
Chapter 8
Components and Methods of Evaluating
Computational Thinking for Fostering
Creative Problem-Solvers in Senior
Primary School Education

Siu-Cheung Kong

Abstract The challenge of introducing Computation Thinking (CT) education to
K-12 is how to evaluate learners’ CT development. This study used information
from previous studies to identify essential components and methods for evaluation.
A review of literature from 2010 onwards aimed to identify all studies related to CT
evaluation to contribute to the development of appropriate evaluation components and
methods for senior primary school education. To facilitate the design of a comprehen-
sive evaluation approach, the CT framework of concepts, practices and perspectives
developed by Brennan and Resnick (2012) was adopted in this study. This study has
two highlights: (1) problem formulation is proposed to be included as a component
of CT practices and (2) CT perspectives are refined to include computational identity
and programming empowerment as components. CT concepts could be evaluated by
test designs with multiple choice questions to identify students’ learning outcomes.
CT practices could be evaluated by designing rubrics to rate programming projects
and using test designs with task-based questions to identify learners’ learning out-
comes. Finally, CT perspectives could be measured by designing survey instruments
and administrating surveys to learners.

Keywords Computational thinking · Creative problem-solver · Evaluation ·
Senior primary school education · Visual programming

8.1 Introduction

To keep pace with the Fourth Industrial Revolution, which has integrated physical,
digital and biological spheres in all aspects of life (World Economic Forum, 2016),
it is necessary to nurture the next generation to become creative problem-solvers in
the digital era. Computational Thinking (CT) is widely accepted as a fundamental
practice for equipping young people to formulate and solve problems in the dig-

S.-C. Kong (B)
Centre for Learning, Teaching and Technology, The Education University of Hong Kong,
10 Lo Ping Road, Tai Po, Hong Kong
e-mail: sckong@eduhk.hk

© The Author(s) 2019
S.-C. Kong and H. Abelson (eds.), Computational Thinking Education,
https://doi.org/10.1007/978-981-13-6528-7_8

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6528-7_8&domain=pdf
mailto:sckong@eduhk.hk
https://doi.org/10.1007/978-981-13-6528-7_8

120 S.-C. Kong

ital world (Computer Science Teachers Association, 2011), and it is unsurprising
that many scholars have called for the integration of CT into K-12 education (e.g.
Barr & Stephenson, 2011; Grover & Pea, 2013; Lye & Koh, 2014). To successfully
implementCT education in schools, designing appropriate assessing components and
methods for evaluating learners is of paramount importance. The National Research
Council (2011) pointed out that the purposes of assessing learners’ CT development
are to evaluate the curriculum, teachingmaterials and pedagogy, to judge individuals’
progress and to manage teacher development and support. Educators are responsible
for determining what should be measured and what methods should be used to mea-
sure learners’ CT development (Duncan & Bell, 2015). Although researchers have
explored evaluation components and methods for young learners in recent years,
there is no consensus on which are most effective (e.g. Brennan & Resnick, 2012;
Grover, Pea, & Cooper, 2015; Zhong, Wang, Chen, & Li, 2016). There is a pressing
need to clarify the evaluation components and to propose appropriate approaches
and methods to measure learners’ CT development.

This study used information from previous studies to identify and propose essen-
tial components and methods for evaluating senior primary school learners’ CT
development. In terms of CT concepts, proposed components to be evaluated include
loops, conditionals, sequences, parallelism, data structures, mathematics operators,
functions and Boolean logic, event handling, procedures and initialisation. These
can be measured by test designs with multiple choice questions to identify stu-
dents’ learning outcomes. In terms of CT practices, proposed components include
problem formulating, planning and designing, abstracting and modularising, algo-
rithmic thinking, reusing and remixing, being iterative and incremental, and testing
and debugging; these could be evaluated by designing rubrics to rate programming
projects and using test designswith task-based questions to identify learners’ learning
outcomes. In terms of CT perspectives, proposed components include computational
identity, programming empowerment and the perspectives of expressing, connect-
ing and questioning, which could be measured by designing survey instruments and
administering surveys to learners.

8.2 Background

8.2.1 Computational Thinking

CT is not a new idea; Papert (1980) advocated that children can learn to think expres-
sively about thinking and can foster procedural thinking through programming. He
argued that ‘computational technology and computational ideas can provide children
with new possibilities for learning, thinking, and growing emotionally as well as cog-
nitively’ (Papert, 1980, pp. 17–18). The idea of CT has gained global awareness and
discussion afterWing’s introduction in 2006. She suggested that everyone—not only
computer scientists—should learn and use CT (Wing, 2006). According toWing, CT

8 Components and Methods of Evaluating Computational Thinking … 121

includes problem-solving, systems design and understanding human behaviour, and
it draws on the concepts that are fundamental to computer science. CT is further
defined as ‘the thought processes involved in formulating problems and their solu-
tions so that the solutions are represented in a form that can be effectively carried
out by an information-processing agent’ (Cuny, Snyder, & Wing, 2010, p. 1). Aho
(2012) echoed the viewpoint that CT refers to problem formulation and that solutions
can be represented as computational steps and algorithms. In sum, CT is a process
of formulating and solving computational problems.

Because CT helps equip the next generation with problem-solving skills, a num-
ber of scholars have called for the integration of CT into K-12 education (e.g. Barr &
Stephenson, 2011; Grover& Pea, 2013; Lye&Koh, 2014). Researchers have varying
ideas with respect to K-12 curriculum because of their diverse interpretations of CT.
One viewpoint is that CT should be promoted by means of programming courses
because it can be incited by programming knowledge (Araujo, Andrade, &Guerrero,
2016) and learners can demonstrate their CT practices through programming tools.
For example, Grover and Pea (2013) introduced nine essential components of CT
practices: abstraction and pattern generalisations; systematic processing of informa-
tion; symbol systems and representations; algorithmic notions of flow of control;
structured problem decomposition; iterative, recursive and parallel thinking; condi-
tional logic; efficiency and performance constraints and debugging and systematic
error detection. Another viewpoint is that CT practices should be elicited by other
subjects and disciplines. For instance, the International Society for Technology in
Education (ISTE) emphasises data representations andworkingwith automated solu-
tions and simulations (Barr, Harrison, & Conery, 2011). ISTE’s framework does not
emphasise the building of artefacts through programming environments, as learners
can display CT practices through data representations and can work with automated
solutions and simulations (Lye & Koh, 2014). For a CT curriculum that adopts the
constructionism approach (Papert, 1980), the acquisition of programming concepts
and practices through programming is considered as the most effective way to learn
CT. This study adopts this approach to propose measures to evaluate learners’ under-
standing of CT development instead of using ISTE’s framework.

8.2.2 The Adopted Framework for Computational Thinking
Evaluation

This study adopted a CT framework in the context of programming proposed by
Brennan and Resnick (2012) as the evaluation framework. The framework consists
of three dimensions: CT concepts, CT practices and CT perspectives. The dimension
of CT concepts refers to the computational concepts that learners develop in pro-
gramming, the dimension of CT practices refers to the problem-solving practices that
learners demonstrate repeatedly in the programming process and the dimension ofCT
perspectives refers to learners’ understanding of themselves and their relationships

122 S.-C. Kong

to others and the technological world that they develop by expressing, connecting
and questioning during programming. According to the National Research Council
(2012), in the twenty-first century, it is important to assess a person’s competence in
the cognitive, intrapersonal and interpersonal domains. CT concepts and practices
represent the cognitive domain, such as learners’ programming knowledge and prac-
tices, while CT perspectives represent the intrapersonal and interpersonal domains,
such as learners’ expression using programming tools and connection to the dig-
italised world. Lye and Koh (2014) pointed out that most studies focused on CT
concepts, and fewer on practices and perspectives. This framework helps to provide
a comprehensive picture for evaluating CT development in schools.

This framework is also appropriate for young learners to begin learning CT. In
Piaget’s model of the four stages of development, learners in the 7–11 age groups are
developing operational thinking (Piaget, 1972). Thus, senior primary school learners
in the 9–11 age groups are at the suitable starting point to learn basic programming
knowledge. As the context of this framework is in visual programming environments
such as Scratch andApp Inventor, it enables learners to ‘learn programming concepts
and practice CT abilities while avoiding the syntax hurdle associated with text-based
programming languages’ (Araujo et al., 2016, p. 6).Within this context, Brennan and
Resnick’s framework facilitates the design of evaluation components and methods
to capture the progress and achievements of learners studying CT in senior primary
education.

8.3 Methodology

To facilitate the promotion of CT education in K-12 schools, it is necessary to con-
duct a comprehensive review of literature to identify the evaluation components and
methods of CT for young learners. To achieve the aim of this study, two research
questions are raised: (1) What evaluation components should be included in the CT
concepts, practices and perspectives dimensions according to the CT framework pro-
posed by Brennan and Resnick (2012) in K-12? (2) What methods are appropriate
for evaluating the CT components in each dimension in this context? As each study
has put forth its own components and methods for evaluating learners’ CT devel-
opment, this study used information from previous studies to identify the essential
components and methods for evaluation. This review of the literature from 2010 to
the present aimed to identify every study related to programming and CT evaluation
to contribute to the proposal of appropriate evaluation components and methods for
senior primary school education. Table 8.1 summarises the 24 studies reviewed in
this study.

8 Components and Methods of Evaluating Computational Thinking … 123

Table 8.1 List of 24 studies reviewed in this study

Study Dima Study Dima Study Dima

1. Brennan and
Resnick
(2012)

1, 2,
3

9. Grover,
Cooper, and
Pea (2014)

1, 2 17. Ruf,
Mühling, and
Hubwieser
(2014)

1, 3

2. Burke (2012) 1, 2 10. Grover et al.
(2015)

1, 2,
3

18. Seiter and
Foreman
(2013)

1, 2

3. Denner,
Werner,
Campe, and
Ortiz (2014)

2, 3 11. Kukul and
Gökçearslan
(2017)

3 19. Sherman and
Martin
(2015)

1, 2

4. Duncan and
Bell (2015)

2, 3 12. Maguire,
Maguire,
Hyland, and
Marshall
(2014)

3 20. Werner,
Denner,
Campe, and
Kawamoto
(2012)

2, 3

5. Ericson and
McKlin
(2012)

1, 3 13. Meerbaum-
Salant,
Armoni, and
Ben-Ari
(2013)

1 21. Wilson,
Hainey, and
Connolly
(2012)

1

6. Fessakis,
Gouli, and
Mavroudi
(2013)

2 14. Mueller,
Beckett,
Hennessey,
and Shodiev
(2017)

2 22. Wolz, Stone,
Pearson,
Pulimood,
and Switzer
(2011)

3

7. Giordano and
Maiorana
(2014)

1, 3 15. Rodriguez,
Kennicutt,
Rader, and
Camp (2017)

2 23. Zhong et al.
(2016)

1, 2

8. Gouws,
Bradshaw,
and
Wentworth
(2013)

2 16. Román-
González,
Pérez-
González,
and Jiménez-
Fernández
(2016)

1, 2 24. Zur-Bargury,
Pârv, and
Lanzb erg
(2013)

1

aThe numbers refer to the dimensions discussed in the reviewed literature, according to the CT
framework proposed by Brennan and Resnick (2012). ‘1’ refers to CT concepts, ‘2’ refers to CT
practices and ‘3’ refers to CT perspectives

124 S.-C. Kong

8.4 Results and Discussion Based on Literature Review

Grover et al. (2015, p. 199) wrote that ‘a system of assessments is beneficial to get
a comprehensive picture of learners’ CT learning.’ In other words, there is no single
evaluation component or method that can entirely measure learners’ CT achieve-
ments. Researchers, therefore, strive to develop both quantitative and qualitative
approaches to evaluate learners’ learning outcomes. This section sheds light on the
essential evaluation components and assessment methods of each of the three dimen-
sions proposed by Brennan and Resnick (2012): CT concepts, CT practices and CT
perspectives.

8.4.1 CT Concepts

8.4.1.1 Literature Review Results

The 14 studies on evaluating programming concepts in block-based environments
provided 9 CT concepts to be included: (1) repetition/loops/iteration, (2) condition-
als, (3) data structures, (4) sequences, (5) parallelism/concurrency, (6) mathematical
operators, functions and Boolean logic, (7) event handling, (8) procedures and (9)
initialisation. Table 8.2 summarises components of CT concepts that were evaluated
by past studies and the tabulated results were sorted according to the frequency with
which they were discussed.

Brennan and Resnick (2012) pointed out that the first seven concepts in Table 8.2
were useful in the Scratch programming environment and stated that learners should
be able to transfer these CT concepts to other programming and non-programming
contexts. The reviewed studies generally concurred on the importance of these seven
components, in particular, all 14 studies agreed that repetition (or loops or iteration)
is an essential component in evaluating CT concepts. Conditionals were identified
by 11 studies as a core component of CT concepts. Ten studies put forth data as a
key programming concept, which includes important knowledge such as variables
and lists. The concept of sequences and parallelism (or concurrency), including
sending or passing messages and handling coordination, was mentioned in eight
studies. Eight studies also suggested that learners should understand the concepts
of mathematical operators such as ‘addition, subtraction, multiplication, division, as
well as functions like sine and exponents’ (Brennan & Resnick, 2012, pp. 5–6) and
Boolean logic operations such as ‘AND,OR,NOT’. Six studies investigated learners’
ability to handle events in programming. In addition, the ability to apply procedures
in programming tasks was identified as a component of CT concepts in two studies.
It helps to avoid the repetition of codes and duplication of commands (Marji, 2014).
One study attempted to evaluate learners’ ability to deal with initialisation.

The 14 evaluation studies used both quantitative and qualitative methods to mea-
sure learners’ understanding of CT concepts. Table 8.3 summarises the methods

8 Components and Methods of Evaluating Computational Thinking … 125

Table 8.2 Components of CT concepts in past studies

Component Study Frequency

1. Repetition/loops/iteration Brennan and Resnick (2012), Burke (2012),
Ericson and McKlin (2012), Giordano and
Maiorana (2014), Grover et al. (2014, 2015),
Meerbaum-Salant et al. (2013),
Román-González et al. (2016), Ruf et al.
(2014), Seiter and Foreman (2013), Sherman
& Martin (2015), Wilson et al. (2012), Zhong
et al. (2016), Zur-Bargury et al. (2013)

14

2. Conditionals Brennan and Resnick (2012), Ericson and
McKlin (2012), Giordano and Maiorana
(2014), Grover et al. (2014, 2015),
Román-González et al. (2016), Ruf et al.
(2014), Seiter and Foreman (2013), Sherman
and Martin (2015), Wilson et al. (2012),
Zur-Bargury et al. (2013)

11

3. Data structures (e.g.
variables, lists)

Brennan and Resnick (2012), Ericson and
McKlin (2012), Giordano and Maiorana
(2014), Grover et al. (2014, 2015),
Meerbaum-Salant et al. (2013), Seiter and
Foreman (2013), Sherman & Martin (2015),
Wilson et al. (2012), Zhong et al. (2016)

10

4. Sequences Brennan and Resnick (2012), Giordano and
Maiorana (2014), Grover et al. (2014, 2015),
Román-González et al. (2016), Zhong et al.
(2016), Seiter and Foreman (2013), Wilson
et al. (2012)

8

5. Parallelism/concurrency
(e.g. messages,
coordination)

Brennan and Resnick (2012), Burke (2012),
Ericson and McKlin (2012), Giordano and
Maiorana (2014), Meerbaum-Salant et al.
(2013), Seiter and Foreman (2013), Wilson
et al. (2012), Zhong et al. (2016)

8

6. Mathematical operators,
functions and Boolean logic

Brennan and Resnick (2012), Giordano and
Maiorana (2014), Grover et al. (2014, 2015),
Román-González et al. (2016), Seiter and
Foreman (2013), Wilson et al. (2012), Zhong
et al. (2016)

8

7. Event handling Brennan and Resnick (2012), Burke (2012),
Ericson and McKlin (2012), Giordano and
Maiorana (2014), Seiter and Foreman (2013),
Wilson et al. (2012)

6

8. Procedures Giordano and Maiorana (2014), Seiter and
Foreman (2013)

2

9. Initialisation Meerbaum-Salant et al. (2013) 1

126 S.-C. Kong

Table 8.3 Methods used by studies to evaluate CT concepts

Method Study Frequency

1. Test designs with multiple choice
type questions in programming
context

Ericson and McKlin (2012), Giordano
and Maiorana (2014), Grover et al.
(2014, 2015), Meerbaum-Salant et al.
(2013), Román-González et al.
(2016), Ruf et al. (2014), Zur-Bargury
et al. (2013)

8

2. Task/project rubrics Seiter and Foreman (2013), Sherman
and Martin (2015), Wilson et al.
(2012), Zhong et al. (2016)

4

3. Interviews Brennan and Resnick (2012), Grover
et al. (2014, 2015), Meerbaum-Salant
et al. (2013)

4

4. Project analysis Brennan and Resnick (2012), Burke
(2012)

2

5. Observations Burke (2012), Meerbaum-Salant et al.
(2013)

2

6. Reflection reports Zhong et al. (2016) 1

by studies used to evaluate CT concepts. The tabulated results are sorted accord-
ing to the frequencies with which the methods were used. In terms of quantitative
approaches, most of the studies measured learners’ understanding of CT concepts
using test items, most of which were designed with multiple choice questions in the
programming context (Ericson &McKlin, 2012; Ruf, Mühling, & Hubwieser, 2014;
Zur-Bargury et al., 2013). Task and project rubrics were also commonly used so that
teachers could assess learners’ project work with scoring guidelines.

Among the studies using qualitative approaches, interviews were the most com-
mon method of evaluating CT concepts. Interviews are conducted to understand the
CT concepts that learners use to complete programming tasks or projects. Project
analysis was another method used to evaluate learners’ development in CT concepts.
Evaluators used the Scrape tool to analyse the programming blocks of projects.
Scrape can provide a record of the CT concepts that the learner utilised in his/her
projects (Brennan & Resnick, 2012; Burke, 2012). Studies also observed program-
ming lessons to investigate whether learners could correctly handle the CT concepts
in programming activities.One study asked learners towrite reflective reports onwhat
kinds of CT concepts they used to complete their programming tasks and projects
(Zhong et al., 2016).

8.4.1.2 Proposed Evaluation Components and Methods

Duncan and Bell (2015) analysed the computing curricula for primary school in Eng-
land and recommended that key stage 2 learners in the 7–11 year age group acquire

8 Components and Methods of Evaluating Computational Thinking … 127

Table 8.4 Proposed
evaluation components of CT
concepts at the primary
school level

Component of CT concepts

1. Loops

2. Conditionals

3. Sequences

4. Parallelism

5. Data structures such as variables and lists

6. Mathematics operators, functions and Boolean operators

7. Event handling

8. Procedures

9. Initialisation

concepts such as loops, conditionals, sequences and variables. One study found that
loops, conditionals, variables and operators were the fundamental programming con-
cepts used by children in the Scratch programming environment (Maloney, Peppler,
Kafai, Resnick, & Rusk, 2008). Wilson et al. (2012) found that over half of chil-
dren’s game-making projects used concepts such as loops, conditionals, sequences
and parallelism. Because event handling is commonly used in block-based program-
ming environments such as Scratch and App Inventor, the concept of event handling
should be included (Brennan&Resnick, 2012). Although somemay believe that pro-
cedure and initialisation are difficult for senior primary learners, they are essential
concepts in programming. Procedure can avoid the repetition of codes and dupli-
cation of commands (Marji, 2014), and initialisation helps a programme reach its
initial state. Therefore, if teachers introduce procedure and initialisation in class,
they can consider assessing learners’ abilities regarding these two concepts. In line
with the above discussion and the results tabulated in Table 8.2, the following CT
concepts should be evaluated in the K-12 CT curriculum: (1) loops, (2) condition-
als, (3) sequences, (4) parallelism, (5) data structures such as variables and lists, (6)
mathematical operators, functions and Boolean operators, (7) event handling, (8)
procedures and (9) initialisation. Table 8.4 summarises the proposed CT concepts at
the primary school level.

Because CT concepts are made up of different kinds of components, they can be
evaluated by an aggregation of learners’ achievement across components. Therefore,
CTconcepts can be evaluated bydesigningquantitative test instrumentswith itemised
pieces that each evaluates a particular component. Evaluators can use these test
instruments to measure the learning outcomes of learners and to administer pre- and
post-test designs tomeasure learners’ progression. Evaluators can also assesswhether
learners apply CT concepts appropriately by looking into their tasks/projects with the
rubrics. Quantitative data can thus be obtained by accumulating the scores of learners
generated from the rubrics. It is proposed that test designs with multiple choice
questions be used to measure learners’ progression for large numbers of learners.
Evaluators can show programming segments in the test items and ask questions
related to the segments, such as finding the output from the programming segment,

128 S.-C. Kong

Fig. 8.1 An example of testing the CT concept of conditionals in the form of a multiple choice
question

which can demonstrate learners’ understanding of CT concepts. Figure 8.1 shows an
example of testing conditionals in the form of a multiple choice question.

CT concepts can also be evaluated by qualitative methods such as interviews,
project analyses, observations and reflection reports. Researchers found that when
learners were asked about how parts of their code work, their explanations showed
large conceptual gaps (Grover et al., 2014). Therefore, interviews with learners can
show how they explain their work. It is also suggested that evaluators can evaluate
learners’ CT concepts by using automated tools to analyse ‘the number, the range,
and the frequency’ of different programming blocks being used in their projects
(Burke, 2012). These blocks could provide information on learners’ development in
CT concepts. In addition, classroom observations can enable evaluators to determine
how learners use CT concepts to tackle computational tasks. Asking primary school
learners to write simple reflective reports on what kinds of CT concepts they used
in completing their programming tasks and projects is another alternative. Because
qualitative approaches require time and effort to explore learners’ learning outcomes,
they should be regarded as supplementary for evaluators seeking to comprehend the
CT concepts of learners. Table 8.4 summarises the proposed evaluation components
of the CT concepts at the primary school level.

8 Components and Methods of Evaluating Computational Thinking … 129

Table 8.5 Components of CT practices proposed by research studies

Component Study Frequency

1. Abstraction/abstracting,
modelling/abstracting and
modularising

Brennan and Resnick (2012), Denner
et al. (2014), Gouws et al. (2013),
Grover et al. (2015), Mueller et al.
(2017), Rodriguez et al. (2017), Seiter
and Foreman (2013), Sherman and
Martin (2015), Werner et al. (2012),
Zhong et al. (2016)

10

2. Algorithmic thinking Denner et al. (2014), Duncan and Bell
(2015), Gouws et al. (2013), Mueller
et al. (2017), Rodriguez et al. (2017),
Seiter and Foreman (2013), Werner
et al. (2012)

7

3. Testing and debugging Brennan and Resnick (2012), Burke
(2012), Fessakis et al. (2013), Grover
et al. (2015), Mueller et al. (2017),
Román-González et al. (2016), Zhong
et al. (2016)

7

4. Being incremental and iterative Brennan and Resnick (2012), Grover
et al. (2015), Mueller et al. (2017),
Zhong et al. (2016)

4

5. Problem decomposition Grover et al. (2015, 2014), Mueller
et al. (2017), Seiter & Foreman (2013)

4

6. Planning and designing Burke (2012), Zhong et al. (2016) 2

7. Reusing and remixing Brennan and Resnick (2012), Mueller
et al. (2017)

2

8.4.2 CT Practices

8.4.2.1 Literature Review Results

Fifteen studies in the literature provide sevenCTpractices: (1) abstraction/abstracting
and modelling/abstracting and modularising, (2) algorithmic thinking, (3) testing
and debugging, (4) being incremental and iterative, (5) problem decomposition, (6)
planning and designing and (7) reusing and remixing. Table 8.5 summarises the
components of CT practices identified by past studies, and the tabulated results were
sorted according to the frequency with which they were discussed.

Abstraction is one of the most fundamental practices in CT (Wing, 2006). Ten
studies are related to learners’ ability to think abstractly. Brennan and Resnick (2012,
p. 9) suggested that modularisation ability should be merged with abstraction so that
learners can avoid complexity and ‘build something large by putting together collec-
tions of smaller parts’. Modelling, another skill that is often linked with abstracting,
allows learners to ‘organize data, structure their thoughts, describe relationships, and
analyse proposed designs’ (Voland, 1999, p. 215). Seven of the studies regarded algo-

130 S.-C. Kong

rithmic thinking as the foundation of CT practices. Learners are required to define the
steps and develop instructions to solve a problem. Seven studies also suggested that
testing and debugging are the core of CT practices because it is ‘rare for a program to
work correctly the first time it is tried, and often several attemptsmust bemade before
all errors are eliminated’ (Peterson, 2002, p. 93). Four past studies suggested that
problem decomposition and the practices of being incremental and iterative are indis-
pensable in the programming process. Learners should learn to repeatedly ‘develop a
little bit, then try it out, then developmore’ until the programme is complete (Brennan
& Resnick, 2012, p. 7). Problem decomposition involves breaking down problems
into smaller, more manageable tasks (Waller, 2016). Several researchers found that
planning and designing were part of CT practices. They were used to investigate
whether learners plan their solutions before they write the code or use trial and error
during programming. Additionally, researchers noted that the reuse and remix of the
works of other programmers are crucial in the online communities of Scratch and
Alice (Brennan & Resnick, 2012), and they encouraged novices to produce more
complicated creations by building on existing projects or ideas (Brennan & Resnick,
2012).

For evaluation methods, because of the difficulties in finding out how learners
tackle problems during programming, evaluators use both quantitative and qualita-
tive methods to measure learners’ CT practices. Table 8.6 summarises the methods
adopted by the studies to evaluate CT practices. The tabulated results are sorted by
the frequency with which the methods were used. Seven studies used task/project
rubrics to evaluate learners’ CT practices, as teachers marked the programming out-
comes of tasks or projects based on rubrics to evaluate the CT practices of learners.
Four projects used tests with task-based questions in coding and non-coding contexts
to assess learners’ proficiency in CT practices. The qualitative methods proposed are
favourable for demonstrating their learning process. Four studies proposed the use
of interviews to understand learners’ CT practices, as interviews enable teachers to
understand learners’ thoughts behind the code (Grover & Pea, 2013). Two studies
proposed the use of observations: researchers observe in classrooms, take notes and
videorecord the entire programming process to understand learners’ CT practices
(Grover & Pea, 2013). One study used learners’ reflection reports to understand their
programming practices. Reflection reports are self-assessments that are distributed
to learners after they finish a task or a project (Zhong et al., 2016), in which they
write out how they accomplished their problem-solving tasks.

8.4.2.2 Proposed Evaluation Components and Methods

Programming is not a simple process, and it might not have a clear order. However,
the components of CT practices can be divided into two categories: design practices
and programming practices. In the design practices category, learners design pro-
grammes.This category includes three practices: problemdecomposition, abstracting
and modularising, and algorithmic thinking. Because people often perceive planning
as a ‘highly specialized skill for solving problems’ that requires scarce resources

8 Components and Methods of Evaluating Computational Thinking … 131

Table 8.6 Methods adopted by studies to evaluate CT practices

Method Study Frequency

1. Task/project rubrics Denner et al. (2014), Rodriguez et al.
(2017), Román-González et al.
(2016), Seiter and Foreman (2013),
Sherman and Martin (2015), Werner
et al. (2012), Zhong et al. (2016)

7

2. Tests designed with task-based
questions

Duncan and Bell (2015), Gouws et al.
(2013), Grover et al. (2014, 2015)

4

3. Interviews Brennan and Resnick (2012), Grover
et al. (2014, 2015), Mueller et al.
(2017)

4

4. Observations Burke (2012), Fessakis et al. (2013) 2

5. Reflection reports Zhong et al. (2016) 1

(Lawler, 1997), planning and designing are not recommended for inclusion in the
programming process. Learners are supposed to decompose problems into sub-tasks
first (Waller, 2016). The practice of modularising is recommended to be merged with
abstracting. Learners will be able to connect the parts of the whole so that they can
test and debug different parts of the programme incrementally (Brennan & Resnick,
2012). The Center for Computational Thinking, Carnegie Mellon (2010) asserted
that algorithmic thinking is essential, as it helps learners to produce efficient, fair
and secure solutions. In sum, in line with the results in Table 8.5, problem decom-
position, abstracting and modularising, and algorithmic thinking are essential CT
practices for evaluation at this stage.

In the programming practices category, learners implement their designs to pro-
duce a concrete programme artefact. This stage includes three practices: reusing and
remixing, being iterative and incremental, and testing and debugging. The first prac-
tice helps novices create their own programmes by building on others’ works and
developing their own works incrementally (Brennan & Resnick, 2012). The practice
of being iterative and incremental is tied to testing and debugging: programmers have
to develop part of the programme and test it to ensure that it works; they then repeat
these steps and continue to develop the programme. In sum, in line with the results
in Table 8.5, reusing and remixing, being iterative and incremental, and testing and
debugging are essential CT practices for evaluation at this stage.

Problem formulating is proposed to be included in the CT practices component
in the study of this paper. Although Cuny et al. (2010, p. 1) defined CT as the
‘thought processes involved in formulating problems and their solutions’, none of
the reviewed studies proposed assessing learners’ abilities in problem formulation. In
the early twentieth century, Einstein argued that raising questions was more impor-
tant than solving problems. In his classic study, The Evolution of Physics, he wrote,
‘the formulation of a problem is often more essential than its solution, which may
be merely a matter of mathematical or experimental skill. To raise new questions,
new possibilities, to regard old problems from a new angle require creative imagina-

132 S.-C. Kong

Table 8.7 Proposed
evaluation components of CT
practices at the primary
school level

Component of CT practices

1. Problem formulating

2. Problem decomposition

3. Abstracting and modularising

4. Algorithmic thinking

5. Reusing and remixing

6. Being iterative and incremental

7. Testing and debugging

tion and marks real advances in science’ (Einstein & Infeld, 1938, p. 92). Because
learners’ creativity can be demonstrated by formulating creative problems, there is
a need to add this component to CT practices to produce creative problem-solvers
in the digitalised world. The aims of CT practices are thus to develop both creative
thinkers and problem-solvers (Brugman, 1991). Therefore, this study proposes to
include ‘problem formulating’ as one of the components of CT practices. Table 8.7
summarises the proposed evaluation components of the CT practices of this study:
(1) problem formulating, (2) problem decomposition, (3) abstracting and modular-
ising, (4) algorithmic thinking, (5) reusing and remixing, (6) being iterative and
incremental and (7) testing and debugging.

Like CT concepts, CT practices involve several components; these can be mea-
sured by an aggregation of learners’ achievement across components. One quanti-
tative method to evaluate CT practices is designing rubrics to assess the final pro-
gramming projects of learners. The criteria of the rubrics are the components of CT
practices, and there is a need to design descriptors of performance levels for each
CT practice. These rubrics help evaluators to review learners’ abilities to formulate
and solve problems. In addition to using rubrics to assess the CT practices of learn-
ers, SRI International proposed a task-based approach to assess CT practices. SRI
International also published a report titled ‘Assessment Design Patterns for Com-
putational Thinking Practices in Secondary Computer Science’ (Bienkowski, Snow,
Rutstein, & Grover, 2015), which presented an overview of four CT practice design
patterns and two supporting design patterns. The CT practice design patterns include
analysing the effects of developments in computing, designing and implementing
creative solutions and artefacts, designing and applying abstractions and models,
and supporting design patterns analysing learners’ computational work and the work
of others. SRI International developed focal knowledge, skills and other attributes for
each CT practice, which illustrate the core abilities that learners need to acquire and
what should be assessed. Its report provided direction for evaluating CT practices
using the task-based approach. In this approach, evaluators’ first step is to define
the fundamental abilities of each CT practice. The next step is to design tasks that
include a scenario and to ask questions about the scenarios to test learners’ abili-
ties related to CT practice. Learners need to understand the scenarios and to answer
questions about selecting options, organising sequences of activities or performing

8 Components and Methods of Evaluating Computational Thinking … 133

1. Scenario

An app developer developed a mobile location tracking app that can show the location of a
place on a map using latitude and longitude. However, a user reported that the app does not
show the location correctly on the map. Please identify the reason(s) why the error occurred.

(a) The mobile app developer was unable to find the correct latitude and longitude of
the location

(b) The mobile app developer was unable to mark the location correctly on the map
(c) The mobile app developer committed both mistakes (a) and (b)

Fig. 8.2 An example of testing the CT practice of testing and debugging using a taskwith a scenario

categorisations to demonstrate their abilities. For example, one of the focal skills of
the CT practice of testing and debugging practice is the ability to explain the cause
of an error. Figure 8.2 demonstrates an example of testing learners’ understanding
of testing and debugging using a task with a scenario.

With this approach, tests with sets of task-based questions can be designed to
evaluate learners’ abilities with the various components of CT practices. Pre- and
post-test designswith task-based questions can enable evaluators to identify learners’
progression in CT practices.

Measuring learners’ CT practices by directly analysing their processes of design-
ing and building programmes requires great effort. Qualitative approaches such as
observing learners in designing and building programmes are one such method.
Another is to interview them after they formulate, design and build their programmes
and to ask them semi-structured questions. It is difficult to ask primary school learn-
ers to write detailed reflection reports on how they formulate, design and build their
programmes; however, evaluators can ask learners to write simple reflection reports
on how they can improve their programmes after solving their computational tasks.
These qualitative methods can serve as supplements for evaluators seeking to under-
stand what practices learners used in their programming tasks. Table 8.7 summarises
the proposed evaluation components of CT practices at the primary school level.

8.4.3 CT Perspectives

8.4.3.1 Literature Review Results

The literature review indicated not only that CT concepts and practices are of
paramount importance in measuring learners’ CT development, but learners’ per-
spectives on learning programming are also vital. Brennan and Resnick (2012) pro-
posed three kinds of perspectives in the programming process—expressing, con-
necting and questioning—to investigate learners’ understanding of themselves and
their relationships to others and the technological world. Based on the literature
review, CT perspectives include not only Brennan and Resnick’s (2012) suggestions

134 S.-C. Kong

Table 8.8 Components of CT perspectives proposed to be evaluated by research studies

Component Study Frequency

1. Attitudes such as interest in
programming and computing

Denner et al. (2014), Duncan and Bell
(2015), Ericson and McKlin (2012),
Giordano and Maiorana (2014),
Grover et al. (2015), Maguire et al.
(2014), Ruf et al. (2014), Werner
et al. (2012), Wolz et al. (2011)

9

2. Confidence in programming and
computing, programming
self-efficacy and programmers

Denner et al. (2014), Giordano and
Maiorana (2014), Kukul and
Gökçearslan (2017), Maguire et al.
(2014), Werner et al. (2012), Wolz
et al. (2011)

6

3. Expressing, connecting and
questioning

Brennan and Resnick (2012) 1

(i.e. expressing, connecting and questioning) but also learners’ motivation beliefs,
namely, value and expectancy (Wigfield&Eccles, 2000; Chiu&Zeng, 2008), in their
understanding of themselves. Value refers to learners’ intrinsic motivations, such as
their attitudes towards and interest in learning programming. Expectancy refers to
learners’ programming confidence, which includes their programming self-efficacy
and self-concept. Programming self-efficacy is ‘people’s judgments of their capabil-
ities to organize and execute courses of action required to attain designated types of
performance’ in the context of programming (Bandura, 1986, p. 391; Kong, 2017),
while programming self-concept is the belief in one’s programming competence
(Chiu & Zeng, 2008). Previous studies indicated that researchers investigated both
learners’ motivation beliefs regarding learning programming and their perspectives
on the technological world.

The 10 related studies in the literature identify three components of CT perspec-
tives: (1) attitudes such as interest in programming and computing, (2) confidence
in programming and computing, programming self-efficacy and programming com-
petence and (3) expressing, connecting and questioning. Table 8.8 summarises the
components of CT perspectives proposed to be evaluated by previous studies. The
tabulated results are sorted according to the frequency with which they were dis-
cussed.

Most researchers agree that learners’ attitudes, such as their interest in program-
ming, should be included in this evaluation dimension. Researchers have focused on
learners’ programming confidence, self-efficacy and competence, andmost have used
quantitative instruments to measure learners’ CT perspectives, although some have
used qualitative data to analyse their attitudes. Table 8.9 summarises the methods
adopted by studies to evaluate CT perspectives. Surveys are commonly used, with
five-point Likert scales used most frequently (e.g. Ericson & McKlin, 2012; Ruf
et al., 2014). Conducting surveys before and after a learning programming might
facilitate the investigation of learners’ CT perspectives. Qualitative methods such

8 Components and Methods of Evaluating Computational Thinking … 135

Table 8.9 Methods adopted by studies to evaluate CT perspectives

Method Study Frequency

1. Survey Denner et al. (2014), Duncan and Bell (2015), Ericson and
McKlin (2012), Giordano and Maiorana (2014), Grover
et al. (2015), Kukul and Gökçearslan (2017), Maguire
et al. (2014), Ruf et al. (2014), Werner et al. (2012), Wolz
et al. (2011)

10

2. Interview Brennan and Resnick (2012) 1

as interviews can provide a more in-depth understanding of learners’ perspectives
towards programming because programming courses and related activities can be
reviewed.

8.4.3.2 Proposed Evaluation Components and Methods

To fully understand learners’ intrinsic values regarding programming, askingwhether
they like or dislike programming is far from sufficient. Deci and Ryan (1985, p. 34)
argued that ‘when people are intrinsically motivated, they experience interest and
enjoyment, they feel competent and self-determined’. Learners’ interest in program-
ming can be assessed by their engagement in programming activities, sense of affili-
ation and career orientation. In addition to their attitudes, self-actualisation indicates
whether learners feel competent after learning programming. These four factors can
be used to explore learners’ computational identity, which they form through net-
working and sharing knowledge and experience in programming activities.

Wenger (1998, pp. 4–5) argued that engagement is ‘the most immediate relation
to a practice-engaging in activities, doing things, working alone or together, talking,
using and producing artifacts’, and that it creates ‘an identity of participation or
non-participation’. When learners are more interested in programming tasks, their
engagement in activities is deeper. Learners’ self-formation through engagement is
thus a critical factor that can directly reflect their interest in and enjoyment of learning
programming.Measuring learners’ sense of affiliation can also indicate whether they
have a feeling of belongingness regarding their interest in programming. They can
then develop a computational identity by the ‘participation of sharing’ (Gee, 2000).

It is believed that learners’ interests affect their career choices. The construct of
career orientation explores learners’ motivation to work with people who share the
same interests. Learners’ self-actualisation is another crucial subcomponent.Accord-
ing to Maslow (1943, p. 382), self-actualisation is ‘the desire for self-fulfilment,
namely, to the tendency for one to become actualized in what he is potentially’. In
other words, it is the development of competencies in knowledge, attitudes, skills
and character (Huitt, 2007). In sum, these factors can be used to extensively inves-
tigate learners’ intrinsic motivation, especially in their programming interest and
competence. Thus, computational identity is proposed to be measured as the first

136 S.-C. Kong

Table 8.10 Proposed
evaluation components of CT
perspectives at the primary
school level

Component of CT perspectives

1. Computational identity

2. Programming empowerment

3. Perspectives of expressing, connecting and questioning

component of CT perspectives in this study. If learners have positive perceptions
regarding these four factors, then they have a strong computational identity.

Concerning expectancy, programming empowerment, the second component of
the CT perspectives proposed in this study, can help evaluate learners’ programming
confidence more comprehensively. Borrowed from the concept of digital empow-
erment (Makinen, 2006), programming empowerment can be defined as a person’s
experiences creating and designing programmes that enable them to tackle real-life
problems and confidently participate in the digital world. Learners’ belief in their
competence to acquire the necessary concepts and practices to handle programming
tasks is the primary factor that evaluators must measure. Programming empower-
ment also emphasises the meaningfulness, impact and creativity of programming,
where meaningfulness refers to a person’s perceived value—that is, the importance
of their programming—and impact is a person’s perception of the influence of the
programming. Because this study proposes evaluation components to foster creative
problem-solvers, creativity can be used to measure learners’ beliefs in their ability to
produce new ideas in the digitalised world through programming and related digital
technologies. In sum, learners will contribute confidently in the digital world if they
feel empowered concerning their programming experiences.

The third component is a broader horizon that stresses learners’ relationships
with others and the technological world. It explores how learners use their innova-
tive thinking after learning programming to contribute to society through express-
ing, connecting and questioning the digitalised world (Brennen & Resnick, 2012).
Expressing means learners’ abilities to express themselves by creating with pro-
gramming. Connecting means learners’ understanding of the value of creating with
and for others by programming, and it highlights the linkage between programming
and real life. Questioning means that learners are empowered to ask questions about
the technological world based on their programming experiences. It also means that
learners are empowered to formulate problems in the computational context. The idea
of questioning could also be expanded to formulate problems before programming.
Learners are encouraged to think of questions that could be solved computationally.

As mentioned, CT perspectives represent a person’s competence in intrapersonal
and interpersonal domains. Therefore, this study proposed the evaluation of learners’
(1) computational identity, (2) programming empowerment and (3) perspectives of
expressing, connecting and questioning. Table 8.10 shows the proposed evaluation
components of the CT perspectives of this study.

It is suggested that CT perspectives can be evaluated by well-designed sur-
vey instruments. This study proposed the design of survey instruments to measure

8 Components and Methods of Evaluating Computational Thinking … 137

Strongly
Disagree Disagree Neutral Agree

Strongly
Agree

Computational Identity
1. I feel associated with my classmates when

participating in computer programming activities with
them.

2. Learning computer programming with my classmates
gives me a strong sense of belonging.

Programming Empowerment
1. I have confidence in my ability to use digital

technologies.
2. I can solve problems with digital technologies.

Perspectives of expressing, connecting, and questioning
1. I feel excited to express new ideas through

programming.
2. I think carefully about potential problems in the

process of programming.

Fig. 8.3 Sample items of the computational identity, programming empowerment and perspectives
of expressing, connecting and questioning survey instruments

(1) computational identity, (2) programming empowerment and (3) perspectives of
expressing, connecting and questioning. These surveys should be conducted at dif-
ferent time points to capture the development of learners’ CT perspectives. Learners
are required to rate their agreement or disagreement with the statements in these
instruments, and it is convenient to analyse a large number of learners’ replies using
quantitative methods. Figure 8.3 shows sample items for the computational identity,
programming empowerment and perspectives of expressing, connecting and ques-
tioning survey instruments. Qualitative methods such as interviews can be used to
obtain more details on learners’ perspectives of programming, but these require time
and effort.

8.5 Conclusion

Every country/region requires creative problem-solvers who can contribute to every
aspect of life in the digitalised world. CT is a way to cultivate creativity and problem-
solving skills in young people. Evaluation is important to facilitate the implementa-
tion of CT education in schools because it enables teachers to identify the progress
and outcomes of learners and help them attain their learning goals. Based on the
literature review, this study proposed nine components of CT concepts, seven com-
ponents of CT practices and three components of CT perspectives for evaluation.

As the goal of the CT curriculum is to nurture creative problem-solvers, it is
essential to evaluate learners’ abilities to formulate and solve problems in the com-
putational context. This study has two highlights. First, this study proposed ‘prob-
lem formulating’ as an additional component of evaluating CT practices to encour-
age learners to raise questions before they programme. Problem formulation is also

138 S.-C. Kong

closely linked with questioning in CT perspectives, which means that learners are
empowered to formulate problems in the computational context. In addition, this
study discussed the ideas of computational identity and programming empowerment
and proposed them as components for evaluating the perspectives of expressing,
connecting and questioning proposed by Brennan and Resnick (2012) to capture
learners’ motivation beliefs in a more comprehensive manner.

Past studies indicated that no single method could effectively measure learners’
CT development in the three dimensions; multiple methods are needed to evaluate
learning outcomes. To assess a large number of learners’ CT development, quantita-
tive methods are more feasible in terms of resources. This study proposed the design
of tests with multiple choice questions to evaluate the CT concepts of learners. Eval-
uators could also assess learners’ CT concepts by analysing their programming tasks
and projects with rubrics. Qualitative methods such as interviews, project analyses,
observations and simple reflection reports can be conducted as supplements to quanti-
tative approaches. CT practices can be evaluated by measuring programming project
outcomes with rubrics and the design of tests with task-based questions. Qualitative
methods such as interviews, observations and simple reflection reports can be con-
ducted given the in-depth understanding of a number of learners. CT perspectives
can be measured by well-designed survey instruments, and qualitative methods such
as interviews can be conducted if in-depth understanding is needed.

The future work of evaluating learners’ CT development is to design instruments
for measuring primary school learners in these three dimensions. Regarding CT con-
cepts and practices, researchers should design programming project rubrics and test
instruments to capture learners’ learning outcomes in these areas. Regarding CT per-
spectives, the constructs of computational identity, programming empowerment and
perspectives of expressing, connecting and questioning should be further explored
and established. Researchers are recommended to develop and validate instruments
for measuring learners’ computational identity and programming empowerment, and
how they express, connect and question in the digitalised world. The proposed evalu-
ation components and methods will be implemented in senior primary schools when
these instruments are developed. With appropriate evaluation components and meth-
ods, it is believed that schools will be in a better position to motivate and nurture
young learners to become creative problem formulators and problem-solvers in the
digitalised world.

References

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7),
832–835.

Araujo, A. L., Andrade, W. L., & Guerrero, D. D. (2016, October 12–15). A systematic mapping
study on assessing computational thinking abilities. In Proceedings of the IEEE Frontiers in
Education Conference (pp. 1–9). Erie, PA.

Bandura,A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood,
Cliffs, NJ: Prentice-Hall.

8 Components and Methods of Evaluating Computational Thinking … 139

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and
what is the role of the computer science education community? ACM Inroads, 2(1), 48–54.

Barr, V., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone.
ISTE Learning & Leading, 38(6), 20–22.

Bienkowski, M., Snow, E., Rutstein, D. W., & Grover, S. (2015). Assessment design patterns for
computational thinking practices in secondary computer science: A first look (SRI technical
report). Menlo Park, CA: SRI International. Retrieved November 21, 2016, from http://pact.sri.
com/resources.html.

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the devel-
opment of computational thinking. In A. F. Ball & C. A. Tyson (Eds.), Proceedings of the 2012
Annual Meeting of the American Educational Research Association (25 pp.). Vancouver, Canada:
American Educational Research Association.

Brugman,G.M. (1991). Problemfinding:Discovering and formulating problems.European Journal
of High Ability, 2(2), 212–227.

Burke, Q. (2012). Themarkings of a new pencil: Introducing programming-as-writing in the middle
school classroom. Journal of Media Literacy Education, 4(2), 121–135.

Center for Computational Thinking, Carnegie Mellon. (2010). Retrieved November 15, 2017, from
https://www.cs.cmu.edu/~CompThink/.

Chiu, M. M., & Zeng, X. (2008). Family and motivation effects on mathematics achievement:
Analyses of students in 41 countries. Learning and Instruction, 18(4), 321–336.

Computer Science Teachers Association. (2011). K-12 computer science standards. Retrieved
November 21, 2016, from http://csta.acm.org/Curriculum/sub/K12Standards.html.

Cuny, J., Snyder, L., &Wing, J. M. (2010). Demystifying computational thinking for non-computer
scientists. Unpublished manuscript in progress. Retrieved April 16, 2017, from http://www.cs.
cmu.edu/~CompThink/resources/TheLinkWing.pdf.

Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior.
New York, NY: Plenum.

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions
is it advantageous for middle school learners? Journal of Research on Technology in Education,
46(3), 277–296.

Duncan, C., & Bell, T. (2015, November 9–11). A pilot computer science and programming course
for primary school students. In Proceedings of the 10th Workshop in Primary and Secondary
Computing Education (pp. 39–48). London, England.

Einstein, A., & Infeld, L. (1938). The evolution of physics: The growth of ideas from early concepts
to relativity and quanta. New York, NY: Simon and Schuster.

Ericson, B., & McKlin, T. (2012, February 29–March 3). Effective and sustainable computing
summer camps. In Proceedings of the 43rd ACM Technical Symposium on Computer Science
Education (pp. 289–294). Raleigh, NC.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten
children in a computer programming environment: A case study. Computers & Education, 63,
87–97.

Gee, J. P. (2000). Identity as an analytic lens for research in education. Review of Research in
Education, 25, 99–125.

Giordano, D., & Maiorana, F. (2014, April 3–5). Use of cutting edge educational tools for an
initial programming course. In Proceedings of IEEE Global Engineering Education Conference
(pp. 556-563). Istanbul, Turkey.

Gouws, L., Bradshaw, K., & Wentworth, P. (2013, October 7–9). First year student performance
in a test for computational thinking. In Proceedings of the South African Institute for Computer
Scientists and Information Technologists Conference (pp. 271–277). East London, South Africa.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field.
Educational Researcher, 42(1), 38–43.

http://pact.sri.com/resources.html
https://www.cs.cmu.edu/%7eCompThink/
http://csta.acm.org/Curriculum/sub/K12Standards.html
http://www.cs.cmu.edu/%7eCompThink/resources/TheLinkWing.pdf

140 S.-C. Kong

Grover, S., Cooper, S., & Pea, R. (2014, June 21–25). Assessing computational learning in K-12.
In Proceedings of the Conference on Innovation & Technology in Computer Science Education
(pp. 57–62). Uppsala, Sweden.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer
science course for middle school learners. Computer Science Education, 25(2), 199–237.

Huitt, W. (2007).Maslow’s hierarchy of needs. Educational psychology interactive. Valdosta, GA:
Valdosta State University. Retrieved November 8, 2017, from http://www.edpsycinteractive.org/
topics/regsys/maslow.html.

Kong, S. C. (2017). Development and validation of a programming self-efficacy scale for senior
primary school learners. In S. C. Kong, J. Sheldon & K. Y. Li (Eds.), Proceedings of the Interna-
tional Conference on Computational Thinking Education 2017 (pp. 97–102). Hong Kong: The
Education University of Hong Kong.

Kukul, V., & Gökçearslan, Ş. (2017). Computer programming self-efficacy scale (cpses) for sec-
ondary school students: Development, validation and reliability. Eğitim Teknolojisi Kuram ve
Uygulama, 7(1), 158–158.

Lawler, R. W. (1997). Learning with computers. Exeter: Intellect Books.
Lye, S. Y., & Koh, J. H. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.

Maguire, P., Maguire, R., Hyland, P., & Marshall, P. (2014). Enhancing collaborative learning
using pair programming: Who benefits? All Ireland Journal of Teaching and Learning in Higher
Education, 6(2), 1411–1425.

Makinen, M. (2006). Digital empowerment as a process for enhancing citizens’ participation. E-
learning, 3(3), 381–395.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008, March 12–15). Programming
by choice: Urban youth learning programming with scratch. In Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education (pp. 367–371). Portland, OR.

Marji,M. (2014).Learn to programwith Scratch: A visual introduction to programmingwith games,
art, science, and math. San Francisco, CA: No Starch Press.

Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370.
Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts
with scratch. Computer Science Education, 23(3), 239–264.

Mueller, J., Beckett, D., Hennessey, E., & Shodiev, H. (2017). Assessing computational thinking
across the curriculum. In P. J. Rich&C.B.Hodges (Eds.),Emerging research, practice, and policy
on computational thinking (pp. 251–267). Cham, Switzerland: Springer International Publishing.

National Research Council. (2011). Report of a workshop of pedagogical aspects of computational
thinking. Retrieved November 21, 2016, from https://www.nap.edu/catalog/13170/report-of-a-
workshop-on-the-pedagogical-aspects-of-computational-thinking.

NationalResearchCouncil. (2012).Education for life andwork:Developing transferable knowledge
and skills in the 21st century. Committee on defining deeper learning and 21st century skills.
Retrieved December 6, 2016, from http://www.p21.org/storage/documents/Presentations/NRC_
Report_Executive_Summary.pdf.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic
Books.

Peterson, I. (2002). Mathematical treks: From surreal numbers to magic circles. Washington, DC:
Mathematical Association of America.

Piaget, J. (1972). Intellectual evolution from adolescence to adulthood.HumanDevelopment, 15(1),
1–12.

Rodriguez, B., Kennicutt, S., Rader, C., & Camp, T. (2017, March 8–11). Assessing computa-
tional thinking in CS unplugged activities. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (pp. 501–506). Seattle, Washington.

Román-González, M., Pérez-González, J., & Jiménez-Fernández, C. (2016). Which cognitive abil-
ities underlie computational thinking? Criterion validity of the computational thinking test.

http://www.edpsycinteractive.org/topics/regsys/maslow.html
https://www.nap.edu/catalog/13170/report-of-a-workshop-on-the-pedagogical-aspects-of-computational-thinking
http://www.p21.org/storage/documents/Presentations/NRC_Report_Executive_Summary.pdf

8 Components and Methods of Evaluating Computational Thinking … 141

Computers in Human Behavior. Retrieved 22 March, 2017, from http://www.sciencedirect.com/
science/article/pii/S0747563216306185.

Ruf, A., Mühling, A., & Hubwieser, P. (2014, November 5–7). Scratch vs. Karel: Impact on learn-
ing outcomes and motivation. In Proceedings of the 9th Workshop in Primary and Secondary
Computing Education (pp. 50–59). Berlin, Germany.

Seiter, L. & Foreman, B. (2013, August 12–14). Modeling the learning progressions of computa-
tional thinking of primary grade students. In Proceedings of the Ninth Annual International ACM
Conference on International Computing Education Research (pp. 59–66). San Diego, CA.

Sherman, M., & Martin, F. (2015). The assessment of mobile computational thinking. Journal of
Computing Sciences in Colleges, 30(6), 53–59.

Voland, G. (1999). Engineering by design. Reading, MA: Addison-Wesley.
Waller, D. (2016). Gcse computer science for OCR student book. Cambridge, England: Cambridge
University Press.

Wenger, E. (1998).Communities of practice: Learning, meaning, and identity. Cambridge, England:
Cambridge University Press.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012, February 29–March 3). The fairy
performance assessment: Measuring computational thinking in middle school. In Proceedings of
the 43rd ACM Technical Symposium on Computer Science Education (pp. 215–220). Raleigh,
NC.

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contem-
porary Educational Psychology, 25, 68–81.

Wilson,A., Hainey, T.,&Connolly, T.M. (2012,October). Evaluation of computer games developed
by primary school children to gauge understanding of programming concepts. In Proceedings of
the 6th European Conference on Games-based Learning (10 pp.). Cork, Ireland.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., & Switzer, M. (2011). Computational thinking
and expository writing in the middle school. ACM Transactions on Computing Education, 11(2),
1–22.

World Economic Forum. (2016). The Fourth Industrial Revolution: What it means, how to respond.
Retrieved April 15, 2017, from https://www.weforum.org/agenda/2016/01/the-fourth-industrial-
revolution-what-it-means-and-how-to-respond/.

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional inte-
grated assessment for computational thinking. Journal of Educational Computing Research, 53,
562–590.

Zur-Bargury, I., Pârv,B.,&Lanzberg,D. (2013, July 1–3).Anationwide examas a tool for improving
a new curriculum. In Proceedings of the 18th ACM Conference on Innovation and Technology in
Computer Science Education (pp. 267–272). Canterbury, England.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.sciencedirect.com/science/article/pii/S0747563216306185
https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
http://creativecommons.org/licenses/by/4.0/

	8 Components and Methods of Evaluating Computational Thinking for Fostering Creative Problem-Solvers in Senior Primary School Education
	8.1 Introduction
	8.2 Background
	8.2.1 Computational Thinking
	8.2.2 The Adopted Framework for Computational Thinking Evaluation

	8.3 Methodology
	8.4 Results and Discussion Based on Literature Review
	8.4.1 CT Concepts
	8.4.2 CT Practices
	8.4.3 CT Perspectives

	8.5 Conclusion
	References

