
70% of agricultural land has been recorded as Zn deficient in Pakistan (Hamid and 
Ahmad 2001; Kauser et  al. 2001). Zinc is an essential component of plants and 
responsible for their metabolic processes which are very important for their devel-
opment. The deficiency of Zn micronutrient is very common in plants resulting in 
major loss in crop production. Application of zinc fertilizers may not be profitable 
in controlling zinc deficiency and increasing crop yield and for sustainable crop 
production. There is an underutilization of Zn fertilizers in many countries, despite 
the widespread occurrence of zinc-deficient soils; and it may because they are not 
directly involved in yield expansion, compared to high-analysis fertilizers of nitro-
gen and phosphate. Majority of the soils are either deficient in Zn or with Zn in 
unavailable form to plants. Approximately 50% of the soils have inadequate Zn 
(FAO WHO 2002). Zn deficiency is occurring often in paddy soils, calcareous and 
neutral soils, diligently harvested soils and improperly drained soils, saline and 
sodic soils, peat soils, soils with a raised level of phosphorus and silicon, highly 
weathered acidic soils, sandy soils, and coarse-textured soils (Sillanpaa 1982; 
Alloway 2008). Deficiency of Zn may also be linked to the properties of the soil, 
such as being calcareous; Zn2+ may present as low, and this can reduce crop growth 
(Hacisalihoglu and Kochian 2003). The occurrence of Zn in soil is found as zincite 
(ZnO), zinkosite (ZnSO4), hopeite [Zn3(PO4)2∙4H2O], sphalerite (ZnS), franklin-
ite (ZnFe2O4), and smithsonite (ZnCO3); however, availability of Zn from these 
sources depends on various factors. The natural sources of zinc involve (a) physical 
and chemical weathering of parent rocks (Alloway 1995) and (b) atmospheric 
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contribution of zinc to soils (e.g., forest fires, volcanoes, and surface dust) (Friedland 
1990; International Zinc Association 2011). The primary step of Zn uptake from the 
rhizosphere is its accumulation in plants before its transfer to the seeds (Giehl et al. 
2009). Plant roots uptake Zn in the form of Zn2+ cation which is the component of 
synthetic and organic compounds (Havlin et  al. 2005; Oliveira and Nascimento 
2006). Plants absorb available zinc in a reactive form from the soil solution. 
Available amount of zinc to plants is controlled by soil factors, e.g., total zinc con-
centration, organic matter, pH, clay, redox conditions, calcium carbonate, microbial 
activity in the rhizosphere, soil moisture, concentrations of other trace elements, 
and concentrations of macronutrients, especially climate and phosphorus (Alloway 
2008). Supply of Zn is mostly affected by the soil pH in soil pools, on account of the 
fact that this element is easily adsorbed in cation exchange sites at over neutral pH 
and made available at low pH values (Broadley et  al. 2007; Havlin et  al. 2005). 
Cereal grains have very less concentration of Zn in contrast to animal-based foods 
or pulses. Presently, Indian soils are Zn deficient especially in wheat cropping sys-
tems, and grain Zn concentration will again decrease in cereals (Prasad 2005; Gupta 
2005). In general, a lower concentration of Zn is found in cereal grains due to the 
presence of anti-nutrition factor phytic acid (PA) which decreases mineral bioavail-
ability (Pahlvan-Rad and Pressaraki 2009). The lower bioavailability of zinc in soil 
directly affects zinc content in grains and human health. These Zn-deficient soils do 
not promote growth of various crops like sugarcane, wheat, corn, and rice. The defi-
ciency of Zn in soil affects wheat yield, and this deficiency is overcome through the 
use of zinc fertilizer (Joy et al. 2017; Ahmad et al. 2012; Khan et al. 2009). However, 
the application of this Zn fertilizer threatens the public health and environment and 
puts farmers’ livelihood in jeopardy. Therefore, in many countries, the application 
of chemical fertilizers has declined, and growers return to practices for sustainable 
agriculture.

To solve the problem of Zn deficiency, micronutrient biofortification of grain 
crops has gained interest in developing countries (Zhao and McGrath 2009; Cakmak 
2008; Bouis and Welch 2010). Several approaches have been framed and performed 
for the fortification of cereals (Bouis 2003; Pfeiffer and McClafferty 2007). 
Improving concentration of Zn in cereal grains has been identified as an approach in 
dealing with human Zn deficiency (Pahlvan-Rad and Pressaraki 2009). Plant scien-
tists are formulating different methodologies to solve the Zn deficiency problem in 
crops by application of fertilizers and/or by plant breeding approaches to increase 
absorption and/or bioavailability of Zn in grain crops (Cakmak 2008; White and 
Broadley 2009). Various dietary factors like amino acids (histidine and methionine), 
organic acids (citrate), and chelators (viz., EDTA) appear to support the bioavail-
ability of zinc, whereas fibers and some minerals such as copper, iron, and calcium 
may reduce it in some situations (Lonnerdal 2000). Recent studies have also revealed 
that enhanced Zn bioavailability diminishes phosphorus and phytic acid concentra-
tions in grains (Cakmak et al. 2010). Absorption of Zn can be enhanced by various 
organic acids such as citric acid, lactic acid, malic acid, and ascorbic acid. Zn-EDTA 
is formed through insoluble phytate-Zn and EDTA. HarvestPlus (2012) reported a 
25 ppm enhancement of Zn content in wheat through fortification in Pakistan. It 

8 Zinc-Solubilizing Bacteria: A Boon for Sustainable Agriculture



144

includes two strategies: agronomic and genetic biofortification. Soil-borne zinc- 
solubilizing bacteria colonize toward the rhizosphere region, multiply and compete 
with other rhizobacteria, and consequently enhance plant growth and yield 
(Kloepper and Okon 1994). Glick (2012) reported the use of PGPR which promotes 
plant growth through releasing phytohormones, solubilization and assistance in 
nutrient acquisition, and biocontrol agents to protect plants from different patho-
gens (Fig. 8.1). The different PGPR have been found to be very effective in zinc 
efficiency. These efficient PGPR improve plant growth promotion via colonizing 
the rhizosphere and by solubilizing the insoluble complex zinc compounds into 
simpler ones, thus making very easily available to the crops.

8.3  Role of Plant Growth-Promoting Rhizobacteria as Zn 
Mobilizers

Plant growth-promoting rhizobacteria have multi-roles to play in sustainable agri-
culture. They are a distinct group of bacteria that can be noticed in the rhizosphere 
on root surfaces as well as in association with roots (Maheshwari et al. 2012; Ahmad 
et  al. 2008). These bacteria move around from the bulk soil to the living plant 

Fig. 8.1 Plant growth promotion and biological control properties of zinc-solubilizing bacteria
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rhizosphere and antagonistically colonize toward the rhizosphere region and roots 
of the crops (Hafeez et al. 2005). PGPR can be divided into two groups based on 
their relationship with the plants, i.e., symbiotic bacteria and free-living rhizobacte-
ria (Khan 2005). PGPR consist of beneficial microorganisms naturally occurring in 
the soil that make nutrients available to plants by several mechanisms such as fixing 
atmospheric nitrogen, solubilizing the nutrients fixed in the soil, and releasing phy-
tohormones (Siddiqui et  al. 2008; Hafeez et  al. 2005; Yao et  al. 2008). Besides 
phosphate mobilization, they also play a pivotal role in carrying out the bioavail-
ability of soil phosphorus, potassium, zinc, iron, and silicate to plant roots (Tariq 
et al. 2007; Ahmad 2007; Saravanan et al. 2011; Abaid-Ullah et al. 2011). Tariq 
et al. (2007) reported the effect of Zn-mobilizing PGPR which significantly reduced 
the deficiency symptoms of Zn and constantly increased the total biomass, grain 
yield, and harvest index including Zn concentration in rice grains. Ahmad (2007) 
screened out 50 strains of Zn-mobilizing PGPR from the maize rhizosphere which 
have been very efficient strains on the basis of a clear transparent zone formation on 
respective Petri plates. Similar work has been accomplished by Yasmin (2011), who 
determined the effectiveness of Zn-solubilizing Pseudomonas sp. Z5, isolated from 
the rhizosphere region of rice crops. Abaid-Ullah et al. (2011) selected 9 out of 50 
Zn-solubilizing PGPR qualitatively and quantitatively on various insoluble Zn ores 
such as ZnO, ZnS, Zn(CO3)2, and Zn(PO4)3. A positive correlation in Zn solubiliza-
tion was observed between the qualitative and quantitative testing of Serratia sp. 
Similarly, higher Zn solubilization was recognized with ZnO as compared to other 
insoluble ores. Efficient Zn mobilizer Serratia sp. was tested in vivo for its benefi-
cial effect which significantly maximized the yield and yield attributes of wheat 
crops. PGPR are vitally involved in the solubilization of many important minerals 
such as potassium, iron, phosphorous, zinc, etc., thereby increasing the bioavail-
ability of these important nutrients to crops (Glick 1995). Penrose and Glick (2003) 
reported that PGPR have the ability to enhance plant growth via improving nutrient 
solubilization and releasing siderophore hormones, resulting in enhanced nutrient 
uptake by the crops (Fig. 8.1). There are various efficient PGPR strains that have 
shown to increase the growth and zinc content when inoculated in crops. These 
include Bacillus sp. (Hussain et al. 2015), Pseudomonas, Rhizobium (Deepak et al. 
2013; Naz et  al. 2016), and Bacillus aryabhattai strains (Ramesh et  al. 2014). 
Different authors have reported the zinc solubilization ability of bacteria on lab 
scale which include Bacillus sp., S. marcescens, Pseudomonas striata, Burkholderia 
cenocepacia, Pseudomonas fluorescens, Bacillus thuringiensis and Serratia lique-
faciens (Abaid-Ullah et al. 2015; Pawar et al. 2015), Gluconacetobacter diazotro-
phicus (Saravanan et al. 2007), and Pseudomonas aeruginosa (Fasim et al. 2002). 
Gadd (2007) reported that zinc-solubilizing microorganisms like Acinetobacter, 
Bacillus, Gluconacetobacter, and Pseudomonas have the ability to solubilize zinc 
from organic and inorganic pools of total soil zinc and also can be utilized to 
enhance zinc bioavailability to crops.
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8.4  Mechanism of Zinc Solubilization by Zinc-Solubilizing 
PGPR

Zn is present in an insoluble form in the soil and is unavailable for plant uptake 
(Barber 1995). Solubilization of metal salts is an important feature of PGPR as the 
mobilized compound becomes available to plants. Bacterial comparative and func-
tional genomics research has unlocked new ways for approaching these underlying 
mechanisms at the molecular and biochemical level. Many studies have been per-
formed to examine the mechanisms of Zn-solubilizing PGPR. PGPR have different 
mechanisms to solubilize nutrients in the soil, namely, through exchange reactions, 
chelation, release of organic acids, and acidification (Chung et  al. 2005; Hafeez 
et al. 2005). The mechanism of mobilization of iron and zinc likely involves sidero-
phore formation (Tariq et al. 2007; Burd et al. 2000; Wani et al. 2007; Saravanan 
et al. 2011) and production of gluconate or the derivatives of gluconic acid, e.g., 
2-keto-gluconic acid (Fasim et  al. 2002), 5-keto-gluconic acid (Saravanan et  al. 
2007a, b), and many other organic acids, by PGPR (Wani et al. 2007; Di Simine 
et al. 1998; Tariq et al. 2007). The most preferred mechanism of zinc-solubilizing 
microorganisms is acidification.

8.5  Plant Growth Promotion Properties of Zinc-Solubilizing 
PGPR

The term PGPR was coined three decades ago when they were nothing but non-
pathogenic, quick root-colonizing microbes on the surface of roots of plants which 
promote plant yield by different mechanisms (Agbodjato et al. 2016). Soil microbes 
which directly or indirectly promote plant growth are called PGPR (Akhtar et al. 
2012). They are multiple groups of microbes which are found in the rhizosphere on 
plant root surfaces as well as in association with roots (Desai et al. 2012). These 
microbes move around from the bulk soil to the living plant rhizosphere region and 
antagonistically colonize in the rhizosphere region of plants (Islam et  al. 2014). 
According to a study, various species of soil bacteria that thrive in the rhizosphere 
region of plants, but which may grow in, on, or around plant tissues and which 
stimulate plant growth through a superfluity of mechanisms, are collectively known 
as PGPR (Fig. 8.1) (Usha Rani and Reddy 2012). Recently, studies reveal that the 
PGPR associations range in the degree of microbial proximity to the root and inti-
macy of association. In general, they can be intracellular (iPGPR), which are pres-
ent inside root cells, particularly the nodular regions, and extracellular (ePGPR), 
which exist in the rhizosphere, on the rhizoplane, or in the spaces between cells of 
the root cortex (Gopalakrishnan et al. 2014). PGPR are nothing but naturally occur-
ring beneficial microorganisms in soil which make available different nutrients to 
plants by several mechanisms like fixing atmospheric nitrogen, solubilizing the 
nutrients fixed in soil, and producing phytohormones such as kinetin, IAA, and GA, 
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besides ACC deaminase production which helps in the regulation of ethylene or 
enzyme production such as chitinase and cellulase (Saleem et al. 2007; Siddiqui and 
Shaukat 2004). PGPR influence direct growth promotion of plants by induced sys-
temic resistance (ISR), competition for nutrients, antibiosis, parasitism, and produc-
tion of metabolites (hydrogen cyanide, siderophore) that suppress deleterious 
rhizobacteria. These mechanisms ultimately are useful and beneficial in plant 
growth. PGPR can be estranged into two groups according to their association with 
plants: symbiotic bacteria and free-living rhizobacteria (Saraf et al. 1994). PGPR 
have also an important role in phosphate dissolution and in bioavailability of soil 
phosphorus, potassium, iron, and silicate to plant roots (Abaid-Ullah et al. 2015). 
Many studies have reported that inoculation with a potent strain of zinc-mobilizing 
rhizobacteria resulted in higher yield of field crops such as rice, wheat, maize, and 
barley. A recent study describes the effect of Zn-mobilizing PGPR which signifi-
cantly overcome the deficiency symptoms of Zn and also regularly increase the total 
biomass and grain yield (Tariq and Ashraf 2016).

Conventional application of inorganic zinc partially fulfills the plant needs in that 
96–99% of applied Zn is transformed into different insoluble forms based on the 
soil types and physicochemical reactions (Saravanan et al. 2004). Microbes are a 
potential alternative that could cater to plant Zn requirement by solubilizing the 
complex Zn in the soil. Various types of genera of rhizobacteria including Bacillus 
and Pseudomonas are reported to be used for solubilizing zinc. Microbes solubilize 
the metal forms by protons, chelating ligands, and oxidoreductive systems present 
on cell surfaces and membranes (Crane et  al. 1985; Hughes and Poole 1991; 
Wakatsuki 1995). These bacteria also have other beneficial traits for crops like pro-
duction of phytohormones, antibiotics, siderophores, vitamins, antifungal sub-
stances, and hydrogen cyanide (Fig. 8.1) (Rodriguez and Fraga 1999). The results 
of the studies indicated that a Bacillus sp. (Zn-solubilizing bacteria) can be utilized 
as biofertilizer for zinc in soils where native zinc is uplifted or in combination with 
insoluble cheaper zinc compounds like zinc oxide (ZnO), zinc sulfide (ZnS), and 
zinc carbonate (ZnCO3), as an option from costly zinc sulfate (Mahdi et al. 2010a, 
b). Consequent studies on PGPR concluded that several best strains are multitasking 
and PGPR traits are regularly spread among various different species and genera of 
microorganisms, a great number of which are native members of the soil microbial 
community. Broadly, individual strains vary significantly in performance. Native 
PGPR can influence the performance of introduced PGPR inoculants compara-
tively. Accordingly, knowledge and information all about the background of PGPR 
and their function is essential; otherwise, it’s hard to estimate the response to soil 
inoculations with different PGPR. A number of PGPR frequently solubilize nutri-
ents (phosphorus, zinc, iron, silicate, etc.), release auxins which encourage root 
development, and produce siderophores and antibiotics that may reduce root infec-
tion. Over the course of environmental stress, plants release ethylene or hydrogen 
cyanide and reactive oxygen species (ROS) that may be reduced by substances 
(enzymes) secreted by these PGPR in the soil environment.
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8.6  Effect of Zinc-Solubilizing Bacteria for Plant Growth 
Promotion

Zinc, being an essential micronutrient for the growth of plants, human beings, and 
animals, has a vital role in crop nutrition as required for carrying out various enzy-
matic reactions, metabolic processes, and oxidation-reduction reactions smoothly. 
Zinc plays an important role in RNA and DNA synthesis and is a constituent of many 
zinc-containing enzymes critical to cellular growth and differentiation. Deficiency of 
this micronutrient causes malnutrition to more than half of the worldwide popula-
tion, especially in developing countries, due to lack of knowledge and technology. To 
overcome zinc malnutrition, there is an exploitation of soil microorganisms that can 
mobilize unavailable zinc, increase zinc assimilation, and promote plant growth 
(Rana et al. 2012). The use of biofertilizers in combination with chemical fertilizers 
not only improved crop productivity but nutrient efficacy also. A various range of 
bacteria species including Bacillus, Enterobacter, Pseudomonas, Azospirillum, 
Klebsiella, Rhizobium, Azotobacter, and Burkholderia have been shown to promote 
plant growth; and these can be used as biofertilizer and biocontrol agents. 
Zn-mobilizing PGPR inoculants are used as biofertilizers which can accelerate the 
regeneration of degraded land and improve the fertility status of the soil. They also 
enhance the survival and growth rate of plants, maximize grain yield, reduce malnu-
trition rates, and control dependence on chemical fertilizers (Hafeez et  al. 2001). 
Using Zn-SB together with other chemical fertilizers will be a key advantage for the 
formulation of efficient biofertilizers (Zaidi and Mohammad 2006; Gull et al. 2004). 
This is probably the first report on zinc-solubilizing B. aryabhattai strains, isolated 
from the rhizosphere of soil of soybean cultivated in Vertisols of central India. The 
use of zinc-solubilizing bacteria belonging to genera Bacillus has reportedly 
increased plant growth parameters. The effectiveness of zinc-mobilizing PGPR has 
an optimistic impact on the length of the root, root dry matter, root area, volume of 
the root, shoot dry matter, and panicle emergence index. PGPR work with the sym-
biotic association of microbes with plants. He et al. (2010) observed that inoculation 
with zinc-mobilizing bacteria, especially Bacillus genera, maximizes growth param-
eters (Zhao et al. 2011). Similar increment is recorded in zinc acquisition and dry 
matter accumulation, through the inoculation with PGPR (Rana et al. 2012). Practical 
efficient PGPR have been studied, and high-quality sympathetic use of microbial 
interactions is needed in plant growth increment, which will enhance the favorable 
outcome of field application (Usha Rani and Reddy 2012). Table 8.1 shows plant 
growth promotion activities of different crops through various Zn-SB strains.

8.7  Conclusions

It is apparent that the application of chemical fertilizers, pesticides, and agronomic 
practices and development of transgenic plants for the enhancement of Zn content 
in food crops have potential, although these engaged practices have elevated the 
cost, environmental pollution, and various socioeconomic and political issues. 
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Consequently, zinc-solubilizing bacteria must target improvements in zinc nutrient 
deficiency. This approach is promising due to its eco-friendly, economic, and eco-
logical nature. It is important to have a better understanding of the interactions 
between plants and microbes. Zinc-solubilizing bacteria have efficient plant growth- 
promoting properties. The inoculation of efficient Zn-SB strains will be effective for 
plant growth promotion, soil health, and soil fertility for sustainable agriculture.

8.8  Future Remarks

A combination of breeding strategies and zinc fertilizer application is an important 
and complementary approach to alleviate zinc deficiency-related problems in human 
nutrition. It is crucial for people to be aware about the use of the agronomic 

Table 8.1 Inoculation effect of various strains of Zn-SB on crops

Zn solubilizer Crops Enhanced parameters References
Zn-mobilizing PGPR Rice Enhanced the Zn content in the 

grain, total biomass, root area, grain 
yield, root weight, root length, root 
volume, and shoot weight

Tariq et al. 
(2007)

Rhizobium spp. RL9 Lentil Improvement of dry matter, nodule 
number, seed yield, nodule dry 
mass, leghemoglobin, and grain 
protein

Wani et al. 
(2008)

Zn-mobilizing PGPR Wheat Enhanced root volume, root weight, 
root length, root area, and shoot 
weight

Kutman et al. 
2010).

Zn-solubilizing bacterial
Isolates (U, 8 M, 36, 102, 
and 111)

Mung 
bean

Improved shoot length and root 
length, fresh weight, and dry weight 
observed in seedlings

Iqbal et al. 
(2010)

Pseudomonas spp. P17 and 
Bacillus spp. B40

Maize Increased the total dry mass and 
uptake of N, K, Mn, and Zn

Goteti et al. 
(2013)

Bacillus aryabhattai 
strains MDSR7, MDSR11, 
and MDSR14

Soybean 
and wheat

Increased shoot dry weight, plant 
height, root dry weight, and zinc 
assimilation in seeds

Ramesh et al. 
(2014)

Burkholderia
And Acinetobacter

Rice Increased mean dry matter, number 
of panicles, number of grains, grain 
yield, and straw yield and enhanced 
total Zn uptake

Vaid et al. 
(2014)

Serratia liquefaciens FA-2, 
Bacillus thuringiensis 
FA-3, Serratia marcescens 
FA-4

Wheat Improvement of grain yield and Zn 
content of wheat tillers plant−1, 
grains spike−1, grain yield, total 
biomass, and dry straw weight

Abaid-Ullah 
et al. (2015)

Pseudomonas fragi, 
Pantoea dispersa, and 
Pantoea agglomerans

Wheat Increased the plant growth 
promotion and Zn content

Kamran et al. 
(2017)

Bacillus strains Soybean 
and wheat

Modulated growth, yield, and zinc 
biofortification

Khande et al. 
(2017).
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biofortification approach for solving the zinc deficiency problem in developing 
countries or regions since farmers alone cannot afford expensive micronutrient fer-
tilizers. At this condition, the plant breeding approach would become a high-priority 
approach to this problem. Multiple indigenous strain combinations of Zn-SB may 
be more suitable for local crop production and enhanced zinc content in plants. 
Therefore, it can be concluded that beneficial biofertilizers applied in combination 
are a better choice for farmers to reduce the use of chemical fertilizers for sustain-
able crop production. The application of different microbial technologies in agricul-
ture is presently growing very rapidly and popularly with the recognition of novel 
bacterial strains, which are additionally effective in plant growth and yield. 
Multifunctional PGPR such as P, K, and Zn solubilizers prove to be effective biofer-
tilizers. Various new interventions and technologies are needed to ultimately trans-
fer genetically modified soil- and region-specific Zn-SB to the farmers’ fields in a 
relatively short time. There is a search for new efficient strains of Zn-SB as biofertil-
izers for development of microbial diversity for any region. Co-inoculation with 
other synergistically beneficial bacterial strains is being devised, and many recent 
investigations show a promising trend in the field of inoculation technology. Various 
beneficial Zn-SB isolated from plants growing on normal soil are perfectly able to 
promote plant growth under many stresses. Future work is planned to study mix-
tures of the selected efficient Zn-SB strains for biocontrol against multiple plant 
pathogens in bioassays. Genotypic study of the Zn-SB strains and molecular char-
acterization of the plant parts are necessary to easily understand plant mechanisms 
of zinc absorption and its requirement in plants. Furthermore, scientists need to 
address certain issues, like how to synergistically make co-inoculation of phos-
phate, potassium, and zinc solubilizers and improve the biofertilizer efficacy, what 
should be an ideal delivery system, how to stabilize these microbe consortia in soil 
systems, and how nutritional and root exudation aspects could be controlled in order 
to get most benefits from co-inoculation application.
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Abstract
The area around the plant which is under the influence of plant roots, known as 
the rhizosphere, is an attractive habitat for soil microorganisms. However, 
although a variety of root-colonizing bacteria exist, the beneficial bacteria also 
called plant growth-promoting bacteria (PGPR) or rhizobacteria essentially serve 
as bioprotectants against stress conditions. Environmental abiotic stresses such 
as drought, salinity, and metal contamination, as well as biotic stresses from 
opportunistic pathogens, present a major challenge as it reduces the potential 
yields of food production. Rhizobacteria are of immense interest because they 
compete with indigenous bacteria and increase plant resistance against stress 
conditions. These bacteria have a number of traits that contribute to root coloni-
zation such as the presence of specific cell surface components, pili, fimbriae, 
chemotaxis toward plant exudates, ability to use specific components of plant 
exudates, protein secretion property, ability to form biofilms, and quorum sens-
ing. The production of biologically active metabolites and the regulation of ACC 
deaminase are some of the principal mechanisms by which rhizobacteria modify 
the rhizosphere environment thereby enhancing plant growth. This article seeks 
to give an overview of mechanisms in rhizobacteria proposed to enhance stress 
tolerance conditions.
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9.1  Introduction

The ever-increasing rise in world population has made the task of feeding the global 
population extremely difficult. Biotic stresses such as phytopathogens and herbiv-
ory and abiotic stresses such as flooding, drought, heating, freezing, radiations, and 
salinity variations due to global warming and climate change further challenge the 
agriculture industry. Environmental stresses are believed to reduce the potential 
yields by as much as 70% in crop plants and therefore constitute a major problem 
for sustainable food production. According to the current scenario, it has been esti-
mated that food production needs to be increased as much as 50% by 2030. However, 
since food production is sensitive to environmental conditions, alternate strategies 
such as the systematic identification of bacterial strains that can help farmers reduce 
the anticipated adverse impacts of multiple stressors from global warming are 
highly valuable for agricultural production. Although a variety of bacteria exist, the 
root-colonizing nonpathogenic bacteria also called as plant growth-promoting bac-
teria (PGPR) or rhizobacteria hold promise, as they can increase plant resistance to 
biotic and abiotic stress factors, thereby essentially serving as bioprotectants against 
stress conditions. Here, we present an overview of current progress on the use of 
rhizobacteria under stress conditions and the modes of action of these bacteria in the 
mitigation of abiotic stresses.

9.2  Soil as an Ecosystem

The soil is a dynamic living matrix whose complexity is determined by the interplay 
of physical, chemical, and biological components, which is a manifestation of envi-
ronmental conditions prevalent at that time (Buscot 2005). The soil matrix together 
with the physical properties like texture, porosity, and moisture holding capacity and 
chemical properties such as the amount of organic matter in the soil, its pH, and 
redox conditions influences the dynamics of structure and function of the microbial 
communities in soils (Lombard et al. 2011). Soil ecosystem is directly influenced by 
climate changes. Any increase in temperature would result in an increase in the 
microbial activity resulting in an altered microbial community. Another important 
factor which influences microbial community structure is the water content. Turnover 
of organic matter due to microbial activity is directly influenced by the water poten-
tial (Thomsen et al. 1999). Even the rate of respiration in soil depends upon the soil 
moisture content, temperature, and organic matter. Therefore any changes in tem-
perature, salinity, and an increase in metal content due to pollution would result in 
manifesting as a stressful environment for plants. Under stress, there is a reallocation 
of resources from growth pathways in microorganisms to producing protective mol-
ecules, which could also benefit plants. However, ecologically it results in substantial 
amounts of C and N being vulnerable to loss (Schimel et al. 2007).
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9.3  Root Exudates and Microbial Community Structure

Soil having more vegetation harbors a greater microbial population, compared to 
soil devoid of plants. The higher number of bacteria in the rhizosphere (the narrow 
region of soil that is directly influenced by root secretions and associated soil micro-
organisms) and rhizoplane (the external surface of roots together with closely adher-
ing soil particles and debris) is because the rhizosphere region is rich in total organic 
carbon from root exudates and sloughed-off root cells and tissues (Barber and 
Martin 1976). Roots have been estimated to release between 10 and 250 mg C/g or 
about 10–40% of the total photosynthetically fixed carbon (Newman 1985). The 
products released by the roots in the surrounding soil are called rhizodeposits 
(McNear 2013). Rovira (1969) defined rhizodeposits based on their chemical com-
position and mode of release and function to include sloughed-off root cap and 
border cells, mucilage, and exudates. According to Walker et al. (2003), plant roots 
are not passive targets for soil organisms. This is evidenced as soon as a seed starts 
to germinate; the plant roots nurture a tremendous diversity of microbes via exuda-
tion of a wide variety of compounds such as carbohydrates, amino acids and pro-
teins, organic acid anions, phytosiderophores, vitamins, purines, nucleosides, 
phenolics, and mucilage, which serve as chemical attractants and repellents in the 
rhizosphere (Bais et al. 2001; Estabrook and Yoder 1998; Stintzi and Browse 2000; 
Stotz et al. 2000). Del Gallo and Fendrik (1994) and Bell et al. (2013) attributed the 
regulation of soil microbial community to direct conflict and competition between 
the different species for nutrient acquisition and colonization, and differential 
growth patterns of the large population of microorganisms attracted to the exudates 
in the vicinity of the roots. According to Bais et al. (2004), root exudates promote 
beneficial microbial colonization on root surfaces (e.g., Bacillus subtilis, 
Pseudomonas fluorescens). Recently, the root-specific transcription factor MYB72 
which regulates the excretion of the coumarin scopoletin, an iron-mobilizing pheno-
lic compound with selective antimicrobial activity, has been reported by Stringlis 
et al. (2018) to shape the root-associated microbial community.

Dakora and Phillips (2002) explained how in low-nutrient environments, root 
exudates act as mediators of mineral acquisition by releasing extracellular enzymes 
such as acid phosphatases which mobilize phosphorus from organic compounds; as 
also molecules such as phytosiderophores increase iron availability through chela-
tion. Organic acids such as malic and citric acids released into the rhizosphere from 
root exudates have been shown to effectively reduce the rhizosphere pH and solubi-
lize unavailable soil Ca, Fe, and Al phosphates. Similarly, inorganic ions (e.g., 
HCO3

−, OH−, H+) and gaseous molecules (CO2, H2) from root exudates could also 
modify the rhizosphere pH (Dakora and Phillips 2002). The mode of alteration of 
rhizosphere pH is linked to the form of nitrogen available in the soil. Plants respond 
differently when nitrogen in the form of ammonium is present. Since ammonium 
has a positive charge, the plant expels one proton (H+) for every NH4

+ taken up 
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resulting in a reduction in rhizosphere pH; but when nitrogen in the form of NO3
− is 

present, there is an increase in the rhizosphere pH due to the release of bicarbonate 
(HCO3

−). Such alterations in pH can influence the availability of essential micronu-
trients such as Mg, Zn, and Ca for plants (McNear 2013).

Root exudates are also beneficial as chemical signals for the attraction of symbi-
otic partners such as Rhizobia. Peters et al. (1986) reported that flavonoids present 
in the root exudates of legumes were responsible for activating Rhizobium meliloti 
genes that help in nodulation. Where N2 is reduced to ammonia, aldonic acids and 
phenolics exuded by roots of N2-fixing legumes have been reported to serve as sig-
nals to Rhizobiaceae bacteria for the formation of root nodules.

Root exudates also serve as defense mechanisms against pathogenic microorgan-
isms in the rhizosphere. Brigham et al. (1999) and Bais et al. (2002) reported bio-
logically active compounds having antimicrobial activity in the root exudates of 
hairy root cultures, such as naphthoquinones of Lithospermum erythrorhizon and 
rosmarinic acid (RA) of sweet basil (Ocimum basilicum), respectively. Walker et al. 
(2003) and Doornbos et al. (2012) suggested that it is also possible that roots may 
develop defense strategies by secreting compounds into the rhizosphere that inter-
fere with bacterial quorum-sensing responses such as signal blockers, signal mim-
ics, and signal-degrading enzymes. Flores et  al. (1999) attributed the survival of 
delicate unprotected root cells which are continuously under attack by pathogenic 
microorganisms to the secretion of defense proteins, phytoalexins, and other 
unknown chemicals. Thus, the plant may be in a positive or negative association 
with its microbial community, based on factors prevalent in the rhizosphere and the 
symbiotic or defensive role played by root secretions.

9.4  Plant Growth-Promoting Rhizobacteria

Plant growth-promoting rhizobacteria were first defined by Kloepper and Schroth 
(1978) as organisms that, after being inoculated on seeds, could successfully colo-
nize plant roots and positively enhance plant growth (McNear 2013). Plant growth- 
promoting rhizobacteria (PGPR) are nonpathogenic, free-living soil and 
root-inhabiting bacteria that colonize seeds and root tissue (endophytic/epiphytic) 
or enhance production of root thereby promoting plant growth. Root-colonizing 
bacteria establish on or in the root or rhizosphere to multiply, survive, and colonize 
along the growing root in the presence of the indigenous microflora, thereby exert-
ing beneficial traits on plant growth and development. Some examples of rhizo-
sphere bacteria that have been found to have beneficial effects on various plants 
include species of the genera Acinetobacter, Agrobacterium, Azotobacter, 
Arthrobacter, Alcaligenes, Azospirillum, Acetobacter, Actinoplanes, Bacillus, 
Bradyrhizobium, Cellulomonas, Clostridium, Enterobacter, Erwinia, Frankia, 
Flavobacterium, Pasteuria, Pseudomonas, Rhizobium, Serratia, Thiobacillus, 
Xanthomonas, and others (Gray and Smith 2005), as well as Streptomyces spp. 
(Tokala et al. 2002; Dimkpa et al. 2008a, 2009b). To be an effective PGPR, bacteria 
must be able to colonize roots because bacteria need to establish themselves in the 
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rhizosphere at population densities sufficient to produce the beneficial effects. 
However, the beneficial effect of the bacterial strains of a particular genus and spe-
cies is not always the same for all plants and may even be negligible in some plants. 
According to Glick et  al. (1999), the mechanism by which the bacteria promote 
plant growth may be directed by facilitating uptake of nutrients or by supplying a 
particular growth promoting substance synthesized by the bacteria, for example, 
volatile compounds of Bacillus methylotrophicus M4-96 increased shoot biomass 
and chlorophyll content (Pérez-Flores et al. 2017), or indirectly by acting as biocon-
trol agents against phytopathogens. Effective rhizosphere colonization by bacteria 
can be beneficial to plants to control diseases by producing antifungal factors; it can 
bring about phytostimulation by the production of phytohormones, fertilization by 
increasing the availability of nutrients, bioremediation of hazardous chemicals in 
the environment (Dekkers et al. 1999), and assist in mitigating stress.

9.5  Role of Microorganisms in the Rhizosphere

Microbial communities can be considered as architects of soils (Rajendhran and 
Gunasekaran 2008). There is a dynamic interaction between soilborne microorgan-
isms, plant roots, and soil constituents at the root-soil interface. Root exudates and 
decaying plant material provide sources of carbon compounds for the heterotrophic 
biota (Barea et  al. 2005; Bisseling et  al. 2009), while in turn, the probiotic root 
microbiome members such as the rhizobacteria modulate their metabolism to opti-
mize the acquisition of nutrients, protect the host plant against pests and pathogens, 
encourage beneficial symbioses, change the chemical and physical properties of the 
soil, inhibit the growth of competing plant species, and promote plant growth (Nardi 
et al. 2000; Hardoim et al. 2008). For the bacteria to establish themselves in the 
rhizosphere, certain cell surface structures such as pili, fimbriae, and flagella facili-
tate movement, attachment, and colonization on root surfaces (Merritt et al. 2007; 
Fernàndez and Berenguer 2000). Persello-Cartieaux et al. (2003) showed that bacte-
rial flagella possess adhesive properties, but Tokala et al. (2002) observed that rhi-
zobacteria such as Streptomyces spp. that do not possess flagella could still establish 
beneficial interactions with plants via development of hyphae in plant tissues.

Other traits that are useful for bacteria for competitive colonization are the 
O-antigen of lipopolysaccharide, amino acids, and vitamin B1, and root mucilage as 
a source of carbon (Dekkers et al. 1999).

9.6  Mitigation of Stress

Under stress conditions, plants recruit the help of microorganisms to change the 
chemical environment of the rhizosphere and alter the root morphology. They dif-
ferentially recognize pathogenic or beneficial rhizobacteria by detecting diffusible 
substances, such as the quorum-sensing compounds such as N-acyl-L-homoserine 
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lactones, which induces changes in the root secretion profile (Mathesius et al. 2003; 
Ortiz-Castro et al. 2011) and activates plant immunity (Schuhegger et al. 2006).

The presence of EPS from microorganisms has been implicated in symbiosis, 
protection from predation, biofilm formation, and stress conditions. After establish-
ing themselves in the rhizosphere, bacteria form a mutualistic relationship with the 
plant roots. Although the exact mechanisms of plant growth stimulation under stress 
conditions remain largely speculative, it is known that they differ between bacterial 
strains and most certainly depend on the various compounds released by the differ-
ent microorganisms. One of the mechanisms by which they stimulate plant growth 
is by phosphate solubilization. Rhizosphere bacteria from the genera Pseudomonas, 
Bacillus, and Rhizobium are among the most powerful phosphate solubilizers. The 
principal mechanism for mineral phosphate solubilization is the production of 
organic acids, and acid phosphatases play a major role in the mineralization of 
organic phosphorus in the soil. Stress-induced phosphate solubilization by 
Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere was reported by 
Banerjee et al. (2010).

Another mechanism by which rhizobacteria can promote plant growth is by 
nitrogen fixation. Plant growth-promoting rhizobacteria (PGPR) strains Serratia 
liquefaciens and Serratia proteamaculans were reported to increase nodulation, 
nitrogen fixation, and total nitrogen yield in two soybean cultivars in a short season 
area (Dashti et al. 1998). Sharma and Johri (2003) reported that maize seeds inocu-
lated with siderophore-producing pseudomonads were better suited for iron uptake 
under iron-stressed conditions.

Rhizobacteria are known to stimulate plant growth (Patten and Glick 2002; Joo 
et al. 2005; Ryu et al. 2005; Aslantaş et al. 2007; Dimkpa et al. 2009a) via secretion 
of phytohormones – auxins, cytokinins, gibberellins, abscisic acid (ABA), and eth-
ylene (Arkhipova et al. 2007; Dobbelaere et al. 2003; Forchetti et al. 2007; Perrig 
et al. 2007), which act directly or in concert with other bacterial secondary metabo-
lites. In low concentrations auxins, specifically indole acetic acid (IAA), are reported 
to be produced in the plant shoot and transported basipetally to the root tips (Martin 
and Elliott 1984), where they enhance cell elongation, resulting in enhanced root 
growth and the initiation of lateral roots. Promotion of root growth results in a larger 
root surface, and can therefore have positive effects on water acquisition and nutri-
ent uptake. However, when the concentrations of auxin are too high in the root tips, 
they are said to have an inhibitory effect on root growth. When the plant is exposed 
to different types of stress, ethylene synthesis is reported to increase, and it plays a 
key role in stress-related signal transduction pathways (Wang et al. 2002).

Haas and Défago (2005) showed that the production of siderophores confers 
competitive advantages to rhizobacteria, excluding other microorganisms from this 
ecological niche. A pseudobactin siderophore produced by P. putida B10 strain was 
reported by Kloepper et al. (1980) to suppress Fusarium oxysporum in soil deficient 
in iron. Under highly competitive conditions, the ability to acquire iron via sidero-
phores may finally determine the survival of microorganisms competing for differ-
ent carbon sources from rhizodeposition (Crowley 2006).
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9.7  Role of Rhizobacteria in Mitigating Abiotic Stresses

Environmental stress plays a crucial role in productivity, survival, and reproductive 
biology of plants. Plants are subjected to many forms of environmental stress, which 
can be categorized into two broad areas: abiotic (e.g., physical stress due to drought, 
high temperature, chilling and freezing, UV-B radiation, salinity, and heavy metals) 
and biotic stress (e.g., pathogen, herbivores). Plant growth-promoting rhizobacteria 
(PGPR) could play a significant role in the alleviation of stress in plants (Table 9.1).

9.7.1  Water Stress

In order to survive, plants require a certain amount of water. Too much water (flood-
ing stress) may cause cells to swell and burst, whereas too little water (drought 
stress) can cause the plant to dry up. Drought stress results in various physiological 
and biological changes in plants (Rahdari et  al. 2012) because it influences the 
availability and transport of soil nutrients, water being the medium by which nutri-
ents are carried through the roots (Selvakumar et al. 2012). Drought also induces 
free radicals formation such as hydroxyl radicals, hydrogen peroxide, and superox-
ide, which at high concentrations cause damage at various levels of organization 
(Smirnoff 1993). Deterioration of plant cell membrane, lipid peroxidation, and 

Table 9.1 Mitigation of various stresses

Stress Stress
Salinity Drought
  ACC deaminase reducing ethylene 

production
  ACC deaminase reducing ethylene 

production
  Increased P, Ca2+, and K+ uptake   Increased osmolyte production
  Increased water use efficiency   IAA stimulated root growth
  Removal of salt suppression of 

photosynthesis
  Nitric oxide stimulated root growth

  IAA stimulated root growth   Induced changes in root cell wall/cell 
membrane

  Nitric oxide stimulated root growth   EPS production
  Osmolyte production   Synthesis of antioxidative enzymes
  EPS production   Change in transpiration rate
  Synthesis of antioxidative enzymes   Improved nutrient uptake
  Ion homeostasis   Reproductive delay
  Improved nutrient uptake   Improved photosynthetic pigment

  Production of volatile organic compounds
Temperature stress Heavy metal stress
  ACC deaminase reducing ethylene 

production
  ACC deaminase reducing ethylene 

production
  Induced changes in root cell wall/cell 

membrane
  IAA stimulated root growth

  Upregulation of stress genes   Nitric oxide stimulated root growth
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degradation of proteins, lipids, and nucleic acids are some of the effects of oxidative 
stress reported by Hendry (2005), Nair et  al. (2008), and Sgherri et  al. (2000). 
Marulanda et al. (2010) studied the possibility of increasing drought tolerance of 
plants growing in arid or semiarid areas by inoculation of plants with native benefi-
cial microorganisms. Beneficial microorganisms such as Bacillus amyloliquefa-
ciens, Bacillus licheniformis, Bacillus thuringiensis, Paenibacillus favisporus, and 
Bacillus subtilis were found to colonize the rhizosphere of plants and promote 
growth under stress conditions. Heidari and Golpayegani (2012) showed that inocu-
lation with rhizobacteria effectively improved plant growth by increasing antioxi-
dant status especially of glutathione peroxidase and ascorbate peroxidase, and 
photosynthetic pigments in basil (Ocimum basilicum). Another mechanism by 
which rhizobacteria are reported to impart drought tolerance is by producing exo-
polysaccharides (EPS). Bacillus spp. secrete conspicuous amounts of EPS under 
stress conditions (Vardharajula et al. 2010). EPS forms an organo-mineral sheath 
around the cells, favoring increased macroaggregate formation, which helps in the 
survival of plants under drought stress by increasing water stable aggregates and 
root-adhering soil per root tissue (RAS/RT) ratio (Alami et al. 2000). PGPR play a 
significant role in alleviating environmental biotic-abiotic stress conditions by the 
production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. 
Figueiredo et  al. (2008) reported a link between ACC deaminase activity of the 
rhizobacterium Rhizobium tropici and reduction in drought stress in Phaseolus vul-
garis L. Similar instances of enhanced drought tolerance were reported in tomato 
plant due to the PGPR Bacillus cereus AR156 (Chun Juan et  al. 2012) and in 
Arabidopsis thaliana by Paenibacillus polymyxa (Timmusk and Wagner 1999). ACC 
serves as the precursor of the plant hormone ethylene synthesized in plant tissues 
during stressful conditions. PGPR also colonize the rhizosphere/endo-rhizosphere 
of plants and impart drought tolerance by producing volatile compounds (Naznin 
et al. 2012), inducing accumulation of osmolytes, upregulation, or downregulation 
of stress-responsive genes and alteration in root morphology. IAA stimulates stress 
tolerance because of physical and chemical changes in the plant caused by these 
PGPR (Marulanda et al. 2009) (Table 9.2).

9.7.2  Temperature Stress

Freezing stress can affect the amount and rate of uptake of water and nutrients, lead-
ing to cell desiccation, starvation, and death. Intense heat can cause plant cell pro-
tein denaturation or affect cell wall and membrane permeability. Inoculation of 
Pseudomonas sp. strain AKM-P6 and P. putida strain AKM-P7 enhanced the toler-
ance of sorghum and wheat seedlings to high-temperature stress due to the synthesis 
of high-molecular-weight proteins and also improved the levels of cellular metabo-
lites (Ali et al. 2009, 2011). Production of ACC deaminase by rhizobacteria also 
helped the plant to withstand extreme temperatures (Table 9.3).
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Table 9.2 Role of PGPR in ameliorating water stress

Stress 
condition

Rhizobacterial 
inoculant Plant species Mechanisms References

Water 
stress

Acinetobacter sp. 
and Pseudomonas 
sp.

Grapevine Siderophore release and 
solubilization of inorganic 
phosphate compounds, EPS 
production

Rolli et al. 
(2015)

Water 
stress

Citrobacter 
freundii J118

Tomato Increased uptake of nutrients Ullah et al. 
(2016)

Water 
stress

Brevibacillus 
brevis

Cotton Phosphate solubilization, IAA 
production, acetylene reduction, 
and antifungal activity

Nehra et al. 
(2016)

Water 
stress

Pseudomonas 
putida

Arabidopsis 
thaliana

Auxin secretion Shah et al. 
(2017)

Water 
stress

Bacillus 
megaterium 
BOFC15

Arabidopsis 
thaliana

Spermidine secretion (a type of 
polyamine)

Zhou et al. 
(2016)

Water 
stress

Acinetobacter 
pittii JD-14

Alfalfa Improved the relative water 
content; chlorophyll a; 
chlorophyll b; carotenoid 
contents; nitrogen (N), 
phosphorus, and potassium 
contents

Daur et al. 
(2018)

Table 9.3 Role of PGPR in ameliorating temperature stress

Stress 
condition

Rhizobacterial 
inoculant

Plant 
species Mechanisms References

Temperature 
stress

Burkholderia 
phytofirmans strain 
PsJN (Bp PsJN)

Arabidopsis 
thaliana

Differential 
accumulation of 
pigments; cell wall 
strengthening in the 
mesophyll

Su et al. 
(2015)

Temperature 
stress

Burkholderia 
phytofirmans strain 
PsJN

Potato ACC deaminase Bensalim 
et al. (1998)

Temperature 
stress

Bacillus safensis and 
Ochrobactrum 
pseudogrignonense

Wheat Increased redox enzyme 
activity and accumulated 
osmolytes like proline 
and glycine betaine; 
maintained cell viability, 
restored chloroplast 
structure

Sarkar et al. 
(2018a, b)

Temperature 
stress

P. putida Canola ACC deaminase Cheng et al. 
(2007)
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9.7.3  Salinity Stress

High amounts of salt taken up by a plant can lead to cell desiccation, adversely 
affecting biochemical processes. Mahmood et al. (2016) showed that inoculation of 
mung bean with EPS-producing Enterobacter cloacae P6 and Bacillus drentensis 
P16 increased water and nutrient availability to crops due to the formation of biofilm 
on the root surface. Bacterial exopolysaccharide (EPS) produced by plant growth-
promoting rhizobacteria was reported to help mitigate salinity stress by reducing the 
content of sodium available for plant uptake (Upadhyay et al. 2011) while increasing 
the uptake of phosphorus and potassium. Ashraf and McNeilly (2004) explained how 
EPS reduces sodium uptake and transfer to leaves thereby alleviating salt stress. 
Kasotia et al. (2016) proposed that plant-microbe biofilm on the surface of seedlings 
resulted in a lesser flow of sodium to the steel, insulating from NaCl toxicity. 
Enterobacter sp. P23 was shown to promote rice seedling growth under salt stress, 
and this effect was correlated with a decrease in antioxidant enzymes and stress-
induced ethylene production. These bacteria possessed ACC deaminase activity and 
therefore could use ACC as a nitrogen source preventing ethylene production since 
ACC is a precursor of ethylene (Sarkar et al. 2018a, b).

Bacterial IAA is also shown to stimulate (ACC) deaminase activity for degrada-
tion of the ethylene precursor ACC (Glick 2005). Bianco and Defez (2011) also pro-
posed that the toxic effects of salinity could be reduced by modulation of major plant 
hormones such as IAA. Mansour (2000), Hare and Cress (1997), Kavi Kishor et al. 
(2005), and Verbruggen and Hermans (2008) attributed salinity tolerance to the accu-
mulation of nitrogen-containing compounds such as the amino acid proline in plants. 
The activities of the antioxidative enzymes such as catalase (CAT), ascorbate peroxi-
dase (APX), guaiacol peroxidase (POX), glutathione reductase (GR), and superoxide 
dismutase (SOD) increase under salt stress in plants, and a correlation between these 
enzyme levels and salt tolerance has been described (Apel and Hirt 2004). PGPR 
strains producing IAA showed high antioxidant enzyme activity in Medicago plants 
which were found to enhance their protection against salt stress (Bianco and Defez 
2009). Wang et al. (2016) reported that V. paradoxus 5C-2 mitigated salt stress by 
improving water relations, ion homeostasis, and photosynthesis in pea plants. 
Rhizobacteria were also found to increase the water use efficiency in saline environ-
ments and to help alleviate salt suppression of photosynthesis (Table 9.4).

9.7.4  Ultraviolet-B Radiation Stress

UV-B radiation can affect the production of secondary metabolites such as flavo-
noids (Takshak and Agrawal 2014b), tannins, and lignins which act as defense com-
pounds in plants. It is also known to impact metabolism and cause morphogenetic 
defects, such as a reduction in IAA oxidase and the cumulative antioxidative poten-
tial (CAP), protein and chlorophyll content, and various enzymes of the phenylpro-
panoid pathway. Supplementary UV-B has been known to cause an increase in the 
concentrations of reactive oxygen species (ROS) in leaves but a decrease in roots of 
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Table 9.4 Role of PGPR in ameliorating salinity stress

Stress 
condition

Rhizobacterial 
inoculant Plant species Mechanisms References

Salinity Pseudomonas 
fluorescens 
MSP-393

Pea Osmolyte synthesis, alanine 
serine, threonine, aspartic 
acid, glycine, glutamic 
acid; osmoprotectants, 
protein stabilizing

Paul and 
Nair (2008)

Salinity Pseudomonas 
fluorescens 
MSP-393

Rice Protein stabilization and 
alteration of cell envelope 
composition; altered 
expression of proteins, 
periplasmic glucans and 
capsular, exo- and 
lipopolysaccharides

Paul et al. 
(2006)

Salinity Pseudomonas putida 
FBKV2

Maize Production of 
exopolysaccharides; 
enhancing water retention 
and regulating the diffusion 
of carbon sources

Vurukonda 
(2016a, b)

Salinity Dietzia 
natronolimnaea 
STR1

Wheat Modulation of 
transcriptional machinery 
of stress-related antioxidant 
genes

Bharti et al. 
(2016)

Salinity Bacillus megaterium Maize Increased ability of the root 
to absorb water

Marulanda 
et al. (2010)

Salinity Pseudomonas sp. Pistachio Increased protein content, 
antioxidant activity, ACC 
deaminase activity

Azar et al. 
(2016)

Salinity Enterobacter 
cloacae and Bacillus 
drentensis

Mung bean Modified stomatal 
conductance, transpiration 
rate, water relations, and 
synthesis of photosynthetic 
pigments

Mahmood 
et al. (2016)

Salinity P. pseudoalcaligenes 
and Bacillus 
pumilus

Rice Increased concentration of 
glycine betaine-like 
quaternary compounds

Jha et al. 
(2011)

Salinity Enterobacter 
sp.UPMR18

Okra ROS scavenging enzymes Sheikh et al. 
(2016)

Salinity 
stress

Arthrobacter 
protophormiae 
(SA3) and Dietzia 
natronolimnaea 
(STR1)

Wheat Enhance photosynthetic 
efficiency; increase 
indole-3-acetic acid; 
modulating expression of a 
regulatory component 
(CTR1) of the ethylene 
signaling pathway and 
DREB2 transcription factor

Barnawal 
et al. (2017)

(continued)
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Withania somnifera (an indigenous medicinal plant); however, the enzymatic anti-
oxidant activity increases under UV-B treatment (Takshak and Agrawal 2014a). The 
adverse effects of UV-B radiation on growth characteristics of Brassica campestris 
were said to be reduced upon application of IAA at 10−7 M (Lal et al. 2011). However, 
IAA is reported to be susceptible to UV-B-induced damage via direct photodegrada-
tion and enhanced activity of IAA oxidase enzyme (Huang et al. 1997) (Table 9.5).

Table 9.4 (continued)

Stress 
condition

Rhizobacterial 
inoculant Plant species Mechanisms References

Salinity 
stress

Achromobacter 
piechaudii and 
Bacillus subtilis

Tomato 
(Lycopersicon 
esculentum)

Degradation of reactive 
oxygen species

Mayak et al. 
(2004), 
Zhang et al. 
(2008), and 
Yang et al. 
(2009)

Salinity Enterobacter sp. 
(MN17) Bacillus sp. 
(MN54)

Chenopodium 
quinoa

ACC deaminase activity, 
exopolysaccharide 
secretion, and auxin 
production

Yang et al. 
(2016)

Table 9.5 Role of PGPR in ameliorating oxidative stress

Stress 
condition Rhizobacterial inoculant

Plant 
species Mechanisms References

Oxidative 
stress

Azospirillum spp. Maize Phytohormone 
production and induction 
of plant-stress tolerance 
and defense genes

Fukami 
et al. (2017)

Oxidative 
stress

P. agglomerans RSO6 and 
RS07 B. aryabhattai 
RSO25

Spartina 
densiflora

Regulation of 
antioxidant enzyme 
activity

Paredes- 
Páliz et al. 
(2018)

Oxidative 
stress

Rhizobacteria Oryza 
sativa

Enzyme activities related 
to oxidative stress 
induced such as 
ascorbate peroxidase, 
guaiacol peroxidase, 
glutathione reductase, 
superoxide dismutase

García- 
Cristobal 
et al. (2015)

Oxidative 
stress

Burkholderia cepacia 
SE4, Promicromonospora 
sp. SE188, and 
Acinetobacter 
calcoaceticus SE370

Cucumis 
sativus

Reduced activities of 
catalase, peroxidase, 
polyphenol oxidase

Kang et al. 
(2014)
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9.7.5  Heavy Metal Stress

Heavy metals like lead, nickel, cadmium, copper, cobalt, chromium, and mercury 
which are known as environmental pollutants cause toxic effects in plants, thereby 
lessening productivity. They affect the basic physiological and biochemical activi-
ties in plants such as photosynthesis. PGPR is known to precipitate and remove 
toxic metals from the surroundings by mechanisms such as intracellular sequestra-
tion or sorption to cell components. Rizvi and Khan (2018) showed that plant 
growth-promoting Azotobacter chroococcum produced siderophores, ammonia, and 
ACC deaminase under metal pressure and enhanced growth and yield of maize in 
the presence of both Cu and Pb. Also, the melanin extracted from A. chroococcum 
revealed metal chelating ability. Kluyvera ascorbata SUD165, a PGPR resistant to 
the toxic effects of Ni2+, Pb2+, Zn2+, and CrO4−, producing siderophore(s) and dis-
playing ACC deaminase activity, was capable of promoting growth in plants in the 
presence of nickel by its ability to lower the level of stress ethylene induced by the 
nickel (Burd et  al. 1998). Dell’Amico et  al. (2008) also showed that inoculation 
with cadmium-resistant strains Pseudomonas tolaasii and Pseudomonas 

Table 9.6 Role of PGPR in ameliorating heavy metal stress

Stress 
condition

Rhizobacterial 
inoculant Plant species Mechanisms References

Metal 
stress

P. tolaasii Canola 
(Brassica 
napus)

ACC deaminase activity Dell’Amico 
et al. (2008)

Metal 
stress

P. fluorescens Canola 
(Brassica 
napus)

Indole acetic acid (IAA) and 
siderophore production

Dell’Amico 
et al. (2008)

Metal 
stress

Bacillus sp. Rice Superoxide dismutase Asch and 
Padham 
(2005)

Metal 
stress

Kluyvera 
ascorbata

Tomato, 
canola, and 
Indian 
mustard 
seeds

Siderophore production Burd et al. 
(2000)

Metal 
stress

Pseudomonas 
libanensis

Brassica 
oxyrrhina

Production of indole-3-acetic 
acid, siderophore, and ACC 
deaminase

Ma et al. 
(2016)

Metal 
stress

Pseudomonas 
fluorescens

Maize Production of IAA Zerrouk 
et al. (2016)

Metal 
stress

Pseudomonas 
stutzeri A1501

Rice Transcription and translation of 
acdS gene, ACC deaminase

Han et al. 
(2015)

Metal 
stress

P. aeruginosa 
strain OSG41

Chickpea IAA, PO4 solubilization, EPS 
production, siderophores, 
salicylic acid, 
2,3-Dihydroxybenzoic acid, 
HCN, and NH3 production

Oves et al. 
(2013)
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fluorescens enabled Brassica napus to grow under cadmium stress by the produc-
tion of IAA, siderophores, and ACC deaminase. Siderophores also play a key role 
in the regulation of auxin level in plants growing in metal-contaminated sites. 
Metals are known to inhibit auxin synthesis. Dimkpa et al. (2008b) proved that sid-
erophores complexed with toxic metals, thereby decreasing the concentration of 
free metals and attenuating metal inhibition of auxin synthesis (Table 9.6).

9.8  Conclusion

PGPRs have the ability to act as bioprotectants under abiotic stress and can enhance 
plant growth. Because of their rhizoremediating and phytostimulating properties, 
they could be beneficial in replacing chemical fertilizers and supporting eco-friendly 
sustainable food production. Due to their worldwide importance and acceptance, 
PGPR are the future of sustainable agriculture.

Acknowledgments The author is grateful to the Principal of P.E.S’s RSN College for his 
support.

References

Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth 
promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated 
from sunflower roots. Appl Environ Microbiol 66(8):3393–3398

Ali SKZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. 
strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil 
Soils 46:45–55

Ali SKZ, Sandhya V, Grover M, Rao LV, Venkateswarlu B (2011) Effect of inoculation with a ther-
motolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat 
(Triticum spp.) under heat stress. J Plant Interact 6:239–246

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduc-
tion. Ann Rev Plant Biol 55:373–399

Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) 
Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315. 
https://doi.org/10.1007/s11104-007-9233-5

Asch F, Padham JL (2005) Root associated bacteria suppress symptoms of iron toxicity in lowland 
rice. In: Tielkes E, Hülsebusch C, Häuser I, Deininger A, Becker K (eds) The global food & 
product chain – dynamics, innovations, conflicts, strategies. MDD GmbH, Stuttgart, p 276

Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174
Aslantas R, Cakmakci R, Sahin F (2007) Effect of plant growth promoting rhizobacteria on young 

apple tree growth and fruit yield under orchard conditions. Sci Hortic 111:371–377
Azar F, Mozafari V, Dahaji PA, Hamidpour M (2016) Biochemical, physiological and antioxidant 

enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizo-
bacteria and Zn to salinity stress. Acta Physiol Plant 38:21

Bais HP, Loyola Vargas VM, Flores HE, Vivanco JM (2001) Root specific metabolism: the biology 
and biochemistry of underground organs. In Vitro Cell Dev Biol Plant 37:730–741

F. Pereira

https://doi.org/10.1007/s11104-007-9233-5


171

Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial 
activity of rosmarinic acid in hairy root cultures of sweet basil (Ocimum basilicum L.). Plant 
Physiol Biochem 40:983–995

Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the 
underground information superhighway. Trend Plant Sci 9:26–32

Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization 
by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J  Crop Sci 
4(6):378–383

Barber DA, Martin JK (1976) The release of organic substances by cereal roots in soil. New Phytol 
76:69–80

Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. 
J Exp Bot 56:1761–1778

Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth pro-
moting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous 
phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161:502–514. https://
doi.org/10.1111/ppl.12614

Bell TH, Callender KL, Whyte LG, Greer CW (2013) Microbial competition in polar soils: a 
review of an understudied but potentially important control on productivity. Biology 2(2):533–
554. https://doi.org/10.3390/biology2020533

Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and tempera-
ture effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria 
Dietzia natronolimnaea modulates the expression of stress responsive genes providing protec-
tion of wheat from salinity stress. Sci Rep 6:34768

Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an 
indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J  Exp Bot 60(11):3097–
3107. https://doi.org/10.1093/jxb/erp140

Bianco C, Defez R (2011) Soil bacteria support and protect plants against abiotic stresses. In: 
Shanker A (ed) Abiotic stress in plants. IntechOpen, pp 143–170. https://doi.org/10.5772/23310

Bisseling T, Dangl JL, Schulze-Lefert P (2009) Next-generation communication. Science 324:691. 
https://doi.org/10.1126/science.1174404

Brigham LA, Michaels PJ, Flores HE (1999) Cell-specific production and antimicrobial activity of 
naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol 119:417–428

Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel 
toxicity in seedlings. Appl Environ Microbiol 64(10):3663–3668

Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal 
toxicity in plants. Can J Microbiol 46(3):237–245. https://doi.org/10.1139/w99-143

Buscot F (2005) What are soils? In: Buscot F, Varma S (eds) Micro-organisms in soils: roles in 
genesis and functions. Springer, Heidelberg, pp 3–18

Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase 
from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can 
J Microbiol 53(7):912–918

Chun Juan W, Ya Hui G, Chao W, Hong Xia L, Dong Dong N, Yun Peng W, Jian Hua G (2012) 
Enhancement of tomato (Lycopersicon esculentum) tolerance to drought stress by plant-growth- 
promoting rhizobacterium (PGPR) Bacillus cereus AR156. J Agric Biotechnol 20:1097–1105

Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadía J (eds) 
Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198

Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient 
environments. In: Adu-Gyamfi JJ (ed) Food security in nutrient-stressed environments: exploit-
ing plants’ genetic capabilities, Developments in Plant and Soil Sciences, vol 95. Springer, 
Dordrecht, pp 201–213. https://doi.org/10.1007/978-94-017-1570-6_23

Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria acceler-
ate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max 

9 Rhizobacteria as Bioprotectants Against Stress Conditions

https://doi.org/10.1111/ppl.12614
https://doi.org/10.1111/ppl.12614
https://doi.org/10.3390/biology2020533
https://doi.org/10.1093/jxb/erp140
https://doi.org/10.5772/23310
https://doi.org/10.1126/science.1174404
https://doi.org/10.1139/w99-143
https://doi.org/10.1007/978-94-017-1570-6_23


172

(L.) Merr.] under short season conditions. Plant Soil 200(2):205–213. https://doi.org/10.102
3/A:1004358100856

Daur I, Saad MM, Eida AA, Ahmad S, Shah ZH, Ihsan MZ, Muhammad Y, Sohrab SS, Hirt H 
(2018) Boosting Alfalfa (Medicago sativa L.) production with rhizobacteria from various 
plants in Saudi Arabia. Front Microbiol 9:477. https://doi.org/10.3389/fmicb.2018.00477

Dekkers LC, Phoelich CC, Lugtenberg BJJ (1999) Bacterial traits and genes involved in rhizo-
sphere colonization in microbial biosystems: new frontiers proceedings of the 8th international 
symposium on microbial ecology. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Atlantic 
Canada society for microbial ecology, Halifax, Canada

Del Gallo M, Fendrik I (1994) The rhizosphere and Azospirillum. In: Okon Y (ed) Azospirillum/
plant associations. CRC Press, Boca Raton, pp 57–75

Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cad-
mium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40(1):74–84. ISSN: 0038- 
0717. https://doi.org/10.1016/j.soilbio.2007.06.024

Dimkpa CO, Svatoš A, Merten D, Büchel G, Kothe E (2008a) Hydroxamate siderophores pro-
duced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna 
unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008b) Involvement of sid-
erophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. 
Chemosphere 74(1):19–25. https://doi.org/10.1016/j.chemosphere.2008.09.079

Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009a) Metal-induced oxidative stress 
impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol 
Biochem 41:154–162

Dimkpa CO, Weinand T, Asch F (2009b) Plant–rhizobacteria interactions alleviate abiotic stress con-
ditions. Plant Cell Environ 32:1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x

Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in 
the rhizosphere. Crit Rev Plant Sci 22:107–149. https://doi.org/10.1080/713610853

Doornbos RF, Van Loon LC, Peter AHM, Bakker A (2012) Impact of root exudates and plant 
defense signaling on bacterial communities in the rhizosphere. Rev Sustain Dev 32:227–243

Estabrook EM, Yoder JI (1998) Plant–plant communications: rhizosphere signaling between para-
sitic angiosperms and their probes. Plant Physiol 116:1–7

Fernàndez LA, Berenguer J (2000) Secretion and assembly of regular surface structures in Gram- 
negative bacteria. FEMS Microbiol Rev 24:21–44

Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in 
the common bean (Phaseolus vulgaris L.) by co- inoculation with Paenibacillus polymyxa and 
Rhizobium tropici. Appl Soil Ecol 40:182–188

Flores HE, Vivanco JM, Loyola-Vargas VM (1999) “Radicle” biochemistry: the biology of root- 
specific metabolism. Trends Plant Sci 4:220–226

Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in 
sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates 
and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152. https://doi.
org/10.1007/s00253-007-1077-7

Fukami J, Ollero FJ, Megías M, Hungria M (2017) Phytohormones and induction of plant- 
stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasi-
lense cells and metabolites promote maize growth. AMB Exp 7:153. https://doi.org/10.1186/
s13568-017-0453-7

García-Cristobal J, García-Villaraco A, Ramos B, Gutierrez-Mañero J, Lucas JA (2015) Priming 
of pathogenesis related-proteins and enzymes related to oxidative stress by plant growth pro-
moting rhizobacteria on rice plants upon abiotic and biotic stress challenge. J Plant Physiol 
188:72–79. https://doi.org/10.1016/j.jplph.2015.09.011. Epub 2015 Sep 28

Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. 
FEMS Microbiol Lett 251:1–7

F. Pereira

https://doi.org/10.1023/A:1004358100856
https://doi.org/10.1023/A:1004358100856
https://doi.org/10.3389/fmicb.2018.00477
https://doi.org/10.1016/j.soilbio.2007.06.024
https://doi.org/10.1016/j.chemosphere.2008.09.079
https://doi.org/10.1111/j.1365-3040.2009.02028.x
https://doi.org/10.1080/713610853
https://doi.org/10.1007/s00253-007-1077-7
https://doi.org/10.1007/s00253-007-1077-7
https://doi.org/10.1186/s13568-017-0453-7
https://doi.org/10.1186/s13568-017-0453-7
https://doi.org/10.1016/j.jplph.2015.09.011


173

Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used 
by plant growth promoting bacteria. Imperial College Press, London. https://doi.org/10.1142/
p130

Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in 
the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomo-
nads. Nat Rev Microbiol 3:307–319

Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang W, Lin M, Yan Y (2015) 1- aminocyclopropa
ne- 1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in 
the presence of salt or heavy metals. J Microbiol Biotechnol 25:1119–1128

Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their 
proposed role in plant growth. Trends Microbiol 16(10):463–471. https://doi.org/10.1016/j.
tim.2008.07.008

Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in 
plants. Plant Growth Reg 21:79–102

Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth 
promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil 
(Ocimum basilicum L.). J Saudi Soc Agric Sci 11(1):57–61

Hendry GA (2005) Oxygen free radical process and seed longevity. Seed Sci J 3:141–147
Huang S, Dai Q, Peng S, Chavez AQ, Miranda LL, Visperas RM, Vergara BS (1997) Influence of 

supplemental ultraviolet-B on indole acetic acid and calmodulin in the leaves of rice (Oryza 
sativa L). Plant Growth Regul 21:59–64

Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth 
promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against 
saline stress. Acta Physiol Plant 33(3):797–802

Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacte-
ria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 
43:510–515

Kang S, Khan AL, Waqas M, You Y, Kim J, Hamayun M, Lee I (2014) Plant growth-promoting rhi-
zobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones 
and antioxidants in Cucumis sativus. J Plant Interact 9(1):673–682. https://doi.org/10.1080/17
429145.2014.894587

Kasotia A, Varma A, Tuteja N, Choudhary DK (2016) Microbial-mediated amelioration of plants 
under abiotic stress: an emphasis on arid and semiarid climate. In: Plant-microbe interaction: an 
approach to sustainable agriculture, pp 155–163. https://doi.org/10.1007/978-981-10-2854-0_7

Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, 
Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake 
and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr 
Sci 88:424–438

Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: 
Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de 
Pathologie Végétale et de Phytobactériologie. INRA, Angers, pp 879–882

Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism 
explaining disease-suppressive soils. Curr Microbiol 4:317–320

Lal S, Dhingra GK, Sharma S, Pokhriyal P, Das R, Gupta A, Kuriyal S (2011) UV-B irradiance 
induced deleterious effects on the net primary productivity and counteracted by some plant 
growth regulators (PGRs), in Brassica campestris PT-303 (brown sarson). Int J Plant Anim 
Environ Sci 1:202–209

Lombard N, Prestat E, van Elsas JD, Simonet P (2011) Soil-specific limitations for access and 
analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 78(1):31–49. 
https://doi.org/10.1111/j.1574-6941.2011.01140.x

Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of Brassica oxyrrhina with plant 
growth promoting bacteria for the improvement of heavy metal phytoremediation under 
drought conditions. J Hazard Mat 320:36–44

9 Rhizobacteria as Bioprotectants Against Stress Conditions

https://doi.org/10.1142/p130
https://doi.org/10.1142/p130
https://doi.org/10.1016/j.tim.2008.07.008
https://doi.org/10.1016/j.tim.2008.07.008
https://doi.org/10.1080/17429145.2014.894587
https://doi.org/10.1080/17429145.2014.894587
https://doi.org/10.1007/978-981-10-2854-0_7
https://doi.org/10.1111/j.1574-6941.2011.01140.x


174

Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z 
(2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity toler-
ance of mung bean. Front Plant Sci 7:876. https://doi.org/10.3389/fpls.2016.00876

Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. 
Biol Plant 43(4):491–500

Martin HV, Elliott MC (1984) Ontogenetic changes in the transport of indol-3yl-acetic acid into 
maize roots from the shoot and caryopsis. Plant Physiol 74:971–974

Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by 
native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to 
bacterial effectiveness. J Plant Growth Regul 28(2):115–124

Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma 
membrane aquaporins by inoculation with Bacillus megaterium strain in maize (Zea mays L.) 
plants under unstressed and salt-stressed conditions. Planta 232:533–543

Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) 
Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl 
Acad Sci USA 100:1444–1449

Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in 
tomato plants to salt stress. Plant Physiol Biochem 42:565–572. https://doi.org/10.1016/j.
plaphy.2004.05.009

McNear DH Jr (2013) The rhizosphere – roots, soil and everything in between. Nat Educ Knowl 
4(3):1

Merritt PM, Danhorn T, Fuqua C (2007) Motility and chemotaxis in Agrobacterium tumefaciens 
surface attachment and biofilm formation. J Bacteriol 189:8005–8014

Nair A, Abraham TK, Jaya DS (2008) Studies on the changes in lipid peroxidation and antioxi-
dants in drought stress induced in cowpea (Vigna unguiculata L.) varieties. J  Environ Biol 
29:689–691

Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter 
mobilization by root exudates. Chemosphere 5:653–658

Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2012) Analysis of volatile organic com-
pounds emitted by plant growth promoting fungus Phoma sp. GS8- 3 for growth promotion 
effects on tobacco. Microbe Environ 28:42–49

Nehra V, Saharan BS, Choudhary M (2016) Evaluation of Brevibacillus brevis as a potential plant 
growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springer Plus 5:948. 
https://doi.org/10.1186/s40064-016-2584-8

Newman EI (1985) The rhizosphere: carbon sources and microbial populations. In: Fitter AH (ed) 
Ecological interactions in soil. Blackwell Scientific Publications, Oxford, p 107

Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio 
J  (2011) Trans kingdom signaling based on bacterial cyclodipeptides with auxin activity in 
plants. Proc Natl Acad Sci 108(17):7253–7258. https://doi.org/10.1073/pnas.1006740108

Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain 
Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur 
J Soil Biol 56:72–83

Paredes-Páliz K, Rodríguez-Vázquez R, Duarte B, Caviedes MA, Mateos-Naranjo E, Redondo- 
Gómez S, Caçador MI, Rodríguez-Llorente ID, Pajuelo E (2018) Investigating the mechanisms 
underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora 
under metal stress. Plant Biol (Stuttg) 20(3):497–506. https://doi.org/10.1111/plb.12693. Epub 
2018 Mar 6

Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of 
the host plant root system. Appl Environ Microbiol 68(8):3795–3801. https://doi.org/10.1128/
AEM.68.8.3795-3801.2002

Paul D, Nair S (2008) Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) 
with increasing salinity in the coastal agricultural soils. J Basic Microbiol. 48(5):378–84

F. Pereira

https://doi.org/10.3389/fpls.2016.00876
https://doi.org/10.1016/j.plaphy.2004.05.009
https://doi.org/10.1016/j.plaphy.2004.05.009
https://doi.org/10.1186/s40064-016-2584-8
https://doi.org/10.1073/pnas.1006740108
https://doi.org/10.1111/plb.12693
https://doi.org/10.1128/AEM.68.8.3795-3801.2002
https://doi.org/10.1128/AEM.68.8.3795-3801.2002


175

Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, 
Pseudomonas fluorescens MSP-393, subjected to salt shock. World J  Microbiol Biotechnol 
22(4):369–374. https://doi.org/10.1007/s11274-005-9043-y

Pérez-Flores P, Valencia-Cantero E, Altamirano-Hernández J, Pelagio-Flores R, López-Bucio J, 
García-Juárez P, Macías-Rodríguez L (2017) Bacillus methylotrophicus M4-96 isolated from 
maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via 
emission of volatiles. Protoplasma 254(6):2201–2213. https://doi.org/10.1007/s00709-017-
1109-9. Epub 2017 Apr 12

Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) 
Plant-growth-promoting compounds produced by two agronomically important strains of 
Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 
75(5):1143–1150. https://doi.org/10.1007/s00253-007-0909-9

Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular 
plant–rhizobacteria interactions. Plant Cell Environ 26(2):189–199

Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium 
meliloti nodulation genes. Science 233:977–980

Rahdari P, Hosseini SM, Tavakoli S (2012) The studying effect of drought stress on germination, 
proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L.) leaves. 
J Med Plants Res 6(9):1539–1547. https://doi.org/10.5897/JMPR

Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applica-
tions. Biotechnol Adv 26(6):576–590

Rizvi A, Khan MS (2018) Heavy metal induced oxidative damage and root morphology altera-
tions of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing 
Azotobacter chroococcum. Ecotoxicol Environ Saf 157:9–20

Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali 
F, Gerbino R, PierottiCei F, Borin S, Sorlini C, Zocchi G, Daffonchio D (2015) Improved 
plant resistance to drought is promoted by the root-associated microbiome as a water stress- 
dependent trait. Environ Microbiol 17:316–331

Rovira AD (1969) Plant root exudates. Bot Rev 35(1):35–57
Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion 

elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285. https://doi.org/10.1007/
s11104-004-0301-9

Sarkar J, Chakraborty B, Chakraborty U (2018a) Plant growth promoting rhizobacteria protect 
wheat plants against temperature stress through antioxidant signalling and reducing chloroplast 
and membrane injury. J Plant Growth Regul 1–17. https://doi.org/10.1007/s00344-018-9789-8

Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2018b) 
A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling 
growth under salt stress. Res Microbiol 169:20–32

Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implica-
tions for ecosystem function. Ecology 88(6):1386–1394

Schuhegger RM, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, van 
Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance 
in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 
29:909–918

Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of 
abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. 
Springer, Berlin, pp 205–224

Sgherri CLM, Maffei M, Navari-Izzo F (2000) Antioxidative enzymes in wheat subjected to 
increasing water deficit and rewatering. J Plant Physiol 157:273–279

Shah DA, Sen S, Shalini A, Ghosh D, Grover M, Mohapatra S (2017) An auxin secreting 
Pseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance in 
Arabidopsis thaliana. Rhizosphere 3(1):16–19

9 Rhizobacteria as Bioprotectants Against Stress Conditions

https://doi.org/10.1007/s11274-005-9043-y
https://doi.org/10.1007/s00709-017-1109-9
https://doi.org/10.1007/s00709-017-1109-9
https://doi.org/10.1007/s00253-007-0909-9
https://doi.org/10.5897/JMPR
https://doi.org/10.1007/s11104-004-0301-9
https://doi.org/10.1007/s11104-004-0301-9
https://doi.org/10.1007/s00344-018-9789-8


176

Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas 
strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol 
Res 158(3):243–248

Sheikh HH, Hossain K, Halimi MS (2016) Plant growth-promoting rhizobacteria enhance salinity 
stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016: 6284547, 10 
p. https://doi.org/10.1155/2016/6284547

Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desic-
cation. New Phytol 125(1):27–58

Stintzi A, Browse J  (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 
12- oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci 
USA 97:10625–10630

Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, Bauke A, Mitchell-Olds T (2000) 
Induced plant defense responses against chewing insects. Ethylene signaling reduces resis-
tance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol 
124:1007–1018

Stringlis IA, Yu K, Feussner K, Jonge R, Bentum SV, Verk MCV, Berendsen RL, Bakker PAHM, 
Feussner I, Pieterse CMJ (2018) MYB72-dependent coumarin exudation shapes root microbi-
ome assembly to promote plant health. Proc Natl Acad Sci. 201722335. https://doi.org/10.1073/
pnas.1722335115

Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Christophe C, Barka EA, Dhondt-Cordelier 
S, Vaillant-Gaveau N (2015) Burkholderia phytofirmans PsJN reduces impact of freezing 
temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci 6:810. https://doi.
org/10.3389/fpls.2015.00810

Takshak S, Agrawal SB (2014a) Effect of ultraviolet-B radiation on biomass production, lipid 
peroxidation, reactive oxygen species, and antioxidants in Withania somnifera. Biol Plant 
58:328–334

Takshak S, Agrawal SB (2014b) Secondary metabolites and phenylpropanoid pathway enzymes as 
influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indig-
enous medicinal plant. J Photochem Photobiol B 140:332–343

Thomsen IK, Schjønning P, Jensen B, Kristensen K, Christensen BT (1999) Turnover of organic 
matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. 
Geoderma 89(3–4):199–218

Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus poly-
myxa induces changes in Arabidopsis thaliana gene expression: a possible connection between 
biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ 
(2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 
and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171. https://doi.
org/10.1128/AEM.68.5.2161-2171.2002

Ullah U, Ashraf M, Sher MS, Siddiqui AR, Piracha MA, Muhammad S (2016) Growth behavior 
of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant 
growth promoting rhizobacteria. Soil Environ 35(1):65–75

Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth- promoting 
rhizobacteria under salinity condition. Pedosphere 21(2):214–222

Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2010) Drought-tolerant plant growth 
promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under 
drought stress. J Plant Interact 6(1):1–14. https://doi.org/10.1080/17429145.2010.535178

Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 
35:753–759

Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SKZ (2016a) Multifunctional Pseudomonas 
putida strain FBKV2 from arid rhizosphere soil and its growth promotional effects on maize 
under drought stress. Rhizosphere 1:4–13

F. Pereira

https://doi.org/10.1155/2016/6284547
https://doi.org/10.1073/pnas.1722335115
https://doi.org/10.1073/pnas.1722335115
https://doi.org/10.3389/fpls.2015.00810
https://doi.org/10.3389/fpls.2015.00810
https://doi.org/10.1128/AEM.68.5.2161-2171.2002
https://doi.org/10.1128/AEM.68.5.2161-2171.2002
https://doi.org/10.1080/17429145.2010.535178


177

Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SKZ (2016b) Enhancement of drought stress 
tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. 
Plant Physiol 132(1):44–51. https://doi.org/10.1104/pp.102.019661

Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 
14(Suppl):s131–s151. https://doi.org/10.1105/tpc.001768

Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 
1- aminocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea 
plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172. https://doi.
org/10.1071/FP15200

Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. 
Trends Plant Sci 14:1–4

Yang A, Saleem AS, Shahid I, Muhammad A, Muhammad N, Ahmad ZZ, Sven-Erik J  (2016) 
Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct Plant Biol 
43:632–642

Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Muller J, Baluska F (2016) Pseudomonas 
strain isolated from date-palm rhizospheres improves root growth and promotes root formation 
in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119

Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt toler-
ance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 
21:737–744

Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J (2016) Rhizobacterial strain Bacillus mega-
terium BOFC15 induces cellular polyamine changes that improve plant growth and drought 
resistance. Int J Mol Sci 17(6):976. https://doi.org/10.3390/ijms17060976

9 Rhizobacteria as Bioprotectants Against Stress Conditions

https://doi.org/10.1104/pp.102.019661
https://doi.org/10.1105/tpc.001768
https://doi.org/10.1071/FP15200
https://doi.org/10.1071/FP15200
https://doi.org/10.3390/ijms17060976


179© Springer Nature Singapore Pte Ltd. 2019
R. Z. Sayyed et al. (eds.), Plant Growth Promoting Rhizobacteria for Sustainable 
Stress Management, Microorganisms for Sustainability 12, 
https://doi.org/10.1007/978-981-13-6536-2_10

B. Dash 
Department of Agricultural Microbiology, University of Agricultural Sciences (UAS), 
GKVK, Bengaluru, India

Department of Agricultural Microbiology, College of Agriculture, IGKV,  
Raipur, Chhattisgarh, India 

R. Soni (*) 
Department of Agricultural Microbiology, College of Agriculture, IGKV,  
Raipur, Chhattisgarh, India 

R. Goel 
Department of Microbiology, G. B. Pant University of Agriculture and Technology, 
Pantnagar, Uttarakhand, India

10Rhizobacteria for Reducing Heavy Metal 
Stress in Plant and Soil

Biplab Dash, Ravindra Soni, and Reeta Goel

Abstract
The intensity of pollution expansion is increasing day by day of which heavy 
metal pollution has taken the center stage of discussion since the last few decades. 
Heavy metals have direct detrimental effect on our ecosystem in general and on 
the agroecosystem in particular, thereby proving to be hazardous for plants, ani-
mals, and microbes. One of the most common, low-cost, and eco-friendly strate-
gies that can be employed to counter this problem effectively is through 
bioremediation. However among several types of bioremediation, microbial bio-
remediation with the use of rhizobacteria is best suited for alleviating heavy 
metal stresses in the agroecosystem.
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10.1  Introduction

There exists a lot of misperception over the classification and definition of heavy 
metals. Still scientific groups have not reached into any consensus regarding this 
issue. In a report published in the International Union of Pure and Applied Chemistry 
(IUPAC), Duffus (2002) raised questions over the usage of the term “heavy metals” 
and its classifications. Therefore he suggested undertaking a much broader approach 
while classifying heavy metals based on the periodic table. In agreement with his 
views, Appenroth (2010) proposed for considering three groups of elements (transi-
tion elements, rare earth metals, and borderline elements) as heavy metals from the 
periodic table after thoroughly studying their chemical properties.

Keeping all these discussions aside, however, the most commonly followed defi-
nition of heavy metals is “These are the elements with an atomic weight between 
63.5 and 200.6 followed by a specific gravity of more than 5.0” (Srivastava and 
Majumder 2008). In simple terms, we can say that they are heavier than water by 
five times or are having an atomic density >4 g/cm3 (Duruibe et al. 2007; Mahamood 
et al. 2012). They can also be defined as the block of all metals in Groups 3–16 that 
are present in period 4 and above, i.e., periods 5, 6, and 7 (Hawkes 1997). The term 
heavy metals in a broader sense are often used whenever there arises some implica-
tion for toxicity. As heavy metals are present in very minute quantity, i.e., 1 μg kg−1, 
these are often represented as trace elements (Tchounwou et  al. 2012). Some of 
these trace metals are beneficial for plants (Zn, Mn, Fe, Cu, B, and Mo), while oth-
ers are non-beneficial (Se and Co), and the rest (As, Hg, Pb, Cr, Cd, and Ni) are 
toxic (He et al. 2005).

10.1.1  Current Status of Heavy Metal Pollution

Pollution of heavy metals has been seen everywhere across the earth (lithosphere, 
atmosphere, and hydrosphere). It has been escalated to such an extent that it can 
be found even on the most extreme climatic conditions on earth starting from 
Mount Everest (Yeo and Langley-Turnbaugh 2010) to the deep ocean floor 
(Humbatov et  al. 2015) and also underneath the topsoil layer (Wuana and 
Okieimen 2011; Su et al. 2014). Bioaccumulation of these metals can be seen on 
food items like milk (Tunegova et  al. 2016), vegetables (Agrawal et  al. 2007; 
Mishra and Tripathi 2008), fishes (Ebrahimpour et al. 2011; Abarshi et al. 2017), 
and livestock (Rajaganapathy et al. 2011; Okareh and Oladipo 2015). Rampant 
pollution had led to their worldwide distribution across every continent. Be it Asia 
(Rajindiran et al. 2015; Chen et al. 2015; Ghorbani et al. 2015) or Africa (Yabe 
et  al. 2010), their presence can be felt everywhere. Rapid industrialization has 
also escalated their concentration in developed portions of the world like Europe 
(Panagos et al. 2013; Toth et al. 2016), Australia (Hart and Lake 1987), and South 
America (Smolders et al. 2003; Eichler et al. 2015). However, their presence in 
Antarctica seems to be quite surprising as it is so far uninhabited and unexplored 
as compared to the rest of the world (Evans et al. 2000; Santos et al. 2005). These 
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things reflect the true situation of heavy metal pollution, thus a much needed eye-
opener for us to save our ecosystem from further destruction.

Heavy metals are also found above permissible limits in our day-to-day utility 
commodities like food items (Mahaffey et al. 1975), soft drinks (Bingol et al. 2010; 
Godwill et al. 2015), and cosmetics (Borowska and Brzoska 2015). In some of the 
worst affected countries like India and Bangladesh, arsenic (As) is present above 
permissible limits in rice grains (Sinha and Bhattacharyya 2014; Meharg and 
Rahman 2003). Rice being the staple food in these countries leads to direct intake 
of arsenic. Not only in rice but also arsenic in cereals, pulses, vegetables, and forage 
crops has been reported by several researchers (Sharma et al. 2007; Santra et al. 
2013). A regular dietary intake of these arsenic-contaminated food items (Signes 
et al. 2008) is a direct threat to one’s life. Therefore, different regulatory agencies 
like the World Health Organization (WHO), European Food Safety Authority 
(EFSA), and Agency for Toxic Substances and Disease Registry (ATSDR) have 
prescribed the maximum intake capacity of heavy metals as mentioned in Table 10.1.

Arsenic among all these heavy metals is ranked among the top ten hazardous 
chemicals by WHO. Besides this, it is also ranked number 1 by ATSDR (2017) 
on its substance priority list followed by lead and mercury. Lead till now is 
probably the most well-studied occupational toxin causing about 0.6% of all 
diseases worldwide (Gidlow 2004). More than 120 million people worldwide 
come under the threat lead toxicity with developing nations being the most 
affected (Venkatesh 2009).

The direct impact of heavy metal contamination is seen in soil and groundwa-
ter. The European Commission’s report on soil contamination and their impact on 
human health stated that heavy metals are the most frequently occurring contami-
nants on soil (35%) and groundwater (31%). Soils (around 33%) all over the 
world are facing serious heavy metal contamination problem (Roslan et al. 2016). 
Say for China, around 19.40% of Chinese farmland is facing heavy metal 

Table 10.1 Permissible limits of different heavy metals set by EFSA (European Food Safety 
Authority), WHO (World Health Organization), and ATSDR (Agency for Toxic Substances and 
Disease Registry)

Metals EFSA (2006) WHO-FAO (1995) ATSDR (2018)
Ni 2.8 μg/kg of body weight 

(TDI)
<100 μg/day 0.0002 mg/m3

Hg 1.3 μg/kg of body weight 
(TWI)

5 μg/kg of body weight per week 0.0002 mg/m3

Cr 0.3 mg/kg of body weight 
(TDI)

33 μg/day 0.005 mg/kg/
day

Cd 2.5 μg/kg of body weight 
(TWI)

7 μg of cadmium/kg of body weight 
per week

0.0005 mg/kg/
day

As <15 μg/kg of body weight 
(TWI)

<200 μg/day 0.005 mg/kg/
day

Pb <25 μg/kg of body weight 
(TWI)

25 μg/kg of body weight per week for 
adults

TDI tolerable daily intake, TWI tolerable weekly intake
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pollution (Zhang et al. 2015). Due to soil pollution, a loss of more than 10 billion 
US dollars is being incurred from over 10 million polluted sites out of which 50% 
contaminants happen to be heavy metals (He et al. 2015). Agricultural pesticides 
are one of the main sources of arsenic contamination in soil. A total of around 
80–90% arsenic produced annually finds its way into soil through these chemicals 
(Nriagu and Pacyna 1988). Hutton and Symon (1986) reported that annually 
1637 tons of lead and 111 tons of arsenic are being deposited into the arable soils 
of the United Kingdom through anthropogenic sources.

Atmospheric pollution of heavy metals after soil is the next biggest concern for 
researchers. About 30% of mercury per  annum is released from anthropogenic 
sources into the atmosphere of which 50% comes from Asia alone (UNEP 2013). 
Excessive release of mercury into the air transports them to North America by wind, 
accounting for 5–36% of mercury deposition in the United States (Jaffe et al. 2005). 
Due to its long-range transport ability, even the Arctic region is also polluted from 
mercury contamination (Ilyin et al. 2004). Other than mercury, cadmium also con-
tributes significantly to atmospheric heavy metal pollution. It has been reported that 
Spain and France equally contribute (i.e., 16%) for cadmium emission in Europe’s 
air (Dinis and Fiuza 2011). In recent times, Indian cities also show the presence of 
heavy metals in their atmosphere, often exceeding the maximum permissible limits 
(Chaudhari et al. 2012; Dey et al. 2014).

Groundwater heavy metal contamination is also an equally important global con-
cern like soil and air heavy metal pollution. Among all heavy metals, arsenic con-
tamination in groundwater is most noticed with South Asian countries like 
Bangladesh and India being worst affected (Ravenscroft et al. 2005; Pal et al. 2009). 
All over the world, nearly 130 million people come under the threat of arsenic con-
tamination by drinking As-contaminated water, which is often above the prescribed 
limit (10  ppb) set by WHO (UNICEF 2008). Majority of these populations are 
inhabitants of two countries, i.e., Bangladesh (35–77 million) and India (12 million 
from the state of West Bengal alone), making them globally the worst hit countries 
(Smith et al. 2000; Ravenscroft et al. 2009). In India there are seven major states 
(West Bengal, Assam, Uttar Pradesh, Chhattisgarh, Bihar, Jharkhand, and Manipur) 
which find arsenic contamination in their groundwater (Chakraborti et al. 2017). 
The regulatory limits of heavy metals in drinking water prescribed by different 
agencies have been stated in Table 10.2.

10.1.2  Sources of Heavy Metal Pollution

Heavy metal contamination in the environment occurs through natural and anthro-
pogenic means (Chen et al. 2009; INSA 2011). Heavy metals are nondegradable, 
due to which they are persistent in our environment and in the course of time get 
released into the soil, water, and air (Zaharescu et al. 2009; Aksu 2015; Van et al. 
2016; Drira et al. 2017). During weathering and soil formation processes, they are 
released from rocks (metamorphic, sedimentary, and magmatic rocks) and minerals 
(oxides, hydroxides, and clay minerals) into the environment (Brad 2005). The fate 
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of these metals on soil is governed by the type of parent materials and physiochemi-
cal properties of soil (Abdelilah et al. 2010; Roozbahani et al. 2015). Natural phe-
nomena like volcanic eruptions, forest fires, and soil erosions play a major role in 
their distribution (Bielicka et al. 2005; Akpor et al. 2014). In aquatic systems, sedi-
ments are the chief storehouse of heavy metals, governing their overall distribution 
and transformation processes in water bodies (Wu et al. 2014). The level of heavy 
metals is often well regulated and rarely crosses their limits in natural 
environment.

However in contrast to natural sources, anthropogenic sources are more respon-
sible for elevation of heavy metal concentration in natural environment (Xu et al. 
2014). Human-driven activities like mining, intensive agricultural practices, and 
road constructions driven by urbanization and industrialization act as the perfect 
catalyst for their release into natural environment (Imperato et al. 2003; Liao et al. 
2018). Intensive agricultural practices like excessive usage of pesticides and fertil-
izers coupled with sewage water for irrigation have led to the accumulation of heavy 
metals in cultivated soils (Sidhu 2016). Furthermore, runoff water passing through 
highways during rainfall contains heavy metals (Turer et al. 2001). Besides these, 
polyvinyl chloride (PVC) products, chargeable batteries, brake linings, tires, color 
pigments, furnace dusts, etc. are some other potential sources of heavy metals (Oves 
et al. 2016). Comprehensive descriptions for anthropogenic sources of heavy metals 
are listed in Table 10.3.

10.2  Effects of Heavy Metals on Life Forms

Due to their persistent nature, heavy metals accumulate in our body resulting in 
several health issues (Sharma et al. 2007; Garg et al. 2014). Heavy metals enter our 
body through food, air, and water. However the chief entry route of heavy metals 
into our body is through food (Darwish et  al. 2015; Yadav et  al. 2017). Regular 
intake of heavy metal-contaminated food can retard growth and weaken our immune 
system (Singh and Kalamdhad 2011). Alongside food, they can also make entry 
through the skin and air (Liang et  al. 2017). Entry of these metals through food 
chain causes their bioaccumulation and paves the path for several cardiovascular, 

Table 10.2 Minimum prescribed limits for heavy metals in drinking water set by different regula-
tory agencies

Heavy metals BIS (2012) in mgL−1 WHO (2017) in mgL−1 EPA (2001) in mgL−1

Selenium 0.01 0.04 0.01
Cadmium 0.003 0.003 0.005
Lead 0.01 0.01 0.05
Mercury 0.001 0.006 0.001
Nickel 0.02 0.07
Arsenic 0.01 0.01 0.05
Chromium 0.05 0.05 0.05
Antimony – 0.02 5
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nervous, kidney, and bone diseases (Rani and Goel 2009; Ji-yun et al. 2016). Health 
issues occurring due to heavy metals are enlisted in Table 10.4.

The term heavy metal is often used in context of toxicity, but it should be noted 
that not all heavy metals (like Mn, Cu, Zn, Fe, etc.) are harmful (Flora et al. 2008). 

Table 10.3 Different heavy metals and their anthropogenic sources

Heavy 
metals Anthropogenic sources References
Arsenic 
(As)

Herbicides, pesticides, inorganic fertilizers, coal and 
petroleum combustion, nonferrous metal smelting, 
mining, poultry litter, sewage sludge, fly ash, wood 
preservatives, desiccants, feed additives, 
pharmaceutical industries, glass industry, pigments, 
cigarettes, semiconductor manufacturing, cotton 
ginning

Bellows (2005), Hamzah 
et al. (2013), 
Arunakumara et al. 
(2013), Chung et al. 
(2014), ATSDR (2007a, 
b), and Rice et al. (2002)

Cadmium 
(Cd)

Cigarettes, fertilizers, polymer industry, varnished 
industry, coatings, pigments and coloring agents, 
stabilizers, electronic waste (e-waste), batteries, 
phosphate fertilizers, smelting and refining of 
nonferrous metals, fossil fuel combustion, liming 
agents, manures, sewage sludge

Hutton (1983), Sugita 
et al. (2001), Piade et al. 
(2015), and Rosemary 
et al. (2014)

Chromium 
(Cr)

Paints and pigments, leather industry, stainless steel 
and iron production, textile industry, porcelain and 
ceramics manufacturing, chrome alloy production 
and electroplating, wood preservatives, coal and oil 
combustion, chemical industry

Saha et al. (2011), 
ATSDR (2012a, b), and 
Chung et al. (2014)

Lead (Pb) Battery, pigments, plastics, rubber industry, smelting 
plants, ceramics, petrol, gasoline, solid waste 
combustion, cigarettes

Zeitoun and Mehana 
(2014), Ashraf (2011), 
and Mielke et al. (2001)

Mercury 
(Hg)

Coal burning, chlor-alkali plants, cement production, 
nonferrous smelting, waste incineration, refining, 
gold mining, chemical industry, pharmaceutical 
industries, fungicides, fluorescent and ultraviolet 
lamps

Rodrigues et al. (2006) 
and Naja and Volesky 
(2009)

Nickel 
(Ni)

Mining and smelting, ferrous and nonferrous metals 
production, battery, chemical industry, electroplating, 
petroleum processing, cement manufacturing, 
sewage sludge incineration, coal and oil combustion, 
nickel matte refining, steel production, nickel alloy 
production, vehicle emissions, fertilizer and organic 
manures, cement production, disinfectants 
manufacture

ATSDR (2005a, b)

Selenium 
(Se)

Coal and oil combustion, glass industry, 
semiconductor manufacturing, paint industry, mining 
and smelting, ceramics, refining, sewage sludge, 
photo cells, vulcanization of rubber, pharmaceutical 
industries, insecticides, herbicides, lubricants, 
xerography (photocopiers), animal feed additives, 
manufacture of inorganic pigments, phosphate 
fertilizers

ATSDR (2003)
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Table 10.4 Impact of various heavy metals on human health

Heavy 
metals Impact on human health References
Arsenic Arsenicosis (chronic arsenic toxicity), 

arteriosclerosis, laryngitis, respiratory diseases, 
nausea, vomiting, proteinuria, diarrhea, abdominal 
pain, anorexia, weight loss, pigmentation, neuritis, 
skin lesions, keratosis, melanosis, dermatosis, 
hypertension, bronchitis, oliguria, renal failure, 
affects heme biosynthesis, Anemia, leucopenia, 
low IQ in children, cancer (lungs, skin, kidney, 
bladder, liver, colon and nasal cancer), 
gastroenteritis, diabetes, neurobehavioral changes 
and abnormalities, peripheral neuropathy, increases 
fetal mortality rate, polyneuropathies, 
hallucinations, increases stillbirth, weakness and 
fatigue, edema, Bowen’s disease

ATSDR (2007a, b), Singh 
et al. (2007), Hughes et al. 
(2011), Mazumder (2008), 
Pierce et al. (2010), 
Tchounwou et al. (2003), 
Silva et al. (2005), Florea 
and Busselberg (2006), and 
Rossman (2003)

Nickel Severe lung damage, giddiness, headache, diarrhea, 
hematuria, allergic dermatitis, emphysema, nausea, 
pulmonary fibrosis, vomiting, vertigo, kidney 
problems, mucosal irritation, tachycardia, 
abdominal pain, muscular pain, asthma, bronchitis, 
dyspnea , cyanosis, cancer (lungs, nasal cavity, 
kidney, prostate, bone and laryngeal cancer)

ATSDR (2005a, b), 
Al-Fartusie and Mohssan 
(2017), and Das et al. 
(2008)

Cadmium Hypertension, osteoporosis and osteomalacia, 
emphysema, testicular atrophy, muscular 
weakness, bronchiolitis, renal failure, olfactory 
dysfunction, increases fetal mortality, abdominal 
cramps, anosmia, memory loss, lymphocytosis, 
eosinophilia, nausea, vomiting, itai-itai disease, 
glucosuria, proteinuria, myocardial infarction, 
chronic rhinitis, cancer (kidney, lung, pancreas, 
urinary bladder, endometrium, breast, and prostate 
cancer)

ATSDR (2012a, b), 
Ayangbenro and Babalola 
(2017), Sharma et al. 
(2014), Notarachille et al. 
(2014), Singh and 
Kalamdhad (2011), and Wu 
et al. (2016a, b)

Lead Headaches, hypertension, vomiting, nausea, 
depression, anxiety, reduced fertility and 
miscarriages, renal failure, hallucinations, Anemia, 
abdominal pain, gastrointestinal problems, high 
blood pressure, encephalopathy, hemoglobinuria, 
loss of appetite, loss of memory, intellectual 
disorders, behavioral problems, diarrhea, low IQ in 
children, constipation, lethargy, impairment of 
neurological development (ataxia), growth and 
mental retardation, cancer (lung, brain, kidney, and 
stomach cancer)

ATSDR (2007a, b), Sharp 
and Brabander (2017), 
Mamtani et al. (2011), Jan 
et al. (2015), Lee et al. 
(2018), Rousseau et al. 
(2007), Qu et al. (2018), 
and Patocka and Kuca 
(2016)

(continued)
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Some of these heavy metals are part of several metabolic pathways, while the rest 
are toxic to our body (Mahurpawar 2015; Al-Fartusie and Mohssan 2017). 
Chromium, for instance, has dual functions in our body. In its low concentration, 
it is used in a number of metabolic processes (like fat and protein metabolism), 
while excess exposure causes several respiratory diseases (Sathawara et al. 2004). 

Table 10.4 (continued)

Heavy 
metals Impact on human health References
Mercury Prenatal toxicity and damage, impaired sexual 

functions, proteinuria, edema, dermatitis, 
pneumonitis, gingivitis, insomnia, respiratory 
failure, deafness, mental retardation, blindness, 
dysarthria, cough, dyspnea, mercurial erythrism, 
insomnia, weight loss, renal tubular dysfunction 
and kidney failure, neuropsychiatry disorders, 
infertility, miscarriage, neuropsychiatry disorders, 
memory loss

ATSDR (1999), Clarkson 
(1992), Maqbool et al. 
(2017), Golding et al. 
(2013), and Eqani et al. 
(2016)

Chromium Irritation to the nasal cavity, asthma and cough, 
dermatitis, epistaxis, pneumoconiosis, 
gastrointestinal problems, kidney and liver 
problems, hypochromic anemia, decrease in sperm 
count, hyperplasia, postnatal hemorrhage, 
abdominal pain, bloody diarrhea, cancer (lung and 
nasal cavity), renal failure, skin ulcers

ATSDR (2012a, b), Jomova 
and Valko (2011), and Ding 
and Shi (2002)

Selenium Nausea, vomiting, tachycardia, diarrhea, selenosis 
(high level of se in blood), fatigue, hair loss, 
irritability, dermal and neurological effects

ATSDR (2003) and Fraga 
(2005)

Thallium Hair loss (alopecia), vomiting, diarrhea, 
constipation, palmar erythema, anorexia, blindness, 
affects menstrual cycle, high blood pressure, joint 
pain, tachycardia, polyneuropathy, muscle 
weakness, disturbance in vision, paraesthesia, 
psychosis, depression, behavioral abnormalities, 
gastroenteritis, may cause death also. Affects 
respiratory, gastrointestinal, cardiovascular and 
male reproductive system

ATSDR (1992), Achparaki 
and Thessalonikeos (2012), 
Peter and Viraraghavan 
(2005), Cvjetko et al. 
(2010), Xiao et al. (2012), 
and Li et al. (2015)

Copper Nausea, vomiting, diarrhea, severe headache, 
abdominal pain, hair loss, anemia, male infertility, 
coughing, sneezing, insomnia, convulsion, arthritis, 
attention deficit disorder, pulmonary fibrosis, 
jaundice, autism, prostatitis, renal failure, 
gastrointestinal problems, hypotension, bronze 
diabetes, liver damage

ATSDR (2004) and Ashish 
et al. (2013)

Zinc Nausea, vomiting, respiratory disorder, diarrhea, 
coughing, abdominal pain, anemia, leukopenia, 
dyspnea, renal failure, gastroenteritis, 
conjunctivitis, skin damage (blisters and ulcers), 
hypertension, acute pneumonitis, pulmonary 
fibrosis, constipation, headache, insomnia, 
pharyngitis

ATSDR (2005a, b) and 
Plum et al. (2010)
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In a similar way, copper is used for iron absorption and signaling. However when 
present in excess amount, it causes liver and kidney dysfunctions (Ashish et al. 
2013). More often than not, we consider Zn (Zinc) as an essential element as it is 
part of numerous proteins and metalloenzymes. It is observed that excessive 
amount of Zn in our body may result in nausea and vomiting while its deficiency 
leads to neural disorders (Plum et al. 2010). Heavy metals are mutagenic and car-
cinogenic in nature (Silva et  al. 2005; Fernandez-Luqueno et  al. 2013). Heavy 
metal contamination causes a wide range of health issues related to developmen-
tal, gastrointestinal, dermal, respiratory, cardiovascular, immunological, and 
reproductive systems (Liu et al. 2013).

Heavy metals lead to oxidative stress, and to neutralize this effect, the cell pro-
duces antioxidants (catalase and superoxide dismutase) in its response. This balance 
is always maintained in our body, and any imbalances lead to altered gene expres-
sion, activation of signaling pathways, and production of cytokines (Salnikow et al. 
2000; Leonard et al. 2004). Activation of metal-induced signaling pathways affects 
several signaling components (G-proteins, MAP kinases, tyrosine kinases, growth 
factor receptors, and nuclear transcription factors), thereby disrupting the normal 
functioning of the cell (Harris and Shi 2003; Flora et al. 2008). Researchers have 
also reported that heavy metal stresses induce apoptosis in cells (Wang and Shi 
2001). Heavy metals cause cancer and are thus labeled as carcinogens (Galaris and 
Evangelou 2002). These metals damage DNA and cause mutation which leads to 
cancer (Durham and Snow 2006; Jadoon and Malik 2017), with lung and skin can-
cers being the most common among them (Harris and Shi 2003). However they also 
cause several other cancers like liver, kidney, bladder, prostate, lymphoma, leuke-
mia, and breast (Pourahmad et al. 2003). The central nervous system (CNS) and 
hematopoietic system are also affected by the presence of these metals (Florea and 
Busselberg 2006). It has been reported that these metals are related to a wide range 
of neurological diseases like Wilson’s disease (Cu), Parkinson’s disease (Fe, Mn, 
and Cu), Alzheimer’s disease (Cd), Hallervorden-Spatz disease (Fe), multiple scle-
rosis, polycythemia, Minamata disease (Hg), muscular dystrophy, sideroblastic ane-
mia, itai-itai disease (Cd), and blackfoot disease (As), among others (Montgomery 
1995; Khan et al. 2013; Jaishankar et al. 2014; Draszawka-Bolzan 2014; Min and 
Min 2016). Metal toxins alter the functioning of neurotransmitters like catechol-
amines and bring about behavioral changes in humans (Shukla and Singhal 1984; 
Inoue 2013). Premature aging can occur due to heavy metal toxicity, thus paving the 
path for occurrence of numerous diseases (Mudgal et al. 2010).

Like humans, plants too uptake heavy metals, and their entry points are root and 
leaves. They get deposited in the cell wall, plasma membrane, or cytoplasm after 
traveling through xylem by means of apoplastic and symplastic pathways (Shahid 
et al. 2015; Clemens and Ma 2016). Uptake of heavy metal by plants is greatly influ-
enced by the type of plant species and the defense mechanisms followed by them to 
overcome its toxicity (Alves et al. 2016). In agriculture, there are a lot of crop plants 
which show phytotoxicity to these metals (Forster 1954; Benzarti et al. 2008). The 
attributes that are hampered by heavy metal toxicity are seed germination, yield, 
nutrient uptake, and nitrogen fixation (Athar and Ahmad 2002; Guala et al. 2010; 
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Sethy and Ghosh 2013). It has been observed that sometimes heavy metals besides 
competing with each other also try to compete with several other essential elements 
for their uptake, both at the cellular level and in the soil system (Krupa et al. 2002; 
Israr et al. 2011). For example, a certain concentration of As (arsenic) helps in the 
uptake of Mn, Cu, Fe, and P; however with its further increase in concentration, 
uptake of these metals decreases (Farnese et al. 2014).

There is significant reduction in the photosynthetic rate of plants due to heavy 
metal toxicity. This is due to the fact that these metals affect the enzymes of photo-
system I and II which causes lower biomass production (Oves et  al. 2016). 
Physiological and biochemical activities of plants like respiration, translocation, 
transcription, translation, mineral metabolisms, cell signaling, and cell cycle along 
with some developmental processes like flowering and embryogenesis are also 
affected (Ovecka and Takac 2014). Due to the presence of abiotic stresses (i.e., from 
heavy metals), lower root and shoot growth is observed in several crop plants which 
can be correlated with decrease in chlorophyll and protein content in these plants 
(Manios et al. 2002; John et al. 2009). Furthermore, heavy metal toxicity is depen-
dent on plant growth stages (Cheng 2003; Peralta-Video et al. 2004).

Like humans, plants also produce reactive oxygen species (ROS) like H2O2, 
OH−, 1O2, and O2

− and reactive nitrogen species (RNS) like nitric oxide and per-
oxynitrite ONOO− and free radicals in response to oxidative stress caused by heavy 
metals (Zengin and Munzuroglu 2005; Moller et al. 2007). Oxidative stress results 
in cellular toxicity and leads to oxidative degradation of biomolecules like carbohy-
drates, proteins, lipids, and nucleic acids (Aras et al. 2012). Arsenic toxicity dis-
plays a variety of symptoms in plant like leaf defoliation, chlorosis, necrosis, 
reduced fertility, stunted growth, and senescence and under severe condition may 
also cause death (Gulz et al. 2005; Abbas et al. 2018). Phosphate metabolism in 
plants gets affected by arsenic as arsenate mimics phosphate ion and can get substi-
tuted in its place (Kaur et al. 2011). Besides this, magnesium ion in chlorophyll 
molecule may also be substituted by other heavy metals (Zurek et  al. 2014). 
Likewise, cadmium also interferes with several plant processes like photosynthesis, 
transpiration, mineral nutrition (N, K, Ca, Mg, P, and Fe), stomatal opening, and 
antioxidant metabolism (Benavides et al. 2005; Nazar et al. 2012). Nickel plays an 
essential role in nitrogen metabolism and seed germination. However, Ni toxicity 
results in chlorosis and yellowing of leaves which finally affect the normal function-
ing of plant (Selvaraj 2018). In some cases, it is interesting to see that two heavy 
metals have additive effects on their toxicity in plants. For instance, in barley plant, 
it has been observed that the combined effect of copper and cadmium resulted in 
lower root and shoot growth (Zaltauskaite and Sliumpaite 2013).

10.3  Heavy Metals and Microorganisms

Microorganisms also are subjected to heavy metal stress like any other life forms. 
Microbes (diatoms and microalgae) are often used for heavy metal pollution assess-
ment and act as bioindicators (Sbihi et al. 2012; Djukic and Mandic 2018). Microbes 
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are very sensitive to heavy metals and exhibit this sensitivity even at species and 
strain level (Giller et al. 1998). Microbes from different habitats and groups exhibit 
varied level of heavy metal tolerance (Sadler and Trudinger 1967). Generally, fungi 
are said to be more tolerant than bacteria to these metals (Rajapaksha et al. 2004).

Soil when exposed with heavy metals for a prolonged period of time resulted in 
decreased microbial biomass and reduced microbial diversity and activity with fur-
ther change in their genetic composition (Chen et al. 2014; Kuzniar et al. 2018). 
These metals also considerably influence the bacterial community structure as 
revealed from metagenomic studies (Yao et al. 2017). These metals enhance micro-
bial growth in its lower concentration while when present in excess quantity are 
harmful for the cell by affecting its membrane integrity, destroying its cellular 
organelles, and damaging its genetic materials (Sengor et al. 2009). Furthermore, an 
increase in lag time brings about reduction in growth of microbial cells (Gikas et al. 
2009). Physiological activities like respiration and metabolism are affected due to 
heavy metals resulting in lower production of soil enzymes (Xie et  al. 2016). 
Further, reproduction of several fungal species also gets influenced by the presence 
of these metals. Baldrian (2003) reported that the reproductive stages of saprophytic 
and mycorrhizal fungus were more affected as compared to their vegetative stages.

Microbes growing in the presence of heavy metals show certain morphological 
changes like transformation from one form to another. Certain bacteria change their 
shape from rod to spherical in copper’s presence (Sadler and Trudinger 1967). 
Similar findings have been reported in fungi where heavy metal induces certain 
morphological changes in fungal hyphae (Ali 2007). Soil-inhabiting fungus is also 
affected from these metals. Fungi play an important role in biodegradation process 
and biogeochemical cycles while influenced by the presence of heavy metals 
(Hartikainen et al. 2012; Khan et al. 2013). Nitrification, which is a crucial step in 
nitrogen cycle, is significantly inhibited by the presence of these metals (Park and 
Ely 2008; Hamsa et al. 2017). Microorganisms have the ability of uptaking heavy 
metals through certain metabolic or physiochemical pathways known as microbial 
biosorption. This metal uptake rate depends upon a wide array of factors like physi-
ological state of cell, nature of growth medium, and type of microbes growing 
(Vijayadeep and Sastry 2014). By effectively utilizing this property, microbes can 
serve as a tool for alleviating heavy metal stress from the environment (Yamaji et al. 
2016).

10.3.1  Bioremediation of Heavy Metal by Rhizobacteria

Soil pollutants can be extracted from the soil by employing several bioremediation 
techniques. Plant growth-promoting rhizobacteria (PGPR) are one of the better 
prospects for bioremediation of heavy metals in the rhizosphere. Rhizobacteria in 
combination with plants are more fruitful and provide better efficiency for bioreme-
diation of heavy metals (Whiting et al. 2001). Upon exposure to heavy metal stress, 
rhizobacteria alter plant metabolism, due to which plants are able to withstand high 
concentrations of metals (Welbaum et  al. 2004). The use of rhizobacteria in 
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phytoremediation has therefore recently gained some momentum (de Souza et al. 
1999). The symbiotic effectiveness of bacteria-plant system for the restoration of 
polluted soil from chromium and cadmium contamination was studied by Sobariu 
et al. (2017) where they utilized rhizospheric Azotobacter bacteria and Lepidium 
sativum plant for completing this task. They observed that the ability of heavy metal 
tolerance by plant improved under symbiotic condition. Furthermore, bacterial con-
sortia native to heavy metal-contaminated soil, consisting of Bacillus mycoides and 
Micrococcus roseus, were found effective for phytoextraction and phytostabiliza-
tion of Cd (Malekzadeh et al. 2012). Bioremediation of zinc was mediated by rhizo-
bacteria (Bacillus megaterium and Pseudomonas aeruginosa) isolated from weed 
(Suaeda nudiflora) growing in chemically polluted site (Jha et al. 2017).

Important genera of cadmium-resistant rhizobacteria reported from some food 
crops (wheat, maize, barley, mustard, mung bean, black gram, and pumpkin) are 
Pseudomonas spp., Burkholderia sp., Flavobacterium sp., and Arthrobacter myso-
rens (Belimov and Dietz 2000; Ganesan 2008; Sinha and Mukherjee 2008; Kuffner 
et  al. 2010; Xu et  al. 2012; Saluja and Sharma 2014). Similarly, some arsenic- 
resistant gram-positive rhizobacteria are Bacillus megaterium, Bacillus pumilus, 
Bacillus cereus, Arthrobacter globiformis, and Staphylococcus lentus, while gram- 
negative rhizobacteria include Rhizobium radiobacter, Rhizobium rhizogenes, 
Enterobacter asburiae, Agrobacterium radiobacter, Sphingomonas paucimobilis, 
and Pantoea spp. (Wang et al. 2011; Titah et al. 2014; Lampis et al. 2015; Singh 
et al. 2015; Mesa et al. 2017). Rafique et al. (2015) reported some bacterial genera 
(Bacillus, Pseudomonas, and Cronobacter) capable of showing dual functions, i.e., 
simultaneously showing resistance for mercury, as well as capable of nitrogen fixa-
tion. Likewise, rhizobacteria capable of tolerating chromium are Pseudomonas, 
Ochrobactrum, Mesorhizobium, Bacillus, Paenibacillus, Cellulosimicrobium, and 
Rhodococcus (Faisal and Hasnain 2006; Trivedi et al. 2007; Chatterjee et al. 2009; 
Khan et al. 2012; Hemambika et al. 2013; Upadhyay et al. 2017).

10.3.2  Mechanisms of Heavy Metal Tolerance in Bacteria

Microbes are persistently able to survive in heavy metal-polluted environment by 
using a number of methods like biosorption, biomineralization, bioaccumulation, 
and biotransformation. Bioaccumulation is a process by which bacteria accumulate 
heavy metals in its cell which is influenced by various physical, chemical, and 
biological mechanisms operating inside its cell (Ayangbenro and Babalola 2017). 
Similarly, biosorption is defined as the passive uptake of metals by microbes 
(Malik 2004; Gadd 2009). Biomineralization is the process by which microbes 
form minerals. Likewise, biotransformation is another way of showing resistance 
toward heavy metals by microbes. It is the process of chemical alteration of chemi-
cals such as nutrients, amino acids, toxins, and drugs by an organism. The two 
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important factors involved in the biotransformation of heavy metals in soil are pH 
and carbon sources. Biotransformations of heavy metals are demonstrated in algae, 
fungi, and prokaryotes which convert these metals into metal sulfides. However, 
being insoluble in nature, these metal sulfides have reduced bioavailability (Scarano 
and Morelli 2003; Ayyasamy and Lee 2012). Further, microbial biofilms have the 
ability of accumulating or sequestering heavy metals by producing EPS (exopoly-
saccharides) which bind with these metals (Teitzel and Parsek 2003; Meliani and 
Bensoltane 2016).

Due to the presence of anionic structures, microbes have a net negative charge on 
their surface. This negative charge enables them to bind with metal cations. 
Furthermore, the polarized groups of the bacterial cell wall or the capsule enable 
them to bind with metal ions (El-Helow et al. 2000). Binding of these metal ions to 
the cell wall is governed by several attractive forces like van der Waals forces, elec-
trostatic interactions, covalent binding, and alterations in redox potential. De et al. 
(2008) reported that Pseudomonas aeruginosa contains cysteine-rich transport pro-
teins located in their cell membrane which enabled them to adsorb exceptionally 
high amount of mercury, i.e., up to 400 mg Hg g−1 dry cell mass. Microorganisms 
produce several organic and inorganic acids which help them in extracting metals 
from solid substrates.

10.4  Our Lead

Since the last 20 years, our group is pursuing a lot of studies related to bioremedia-
tion of heavy metals. In the case of microbial bioremediation of arsenic, we observed 
that the presence of a similar mechanism of resistance in the two bacterial strains 
isolated from two different sources may be due to horizontal gene transfer of the 
arsenic gene ars C from soil to water system and vice versa which is an alarming 
situation for global concern (Saluja et  al. 2011). Gupta et  al. (2002) developed 
heavy metal-resistant mutants of phosphate-solubilizing Pseudomonas sp. Similarly, 
Tripathi et  al. (2004) characterize siderophore-producing lead- and cadmium- 
resistant Pseudomonas putida KNP9 strain. Gupta et al. (2005) did an in situ char-
acterization of mercury-resistant growth-promoting fluorescent Pseudomonads. 
However, we also characterize some other cadmium-resistant strains (Rani  and 
Goel 2009; Kumar et  al. 2019). Rani et  al. (2008) reported some rhizobacteria 
responsible for the decline of copper toxicity in pigeon pea and soil system. Besides 
this, our group has also reviewed several studies related to rhizobacterial detoxifica-
tion of heavy metals for crop improvement and has compiled them for readers of 
scientific communities to comprehend its knowledge in a simpler way (Rani and 
Goel 2009; Goel et al. 2017; Saluja et al. 2011; Khan et al. 2011).
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Abstract
Multi-drug resistance among bacterial pathogens remains a serious problem world-
wide. There is no clear and complete understanding about the multi-drug resistance 
mechanism even though the field is attaining continuous growth. Indiscriminate 
use of pesticides enabling the bacterial population to acquire multidrug resistance 
has been revived in this paper. Pesticide residues impose a bacterial system adopted 
for the stress due to the presence of xenobiotics. The natural evolutionary mutation 
mechanisms occurring randomly in the core gene sequences responsible for catab-
olizing complex substrates are the major reasons behind microbial resistance. 
Mutated gene products produced pose lesser substrate specificity than a wild 
enzyme. Organophosphorus hydrolase (OPH) or formaldehyde dehydrogenase 
and laccase are the few enzymes able to degrade many other similar xenobiotics. It 
has been extrapolated that degradation of many antibiotics by organophosphorus 
hydrolase is a kind of nonspecific degradation. Organisms growing in metal-pol-
luted sites produce enzymes with different metal ions in their binding sites differ-
ing in specificity and conferring cross-resistance to antibiotics.
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11.1  Introduction

Pesticide is a chemical intended to control the pest population. It includes herbi-
cides, insecticides, nematicides, termiticides, molluscicides, piscicides, avicides, 
rodenticides, predacides, bactericides, insect repellents, animal repellents, antimi-
crobials, fungicides, disinfectants, and sanitizers (US EPA 2005; Waili et al. 2012). 
Pesticide is meant to be effective against target pests and has been introduced in the 
agriculture sector in the mid-1950s (US EPA 2005; Ramakrishnan et  al. 2011). 
Pesticides are widely used throughout the world and over 400 types of pesticides are 
commonly used. Most pesticides belong to the class of semi-volatile organic com-
pounds and may occur in all environmental compartments, not only in the agricul-
tural soils but also in the agriculture products (Cofie et al. 2003; Seo et al. 2007). 
Many pesticides are organophosphorus insecticides with nonspecific systemic or 
acaricide actions. They constitute heterogeneous compounds of monocrotophos and 
phosphoric acid that share a phosphoric acid derivative chemical structure (Yadav 
et al. 2015). The organic derivatives of inorganic phosphorus acids are known as 
organophosphorus. These insecticides are known inhibitors of acetylcholinesterase 
activity and affect the central nervous system of insects (Gundi and Reddy 2006).

From decades ago, to control the pests affecting various vegetable crops (cotton, 
sugarcane, groundnut, tobacco, maize, rice, soybeans, apple, etc.), pesticides are 
widely used (Vig et al. 2001; Bhadbhade et al. 2002). Modern agriculture farming 
uses a huge amount of herbicides as an alternative to increasing labor charges. 
Consequently, much of the pesticides have been sprayed on the soil without analyzing 
their effect on the various life forms. However, these pesticides undergo degradation 
leading to the formation of new compounds which are deleterious to plants (Ruifu 
et al. 2005). These various complex nonbiodegradable chemicals reach the ecosystem 
causing deterioration of the natural environment (soil and crops and livestock) (Zhang 
et al. 2005; Ortiz-Hernandez and Sanchez-Salinas 2010; Shah and Devkota 2009).

Pesticide residues have been identified in agriculture products worldwide (Cofie 
et  al. 2003; Seo et  al. 2007). Leaching of pesticide may reach the groundwater, 
apparently changing the living forms in the water bed (Singh and Singh 2003; 
Bhalerao and Puranik 2009). Terrestrial ecosystems may also be contaminated with 
pesticide compounds (Quin 2000; Singh and Walker 2006).

11.2  The Fate of Pesticide in the Soil

Pesticide reaches the soil either by aerial or ground application in the agriculture 
field. The overall degradation of pesticide is in turn dependent on its physicochemi-
cal properties such as water solubility, absorptive affinity, pH, organic matter con-
tent availability, microbial biomass, and redox status and environmental conditions 
(e.g., temperature, moisture) (Pandit et al. 2012; Yadav et al. 2015); and soil proper-
ties potentially influence the behavior of pesticide in the soil (Yadav et al. 2015; 
Beigel and Di Pietro 1999). Being water soluble, monocrotophos binds weakly to 
soil particles and quickly penetrates into plant tissues (Tomlin 1995). Indiscriminate 
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use of pesticides causes pesticides to reach soils and affect plant growth-promoting 
soil bacteria as follows:

 (a) Adverse effects on soil fertility and crop productivity.
 (b) Drastic change in the soil microflora creating serious ecological debate.
 (c) Continued application of large quantities of pesticides causing everlasting 

changes in the soil microflora.
 (d) Inhibition of N2-fixing soil microorganisms and phosphate-solubilizing 

microorganisms.
 (e) Suppression of nitrifying bacteria and ammonification.
 (f) Adverse effects on mycorrhizal symbioses in plants and nodulation in legumes.
 (g) Alterations in the rhizosphere microflora, both quantitatively and qualitatively.

Deprivation of pesticides in soil and water atmosphere may occur by various means 
such as photo, chemical, or biological process (Fig. 11.1).

11.3  Mechanism of Pesticide Degradation

Soil bacteria produce extracellular enzymes that act on inorganic compounds for 
food intake or defense purposes (Bass and Field 2011; Riya and Jagapati 2012; 
Scott et  al. 2008). Metabolism of pesticides can be mediated through oxidation, 

Fig. 11.1 The fate of the pesticide in the agricultural soil ecosystem

11 Pesticide Residues in the Soil Cause Cross-Resistance Among Soil Bacteria



208

reduction, hydrolysis, and peroxidase and oxygenase mechanisms (Ortiz-Hernandez 
and Sanchez-Salinas 2010; Ramakrishnan et al. 2011; Eerd et al. 2003). Detoxification 
of organophosphorus hydrolysis by hydrolase enzyme (Chen et al. 2014; Lan et al. 
2006) causes a breakdown of pesticide into many compounds. It involves different 
kinds of mechanisms, namely, (i) photodegradation, (ii) chemical degradation, and 
(iii) biological degradation.

11.3.1  Photodegradation

Different layers of soil strata comprising pesticides are exposed to the photodegra-
dation process (Cynthia and Muller 1998; Blatchley et al. 1998). Pesticides com-
monly get eliminated from soil particles through photodegradation. However, the 
low-volatile pesticide may remain in the soil and slowly become part of the aerosol. 
The pesticide is revived into the atmosphere, and it gets absorbed down into deeper 
layers of the soil (Meallier et al. 1994; Benitez et al. 1995). The pesticide returns 
back to the surface during hot and dry periods, exposed to and degraded by solar 
radiation.

Photodegradation will be high for a volatile fraction of the pesticide (de Bertrand 
et al. 1991; Kopf and Schwack 1995), and available hydroxyl radical (HO) in the 
soil particle could induce photodegradation (Prammer 1998). But rare evidence of 
hydroxyl radical-mediated degradation has been reported, and little information is 
available on the reaction mechanisms involved (Grover and Cessna 1991). Pesticides 
may get activated by the photons (Meallier et al. 1994); and excited molecules may 
undergo either (i) homolysis, (ii) heterolysis, or (iii) photoionization.

11.3.2  Chemical Degradation

Chemical degradation of pesticides may occur through oxidation, reduction, hydro-
lysis, peroxidation, and dehalogenation mechanisms (Ortiz-Hernandez and 
Sanchez-Salinas 2010; Ramakrishnan et al. 2011; Eerd et al. 2003). Several reports 
on the degradation of chlorpyrifos through oxidation and hydrolysis exist. 
Chlorinated 3,5,6-Trichloro-2-pyridinol (Li et al. 2010) causes broke down by the 
release of three chlorine atoms by a sequential dechlorination of 3,5,6-Trichloro-2- 
pyridinol by one oxidative and two hydrolytic leading to the formation of 3,6-dihy-
droxy pyridine-2,5-dione (Li et  al. 2010; Ramakrishnan et  al. 2011). 
2–4-Dichlorophenoxy acetic acid is chemically modified by two different pathways. 
In one pathway, the sixth carbon is oxidized by the addition of an OH group yield-
ing 6-OH-2,4-D. This reaction is followed by removal of acetate resulting in the 
formation of 3,5-dichlorocatechol (Sander et al. 1991).
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11.3.3  Biological Degradation

The role of microorganisms in the dissipation of pesticides, especially in the soil, 
has long been recognized. Relative to the extended evolutionary period of microor-
ganisms in nature, agriculture has only been around for more than 1000  years. 
Several microorganisms that have been isolated are known to utilize pesticides as a 
source of energy (Rangaswamy and Venkateswarlu 1992). However, most evidence 
suggests that soil bacteria are responsible for enhanced biodegradation of pesticides 
(Walker and Roberts 1993). Microorganisms capable of degrading monocrotophos 
have been reported from various geographical and ecological sites (Bhalerao and 
Puranik 2009). Leaching of monocrotophos may pollute the groundwater, ulti-
mately resulting in adverse effects on biological systems (Singh and Singh 2003). 
With its high mammalian toxicity, monocrotophos is an ideal compound for decon-
tamination and detoxification.

Organic materials are contained within the solid phase controlling chemical and 
physical processes in the soil. Predominant constitution of soil is humus, dominated 
by acidic functional groups capable of these large polymers possess a three- 
dimensional conformation that creates hydrophobic regions important in retaining 
nonionic synthetic organic compounds such as pesticides. Nonionic pesticides par-
tition into these hydrophobic regions, decreasing off-site movement and biological 
availability. Humic materials will interact with nonionic pesticides by partitioning 
them into hydrophobic regions within the large polymeric molecule. Neither clays 
nor humic materials have a strong affinity for a weak acid pesticide containing phe-
nolic hydroxyls, carboxyl groups, or aminosulfonyl linkages (Nyle and Ray 2002; 
Daniel 1991).

Pseudomonas aeruginosa F10B and Clavibacter michiganensis subsp. insidio-
sum SBL 11 are known pesticide degraders (Singh and Singh 2003). Rhodococcus 
phenolics strain G2PT utilizes a wide range of pesticides and their derivatives, chlo-
robenzene, and chlorobenzoic acid as sources of carbon (Marc and James 2005). 
Degradation of pesticides is catalyzed by an array of oxygenases, peroxidases, and 
hydrolases. Among these enzymes, hydrolase is studied for its efficacy to break 
down pesticide.

11.3.4  Organophosphorus Hydrolase (OPH)

Organophosphorus hydrolase (OPH) enzyme is used by several bacteria for degrad-
ing pesticide (Serdar et al. 1982; Mulbry and Karns 1989). OPH is a dimer of two 
identical subunits containing 336 amino acid residues (Dumas et al. 1989) that folds 
into an (α/β)8-barrel motif with a molecular weight of 72 kDa (Gerlt and Raushel 
2003). Each subunit comprises binuclear zinc situated at the C-terminal portion. 
The two zinc atoms are separated by about 3.4 A° and are linked to the protein 
through the side chain of His 55, His 57, His 201, His 230, Asp 301, and a carboxyl-
ated Lys 169. Both the Lys 169 and the water molecule (or hydroxide ion) act to 
bridge the two zinc ions together (Benning et al. 2001).
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Metal ion in the active site of OPH increases the electrophilicity of the phospho-
rus center through coordination with the non-ester oxygen atom of the substrate 
metal ion (Efrmenko and Sergeeva 2001; Raushel 2002). It hydrolyzes P–O, P–F, 
and P–S bonds to have wide-range substrate specificity. Metal ion substitution can 
alter catalytic activity of OPH metal ions including Co, Cd, Cu, Fe, Mn, and Ni 
(DiSioudi et al. 1999; Benning et al. 2001; Omburo et al. 1992).

Possibility mechanism of developing novel activity specificity from acquire by 
alteration of only one amino acid (Shim et al. 1998; Raushel 2002). Interestingly, 
this superfamily also includes atrazine chlorohydrolase. A similar enzyme, OPDA, 
has been isolated from A. radiobacter and was found to have 90% homology to 
OPH at the amino acid level and similar overall secondary structure (Horne et al. 
2002; Yang et  al. 2003). There are reports suggesting partial purification of this 
enzyme from Pseudomonas sp. GLC11 (Selvapandiyan and Bhatnagar 1994). 
Evolutionary adaptations of bacterial cultures have developed wide substrate speci-
ficity. Bacteria that are often exposed to xenobiotics develop novel metabolic 
enzymes with broad substrate specificity (Russell et al. 2013).

11.4  Loss of Specificity/Broad Substrate Specificity

Prolonged exposures to pesticide residues have favored the development of enzymes 
with broad substrate specificity. A larger group of enzymes with similar active site 
architecture has been identified (Holm and Sander 1997). Interestingly, this super-
family also includes atrazine chlorohydrolase. A similar enzyme, OPDA, has been 
isolated from A. radiobacter and was found to have 90% homology to OPH at the 
amino acid level and similar overall secondary structure (Horne et al. 2002; Yang 
et al. 2003). Similarly, bacteria that are often exposed to xenobiotics develop novel 
metabolic enzymes with broad substrate specificity (Russell et al. 2013). Such alter-
ation may lead to enzyme production of lesser substrate specificity (Fig. 11.2).

11.5  Multi-drug Resistance

Continuous application of pesticide in the agricultural field, even at a low level, 
could exert selective pressure toward a selection of bacteria. Bacterial enzymes are 
responsible for the development of cross-resistance to antibiotics. This has been 
proven in our study: removing plasmid from the selected isolates resulted in loss of 
ability to use the pesticide (Stevenson et al. 2017; Lorenz and Wackernagel 1994).

Multidrug-resistant populations are quite common among the pesticide- 
degrading soil floras due to self-transmissible genes that can jump between plas-
mids and chromosomes (Shafiani and Malik 2003). Resistant gene cassettes have 
been found for the most classes of pesticides, and the gene products are involved in 
various resistance mechanisms. Integrons movements allow transfer of the gene 
cluster associated resistance gene from one DNA replicon to another. The resistance 
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gene encoding gene establishes a resistance gene cluster, which represents a poten-
tial source for gene transfer between bacteria (Fig. 11.3).

Excessive exposure to pesticides adversely affects active sites of enzymes often 
responsible for antibiotic resistance. Presence of both antibiotic and pesticide select 
for resistance in bacteria and insects often acquire resistance in the same way, 
through a single mutation. Overproduction of an enzyme that breaks down dichlo-
rodiphenyltrichloroethane (DDT) has been reported for multidrug resistance 
(Orzech and Nichter 2008; Bergman 2003).

The mechanism of drug resistance among soil populations is found to be differ-
ent from the normal mechanism of bacterial drug resistance (Zhang et  al. 2005; 
Heinemann 2000). Drug resistance may be due to overproduction of an enzyme that 
breaks down pesticide (Quin 2000; Gonzalez-Lopez et al. 1993). Similarly, it was 
reported E. coli and Salmonella sp. developed resistance to herbicides and antibiot-
ics. Bacteria exposed to herbicides also developed resistance to antibiotics by cross- 
resistance (Kurenbach et al. 2015).

The enzyme is nonspecific for low-molecular-weight aldehydes, and this may 
explain the cross-resistance to other aldehydes or formaldehyde-releasing com-
pounds (Henry et al. 2015; Ding and He 2010). Bacteria also pose multidrug resis-
tance by producing higher copies of target molecules so that the previous antibiotic 
concentration is no longer sufficient for metabolic process. Mere transfer of trans-
posable elements or plasmid simply stretches out the cytoplasm and has contributed 

Fig. 11.2 Decreased substrate specificity due to confirmation of a change in the enzyme by 
mutation
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to multidrug resistance of many other bacteria habituating the soil atmosphere. 
Bacterial strains exposed to pesticide continuously have evolved in a gene with 
broad-spectrum degradation specificity. Comparison between plasmid-containing 
and plasmid-cured cells proved the loss of drug resistance among plasmid-cured 
bacterial cells (Kirubakaran et al. 2017a).

Similar incidence is recorded where formaldehyde-resistant Enterobacteriaceae 
has been believed to be responsible for providing multidrug resistance through non-
specific formaldehyde dehydrogenase activity (Chen et al. 2014; Livingstone 1998). 
Development of antibiotic and pesticide resistance is often presented as a modern 
example of evolution by mutations (Bergman 2003; Chen et al. 2014). The risks 
associated with the use of certain pesticides and antibiotics have a direct and indi-
rect effect on development of multidrug resistance among bacteria (Tu et al. 2010; 
Anjum and Krakat 2016).

Parathion hydrolase was composed of a single subunit of approximately 43 kDa 
(Mulbry 1992). Another hydrolase from strain SC was membrane bound and was 
composed of four identical subunits of 67 kDa. While having some common fea-
tures such as constitutive production and similar temperature optimal around 40 °C, 
it was found that the substrate specificity and structure of these enzymes differed 
from one another and also from the other known OPHs (Mulbry and Karns 1989).

Laccase was observed to be capable of complete rapid degradation of VX and 
Russian VX (Amitai et al. 1998). Several white-rot fungi are capable of organo-
phosphorus degradation. A novel organophosphorus-degrading fungal enzyme 
(A-OPH) was isolated from A. niger ZHY256 that could hydrolyze a range of P–S 

Fig. 11.3 The proposed mechanism of multidrug resistance among the human gut flora
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bonds containing organophosphorus compounds (Liu et al. 2008). A-OPH does not 
require divalent cations for activation; however, Cu21 was found to activate its 
activity. Another novel organophosphorus-hydrolyzing enzyme was purified from 
Penicillium lilacinum BP303. Interestingly, this Penicillium OPH (P-OPH) was 
found to degrade various organophosphorus compounds by cleaving both P–O and 
P–S linkages (Liu et al. 2004).

Organophosphorus compounds bind to the binuclear metal center within the 
active site via coordination of the phosphoryl oxygen to the b-metal ion. This inter-
action weakens the binding of the linking hydroxide to the b-metal. The metal–oxy-
gen interaction polarizes the phosphoryl oxygen bond and creates a more 
electrophilic phosphorus center. Subsequent nucleophilic attack by the bound 
hydroxide is aided by proton abstraction from Asp 301 mentioned by Raushel 
(2002).

Pesticide residues can induce cross-resistance creating multiple-drug resistance 
among the soil community (Kirubakaran et al. 2017b). Many of the soil bacteria 
able to develop multidrug resistance by the nonspecific cleavage of antibiotics by 
the pesticide-degrading bacterial enzymes were studied (Kruger et al. 2014). Excess 
use of a pesticide may lead to the evolution of pesticide degradation pathways along 
with genetic mutation and ribosome point mutation. Organophosphate hydrolase 
soil floras have contributed to the mechanism of cross-resistance (Kruger et  al. 
2014). Binding of pesticide to the ribosome leads to the synthesis of receptors which 
do not allow drugs into a bacterial cell, thereby contributing to multidrug resistance 
(Kazanjian et al. 2000; Bainy 2000).

Continuous application of pesticide causes multidrug (chloramphenicol, ampi-
cillin, cefotaxime, streptomycin, and tetracycline) organophosphorus resistance 
among soil bacterial plasmids as pMK-07 (Kirubakaran et al. 2018a, b). Constant 
pressure on the gene allows the particular gene to develop multidrug resistance. The 
prolonged application of disinfectants at suboptimal concentrations provokes the 
adaption of microorganisms to those subconcentrations and possibly the develop-
ment of true resistance (Tu et al. 2010; Anjum and Krakat 2015).

The recent finding on encoding genes in a field soil which have never been 
exposed to this group of pesticides supports this hypothesis (Singh et  al. 2003). 
Another possibility is that this enzyme has evolved a new substrate specificity from 
preexisting enzymes as it has been shown that OPH (phosphotriesterase) could 
acquire phosphodiesterase activity by alteration of only one amino acid (Shim et al. 
1998). Urease has been found to have carbamylated lysine as a bridging ligand with 
binuclear Ni at the active site (Hausinger and Fukumori 1995). The binuclear cen-
ters of urease and OPH were found to be remarkably similar. However, the chemical 
nature of the active sites of these enzymes is quite different (Raushel 2002). A larger 
group of enzymes with similar active site architecture has been identified (Holm and 
Sander 1997).

Alteration in the active site of OPH gave substrate specificity and represented the 
progressive natural evolution of the enzyme from organophosphorus hydrolase 
(OPH) to organophosphorus dehydrogenase A (OPDA) (Yang et al. 2003). A highly 
active OPAA from Alteromonas undina was isolated and purified and is comprised 
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of a single polypeptide with a molecular weight of 53 kDa (Cheng et  al. 1993). 
OPAA isolated from Alteromonas sp. JD6.5 is composed of 517 amino acids with a 
molecular weight of 60 kDa. However, one from Alteromonas haloplanktis contains 
a similar enzyme with 440 amino acids with molecular weight of 50 kDa (Cheng 
et al. 1996, 1997). OPAAs from different species of Alteromonas that have proved 
to show wide variations in catalytic activity are varying one or two amino acids 
(DeFrank and White 2002). Hence, the gene continuously exposed to pesticide/
antibiotics would evolve to degrade similar other many xenobiotics.

11.6  Conclusion

Multidrug resistance among soil bacteria is very common. The natural selection 
process in the soil ecosystem enables the microorganism to adapt to pesticide 
applied in the soil. Hence, the presence of pesticide residues favors populations 
which are able to grow in the presence of both pesticides and antibiotics. The pro-
longed application of pesticides/antibiotics at suboptimal concentrations provokes 
the adaption of microorganisms and possibly the development of true resistance. 
Persistence of pesticide in the agriculture field enriches pesticide-utilizing bacteria 
and pesticide-utilizing genes despite the bio-accumulation problem.
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Abstract
Psychrotrophic microbes from the cold habitats have been reported worldwide. 
The psychrotrophic microbes from diverse cold habitats have biotechnological 
potential applications in agriculture as they can possess different direct and  
indirect plant growth-promoting (PGP) attributes such as solubilization of  
micronutrients (P, K, and Zn), 1-aminocyclopropane-1-carboxylate deaminase 
production, Fe-chelating compounds, indole-3-acetic acid, and bioactive com-
pounds. Psychrophilic and psychrotrophic microbes are ubiquitous in nature and 
have been reported worldwide from various cold environments. The microbial 
communities from cold deserts have been reported using both culture-dependent 
techniques and metagenomic techniques, which belong to diverse major groups, 
viz., Verrucomicrobia, Thaumarchaeota, Spirochaetes, Proteobacteria, 
Planctomycetes, Nitrospirae, Mucoromycota, Gemmatimonadetes, Firmicutes, 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6536-2_12&domain=pdf
mailto:ajarbiotech@gmail.com


220

Euryarchaeota, Cyanobacteria, Chloroflexi, Chlamydiae, Basidiomycota, 
Bacteroidetes, Ascomycota, and Actinobacteria. Cold-adapted microbes, iso-
lated from the low-temperature condition, are belonging to different genera such 
as Arthrobacter, Bacillus, Exiguobacterium, Paenibacillus, Providencia, 
Pseudomonas, and Serratia. On review of different research, it was found that 
inoculation with psychrotrophic strains significantly enhanced plant growth, 
crop yield, and soil fertility. The present book chapter deals with the biodiversity 
of psychrotrophic or cold-adapted microbes from diverse cold habitats, and their 
potential biotechnological applications in agriculture have been discussed.

Keywords
Adaptation · Cold alleviation · Diversity · Plant growth promotion · Psychrotrophic

12.1  Introduction

The extreme environment of abiotic stresses like flooding, salinity, drought, low or 
high temperature (Mina et al. 2017; Tomer et al. 2015), and acidic or alkaline pH 
has severely affected the productivity of several cereal crops worldwide (Malyan 
et al. 2016). Among different abiotic stresses, low temperature is one of the major 
abiotic stresses acting as the limiting factor affecting the agricultural productivity as 
20% of the Earth’s surfaces is covered with frozen soils (permafrost), glaciers, ice 
sheets, and snow. The perspective’s loss of crop productivity due to the severity of 
abiotic stresses becomes more significant than the chemical fertilizers. The diversity 
of microbes inhabiting low-temperature habitats has been extensively investigated 
in the past few years with a focus on culture-dependent and culture-independent 
techniques (Fruhling et al. 2002; Kishore et al. 2010; Mayilraj et al. 2006a; Shivaji 
et al. 2005b; Verma et al. 2015b; Yadav 2015).

There are many reports on psychrophilic microbes from different cold habitats 
(Antarctica, glaciers, high altitude, ice cap cores, mountains, sea, subglacial lakes, 
and plant growing at low-temperature conditions) including Acinetobacter, 
Arthrobacter, Bacillus, Desemzia, Exiguobacterium, Janthinobacterium, 
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Jeotgalicoccus, Flavobacterium, Methylobacterium, Micrococcus, Planococcus, 
Planomicrobium, Pontibacillus, Pseudomonas, Psychrobacter, Rhodococcus, 
Paenibacillus, Sphingobacterium, Sporosarcina, Staphylococcus, and Virgibacillus. 
The psychrotrophic microbes have been reported isolated from diverse cold habitats 
belonging to phyla Verrucomicrobia, Thaumarchaeota, Spirochaetes, 
Proteobacteria, Planctomycetes, Nitrospirae, Mucoromycota, Gemmatimonadetes, 
Firmicutes, Euryarchaeota, Cyanobacteria, Chloroflexi, Chlamydiae, 
Basidiomycota, Bacteroidetes, Ascomycota, and Actinobacteria (Fruhling et  al. 
2002; Kishore et al. 2010; Mayilraj et al. 2006a; Shivaji et al. 2005b; Yadav et al. 
2017a, b, 2018a, b, 2017c).

The novel microbes have been isolated, characterized, and identified from cold 
habitats worldwide including Flavobacterium phocarum, SE14T (Zhou et al. 2018); 
Hymenobacter rubripertinctus, NY03-3-30T (Jiang et  al. 2018); Psychrobacter 
pocilloporae, S6-60T (Zachariah et  al. 2017); Glaciimonas frigoris, N1-38T 
(Margesin et  al. 2016); Massiliaeury psychrophila, B528-3T (Shen et  al. 2015); 
Azospirillum himalayense, ptl-3T (Tyagi and Singh 2014); Exiguobacterium him-
giriensis, K22–26T(Singh et al. 2013); Flavobacterium urumqiense, Sr25T (Dong 
et al. 2012); Pedobacter arcticus, A12T (Zhou et al. 2012); Pseudomonas deceptio-
nensis, M1T (Carrión et  al. 2011); Dioszegia antarctica, ANT-03-116T (Connell 
et al. 2010); Paenibacillus glacialis, KFC91T (Kishore et al. 2010); Arthrobacter 
psychrochitiniphilus, GP3T (Wang et  al. 2009); Exiguobacterium soli, DVS 3YT 
(Chaturvedi et al. 2008); Bacillus lehensis, MLB2T (Ghosh et al. 2007); Agrococcus 
lahaulensis, K22-21T (Mayilraj et  al. 2006e); Actinoalloteichus spitiensis, RMV- 
378T (Singla et  al. 2005); Geopsychrobacter electrodiphilus, A1T (Holmes et  al. 
2004); Flavobacterium omnivorum, ZF-8T (Zhu et al. 2003); Flavobacterium frigi-
darium, A2iT (Humphry et al. 2001); Sulfitobacter brevis, EL-162T (Labrenz et al. 
2000); Glaciecola pallidula, ACAM 615T (Bowman et  al. 1998a); Gelidibacter 
algens, ACAM 536 (Bowman et  al. 1997a); Desulforhopalus vacuolatus, ltk10 
(Isaksen and Teske 1996); Sphingobacterium antarcticus, 4BY (Shivaji et al. 1992); 
Halobacterium lacusprofundi, ACAM 32T (Franzmann et al. 1988); and Nocardiopsis 
antarcticus (Abyzov et al. 1983).

Prospecting the low-temperature environments has led to the isolation and iden-
tification of a great diversity of psychrotrophic microbiomes which has been found 
in cold habitats and reported worldwide. The microbiomes of cold habitats have 
been studied using different techniques including phospholipid fatty acid analysis, 
nucleic acid techniques, clone library method, genetic fingerprinting techniques, 
DNA microarray, and whole community analysis approaches (Yadav 2015; Yadav 
et  al. 2015a, 2017b). There are many reports on complete genome sequences to 
know the different genes responsible for diverse attributes including Colwellia 
chukchiensi (Zhang et al. 2018), Exiguobacterium oxidotolerans (Cai et al. 2017), 
Arthrobacter agilis (Singh et  al. 2016), Paenibacillus sp. (Dhar et  al. 2016), 
Clavibacter sp. (Du et  al. 2015), Planomicrobium glaciei (Salwan et  al. 2014), 
Octadecabacter antarcticus (Vollmers et al. 2013), Exiguobacterium antarcticum 
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(Carneiro et al. 2012), Rheinheimera sp. (Gupta et al. 2011a), Methanococcoides 
burtonii (Allen et  al. 2009), Exiguobacterium sibiricum (Rodrigues et  al. 2008), 
Cenarchaeum symbiosum (Hallam et  al. 2006), and Colwellia psychrerythraea 
(Methé et al. 2005).

The psychrotrophic microbes from diverse cold habitats have biotechnological 
potential applications in medicine, industry, agriculture, and allied sectors. The psy-
chrotrophic microbes exhibited multifarious plant growth-promoting (PGP) attri-
butes such as 1-aminocyclopropane-1-carboxylate (ACC) activities, solubilization 
of micronutrients (phosphorus, potassium, and zinc), biological N2 fixation, deami-
nase activity, and production of different bioactive compounds such as ammonia, 
hydrogen cyanide, indole-3-acetic acid, and Fe-chelating compounds. The psychro-
trophic microbe promotes growth as well as showed biocontrol activity against 
plant pathogenic microbes. The microbes having ACC deaminase activity help plant 
to alleviate cold stress (Verma et al. 2015b; Yadav 2009; Yadav 2017; Yadav et al. 
2016a, 2017d). The psychrotrophic microbes attracted the attention of the scientific 
community due to their aptitude in plant growth, an adaptation of plants at low- 
temperature conditions. The present book chapter describes the biodiversity and 
biotechnological application of psychrophilic and psychrotolerant microbes in agri-
culture for PGP and mitigation of cold stress in crops.

12.2  Diversity and Distributions of Psychrotrophic Microbes

The extreme environments of low temperature are the prosperous source of psy-
chrophilic and psychrotrophic microbiomes (archaea, bacteria, and eukarya). The 
cold habitats represent hot spots of microbial biodiversity for psychrophilic and 
psychrotolerant microbes with potential biotechnological application in diverse sec-
tors. Diverse groups of psychrophilic microbes have been sorted out, characterized, 
and identified using diverse methods and from diverse cold environments including 
Antarctica, plant microbiomes (plant growing at low-temperature conditions), gla-
ciers, subglacial lakes, cold desert of Himalayas, ice-coped revivers, and subalpine 
regions worldwide (Saxena et al. 2016; Yadav and Saxena 2018; Yadav et al. 2017b).

12.2.1  Microbial Biodiversity

The diversity of psychrophilic and psychrotolerant microbes inhabiting low- 
temperature habitats has been extensively investigated in the past few decades with a 
focus on culture-independent and culture-dependent techniques. The different groups 
of microbes have been reported from all three domains archaea, bacteria, and eukarya, 
which included different phyla, mainly Actinobacteria, Bacteroidetes, Chloroflexi, 
Gemmatimonadetes, Euryarchaeota, Ascomycota, Thaumarchaeota, Cyanobacteria, 
Basidiomycota, Chlamydiae, Firmicutes, Mucoromycota, Spirochaetes, Nitrospirae, 
Planctomycetes, Proteobacteria, and Verrucomicrobia (Fig. 12.1). Overall member of 
microbes belonging to the Proteobacteria has been reported as most dominant 
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Fig. 12.1 Phylogenetic tree showed the relationship between psychrophilic and psychrotolerant 
microbes, isolated from diverse cold habitats worldwide
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followed by Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota (Fig. 12.2). 
The percentage of different phyla included Spirochaetes (0.36), Chlamydiae, 
Chloroflexi, Verrucomicrobia (0.60), Gemmatimonadetes, Mucoromycota, 
Nitrospirae, Thaumarchaeota, Planctomycetes (0.72), Cyanobacteria (0.84), 
Ascomycota (1.44), Euryarchaeota (2.54), Basidiomycota (4.208), Bacteroidetes 

Fig. 12.1 (continued)

A. N. Yadav et al.



225

(5.04), Actinobacteria (13.69), Firmicutes (31.57), and Proteobacteria (32.0) [α-3.48, 
β-5.28, ϒ-23.41, ε-1.80, and δ0.72] (Fig. 12.2).

On review of different extreme cold habitats, it can be concluded that there are 
some niche-specific microbes (Fig. 12.3), as well as some common and most domi-
nant psychrophilic microbes have been reported (Fig. 12.4). Along with common 
and ubiquitous microbes, some niche-specific microbes have been sorted out from 

Fig. 12.2 Distribution of different phylum and groups of psychrophilic and psychrotolerant 
microbes, isolated from diverse cold habitats worldwide

Fig. 12.3 Relative distribution of different phylum of psychrophilic and psychrotolerant microbes, 
isolated from diverse cold habitats worldwide
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Fig. 12.4 Relative distribution of different genera of psychrophilic and psychrotolerant microbe, 
isolated from diverse cold habitats worldwide
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Fig. 12.4 (continued)
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different cold habitats, e.g., the member of phyla Alishewanella, Aurantimonas, 
Microbacterium, Novosphingobium, Paenisporosarcina, Sinobaca, and Vibrio from 
different sites of Himalayas; Agromyces, Brevibacterium, Cedecea, Duganella, 
Erwinia, Herbaspirillum, Iodobacter, and Mycetocola from subglacial lakes; 
Adhaeribacter, Bordetella, Haliscomenobacter, Ilumatobacter, Leclercia, 
Marmoricola, and Nocardioides from plants growing in cold habitats; 
Acanthophysium, Acidovorax, Actinochlamydia, Anthracoidea, Borrelia, Janibacter, 
and Paracoccus from subalpine regions; Bosea, Cortinarius, Jeotgalicoccus, 
Phycisphaera, Rahnella, and Rhodopseudomonas from glaciers; and the member of 
microbial genera Cenarchaeum, Flexibacter, Methanogenium, Methanosarcina, 
Nevskia, Phialocephala, Sulfurimonas, and Xanthomonas from Antarctica only 
(Fig.  12.5). Microorganisms inhabit cold habitats including the Antarctic, Arctic 
glacier, permanently ice-covered seas, the deep sea permafrost, and Himalayan and 
mountain lakes (Cavicchioli et  al. 2011; Chaturvedi et  al. 2008; Chaturvedi and 
Shivaji 2006; Cheng and Foght 2007; Foght et  al. 2004; Panicker et  al. 2002; 
Pradhan et al. 2010; Prasad et al. 2014; Sahay et al. 2013, 2017; Saul et al. 2005; 
Shivaji et al. 2011; Srinivas et al. 2011).

Fig. 12.5 Diversity and distribution of niche-specific psychrophilic and psychrotolerant microbes 
from diverse cold habitats worldwide
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12.2.2  Novel Microbes from Diverse Cold Habitats

Huge numbers of microbes belonging to different phyla and genera have been sorted 
out from diverse cold habitats worldwide, and it is found that all isolated microbi-
omes from cold deserts are psychrophilic and psychrotolerant in nature. The many 
microbes from the sea have been reported worldwide and are psychropiezophilic in 
nature. The novel microbes from cold habitats have been reported from the last four 
decades. The list of novel microbial isolates and the site from which samples were 
collected is given in Table 12.1.

The novel psychrotrophic/psychrophilic microbes have been isolated and char-
acterized from different cold habitats worldwide including Sphingomonas glacia-
lis, C16yT, and Pedobacter cryoconitis, A37T, from alpine glacier (Margesin et al. 
2003; Zhang et al. 2011); Lacinutrix jangbogonensis, PAMC 27137T, Pseudomonas 
extremaustralis, 14-3T, Oleispira antarctica, RB-8T, Hymenobacter roseosalivar-
ius, AA-718T, Methylosphaera hansonii, ACAM 549T, and Polaromonas vacuo-
lata, 34-PT, from Antarctic (Bowman et al. 1997c; Hirsch et al. 1998; Irgens et al. 
1996; Lee et al. 2014; Lopez et al. 2009; Yakimov et al. 2003); Halohasta litorea, 
R30T, Halohasta litchfieldiae, tADLT, Halobacterium lacusprofundi, ACAM 32T, 
Flavobacterium fryxellicola, LMG 22022T, Flavobacterium psychrolimnae, 
22018T, Flavobacterium degerlachei, LMG 21915T, and Flavobacterium frigoris, 
LMG 21922T, from Antarctic subglacial lakes (Franzmann et al. 1988; Mou et al. 
2012; Van Trappen et  al. 2004; Van Trappen et  al. 2005); Flavobacterium pho-
carum, SE14T, Hymenobacter rubripertinctus, NY03-3-30T, Pseudomonas decep-
tionensis, M1T, Arthrobacter psychrochitiniphilus, GP3T, Exiguobacterium soli, 
DVS 3YT, Flavobacterium frigidarium, A2iT, Arthrobacter flavus, CMS 19YT, 
Cellulophaga algicola, ACAM 630T, Glaciecol apallidula, ACAM 615T, Glaciecol 
apunicea, ACAM 611T, Methanogenium frigidum, Ace-2T, Octadecabacter  ant-
arcticus, 307T, Octadecabacter arcticus, 238T, Psychrobacter glacincola, ACAM 
521T, and Sphingobacterium antarcticus, 4BY, from Antarctica (Bowman 2000; 
Bowman et al. 1998a; Bowman et al. 1997d; Carrión et al. 2011; Chaturvedi et al. 
2008; Franzmann et al. 1997; Gosink et al. 1997; Humphry et al. 2001; Jiang et al. 
2018; Reddy et al. 2000; Shivaji et al. 1992; Wang et al. 2009; Zhou et al. 2018); 
Cryobacterium psychrotolerans, 0549T, Flavobacterium glaciei, 0499T, 
Flavobacterium omnivorum, ZF-8T, Flavobacterium xinjiangense, ZF-6T, 
Flavobacterium urumqiense, Sr25T, Flavobacterium xueshanense, Sr22T, 
Dyadobacter hamtensis, HHS 11T, Pedobacter himalayensis, HHS 22T, 
Paenibacillus glacialis, KFC91T, and Leifsonia kafniensis, KFC-22T, from glaciers 
(China no. 1 glacier, glacier ice, Hamta glacier, and Kafni glacier) (Chaturvedi 
et al. 2005; Dong et al. 2012; Kishore et al. 2010; Pindi et al. 2009; Shivaji et al. 
2005a; Zhang et al. 2006, 2007; Zhu et al. 2003); Rufibacter immobilis, MCC P1T, 
Cryobacterium roopkundense, RuGl7T, and Rhodotorula himalayensis, 3AT, from 
subglacial lakes (Polkade et al. 2015; Reddy et al. 2010; Shivaji et al. 2008); and 
Agrococcus lahaulensis, K22-21T, Bacillus lehensis, MLB2T, Exiguobacterium 
himgiriensis, K22–26T, Kocuria himachalensis, K07-05T, Ornithinimicrobium 
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Table 12.1 Biodiversity of novel psychrophilic and psychrotrophic microbes from diverse cold 
habitats worldwide

Novel microbes Location References
Flavobacterium phocarum, SE14T Antarctica Zhou et al. (2018)
Hymenobacter rubripertinctus, 
NY03-3-30T

Antarctica Jiang et al. (2018)

Psychrobacter pocilloporae, S6-60T The Andaman Sea Zachariah et al. (2017)
Psychromicrobium silvestre, AK20-18T Italian Alps Schumann et al. (2017)
Glaciimonas frigoris, N1-38T Siberian permafrost Margesin et al. (2016)
Methylovulum psychrotolerans, Sph1T West Siberia Oshkin et al. (2016)
Sphingomonas qilianensis, X1T Qilian Mountains Piao et al. (2016)
Massilia eurypsychrophila, B528-3T Muztagh glacier Shen et al. (2015)
Rufibacter immobilis, MCC P1T Pangong Lake Polkade et al. (2015)
Azospirillum himalayense, ptl-3T Chamba Valley Tyagi and Singh (2014)
Lacinutrix jangbogonensis, PAMC 27137T Antarctic Lee et al. (2014)
Exiguobacterium himgiriensis, K22–26T Spiti Valley Singh et al. (2013)
Paenisporosarcina indica, PN2T Pindari glacier Reddy et al. (2013)
Rhodomicrobium udaipurense, JA643T Udaipur, HP Ramana et al. (2013)
Sphingobacterium psychroaquaticum, L-1T Michigan Lake Albert et al. (2013)
Staphylococcus lipolyticus, SS-33T Bay of Bengal Arora (2013)
Halohasta litorea, R30T Antarctic lake Mou et al. (2012)
Halohasta litchfieldiae, adult Antarctic lake Mou et al. (2012)
Flavobacterium urumqiense, Sr25T Glacier ice Dong et al. (2012)
Flavobacterium xueshanense, Sr22T Glacier ice Dong et al. (2012)
Pedobacter arcticus, A12T Arctic Zhou et al. (2012)
Chryseomicrobium imtechense, MW 10T Bay of Bengal Arora et al. (2011)
Pseudomonas deceptionensis, M1T Antarctica Carrión et al. (2011)
Sphingomonas glacialis, C16yT Alpine glacier Zhang et al. (2011)
Cryobacterium roopkundense, RuGl7T Roopkund Lake Reddy et al. (2010)
Dioszegia antarctica,ANT-03-116T Taylor Valley Connell et al. (2010)
Dioszegia cryoxerica, ANT-03-071T Taylor Valley Connell et al. (2010)
Luteimonas terricola, BZ92rT Innsbruck, Austria Zhang et al. (2010)
Mucilaginibacter frigoritolerans, FT22T Finnish Lapland Männistö et al. (2010)
Mucilaginibacter lappiensis, ANJLI2T Finnish Lapland Männistö et al. (2010)
Mucilaginibacter mallensis, MP1X4T Finnish Lapland Männistö et al. (2010)
Paenibacillus glacialis, KFC91T Kafni glacier Kishore et al. (2010)
Arthrobacter psychrochitiniphilus, GP3T Antarctica Wang et al. (2009)
Leifsonia kafniensis, KFC-22T Kafni glacier Pindi et al. (2009)
Pseudomonas extremaustralis, 14-3T Antarctic Lopez et al. (2009)
Bacillus cecembensis, PN5T Pindari glacier Reddy et al. (2008b)
Exiguobacterium soli, DVS 3YT Antarctica Chaturvedi et al. (2008)
Leifsonia pindariensis, PON10T Pindari glacier Reddy et al. (2008a)
Marinobacter psychrophilus, 20041T Arctic Zhang et al. (2008)
Psychromonas aquimarina, JAMM 0404T Kagoshima, Japan Miyazaki et al. (2008)
Psychromonas japonica, JAMM 0394T Kagoshima, Japan Miyazaki et al. (2008)

(continued)
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Table 12.1 (continued)

Novel microbes Location References
Psychromonas macrocephali, JAMM 
0415T

Kagoshima, Japan Miyazaki et al. (2008)

Psychromonas ossibalaenae, JAMM 0738T Kagoshima, Japan Miyazaki et al. (2008)
Rhodotorula himalayensis, 3AT Roopkund Lake Shivaji et al. (2008)
Bacillus lehensis, MLB2T Leh, JK Ghosh et al. (2007)
Cryobacterium psychrotolerans, 0549T China no. 1 glacier Zhang et al. (2007)
Rhodobacter changlensis, JA139T Changla Pass HP Anil Kumar et al. (2007)
Agrococcus lahaulensis, K22-21T Lahaul-Spiti Valley Mayilraj et al. (2006e)
Dietzia kunjamensis, K30-10T Kunjam Pass, HP Mayilraj et al. (2006d)
Flavobacterium glaciei, 0499T China no. 1 glacier Zhang et al. (2006)
Kocuria himachalensis, K07-05T Spiti Valley Mayilraj et al. (2006b)
Ornithinimicrobium kibberense, K22-20T Spiti Valley Mayilraj et al. (2006c)
Psychromonas ingrahamii, 37T Arctic polar sea ice Auman et al. (2006)
Rhodococcus kroppenstedtii, K07-23T Spiti Valley Mayilraj et al. (2006a)
Actinoalloteichus spitiensis, RMV-378T Spiti Valley Singla et al. (2005)
Dyadobacter hamtensis, HHS 11T Hamta glacier Chaturvedi et al. (2005)
Flavobacterium fryxellicola, LMG 22022T Antarctic lakes Van Trappen et al. (2005)
Flavobacterium psychrolimnae, 22018T Antarctic lakes Van Trappen et al. (2005)
Pedobacter himalayensis, HHS 22T Hamta glacier Shivaji et al. (2005a)
Planococcus stackebrandtii, K22-03T Spiti Valley Mayilraj et al. (2005)
Geopsychrobacter electrodiphilus, A1T Marine sediment Holmes et al. (2004)
Flavobacterium degerlachei, LMG 21915T Antarctic lakes Van Trappen et al. (2004)
Flavobacterium frigoris, LMG 21922T Antarctic lakes Van Trappen et al. (2004)
Flavobacterium micromati, LMG 21919T Antarctic lakes Van Trappen et al. (2004)
Flavobacterium omnivorum, ZF-8T China no. 1 glacier Zhu et al. (2003)
Flavobacterium xinjiangense, ZF-6T China no. 1 glacier Zhu et al. (2003)
Oleispira antarctica, RB-8T Antarctic Yakimov et al. (2003)
Pedobacter cryoconitis, A37T Alpine glacier Margesin et al. (2003)
Flavobacterium frigidarium, A2iT Antarctica Humphry et al. (2001)
Arthrobacter flavus, CMS 19YT Antarctica Reddy et al. (2000)
Cellulophaga algicola,ACAM 630T Antarctica Bowman (2000)
Staleya guttiformis, EL-38T Ekho Lake Labrenz et al. (2000)
Sulfitobacter brevis, EL-162 T Ekho Lake Labrenz et al. (2000)
Glaciecola pallidula, ACAM 615T Antarctica Bowman et al. (1998a)
Glaciecola punicea, ACAM 611T Antarctica Bowman et al. (1998a)
Hymenobacter roseosalivarius, AA-718T Antarctic Hirsch et al. (1998)
Psychroflexus torquis, ACAM 623T Sea ice, Antarctica Bowman et al. (1998b)
Gelidibacter algens, ACAM 536 Burton Lake Bowman et al. (1997a)
Methanogenium frigidum, Ace-2T Antarctica Franzmann et al. (1997)
Methylosphaera hansonii, ACAM 549T Antarctic Bowman et al. (1997c)
Octadecabacter antarcticus, 307T Antarctica Gosink et al. (1997)
Octadecabacter arcticus, 238T Antarctica Gosink et al. (1997)
Psychrobacter glacincola, ACAM 521T Antarctica Bowman et al. (1997d)
Psychroserpens burtonensis, ACAM 188 Burton Lake Bowman et al. (1997a)

(continued)
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kibberense, K22- 20T, Rhodococcus kroppenstedtii, K07-23T, Actinoalloteichus 
spitiensis, RMV- 378T, and Planococcus stackebrandtii, K22-03T, from Himalayas 
(Ghosh et al. 2007; Mayilraj et al. 2005, 2006a, b, c, e; Singh et al. 2013; Singla 
et al. 2005).

12.2.3  Genome Sequencing of Psychrotrophic Microbes

In the last few decades, the draft genome sequencing has been done of microbes 
isolated from cold environments worldwide (Table  12.2). The whole genome 
sequences of psychrotrophic microbes are available such as Zhihengliuella sp., 
Arthrobacter agilis, Idiomarina sp., and Rheinheimera sp. isolated from Pangong 
Lake, a subglacial lake in the Himalayas (Gupta et al. 2011a, b; Mishra et al. 2018; 
Singh et  al. 2016); Arthrobacter sp., Hymenobacter sp., and Methanococcoides 
burtonii isolated from Antarctica (Allen et al. 2009; Koo et al. 2014; Sastre et al. 
2017); Cryobacterium roopkundensis, Acinetobacter sp., Paenibacillus sp., and 
Pseudomonas trivialis (Dhar et al. 2015, 2016; Gulati et al. 2015; Pal et al. 2015; 
Reddy et  al. 2014; Swarnkar et  al. 2014); Exiguobacterium sibiricum and 
Nesterenkonia sp. from Himalayas; and Arthrobacter alpines from subalpine 
regions. Along with psychrophilic whole genomes, there are many whole genomes 
of psychropiezophilic microbes available. These include Colwellia chukchiensi, 
Octadecabacter antarcticus, Cenarchaeum symbiosum, and Colwellia psychrery-
thraea isolated from sea habitats (Zhang et al. 2018; Hallam et al. 2006; Methé et al. 
2005; Vollmers et  al. 2013). The whole genome sequences of psychrophilic and 
psychrotolerant microbes help to understand about different gene responsible for 
different attributes of microbes and their adaptation at low-temperature conditions. 
Along with the presence of genes required for various basic physiology and meta-
bolic processes, the sequenced genomes of psychrotrophic microbes from the cold 
habitats also have gene related to survival under the extremely low-temperature 
conditions. The genes for various cold adaptations and cold shock proteins, the 
genes for DNA repair system, the genes for carotenoid/terpenoids biosynthesis 
pathway, and a group of chaperone proteins have been reported from different cold- 
adaptive microbes (Table 12.3).

Table 12.1 (continued)

Novel microbes Location References
Shewanella frigidimarina, ACAM 591 Antarctic sea ice Bowman et al. (1997b)
Shewanella gelidimarina, ACAM 456 Antarctic sea ice Bowman et al. (1997b)
Desulforhopalus vacuolatus, ltk10 Kysing Fjord Isaksen and Teske (1996)
Cenarchaeum symbiosum, Fosmid 4B7 Sponge symbiotic Preston et al. (1996)
Polaromonas vacuolata, 34-PT Antarctic Irgens et al. (1996)
Sphingobacterium antarcticus, 4BY Antarctica Shivaji et al. (1992)
Halobacterium lacusprofundi, ACAM 32 T Antarctic lake Franzmann et al. (1988)
Nocardiopsis antarcticus, Antarctica Abyzov et al. (1983)
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Table 12.2 Genome sequencing of psychrophilic and psychrotrophic microbes isolated from 
diverse cold habitats worldwide

Microbes Source
Size 
(Mb)

G + C 
(%) CDS References

Colwellia chukchiensi Chukchi Sea 4.04 41.9 3477 Zhang et al. (2018)
Colwellia polaris Canada 4.43 37.5 3686 Zhang et al. (2018)
Zhihengliuella sp. Pangong 

Lake
3.53 69.84 3363 Mishra et al. 

(2018)
Exiguobacterium 
oxidotolerans

Cold marine 3.03 46.80 2989 Cai et al. (2017)

Nesterenkonia sp. Permafrost 3.70 69.50 2886 Singh et al. (2017)
Arthrobacter sp. Antarctic 4.13 60.7 3616 Sastre et al. (2017)
Arthrobacter agilis Pangong 

Lake
3.60 69.79 3316 Singh et al. (2016)

Arthrobacter alpines Sikkim 4.30 60.64 4154 Kumar et al. (2016)
Microterricola viridarii Glacier 3.70 68.70 3456 Swarnkar et al. 

(2016)
Paenibacillus sp. Lahaul-Spiti 5.88 46.83 6093 Dhar et al. (2016)
Arthrobacter sp. Glacier 4.03 65. 3 4623 Kumar et al. 

(2015b)
Arthrobacter sp. Chandra Taal 3.60 58.97 3454 Kiran et al. (2015)
Paenibacillus Lahaul-Spiti 8.44 50.77 7335 Dhar et al. (2015)
Paenibacillus sp. Kunzum 

Pass
5.77 41.33 5638 Pal et al. (2015)

Pseudomonas trivialis Lahaul-Spiti 6.45 59.91 6032 Gulati et al. (2015)
Saccharomyces eubayanus Cold habitat 1.27 39.60 589 Baker et al. (2015)
Arsukibacterium ikkense Cold habitat 4.13 49.7 3605 Lylloff et al. (2015)
Clavibacter sp. Mongolia 3.12 73.5 2888 Du et al. (2015)
Acinetobacter sp. Lahaul-Spiti 4.31 40.75 4017 Swarnkar et al. 

(2014)
Cryobacterium 
roopkundensis

Roopkund 4.36 65.30 4048 Reddy et al. (2014)

Planomicrobium glaciei Chandra 
River

3.90 46.97 3934 Salwan et al. 
(2014)

Hymenobacter sp. Antarctica 5.26 60.7 4328 Koo et al. (2014)
Octadecabacter 
antarcticus

Sea ice, 
Arctic

4.81 54.60 4428 Vollmers et al. 
(2013)

Exiguobacterium 
antarcticum

Lake Fryxell 2.82 47.50 2746 Carneiro et al. 
(2012)

Idiomarina sp. Pangong 
Lake

2.59 45.50 2299 Gupta et al. 
(2011b)

Rheinheimera sp. Pangong 
Lake

4.52 46.23 3942 Gupta et al. 
(2011a)

Methanococcoides 
burtonii

Ace Lake 2.54 44.08 2406 Allen et al. (2009)

Exiguobacterium 
sibiricum

Permafrost 3.03 47.70 2981 Rodrigues et al. 
(2008)

Cenarchaeum symbiosum Marine 2.05 57.40 2017 Hallam et al. 
(2006)

Colwellia psychrerythraea Sea ice, 
Arctic

5.37 38.00 4634 Methé et al. (2005)
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Table 12.3 Gene and gene products of cold-inducible proteins from psychrophilic and psychro-
tolerant microbes

Gene
Gene 
product Description Functions References

cspA cspA-D Cold shock protein Cold adaptation Yadav (2015)
cspB capB Cold acclimation proteins Cold adaptation Yadav (2015)
yfiA pY Associated with 30S 

ribosomal subunit
Translational (A-site) 
inhibitor

Di Pietro et al. 
(2013)

cspA – RNA/ssDNA chaperone – Kaufman- 
Szymczyk et al. 
(2009)

cspG CspG Cold shock protein 
homolog

– Gualerzi et al. 
(2003)

cspI CspI Cold shock-inducible – Gualerzi et al. 
(2003)

gyrA GyrA DNA gyrase, subunit A DNA-binding subunit of 
gyrase

Gualerzi et al. 
(2003)

infA IF1 Protein chain initiation 
factor IF1

Translation initiation Gualerzi et al. 
(2003)

infC IF3 Protein chain initiation 
factor IF3

Translation initiation 
stimulates mRNA 
translation

Gualerzi et al. 
(2003)

hupB HUβ Nucleoid protein DNA supercoiling Giangrossi et al. 
(2002)

otsA OtsA Trehalose phosphate 
synthase

Critical for viability at 
low temperatures

Kandror et al. 
(2002)

otsB OtsB Trehalose phosphatase Critical for viability at 
low temperatures

Kandror et al. 
(2002)

tig Trigger 
factor

Multiple stress protein Ribosome binding Kandror et al. 
(2002)

cspE CspE RNA chaperone Transcriptional 
antiterminator

Feng et al. 
(2001)

deaD DeaD ATP-dependent RNA 
helicase

Facilitates translation Beran and 
Simons (2001)

pnp PNPase 3′-5′ exoribonuclease, 
component of the RNA 
degradosome

Cold shock protein 
required for growth at 
low temperatures

Yamanaka and 
Inouye (2001)

infB IF2 Protein chaperone, protein 
chain initiation factor IF2

Translation initiation, 
fMet-tRNA binding

Caldas et al. 
(2000)

Bc-Csp – Cold shock protein – Mueller et al. 
(2000)

cspA CspA Cold shock-inducible – Brandi et al. 
(1999)

dnaA DnaA Global transcription 
regulator

DNA binding and 
replication initiation

Atlung and 
Hansen (1999)

lpxP – Cold-inducible Lipid A synthesis Carty et al. 
(1999)

(continued)
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Table 12.3 (continued)

Gene
Gene 
product Description Functions References

Tm 
Csp

– Cold shock protein – Welker et al. 
(1999)

rbfA RbfA Cold shock adaptation 
protein

Ribosome assembly/
maturation

Bylund et al. 
(1998)

has H-NS Nucleoid protein Transcriptional repressor Mojica and 
Higgins (1997)

cspB – Cold shock-inducible – Chapot-Chartier 
et al. (1997)

Csps – Cold shock protein – Berger et al. 
(1996)

Caps – – Cold adaptation Berger et al. 
(1996)

hscA Hsc66 DnaK-like chaperone – Lelivelt and 
Kawula (1995)

hscB HscB DnaJ-like chaperone for 
HscA

– Lelivelt and 
Kawula (1995)

aceE AceE Pyruvate dehydrogenase, 
decarboxylase

– Jones and 
Inouye (1994)

aceF AceF Pyruvate dehydrogenase Transcriptional enhancer Jones and 
Inouye (1994)

nusA NusA – Transcription 
termination elongation

Jones and 
Inouye (1994)

recA RecA – Homologous 
recombination

Jones and 
Inouye (1994)

cspB – – Affects cell viability at 
low temperature

Willimsky et al. 
(1992)

12.3  Mechanisms of Adaptation of Microbes at Low 
Temperature

Survival of microbes at low temperatures aggravates scientific interest due to sev-
eral reasons, including potential applications of cold-active enzymes in diverse 
filed. Cold adaptation at low temperatures can unravel the mysteries of life science 
to know about how the machinery of life operates at extremely low temperatures. 
During the last few decades, a number of researchers from world investigations 
have been performed involving some cold-adapted microbial strains. Adaptation at 
low temperatures may be due to the role of cold shock and antifreeze proteins, role 
of cryoprotectants, maintenance of membrane fluidity, and role of hydrolytic 
enzymes (Chattopadhyay 2000, 2006; Chattopadhyay and Jagannadham 2001; Di 
Pietro et al. 2013; Horn et al. 2007; Phadtare 2012; Saxena et al. 2015; Suman et al. 
2016; Yadav et al. 2019a).

Cold shock proteins (CSPs) are a group of ubiquitously occurring proteins, 
which are believed to protect the producer organism from cold stress. These cold 
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shock proteins have been found to occur in psychrophilic/psychrotrophic bacteria 
such as Arthrobacter sulfureus, Bacillus licheniformis, Exiguobacterium undae, 
Janthinobacterium lividum, Pseudomonas stutzeri, Psychrobacter marincola, and 
Sporosarcina pasteurii (Yadav 2015). The cold acclimation proteins (Caps), another 
class of cold stress proteins, have been reported from psychrotrophic bacteria 
Arthrobacter, Exiguobacterium, Janthinobacterium, and Pseudomonas (Yadav 
et al. 2019b). Homologs of the cspA gene were detected in several Antarctic bacte-
ria. There are many cold and heat shock proteins responsible for cold adaption in 
many bacteria (Bae et al. 2000; Cairrão et al. 2003; Carty et al. 1999; Di Pietro et al. 
2013; Giangrossi et al. 2002; Lelivelt and Kawula 1995; Moll et al. 2002; Yamanaka 
et al. 1998).

The role of antifreezing proteins (AFPs) in bacterial cold adaptation has been 
reported from 11 bacterial isolates obtained from several Antarctic lakes (Gilbert 
et al. 2004). The presence of antifreezing compounds (sugars, organic acids, cryo-
protectants, amino acids, antifreezing proteins) indicates their role in the survival of 
organisms at a subfreezing temperature (Yadav 2015). Cold-tolerant Pseudomonas, 
Arthrobacter, and Sporosarcina were found to protect cytoplasmic components by 
synthesizing antifreezing compounds/proteins, sugars, cryoprotectants, and specific 
intracellular/extracellular amino acids needed for cold adaptation of the microbial 
cells and harsh conditions of freezing. The modern “omic” technologies have an 
improved understanding of the adaptation of psychrophilic microbes at low- 
temperature conditions. Cold adaptation involves various changes in bacteria due to 
downshift of temperature by cold-active enzymes, antifreezing compound produc-
tion, fatty acids configuration, accumulation of compatible osmotic solutes (e.g., 
mannitol, glycine, betaine), ice nucleating and antifreezing protein production, 
carotenoid pigment biosynthesis, and EPS biosynthesis (De Maayer et al. 2014).

12.4  Microbes-Mediated Cold Stress in Plants

The extreme environment of low temperature affects the productivity of several 
bowls of cereal and commercial crop plants. The low temperature plays a significant 
role in reducing plant growth and agricultural productivity worldwide. The psychro-
trophic microbiomes are widely distributed in the agroecosystem of low- temperature 
habitats and play a variety of roles in plant growth promotion through different 
mechanisms of biological nitrogen fixation. The psychrophilic/psychrotrophic 
microbes have capabilities to solubilize the micronutrients under the low- temperature 
conditions. The solubilization of micronutrients such as zinc, potassium, and phos-
phorus may play important role in plant growth and soil health by zinc-, potassium-, 
and phosphorus-solubilizing microbes. These cold-adapted psychrotrophic microbes 
when inoculated with crop have capabilities to promote plant growth and also help 
in the alleviation of cold stress in the plant under the cold environmental conditions. 
There are many reports on the microbial diversity of micronutrient-solubilizing 
microbes from cold habitats and their applications for mitigation of stress under the 
harsh conditions. The microbes such as Arthrobacter, Bacillus and Bacillus-derived 

A. N. Yadav et al.



237

genera, Curtobacterium, Flavobacterium, Kluyvera, Pseudomonas, and Serratia 
have been isolated and evaluated as P-solubilizing microbes which are responsible 
for the mobilization of P to plant and also play important role in adaptation and miti-
gation under the extreme cold habitats (Yadav et al. 2016a, 2017c, 2019b).

Sustainable agriculture agroecosystems require the use of different strategies to 
increase or maintain the current rate of crop and food production  (Pathak et  al. 
2014; Bainsla et al. 2018), and it is only possible to use microbial bioinoculants/
biofertilizers as plant growth promoters having diverse multifunctional PGP attri-
butes such as biological nitrogen fixation by nitrogen-fixing microbes present asso-
ciated with plants as plant microbiomes (rhizospheric, endophytic, and epiphytic) as 
well as microbes present in soil as soil microbiomes. Nitrogen is one of the major 
limiting factors for plant growth and crop yield, and microbes having the capability 
to fix nitrogen help crops to get nitrogen from the atmosphere as well as from 
soil (Fagodiya et al. 2017; Pathak et al. 2016). The use of N2-fixing microbiomes as 
biofertilizers/bioinoculants in single form and as jointly in the form of the microbial 
consortium is a sustainable method to increase plant growth and enhance crop yield 
under the normal as well as abiotic stress condition of cold stress. A variety of bio-
logical nitrogen-fixing microbes like Serratia, Rhizobium, Pseudomonas, Klebsiella, 
Herbaspirillum, Gluconoacetobacter, Enterobacter, Bacillus, Azotobacter, 
Azospirillum, Azoarcus, and Arthrobacter have been reported to fix N2 under the 
low-temperature conditions (Kumar et al. 2019; Rana et al. 2016, 2017; Verma et al. 
2015b, 2016; Yadav 2015).

The microbes produce the hormone which helps in plant growth and adaptation 
in extremely stressful habitats, e.g., stress-induced plant hormone. The psychrotro-
phic microbes can lower the level of C2H2 in the plant by a precursor 1- aminocyclo
propane- 1-carboxylate (ACC) of plant-produced ethylene. ACC deaminase produc-
ing psychrophilic/psychrotrophic microbes associated with different crops may 
play a role in regulating ethylene levels which help the plant to adapt under the cold 
stress habitats. The psychrotrophic/psychrotolerant microbial strains exhibiting 
ACC deaminase activity have been isolated, characterized, and evaluated for plant 
growth and adaption under the low-temperature conditions belonging to different 
genera such as Serratia, Rhizobium, Ralstonia, Pseudomonas, Enterobacter, 
Burkholderia, Bacillus, Azospirillum, Alcaligenes, Agrobacterium, Acinetobacter, 
and Achromobacter (Khalid et al. 2006; Verma et al. 2014, 2015b; Xu et al. 2014).

The plant growth promotion through indirect mechanism occurs when psychro-
philic and psychrotrophic microbes prevent the detrimental effects of pathogens by 
producing diverse groups of bioactive compounds such as β-1, 3-glucanase, 
Fe-chelating compounds, fluorescent pigment, cyanide production, chitinases, and 
antibiotics. The microbes having the production of hydrolytic enzymes play impor-
tant role in different industrial and agricultural processes (Rastegari et  al. 2019; 
Rana et al. 2019; Sharma et al. 2019). There are many reports on microbial biore-
sources used as biocontrol agents which are inhibitory to plant pathogens (Rana 
et al. 2018; Kumar et al. 2015a; Yadav et al. 2019a) (Table 12.4).

Biofertilizers/bioinoculants in single form or microbial consortium help in plant 
growth and soil nutrient enrichment and finally in making the nutrients available to 
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Table 12.4 Cold-adapted psychrotrophic microbes with multifarious PGP attributes for the alle-
viation of cold stress in plants

Psychrotrophic microbes P IAA Sid ACC References
Acinetobacter rhizosphaerae 785 ± 1.2 15.6 ± 1.2 + + Gulati et al. (2009)
Aeromonas hydrophila 31.5 ± 1.8 21.4 ± 1.0 + − Yadav et al. (2015a)

Arthrobacter methylotrophus 55.9 ± 1.4 21.4 ± 1.3 + + Verma et al. (2015c)
Arthrobacter sulfonivorans 25.6 ± 1.2 27.6 ± 0.7 + − Yadav et al. (2015b)

Bacillus altitudinis 43.9 ± 0.7 6.6 ± 1.0 − − Verma et al. (2015c)

Bacillus amyloliquefaciens 39.4 ± 2.4 14.2 ± 1.0 + − Yadav et al. (2015a)
Bacillus aryabhattai 45.6 ± 1.0 15.6 ± 0.7 − − Verma et al. (2015c)

Bacillus firmus 35.2 ± 3.3 35.2 ± 1.0 + + Yadav et al. (2015b)

Bacillus licheniformis 19.2 ± 1.0 13.2 ± 1.0 + Yadav et al. (2016a)
Bacillus pumilus 36.1 ± 0.8 32.3 ± 1.2 + − Yadav et al. (2015b)
Bacillus subtilis 19.8 ± 0.5 27.7 ± 0.9 + + Yadav et al. (2015b)

Bacillus subtilis CKS1 + − − − Kumar et al. (2015a)
Bordetella bronchiseptica 48.6 ± 0.9 15.2 ± 1.1 + − Verma et al. (2015c)

Cellulosimicrobium 
cellulans

15.5 ± 1.1 18.4 ± 0.8 − + Yadav et al. (2015b)

Desemzia incerta 47.5 ± 1.2 28.6 ± 1.0 + − Yadav et al. (2015b)

Flavobacterium 
psychrophilum

66.0 ± 0.7 11.4 ± 1.5 + + Verma et al. (2015c)

Kocuria kristinae 64.0 ± 1.0 20.4 ± 1.1 + − Verma et al. (2015c)

Paenibacillus tylopili 48.4 ± 2.4 39.4 ± 2.4 + − Yadav et al. (2016a)

Pantoea agglomerans 22.0 ± 1.4 43.9 ± 1.1 + − Yadav et al. (2015a)

Pantoea dispersa 44.5 ± 0.2 4.4 ± 0.5 + − Selvakumar et al. 
(2008)

Providencia rustigianii 131.7 ± 1 51.0 ± 2.0 + + Yadav et al. (2015a)

Pseudochrobactrum 
kiredjianiae

− + + + Qin et al. (2017)

Pseudomonas cedrina 182.6 ± 1 9.99 ± 1.0 + + Yadav et al. (2015a)
Pseudomonas fluorescens 90.2 ± 1.7 9.4 ± 0.2 + − Mishra et al. (2011)
Pseudomonas fluorescens 768.3 − − − Gulati et al. (2008)

Pseudomonas fragi 45.5 ± 1 11.3 ± 0.5 + + Yadav et al. (2015a)

Pseudomonas fragi 
CS11RH1

514.97 2.69 ± 0.3 − − Selvakumar et al.
(2009a)

Pseudomonas geniculata 45.0 ± 1.2 66.7 ± 0.5 + − Verma et al. (2015c)
Pseudomonas jessani 7.9 ± 0.1 16.2 ± 0.3 + − Mishra et al. (2011)

Pseudomonas koreensis 97.3 ± 1.9 15.8 ± 0.3 + − Mishra et al. (2011)

Pseudomonas lurida 69.7 ± 1.5 9.9 ± 0.2 + − Mishra et al. (2011)

Pseudomonas lurida 
M2RH3

− 12.58 ± 0.1 + Selvakumar et al. 
(2011)

Pseudomonas lurida NARs9 + + + − Mishra et al. (2009)
Pseudomonas moraviensis 44.2 ± 2.1 154.6 ± 1. + + Yadav et al. (2015a)

(continued)
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the crops. Extensive work on the biofertilizers/bioinoculants is available (Kour et al. 
2017; Srivastava et  al. 2013; Yadav et  al. 2018a). There are many reports that 
microbes mediated mitigation of cold stress for the plant growth and yield of differ-
ent commercial crops (Fernandez et al. 2012; Ghorbanpour et al. 2018; Mishra et al. 
2008, 2009, 2011; Qin et al. 2017; Selvakumar et al. 2008; 2009a, b, 2011, 2013; 
Srinivasan et al. 2017; Verma et al. 2015c; Wang et al. 2016; Yadav et al. 2015c, d, 
2016b) (Table 12.5).

The cold-tolerant Pseudomonas strains (RT5RP2 and RT6RP) have been iso-
lated from the rhizoplane of wild grass from Rudraprayag District of Uttarakhand 
(India) by Selvakumar et al. (2013). Both isolates showed growth at a temperature 
ranging between 4 and 30 °C. Kinetics of phosphate solubilization by the bacterial 
strains showed a nonlinear regression of the rate of P solubilization, which fitted 
best in the power model, and showed a declining trend across three different tem-
peratures. In a pot experiment, bacterization of lentil seeds with Pseudomonas 
strains combined with URP as a sole source of phosphorus showed an increase in P 
uptake by the plants compared to the application of rock phosphate alone. Wang 
et al. (2016) studied the effect of a consortium of Bacillus cereus AR156, Bacillus 
subtilis SM21, and Serratia sp. XY21 on chilling tolerance in tomato seedlings. The 
study indicated the increase in the survival rates in treated tomato seedlings six 
times more in comparison to the untreated ones. Further, the accumulation of the 
MDA, as well as H2O2, was also enhanced with the onset of the chilling stress.

A psychrotrophic Pseudochrobactrum kiredjianiae A4 has been isolated from 
cave soil by Qin et al. (2017). The strain was screened for different plant growth- 
promoting traits. The strain showed siderophore, IAA production, and 1- aminocycl
opropane- 1-carboxylate (ACC) deaminase activity. Further, the strain also inhibited 
the growth and development of Rhizoctonia cerealis, Fusarium graminearum, 
Magnaporthe grisea, Fusarium oxysporum, and Botrytis cinerea under in vitro con-
ditions. The isolate improved the physiological parameters and reduced the defense 
enzymes activities of wheat (Triticum aestivum L.) in the presence of R. cerealis 

Table 12.4 (continued)

Psychrotrophic microbes P IAA Sid ACC References
Pseudomonas poae 768.3 − − − Gulati et al. (2008)
Pseudomonas putida 169.9 ± 3.0 10.1 ± 0.2 + − Mishra et al. (2011)

Pseudomonas reactans 23.23 ± 1 61.4 ± 0.5 + − Yadav et al. (2015a)

Pseudomonas sp. 15.7 ± 1.82 21.8 ± 0.2 + − Mishra et al. (2009)

Pseudomonas 
vancouverensis

66.3 8.33 + − Mishra et al. (2008)

Pseudomonas trivialis 718.0 − − − Gulati et al. (2008)
Psychrobacter frigidicola 20.83 ± 1 65.9 ± 1.0 + + Yadav et al. (2015a)

Rahnella sp. 805.0 ± 1. 24.5 ± 1.5 + + Vyas et al. (2010)
Sanguibacter antarcticus 20.1 ± 0.1 9.3 ± 0.9 + + Yadav et al. (2015b)
Sanguibacter suarezii 18.1 ± 0.5 76.8 ± 0.3 + + Yadav et al. (2015a)
Stenotrophomonas 
maltophilia

55.7 ± 0.5 66.1 ± 0.7 + + Verma et al. (2015c)
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Table 12.5 Microbes-mediated alleviation of cold stress in plants

Microbes Crop Function References
Azospirillum brasilense Wheat Dry weight Turan et al. 

(2012)
Bacillus megaterium Wheat Dry weight Turan et al. 

(2012)
Bacillus subtilis Wheat Dry weight Turan et al. 

(2012)
Bacillus 
amyloliquefaciens

Wheat Cold alleviation Verma et al. 
(2015a)

Burkholderia 
phytofirmans P

Grapevine Physiological activity Barka et al. 
(2006)

Exiguobacterium 
acetylicum

Pea Germination Selvakumar et al. 
(2009b)

Bacillus subtilis Tomato Biomass enhancement Kumar et al. 
(2015a)

Pseudomonas lurida Wheat Nutrient uptake Selvakumar et al. 
(2011)

Pseudomonas sp. Lentil P-uptake Selvakumar et al. 
(2013)

Pseudomonas 
vancouverensis

Wheat Germination Mishra et al. 
(2008)

Burkholderia 
phytofirmans

Grapevine Carbohydrate metabolism Fernandez et al. 
(2012)

Microbial consortiuma Rice Germination, growth, enzymatic 
activity, biomass enhancement

Kakar et al. 
(2016)

Microbial consortiumb Tomato Soluble sugar, proline, antioxidant 
defense system, stress-related gene 
activation

Wang et al. 
(2016)

Pantoea dispersa Wheat Growth and nutrient uptake Selvakumar et al. 
(2008)

Pseudochrobactrum 
kiredjianiae

Wheat Physiological parameters Qin et al. (2017)

Pseudomonas 
frederiksbergensis

Tomato Proline content, antioxidant 
enzymes

Subramanian 
et al. (2016)

Pseudomonas migulae Green 
gram

Biomass, chlorophyll content, and 
nitrate reductase activity

Suyal et al. 
(2014)

Pseudomonas sp. Wheat Chlorophyll, anthocyanin, 
physiologically Fe

Mishra et al. 
(2011)

Pseudomonas 
vancouverensis

Tomato Reduced electrolyte leakage and 
lipid peroxidation in leaf tissues

Subramanian 
et al. (2016)

Serratia nematodiphila Pepper Improved growth Kang et al. 
(2015)

Sphingomonas faeni Finger 
millet

Shoot, root length, biomass, 
antioxidant activity

Srinivasan et al. 
(2017)

Sphingomonas faeni Foxtail 
millet

Shoot, root length, biomass, 
antioxidant activity

Srinivasan et al. 
(2017)

Trichoderma 
harzianum

Tomato Growth, relative water content, 
electrolyte leakage, proline content

Ghorbanpour 
et al. (2018)

Microbial consortiuma [Bacillus amyloliquefaciens and Brevibacillus laterosporus]
Microbial consortiumb [Bacillus cereus, B. subtilis, and Serratia sp.]
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under greenhouse conditions. Statistical analysis of measured parameters well 
revealed that A4-inoculated treatment alleviated pathogenic stress in wheat plants. 
In the study of Ghorbanpour et al. (2018), the effects of Trichoderma harzianum 
AK20G strain (Th) has been demonstrated as a biocontrol agent on the tolerance of 
tomato (Solanum lycopersicum L.) plants under chilling stress. In the study, the 
tomato plants were exposed to low temperatures after treating them with Trichoderma 
harzianum AK20G strain (Th), and their physiological, biochemical, and molecular 
responses were investigated at different time courses. Results clearly reported the 
alleviation of the adverse effects of the cold stress in treated plants as shown by 
enhancement of photosynthetic as well as the growth rates. In treated plants, the 
reduction in lipid peroxidation rate and electrolyte leakage was evident, while incre-
ment in leaf water content and proline accumulation was observed. Further, the gene 
expression analysis showed the improvement in expression of TAS14 and P5CS 
with time as the cold stress continued.

12.5  Conclusion and Future Prospect

The psychrotrophic microbes have attracted the attention of the scientific commu-
nity due to their ability to promote plant growth and soil health under cold stress 
conditions. Due to the ability to promote crop growth under low-temperature condi-
tion, the psychrotrophic microbes have potential biotechnological applications for 
sustainable agriculture. The cold-adapted microbes promote plant growth under the 
extremely low-temperature condition by both direct and indirect plant growth- 
promoting mechanisms. The microbiomes from cold habitats having the capability 
to solubilize micronutrients, fix the atmospheric nitrogen, and produce different 
phytohormones are included under the direct plant growth promotion strategies, 
whereas psychrotrophic microbes having the capability to produce Fe-chelating 
compounds, cyanide, chitinases, and antibiotics are included under the indirect 
plant growth promotion mechanisms. Cold-tolerant microorganisms are widely dis-
tributed in the agroecosystem and play a variety of roles, extending their role in the 
alleviation of cold stress in plants. Though most research work conducted so far has 
largely focused on microbiomes from natural habitats as well as psychrophilic/psy-
chrotolerant microbes, it is a welcome sign that many agriculturally important 
resourceful microbes are being described from various parts of the Earth. The 
genomes of more psychrophilic and psychrotolerant microbes sorted out from cold 
habitats should be sequenced to understand the adaptations, survival, and growth of 
these microbiomes under these extremely harsh conditions of low temperature.
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Abstract
Drought is one of the major abiotic stresses accepted as the main constraint for 
loss of the crop yield worldwide. Further, problems are created by nutrient limi-
tations particularly low phosphorus (P). Soils though have higher concentration 
of total phosphorus but are actually deficient in available orthophosphate due to 
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which modern agricultural systems are highly dependent on chemical fertilizers. 
These chemical fertilizers are neither eco-friendly nor economically feasible and 
sustainable. Biotechnology offers a number of sustainable solutions to mitigate 
these problems by using plant growth-promoting (PGP) microbes. The PGP 
microbes colonize the rhizospheric region, or they may be endophytic or epi-
phytic and are beneficial for plant growth and adaptation to abiotic stresses. 
These microbes help the crops to tolerate drought conditions by different mecha-
nisms including the production of exopolysaccharide (EPS), various phytohor-
mones, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and a number of 
volatile compounds, enhancement of nutrient uptake, induction of the accumula-
tion of osmolytes and antioxidants, upregulation or downregulation of the stress- 
responsive genes, or bringing about of alterations in root morphology. Inoculating 
plants with PGP microbes can increase tolerance against abiotic stresses such as 
drought, salinity, and metal toxicity. Systematic identification of bacterial strains 
providing cross-protection against multiple stressors would be highly valuable 
for agricultural production in changing environmental conditions. Among the 
PGP microbes, P-solubilizing microbes play an important role in plant growth 
and soil health, which belong to diverse genera such as Arthrobacter, Azospirillum, 
Azotobacter, Bacillus, Burkholderia, Enterobacter, Klebsiella, Lysinibacillus, 
Paenibacillus, Pseudomonas, Serratia, and Streptomyces. The present chapter 
deals with biodiversity of P-solubilizing drought-tolerant microbes, mechanisms 
of plant growth promotion, and mitigation of drought stress in the plants.

Keywords
Biodiversity · PGPR · Drought · P solubilizers · ACC deaminase

13.1  Introduction

There are a number of factors which are leading to climate change such as urbaniza-
tion, industrialization and agriculture is one of the most exposed sectors to such 
changes (Bhatia et al. 2013a; Kumar et al. 2017). Increasing human population has 
further added to the world’s food security concern (Bainsla et al. 2018; Pathak et al. 
2014). Additionally, the use of chemical fertilizers is also affecting the environ-
ment (Fagodiya et al. 2017b). The pressure of population is increasing at such an 
alarming rate that there is a critical need to enhance agricultural productivity in an 
eco-friendly manner (Bhatia et al. 2015; Mukherjee et al. 2018). Agriculture is one 
of the most exposed sectors to various climatic changes  (Kumar et  al. 2016a; 
Bhattacharyya et al. 2018). One of the major hurdles to increase the yield and pro-
ductivity is the exposure of the crops to the drought conditions in different parts of 
the world (Naveed et al. 2014; Vinocur and Altman 2005). Drought is one of the 
major abiotic stresses acting as the limiting factor for  agricultural productivity 
worldwide (Mina et al. 2017; Tomer et al. 2015). It has been estimated that there is 
approximately 9–10% reduction in the national production of the cereals due to the 
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drought conditions (Lesk et  al. 2016). Thus, there is a necessity to find ways to 
combat water deficit conditions and their influence on food security (Alexandratos 
and Bruinsma 2012), and particularly there is a need to improve the tolerance of the 
plants to drought so that they can grow under conditions of water stress (Mancosu 
et al. 2015; Sachs et al. 2010). However, plants have developed different mecha-
nisms to survive under drought conditions such as by making alterations in the 
morphology, osmotic adjustments, optimization of water resources, antioxidant sys-
tems which greatly lessen the adverse effects of reactive oxygen species  (Bhatia 
et al. 2013c), and induction of an array of stress-responsive genes and various pro-
teins (Farooq et al. 2009), and one of the approaches that have been used for the 
mitigation of the adverse effects of the water stress conditions is the development of 
cultivars which can tolerate drought conditions (Barrow et  al. 2008; Eisenstein 
2013).

No doubt, conventional plant breeding techniques have surely led to the growth 
of high-yielding, drought-tolerant crop varieties, but there are a number of disad-
vantages of using this approach as it is time-consuming and labor intensive, and 
even using this approach can lead to the loss of some desirable traits from the host’s 
gene pool, and breeding techniques provide benefits to a single crop species which 
are non-transferrable to other crop systems (Eisenstein 2013; Philippot et al. 2013). 
So, the major challenge is to evolve efficient, cost-effective, easily adaptable 
approaches for managing abiotic stress conditions. Studies up to date suggest that 
microorganisms can prove very efficient in supporting the growth of the plants dur-
ing the water stress conditions. Plant-associated beneficial microbes are recently 
attaining greater attention as they play an important role in enhancing the productiv-
ity of the crops and also providing resistance against the stress conditions and are 
known as plant growth-promoting microbes (PGPMs) (Glick et al. 2007; Yang et al. 
2009). Among PGPMs, the rhizospheric biology is the most studied one with a 
focus on rhizobacteria known as plant growth-promoting rhizobacteria (PGPR). 
The PGPR contribute to mitigating the stress conditions through diverse mecha-
nisms (Hayat et  al. 2010; Mapelli et  al. 2013). The PGPR directly enhance the 
uptake of the micronutrients, through phytohormone production; fixing of atmo-
spheric nitrogen; P, K, and Zn solubilization; or indirectly stimulating the immune 
system against various fungal pathogens by production of various compounds, 
enzymes, siderophores, antibiotics, and osmolytes or improving either texture or 
structure of the soil (Mapelli et al. 2012).

Ethylene, known as the stress hormone, is the most important plant hormone 
whose synthesis is accelerated whenever there are stress signals such as drought, 
high temperature, floods, the presence of any chemical or metals, mechanical 
wounding, and pathogenic infection. Ethylene plays a very important role in regu-
lating various physiological processes including differentiation of the tissues, devel-
opment of the lateral buds, emergence of the seedlings, development as well as the 
elongation of the root hair, synthesis of anthocyanins, ripening and degreening of 
the fruits, and production of various volatile compounds which are responsible for 
aroma in fruits if present in low concentrations but when present in high concentra-
tions prove inhibitory causing damages to the plants leading to epinasty, 
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development of the shorter roots, and premature senescence. As the drought condi-
tions start appearing, the synthesis of ethylene is stimulated which then inhibits the 
germination of the seeds, elongation of the roots, and nodulation of the legumes 
(Ahamd et  al. 2017). Some PGPR possess an enzyme, 1-aminocyclopropane-1- 
carboxylate (ACC) deaminase which cleaves the precursor 1-aminocyclopropane- 
1-carboxylate (ACC) into α-ketoglutarate before it can get converted into ethylene, 
ultimately lowering the ethylene levels in plants during the stress conditions (Glick 
2004); though there are few reports on the presence of ACC deaminase in PGPR, it 
plays an important role in supporting the growth as well as the development of the 
plants by reducing the levels of the ethylene produced during the biotic or the abi-
otic stress (Ali et al. 2014). The enzyme has been detected in a limited number of 
bacteria and plays a significant role in sustaining plant growth and development 
under biotic and abiotic stress conditions by reducing stress-induced ethylene pro-
duction in plants. In the past few years, bacteria that have been reported to provide 
tolerance to host plants under different abiotic stress environments include 
Achromobacter, Azospirillum, Bacillus, Burkholderia, Enterobacter, 
Herbaspirillum, Methylobacterium, Microbacterium, Mitsuaria, Paenibacillus, 
Pantoea, Pseudomonas, and Rhizobium (Curá et al. 2017; Grover et al. 2011; Huang 
et al. 2017; Niu et al. 2017; Shah et al. 2017).

Applied microbiology and biotechnology have opened up new possibilities for 
potential applications of beneficial microbes for agriculture, industry, and medicine. 
An understanding of microbial diversity from drought habitats and its potential 
application in agriculture is important and useful for plant growth, protection, and 
yield under the rainfed environmental conditions. The drought-tolerant microbes 
attracted the attention of the scientific community due to their ability to promote 
plant growth and adaptation under the abiotic stress of drought. Drought-tolerant 
microbes with novel secondary metabolite and bioactive compound production 
ability will be applicable in a broad range of industrial, agricultural, and medical 
processes. The microbes with multifunctional PGP attributes could be valuable in 
agriculture as bio-inoculants and biocontrol agents and for biofortification of micro-
nutrients. The present book chapter describes the method of isolation of drought- 
tolerant microbes from diverse habitats, characterization, identification, biodiversity, 
and biotechnological applications in agriculture for the alleviation of drought stress 
in plants.

13.2  Characterization of Drought-Tolerant Microbes

Drought stress is one of the major problems of the agriculture sector (Malyan et al. 
2016b). It greatly affects the productivity of the crops especially in arid and semi-
arid regions of the world. Microbes will play a potent role in managing the stress; 
once these beneficial microbes are isolated, their various properties such as their 
potential to tolerate extremities and their genetic diversity are completely studied, 
and methods for their use in agriculture production are developed. Further, inoculat-
ing the plants with microbes possessing multifunctional PGP attributes will also 
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help the plants in arid or semiarid regions to overcome drought. A schematic and 
graphical reorientation has been given in Fig. 13.1 for the characterization, identifi-
cation, and potential applications of drought-tolerant microbes.

13.2.1  Isolation and Enumeration of Drought-Tolerant Microbes

The culturable microbes from soil and rhizospheric soil can be isolated through 
enrichment techniques using the standard serial dilution plating methods employing 
different growth media for different groups of microbes, e.g., nutrient agar for het-
erotrophic microbes, King’s B agar for Pseudomonas sp., Congo Red yeast manni-
tol  agar for Rhizobium, Jensen N2-free agar for N2-fixing microbes, ammonium 

Fig. 13.1 A schematic representation of the isolation, characterization, identification, and poten-
tial application of drought-tolerant microbes
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mineral salt agar for methylotrophs, tryptic soy agar for Arthrobacter, soil extract 
agar for soil-specific and niche-specific microbes, Luria-Bertani agar for endophytic 
microbes, and potato dextrose agar for fungi (Verma et al. 2017b). Among different 
groups of microbes, the bacteria members of Firmicutes have been reported as most 
dominant worldwide, as they can survive in very extreme environments due to their 
ability to form endospores under the unfavorable conditions. The bacterial member 
of phylum Firmicutes such as Bacillus and Bacillus-derived genera (BBDG) can be 
isolated using heat enrichment technique. A selective enrichment technique using 
0.25 M and 0.75 M sodium acetate buffer with LB broth and T3 agar can be employed 
for isolation of Bacillus thuringiensis (Yadav et al. 2015d).

For isolation of drought-tolerant endophytic microbes, the roots, shoots, and 
seeds should be washed in running water to remove adhering soil and surface steril-
ized by dipping in 0.1% of mercuric chloride for 5 min following 2% of sodium 
hypochlorite for 10 min. The root, stem, and seed of selected crops can be cut into 
1 cm pieces and placed onto Luria-Bertani agar, nutrient agar, modified Dobereiner 
medium, and yeast extract mannitol agar. The drought-tolerant epiphytic microbes 
can be isolated from the phyllosphere of selected plants. Plant leaves (3 g) can be 
agitated at 150 rpm at ambient temperature for 2 h in 500 mL Erlenmeyer flasks 
containing 25  g of glass beads and 50  mL of phosphate buffer. After agitation, 
appropriate dilutions of the flask contents can be plated onto a different medium. 
Imprint method can be also used to isolate epiphytic microbes (Holland et al. 2000).

The plant microbiomes (epiphytic, endophytic, and rhizospheric) and microbes 
from a soil sample collected from the arid and semiarid region can be isolated using 
different growth media as in its original constitutes and with low water potential 
with polyethylene glycol (PEG-8000) for isolation of natural and putative drought- 
tolerant microbes, respectively. Along with putative drought-tolerant microbes, the 
polyextremophiles (microbes with more than one abiotic stress properties) can be 
isolated from diverse habitats using two or more abiotic stress conditions (Yadav 
2015). The plates may be incubated at 4 °C–50 °C (psychrophilic, mesophilic, and 
thermophilic drought-tolerant microbes), and the population may be counted after 
3–20 days (fast-, medium-, and slow-growing microbes). Colonies that appear may 
be purified by repeated streaking to obtain distinct pure colonies using respective 
growth medium plates. The pure cultures may be maintained at 4 °C as slants and 
glycerol stock (20%) at –80 °C for further use.

13.3  Molecular Characterization

The molecular diversity analysis of drought-tolerant microbes may be done using 
DNA isolation, quantification, PCR amplification, amplified rDNA restriction anal-
ysis (ARDRA) with different restriction enzymes, clustering analysis using the soft-
ware NTSYS-2.02e package (numerical taxonomy analysis program package, 
Exeter Software, USA), conserved region gene sequencing, BLAST analysis, and 
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finally taxonomical affiliation analysis using MEGA software. The genomic DNA 
should be extracted by the different methods. The amount of DNA extracted should 
be electrophoresed on 0.8% agarose gel. Amplification of the 16S rRNA gene 
(Archaea and Bacteria) and ITS gene sequences (Fungi) should be done by using 
the universal primers. The amplification conditions for Archaea (Yadav et  al. 
2015c), Bacteria (Yadav et al. 2015b), and Fungi (Yadav et al. 2018c) may be used 
for 100 μL of PCR reactions. The PCR-amplified 16S rDNA should be purified by 
QIA quick PCR product purification kit (Qiagen). The 100 ng purified PCR prod-
ucts may be digested separately with different restriction endonucleases (such as 
Alu I, Hae III, and Msp I). The clustering analysis may be done using the software 
NTSYS-2.02e package (numerical taxonomy analysis program package, Exeter 
Software, USA), and similarity among the isolates should be calculated by Jaccard’s 
coefficient. PCR-amplified 16S rRNA and ITS genes should be purified and 
sequenced using universal primers. 16S rRNA and ITS gene sequences should be 
analyzed using codon code aligner v.4.0.4. 16S rRNA and ITS gene sequences 
should be aligned to those of closely related microbial species available at GenBank 
database using BLASTn program. Microbial isolates may be identified based on a 
percentage of sequence similarity (≥ 97%) with that of a prototype strain sequence 
in the GenBank. The phylogenetic tree should be constructed on the aligned datas-
ets using the neighbor-joining method implemented in the program MEGA 
software.

13.4  Characterization of Microbes for PGP Attributes

To know the plant growth-promoting ability and other agricultural and biotechno-
logical applications of drought-tolerant microbes, the purified microbes should be 
screened qualitatively for direct PGP attributes which include biological N2 fixation 
(Boddey et al. 1995); production of phytohormones indole-3-acetic acid (Bric et al. 
1991), gibberellic acid (Brown and Burlingham 1968), and ACC deaminase 
(Jacobson et al. 1994); and solubilization of phosphorus (Pikovskaya 1948), potas-
sium (Hu et al. 2006), and zinc (Fasim et al. 2002). The microbes should be also 
screened qualitatively  for indirect PGP attributes which include production of 
ammonia (Cappucino and Sherman 1992), HCN (Bakker and Schippers 1987), sid-
erophores (Schwyn and Neilands 1987), and hydrolytic enzymes (Yadav et  al. 
2016b) and biocontrol against different fungal pathogens (Sijam and Dikin 2005). 
After qualitatively screening, the selected drought-tolerant microbes with PGP attri-
butes should be quantitatively screened for N2-fixing attribute by using the acety-
lene reduction assay (ARA) (Han and New 1998), P solubilization (Mehta and 
Nautiyal 2001), K solubilization (Verma et al. 2016a), and IAA production (Patten 
and Glick 2002). The selected drought-tolerant microbes with multifunctional PGP 
attributes may be evaluated under the controlled and natural conditions for their 
ability of plant growth promotion and alleviation of drought stress in crops.
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13.5  Biodiversity and Distributions of Drought-Tolerant 
Microbes

Different groups of microbes have been reported as drought tolerant, and polyex-
tremophiles associated with plants and from diverse habitats which belong to all 
their microbial domains Archaea, Bacteria, and Eukarya, which included different 
phyla mainly Acidobacteria, Actinobacteria, Ascomycota, Bacteroidetes, 
Basidiomycota, Euryarchaeota, Firmicutes, Mucoromycota, and Proteobacteria. 
The phylum Proteobacteria was further grouped as α-, β-, γ-, and δ-Proteobacteria. 
Overall the distribution of microbes varied in all bacterial phyla; Proteobacteria 
was most dominant followed by Firmicutes and Actinobacteria (Fig 13.2).

On review of different extreme drought environments, it was found that eight 
different phyla have been sorted out belonging to the different domains of Archaea, 

Fig. 13.2 Phylogenetic tree showing the relationship among different groups of microorganisms 
reported as drought tolerant from diverse habitats
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Bacteria, and Fungi (Fig 13.3). The more than 156 distinct species from different 
genera such as Achromobacter, Acinetobacter, Arthrobacter, Aspergillus, 
Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobacter, Frankia, Glomus, 
Herbaspirillum, Methylobacterium, Paenibacillus, Penicillium, Piriformospora, 
Providencia, Pseudomonas, Rhizobium, Rhodococcus, Serratia, and Sinorhizobium 
have been reported from drought habitats and characterized for their PGP attributes 
and finally evaluated for alleviation of drought stress in different crops (Fig. 13.4).

Fig. 13.2 (continued)
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Fig. 13.4 Distribution and abundance of different predominant genera of drought-tolerant 
microbes

Fig. 13.3 The abundance of drought-tolerant microbes belonging to diverse phyla reported from 
diverse habitats
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The drought-tolerant microbes have been sorted out from different sources and 
have been applied for plant growth promotion and alleviation of drought stress in 
the form of microbial strains, microbial consortium, as well as biofertilizers and 
biocontrol agents for replacement of chemical fertilizers as eco-friendly resources. 
On review of different research on microbial diversity of drought-tolerant microbes, 
it was found that among different domains and phyla, the drought-tolerant microbes 
belonging to different genera have been sorted out and characterized for PGP under 
abiotic stress of drought; e.g., the 11 distinct species belong to 9 genera, namely, 
Arthrobacter, Brachybacterium, Brevibacterium, Frankia, Kocuria, Microbacterium, 
Micrococcus, Rhodococcus, and Zhihengliuela of phylum Actinobacteria; the 5 dis-
tinct species belong to 2 genera Flavobacterium and Sphingobacterium of phylum 
Bacteroidetes; the 21 distinct species belong to 12 genera, namely, Haloarcula, 
Halobacterium, Halococcus, Haloferax, Halolamina, Halosarcina, Halostagnicola, 
Haloterrigena, Natrialba, Natrinema, Natronoarchaeum, and Pyrococcus of phy-
lum Euryarchaeota; the 27 distinct species belong to 6 genera Bacillus, Brevibacillus, 
Clostridium, Paenibacillus, Staphylococcus, and Streptococcus of phylum 
Firmicutes; the 22 distinct species belong to 13 genera Acetobacter, Agrobacterium, 
Allorhizobium, Azorhizobium, Azospirillum, Bradyrhizobium, Brevundimonas, 
Ensifer, Mesorhizobium, Methylobacterium, Phyllobacterium, Rhizobium, and 
Sinorhizobium of phylum α-Proteobacteria; the 11 distinct species belong to 10 
genera Achromobacter, Alcaligenes, Azoarcus, Burkholderia, Delftia, Duganella, 
Herbaspirillum, Mitsuaria, Ralstonia, and Variovorax of phylum β-Proteobacteria; 
and 40 distinct species belong to 19 genera Acinetobacter, Aeromonas, Azotobacter, 
Citrobacter, Cronobacter, Enterobacter, Erwinia, Haererehalobacter, Halomonas, 
Klebsiella, Pantoea, Proteus, Providencia, Pseudomonas, Psychrobacter, 
Raoultella, Serratia, Stenotrophomona, and Xanthomonas of phylum 
γ-Proteobacteria.

Microbes have been reported by both culture-dependent and culture-independent 
approaches. It is possible to assess only a small fraction of the microbial diversity 
associated with plants using the isolation methods described above because few 
microbial species can be cultivated using traditional laboratory methods. The sizes 
of microbial communities as determined using culture-independent methods might 
be 100–1000-fold larger than communities uncovered via traditional isolation. 
Many novel drought- and heat-tolerant microbes have been sorted out from diverse 
low water-deficient habitats and microbiomes (epiphytic, endophytic, and rhizo-
spheric) from plants growing in drought stress conditions. There are very few 
reports for niche-specific microbes, but there are many reports on niche specificity 
of microbes from different extreme habitats (Saxena et  al. 2016b; Yadav et  al. 
2016b, 2015a, 2017e). Among different genera, the most predominant are 
Achromobacter, Acinetobacter, Allorhizobium, Arthrobacter, Aspergillus, 
Azospirillum, Bacillus, Burkholderia, Enterobacter, Frankia, Glomus, 
Methylobacterium, Paenibacillus, Penicillium, Phyllobacterium, Piriformospora, 
Pseudomonas, Rhizobium, Stenotrophomonas, and Streptococcus (Fig. 13.5).

Drought is among one of the major abiotic stress factors responsible for the 
decrease in the yield of the crops in the world with the population increasing day by 
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Fig. 13.5 Distribution of predominant genera of drought-tolerant microbes belonging to diverse 
phyla reported from diverse habitats
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day. Further, problems are caused by the limitations of the nutrients particularly 
phosphorus due to which dependency on phosphate fertilizers is increasing. The 
main reason for using phosphate fertilizers is the insolubility of phosphorus and its 
unavailability to the plants. But using these phosphate fertilizers is not eco-friendly 
and safe. Thus, biotechnology offers a number of ways to alleviate these problems 
through the use of P-solubilizing drought-tolerant microbes. During drought, the 
phosphatase activity in soil could decrease and accumulation of phosphorus is 
expected. There are a number of reports on mitigation of the adverse effects of the 
drought by addition of PGP microbes (Dimkpa et al. 2009; Saxena et al. 2016a; 
Verma et al. 2014, 2016b; Yang et al. 2009). Chowdhury et al. (2009) isolated and 
characterized drought-tolerant microbes from plant Lasiurus sindicus, a perennial 
grass, endemic to the Thar Desert of Rajasthan, India. The majority of sequences 
belonged to Gram-positive bacteria, Actinobacteria being the most predominant 
one, closely followed by Firmicutes. Sandhya et al. (2009) isolated EPS-producing 
fluorescent pseudomonads from alfisols, vertisols, inceptisols, oxisols, and aridisols 
of different semiarid millet-growing regions of India. The selected microbes 
were screened in vitro for drought tolerance in trypticase soy broth supplemented 
with different concentrations of polyethylene glycol (PEG-6000). Out of 81 iso-
lates, 26 could tolerate the maximum level of stress (−0.73 MPa) and were moni-
tored for the number of EPS produced under the maximum level of water stress. The 
strain Pseudomonas putida GAP-P45, isolated from alfisol of sunflower rhizo-
sphere, showed the highest level of EPS production under water stress conditions. 
In another study, Sandhya et al. (2010) reported five strains of Pseudomonas which 
were drought tolerant simultaneously solubilizing phosphorus and also possessing 
other plant growth-promoting attributes including the production of gibberellins, 
IAA, and siderophores and helped the inoculated maize to tolerate drought by influ-
encing biochemical and physiological characteristics of the seedlings.

Arzanesh et al. (2011) demonstrated the increase in yield of wheat by inoculation 
with Azospirillum sp. under drought stress. The study by Vardharajula et al. (2011) 
reported Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus thuringiensis, 
Paenibacillus favisporus, and Bacillus subtilis as drought tolerant. Ali et al. (2014) 
screened 32 fluorescent Pseudomonas sp. for drought tolerance isolated from rhizo-
spheric and non-rhizospheric soils of different crops using polyethylene glycol 
6000 (PEG 6000). Nine isolates could tolerate 15% PEG which  were further 
screened for ACC deaminase activity, and only Pseudomonas fluorescens (SorgP4) 
showed ACC deaminase activity and also IAA, siderophore, and HCN production 
as well as the solubilization of phosphorus.

The diversity of plant growth-promoting bacteria was investigated from wheat 
grown in different sites in the central zone of India by Verma et al. (2014). Epiphytic, 
endophytic, and rhizospheric bacteria were isolated using different growth media. 
Bacterial diversity was analyzed through amplified ribosomal DNA restriction anal-
ysis (ARDRA) using three restriction enzymes Alu I, Hae III, and Msp I which led 
to the grouping of 348 isolates into 24–29 clusters at >75% similarity index. 16S 
rRNA gene-based phylogenetic analysis revealed that 134 strains belonged to 3 
phyla, namely, Actinobacteria, Firmicutes, and Proteobacteria, with 38 distinct 
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species of 17 genera. Bacillus and Pseudomonas were dominant in the rhizosphere 
while Methylobacterium was dominant in the phyllosphere. Endophytic niche- 
specific bacteria were identified as Delftia and Micrococcus. Among different 
groups of microbes, the Archaea are true extremophilic as well as polyextremo-
philic and exhibited more than two abiotic stress tolerance activities. Archaea are 
unique microbes that are present in ecological niches of high temperature and salin-
ity. A total of 157 Archaea have been isolated and characterized by heat and salt 
tolerances by Yadav et al. (2015c). The selected isolates have been identified as 17 
distinct species of 11 genera, namely, Haloarcula, Halobacterium, Halococcus, 
Haloferax, Halolamina, Halosarcina, Halostagnicola, Haloterrigena, Natrialba, 
Natrinema, and Natronoarchaeum, using 16S rRNA gene sequencing and BLASTn 
analysis.

The application of plant growth-promoting rhizobacteria (PGPR) to agro- 
ecosystems is considered to have the potential for improving plant growth in extreme 
environments featured by water shortage. Niu et al. (2017) isolated bacterial strain 
from foxtail millet (Setaria italica L.), a drought-tolerant crop cultivated in semiarid 
regions in the northeast of China. The isolates were identified as Pseudomonas fluo-
rescens, Enterobacter hormaechei, and Pseudomonas migulae on the basis of 16S 
rRNA sequence analysis. Abiotic stresses such as drought represent adverse envi-
ronmental conditions that significantly damage plant growth and agricultural pro-
ductivity. In the study by Barnawal et  al. (2017), the mechanism of plant 
growth-promoting rhizobacteria in stimulating tolerance against abiotic stresses has 
been explored. Results suggest that PGPR strains, Arthrobacter protophormiae 
(SA3) and Dietzia natronolimnaea (STR1), can facilitate salt stress tolerance in 
wheat crop, while Bacillus subtilis (LDR2) can provide tolerance against drought 
stress in wheat. In the study by Sandhya et al. (2017), 39 endophytic bacteria have 
been isolated from different crops with the main focus on maize roots and seeds. 
Endophytes were screened for drought stress tolerance, plant growth-promoting 
(PGP) traits, and antifungal activity. The selected isolates have been identified using 
biochemical and 16S rRNA gene sequencing and confirmed as Pseudomonas aeru-
ginosa, Pseudomonas monteilii, Pseudomonas putida, Acinetobacter brumalii, 
Enterobacter asburiae, Sinorhizobium meliloti, Pseudomonas thiveralensis 
Pseudomonas fulva, and Pseudomonas lini.

Martins et al. (2018) reported the effect of some plant-associated bacteria (PAB) 
on increasing soybean tolerance to drought stress, the mechanisms of the drought 
tolerance process, and the effect of the PAB on promoting plant growth and on the 
biocontrol of Sclerotinia sclerotiorum. PAB were isolated from soybean rhizosphere 
and S. sclerotiorum sclerotia. The strains identified as UFGS1 (Bacillus subtilis), 
UFGS2 (Bacillus thuringiensis), and UFGRB2 and UFGRB3 (Bacillus cereus) 
were selected on their ability to grow in media with reduced water activity. The 
agricultural crops are often affected by the scarcity of fresh water. Seasonal drought 
is a major constraint on Northeast Indian agriculture. Almost 80% of the agricul-
tural land in this region is acidic and facing severe drought during the winter period 
(Saikia et al. 2018). The ACC deaminase-producing bacteria have been isolated and 
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identified as Ochrobactrum pseudogrignonense RJ12, Pseudomonas sp. RJ15, and 
Bacillus subtilis RJ46.

13.6  Mechanisms of Plant Growth Promotion

Plants play an important role in selecting and enriching the types of microbes by the 
constituents of their root exudates. Thus, depending on the nature and concentra-
tions of organic constituents of exudates and the corresponding ability of the 
microbes to utilize these as sources of energy (Malyan et al. 2016a; Bhatia et al. 
2013b), the microbial community develops in the interaction as epiphytic/endo-
phytic/rhizospheric. Microbes associated with crops are of agricultural importance 
as they can enhance plant growth and improve plant nutrition. Plant-associated 
microbes (epiphytic/endophytic/rhizospheric) stimulate the growth of the plants by 
different mechanisms such as production of phytohormones such as auxins, cytoki-
nins, ethylene, and gibberellins; biological nitrogen fixations; solubilization of 
phosphorus, potassium, and zinc; production of siderophores and various hydrolytic 
enzymes such as amylases, cellulases, pectinases, and proteases; and ACC deami-
nase activity helping plants to overcome stress conditions. They act as biocontrol 
agents protecting plants against various phytopathogens. Treatment of various crops 
with PGPR has been reported to directly enhance the growth, seedling vigor, root 
and shoot growth, seed weight, biomass, early flowering, and fruit yields (Yadav 
2009; Yadav et al. 2015e, 2018a, d) (Bach et al. 2016; de Bruijn et al. 1997; Ellis 
2017; Errakhi et al. 2016; Haas and Défago 2005; Iniguez et al. 2004; Leong 1986; 
Lin and Xu 2013; Pal and Gardener 2006; Pankievicz et al. 2015; Quadt-Hallmann 
et al. 1997; Raaijmakers et al. 2002; Rashid et al. 2012; Suman et al. 2001, 2016; 
Taulé et al. 2012; Van Loon et al. 1998; Verma et al. 2017b; Yadav 2017; Yadav et al. 
2018b). Sustainable agriculture requires the use of different strategies to increase or 
maintain the current rate of food production while reducing damage to the environ-
ment and human health (Gupta et al. 2016a; Yadav et al. 2018e). The use of micro-
bial plant growth promoters is an alternative to conventional agricultural 
technologies. The plant growth-promoting microbes can affect plant growth directly 
by providing the plant with a compound that is synthesized by the bacterium or 
facilitating the uptake of certain nutrients from the environment or indirectly by 
promoting plant growth which occurs when PGP microbes decrease or prevent the 
deleterious effects of one or more phytopathogenic organisms.

13.6.1  Phosphorus Solubilization

Phosphorus (P) is the major macronutrient which is required by the plants for their 
various metabolic processes including energy transfer, signal transduction, macro- 
molecular biosynthesis, photosynthesis, and respiration but is simultaneously the 
major limiting mineral nutrient for the growth of the plants due to its least avail-
ability as well as least mobility. The soil constitutes about 0.5% phosphorus; for 
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plant absorption only a small amount of phosphorus is available and others remain 
as insoluble salts. Soil phosphorus is classified into two broad groups, organic and 
inorganic. Organic phosphorus is found in plant residues, manures, and microbial 
tissues. Inorganic forms of soil phosphorus consist of apatite (the original source of 
all phosphorus), complexes of iron and aluminum phosphates, and phosphorus 
absorbed onto clay particles. The inorganic phosphate reacts with cations such as 
aluminum (Al3+), iron (Fe3+), and calcium (Ca2+) and forms insoluble complexes. In 
alkaline soils, phosphate exists as tricalcium phosphate [Ca3 (PO4)2] and in acidic 
soils as FePO4 and AlPO4. The phosphorus in insoluble form is not easily available 
to plants. The replacement of soil P reserves through chemical fertilization is a com-
mon but long-term practice. There are many studies which have reported that ben-
eficial microbes are efficient in solubilizing nutrients from soil (Hinsinger 2001; 
Nelsen and Safir 1982; Raghothama 1999; Son et al. 2006; Yadav and Saxena 2018; 
Yadav et  al. 2017a, 2017d; 2017f) (Table  13.1). The solubilization of inorganic 
insoluble phosphate salts by microbes results in the production or release of organic 
acid and organic acid decreases the pH (Wakelin et al. 2004; Yadav et al. 2015c, 
2016a).

Nelsen and Safir (1982) reported that onion plants (Allium cepa L) grown in pots 
and infected by the mycorrhizal fungus Glomus etunicatum were more drought tol-
erant than were non-mycorrhizal ones when exposed to several periods of soil water 
stress separated by periods of high water supply, which was shown by greater fresh 
and dry weights and higher tissue phosphorus levels in the mycorrhizal plants. The 
tissues of stressed, non-mycorrhizal plants were deficient in P, despite the fact that 
only non-mycorrhizal plants were fertilized with high levels of P (26 mg P per 440 g 
soil). The P nutrition of plants has been implicated in the ability of plants to tolerate 
drought, and it was concluded that the ability of the mycorrhizal fungus to maintain 
adequate P nutrition in the onions during soil water stress was a major factor in the 
improved drought tolerance. About 95–99% of the soil phosphorus is present in 
complexes and reacts with various cations such as aluminum, calcium, and iron and 
cannot be used up by the plants (Son et al. 2006). The concentration of phosphorus 
in most of the soils approximately varies from 0.1 to 10 μM, whereas the concentra-
tion required for grasses is nearly about 1–5 μM, and high-P-demand crops, for 
instance, tomato and pea, require about 5–60 μM (Raghothama 1999), and if phos-
phorus is present at the sub-optimal levels, the loss of the yield can be up to 5–15% 
(Hinsinger 2001). Thus, in order to fulfill the phosphorus demands of the plants, 
phosphate fertilizers are being used in agricultural production, yet a huge propor-
tion of these phosphate fertilizers get converted into insoluble form leading to low 
fertilizer efficiency.

The phosphorus-solubilizing rhizobacteria are attracting greater attention nowa-
days as they are economically feasible and environment-friendly as well as possess 
a greater agronomic utility so that the expensive P-chemical fertilizers used can 
easily be compensated. Thus, there are a lot of benefits to inoculate the crops with 
these microbes as they are safer to use, they will not produce toxic products, and 
moreover, they will not get accumulated in the food chain (Elias et al. 2016). Adding 
more, it has also been a well-known fact that phosphorus-solubilizing bacteria used 
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Table 13.1 Drought-tolerant P-solubilizing microbes with multifarious PGP attributes

Drought-tolerant microbes P IAA Sid ACC References
Acinetobacter sp. M05 + – + – Zhang et al. (2017)
Azospirillum lipoferum B3 + + – + Arzanesh et al. (2011)
Bacillus altitudinis + + + – Sunar et al. (2015)
B. aquimaris, IARI-IHD-17 + – – – Verma et al. (2014)
B. aryabhattai, IARI-IHD-34 + + + – Verma et al. (2014)
B. halodenitrificans PU62 + + + + Ramadoss et al. (2013)
B. licheniformis BGBA 1 + + + – Pahari and Mishra (2017)
B. megaterium, IARI-IIWP-9 + + + – Verma et al. (2014)
Bacillus sp. + – – + Hussain et al. (2013)
Bacillus sp., AW1 + – + + Rana et al. (2011)
Bacillus sp. PS-12 + + – + Hussain et al. (2013)
B. subtilis, IARI-IIWP-2 + + + + Verma et al. (2014)
Brevundimonas diminuta, AW7 + + + Rana et al. (2011)
Delftia sp., IARI-IIWP-31 + + + – Verma et al. (2014)
Duganella violaceusniger, 
IIWP-23

+ + + – Verma et al. (2014)

Flavobacterium sp. PS-41 + + – + Hussain et al. (2013)
M. mesophilicum, IIWP-45 + + + – Verma et al. (2014)
M. radiotolerans, IHD-35 + + + – Verma et al. (2014)
M. extorquens, IIWP-43 + + + – Verma et al. (2014)
Paenibacillus amylolyticus, 
IHD-24

+ – – – Verma et al. (2014)

P. dendritiformis, IIWP-4 + + + – Verma et al. (2014)
P. durus, IARI-IIWP-40 + – – + Verma et al. (2014)
Paenibacillus sp., IARI-IHD-15 + + + – Verma et al. (2014)
P. taichungensis M10 + + + – Zhang et al. (2017)
Providencia sp., AW5 + – + + Rana et al. (2011)
P. brassicacearum E85 + – + + Aarab et al. (2015)
P. fluorescens,153 + – – + Zabihi et al. (2011)
P. fluorescens, SorgP4 + – – + Ali et al. (2014)
P. fuscovaginae, IIWP-29 + + + – Verma et al. (2014)
P. lini, IARI-IIWP-33 + – + + Verma et al. (2014)
P. monteilii, IARI-IIWP-27 + + + + Verma et al. (2014)
P. plecoglossicida, S1 + + + – Rolli et al. (2015)
P. putida + – – + Zabihi et al. (2011)
Pseudomonas sp. + + + + Poonguzhali et al. (2008)
P. thivervalensis, IHD-3 + + + + Verma et al. (2014)
P. tolaasii IEXb + + + – Viruel et al. (2011)
Psychrobacter fozii, IIWP-12 + + + + Verma et al. (2014)
Serratia marcescens, IIWP-32 + – – – Verma et al. (2014)
Staphylococcus aureus 22F + + + – Toribio-Jiménez et al. (2017)
Stenotrophomonas sp., IIWP-34 + + – – Verma et al. (2014)
Streptococcus thoraltensis 5CR-F + + – – Toribio-Jiménez et al. (2017)

P phosphorus solubilization, IAA indole acetic acid, Sid siderophores, ACC 
1-aminocyclopropane-1-carboxylate
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in combination with the phosphate fertilizers possess a very beneficial effect on the 
uptake of the phosphorus and eventually on the growth of the plants. The major  
P-solubilizers belong to genera Achromobacter, Acinetobacter, Agrobacterium, 
Arthrobacter, Aspergillus, Azospirillum, Azotobacter, Bacillus, Enterobacter, 
Erwinia, Flavobacterium, Haloarcula, Halobacterium, Halococcus, Micrococcus, 
Mycobacterium, Penicillium, Pseudomonas, Rhizobium, and Serratia (Behera et al. 
2014; Gaba et  al. 2017; Goldstein 2000; Mathur et  al. 2011; Singh et  al. 2016; 
Yadav 2015; Yadav et al. 2016a, 2017b). Various mechanisms used by P solubilizers 
to convert the insoluble forms of the phosphorus into the soluble forms consist of 
acidification, chelation, exchange reactions, and production of organic acids (Chung 
et al. 2005; Yadav et al. 2015c).

Ramachandran et al. (2007) isolated Pseudomonas sp. and Azospirillum sp. from 
rhizospheric soil as well as the root cuttings of Piper nigrum which possessed the 
high capability of solubilizing phosphorus in  vitro. The phosphorus-solubilizing 
bacteria from the rhizosphere of chickpea, mustard, and wheat have been reported 
by Kundu et al. (2009). These P-solubilizing bacteria belonged to genera Aeromonas, 
Enterobacter, Klebsiella, and Pseudomonas. In another research by Fatima et al. 
(2009), the potential P-solubilizing bacteria were  reported to be associated with 
wheat rhizospheric soil which were identified as Azospirillum (WPR-42, WP-3), 
Pseudomonas (WPR-61), and Azotobacter (WPR-51). Along with P-solubilizing 
bacterial isolates, fungi and their association with crops have been reported from the 
rhizospheric region of Sorghum bicolor inoculated with arbuscular mycorrhizal 
fungi; the P-solubilizing genera identified on the basis of the morphology and bio-
chemical tests consisted of Acinetobacter sp., Bacillus sp., Micrococcus sp., 
Pseudomonas aeruginosa, and Pseudomonas fluorescens, respectively 
(Chandrasekeran and Mahalingam 2014). The P-solubilizing rhizobacteria are com-
monly found in association with various crops such as Enterobacter agglomerans 
with tomato (Kim et al. 1998), Pseudomonas chlororaphis and Pseudomonas putida 
with soybean (Cattelan et  al. 1999), Bacillus licheniformis RC08 and Bacillus 
megaterium RC07 with wheat and spinach (Çakmakçı et al. 2007), Bacillus mega-
terium (M-3) with chickpea (Elkoca et al. 2007), and Serratia marcescens EB 67 
and Pseudomonas sp. CDB 35 with maize (Hameeda et al. 2008).

Peix et al. (2001) reported Mesorhizobium mediterraneum (PECA21) mobilized 
tricalcium phosphate when added in soil proficiently in barley and chickpea. In the 
study of Chen et al. (2006), Arthrobacter aureofaciens, Delftia sp., Phyllobacterium 
myrsinacearum, and Rhodococcus erythropolis have been reported for the first time 
to possess the capability to solubilize phosphorus. Liu et  al. (2014) reported 
Acinetobacter pittii ASL12, Escherichia coli ASG34, and Enterobacter cloacae 
ADH302 as efficient P-solubilizers isolated from betel nut (Areca catechu) and their 
effects on plant growth and phosphorus mobilization in tropical soils. Rai et  al. 
(2017) isolated PSB including Pseudomonas putida, Pseudomonas sp., and 
Pseudomonas plecoglossicida from the rhizospheric region of Aloe vera. Sharma 
et  al. (2017) reported Pseudomonas aeruginosa to be a potent phosphorus- 
solubilizing strain from the rhizospheric region of apple in Trans-Himalayan region 
of Himachal Pradesh. Microorganisms present in soil play an important role in 
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maintaining the ecological balance by active participation in nitrogen, phosphorus, 
and carbon cycles in nature. Phosphorus plays an important role in plant nutrition 
and has an important biochemical role in respiration, cell division, photosynthesis, 
cell enlargement, and several other processes in the living plant. It is one of the most 
important vital macronutrients requisite for the growth and development of plants. 
Yadav and Pandey (2018) investigated the occurrence of PSB from tomato rhizo-
sphere soil samples collected across Jaipur, Rajasthan. The PSB isolates have been 
identified using 16S rRNA gene analysis and confirmed as Bacillus sp., Streptomyces 
sp., and Cronobacter sp. The study concludes that using potential phosphate- 
solubilizing bacteria as biofertilizers will not only enhance soil fertility and crop 
productivity but will also maintain and protect soil health leading to sustainable 
agriculture.

The P-solubilizing microbes play an important role in plant growth and soil 
health for sustainable agriculture. The drought-tolerant P-solubilizing microbes 
with multifarious PGP attributes have been reported to have the capability to solu-
bilize phosphorus along with other plant growth-promoting attributes such as the 
production of phytohormone and Fe-chelating compounds and ACC deaminase 
activity. Figure 13.6 represents the drought-tolerant P-solubilizing microbes with 
multifunctional PGP attributes which may be used as biofertilizers to replace chem-
ical fertilizers; e.g., the six strains, namely, Bacillus halodenitrificans PU62; 
Bacillus subtilis, IARI-IIWP-2; Pseudomonas monteilii, IARI-IIWP-27; 
Pseudomonas sp.; Pseudomonas thivervalensis, IHD-3; and Psychrobacter fozii, 
IIWP-12, exhibited multiple PGP attributes of P solubilization, IAA production, 
siderophore production, and ACC deaminase activity (Poonguzhali et  al. 2008; 
Ramadoss et al. 2013; Verma et al. 2014) (Table 13.1; Fig. 13.6).

Fig. 13.6 Venn diagram showing the drought-tolerant microbes with multifarious PGP attributes
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13.6.2  Production of Phytohormones

Another important role of plant growth-promoting rhizobacteria is the synthesis of 
various phytohormones (plant growth regulators). The well-known phytohormones 
include auxins (most common being indole acetic acid), cytokinins, and gibberel-
lins. These plant growth hormones play major roles in various developmental pro-
cesses of the plants ranging from cell division, cell cycle, cell elongation, and 
differentiation to root initiation, flowering, ripening of the fruits, and senescence. 
There are diverse groups of microbial species such as Acinetobacter, Arthrobacter, 
Bacillus, Corynebacterium, Delftia, Duganella, Exiguobacterium, Kocuria, 
Lysinibacillus, Methylobacterium, Micrococcus, Micrococcus, Paenibacillus, 
Paenibacillus, Pantoea, Pseudomonas, Psychrobacter, Serratia, and 
Stenotrophomonas (Saxena et al. 2015b; Yadav et al. 2017e; Kour et al. 2017b; Rana 
et al. 2016; Srivastava et al. 2013; Verma et al. 2015a, c, 2017a).

13.7  Indole Acetic Acid

Indole acetic acid plays various important roles in plants: it induces cell elongation 
and cell division, and it also acts as the signaling molecule required for the develop-
ment of plant organs as well as the coordination of growth. There are diverse path-
ways which are used by PGP microbes for the production of indole-3-acetic acid 
including L-tryptophan-dependent and L-tryptophan-independent pathways. 
Majority of plant growth-promoting microbes use the L-tryptophan-dependent 
pathway including Azospirillum, Agrobacterium tumefaciens, Bacillus subtilis, 
Bacillus licheniformis, Bacillus megaterium, Bradyrhizobium, Erwinia herbicola, 
Pantoea agglomerans, Pseudomonas syringae, and Rhizobium (Burdman et  al. 
2000; Dobbelaere et al. 2003; Goswami et al. 2016; Saxena et al. 2015a), whereas 
very few use the L-tryptophan-independent pathway including Azospirillum brasi-
lense (Goswami et al. 2016). Bottini et al. (2004) isolated P-solubilizing and IAA- 
and GA-producing Enterobacter, Xanthomonas, and Pseudomonas from the 
rhizospheric region of sorghum. Ahmad et al. (2005) reported Azotobacter sp. to be 
the potent producer of IAA producing about 7.3–32.8 mg/ml. The strains of 
Rhizobium, Microbacterium, Sphingomonas, and Mycobacterium isolated from the 
roots of the epiphytic orchid Dendrobium moschatum are among the most active 
IAA producers (Tsavkelova et al. 2007). Swain et al. (2007) used the suspension of 
the IAA-producing strain of Bacillus subtilis on the surface of Dioscorea rotundata 
and reported an increment in the root/stem ratio and also the number of the sprouts 
in comparison to the uninoculated plants.

In the study by Marulanda et al. (2009), it was reported that rhizosphere micro-
organisms can increase drought tolerance of plants growing under water-limited 
conditions. Three indigenous bacterial strains isolated from drought soil and identi-
fied as Pseudomonas putida, Pseudomonas sp., and Bacillus megaterium were able 
to stimulate plant growth under dry conditions. When the bacteria were grown in 
axenic culture at increasing osmotic stress caused by polyethylene glycol (PEG) 
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levels (from 0 to 60%), they showed osmotic tolerance and only Pseudomonas sp. 
decreased indole acetic acid production concomitantly with an increase of osmotic 
stress (PEG) in the medium. P. putida and B. megaterium exhibited the highest 
osmotic tolerance, and both strains also showed increased proline content, involved 
in osmotic cellular adaptation, as much as increased osmotic stress caused by NaCl 
supply. These bacteria seem to have developed mechanisms to cope with drought 
stress. The increase in IAA production by P. putida and B. megaterium at a PEG 
concentration of 60% is an indication of bacterial resistance to drought. Their inoc-
ulation increased shoot and root biomass and water content under drought condi-
tions. Bacterial IAA production under stressed conditions may explain their 
effectiveness in promoting plant growth and shoot water content increasing plant 
drought tolerance. B. megaterium was the most efficient bacterium under drought 
(in successive harvests) either applied alone or associated with the autochthonous 
arbuscular mycorrhizal fungi Glomus coronatum, Glomus constrictum, or Glomus 
claroideum. Bacillus megaterium colonized the rhizosphere and endorhizosphere 
zone. We can therefore say, that microbial activities of adapted strains represent a 
positive effect on plant development under drought conditions; IAA-producing 
Enterobacter aerogenes and Enterobacter cloacae promoted growth in cowpea 
(Deepa et al. 2010). Joseph et al. (2012) isolated and characterized rhizobacteria 
from chickpea, and all the identified isolates including Bacillus, Pseudomonas, and 
Azotobacter produced IAA, and about 85.7% of Rhizobium were capable of produc-
ing IAA. In the study of Goswami et al. (2014), the IAA producer Kocuria turfanen-
sis 2M4 showed the capability to promote growth in Arachis hypogaea.

The diversity of plant growth-promoting bacteria was investigated from wheat 
grown in different sites in the semiarid region in the central zone of India (Verma 
et  al. 2014). Bacterial diversity was analyzed through amplified ribosomal DNA 
restriction analysis (ARDRA) using three restriction enzymes Alu I, Hae III, and 
Msp I which led to the grouping of 348 isolates into 24–29 clusters at >75% similar-
ity index. 16S rRNA gene-based phylogenetic analysis revealed that 134 strains 
belonged to three phyla, namely, Actinobacteria, Firmicutes, and Proteobacteria, 
with 38 distinct species of 17 genera. Bacillus and Pseudomonas were dominant in 
the rhizosphere while Methylobacterium was dominant in the phyllosphere. 
Endophytic niche-specific bacteria were identified as Delftia and Micrococcus. A 
sampling of different sites showed variation in diversity indices. In vitro plant 
growth-promoting activities of bacteria exposed more than three beneficial traits 
which may act independently or concurrently. Phosphate solubilization and sidero-
phore production were the predominant traits exhibited by these microbes. The 
many species of genera Bacillus, Exiguobacterium, Micrococcus, Pseudomonas, 
and Psychrobacter showed antagonistic properties against fungal pathogens 
Fusarium graminearum, Rhizoctonia solani, and Macrophomina phaseolina. These 
promising isolates showing a range of useful plant growth-promoting attributes 
insist to be explored for agricultural applications. In another study by Verma et al. 
(2016a), the culturable bacilli has been investigated in six wheat-cultivating agro- 
ecological zones of India, viz., northern hills, north-western plains, north-eastern 
plains, central, peninsular, and southern hills zone. These agro-ecological regions 
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are based on the climatic conditions such as pH, salinity, drought, and temperatures. 
The selected bacilli have been identified using 16S rRNA sequencing which 
included eight genera, namely, Bacillus, Exiguobacterium, Lysinibacillus, 
Paenibacillus, Planococcus, Planomicrobium, Sporosarcina, and Staphylococcus. 
The study by Verma et al. (2016a) was the first report for the presence of Bacillus 
endophyticus, Paenibacillus xylanexedens, Planococcus citreus, Planomicrobium 
okeanokoites, Sporosarcina sp., and Staphylococcus succinus in the wheat rhizo-
sphere that exhibit multifunctional PGP attributes. These niche-specific and multi-
farious PGP bacilli could serve as inoculants for crops growing in respective climatic 
conditions.

The agricultural crops are often affected by the scarcity of fresh water. Seasonal 
drought is a major constraint on Northeast Indian agriculture. Almost 80% of the 
agricultural land in this region is acidic and facing severe drought during the winter 
period (Saikia et al. 2018). The ACC deaminase-producing PGPB Ochrobactrum 
pseudogrignonense RJ12, Pseudomonas sp. RJ15, and Bacillus subtilis RJ46 offer 
drought stress tolerance by regulating plant ethylene levels. All the strains could 
produce IAA (68–85 μg ml−1). The consortium treatment decreased the ACC accu-
mulation and downregulated ACC-oxidase gene expression. This consortium could 
be an effective bio-formulator for crop health improvement in drought-affected 
acidic agricultural fields.

13.8  Gibberellins and Cytokinins

Gibberellins (GAs) are a broad group of phytohormones playing an important role 
in germination of seeds, elongation of the stem, flowering, and fruit setting (Hedden 
and Phillips 2000). They consist of nearly about 136 dissimilar structured molecules 
including from 128 species of plants and 7 species of fungi and only 4 including 
GA1, GA3, GA4, and GA20 from 7 species of bacteria (MacMillan 2001). Bacillus 
sp. rarely produces gibberellin; only two strains have been documented to possess 
the capability of producing gibberellins, and these are Bacillus pumilus and Bacillus 
licheniformis (Gutiérrez-Mañero et  al. 2001). Boiero et  al. (2007) well demon-
strated the promotion of growth of the shoot in dwarf mutants of maize and rice by 
excretion of gibberellin-like substances by Azospirillum sp. Production of the gib-
berellins has also been confirmed in Acetobacter diazotrophicus, Herbaspirillum 
seropedicae (Bastián et al. 1998), and Bacillus sp. (Gutiérrez-Mañero et al. 2001) 
by using various physicochemical methods, including GC-MS (Jha and Saraf 2015).

Verma et al. (2014) reported drought-tolerant microbes in wheat grown in the 
semiarid region in the central agro-ecological zone of India. The plant microbiomes 
(epiphytic, endophytic, and rhizospheric) have been isolated using different growth 
media. 16S rRNA gene-based phylogenetic analysis revealed that 134 strains 
belonged to 3 phyla, namely, Actinobacteria, Firmicutes, and Proteobacteria, with 
38 distinct species of 17 genera. Bacillus and Pseudomonas were dominant in the 
rhizosphere while Methylobacterium was dominant in the phyllosphere. Endophytic 
niche-specific bacteria were identified as Delftia and Micrococcus. Phosphate 
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solubilization and siderophore production were the predominant traits exhibited by 
these microbes. Among 38 distinct species, 12 bacterial strains exhibited the plant 
growth-promoting attributes of gibberellic acid production under the water deficit 
conditions, e.g., Bacillus aquimaris, Bacillus subtilis, Bacillus tequilensis, 
Duganella violaceusniger, Methylobacterium radiotolerans, Micrococcus luteus, 
Micrococcus sp., Paenibacillus dendritiformis, Pseudomonas stutzeri, Pseudomonas 
thivervalensis Psychrobacter fozii, and Serratia marcescens. These promising iso-
lates showing a range of useful plant growth-promoting attributes insist to be 
explored for agricultural applications for rainfed environmental conditions. In 
another research by Verma et al. (2016a), the eight bacilli associated with wheat, 
Bacillus amyloliquefaciens BNE12, Bacillus atrophaeus BSH3, Bacillus endo-
phyticus BNW9, Bacillus fusiformis BNW5, Bacillus mojavensis BPZ6, Bacillus 
rigui BSH4, Bacillus sphaericus BNW8, and Bacillus subtilis BPZ1, have been 
reported as GA producers.

Cytokinins are another important group of phytohormones produced by microor-
ganisms (Persello-Cartieaux et al. 2003). They play major roles in the promotion of 
cell division, cell growth, and cell differentiation simultaneously affecting the api-
cal dominance, axillary bud growth, and leaf senescence. Various genera have been 
reported which possess the capability to produce cytokinins including Azospirillum, 
Bacillus, Escherichia, Klebsiella, Proteus, Pseudomonas, and Xanthomonas 
(Maheshwari et al. 2015; Persello-Cartieaux et al. 2001). In the study by Sandhya 
et  al. (2017), 39 endophytic bacteria were isolated from different crops with the 
main focus on maize roots and seeds. Endophytes were screened for drought stress 
tolerance, plant growth-promoting (PGP) traits, and antifungal activity. Out of 39 
isolates, 32 showed drought tolerance up to –1.02 matric potential (MPa) and exhib-
ited most of the plant growth-promoting traits. Among identified bacteria, nine spe-
cies including Acinetobacter brumalii MRC12, Enterobacter asburiae MRC31, 
Pseudomonas aeruginosa FTR, Pseudomonas aeruginosa NFTR, Pseudomonas 
lini MRR2, Pseudomonas monteilii FMZR2, Pseudomonas monteilii MZ30V92, 
Pseudomonas putida FMZR9, and Sinorhizobium meliloti MRC33 produced gib-
berellic acid, and seven species including Enterobacter asburiae MRC31, 
Pseudomonas aeruginosa FTR, Pseudomonas aeruginosa NFTR, Pseudomonas 
lini MRR2, Pseudomonas monteilii FMZR2, Pseudomonas putida FMZR9, and 
Sinorhizobium meliloti MRC33 produced cytokines under the drought stress condi-
tions. In the study by Lubna et al. (2018), an endophytic fungus, Aspergillus niger 
CSR3, was isolated from Cannabis sativa. The culture filtrate (CF) was initially 
screened for growth-promoting activities such as the presence of siderophores, 
phosphate solubilization, and the production of indole acetic acid and gibberellins. 
The growth promotion action was due to the presence of various types of gibberel-
lins (GAs) and IAA in the endophyte CF. Preussia sp. has been least known to 
improve plant growth and produce phytohormones.

Al-Hosni et al. (2018) investigated the production of nitric oxide (NO), indole- 3- 
acetic acid (IAA), and gibberellins (GA4, GA7, GA15, and GA53) by a novel 
endophytic- fungal strain Preussia sp. BSL-10. Production of these phytohormones 
was validated by RT-PCR analysis, which indicated the expression of genes 
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encoding tryptophan synthase (TRP), indole-3-acetamide hydrolase (IAAH), 
tryptophan- 2- monooxygenase (IAAM), aldehyde dehydrogenase (ALD), GA4 desat-
urase (DES), geranylgeranyl-diphosphate synthase (GGS2), ent-desaturase oxi-
dase (P450-4), GA14 synthase (P450-1) and nitrite reductase (NIRK/NIRS), 
cytochrome P450 (P450nor), nitrate reductase (NR), NOS-like (NOL), and nitric 
oxide reductase (QNOR/CNOR). In plant growth-promoting effects, the inoculation 
of Preussia sp. BSL-10 significantly increased the growth of dwarf mutant Waito-C 
and wild-type rice cultivars.

13.8.1  Production of Fe-Chelating Compounds

Iron is one of the most vital elements important for the growth of all living organ-
isms. It acts as the cofactor for different enzymes; it is involved in the process of 
photosynthesis, respiration, and nitrogen fixation; and its deficiency leads to various 
metabolic alterations (Solano et al. 2008). Iron is present in abundance in the soil 
but is not available for the plants as well as the microbes present in the soil as the 
oxidized form of iron which is Fe3+ reacts forming oxides and hydroxides which is 
not accessible to the plants as well as the microbes. Under such iron-limiting condi-
tions, PGPR has the capacity to produce low-molecular-weight iron-chelating com-
pounds called siderophores for the acquisition of ferric ions (Whipps 2001). These 
siderophores can easily be utilized by rhizospheric bacteria and plants can also 
directly absorb these complexes. Siderophores are categorized into catecholates 
(phenolates), hydroxamates, and carboxylates. Acinetobacter calcoaceticus isolated 
from the rhizosphere of wheat produced catechol type of siderophores (Chaudhari 
Bhushan et  al. 2009). Amplified ribosomal DNA restriction analysis (ARDRA) 
revealed Bacillus sp., Enterobacter sp., Pseudomonas sp., and Rhodococcus sp. to 
be siderophore producers (Tian et  al. 2009). Silva-Stenico et  al. (2005) reported 
Methylobacterium extorquens from Citrus sinensis to be hydroxamate type of sid-
erophore producer. Vaidehi and Sekar (2012) reported Methylobacterium phyllos-
phaerae MB-5 and CBMB-27 to produce hydroxamate type of siderophores during 
the limitations of iron. Pseudomonas fluorescens is the most common siderophore 
producer releasing pyochelin and pyoverdine (Solano et al. 2008). Enterobactin pro-
duced by Escherichia coli, bacillibactin by Bacillus subtilis and Bacillus anthracis, 
and vibriobactin by Vibrio cholerae are some of the catecholate siderophores 
(Saharan and Nehra 2011). In another research, Pseudomonas chlororaphis, a sid-
erophore producer, enhanced seed germination as well as the root-shoot biomass. It 
has been well demonstrated that cold-tolerant mutant of Pseudomonas fluorescens 
possessing 17-fold enhancement in the production of the siderophores can improve 
the plant growth-promoting effect on mung bean (Katiyar and Goel 2004).

The PGP microbes stimulate plant growth in multiple ways, viz., production of 
siderophores and suppression of pathogenic organisms. PGP microbes have been 
reported to not only improve plant growth but also to suppress the plant pathogens, 
of which Pseudomonas and Bacillus were well characterized. Pink-pigmented 
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facultative methylotrophs synthesize a variety of metabolites useful for the plants 
including phytohormones that promote plant growth and yield. PGP microbes are 
used as biocontrol agents to reduce the development of plant diseases caused by 
plant pathogenic fungi, bacteria, viruses, and nematodes (Verma et al. 2014). The 
diversity of plant growth-promoting bacteria was investigated from wheat grown in 
different sites in the central zone of India. 16S rRNA gene-based phylogenetic anal-
ysis revealed that 134 strains belonged to three phyla, namely, Actinobacteria, 
Firmicutes, and Proteobacteria, with 38 distinct species of 17 genera. Among 38 
distinct species, 23 of them (Arthrobacter humicola, Bacillus aryabhattai, Bacillus 
cereus, Bacillus megaterium, Bacillus subtilis, Bacillus tequilensis, Bacillus 
thuringiensis, Corynebacterium callunae, Delftia sp., Duganella violaceusniger, 
Methylobacterium extorquens, Methylobacterium mesophilicum, Methylobacterium 
radiotolerans, Paenibacillus dendritiformis, Paenibacillus sp., Pantoea ananatis, 
Pseudomonas fuscovaginae, Pseudomonas lini, Pseudomonas monteilii, 
Pseudomonas stutzeri, Pseudomonas thivervalensis, Psychrobacter fozii, and 
Stenotrophomonas maltophilia) were found to produce Fe-chelating compounds 
under water-deficient conditions. Bacillus and Pseudomonas were dominant in the 
rhizosphere while Methylobacterium was dominant in the phyllosphere. These 
promising isolates showing a range of useful plant growth-promoting attributes 
insist to be explored for agricultural applications.

Sandhya et  al. (2017) reported 39 endophytic bacteria from different crops. 
Endophytes were  screened for drought stress tolerance, plant growth-promoting 
(PGP) traits, and antifungal activity. Out of 39 isolates, 32 could show drought tol-
erance up to –1.02 matric potential (MPa) and exhibited most of the plant growth- 
promoting traits. Among 39 bacteria, isolates such as Pseudomonas putida strain 
FMZR9, Pseudomonas aeruginosa strain FTR, Pseudomonas aeruginosa strain 
NFTR, Enterobacter asburiae strain MRC12, Pseudomonas thivervalensis strain 
MRC33, and strains FGR3, FMZR7, NFRGR1, and NFMZR2 were siderophore 
positive. These drought-tolerant PGPMs help in plant growth and act as biocontrol 
agents for crops growing under drought stress conditions. The application of plant- 
growth- promoting bacteria is an alternative strategy for improving plant fitness 
under stressful conditions (Saikia et  al. 2018). The ACC deaminase-producing 
PGPB offer drought stress tolerance by regulating plant ethylene levels. All three 
microbes Ochrobactrum pseudogrignonense RJ12, Pseudomonas sp. RJ15, and 
Bacillus subtilis RJ46 exhibited the ability to produce siderophore (6.2–11.32 μmol 
benzoic acid ml−1) under conditions of drought stress. The consortium treatment 
significantly increased seed germination percentage, root length, shoot length, and 
dry weight of treated plants. Elevated production of reactive oxygen species-scav-
enging enzymes and cellular osmolytes, higher leaf chlorophyll content, increase in 
relative water content, and root recovery intension were observed after consortium 
treatment in comparison with the uninoculated plants under drought conditions. The 
consortium treatment decreased ACC accumulation and downregulated ACC-
oxidase gene expression. This consortium treatment could be an effective bio-for-
mulator for crop health improvement in drought-affected acidic agricultural fields.
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13.8.2  Biological Nitrogen Fixation (BNF)

Nitrogen is a vital nutrient for the growth as well as development of the plants, but 
most of the soils have a deficiency of nitrogen. Therefore, application of nitroge-
nous fertilizers is very important to fulfill the demands of the plants so that the 
maximum yield could be achieved (Fagodiya et al. 2017a; Pathak et al. 2016; Gupta 
et  al. 2015). But, the use of chemical fertilizers leads to the depletion of non- 
renewable sources of energy, various environmental issues, and human hazards; 
further the production cost is very high (Khan et al. 2019). Urea is one of the cheap-
est sources of nitrogen for the plants, but less than 50% of this applied urea can be 
used up by the plants due to NH3 volatilization and denitrification which also pollute 
the environment as these processes emit various greenhouse gases and some losses 
occur due to leaching (Bhatia et al. 2013b; Gupta et al. 2016b). Leaching causes the 
toxicity of groundwater (Kumar et al. 2016b). Thus, biological nitrogen fixation is 
a potent and eco-friendly alternative to the use of chemical fertilizers. There are a 
number of rhizobacteria and endophytes which can fix the atmospheric nitrogen and 
make it available for the plants. In the past few years, the use of plant growth- 
promoting  microbes has increased (Figueiredo et  al. 2008), and using PGPR as 
bio-inoculants will surely reduce the use of chemical fertilizers.

The microbes which can fix atmospheric nitrogen are basically of three groups 
including symbiotic nitrogen fixers which are host specific and free-living nitrogen 
fixers which are not host specific (Oberson et al. 2013), and the third group includes 
associative symbiotic nitrogen fixers. Symbiotic nitrogen fixers include strains of 
Rhizobium, Azorhizobium, Bradyrhizobium, Sinorhizobium, Allorhizobium, 
Mesorhizobium, and Frankia, and free-living and associative symbiotic nitrogen 
fixers include the strains of Azospirillum, Azotobacter, Acetobacter, Azoarcus, 
Achromobacter, Bacillus, Burkholderia, Clostridium, Citrobacter, Enterobacter, 
Herbaspirillum, Klebsiella, Mycobacterium, Paenibacillus, Pseudomonas, 
Rhodobacter, and Serratia (Verma et al. 2013, 2015b; Yadav et al. 2013, 2017c).

Other strains demonstrated to be nitrogen fixers include Paenibacillus odorifer, 
Paenibacillus graminis, Paenibacillus peoriae, and Paenibacillus brasiliensis 
(Berge et al. 2002; von der Weid et al. 2002). Among these strains, the species of 
Azotobacter and Azospirillum are the majority used for agricultural trials. 
Azospirillum has been used for various crops for the growth enhancement of wheat 
(Sala et  al. 2007), rice (Pedraza et  al. 2009), and maize (Montañez et  al. 2009) 
through biological nitrogen fixation. Pseudomonas putida RC06, Paenibacillus 
polymyxa RC05 and RC14, and Bacillus OSU-142 are also potent nitrogen fixers 
and have also been used as biofertilizers for increasing the yield as well as the qual-
ity of spinach, sugar beet, and wheat (Çakmakçı et al. 2007). The N-fixing Bacillus 
strains and Azospirillum brasilense sp246 promote the growth of spring wheat and 
barley when cultivated in organic and low-N input agriculture (Canbolat et  al. 
2006). Rhizobium leguminosarum E11 increased root dry weight, root length, and 
growth of cotton (Hafeez et al. 2004). Inoculation with Bradyrhizobium sp. (S62 
and S63) showed positive effects on growth, nodule number, and yield of soybean 
(Egamberdiyeva et  al. 2004). The inoculation of chickpea with Rhizobium and 
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N-fixing Bacillus subtilis appreciably led to an increase in the nitrogen percentage 
(Elkoca et al. 2007). The drought-tolerant ACC deaminase bacteria Ochrobactrum 
pseudogrignonense RJ12, Pseudomonas sp. RJ15, and Bacillus subtilis RJ46 exhib-
ited the ability to fix atmospheric nitrogen (Saikia et al. 2018).

13.9  Mechanisms of Microbes-Mediated Drought Tolerance

The elucidation of the various mechanisms by which plants respond to drought 
stress is very important so that stress-tolerant plants could be grown. This process is 
very complex as it involves various factors which are affecting and at the same time 
the factors which are affected. During drought, the availability of the nutrients is 
also affected, and this can be overcome by the use of the plant growth-promoting 
microbes. These PGP microbes have been in use since the past few decades, and 
they possess a great potential to improve the yield of the crops during the stress 
conditions through their complex interactions with the plants, and a large number of 
them have been isolated and characterized (Araujo 2008; da Silva et al. 2006; Saikia 
et al. 2018). Research is already going on to find out the mechanisms by which plant 
microbiomes help the plants to cope with and grow during conditions of drought. 
The most important mechanism suggested so far by different researchers is by 
maintaining the homeostasis in and around the plant root through the presence of 
the enzyme 1-aminocyclopropane-1-carboxylate deaminase in microbes which pro-
tects the plants from the damages caused due to the drought and thus is considered 
to be the most important signaling molecule helping the plants to combat the drought 
conditions. There are a number of other mechanisms that also exist in rhizobacteria 
helping the plants to tolerate drought including the production of various antibiot-
ics, enzymes, nitric oxides, organic acids, osmolytes, phytohormones, and sidero-
phores and solubilization of phosphorus. Thus, PGPR are highly precious for 
sustainable agriculture for survivability and efficacy under field conditions; proper 
techniques for applications need further research and development (Duan et  al. 
2009; Kour et al. 2017a, b; Saikia et al. 2018; Timmusk et al. 2013) (Table 13.2).

13.9.1  ACC (1-Aminocyclopropane-1-Carboxylate) 
Deaminase Activity

Ethylene is one of the most important plant hormones which is usually found in 
gaseous form and is produced endogenously. It is efficient at low concentrations 
controlling various activities such as growth, cellular metabolism, and even senes-
cence. However, when there are stress conditions such as drought, flooding, chilling 
temperature, and pathogenic attack, the production of ethylene is enhanced. 
Ethylene when present at high concentration proves to be inhibitory for the growth 
of the plants. But, PGP microbes possess an enzyme ACC deaminase which con-
verts ACC, the immediate precursor of ethylene, to α-ketoglutarate and ammonium, 
thus lowering the concentration of the ethylene during the stress conditions and 
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stimulating the growth of the plants. ACC deaminase activity has been reported in 
Achromobacter xylosoxidans, Agrobacterium genomovars, Alcaligenes, 
Azospirillum lipoferum, Bacillus licheniformis, Brachybacterium saurashtrense, 
Brevibacterium casei, Brevibacterium iodinum, Burkholderia phytofirmans, 
Cronobacter sakazakii, Enterobacter cloacae, Haererehalobacter sp., Halomonas 
sp., Klebsiella sp., Mesorhizobium sp., Methylobacterium fujisawaense, 
Micrococcus sp., Pseudomonas putida, Pyrococcus horikoshii, Ralstonia sola-
nacearum, Rhizobium leguminosarum, Rhodococcus, Sinorhizobium meliloti, 

Table 13.2 Microbe-mediated drought tolerance in plants

Microbial inoculate Plant Mechanisms References
Achromobacter piechaudii Tomato ACC deaminase Mayak et al. (2004)
A. brasilense Bean Antioxidant German et al. (2000)
A. lipoferum Maize Gibberellins/ABA Cohen et al. (2009)
Azospirillum sp. Wheat IAA Arzanesh et al. (2011)
Bacillus cereus AR156 Tomato Photosynthetic Wang et al. (2012b)
B. licheniformis K11 Pepper ACC deaminase Lim and Kim (2013)
Bacillus sp. Maize EPS production Vardharajula et al. (2011)
Bacillus sp. Lettuce Cytokinin Arkhipova et al. (2007)
B. subtilis Platycladus Cytokinin Liu et al. (2013a)
B. subtilis LDR2 Wheat ABA/ACC content Barnawal et al. (2013)
B. thuringiensis Wheat Volatile compounds Timmusk et al. (2014)
B. thuringiensis, AZP2 Pine ACC deaminase Timmusk et al. (2014)
Bradyrhizobium 
japonicum

Chickpea Phytohormones Bano et al. (2010)

Paenibacillus polymyxa Rice ACC deaminase Timmusk et al. (2014)
Pantoea agglomerans Wheat EPS production Amellal et al. (1998)
P. brassicacearum Arabidopsis Delayed transition Bresson et al. (2013)
P. brassicacearum Arabidopsis ABA content Bresson et al. (2013)
P. aeruginosa Mung bean Antioxidant Sarma and Saikia (2014)
P. fluorescens YX2 Maize Choline Gou et al. (2015)
P. fluorescens, ACC-5 Pea ACC deaminase Zahir et al. (2008)
P. putida NBRIRA Chickpea miRNAs genes Jatan et al. (2018)
P. putida P45 Sunflower EPS production Sandhya et al. (2009)
Pseudomonas sp. Pea ACC deaminase Arshad et al. (2008)
Pseudomonas spp. Pea ACC deaminase Arshad et al. (2008)
Rhizobium etli Beans Trehalose Reina-Bueno et al. (2012)
Rhizobium sp. Sunflower EPS production Alami et al. (2000)
Rhizobium etli Beans Trehalose Suárez et al. (2008)
Sinorhizobium meliloti Alfalfa Cytokinin Xu et al. (2012)
Variovorax paradoxus Pea ACC deaminase Belimov et al. (2009)
MC1a Cucumber ACC deaminase Wang et al. (2012a)
MC2 Sunflower Enzyme activity Singh et al. (2015)
MC3 Rice Enzyme activity Khalilzadeh et al. (2016)

aMicrobial consortium [MC1 (Bacillus cereus AR156, Bacillus subtilis SM21, and Serratia sp. 
XY21); MC2 (Azotobacter chroococcum and Bacillus polymyxa); MC3 (Azotobacter and 
Pseudomonas)]
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Variovorax paradoxus, and Zhihengliuela alba (Jha et al. 2012; Fujino et al. 2004; 
Gontia et al. 2011; Madhaiyan et al. 2006; Gontia-Mishra et al. 2017). Further, the 
gene encoding ACC deaminase i.e., acdS has been demonstrated in many bacterial 
genera including Agrobacterium, Achromobacter, Azospirillum, Burkholderia, 
Enterobacter, Pseudomonas, Ralstonia, and Rhizobium (Blaha et  al. 2006; 
Govindasamy et  al. 2015); further in Bradyrhizobium japonicum USDA110 and 
Rhizobium leguminosarum bv. viciae 128C53 K, regulated by leucine-responsive 
regulatory protein (LRP)-like protein and a promoter r70 (Gontia-Mishra et  al. 
2014; Kaneko et  al. 2002; Ma et  al. 2003), Enterobacter cloacae UW4 and 
Pseudomonas putida UW4  in which the gene is under the regulation of leucine- 
responsive regulatory protein (LRP) (Cheng et al. 2008; Li and Glick 2001).

Inoculating plants with ACC deaminase-containing PGP microbes leads to a 
variety of physiological changes in the plants (Glick et al. 2007; Saleem et al. 2007) 
including longer roots in host plants, thereby helping in the uptake of water from 
deeper soil layers under water deficit conditions (Zahir et al. 2008). Achromobacter 
piechaudii ARV8 utilizing ACC decreased drought-induced ethylene evolution and 
improved growth of pepper and tomato seedlings (Mayak et al. 2004). In the study 
of Arshad et  al. (2008), pea was  inoculated with Pseudomonas fluorescens and 
Pseudomonas putida showing ACC deaminase activity so as to find their potential 
to mitigate the effects of drought stress on growth, yield, and ripening of pea (Pisum 
sativum L.), and it was reported that inoculating with Pseudomonas sp. decreased 
the imposed effects of the drought stress on the growth and yield of pea. Joe et al. 
(2014) reported Azospirillum brasilense CW903 and Methylobacterium oryzae 
CBMB20 showing ACC deaminase activity which reduced ethylene levels in plants. 
Microbial strains possessing ACC deaminase activity have been known to be 40% 
more proficient in forming nitrogen-fixing nodules as compared to strains lacking 
this activity (Ma et al. 2004; Ma et al. 2003).

13.9.2  Production of Exopolysaccharide and Phytohormones

Production of exopolysaccharide (EPS) by PGP microbes plays a vital role in influ-
encing the soil structure. EPS-producing microbes stimulate the water-binding 
capacity of soil and help in regulation of the supply of nutrients and water to roots. 
EPS help in irreversible attachment colonization of the microbes to the roots due to 
a network of fibrillar material that permanently connects the microbes to the root 
surfaces. Bashan et al. (2004) demonstrated the role of polysaccharide-producing 
Azospirillum in the aggregation of the soil. The production of the extracellular bio-
films by PGP microbes for binding and making the water molecules in the rhizo-
spheric region available is another strategy for alleviation of the water stress 
conditions (Timmusk and Nevo 2011). EPS production has been reported in 
Pseudomonas aeruginosa, Bacillus subtilis, and Streptococcus mutans (Vimala and 
Lalithakumari 2003). EPS-producing Pseudomonas sp. and Acinetobacter sp. con-
ferred the drought tolerance in pepper plant by forming hydrophilic biofilms around 
the roots (Rolli et al. 2015).
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In a study of Arkhipova et al. (2007), Lactuca sativa L. showed increased amount 
of ABA which was related to observed drought tolerance when treated with Bacillus 
sp. Cohen et  al. (2008) reported that Azospirillum brasilense Sp245-treated 
Arabidopsis plants showed enhanced ABA levels which were linked to the observed 
drought tolerance. In the study of Marulanda et al. (2009), Trifolium repens plants 
were treated with Pseudomonas putida and Bacillus megaterium under drought 
stress; the study concluded the increase in root-shoot biomass and water content 
was due to IAA production. Azospirillum sp. and Bacillus thuringiensis are capable 
of synthesizing IAA and evidently causing the enhancement of the formation of 
lateral roots and root hairs, thereby helping plants to grow under water deficit condi-
tions (Armada et  al. 2014). Some strains of Azospirillum lipoferum producing 
abscisic acid (ABA) and gibberellins can prevent the loss of water in their maize 
plant hosts by regulating the closure of stomatal and various stress signal transduc-
tion pathways (Cohen et al. 2009). Cytokinin-producing Bacillus subtilis enhanced 
the shoot growth and also conferred drought stress tolerance in Platycladus orienta-
lis (Liu et al. 2013b), and similar observations were made by Arkhipova et al. (2007) 
when lettuce was inoculated with cytokinin-producing Bacillus subtilis. In the study 
of Curá et al. (2017), the maize was inoculated to study the role of Azospirillum 
brasilense SP-7 and Herbaspirillum seropedicae Z-152 under drought stress. The 
report concluded enhanced biomass production; higher carbon, nitrogen, and chlo-
rophyll content; and lower levels of abscisic acid and ethylene in the inoculated 
maize plants.

13.10  Physiological Characteristics of Plants to Cope with PGP 
Microbes

13.10.1  Changes in Root and Shoot Characteristics

The major adaptations to combat the drought stress include the changes in the root 
architecture and inhibition of the shoot growth. The increase in the root number 
with a smaller diameter, deeper root systems, and shorter shoots which limit the leaf 
area available for evaporation are some of the adaptive mechanisms for proper 
growth of the plants, but shorter shoots though will not threaten the endurance of 
plants but will surely interfere with the yield during the water stress conditions. The 
studies on different crops under drought conditions suggest that those with deeper 
root systems and high number of roots will be able to tolerate drought conditions 
more efficiently than those possessing a few roots. Thus, PGPMs by different direct 
as well as indirect mechanisms affect the root as well as the shoot architecture and 
support the growth as well as the maintenance of the productivity of the plants under 
drought stress. Vardharajula et al. (2011) reported that corn plants inoculated with 
plant growth-promoting Bacillus sp. under drought stress conditions showed 
improvement in the shoot growth as well as the dry biomass. Naseem and Bano 
(2014) studied the effects of strain Alcaligenes faecalis (AF3) on seeds in growth 
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chamber tests and found that drought-stressed PGPR-treated plants showed an 
enhancement in root length by 10%, and it was concluded that development of root 
system was due to inoculation which enhanced the water uptake and allowed treated 
plants to tolerate drought stress.

Cohen et al. (2015) studied morphophysiological and biochemical responses of 
Arabidopsis thaliana Col-0 and aba2-1 mutant plants when inoculated with 
Azospirillum brasilense Sp 245 strain in well-watered and in drought conditions. 
The strain improved the biomass of the plants, lateral root number increased, the 
formation of the photosynthetic and photoprotective pigments was stimulated, ABA 
levels, plant sed yield, plant survival, proline content, relative water content 
increased, stomatal conductance and malondialdehyde content decreased. Timmusk 
et al. (2014) showed 78% higher biomass in wheat treated with PGP microbes under 
drought stress compared to untreated plants. Bresson et al. (2014) demonstrated the 
enhancement in lateral root length and modifications of the root architecture with 
PGP microbe strain Phyllobacterium brassicacearum STM196 which conferred 
observed drought tolerance. The increases in shoot and plant growth under drought 
stress as a result of treatment with PGP microbes have been reported in various 
crops including Sorghum bicolor L. (sorghum) (Grover et  al. 2014), Helianthus 
annuus L. (sunflower) (Castillo et al. 2013), wheat (Arzanesh et al. 2011; Kasim 
et al. 2013), Vigna radiata L. (green gram) (Saravanakumar et al. 2011), and maize 
(Naseem and Bano 2014; Naveed et al. 2014; Sandhya et al. 2010).

13.11  Relative Water Content

Another important criterion to measure the water status of the plants is measuring the 
relative water content (RWC), and a decrease in the RWC results in limited cell 
expansion and certainly reduction in the growth of plants (Ashraf 2010; Castillo et al. 
2013; Lu et al. 2010). Thus, RWC can act as one of the best parameters for assessing 
the capability of PGPR to ameliorate the drought stress. It has been suggested that 
RWC may help the plants to overcome the oxidative and osmotic stresses caused by 
drought stress. In fact, a number of studies carried out for the investigation of the 
potent PGPR which can help the plants to survive in the drought conditions have 
used this parameter in PGP microbe-treated and PGP microbe-untreated plants and 
have reported that plants treated with PGP microbes under drought conditions main-
tain relatively higher relative water content (Ngumbi and Kloepper 2016).

Casanovas et al. (2002) demonstrated a high RWC in maize which was treated 
with Azospirillum brasilense (BR11005), and it was concluded that the bacterial 
abscisic acid (ABA) caused stomatal closure and alleviated the water stress. Dodd 
et al. (2010) concluded that the increased RWC could be due to altered physiologi-
cal processes such as stomatal closure. In the study of Grover et al. (2014), sorghum 
plants treated with PGPR Bacillus sp. strain KB 129 under drought stress showed a 
24% increase in RWC.
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13.12  Accumulation of Various Compatible Solutes

Further, at the cellular level, an important adaptation that helps the plants to over-
come damages caused by drought is an osmotic adjustment (Blum 2005; Farooq 
et  al. 2009). This adaptation is very important for protecting cellular organelles, 
enzymes, and proteins (Farooq et  al. 2009; Huang et  al. 2014). In response to 
drought stress, various compatible solutes accumulate in plants (Kiani et al. 2007), 
the most important being glycine betaine and non-protein amino acids, for instance, 
proline, and others being sugars including sucrose, polyols such as mannitol, organic 
acids such as malate, and various inorganic ions such as calcium (Ngumbi and 
Kloepper 2016). These solutes are important for maintaining turgor and also in low-
ering the water potential but without a decrease in the actual water content (Serraj 
and Sinclair 2002).

13.12.1  Proline

Proline is one of the major osmolytes accumulated in plants in response to drought 
(Huang et  al. 2014; Verbruggen and Hermans 2008; Yoshiba et  al. 1997). The 
increase in the proline content in plants treated with Bacillus strains under water 
stress was linked to the upregulation of gene P5CS, which is concerned with the 
biosynthesis of proline, and there was inhibition of expression of the gene for 
ProDH, which is mainly involved in the metabolism of proline (Yoshiba et al. 1997). 
Proline not only plays an important role in the osmotic adjustments, but it also sta-
bilizes cellular structures such as proteins and membranes, scavenges free radicals, 
and buffers the cellular redox potential (Ashraf and Foolad 2007; Hayat et al. 2012). 
The increase in the proline content has been directly linked to the capability of the 
plants to tolerate drought (Sankar et al. 2007). The synthesis of proline has been 
demonstrated to increase in plants exposed to abiotic stress in the presence of 
Burkholderia (Barka et al. 2006), as well as Arthrobacter and Bacillus (Sziderics 
et al. 2007).

The transgenic plants of Arabidopsis thaliana introduced with ProBA genes of 
Bacillus subtilis showed higher production of proline and an increase in their 
osmotic stress tolerance (Chen et al. 2007). Treatment with PGP microbes has been 
reported to increase the proline levels in potato (Gururani et  al. 2013), maize 
(Naseem and Bano 2014; Sandhya et al. 2010; Vardharajula et al. 2011), sorghum 
(Grover et al. 2014), and Arabidopsis thaliana L. (Cohen et al. 2015). Maize seed-
lings treated with Azospirillum brasilense under water deficit conditions showed 
improvement in relative as well as absolute water content as compared to uninocu-
lated plants. Further, the treated plants did not show any drop in the water potential; 
there was an enhancement of the root growth, foliar area, as well as aerial biomass. 
The proline content in the leaves and roots also showed an increment. All these 
results showed more significance at 75% reduction in water supply than at 50% 
reduction (Casanovas et al. 2002).
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Wang et al. (2012a) reported a three- to fourfold increase in the proline content 
in leaves of Cucumis sativus L. (cucumber) when treated with a mixture of Bacillus 
cereus (AR156), Bacillus subtilis (SM21), and Serratia sp. (XY21) in comparison 
to untreated controls. It was concluded in the study that the increased proline con-
tent in the leaves protected the plants from over-dehydration thus contributing to 
the observed drought tolerance. Ghosh et al. (2017) studied the role of Pseudomonas 
putida GAP-P45 on the regulation of proline metabolic gene expression in 
Arabidopsis thaliana under water deficit conditions. In the inoculated plants, quan-
titative real-time expression analysis of proline metabolic genes under water deficit 
conditions showed a delay but prolonged upregulation of the expression of genes 
including ornithine-Δ-aminotransferase (OAT), Δ 1 -pyrroline-5-carboxylate syn-
thase1 (P5CS1), and Δ 1 -pyrroline-5-carboxylate reductase (P5CR), as well as 
proline catabolism, i.e., proline dehydrogenase1 (PDH1) and Δ 1 -pyrroline-5-car-
boxylate dehydrogenase (P5CDH), which are involved in proline biosynthesis. The 
inoculated plants showed enhancement in the growth, fresh weight, plant water 
content, chlorophyll content, and accumulation of endogenous proline and reduc-
tion in the primary root length.

13.12.2  Glycine Betaine

Glycine betaine is one of the major osmolytes which is accumulated in the plants in 
response to the stress conditions. It is known to possess a positive effect on the integ-
rity of the membrane along with certain other adaptive roles which mediate osmotic 
adjustments during environmental stresses. Gou et al. (2015) evaluated the role of 
Klebsiella variicola F2, Raoultella planticola YL2, and Pseudomonas fluorescens 
YX2 on maize in a pot experiment under drought stress to determine their role in 
plant growth promotion and accumulation of choline and glycine betaine in leaves. 
The study well demonstrated that the PGPR strains regulated the osmotic adjust-
ments by accumulating choline and subsequently glycine betaine thereby improving 
the water relations and ultimately promoting the growth under drought stress.

13.12.3  Trehalose

Trehalose is synthesized by some microorganisms and some plants which help to 
resist extreme abiotic stress such as desiccation (Chaplin 2006; Julca et al. 2012). 
Trehalose is a non-reducing disaccharide, i.e., α-D-glucopyranosyl-1, 1-α-D- 
glucopyranoside, that is formed by two molecules of glucose linked through their 
anomeric carbons. It plays a chief role in stabilizing dehydrated enzymes and pro-
teins, providing higher levels of soluble carbohydrates, elevating capacity for pho-
tosynthesis, and protecting biological structures from damage during stress. 
Rodríguez-Salazar et al. (2009) studied the effect of drought stress on maize plants 
inoculated with genetically engineered Azospirillum brasilense for trehalose 
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biosynthesis. The study conferred stress tolerance in maize plants as well as 
enhanced leaf and root biomass.

13.13  Antioxidant Metabolism

Another important consequence of the drought is the stimulation of the production 
of various reactive oxygen species (ROS) including hydrogen peroxide (H2O2), sin-
glet oxygen (1O2), superoxide radical (O2 _), and the hydroxyl radical (HO-) (Cruz 
de Carvalho 2008), and these reactive oxygen species decrease the normal, meta-
bolic processes of the plants by causing an oxidative damage to lipids and various 
proteins ultimately leading to cell death (Farooq et al. 2009; Hasanuzzaman et al. 
2013). Plants possess certain enzymatic and non-enzymatic oxidants which are also 
referred to as the scavenging enzymes which play an efficient and supportive role to 
overcome the negative effects of the drought (Cruz de Carvalho 2008). Superoxide 
dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione reductase (GR), 
and ascorbate peroxidase (APX) are among the most important enzymatic antioxi-
dants (Cruz de Carvalho 2008; Farooq et  al. 2009; Gill and Tuteja 2010; 
Hasanuzzaman et  al. 2013). Treatment of the plants with PGP microbes under 
drought stress in relation to the antioxidant enzymes has been investigated in differ-
ent studies, and an enhancement in the accumulation of various oxidant enzymes 
decreasing the oxidative injury has been well demonstrated.

Saravanakumar et  al. (2011) reported that green gram plants treated with 
Pseudomonas fluorescens Pf1 and Bacillus subtilis EPB showed an enhancement in 
catalase activity which was conferred to be directly related to the observed drought 
tolerance. Gururani et al. (2013) treated potato plants with Bacillus pumilus (DH- 
11) and Bacillus firmus (40), and the enhancement in the ROS-scavenging enzymes 
such as ascorbate peroxidase, catalase, and superoxide dismutase was reported to be 
the main mechanism for observed drought tolerance. In the study of Gusain et al. 
(2015), drought-tolerant (Sahbhagi) and drought-sensitive (IR-64) cultivars of rice 
were treated with Pseudomonas fluorescens (P2), Pseudomonas jessenii (R62), 
Pseudomonas synxantha (R81), Bacillus cereus BSB 38 (14B), and Arthrobacter 
nitroguajacolicus (YB3) to demonstrate their role on growth and induction of the 
stress-related enzymes under different levels of drought stress; the study concluded 
that the inoculated plants showed higher content of proline and enhanced ascorbate 
peroxidase, catalase, peroxidase, and superoxide dismutase activities, respectively.

Singh et  al. (2015) inoculated Helianthus annuus seedlings with Azotobacter 
chroococcum (A+) and Bacillus polymyxa (B+) separately and in a consortium of 
the two (AB+) under water stress conditions. The maximum relative water content 
and seedling growth were observed in AB+-treated seedlings, increased superoxide 
dismutase activity was observed in A+ and AB+, and enhanced catalase activity was 
observed in leaves of seedlings treated with A+ and AB+. Kakar et al. (2016) stud-
ied the effect of Bacillus amyloliquefaciens Bk7 and Brevibacillus laterosporus B4 
and also various biochemical elicitors such as salicylic acid and β-aminobutyric 
acid (SB) and their mixture for different abiotic stresses including drought stress; 
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after withholding water for 16 days, the treated rice plants showed 100% survival 
and increased seedling height and shoot number; reduction in chlorosis, wilting, 
necrosis, and rolling of leaves; and 3.0- and 3.6-fold enhancement in activities of 
antioxidant enzymes including superoxide dismutase and catalase. In the study of 
Khalilzadeh et al. (2016), rice was seed inoculated with Azotobacter chrocoocum 
strain 5 (F1), Pseudomonas putida strain 186 (F2), Azotobacter + Pseudomonas (F3), 
and Cycocel with different water treatment levels, and an increase in catalase (CAT), 
peroxidase (POD), and polyphenol oxidase (PPO) activities was observed.

13.14  Upregulation of Expression of Drought-Tolerant Genes

In addition to the accumulation of various osmolytes, increased relative water con-
tent, and changes in root and shoot characteristics, the upregulation in expression of 
certain drought stress-responsive genes has also been reported in certain studies. In 
the study of Lim and Kim (2013), the effect of inoculating pepper plants with 
Bacillus licheniformis K11was analyzed in relation to drought resistance. The seed-
lings treated with PGPR tolerated drought stress, whereas uninoculated ones died 
after 15 days. After 10 days of drought stress, treated pepper plants showed a total 
of six differentially expressed stress proteins by two-dimensional polyacrylamide 
gel electrophoresis and 2D-PAGE differential display PCR (DD-PCR), respectively. 
Among these stress proteins, specific genes of Cadhn, VA, sHSP, and CaPR-10 were 
expressed 1.5-fold more in pepper treated with Bacillus licheniformis K11 under 
drought conditions. Sarma and Saikia (2014) reported an increase in the production 
of reactive oxygen species-scavenging enzymes and cellular osmolytes, root as well 
as shoot length, dry weight, relative water content, and upregulation of various 
drought stress-responsive genes including dehydration-responsive element binding 
protein (DREB2A), catalase (CAT1), and dehydrin (DHN) in mung bean treated 
with Pseudomonas aeruginosa GGRJ21 as compared to the untreated plants under 
drought stress.

13.15  Potential Biotechnological Applications of Drought- 
Tolerant Microbes

The various coordinated mechanisms of PGPR affecting the growth of the plants 
will prove to be a very powerful tool for sustainable agriculture. The applications of 
the beneficial rhizobacteria on different crops under laboratory as well as green-
house experiments are already proving to be successful. Consequently, the achieve-
ment of the industries which will produce PGPR-based bio-inoculants will depend 
on pioneering business management, marketing of the product, and extensive 
research. Further, optimization of the processes for better formulations of effectual 
strains of PGPR will be also required so as to introduce them in agriculture.
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13.15.1  Biofertilization

Biofertilizers are defined as the products which generally contain microorganisms 
which by diverse direct or indirect mechanisms influence the growth of the plants 
even under stressed conditions such as floods, drought, low temperature, salinity, 
etc. and thus can open new doors for the sustainable agriculture (Kour et al. 2017a). 
The direct attributes include nitrogen fixation, phosphorus solubilization, produc-
tion of phytohormones, showing ACC deaminase activity, and siderophore produc-
tion, whereas the indirect attributes include the production of the ammonia, HCN, 
siderophores, and various hydrolytic enzymes such as amylases, cellulases, pectin-
ases, phytases, proteases, and xylanases. The most studied microbes used as biofer-
tilizers are plant growth-promoting rhizobacteria (PGPR). The well-known genera 
of PGP microbes include Aeromonas, Acinetobacter, Alcaligenes, Azospirillum, 
Arthrobacter, Azotobacter, Bacillus, Beijerinckia, Azoarcus, Burkholderia, 
Clostridium, Erwinia, Enterobacter, Gluconacetobacter, Flavobacterium, 
Klebsiella, Pseudomonas, Rhizobium, Serratia, etc. (Sudhakar et al. 2000; Bertrand 
et al. 2001; Bonaterra et al. 2003; Joo et al. 2005; Murphy et al. 2003). Different 
bacterial genera including Bacillus, Rhizobium, Pseudomonas, Paenibacillus, 
Pantoea, Burkholderia, Azospirillum, Achromobacter, Microbacterium, Variovorax, 
Enterobacter, Methylobacterium, etc. have been known to support the growth of 
plants and overcome the stress conditions (Pandey et al. 2016). Diverse strains of 
Bradyrhizobium japonicum (Thal-8, Tal-620, Dulawala) which show differential 
response to drought conditions imparted different degrees of tolerance to water 
stress conditions in inoculated chickpea and also increased the root biomass, num-
ber of nodules, weight of seeds, and IAA and GA content in the leaves (Bano et al. 
2010). A number of studies in glasshouse and fields have demonstrated the effects 
of PGPR on the enhancement of growth and productivity, and various studies have 
been published (Kennedy et  al. 2004; Lucy et  al. 2004). Among PGP microbes, 
Azospirillum has been assessed the most (Burdman et al. 2000; Dobbelaere et al. 
2001; Lucy et  al. 2004; Vessey 2003). Further, the species of Pseudomonas and 
Bacillus (Alam et al. 2001; Çakmakçı et al. 2001; Kokalis-Burelle et al. 2006) are 
also receiving greater attention as they are associated with the rhizosphere of many 
crops and also possess the capability to stimulate growth (Chelius and Triplett 2000; 
Dong et al. 2003; Sturz et al. 2001). Recently, PGP microbes are used in consortium 
rather as single strain to provide the benefits to the plants. Pseudomonas, Bacillus, 
and Rhizobium in combination is considered to be the most effective phosphate 
solubilizers (Adesemoye et al. 2008; Rodríguez-Díaz et al. 2008; Rodríguez and 
Fraga 1999). The biofertilizers are completely safe to use and are eco-friendly. 
Thus, it is very important to use such effective strategies in combination with the 
chemical fertilizers and organic manures for integrated nutrient management sys-
tems so that biological productivity and health of the soil could be easily main-
tained, and chiefly the farmers are unwilling to use the recommended doses of the 
fertilizers as their cost is very high and also due to the risk of crop failures on 
account of aberrant weather conditions (Choudhary 2017).

D. Kour et al.



291

13.15.2  Bioprotectants

There are a number of fungi, bacteria, viruses, nematodes, etc. which are pathogenic 
to plants (Viswanathan and Samiyappan 2002). In recent times, the use of PGPR as 
bio-inoculant for the biological control of plant diseases is on the rise (Aliye et al. 
2008; Altindag et al. 2006; Xue et al. 2009). There are a number of different mecha-
nisms of biocontrol including the induction of the systemic resistance, production 
of siderophores which prevent the proliferation of pathogens, and production of 
various antibiotics and hydrolytic enzymes. PGPR are known to produce many anti-
fungal compounds such as 2,4-diacetylphloroglucinol (DAPG), phenazines, pyolu-
teorin, pyrrolnitrin, tensin, and nicotinamide. The most widely used PGPR for 
biocontrol are the strains of Bacillus subtilis due to their capability of reducing 
disease and also antibiotic-producing capacity (Kokalis-Burelle et  al. 2006). 
Fluorescent pseudomonads are also among the potent biocontrol agents suppressing 
various soil-borne phytopathogens by the synthesis of different antifungal com-
pounds and sequestering iron in the rhizospheric region by producing siderophores 
making iron unavailable (Dwivedi and Johri 2003). Inoculating plants with diverse 
strains of Pseudomonas fluorescens leads to a decrease in mortality of seedlings 
caused by Aspergillus niger (Dey et al. 2004) and shows an inhibitory effect against 
Sclerotium rolfsii by causing reduction in the incidence of stem rot severity. 
Pseudomonas fluorescens strain WCS374 has been reported to suppress Fusarium 
wilt in radish and also to increase yield by about 40% (Bakker et al. 2007).

Kumar et  al. (2009) reported the biocontrol activity of Streptomyces sp. 
Streptomyces has been reported to be among the major genera showing potential 
against various pathogens such as Acyrthosiphon kondoi, Fusarium avenaceum, 
Myzus persicae, Rhizoctonia bataticola, tobacco necrosis virus, tomato mottle 
virus, etc. PGPR when used as bio-inoculants possess efficacy for the suppression 
of various diseases with a simultaneous increase in the chlorophyll content and 
number of leaves, ultimately enhancing the overall productivity.

13.16  Conclusion and Future Prospect

The improvement of the stress tolerance and productivity of crops is the major goal 
of agriculture. The use of PGP microbes is an emerging field of science which is 
proving its potential in helping plants to combat abiotic stresses by different mecha-
nisms including production of phytohormones, solubilization of phosphorus, pro-
duction of ACC deaminase, and production of siderophores. There are reports that 
have been published on tolerance of stress by plants inoculated with PGP microbes, 
and exploitation of these beneficial bacteria will surely make a breakthrough in 
growing crops as well as enhancing the yield of the crops under stress conditions. 
Agriculture accounts for ~ 70% of all water use, and the world population is increas-
ing annually; soon more people will need to be fed while also using less water. The 
use of plant-associated bacteria is an eco-friendly alternative that can increase crop 
water use efficiency. Sustainable agriculture requires the use of strategies to increase 
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or maintain the current rate of food production while reducing damage to the envi-
ronment and human health. The use of microbial plant growth promoters is an alter-
native to conventional agricultural technologies. Plant growth-promoting microbes 
can affect plant growth directly or indirectly. The direct promotion of plant growth 
by PGP microbes, for the most part, entails providing the plant with a compound 
that is synthesized by the bacterium or facilitating the uptake of certain nutrients 
from the environment. The indirect promotion of plant growth occurs when PGP 
microbes decrease or prevent the deleterious effects of one or more phytopatho-
genic organisms. Future research in microbes will rely on the development of 
molecular and biotechnological approaches to increase our knowledge of microbes 
and to achieve an integrated management of populations of microbial communities. 
Research on ACC deaminase and P solubilization by plant growth-promoting 
microbes is in progress, and leads in microbe-mediated alleviation of diverse abiotic 
stress. The application of multifarious PGP microbes or consortium over single 
inoculation could be an effective approach for reducing the harmful impact of stress 
on plant growth under the abiotic stress conditions.
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Abstract
The soil pH is a very crucial determining factor for the solubility of different 
metal ions, nutrient availability, and various physical properties. Among differ-
ent factors, aluminum (Al) toxicity in acidic soil is considered as a limiting factor 
for plant growth. When soil pH falls to lower than 5, Al is solubilized into differ-
ent ionic forms and causes toxicity to the plants. In acidic soils, Al limits the 
growth of roots either by restraining cell division, cell elongation, or both, caus-
ing stunted root growth. Moreover, Al ions also form complexes with phosphoric 
acid which makes phosphorus (P) unavailable to plants. In recent years, consid-
erable efforts have been made to addressing how bacteria respond to the chang-
ing environment since the terrestrial ecosystems are increasingly under the 
pressure of human activities. The agricultural soil is a great example where most 
human interference occurred. Due to the extensive use of chemicals and pollut-
ants, the agricultural soils gradually become acidic and less fertile. In this chap-
ter, we are trying to include the Al chemistry in acidic soils and its toxic effects 
on plants at higher concentration. The chapter also includes the role of plant 
growth-promoting rhizobacteria (PGPR) to mitigate the Al toxicity in acidic soil.
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14.1  Introduction

The acidity of soil is a very crucial factor for the growth and yield of many crops. 
The soil acidity is adversely affecting the crop all over the world, and almost 50% 
of the arable lands of the world are covered by acidic soil (von Uexküll and Mutert 
1995). In India, also it is estimated that approximately one-third of the cultivated 
land is affected by soil acidity (Mandal 1997). Moreover, agricultural soil is a 
hotspot for anthropogenic disturbance due to the intensive use of agricultural-based 
chemicals and pollutants resulting in significant changes in soil characteristics such 
as acidification and attenuation of soil fertility (Jenkins et al. 2009). There are ample 
of limiting factors co-exist in acidic soils including toxic levels of aluminum (Al), 
manganese and iron (Fe), with deficiencies of some vital elements, such as phos-
phorus (P), nitrogen, potassium (K), calcium (Ca), magnesium, and some micronu-
trients (Kochian et al. 2004). However, it is observed that Al toxicity and P deficiency 
are the most crucial for the plant health and growth (Kochian et al. 2004). Aluminum 
(Al) in soils is solubilized into ionic forms, viz., Al(OH)2

+, Al(OH), and Al(H2O)3
+, 

especially when the soil pH drops to lower than 5, and it is found to be very toxic to 
the plants. These Al ions form complexes with phosphoric acid which makes phos-
phorus (P) unavailable to plants (Zheng 2010). Soil P is an important macronutrient 
for plant growth. P is one of the major components in energy metabolism and bio-
synthesis of nucleic acids and cell membranes with an important role in regulation 
of a number of enzymes. P deficiency may lead to major problem for agricultural 
production (Singh and Satyanarayana 2011). Al toxicity also influences the root 
morphology of the plants and reduces the root growth due to which it makes plants 
more sensitive to various abiotic stresses such as water and nutrient stress. It also 
reduces the ability of crop plants to acquire P from the soil and ultimately reduces 
crop yield (Chen et al. 2012).

In order to produce a better crop yield on acidic soils, farmers are recommended 
to apply alkaline materials such as lime to increase the soil pH and thus eliminate Al 
toxicity and to apply P fertilizer to increase the availability of P in soil. In some 
previous studies, it was reported that application of P could alleviate Al toxicity in 
plants. This Al toxicity alleviation effect is commonly based on two possible mech-
anisms: The application of P can directly precipitate Al by forming Al-P complex in 
soil and on plants (such as on root surface, in root cell walls, or within root cells), 
and indirectly, the application of P could alleviate Al toxicity by improving the root 
morphology and facilitating nutrient uptake or by secreting special root exudates.

It is still poorly understood the environmental factors that control the distribution 
and abundance of soil microorganisms despite the soil microbes being the dominant 
engines of biogeochemical cycles and major pool of living biomass in terrestrial 
ecosystems (Fierer et  al. 2012). Soil-dwelling P-solubilization microbes were 
known to solubilize the insoluble complexes of P such as aluminum phosphate 
(AlPO4) in acidic soil. Recent study conducted using a variety of molecular or bio-
chemical approaches has started to explore the distributional patterns exhibited by 
soil microbial communities and the biotic or abiotic factors driving these patterns 
(Rousk et  al. 2010). Researcher has demonstrated that the soil microbial 
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communities across the diverse ecosystem are often strongly correlated with differ-
ences in soil chemistry (Frey et al. 2004; Nilsson et al. 2007; Lauber et al. 2008; 
Jenkins et al. 2009). In particular, it has been shown that the composition and in 
some cases diversity of soil bacterial communities are often strongly correlated with 
soil pH (Fierer and Jackson 2006; Hartman et al. 2008; Jenkins et al. 2009; Lauber 
et al. 2009; Wu et al. 2017). However, current emergence of promising technologies 
such as high-throughput sequencing is dramatically intensifying our knowledge of 
soil microbial diversity, linking microbial ecology and the plant-microbe interaction 
and functioning (Fig. 14.1).

14.2  Aluminum Chemistry in the Acidic Soil

Al is a member of boron group of chemical elements with atomic number 13. It is 
the most abundant metallic element in our earth crust and third most abundant of all 
element (after oxygen and silicon) and comprising approximately 8% by weight 
(FitzPatrick 1986). The oxides of aluminum, iron, and manganese particularly the 
poorly crystallized and microcrystalline forms are undoubtedly the most reactive 
components of acidic soils. Aluminum bound as oxides and form complex alumino-
silicates. Since aluminum occurs exclusively in the trivalent form, only pH and 
complex formation affect the solubility of its oxides. Hartwell and Pember first 
assumed that the soluble aluminum is a major inhibitor for plant growth and devel-
opment in acid soils nearly 90 years ago, but till date the precise mechanism of 
aluminum phytotoxicity is not fully understood (Krstic et al. 2012). The acidic soils 

Fig. 14.1 Aluminum abundance and speciation in the earth’s crust. (a) Different forms of Al in 
the soil. Al is mainly found in the mineral form such as aluminum silicates and aluminum oxides. 
Moreover, depending on the soil pH, Al can be found as precipitates or conjugated organic and 
inorganic and molecular ions. (b) Al speciation in the soil solution. Al concentration and the spe-
ciation of Al depend on the pH and the chemical environment of the soil solution. (Adapted from 
Bojórquez-Quintal et al. 2017)
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are predominantly present in humid tropical and subtropical areas of the world and 
are characterized by having excess H+, Mn2+, and A13+ with deficiencies of Ca2+, 
Mg2+, and PO4

3−. In addition, sulfur dioxide and other air pollutants cause acid soil 
stress in those areas other than the tropics (Foy 1984). The chemistry of Al in soil is 
reasonably complex, and the hydroxyl-rich aluminum compounds solubilize to an 
extent in the soil solution. Al has a high ionic charge and a small ionic radius, there-
fore having the second largest charge-to-radius ratio (z/r  =  5.9). Therefore, Al 
strongly polarizes the water molecule in the hydration shell (Vitorello et al. 2005). 
When the pH of a solution is raised above 4.0, A13+ forms the mononuclear species 
Al(OH)2+, Al(OH)3+, and Al(OH)4+ and soluble complexes with inorganic ligands 
such as sulfate (Al(SO)4

+) and fluoride (A1F2
+, AlF3

+) and also with many organic 
compounds. Larger polynuclear hydroxyl aluminum species also form as metasta-
ble intermediates during AI(OH)3 precipitation. The mononuclear A13+ species 
appears to be most toxic at low pH, at which it exists as an octahedral hexahydrate. 
With escalating pH, Al(H20)3+ undergoes repeated deprotonations to form insoluble 
Al(OH)3 at pH 7.0. One of the most important polymer triskaideka aluminum, [AlO
4Al12(OH)24(H2O)12]7+, referred to as Al13 (Parker and Bertsch 1992), seems to be the 
most toxic Al species.

14.3  Aluminum Toxicity in Plants

Al toxicity is a crucial factor for limiting crop productivity in acidic soil worldwide. 
In acid soil with high mineral content, Al is the major cause of phytotoxicity. When 
the soil pH is lower than 5, Al ions are released to the soil and the plant root becomes 
vulnerable to Al, which enters into root tip cell and reduces root development of 
plant. As we know, root growth and elongation is a process of cell division, but the 
Al exposure in the root tip causes inhibition of cell elongation and cell division. 
Finally, it leads to stunting and poor development of root hair and apices accompa-
nied by reduced water and nutrient uptake (Panda et al. 2009). Moreover, it has been 
reported that Al exposure in root tips causes the decrease of mitotic activity in dif-
ferent plant species, viz., wheat (Frantzios et  al. 2001; Li et  al. 2008), maize 
(Marienfeld et al. 2000; Doncheva et al. 2005), barley (Budikova and Durcekova 
2004), and bean (Marienfeld et al. 2000). Doncheva et al. (2005) reported that cell 
division (decrease of S-phase cells) in the proximal meristem and apical meristem 
of roots was inhibited after 5 min and 10–30 minutes of Al exposure, respectively. 
Similarly, it has also been demonstrated that Al can accumulate in the nuclei of cells 
in the meristematic region of the root tip within 30 minutes (Silva et al. 2000). It was 
also reported that Al impedes root apex cell division and lateral roots, increases the 
rigidity of the cell wall by cross-linking of pectins, and reduces DNA replication 
because of increased rigidity of the double helix (Zhang et al. 2014; Eekhout et al. 
2017). Furthermore, a number of researchers dissected the Al toxicity in the cellular 
level, and they found that Al can affect the constituents’ symplast (calmodulin) 
(Tokizawa et al. 2015), apoplast (pectin matrix) (Eticha et al. 2005a, b; Delhaize 
et al. 2007), and DNA in cells of plant roots (Kochian et al. 2004; Sade et al. 2016). 
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However, among the different components present in the cell wall network, pectins 
have been proposed to be a critical site for Al-cell wall interactions (Blamleyet al. 
1993). Interactions of Al can lead to the displacement of other cations such as Ca2+ 
which is fundamental for cell wall stability (Matsumoto et al. 1977a, b; Rincón and 
Gonzales 1992; Schmohl and Horst 2000; Tabuchi and Matsumoto 2001). The dis-
ruption of cytoplasmic Ca2+ homeostasis due to Al interference may be directly or 
indirectly involved in the inhibition of the cell division or root elongation. Al might 
disrupt Ca-dependent metabolism by maintaining Ca2+ levels in the cytoplasm or by 
preventing Ca2+ transients from occurring altogether (Panda et al. 2009). As a result, 
the strong and rapid binding of Al can alter cell wall integrity and mechanical prop-
erties, making it more rigid and leading to a decrease in the mechanical extensibility 
of the cell wall required for normal cell expansion (Kochian et al. 2005).

Al in low pH affects the plasma membrane and alters the function and structure 
of plasma membrane (Sasaki et al. 1994; Wagatsuma et al. 1995; Vitorello and Haug 
1996; Ishikawa and Wagatsuma 1998; Ishikawa et al. 2001; Ofei-Manu et al. 2001; 
Vitorello et al. 2005). Al has a greater affinity for the choline head of phosphatidyl-
cholines which is a lipid constituent of the plasma membrane, where Al can displace 
other cations, viz., Ca2+, that may form bridges between the phospholipid head 
groups of the membrane bilayer. As a result, the phospholipid packing and fluidity 
of the membrane is altered (Akeson and Munns 1989; Kochian et al. 2005). Due to 
displacement of cations, Al stimulates the exceptional synthesis of callose (β-1, 
3-glucan) on the surface of plasma membrane by β-1, 3-glucan synthase (Gupta 
et  al. 2013). Therefore, accumulation of callose in the apoplast is considered as 
early symptoms of Al toxicity (Horst et  al. 1997; Massot et  al. 1999). Since the 
synthesis of callose is assisted by the presence of Ca2+, therefore it has been assumed 
that Al-prompted displacement of Ca2+ from the membrane surface may increase the 
apoplasmic Ca2+ pool requisite to trigger callose synthesis (Ryan et al. 1993; Ahn 
et al. 2001; Gupta et al. 2013). Under Al stress, the speed of callose accumulation 
may further enhance and lead to cellular damage by preventing intercellular trans-
port through plasmodesmatal connections (Sivaguru et al. 2000).

One of the most noticeable consequences of root Al exposure is an almost imme-
diate depolarization of the plasma membrane (Lindberg et al. 1991; Papernik and 
Kochian 1997). The electrochemical potential of the plasma membrane has been 
changed due to direct and indirect interactions of Al with different number of ions 
transport pathways (Miyasaka et al. 1989). It has been demonstrated that the nui-
sance of Al can significantly degrade the activity of the plasma membrane H+-
ATPase which consequently led to the disruption of the H+ gradient in both in vitro 
(e.g., membrane vesicle studies) and intact roots of several plant species (Ryan et al. 
1993; Ahn et al. 2001, 2002; Ahn and Matsumoto 2006). However, the H+ gradient 
in transmembrane can act as a major driving force for secondary ions transportation. 
Thus, the Al-prompted disruption of the H+ gradient could certainly alter the ion 
homeostasis of root cells (Gupta et al. 2013). Plant exposure to Al can prevent the 
acquisition of several essential cations such as Ca2+, Mg2+, K+, and NH4

+ (Huang 
et al. 1992; Rengel and Elliott 1992; Nichol et al. 1993; Ryan and Kochian 1993; 
Lazof et al. 1994). In this context, the electrophysiological approaches were used to 
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demonstrate that Al3+ interacts directly with several different plasma membrane 
channel proteins and barricades the uptake of ions such as K and Ca2+ (Gassmann 
and Schroeder 1994; Piňeros and Kochian 2001; Piñeros and Tester 1995). In addi-
tion to directly altering ion permeation through channels, extracellular Al can fur-
ther modulate the transporter’s activity via altering the membrane potential. For 
instance, Al-induced depolarizations of plasma membrane can amend voltage- 
dependent Ca2+ channel transport by indirectly altering and shifting the activation 
thresholds of distinct transport pathways, such as hyperpolarization-activated 
(Kiegle et al. 2000; Very and Davies 2000) and depolarization-activated (Piñeros 
and Tester 1997; Thion et al. 1996; Thuleau et al. 1994) Ca2+ channels.

Al tends to bind with phosphorus (P) in acidic soil and form insoluble complexes 
in soils and plant roots, thereby creating a P deficiency for plant growth. Soil P is an 
important macronutrient for plant growth. P is a crucial factor for different cellular 
mechanisms in plants, and its deficiency may lead to a major problem for agricul-
tural production (Singh and Satyanarayana 2011). It also acts as a metabolite 
involved in energy transfer, the activation of proteins, and the regulation of meta-
bolic processes (Marschner 1995; Franke et al. 2002). Inorganic phosphate is the 
primary source of P for plants. It enters into the equilibrium reactions defined by P 
sorption isotherm (Fox and Kamprath 1970). Even in the most fertile soils, P con-
centration in soil solutions rarely exceeds 8 μM (Barber et al. 1962). The plants have 
adapted a number of morphological and biochemical strategies to access the P in 
soil. The highly branched root systems with more root apices are more capable of 
acquiring P. It has been observed in some plant species that the surface area of roots 
in contact with the soil increased in diameter of roots when the plants are under 
P-stressed (Ma et al. 2001) and sometimes the density and length of root hairs also 
increased (Bates and Lynch 1996; Foehse and Jungk 1983; Smitha et  al. 2002). 
Therefore, there is a strong correlation between Al toxicity and P deficiency. Al 
toxicity affects the root morphology due to which it has been seen that plant growth 
is adversely affected by P deficiency at the occurrence of Al toxicity. The plants 
cannot uptake the sufficient P, and the deficiency of phosphorus occurs in acidic 
soils mainly because of Al-P interaction (Table 14.1).

14.4  PGPR for Alleviating Aluminum Toxicity

14.4.1  Plant Growth-Promoting Rhizobacteria (PGPR)

Kloepper and Schroth (1978) for the first time defined an important group of micro-
bial communities that colonized the plant roots and exerts beneficial effects and 
termed them as plant growth-promoting rhizobacteria (PGPR). These PGPR can 
improve growth, nutrition assimilation, and health of plants in different agroecosys-
tems (Philippot et  al. 2013). PGPR are sometimes also termed as plant health- 
promoting rhizobacteria (PHPR) or nodule-promoting rhizobacteria (NPR) 
according to their functions in the plant rhizosphere soil (Burr and Caesar 1984). 
PGPR can be divided into two groups: the PGPR which live inside the plant cells, 
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produce nodules, or localize inside the specialized structures are called as iPGPR 
(i.e., symbiotic bacteria), and the PGPR which live outside the plant cells and do not 
produce nodules but still promote plant growth are called as ePGPR (i.e., free-living 
rhizobacteria) (Gray and Smith 2005). A putative rhizobacteria qualifies as PGPR 
when it is able to produce a positive effect on the plant upon inoculation, and they 
should be competitive to survive in the existing rhizosphere communities. In rhizo-
sphere, generally about 2–5% of bacteria are PGPR, and majority of plausible 
PGPR bacterial genera include Arthrobacter, Azospirillum, Azotobacter, 
Acinetobacter, Bacillus, Pseudomonas, Klebsiella, Burkholderia, Bradyrhizobium, 
Rhizobium, Erwinia, Flavobacterium, Micrococcus, Enterobacter, Xanthomonas, 
Chromobacterium, Serratia, Caulobacter, Frankia, and Thiobacillus that have been 
documented to promote plant growth (Glick 1995; Vessey 2003; Bhattacharyya and 
Jha 2012; Bal et al. 2013).

In the last decade, several researches have been carried out to understand the func-
tioning of rhizosphere as an ecological niche which eventually also gains attention in 
sustainable agricultural practice. PGPR are the potential tools to contribute for the 
development of sustainable agricultural systems (Schippers et al. 1995). Commonly, 
PGPR contribute to the plant health by three different ways (Glick 1995), i.e., pro-
ducing particular compounds for the plants (Dobbelaere et  al. 2003; Zahir et  al. 
2004), facilitating the uptake of certain nutrients from the soil (Lucas García et al. 
2004; Çakmakçi et al. 2006), and reducing or preventing the microorganisms which 
can cause the plant disease (Jetiyanon and Kloepper 2002; Guo et  al. 2004a, b; 
Saravanakumar et al. 2008). PGPR may influence the plant growth directly by fixing 
atmospheric nitrogen, solubilizing insoluble phosphates, and secreting phytohor-
mones such as indole acetic acid (IAA), gibberellic acid (GA), and ACC (1-amino-
cyclopropane-1-carboxylic acid) deaminase which helps in regulation of ethylene. 
PGPR can indirectly stimulate the plant growth by siderophore production which 
sequesters iron an important cofactor for pathogenic bacteria to grow, induced sys-
temic resistance (ISR), competition for nutrients, production of different types of 
anti-microbial metabolites (such as antibiotics) to suppressive the deleterious 
microbes (Glick and Bashan 1997). The concept of PGPR has now been confined to 
the bacterial strains that can execute at least two of the three criteria such as aggres-
sive colonization, plant growth stimulation, and biocontrol (Weller et  al. 2002; 
Vessey 2003). PGPR has been reported for the benefit of different agricultural crops 
like rice (Sudha et  al. 1999), tomato (Mena-Violante and Olalde-Portugal 2007), 
wheat (de Freitas 2000), maize (Biari et al. 2008), canola (Naderifar and Daneshian 
2012), chili (Bharathi et al. 2004), lentil (Siddiqui et al. 2007), and tea (Dutta et al. 
2015; Dutta and Thakur 2017). Moreover, actinobacteria is also one of the major 
groups of bacteria among the rhizosphere microbial populations which plays a sig-
nificant ecological role in soil nutrient cycling (Halder et al. 1991; Elliott and Lynch 
1995) as well as in plant growth-promoting (PGP) activities (Merzaeva and Shirokikh 
2006). Several reports are available on the actinobacteria for their promising PGP 
activity (Gomes et al. 2000; Sousa et al. 2008, Anwar et al. 2016). Actinobacterial 
strains, like Micromonospora sp., Streptomyces sp., Streptosporangium sp., and 
Thermobifida sp., are documented as PGPR which efficiently colonized in 
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rhizosphere and showing biocontrol activity against a wide range of root pathogenic 
fungi (Franco-Correa et al. 2010). Streptomyces sp. isolated from Araucaria angus-
tifolia rhizosphere showed PGP and act as a potential biocontrol agent against 
Fusarium and Armillaria pine rot (de Vasconcellos et al. 2010).

14.4.2  Role of PGPR for Alleviating Aluminum Toxicity

One of the strategies that have been considered to counter various environmental 
stressors is PGPR (Lugtenberg and Kamilova 2009; Hayat et al. 2010). PGPR can 
improve plant performance under stress and consequently enhance yield by using 
both direct and indirect mechanisms (Dimkpa et  al. 2009). Though work on the 
effect of PGPR on Al stress alleviation is not sufficiently advanced, there are few 
efforts that have been made by researchers. Lemire et  al. (2010) showed that 
Pseudomonas fluorescens can survive under Al stress by orchestrating metabolic 
balance to counter Al toxicity. Zerrouk et al. (2016) evaluated the effect of P. fluore-
scens strain 002 to alleviate damages caused by Al toxicity in maize roots, and they 
showed that inoculation of the strain P. fluorescens 002 in the maize root increased 
the biomass where roots are exposed for 6 days to 90 M AlCl3 solution. Farh et al. 
(2017) conducted the experiment on ginseng plant and showed that the PGPR abol-
ished the Al stress. In this experiment, three PGPR strains, i.e., Pseudomonas sim-
iae N3, Burkholderia ginsengiterrae N11-2, and Chryseobacterium polytrichastri 
N10, were selected to treat the plants. After Al application, they monitored the mor-
phology of the bacterized seedlings and compared with Al-stressed nonbacterized 
seedlings (negative control) as well as mock seedlings for 7 days. They observed the 
yellowing symptom in negative control seedlings which was gradually developed 
on the leaves part and led to completely wilting of the foliage, while leaves of mock 
seedlings were remaining green. The wilting rate of the negative control seedlings 
was also found significantly high. Subsequently, chlorophyll content and dry weight 
of the negative control seedlings’ foliage were found to be significantly declined. 
Roots of negative control seedlings were also observed to be stunted and morpho-
logically different compared to those of mock seedlings’ roots. Similarly, Mora 
et al. (2017) carried out a study on Al-tolerant PGP bacteria isolated from the rhizo-
sphere and the endosphere of ryegrass (Lolium perenne) grown in acidic Chilean 
volcanic soil in order to characterize a bacterial consortium capable of contributing 
to alleviation of Al3+ toxicity and supporting plant growth in Andisol. In this study, 
five strains, i.e., Klebsiella sp. RC3, Stenotrophomonas sp. RC5, Klebsiella sp. 
RCJ4, Serratia sp. RCJ6, and Enterobacter sp. RJAL6, were selected based on their 
capacity to tolerate high Al concentration (10 mM) and to exhibit multifarious PGP 
traits. The strains showed different PGP traits like P solubilization, IAA production, 
ACC deaminase activity, and exudation of organic acid anions and siderophores. 
They performed an experiment and tested the consortium of PGP bacteria in an 
assay with ryegrass plants growing in a soil with high Al saturation (24%) and 
showed that selected bacterial consortium was able to promote plant growth by 
alleviating the Al stress by forming Al3+-siderophore complexes.
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In addition, Al toxicity is a major concern in acidic soil which extensively limited 
the access of phosphorus to plant. To alleviate the P deficiency due to anthropogenic 
substances present in the soil especially Al, the microorganisms such as phosphate-
solubilizing bacteria (PSB) could be used to provide crops with available P from 
barely soluble forms in the soil and physiologically active substances that trigger a 
higher metabolic activity once they interact with the plant (Adesemoye et al. 2009). 
It has been illustrated in different crops such as peanut (Wang et al. 2014) and wheat 
(Delfim et al. 2018) that inoculation of Bacillus thuringiensis improved the solubili-
zation of sparingly soluble phosphate compounds in soils, resulting in a higher crop 
yield and increasing the concentration of soluble P in soil, and the supply of this 
nutrient in plants showed better plant growth. Panhwar et al. (2014) isolated the PSB 
from acid sulfate soil of Kelantan, Malaysia. Three potential strains were selected 
and characterized as Burkholderia thailandensis, Burkholderia seminalis, and 
Sphingomonas pituitosa on the basis of their phosphate- solubilizing ability and other 
PGP traits. This study illustrated that isolates have the potential to reduce Al toxicity, 
fix nitrogen, solubilize phosphate, and promote rice growth in the acidic soil. These 
studies prove that the PGPR are not only capable of alleviating Al toxicity from the 
acidic soil but also promote the plant growth by its diverse PGP traits.

14.5  Conclusion

The use of PGPR in the different agroecosystems is well adapted and considered as 
a beneficial and sustainable technology for future agriculture. The PGPR have 
proved their ability as plant growth promoter in different adverse and contaminated 
agro-ecosystems. However, much attention is needed from different stakeholders 
associated with PGPR to promote this branch of study. The application of PGPR to 
alleviate Al toxicity would be a very promising and sustainable technology espe-
cially in the acidic agricultural and P-deficient soil.
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Abstract
All plants are continuously subjected to various types of biotic and abiotic stress 
factors from the time they have been planted in the field up to the time of harvest-
ing, transport, storage, and consumption of the plant or plant-based products. 
These stresses result in the negative and deleterious effects on crop health and 
also cause enormous losses across the globe. To reduce the intensity of the losses 
produced by these stress factors, researchers all across the world are involved in 
inventing new management practices which may include traditional genetics 
methodology and various techniques of plant breeding. The use of microorgan-
isms to mitigate both abiotic and biotic stress can provide an economical, eco- 
friendly solution to the problem of losses due to abiotic and biotic stresses. One 
such category of microorganisms is root-colonizing nonpathogenic bacteria like 
plant growth-promoting rhizobacteria (PGPR) which can increase the plant’s 
resistance to biotic and abiotic stress factors. PGPR is the bacteria residing in the 
rhizosphere region and is involved in promoting plant growth and suppressing 
stress components. PGPR colonize the rhizosphere for nutrition which they 
acquire from plant root exudates. The mechanism by which plant growth- 
promoting rhizobacteria can accomplish the abovementioned task includes 
increment in plant growth by enrichment of soil nutrients through nitrogen fixa-
tion, solubilization of phosphates, production of metal ion chelators, and  elevated 
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production of plant growth-promoting hormones. The mechanism also focuses 
on elevated protection of the plants through influencing the levels of production 
of cellulases and β-1,3-glucanases which result in the activation of the defense 
mechanism of plants against pests and pathogens. PGPR also contains useful 
variation for making plant tolerant to abiotic stress factors like temperature 
extremes, pH variations, salinity and drought, and heavy metal and pesticide pol-
lution. Enrichment of plant rhizosphere with such potential stress- tolerating 
PGPR is expected to provide enhanced plant growth and high yield of plant prod-
ucts in stress-affected areas. This chapter summarizes the research related to 
PGPR and its benefits and also throws light on the involvement of PGPR in abi-
otic stress management.

Keywords
Rhizobacteria · Stress tolerance · Salt stress · Drought stress · Pesticide stress · 
Heavy metal stress

15.1  Introduction

The major limiting factor for agricultural productivity is exposure of crops to vari-
ous abiotic stresses. To survive the harmful external pressure induced by various 
environmental conditions, plants must modify their biological mechanisms; failure 
in the same results in reduced plant development and productivity. The indigenous 
microflora of any diverse environmental niche shows extensive metabolic capabili-
ties to alleviate abiotic stresses observed in the environment to which they 
belong (Kumar et al. 2018). Various types of microbial interactions are observed 
with plants, and they are an essential segment of the ecosystem; hence, the natural 
microflora is believed to regulate the local and systemic reactions of plant defense 
mechanism which can definitely increase the chances of survival of the plant in 
stress-affected area (Meena et al. 2017). Productivity in principal crops is witness-
ing great reduction all over the world due to increased incidences of abiotic and 
biotic stresses (Grover et al. 2011). Plant resistance to these biotic and abiotic stress 
factors can be improved by inoculation with root-colonizing pathogenic bacteria 
which can be applied as biofertilizers and can enhance the effectiveness of phytore-
mediation. Inoculation of plants with nonpathogenic bacteria can also provide “bio- 
protection” against biotic stresses, and some root-colonizing bacteria can increase 
tolerance against abiotic stresses such as drought, salinity, and metal toxicity. Any 
disparity in nitrogen (N) cycling and nutritional status of the soil, the occurrence of 
phytopathogens, alteration in climatic conditions, and occurrence of abiotic stresses 
are the interwoven factors for a reduction in productivity of an agricultural field. 
However, the rapid increase in land degradation by numerous man-made activities 
leads to an estimated loss of 24 billion tons of fertile soil worldwide (FAO 2011).

The early 1990s experienced heightened interest in bacterial endophytes which 
further increased multiple times with results that provide confirmation to the fact 
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that inoculation of plants with nonpathogenic rhizospheric bacteria induces positive 
changes in plant growth and productivity. Hence currently a mixed population of 
bacterial inoculants is commercially available for use as protection against biotic 
and abiotic stresses (Dimkpa et al. 2009a, b).

Plant growth-promoting rhizobacteria (PGPR) are associated with plant roots 
and hence have a major role in alleviating the effects of abiotic stresses such as 
drought, low temperature, salinity, metal toxicity, high temperatures, etc. on plants 
through various mechanisms like induced production of osmoprotectants and HSPs, 
i.e., heat shock proteins. During the crop production, microorganisms can be used 
as indicators of soil biodiversity and quality and can also contribute to reducing the 
effects of negative stress caused in plants by abiotic factors (Milosevic et al. 2012). 
A range of examples of stress tolerance mediated by PGPR can be found in the 
previous study; the modes of action remain less elaborative, as most of the studies 
and results are based on the lab-scale studies and do not replicate the same effects 
in the agricultural fields. Some of the bacterial strains which reduce the effects of 
abiotic stress are also shown to provide protection against stress induced by biotic 
factors. Thus for sustainable agricultural systems, bacterial inoculants which pro-
vide cross-protection against both biotic and abiotic stress factors will be extremely 
beneficial. Inoculation of agricultural fields with stress-tolerant PGPR would 
become more effective with detailed information about the concept of cross- 
protection. Hence this chapter highlights the benefits of colonization of plant rhizo-
sphere with PGPR in increased agricultural productivity (Dimkpa et al. 2009a, b).

15.2  Beneficial Effects of Rhizobacteria

A major part of total organic carbon (approximately 85%) in the rhizosphere comes 
from sloughing of the root cells and tissues. Hence indigenous microflora of the 
rhizosphere alters their metabolic activities for obtaining the nutrients through the 
exudates. In this view, it is essential to study the bacterial motility during interaction 
with the plant. Microorganisms are the most diverse and elemental living system on 
earth. As an essential living component of the rhizosphere, they are an important 
component of the agricultural production systems. As natural inhabitants of seeds, 
microorganisms aid in the proliferation of the seeds and establishment of diverse 
symbiotic associations (Chakraborty et al. 2015). Natural inhabitants of the plant 
help in supporting the plant during nutrient acquisition, providing better resistance 
against various plant diseases and tolerating abiotic stresses. Intrinsic metabolic 
activities of the rhizospheric bacteria and potent genetic capabilities make them 
good candidates for fighting adverse environmental conditions (Singh 2016; Singh 
et al. 2016). Vivid evidence to essential attributes of the plant-microbial interactions 
can be provided by regulation of cellular, biochemical, and molecular mechanisms 
which are closely related to stress tolerance (Bakker et al. 2013). Microorganisms 
colonize the plant rhizosphere in high density. Hence rhizospheric soil which is 
influenced by root composition is highly enriched with amino acids, fatty acids, 
nucleotides, organic acids, phenols, and phytohormones. The highly enriched 
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nutrient composition of the soil results in colonization of the rhizospheric soil with 
microflora such as bacteria, fungus, algae, and protozoa. The extent of colonization 
in rhizospheric soil is 10–100 times more than bulk soil. Among all the natural 
inhabitants of the rhizosphere, bacterial influence toward better plant productivity 
and elevated defense is most significant. Plant rhizobacteria can be categorized 
based on their proximity to the roots as (1) bacteria living rhizosphere, (2) bacteria 
colonizing the rhizoplane, (3) bacteria found in root tissues (endophytes) which also 
colonize spaces between cortical cells, and (4) bacteria living inside specialized root 
structures (nodules) which includes the legume-associated rhizobia and the woody 
plant-associated Frankia sp. Bacteria that belong to any of the abovementioned cat-
egories and are involved in plant growth promotion directly through nitrogen fixa-
tion, phosphate solubilization, iron chelation, etc. or are involved in indirect growth 
promotion through suppression of plant diseases and induced resistance toward abi-
otic stresses are referred to as plant growth-promoting rhizobacteria (PGPR) 
(Gopalakrishnan et al. 2015). Specificity of interactions between plant and rhizo-
spheric bacteria is determined by soil composition and extent of root exudates avail-
able. Rhizospheric bacteria which have exhibited beneficial effects on plants include 
species of the genera Bacillus, Enterobacter, Arthrobacter, Azotobacter, 
Azospirillum, Pseudomonas, and Serratia, as well as Streptomyces species (Dimkpa 
et al. 2008, 2009a). The details of definite mechanisms of plant growth promotion 
remain largely elusive, as it is related to bacterial strains and most importantly is 
based on the different compounds released by the various rhizospheric microorgan-
isms. The studies suggest that production of the primary plant growth-promoting 
hormones such as auxins, cytokinin, gibberellins, abscisic acid (ABA), and ethylene 
has a large share in the direct promotion of plant growth. These hormones can 
directly, or, in combination with other bacterial secondary metabolites, stimulate 
plant growth usually, in a concentration-dependent manner (Patten and Glick 2002).

Rhizobacteria can be elucidated as bacteria inhabiting the rhizosphere including 
bacteria colonizing the root proximities, and the rhizoplane (exo-root) also incorpo-
rates the bacteria that penetrate into the root cortex (endo-root). Most of the rhizo-
spheric bacteria that have plant growth-promoting properties are endophytic in 
nature (Schmidt and Baldwin 2008). Bacillus, Pseudomonas, Enterobacter, 
Klebsiella, Serratia, and Streptomyces are among the most predominant rhizo-
spheric bacteria. Endophytes are found within the roots but are also observed in 
other parts of the plants such as stems, seeds, tubers, and unopened flowers. 
Endophytic PGPR can further be differentiated as extracellular endophytic PGPR 
(ePGPR) and intracellular endophytic PGPR (iPGPR). iPGPR can enter inside the 
plant cell and are able to produce specialized structures called nodules. ePGPR are 
prominently found in the rhizosphere or rhizoplane or within the apoplast but are 
never observed inside the plant cells. According to their vicinity to the roots, ePGPR 
can be further divided into (a) those colonizing root zone but are not in actual con-
tact of the roots, (b) those colonizing rhizoplane, and (c) those living in the spaces 
between cortical cells of the roots (Dimkpa et al. 2009a, b).
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15.2.1  Induced Systemic Resistance Versus Induced Systemic 
Tolerance

Various plant growth-promoting activities have been associated with PGPR which 
affects the plant growth and promotion directly and indirectly. Plant growth promo-
tions through direct mechanisms involve enhanced release of phytohormones and 
mobilization of nutrients by the PGPR strains in the rhizospheric regions which can 
further be absorbed by host plant, thereby positively affecting their growth. Plant 
growth promotions through indirect mechanisms occur when rhizobacteria prevent 
the effect of phytopathogens (Kloepper et al. 2004).

Few strains of PGPR can also result in suppression of plant diseases caused by a 
variety of pathogens through production of physical and chemical changes associ-
ated with plant defense, and this process is called induced systemic resistance 
(ISR)  (Lucas et  al. 2014). Recent reports suggest that PGPR also play a role in 
increasing plant response to abiotic stresses such as drought, salinity, high and low 
temperature, etc. This phenomenon was termed as “Induced Systemic Tolerance” 
(IST) (Yang et al. 2016).

15.2.2  Mechanisms of Stress Tolerance Mediated by PGPR

The key to the adaptation and survival of crop-plant and associated rhizobacteria is 
the establishment of fruitful interactions between both the partners. Hence induced 
systemic tolerance (IST) is the term applied to explain the microbe-mediated induc-
tion of abiotic stress responses (Fig. 15.1). The role played by microorganisms to 
reduce the deleterious effects of abiotic stresses in plants has been the area of con-
cern from the last few decades (Sharma et al. 2016; Sirari et al. 2016; Meena et.al. 
2017).

Table 15.1 summarizes a few of the examples published on beneficial effects of 
bacteria on plants under various abiotic stress, bacteria involved in the interaction, 
and the plant species to which they are applied. Common adaptation mechanisms 
of plants exposed to environmental stress such as water and nutrient deficiency or 
toxicity due to heavy metal exposure generally include changes in root morphol-
ogy. The process of change or any alteration in root morphology has major involve-
ment of phytohormones such as auxin. Auxin particularly indoleacetic acid (IAA) 
are produced in the plant shoot region and are then transported downward to root 
tips, where they result in enhancement of cell elongation which results in better 
root growth. Auxins also result in the promotion of the lateral root initiation. The 
majority of rhizobacteria that exhibit a beneficial effect on plant growth have been 
shown to produce elevated levels of IAA.  Hence inoculation of stress-affected 
plant species with such bacteria will result in better growth of roots and enhanced 
lateral root and root hair formation (Kajic et al. 2016; Damodara et al. 2018; Dimkpa 
et al. 2009a, b).

Promotion of root growth results in a larger root surface and can, therefore, have 
positive effects on water acquisition and nutrient uptake. In addition to all the 
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abovementioned characteristics, rhizospheric bacteria contribute to the regulation 
of ACC deaminase activity which further helps in the survival and growth of crop 
plants under abiotic stress (Glick et al. 2007; Bargaz et al. 2015). Various mecha-
nisms which aid in elevated tolerance against abiotic stresses will be further 
explained in detail.

15.3  Rhizobacteria-Mediated Salt Tolerance

Salinity is one of the most serious factors which limit the productivity of agricul-
tural crops, with adverse effects on germination, plant vigor, and crop yield world-
wide, more than 45 million hectares of irrigated land has been damaged by salt, and 
1.5 million hectares are taken out of production each year as a result of high salinity 
levels in soil. High salinity affects plant in various ways which include water stress, 
ion toxicity, nutritional disorders, oxidative stress, alteration of metabolic processes, 
membrane disorganization, and reduction of cell division and expansion of 
genotoxicity.

All the vital processes such as photosynthesis, protein synthesis, and metabolic 
processes are majorly affected during the establishment of salt stress. During initial 
exposure to salinity, the first symptom which occurs is water stress experienced by 
crop plants which result in reduced leaf expansion. Stress due to increased salinity 

Fig. 15.1 Induced systemic tolerance (IST) elicited by PGPR against drought, salt, and fertility 
stresses underground (root) and aboveground (shoot)
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also results in an imbalance in osmotic pressure and further hampers cell expansion 
and cell division and also inhibits stomatal functioning.

With prolonged exposure to salt stress, plants experience ionic stress which fur-
ther leads to early senescence of adult leaves and results in a reduction of leaf area 
available for photosynthesis for supporting continuous growth. Excess of Na+ ions 
and Cl− can affect plant enzymes and leads to cell swelling, reduced energy produc-
tion, and various other physiological changes. Various studies suggest that inocula-
tion with rhizobacteria can mitigate the deleterious effects of salt stress in different 
plant species (Barassi et  al. 2006). Many reports suggest that Azospirillum- 
inoculated seeds of lettuce (Lactuca sativa) showed elevated rates of germination 
leading to better vegetative growth than non-inoculated control plants when sub-
jected to salinity stress (Asari 2015).

It is reported that sodium uptake remains unchanged when plants are inoculated 
with rhizospheric bacteria. Furthermore, the inhibition of photosynthesis was less 

Table 15.1 Beneficial effects of inoculation with selective PGPR on plant growth under abiotic 
stress conditions

Stress type Bacterial inoculate Plant species Reference
Salt Azospirillum brasilense Pea (Phaseolus vulgaris) Dardanelli et al. 

(2008)
Salt Pseudomonas syringae Maize (Zea mays) Nadeem et al. (2007)
Salt P. fluorescens Groundnut(Arachis 

hypogaea)
Sarvana Kumar and 
Samiyappan (2007)

Salt Azospirillum Maize (Z. mays) Hamdia et al. (2004)
Salt A. brasilense Chickpeas (Cicer 

arietinum), faba beans 
(Vicia faba L.)

Hamaoui et al. (2001)

Drought Osmotolerant bacteria 
(not completely 
characterized)

Rice (Oryza sativa) Yuwono et al. (2005)

Drought Achromobacter 
piechaudii

Tomato (L. esculentum), 
pepper (Capsicum 
annuum)

Mayak et al. (2004b)

Drought Azospirillum Wheat (T. aestivum) Cecilia et al. (2004)

Drought A. brasilense Maize (Z. mays) Casanovas et al. 
(2002)

Temperature Burkholderia 
phytofirmans

Grapevine (Vitis vinifera) Barka et al. (2006)

Temperature B. phytofirmans Potato (Solanum 
tuberosum)

Bensalim et al. (1998)

Temperature Aeromonas hydrophila, 
Serratia liquefaciens

Soy bean (Glycine max) Zhang et al. (1997)

Nutrient 
deficiency

Bacillus polymyxa, 
Mycobacterium phlei

Maize (Z. mays) Egamberdiyeva (2007)

Iron toxicity Bacillus subtilis, 
Bacillus megaterium

Rice (O. sativa) Asch and Padham 
(2005) and Terre et al. 
(2007)Bacillus sp.
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dreadful in the plants inoculated with PGPR as compared to uninoculated variants 
under salinity stress (Hahm et al. 2017). For instance, tomato plants inoculated with 
Achromobacter species exhibit comparatively less serious effects of salinity stress. 
Though the exact mechanism remains elusive, it has been reported that other than 
regulation of bacterial deaminase, increased absorption of phosphates and potas-
sium plays a key role in the management of salinity stress (Mayak et al. 2004a).

Most of the rhizospheric bacteria are the inhabitants of the root surface and are 
also observed in spaces between rhizodermal layers and root hairs, while few are 
found in rhizosphere without being in actual contact of the root system. Exudates of 
the roots and sloughed-off cells are enriched with flavonoids, phenolic compounds, 
and organic acids which play an essential role in inducing beneficial effects on 
stress-affected plants. PGPR contributes in growth promotion of stress-affected 
plants through elevated assimilation of nutrients, by regulating nitrogen fixation, 
and solubilization of phosphates and also controls plant pathogen through competi-
tion and antagonism (Ilangumaran and Smith 2018).

Regulation of abiotic stress can be achieved by inoculation with PGPR through 
direct and indirect mechanisms which further leads to the induction of systemic 
tolerance. Different species of PGPR have been explored for their abilities to 
improve plant water relations, ion homeostasis, and elevated photosynthesis effi-
ciencies. Alleviation of stress is achieved by complex interactions between signal-
ing events which occur during plant-microbial interactions (Smith et  al. 2017). 
Colonization of the root surface and extracellular polysaccharide matrix by PGPR 
results in the formation of a protective barrier against salinity stress. Few extracel-
lular molecules which act as signaling agents result in manipulation of phytohor-
mone status of the crop plants. This leads to amplified root-to-shoot communication 
which results in the improvement of water and nutritional balance and stomatal 
conductance. When stimulation of osmolyte accumulation occurs, it may result in 
retarded leaf senescence which contributes to photosynthesis. Regulation of water 
potential and stomatal conductance is affected by hydraulic conductivity and rate of 
transpiration. For instance, few reports suggest that maize plants which were inocu-
lated with Bacillus megaterium result in enhanced hydraulic conductivity compared 
to uninoculated plants when subjected to salt stress. Elevated hydraulic activity is 
shown to be connected with high expression of plasma-membrane protein—aqua-
porin. Rhizospheric bacteria results in the induction of enhanced osmolyte accumu-
lation and signaling of phytohormones which contributes to the survival of the 
plants through initial salinity stress (Marulanda et  al. 2010). PGPR restrict salt 
uptake of the plant by capturing cations in the exopolysaccharide matrix, resulting 
in alteration of root structure and further regulates expression of ion affinity trans-
porters. The mineral nutrient acquisition of both micro- and macronutrients is 
enhanced due to inoculation with PGPR which mitigates the effects of the high 
influx of Na+ and Cl−. The maintenance of ion homeostasis is regulated by PGPR by 
reducing accumulation of Na+ and Cl− in leaves and other parts of the plants. PGPR 
also improves the activity of high-affinity K+ transporters to alleviate salinity stress. 
The literature suggests that inoculation of stress-affected plants with Azotobacter 
strains results in elevated K+ uptake and Na+ exclusion leading to increased contents 
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of chlorophyll, proline, and polyphenols which makes it evident that inoculation 
with PGPR enhances plant’s response during stress (Rojas Tapias et al. 2012).

15.4  Rhizobacteria-Mediated Temperature Tolerance

Elevated temperature, a consequence of global climate change, also has an adverse 
effect on crop productivity. Heat stress results in a negative influence on photosyn-
thetic rate, plant water relations, and flowering and fruiting in both tropical and 
temperate crops (Drigo et al. 2008). Increased water requirements and decreased 
yield in plants were reported due to a shift in maximum and minimum temperature. 
Extreme changes in temperature results in a stress condition for plants. For instance, 
root elongation normally takes place above species-dependent minimum tempera-
ture range and exhibits linear increase with increasing temperatures only up to spe-
cific temperatures above which the root elongation rapidly decreases resulting in 
stunted development of root system. The favorable effects of different PGPR strains 
on growth and physiological development of soybean plants under sub-optimal root 
zone temperatures were checked, and it was observed that stimulation of rhizobac-
teria is interactively dependent on the temperature of the rhizosphere. It has often 
been asserted that growth-promoting consequences are associated with nitrogen 
fixation, but the positive effects were observed and resulted in physiological changes 
in the plants even before the commencement of the nitrogen fixation pro-
cess (Govindasamy et al. 2008).

This proves that mechanisms which function for the alleviation of temperature 
stress in rhizobacteria are independent of nitrogen status. The stimulation of genes 
in response to elevated temperature stress is regulated by heat stress transcription 
factors (Hsfs). Plant Hsfs have a highly composite gene family which consists of 
approximately more than 20 members, and the appearance of heat shock-induced 
Hsfs genes are reported to modulate transcription during the prolonged response to 
heat shock (Baniwal et al. 2004). Breeding of cultivars which are heat-tolerant or 
development of transgenic varieties for heat-tolerance is a time-consuming and less 
profitable approach (Vanaja et al. 2007). Hence an approach regarding inoculation 
of plants under temperature stress with rhizobacteria can be useful. Thermotolerant 
varieties of Pseudomonas putida according to Srivastava et al. (2012) are a result of 
overexpression of stress sigma factor σs and improved the formation of biofilm at 
high temperature. It was also demonstrated that heat shock proteins (HsPs) that 
stabilize the membrane are induced under stress condition and confer thermotoler-
ance to rhizobacteria and thus the plant at elevated temperatures. A thermotolerant 
strain of Pseudomonas spp. (AKM-P6) exhibiting PGPR activities was identified by 
Ali et al. (2009) from the rhizosphere of pigeon pea grown under arid and semi-arid 
zones in India. The abovementioned strains of Pseudomonas sp. help sorghum seed-
lings to cope up with heat stress through induced biosynthesis of high-molecular- 
weight proteins in higher levels which results in reduced injuries to cellular 
membranes and enhanced contents of metabolites such as proline, chlorophyll, 
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sugars, amino acids, and proteins. This thermotolerance indicated by Pseudomonas 
sp. AKM-P6 is predicted to be due to the production of exopolysaccharides.

Bensalim et  al. (1998) also investigated the heat stress-alleviating effects of 
Burkholderia phytofirmans PsJN on 18 clones of potato plants grown under differ-
ent temperature zones (20 °C day, 15 °C night, 33 °C day, 25 °C night). Results 
were estimated from accurate measurements of stem length, shoot, and root bio-
mass. The abovementioned parameters of plants inoculated with high temperature- 
tolerant varieties suggest that colonization of the potato plants with thermotolerant 
strains of rhizobacteria plays a vital role in their adaptation to heat. It was found that 
tuberization was improved by as much as 63% in rhizobacteria-treated clones of 
potato. One more report suggests that inoculation of grapevine (Vitis vinifera) with 
the strains of Burkholderia phytofirmans PsJN results in lowering the rate of bio-
mass reduction and leakage of osmolyte which are prominent indicators of cell 
membrane injury due to heat shock.

Abiotic stresses result in a range of complex stimuli that possess many different 
yet altered attributes, and every single stimulus provides plant cell with a different 
array of information. For example, stress due to low temperatures results in mechan-
ical constraints, changes in macromolecular activity, and diminished osmotic poten-
tial in the cell. Cold stress affects the growth and development of crop plants in an 
unfavorable way and thereby results in reduced expression of the full genetic poten-
tial of plants by limiting metabolic receptions and proper water uptake. Membranes 
rigidification is one of the many ways through which plants identify chilling stress 
caused due to reduced fluidity of the cellular membrane (Chinnusamy et al. 2005).

Membrane rigidification results in the induction of cold-responsive (COR) genes. 
Expression of COR genes initiates activation of expression of CBF3, CBF 2, and 
CBF 1 (C-repeat binding factors) during cold acclimation which regulates singling 
cascade required for alleviation of cold shock. The ability of plants to cope up with 
the chilling stress can be enhanced, upon exposure to low but nonfreezing tempera-
tures intermittently. Among other physiological changes induced due to cold stress 
is elevated contents of sugar, proline, and anthocyanin which can be observed dur-
ing cold acclimation or hardening procedures. This can be confirmed by studies 
which report that grapevine plants inoculated with rhizobacteria (Burkholderia phy-
tofirmans) accumulated marginally higher amounts of carbohydrates as compared 
to control plants which were uninoculated variants. In addition, plants also dis-
played increased levels of proline and phenols, photosynthetic rates, and deposition 
of starch (Barka et al. 2006). Such physiological changes are also representative 
indicators for ISR, and hence it is proposed that rhizobacteria-mediated tolerance to 
cold temperatures stress is emphatically correlated with the induction with ISR.

15.5  Rhizobacteria-Mediated Drought Tolerance

Dehydration and reduced availability of cellular water represent a common stress 
challenge which plants encounter under drought, salt, and cold conditions. As water 
is one of the most essential factors which affects the growth and survival of micro-
organisms. And hence water deficit is an essential abiotic factor that influences the 
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agricultural productivity with high intensity and affects plant development-related 
aspects such as a decreased rate of photosynthesis and reduction in available leaf 
area due to premature leaf senescence. Water deficiency leads to drought stress 
which limits crop growth and productivity, especially in arid and semiarid 
regions (Hassen et al. 2016). Rhizospheric bacteria utilize different mechanisms to 
alleviate the effects of drought stress on the plant (Table 15.2).

Groover et al. (2001) have investigated some of the mechanisms which include 
(1) alleviation of soil drought impact through the production of exopolysaccharides, 
(2) induction of resistance genes, (3) increased circulation of water in plants, and (4) 
synthesis of ACC deaminase, indoleacetic acid, and proline. PGPR are involved in 
mitigating the impact of drought on plants through a process so-called induced sys-
temic tolerance (IST) which includes (a) cytokinin production, (b) production of 
antioxidants, and (c) degradation of ethylene precursor ACC by bacterial ACC 
deaminase (Milosevic et al. 2012).

Drought stress also results in activation of a large army of genes which are often 
referred to as “stress genes.” Most of the genes which are activated in response to 
drought stress are also responsive to other abiotic stresses such as salinity stress or 
chilling stress. For instance, RD 29A rhizobacteria have been shown to result in 
modification of the root sensitivity, growth of leaves, and also increased tolerance to 
soil trying evidently by influencing ethylene signaling pathway (Rubin et al. 2017). 
The ACC deaminase activity of Achromobacter piechaudii has been reported to 
provide tolerance against water deficit in tomato and pepper plants, resulting in a 
marginal improvement in fresh and dry weights of the stress-affected plants. 
Ethylene production was significantly reduced in the plants which were inoculated 
with tolerant PGPR strains. It also results in improved recovery from water- deficient 
soils although inoculation did not influence relative water contents at significant 
levels (Mayak et al. 2004a, b).

Table 15.2 Effects of rhizobacteria on mitigation of drought stress in crops

Microorganism Crop Mechanism
Pantoea agglomerans Wheat EPS production which affects the structure 

of rhizospheric soil
Rhizobium sp. Sunflower Production of EPS which affects the 

structure of rhizospheric soil
Pseudomonas putida P45 Sunflower Production of EPS which affects the 

structure of rhizospheric soil
Azospirillum sp. Wheat Increased water circulation
Achromobacter piechaudii Tomato 

pepper
Synthesis of ACC deaminase

ARV8
Variovorax paradoxus Pea Regulation of ACC deaminase
Pseudomonas sp. Pea Reduced ethylene production
AM fungi Sorghum Enhanced water circulation
Brome mosaic virus (BMV) Rice Unknown
Pseudomonas mendocina and 
Glomus intraradices

Lettuce Increased antioxidative status

Bacillus megaterium and Glomus 
sp.

Clover Production of indoleacetic acid and proline
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On exposure to drought tolerance, maize seedlings inoculated with Azospirillum 
brasilense displayed enhanced relative and absolute water contents in comparison 
to non-inoculated plants. Inoculation with Azospirillum also results in prevention of 
significant drop in water potential which is closely interlinked with root growth, 
total aerial biomass, and foliar area and is also associated with proline accumulation 
in leaves and roots. The effects of drought tolerance were more evident at a 75% 
reduction in the water supply as compared to a 50% reduction. Thus, these results 
suggest that PGPR play a key role in providing resistance and increasing adaptation 
of plants to drought stress and have a vital role in solving future food deficiency 
problems. It is also reported that interaction between plants and rhizobacteria under 
drought stress affects plants as well as leads to positively change the soil properties. 
The mechanisms elicited by rhizobacteria such as triggering osmotic response and 
induction of novel genes play a vital role in the survival of plants under drought 
stress. The development of drought-tolerant crop varieties through genetic engi-
neering and plant breeding is essential, but it is a time-consuming process. PGPR 
inoculation to alleviate drought stress in plants opens a new chapter in the applica-
tion of microorganisms in dryland agriculture (Varukonda et al. 2016).

15.6  Rhizobacteria-Mediated Pesticide Tolerance

Pesticide accumulation in soils beyond the recommended safety levels occurs either 
by repeated application or due to their gradual degradation rate. The effect of pesti-
cide on plant growth occurs by an alteration in plant root’s architecture. This results 
in the appearance of a number of root sites for infection by rhizobacteria and the 
transformation of ammonia into nitrates. This process of the transformation of 
microbial compounds to plants is made easier by the rhizobacterial infection. With 
the abovementioned changes in plant growth and development, the activity of free- 
living or symbiotic nitrogen-fixing bacteria has also been positively affected through 
rhizobacterial infection (Gopalakrishnan et al. 2015). Various strains of rhizobacte-
ria have the displayed ability of pesticide degradation due to the activation of deg-
radative genes carried by plasmids or flanked by transposons/chromosomes (Kumar 
et al. 1996). From the studies it was suggested that very few strains of rhizobacteria 
have the ability to tolerate pesticide stress under actual field conditions, and hence 
research on isolation, identification, and characterization of such pesticide-tolerant 
species of rhizobacteria needs to be pursued in detail as such rhizobacteria are 
essentially required in present-day conditions of ever-growing pesticide contamina-
tion in fields and considering the magnitude of pesticide residue generated.

15.7  Rhizobacteria and Heavy Metal Resistance

Various industrial operations discharge multiple types of heavy metals and upon con-
sequent accumulation in ecological systems create a massive threat to the varied 
agroecosystems. When heavy metals like arsenic, mercury, cadmium, and lead which 
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are highly toxic to plants accumulate into the soil to abnormal levels, it causes a dra-
matic change in microbial composition and their activities (Cheung and Gu 2007) 
which leads to a consequent loss in soil fertility. Once the cytosolic metal concentra-
tion in plants increases above the tolerable limit, phytotoxicity of heavy metal inhib-
its transpiration and photosynthesis, disturbs carbohydrate metabolism, and drives 
the secondary stresses like nutrition stress and oxidative stress which collectively 
affects the plant’s growth and development (Kraemer and Clemens 2005).

For differentiation between a standard and stress response against heavy metal 
contamination, it is essential to characterize the minimum and maximum concentra-
tion of every metal for different varieties of soil  (Carmen and Roberto 2011). 
Responses of rhizobacteria toward some of these heavy metals have been well- 
documented. Many rhizospheric bacteria release metal-chelating substances in rhi-
zosphere such as iron-chelating siderophores. Siderophore production by bacteria 
has been shown to significantly affect plant uptake of metals. Hence rhizobacteria 
can positively affect the bioavailability of heavy metals that can prove to be 
extremely toxic to plants even in low concentrations (Dimkpa et al. 2009a, b). Due 
to variation in soil conditions, metal valences are also affected, which can be cor-
related to microorganism to be specific rhizobacteria which also alter the metal 
bioavailability by acidifying the microenvironment and by significantly affecting 
redox potential. Autotrophic and heterotrophic leaching of heavy metals which 
results in enhanced volatilization through methylation process and release of metal 
chelators such as siderophores can help in the mobilization of heavy metals. This 
way, sorption of heavy metals to cell components is essentially the result of intracel-
lular sequestration or precipitation as insoluble organic compounds which reduce 
heavy metal toxicity to plants (Gadd 2004).

Barley plants which were grown on contaminated soil with high contamination 
of cadmium obtained 120% higher grain yield and a twofold decrease in Cd con-
tents in grain when the plants were inoculated with commercially available PGPR 
Klebsiella mobilize CIAM 880. Stimulation of these effects was studied with a 
mathematical model which indicates migration of rhizobacteria from rhizoplane to 
rhizosphere where they form a complex with the heavy metal, making it nonavail-
able for the plant uptake (Pishchik et al. 2002). High intracellular carbohydrates and 
large cell inclusions increase the resistance of Rhizobium leguminosarum to cad-
mium, copper, nickel, and zinc, whereas production of those has also been shown to 
counter heavy metal-induced oxidation. In Rhizobium-legume symbiosis, it is usu-
ally the plant that is the limiting factor regarding tolerance to metal toxicity for 
metals such as aluminum, copper, iron, and cadmium. Nodules help plants survive 
because bacteroids counter metal stress (Balestrasse et al. 2001).

15.8  Conclusion and Future Perspective

In the present-day scenario when we are experiencing the threat of global warming, 
the agricultural production methodology should be designed by considering the 
ever-changing environmental conditions and the availability of different types of 
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stresses. Plant growth-promoting rhizobacteria can be utilized to mitigate the biotic 
stresses and can confer elevated tolerance to abiotic stresses in the host 
plant (Tabassum et al. 2017). Thus, identification and detailed analysis of rhizobac-
terial strains that have the capabilities of providing cross-protection against multiple 
stress factors will be highly important (Dimkpa et al. 2009a, b). Induced systemic 
response (ISR) in the crop plants may be critically important for the ability of rhi-
zobacteria to alleviate the effects of both biotic and abiotic stress. Thus, the infor-
mation obtained from a detailed analysis of ISR against plant pathogens will be 
applicable in understanding signaling cascades induced by PGPR which results in 
elevated tolerance to abiotic stresses. The rhizosphere is a unique environmental 
niche which provides habitats and nutrients to rhizospheric bacteria which in return 
provides numerous benefits of better plant growth, defense against infections against 
phytopathogens, and survival of plants under different types of stress.

However, the amount of success in obtaining the benefits of PGPR tends to 
decrease as it moves from laboratory experiments to the greenhouse and finally to 
fields, which suggests that there is need of research on the various aspects of PGPR 
under field conditions. Therefore, generation of research data and knowledge on 
screening protocols and strain improvement of ideal rhizobacterial strain for rhizo-
spheric competence and sustainability is the current need to enhance field level 
successes (Gopalakrishna et al. 2015). The application of PGPR to help plants cope 
up with the stress in the agricultural field seems laborious, yet a lot is left to be uti-
lized (Ilangumaran and Smith 2018). As various types of abiotic stresses are serious 
threats to total crop yield worldwide, agricultural experts are working to find quicker 
and reliable solutions as annual crop production is seriously affected by higher 
degree from abiotic stresses. Hence at the moment, expanding the geographical 
area, finding new strategies for breeding for abiotic stress tolerance, and detailed 
analysis of rhizobacteria-mediated alleviation of abiotic stresses are essential areas 
of focus. Among all of this, PGPR-mediated abiotic stress management has gained 
enormous popularity and has attracted a lot of interest as it has the ability to serve 
the purpose in an economical manner. This way, indigenous microbes should be 
provided with prime importance for the successful achievement of the task as they 
have better acclimation ability over an imported strain (Sarma et al. 2012).
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Abstract
At the present scenario, climate change became the potential threat to growers 
with rise in temperature, inconsistent rainfall, and salinization of agricultural 
land. However, the microbes more specifically plant growth-promoting rhizobac-
teria (PGPR) play a significant role to mitigate the abiotic stresses. Rhizobacteria 
act as bioprotectants against drought, salt, heavy metals, high temperature, and 
cold stress. During drought condition, PGPR intensifies osmolytes (proline, gly-
cine, betaine) and acts as an osmoprotectant. The drought-related enzyme ACC 
deaminases were regulated by the PGPR, which also regulates the stomatal phys-
iology during the water deficit conditions. The salt stress in plants was also a 
complex process to understand. During salt stress condition, PGPR acts as an 
activator of antioxidant enzymes and polyamines and also acts as a modulator of 
abscisic acid. Inoculation of PGPR affects the expression of 14 genes (four 
upregulated and two downregulated) related to salt stress. The effect of heavy 
metal toxicity is also found in plants, which is due to the improper fertilizer 
applications, industrial waste, sludge, etc. The main site for accumulation of 
heavy metals is the root nodule. At present many PGPR sp., i.e., Bacillus sp., 
Pseudomonas sp., Azotobacter sp., Enterobacter sp., and Rhizobium sp., were 
proposed to speed up the phytoremediation process of nodules. Bacterial metallo-
thioneins (MTs) of the family Bmt, a family with low-molecular proteins, play a 
significant role to absorb heavy metals. High temperature also acts as a constraint 
of normal plant root nodulation and rhizobial growth. The strains of PGPRs 
evolve during the heat stress period against the raised temperature with the pro-
duction of extra LPS, EPS, and special class of proteins, i.e., heat shock proteins 
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(HSPs). Cold tolerance can also be derived by PGPR as the accumulation of 
more carbohydrate, regulation of stress-related genes for osmolytes expression, 
and enhancement of specific protein synthesis, which helps plant to fight against 
cold stress.

Keywords
Bioprotectant · Polyamines · Phytoremediation · Transpiration · Heat shock 
protein

16.1  Introduction

Crop plants were suffering from various diseases, which may be due to a number of 
biotic and abiotic factors. The environmental condition, which is favorable for 
pathogen, leads to disease in the presence of susceptible host, whereas adverse envi-
ronmental conditions such as drought, salt, temperature stresses, and metal toxicity 
to plants again affects the plant physiology. Drought, salt, and temperature stresses 
are major abiotic environmental factors that reduce the plant population in a particu-
lar area, limit economic yield in agriculture, and threaten food security. Climate 
change plays a greater role to induce abiotic and biotic stress (Fedoroff et al. 2010). 
Many plant breeding programs were carried on to improve the traits by which crop 
plants are able to fight against the abiotic stresses. These breeding programs may be 
very effective in the field of abiotic stress management, but these programs are more 
cumbersome and require the best breeding materials that could adjust with the 
changing environments. To overcome these problems, the beneficial microbes pro-
vide an easy, quick, and eco-friendly option for researchers to cope with the abiotic 
as well as biotic stresses. Among microbial population in soil, bacterial attendance 
is more than any other microbes, containing 108 cells of bacteria per gram of soil 
(Raynaud and Nunan 2014). Plant utilizes beneficial bacteria against other harmful 
microbes (biotic stress) as well as abiotic stress. They release an organic compound 
that improves the crop plant fitness against stress by improving plant physiology 
(Lynch and Whipps 1990; Barriuso et al. 2008). Isolation and inoculation of these 
beneficial bacteria to plants gave significant results toward the mitigation of abiotic 
stress (Lugtenberg et al. 2013). Recently “omics” technologies reveal the signifi-
cance of the plant growth-promoting rhizobacteria (PGPR) with their mechanism of 
action against the stresses. PGPR became boon especially for the farmers, so they 
can mitigate the loss by getting benefits against abiotic stress like salt stress, drought 
stress, and nutrient-heavy metal toxicity (Egamberdiyeva and Islam 2008; Zahir 
et al. 2008; Sheng 2005).
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16.2  Rhizobacteria-Mediated Abiotic Stress Tolerance 
in Plants

16.2.1  Tolerance to Drought Stress

During drought stress, the status of water content in the tissues of plant cell reduces 
rapidly, and the level of water in the leaves, i.e., leaf water potential, also decreases 
during the daytime. Other physiological parameters like stomatal conductance, the 
rate of transpiration, and osmotic adjustment are disturbed due to drought stress in 
plants. In the condition of severe drought, Rubisco level decreases during photosyn-
thesis (Lawlor and Cornic 2002; Song et al. 2009; Bota et al. 2004). It is positively 
correlated with the relative water content and also affects the activation of inhibitors 
such as CO2 and Mg2+ (Parry et al. 2002).

Maintenance of water potential can be regulated by rhizobacteria in the plants 
that intensify the production process of osmolytes during drought condition (Farooq 
et al. 2009). Rhizobacteria also produce glycine betaine osmo-tolerant compound 
that also helps in the management of plant against drought. These osmo-tolerant 
compounds also increase by the production of IAA and are found to be stimulated 
by rhizobacteria (Yuwono et al. 2005).

Several strains and species of Pseudomonas, viz., P. entomophila, P. stutzeri, P. 
putida, P. syringae, and P. montelli, ameliorated drought stress in maize crop 
(Sandhya et al., 2010). The harmone which releases durin drought stess found to 
down regulate by PGPR through producing 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase. ACC deaminase degrades the ACC, which is a primary precursor 
of ethylene and reduces ethylene negative effect under drought condition (Glick 
2014). The effect of ACC deaminase is also seen on strawberry plant inoculated 
with the N2-fixing and P-solubilizing bacteria. It has shown that strawberry plants 
downregulate the MDA (malondialdehyde) and H2O2 content, which may contribute 
to the activation of physiological and biochemical processes involved in the allevia-
tion of the effect of drought stress (Erdogan et al. 2016). During stress the parts of 
the plant by which the water can be a lost is stomata and the regulation for stomatal 
water loss also seen to be less in the plants where PGPR inoculation was made than 
non-inoculated plants. These plants showed the increase in K content, depressing 
stomatal conductance and regulating proline accumulation. This type of stomatal 
regulation mechanism was observed in autochthonous bacterial strains of Bacillus 
megaterium, Enterobacter sp., Bacillus thuringiensis, and Bacillus sp. that retard 
water stress in Lavandula and Salvia (Armada et al. 2015). In another experiment 
which was conducted on foxtail millet (drought-tolerant crop), inoculated with bac-
terial strains P. fluorescens DR7 producing high level activity of ACC deaminase 
and EPS (exopolysaccharide) which stimulated seed germination and seedling 
growth under drought stress (Niu et al. 2018).
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16.2.2  Tolerance to Salt Stress

The responses of the plant to soil salinity is a complex process due to salt stress; 
approximately 20% of irrigated land and crop yield reduce significantly (Qadir et al. 
2014). When soil salinity increases, the plant comes under the osmotic stresses that 
lead to reduction in root pressure, i.e., reduction of the water absorption capacity of 
roots, and accelerated water losses from leaves. The nutrient imbalance during the 
salt stress induces the defense in the form of reactive oxygen species (ROS) (Munns 
and Tester 2008; Rahnama et al. 2010; Munns 2005), but in severe soil salinity con-
dition, the plant cannot detoxify itself from ROS. Other ill effects of salt stress also 
seen in the reduction of antioxidant activity of enzymes decreased photosynthetic 
activity, etc. (Rahneshan et al. 2018). The eco-friendly and sustainable mechanism 
to cope with the salt stress is through microbial inoculation especially the PGPRs, 
which play a great role. The PGPR–plant interactions show several mechanisms and 
interactions like physiological and molecular mechanisms used for salt tolerance to 
crop were ion homeostasis of Na+, synthesis of osmoprotectant by plants (proline, 
glycine betaine, sugar, and polyols), activation of antioxidant enzymes (SOD, CAT, 
GPX, and APX), polyamine synthesis (diamine putrescine, triamine spermidine, 
and tetra-amine spermine), and abscisic acid modulation (Hasegawa 2013, Tahir 
et al. 2012; Saxena et al. 2013; Gill et al. 2013; Shu et al. 2012; Keskin et al. 2010).

During plant–microbe interaction, some complex network of signaling events 
that occurred leads to ion homeostasis and an increase of photosynthetic efficiency 
in plants (Smith et al. 2017). Due to salt imbalance, PGPR induces aggregation of 
phytohormone, which leads to overcoming the salt stress in plants. The salt-tolerant 
capacity of Bacillus amyloliquefaciens SN13 was used against the salt stress by 
Nautiyal et al. (2013). Bacterial strain Bacillus amyloliquefaciens SN13 inoculated 
to the rice plant and exposed to salinity condition of NaCl 200 Mm increased the 
salt tolerance and plant growth. The effect of Bacillus amyloliquefaciens SN13 was 
also analyzed at the molecular level and found 14 genes correlation with salt stress. 
Among the 14 genes, 5  genes NADP-Me2-NADP-malic enzyme (NADP-Me2), 
ethylene-responsive element binding proteins (EREBP), salt overly sensitive 1 
(SOS1), BADH, and somatic embryogenesis receptor-like kinase 1 (SERK1) were 
upregulated, and 2 genes glucose insensitive growth (GIG) and serine-threonine 
protein kinase (SAPK4) were downregulated. Besides salt stress, SN13 inoculation 
also minimizes the osmotic and ionic stress response. PGPR stimulate the osmopro-
tectants, i.e., proline, trehalose, and glycine betaine with a quick response when the 
plant was under salt stress. PGPR have been also known for the ion balancer in the 
cells of roots; it balances the influx of Na+ and Cl− ions. PGPR help to maintain ion 
homeostasis and high K+/Na+ ratios in shoots when Na+ and Cl− accumulate in the 
leaves; it leads to acceleration of Na+ exclusion from roots, boosting the activity of 
high-affinity K+ transporters. Bacteria modulated plant hormone status by releasing 
exogenous hormones, metabolites, and enzymes that may contribute to enhance salt 
tolerance.
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16.2.3  Tolerance to Heavy Metal Stress

In modern agriculture, field soils of a major part of the world became contaminated 
by heavy metals due to unjudicious use of agrochemicals such as high doses of N, 
P, K fertilizers, insecticides, and fungicides; improper irrigation source; industrial 
waste; etc. The heavy metal toxicity misbalanced the ecosystem affecting all living 
and nonliving entity. The major contaminants with heavy toxic effect to the soil as 
well as crops are Cd, Cu, Zn, Ni, Co, Cr, Pb, and As (Passariello et al. 2002). Due 
to this heavy metal toxicity, plants generate the reactive oxygen species (ROS), and 
another most deleterious effect on plants due to heavy metal is lipid peroxidation 
that can directly cause biomembrane deterioration.

Use of microorganisms such as Bacillus sp., Pseudomonas sp., Azotobacter sp., 
Enterobacter sp., and Rhizobium sp. speeds up the phytoremediation process, which 
had been reviewed in detail by Ma et al. (2011). The phytoremediation process was 
boosted with the use of PGPR. The bioremediation of heavy metal can be easily 
done when root nodule fixes the residual metals with the help of PGPR. The growth, 
abundance, and nodulation ability of PGPR were adversely influenced by heavy 
metal contaminant present in the soil. Due to this metal toxicity condition, some 
gene alteration also occurs, which favors in symbiosis most probably in N2 fixation 
(Vasilica et al. 2011).

The soil microbes  which is beneficial for plant growth and promotion, i.e., 
PGPRs, symbiosis with the plants that were grown in the high metal toxicity during 
their molecular characterization shows the variation in their genes related to nodula-
tion. Metallothioneins (MTs) in bacteria designated as bacterial MTs of the family 
Bmt are low-molecular, metal-binding protein evolved during the stress condition 
(Huckle et al. 1993). Recombinant bacterial strain with metallothionein was found 
helpful for plants to bind heavy metal from the soil and acts as a free radical scav-
enger (Ehsanpour et  al. 2012). The enhancement of bioremediation process in 
metal-infested soil by plants treated with a strain of PGPRs having bacterial Mts 
found a positive result for the removal of heavy metals such as Cd+ and Hg2+ 
(Sriprang et al. 2002; Murthy et al. 2011).

16.2.4  Tolerance to High Temperature

The effect of high temperature on the growth of the plant is well known: when the 
temperature rises, the water losses increase due to transpiration. When transpira-
tion lasted for a prolonged condition, then the wilting of plants and ultimately 
death of plant occur. Acceleration in temperature impairs the nodulation process in 
the plants, ultimately N2 fixation is affects and results in less plant growth, like 
alfalfa plant observed in desert condition, which shows less nodulation up to 5 cm 
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of soil horizon, but extensive nodulation was observed after 5 cm of soil horizon 
(Munns et al. 1979).

PGPRs again play a significant role in reducing the heat stress in plant; it has the 
osmolyte production and carbon flux reduction property that protect the plant 
against the heat stress (Canarini and Dijkstra 2015). Normally the PGPR commu-
nity grows in the temperature ranging 26–31 °C and is unable to grow above 37 °C, 
but Eida et al. (2018) isolated some microbial community from rhizosphere, which 
can withstand over 45  °C.  Temperature range beyond the normal, i.e., 45  °C 
Pseudomonas putida strain AK MP7 was found beneficial when used in heat stress 
condition in wheat (Ali et al. 2011). The PGPR Pseudomonas aeruginosa (strain 2 
CpS1), when applied as a seed treatment in wheat, was found significant during 
elevated heat condition (Meena et al. 2015). PGPR also secretes some polysaccha-
rides that formed a biofilm around the root nodules, which increases the water reten-
tion capacity to many folds. The regulation of heat stress in plants is a knotty 
process, and the stains of PGPR that evolve during the heat stress condition play a 
great role, as these strains have the ability to secrete proteins, lipopolysaccharide 
(LPS), and exopolysaccharides (EPS) to combat with the problem of increased tem-
perature. There were various Rhizobium strains which have the ability to withstand 
during the heat stress and also have the ability of rapid N2 fixation has been identi-
fied; when these Rhizobium strains are exposed to different temperature, i.e., 30 and 
40 °C, the changes in extracellular polymeric substances (EPS), LPS, and proteins 
are observed (Nandal et al. 2005).

Later researchers observed the exclusive class of proteins that were produced by 
cells in response to a stressful condition, which were called heat shock proteins 
(HSPs). Some HSPs are seen to be immediately involved in de novo protein biogen-
esis related to heat stress. These types of proteins are termed as molecular chaperons 
(Craig et al. 1993). These chaperons help in regaining the shape of heat shock pro-
teins, which were denatured during the heat stress so that it can work efficiently 
(Hartl and Hayer-Hartl 2009). The chaperon analysis in 53 stains of Mesorhizobium 
sp. for heat stress shows increased transcripts of dnaK and groESL genes, which 
were related to heat stress (Alexandre and Oliveira 2011).

16.2.5  Tolerance to Cold

Low temperature also causes stresses to plant health and plays an important role 
in the geographical distribution of several plant species and significantly affects 
the yield of the most valuable crop (Theocharis et al. 2012). For improving plant 
tolerance to cold, plants undergo several changes to its physiological and molecu-
lar modification resulting in the process of acclimatization against cold. 
Modification includes accumulation of carbohydrate, osmolytes production, spe-
cific protein synthesis, and expression of stress-related genes (Ruelland et  al. 
2009). For survival against cold stress, enhancement of chilling resistance by the 
use of beneficial bodies has been reported as a new solution to induce plant 
defense (Theocharis et al. 2011).
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Abstract
Drought is the most destructive abiotic stress affecting the world’s food security. 
Rhizospheric and endophytic bacteria produce range of enzymes and metabo-
lites, which help the plants to tolerate abiotic stress. Induced systemic resistance 
gets developed in plants surviving in drought conditions. Drought tolerance is 
induced in crops due to the production of exopolysaccharides, phytohormones 
like gibberellic acid, cytokinins, abscisic acid, and IAA, ACC deaminase, anti-
oxidants, osmolytes, and volatile compounds. Plants in drought conditions sur-
vive due to rhizobacteria enhancing photosynthetic activity. PGPR improves the 
growth, antioxidant activity, and photosynthetic activity of the crops in drought 
conditions. Rhizobacteria assist in resource attainment, i.e., nitrogen, phospho-
rus, and essential minerals by changing the root morphology, improving the soil 
structure, and bioremediation of the polluted soils.
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Exopolysaccharides · Phytohormones · Antioxidant · Indole-3-acetic acid · 
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17.1  Introduction

Drought is the critical abiotic stress affecting food security. Drought stress restricts 
the crop yields (Bottner et al. 1995) and can cause serious plant growth problems 
(Kasim et al. 2013). Plants are affected by various environmental stresses. In envi-
ronment plants suffered from biotic and abiotic stress. Biotic stress is induced by 
microorganisms, insects, as well as higher animals and abiotic stress, including 
water logging, heat, drought, cold, wind, and intense light (Wahid et  al. 2007). 
Drought limits plant productivity, disturbs water relation, and also reduces water 
use efficiency in plants. Crop production reduces by 9–10% due to drought stress 
(Lesk et  al. 2016). The effects of stress range from morphological to molecular 
levels. Plants have two strategies to cope with drought condition, i.e., drought avoid-
ance and dehydration tolerance (Blum 2005). Microorganisms play a vital role in 
the survival of crops under drought conditions. Use of rhizobacteria to induce abi-
otic stress tolerance can help to control stress in many plants and crops (Rejeb et al. 
2014). Paenibacillus polymyxa was first reported to alleviate drought stress in 
Arabidopsis thaliana (Timmusk et al. 2005). There is a report on the efficacy of 
Pseudomonas fluorescens strains in enhancing drought-tolerant traits in terms of 
chlorophyll content, photosynthesis activity, and oxidative stress (Sudhakar et al. 
2013). The drought stress can be overcome by developing drought-resistant variet-
ies, changing crop calendars, resource management, conventional breeding, and 
genetically improved drought-resistant plants. Current studies show that rhizobacte-
ria enable plants to overcome drought stress. Due to water stress, plants show mor-
phophysiological changes, namely, effects on carbon metabolism, water relations, 
and hormone production that regulate plant growth (Wilkinson and Davies 2010).

Rhizobacteria play a very important role in drought stress tolerance in plants. 
The rhizobacteria-mediated plant tolerance to drought stress is shown in Table 17.1.

17.2  The Relation Between Drought Stress and Growth 
of the Plant

Drought has an impact on plant-water potential and turgor (Hsiao 2000), which 
changes the morphological and physiological characteristics in plants (Rahdari 
et al. 2012). Growth was found to be affected due to drought stress in crops, namely, 
maize (Kamara et al. 2003), barley (Samarah 2005), rice (Lafitte et al. 2007), and 

Table 17.1 Rhizobacteria-mediated plant tolerance to drought stress

Rhizobacteria Plant species References
Achromobacter piechaudii Tomato (Solanum lycopersicum) Mayak et al. (2004)

Black pepper (Piper nigrum) Mayak et al. (2004)
Azospirillum sp. Wheat (Triticum aestivum) Creus et al. (2005)
A. brasilense Maize (Zea mays) Casanovas et al. (2002)
A. brasilense Common bean (Phaseolus vulgaris) German et al. (2000)
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wheat (Rampino et al. 2006). Growth parameters like water content and fresh weight 
are found to be affected due to stress imposed by drought condition (Jaleel et al. 
2009). This pressure limits the diffusion of nutrients and mass flow of nutrients, 
which are soluble in water (Selvakumar et al. 2012). Crops grown in water scarce 
conditions have low chlorophyll content (Rahdari et al. 2012). Drought decreases 
the yield of the plants and various crops. The mechanisms for drought tolerance 
include the synthesis of exopolysaccharides, volatile compounds, osmolytes, anti-
oxidants, phytohormones, and 1-aminocyclopropane-1-carboxylate.

17.3  Effect of Exopolysaccharide on Drought Tolerance 
in Plants

Exopolysaccharides are hydrophilic in nature, which provides protection to rhizo-
bacteria under drought stress. EPS binds with the water in the soil, and due to this, 
the soil dries more slowly and also protects the bacteria from water potential fluc-
tuations in drought conditions (Hepper 1975).

17.4  Drought Resistance in Plants Mediated by Plant Growth 
Hormones Produced by Rhizobacteria

Plant growth hormone indole-3-acetic acid (IAA) helps in the commencement of 
lateral and adventitious roots and elongation of stems and roots of the plants (Glick 
1995). IAA helps plants to survive under extreme stress conditions. Plants inocu-
lated with rhizobacteria producing IAA increase root and root hair formation, which 
in turn increases nutrient and water uptake by the plants. This helps the plants to 
overcome problem of water deficit (Egamberdieva and Kucharova 2009). Plants 
having a good root system sustain drought stress better than the plants having fewer 
roots. This is because the roots assist plants for uptaking water from the soil profile 
(Gowda et al. 2011). PGPR-treated clover (Trifolium repens L.) plants showed more 
shoot and root biomass and water content under drought stress. This increase was 
correlated with the production of IAA elicited through the application of PGPR 
(Marulanda et al. 2009). Also, a study has shown that Arabidopsis plants inoculated 
with Phyllobacterium brassicacearum strain STM196 resulted in improved lateral 
root length and modifications of the root architecture that led to the significant 
drought tolerance (Bresson et al. 2014).

Abscisic acid (ABA) has a vital role in many physiological responses in plants. 
It is important for drought stress tolerance (Cohen et al. 2015). Plant organs have 
increased production of ABA contents under drought stress, which improves plant 
growth (Farooq et al. 2009). Rhizobacteria increase ABA concentrations in plants to 
minimize drought stress conditions (Arkhipova et al. 2007). The ABA enhances the 
drought tolerance in plants and crops by leaf transpiration regulation, root hydraulic 
conductivity (Aroca et al. 2006), and aquaporins (Zhou et al. 2012).
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17.5  Drought Tolerance in Plants Due to Rhizobacterial 
1-Aminocyclopropane-1-Carboxylate Synthase

Ethylene is one of the plant regulators. Biosynthesis of ethylene is dependent on 
biotic and abiotic stresses (Hardoim et al. 2008). Ethylene precursor 1- aminocyclo
propane- 1-carboxylate (ACC) is synthesized from S-adenosylmethionine 
(S-AdoMet). In stress conditions, the plant hormone ethylene maintains homeosta-
sis, which affects root and shoots growth. The rhizobacteria producing ACC deami-
nase reduces ethylene production under drought stress (Mayak et  al. 2004). 
Rhizobacteria with the potential of ACC deaminase production is found to improve 
the growth, yield, and ripening of pea grown under drought stress condition (Arshad 
et  al. 2008). Wheat plants harboring ACC deaminase producing rhizobacteria 
improve the root and shoot length and root-shoot mass of wheat. Developed roots 
help plants to uptake water and nutrients, which significantly improved the health of 
crops under drought stress (Shakir et al. 2012).

17.6  Antioxidants in Drought Stress Tolerance

The drought stress tolerance is increased due to reactive oxygen species (ROS 
(Helena and Carvalho 2008). Enzymatic antioxidants include catalase, peroxidase, 
superoxide dismutase, glutathione reductase, and ascorbate peroxidase. The specific 
antioxidant enzyme activity can be measured to assess the scavenging system. The 
antioxidant activity is correlated with the extent of drought tolerance (Guo et al. 
2006). Rhizobacteria-treated plants have more levels of antioxidant enzymes, and 
the high level of antioxidant enzymes contributes to drought stress tolerance. 
Gururani et al. (2013) reported a considerable rise in enzyme scavengers like ascor-
bate peroxidase, catalase, and superoxide dismutase. The specific activity of cata-
lase was found to be increased by 1.8 under drought stress conditions in plants 
treated with rhizobacteria. Saravanakumar et  al. (2011) reported higher catalase 
activity in green gram plants with Pseudomonas fluorescens Pf1 and Bacillus subti-
lis EPB.

17.7  Effect of Volatile Compounds in Drought Tolerance

The stimulation of various volatiles occurs in plants suffering from multiple stresses. 
Volatiles are a fast noninvasive technique to check drought stress on crops (Timmusk 
et  al. 2014). Volatile compounds produced by rhizobacteria are 2R- and 
3R-butanediol, which showed stimulation of drought tolerance in crops.
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17.8  Proline, the Osmolyte for Drought Sustainability 
in Plants and Crops

Osmotic adjustment is the key adaptation that makes plants to tolerate drought con-
ditions. (Farooq et al. 2009). Osmolytes protect the plant cellular organelles against 
the oxidative damage (Huang et al. 2014). Accumulation of compatible solutes is 
the osmotic adjustment (Kiani et al. 2007), in response to drought stress (Nilsen and 
Orcutt 1996). These solutes help the plants to maintain the water potential (Serraj 
and Sinclair 2002). Proline is the important osmolyte that accumulates in plants 
experiencing drought stress (Huang et al. 2014). In many plants and crops, there is 
a direct correlation between higher proline level and drought tolerance (Sankar et al. 
2007). There are reports of higher proline content in pea (Pisum sativum L.) 
(Alexieva et al. 2001), chickpea (Cicer arietinum L.) (Mafakheri et al. 2010), rice 
(Oryza sativa L.) (Lum et al. 2014), and soybean (Silvente et al. 2012) grown under 
drought stress. Plants with more proline content possess the potential to tolerate 
drought stress. Rhizobacteria-treated crops have more proline contents. This data is 
reported in maize (Naseem and Bano 2014), sorghum (Grover et al. 2014), potato 
plants (Gururani et al. 2013), mung bean (Sarma and Saikia 2014), and Arabidopsis 
(Arabidopsis thaliana L.) (Cohen et al. 2015). Soluble sugars are osmolytes that 
help in the osmotic adjustment of plants under drought stress.

17.9  Trehalose Production by Desiccation-Tolerant 
Microorganisms for Drought Tolerance

Recently, a study has been done on desiccation-resistant, xeroprotectant-producing 
microorganisms for their potential of plant protection against drought and their role 
as PGPR. The trehalose production was correlated with their plant protection ability 
when grown under drought conditions (Vilchez et al. 2016).

17.10  Conclusion

Rhizobacteria will play a pivotal role in resistance development in plants affected 
by drought stress and will also solve the food security problem. Rhizobacteria can 
provide a better and cost-effective alternative toward drought tolerance in crop 
plants. Rhizobacteria can also adopt multiple approaches to ameliorate drought tol-
erance in plants.
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