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a Variant of Scientific Inquiry!

H. Ulrich Hoppe and Sören Werneburg

Abstract The essence of Computational Thinking (CT) lies in the creation of “log-
ical artifacts” that externalize and reify human ideas in a form that can be interpreted
and “run” on computers.Various approaches to scientific inquiry (learning) alsomake
use of models that are construed as logical artifacts, but here the main focus is on
the correspondence of such models with natural phenomena that exist prior to these
models. To pinpoint the different perspectives on CT, we have analyzed the terminol-
ogy of articles from different backgrounds and periods. This survey is followed by a
discussion of aspects that are specifically relevant to a computer science perspective.
Abstraction in terms of data and process structures is a core feature in this context.
As compared to a “free choice” of computational abstractions based on expressive
and powerful formal languages, models used in scientific inquiry learning typically
have limited “representational flexibility” within the boundaries of a predetermined
computational approach. For the progress of CT and CT education, it is important
to underline the nature of logical artifacts as the primary concern. As an example
from our own work, we elaborate on “reactive rule-based programming” as an entry
point that enables learners to start with situational specifications of action that can
be further expanded into more standard block-based iterative programs and thus
allows for a transition between different computational approaches. As an outlook
beyond current practice, we finally envisage the potential of meta-level programming
and program analysis techniques as a computational counterpart of metacognitive
strategies.
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2.1 Introduction

2.1.1 Origins of the Current Debate

Although Papert (1996) had already used the term “Computational Thinking” (CT)
tenyears earlier, the current discussionofCTcanbe tracedback toWing (2006).Wing
characterized CT by stating that it “involves solving problems, designing systems,
and understanding human behavior, by drawing on the concepts fundamental to
computer science”. She emphasized that CT is not about thinking like a computer
but about how humans solve problems in a way that can be operationalized with and
on computers.

Science aswell as humanities are influenced byCT since “computational concepts
provide a new language for describing hypotheses and theories” in these fields of
interest (Bundy, 2007). In addition, Barr and Stevenson (2011) formulatedCT-related
challenges for K-12 education in computer science, math, science, language and
social studies.

Wing (2008) refined her first statement pointing out that the essence and key of CT
is abstraction in a way that is more complex than in mathematics. If someone builds
a computational model and wants to include all properties seen in the real environ-
ment, s/he cannot enjoy “the clean, elegant or easy definable algebraic properties of
mathematical abstraction”.

2.1.2 Computational Thinking for K-12

To bring CT to K-12, the International Society for Technology in Education and the
Computer ScienceTeacherAssociation (ISTEandCSTA2011) presented a definition
of CT for K-12 Education

Computational Thinking is a problem-solving process that includes (but is not
limited to) the following characteristics:

• Formulating problems in a way that enables us to use a computer and other tools
to help solve them

• Logically organizing and analyzing data
• Representing data through abstractions, such as models and simulations
• Automating solutions through algorithmic thinking (a series of ordered steps)
• Identifying, analyzing, and implementing possible solutions with the goal of
achieving the most efficient and effective combination of steps and resources

• Generalizing and transferring this problem-solving process to a wide variety of
problems.

The first three bullet points highlight the importance of computationalmodeling as
part of the problem-solving process. General approaches to computational modeling
are typically facilitated by programming languages. However, we will see that the
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creation of computational or formal models related to given problems can also make
use of other abstract tools such as automata or grammars.

As part of the same proposal, it is claimed that CT problem-solving should be
connected to realistic applications and challenges in science and humanities. This
would link the learning experience and the ensuing creations to relevant real-world
problems. However, realism in this sense can also lead to a “complexity overkill”
that obstructs the pure discovery of important basic building blocks (the nature of
which will be elaborated later). On the other hand, if models are simplified too much
they lose fidelity and ultimately credibility. Many computer science concepts do not
require an application to real complex environment in their basic version. Interactive
game environments, for example, do not necessarily require an accurate modeling
of physics but they can still promote the learning of CT concepts.

2.1.3 Model Progression: The Use-Modify-Create Scheme

CT activities typically result in the creation of logical artifacts that can be run, tested
against the original intentions, and can be refined accordingly. The creation of an
initial executable artifact can be very challenging for learners. Lee et al. (2011)
presented a model with a low threshold for novices and promoted it as the “Use-
Modify-Create Progression” (see Fig. 2.1).

In the initial phase of this process, learners use or analyze a predefined and exe-
cutable (programming) artifact that typically contains a new construct or new type
abstraction. In this phase, the learners will modify the artifact, which causes observ-
able changes in the output. At the beginning, these modifications are often confined
to varying predefined parameters. The consecutive create phase is essential for the
appropriation of new CT skills, giving learners the opportunity to be creative and
express themselves through programming. Iteratively, the students create new com-
putational artifacts, execute these, and evaluate the ensuing outputs. This progression

Fig. 2.1 Use-modify-create progression. Adapted from Lee et al. (2011)
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incorporates a smooth transition from reusing a predefined new type of artifact to
learner generated creative construction.

The specification given by Lee et al. does not provide a clear distinction between
the three phases of the cycle. Therefore, it is necessary to refine and rethink this part
of the pedagogical model. It is certainly important for novices to have an “interactive
starting point” that does not depend on their own original creation and a clear transfer
between the Use-Modify phase and the Create phase is necessary. However, the
creative-constructive activities of modeling, specifying and representing problems
are also very important ingredients of computational thinking processes.

2.1.4 The CT Terminology

There are few meta-level studies on the existing CT literature. For example, Kaleli-
oglu, Gülbahar, and Kukul (2016) unveiled that CT is very frequently related with
“problem-solving”, whereas Lockwood and Mooney (2017) point out that the defi-
nition of CT as well as the embedment of CT in curricula are still emerging, which
make a final characterization difficult.

To characterize the discourse onCT considering different phases and perspectives,
we have conducted a text analysis on selected corpora of scientific articles. We used
text mining tools to extract important concepts connected to CT. First, we defined
three and selected categories of articles1:

Articles about CT mainly related to …

(i) … computer science education before 2006 (corpus n � 14),
(ii) … computer science education 2006 and later (corpus n � 33),
(iii) … inquiry-based learning in science (corpus n � 16).

The distinction between the first two categories and corpora is based on a sepa-
ration with respect to the Wing (2006) article. The third category is also limited to
articles following up on Wing (2006) but with a focus in K-12 education in science
classes and humanities classes. We will show how the concepts related to CT will
differ.

To achieve this, we extracted terms from the three corpora based on the standard
tf -idf -measure. Since the corpora differ in number of documents and volume, the
extraction has been normalized to yield about 100 terms per category. The reduction
of terms is based on sparsity of the document-term matrices. In the first step, the full
paper texts (abstracts included) were loaded. After removing unnecessary symbols
and stop words, the texts have been lemmatized using a dictionary of base terms. Rel-
evant composite terms such as “computational thinking” (comp_think), “computer
science”, “problem solving” (prob_solv) or “computational model” (comp_model)
are considered as possible target terms.

1The corpora of the three categories canbe found inAppendixAonwww.collide.info/textminingCT.

http://www.collide.info/textminingCT
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The sparsity criterion leads to a selection of terms that appear in at least p docu-
ments as a threshold t. The threshold has been adjusted per category to achieve the
desired selection of 100 terms approximately. Table 2.1 shows the attributes of each
matrix before and after removing of the sparse terms.

The frequency-based word clouds shown in Fig. 2.2 indicate differences in the
corresponding portions of discourse for the three categories. Terms such as “learn”,
“model”, “system”, and “problem”appear in each categorybutwith differentweights.
The earlier work in computer science education (first category) frequently refers to
“mathematics” and “systems”. Category (ii) contains an explicit notion of “com-
puter science”, whereas “science” in general and “simulation” are characteristic for
category (iii). Category (ii) is also more concerned with special concepts related to
computer science, such as “algorithm”, “abstraction”, and “computing”. A special
focus in this category appears to be on “games”.

In Fig. 2.3, a comparison between selected frequent terms between all three cat-
egories is presented. Here, each bar represents the tf-idf-measure normalized to the
selected term base.

Figure 2.3 corroborates the impressions gained from the word cloud diagrams.
The profiles of categories (ii) and (iii) appear to be quite similar among each other as
compared to category (i). “Algorithm” and “abstraction” aremore important concepts

Table 2.1 Attributes of the
document term matrix before
and after removing of sparse
terms

Category (i) Category (ii) Category
(iii)

Documents 14 33 16

Terms 4329 4411 2143

Average
document
length

1619.57 834.21 593.81

Sparsity (%) 84 91 88

Terms (with
threshold)

88(t � 35%) 98(t � 55%) 104(t �
65%)

Sparsity (%) 21 40 55

Fig. 2.2 Word Clouds of the terms with the highest tf-idf value of category (i), (ii), and (iii)
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Fig. 2.3 Normalized frequencies of selected terms

in category (ii), whereas “education” is more prominent in category (iii). The latter
observation corresponds to the disciplinary background of the contributions which is
more often education and less computer science for category (iii) as compared to (ii).
However, CT as a theme is even more frequently addressed in category (iii). Several
papers in category (ii) use games as examples to illustrate general principles of CT,
which explains the prominent role of this concept. For category (i), in addition to
the focus on mathematics (cf. “the (Logo) turtle meets Euclid”—Papert 1996), this
earlier discourse is much more centered on “knowledge” and “problem (solving2)”
as epistemological categories. In the later discourse for both (ii) and (iii), the episte-
mological perspective is substituted by instructional and cognitive frameworks.

2.2 Basic Concepts and Building Blocks

2.2.1 “Computational Models” and “Models
of Computation”

In his definition of CT, the computer science pioneer Aho (2012) characterizes Com-
putational Thinking as “the thought processes involved in formulating problems so
their solution can be represented as computational steps and algorithms”. Before

2Problem-solving itself is only present in some documents, so the sparsity threshold led to removing
this term from the word cloud, even though the td-idf value was high.
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starting the problem formulation and construction of a solution, it is necessary to
specify an appropriate “model of computation” as a basis. This notion, sometimes
also named “computational model” is very specific and important to computer sci-
ence and very different from the notion of “computational model” that denotes the
resulting computational artifact of a constructive CT activity. Aho’s “models of com-
putation” are the background and conceptual platforms of computational artifacts;
they correspond to “abstract engines” of the type of Turing Machines, Finite State
Machines or von Neumann architectures but also possibly Petri Nets, grammars
or rewrite system. These models define the basic mechanisms of interpretation of
computational artifacts (i.e., “computational models” of the other type).

The grounding of computation on such abstract engines, and accordingly the
choice of such foundations, is not very much in the focus of the current more educa-
tionally inspired CT discourse, and it might seem that these choices have little to do
with CT practice. However, there are relevant examples that explicitly address the
choice of basic “models of computation”.

The “Kara” microworld (Hartmann, Nievergelt, & Reichert, 2001) uses a pro-
grammable ladybug to introduce concepts of computer science and programming. It
comes with different versions based on different abstract engines. The original ver-
sion was based on Finite State Machines, but later versions based on programming
languages (JavaKara, RubyKara) were added. That is, the microworld of Kara allows
for solving the same of similar problems based on different “models of computa-
tion” in the sense of Aho. The FSM version allows for linking the Kara experience
to automata theory in general, whereas the Java and Ruby versions may be used as
introductions to programming.

Kafura and Tatar (2011) report on a Computational Thinking course for computer
science students in which different abstract formalisms or engines (including Petri
nets, BNF grammars, lambda expressions) with corresponding tools were employed
to construct computational models in response to various problems. This example
shows that relying on abstract models of computation can be an alternative to using
programming in the construction of computational artifacts.

Curzon and McOwan (2016) describe a specific relation between computational
modeling and algorithmic thinking: The algorithm simulates the transformation of an
idea contextualized in a virtual or real world into a runnable computational represen-
tation, possibly as part of a game environment. However, computational modeling
also refers the specification and handling of data and specification process structure.
The choice of such structures is not only induced by the “external” problem but is
also governed by a partially independent “logic of computation”.

2.2.2 The Notion of “Abstraction”

A central element of CT is abstraction in the specific sense it has in the context of
computational principles. Wing (2008) underlines the importance of abstraction for
computational thinking



20 H. Ulrich Hoppe and S. Werneburg

The essence of computational thinking is abstraction… First, our abstractions do not nec-
essarily enjoy the clean, elegant or easily definable algebraic properties of mathematical
abstractions, such as real numbers or sets, of the physical world… In working with layers of
abstraction, we necessarily keep in mind the relationship between each pair of layers, be it
defined via an abstraction function, a simulation relation, a transformation or a more general
kind of mapping. We use these mappings in showing the observable equivalence between
an abstract state machine and one of its possible refinements, in proving the correctness of
an implementation with respect to a specification and in compiling a program written in a
high-level language to more efficient machine code. And so the nuts and bolts in compu-
tational thinking are defining abstractions, working with multiple layers of abstraction and
understanding the relationships among the different layers. Abstractions are the ‘mental’
tools of computing.

It is necessary to distinguish between the general understanding of abstraction
and the specific nature of computational abstraction, or better “abstractions” (plu-
ral). The general idea of abstraction as a conceptual generalization and omission
of coincidental details can of course also be found in the computational domain.
Abstraction in this general sense if a process that supports the building of categories
and thus the structuring of a domain. However, in computer science, abstractions can
also be representational or operational constructs (i.e., mental tools in the words of
Wing), which is not clear from a common sense point of view. Abstractions of this
type include data structures, different concepts of variables depending on underly-
ing models of computation or programming paradigms, procedural, and functional
abstraction, recursion, as well lambda expressions in combination with higher order
functions.

Hu (2011) elaborates on the relation between CT and mathematical thinking,
arguing that, behind a quite different surface, CT skills are indeed quite similar to
mathematical thinking. It is true that computational artifacts are governed by math-
ematical (especially logical) principles. Yet, where mathematical models focus on
general structural properties, computational artifacts are operational in the sense that
they have inherent behavior. This is reflected in the constructive nature of compu-
tational abstractions. CT as a creative activity involves choices and combinations
of computational abstractions as mental tools. This calls for “representational flex-
ibility”, i.e., the provision of making choices between different representations and
abstractions, as part of any kind of teaching and learning targeting CT.

2.2.3 Languages, Representations, and Microworlds

The building of computational artifacts requires a “medium” of representation that
affords certain computational mechanisms in way susceptible to human imagination
and creation. This idea is reflected in diSessa’s notion of computationalmedia as basis
for “computational literacies” (diSessa, 2000). The notion of literacy sets the focus
on the aspect of familiarity and possibly mastery with respect to the specific medium.
The computational medium would include a “model of computation” in Aho’s sense
and would, on this basis, provide more or less easy access to different types of
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abstractions. It is a natural choice to use a programming language for this purpose.
For programming languages, it is well known that they resonate with computational
abstractions (as constructs) in specific ways. For example, the concept of a variable
as a storage or memory location is typical for imperative languages. It implies that
variables can have mutable values, which is different from the concept of variables in
pure functional or logical languages. However, as we have exemplified by referring
to the Kara example (Hartmann et al., 2001) and to the CT course designed byKafura
and Tatar (2011), programming languages are not the only choice as a computational
medium. Theory-inspired formal approaches provide “abstract engines” that can
be used to build computational models, whereas “unplugged” approaches rely on
physical or real-world models (e.g., teaching and explaining recursion through role-
play).

Computational media for creative and constructive learning are often combined
with concrete application domains (corresponding also to learning domains) for
which the medium and its representational primitives are particularly designed. This
corresponds to the notion of a “microworld”, which was already one of the building
blocks of the Logo approach. The educational affordances and usage patterns that
originate from microworlds are immense and have been widely discussed from an
educational technology point of view, see, e.g., (Rieber, 1996). The nature of a
microworld as a computational construct and a tool of thought is nicely captured by
diSessa (2000)

Amicroworld is a type of computational document aimed at embedding important ideas in a
form that students can readily explore. The best microworlds have an easy-to-understand set
of operations that students can use to engage tasks of value to them, and in doing so, they come
to understanding powerful underlying principles. You might come to understand ecology,
for example, by building your own little creatures that compete with and are dependent on
each other.

From a computer science perspective, microworlds in the sense described by
diSessa can be conceived as domain-specific languages designed to facilitate con-
structive learning in certain domains. Compare the general characterization given
by van Deursen, Klint, and Visser (2000): “A domain-specific language (DSL) is
a programming language or executable specification language that offers, through
appropriate notations and abstractions, expressive power focused on, and usually
restricted to, a particular problem domain.” This suggests that the principles of
designing and implementing DSLs should be taken into account when we develop
microworlds as computational media for learning.

2.2.4 CT from the Perspective of Inquiry Learning in Science

Inspired by the process of scientific discovery, Inquiry Learning (IL) is defined as
“an approach to learning that involves a process of exploring the natural or material
world, and that leads to asking questions, making discoveries, and rigorously testing
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those discoveries in the search for new understanding” (Ash, 2003). Inquiry learn-
ing leads students through various phases (Pedaste et al., 2015), typically starting
with an orientation phase followed by a conceptualization with idea generation and
the development of hypotheses. During the investigation phase, students engage in
experimentation, taking measurements to test their hypotheses. Finally, the results
are evaluated and discussed, which may lead to reformulation of hypotheses. This
is usually understood as a spiral or cyclic process that allows for repeated revisions
and refinements (Minner, Levy, & Century, 2010).

CT and IL practices overlap in the underlying cyclic phase models as learning
process structures, as exemplified by the use-modify-create progression and vari-
ous IL-related process models. However, the role of computational artifacts differs
between CT and IL: In IL, the artifact or model serves as a proxy for a scientific
target scenario (e.g., an ecosystem) and the main point is what the model can tell
us about the original. In CT, the computational artifact is of primary interest per se,
including the way it is built and its inherent principles. If a learner evaluates the
computational artifact (or model) at hand in an IL context, this will typically involve
a variation of parameters and possibly redefinition of behaviors. In a CT context, this
encompasses the reflection and redesign of the underlying computational model and
representation as well.

Sengupta, Kinnebrew, Basu, Biswas, and Clark (2013) elaborate in detail
on relationships between IL and CT concepts using the CTSiM environ-
ment (“Computational Thinking in Simulation and Modeling”) as a con-
crete point of reference. The environment as such is based on visual agent-
based programming. Their approach is that, from educator’s perspective, stu-
dents learn best when they use design-based learning environments which
is also an approach of “science in practice” that involves “engag(ing) stu-
dents in the process of developing the computational representational practices
” (Sengupta, Kinnebrew, Basu, Biswas, &Clark 2013). In this article, certain compu-
tational concepts and principles are related to aspects of the IL environment. Abstrac-
tion is discussed in relation to the classical definition given by the philosopher Locke
as the process in which “ideas taken from particular beings become general repre-
sentatives of all of the same kind” (Locke, 1700). As we have seen above, this is
not sufficient for the understanding of abstraction in a computer science sense. The
specified relationships between computer science concepts and structural and opera-
tional aspects found in the CTSiM environment are rich and relevant. Yet, we need to
distinguish between representational choices made in the design and implementation
of the environment and choices that are “handed over” to the learners operating in
the environment using the visual agent-based programming interface. These choices
are indeed limited.

Perkins and Simmons (1988) showed that novice misconceptions in mathematics,
science, and programming exhibit similar patterns in that conceptual difficulties in
each of these domains have both domain-specific roots (e.g., challenging concepts)
and domain general roots (e.g., difficulties pertaining to conducting inquiry, problem-
solving, and epistemological knowledge).
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In this perspective, the development of scientific expertise is inseparably inter-
twinedwith the development of epistemic and representational practices, e.g., (Giere,
1988; Nersessian, 1992; Lehrer & Schauble, 2006; NRC, 2008). Basu et al. (2012)
describe how students use computational primitives to “generate their computational
models”. The students can see “how their agents operate in the microworld simula-
tion, thus making explicit the emergence of aggregate system behavior” (Basu et al.,
2012). Their “computational model” is focused on the description of the system
dynamics using computational tools. There is an overlap between inquiry learn-
ing, system thinking, and computational thinking. Although the overlap between the
areas seems to be evident, CT involves competencies and skills that can be clearly
distinguished from the other fields.

The discussion above suggests that althoughWing (2006) definedCTas a “thought
process”, computational thinking becomes evident only in particular forms of epis-
temic and representational practice that involve the generation and use of external
representations (i.e., representations that are external to the mind) by the learners
(Sengupta et al., 2013).

2.2.5 Interim Summary

Regarding the structuring of learning processes and the enrichment of such processes
with computational media, inquiry learning in science and CT education are quite
closely related. However, a discourse that is primarily driven by pedagogical inspi-
rations and interest tends to neglect the importance of genuine computer science
concepts and their role in shaping CT. The essence of CT lies in the creation of
“logical artifacts” that externalize and reify human ideas in a form that can be inter-
preted and “run” on computers. The understanding of the principles underlying and
constituting such logical artifacts, including “models of computation” in the sense
of Aho as well as specific “abstractions as constructs”, are of central importance
for CT. In contrast, in general scientific inquiry learning, computational models are
instrumental for the understanding the domain if interest (e.g., the functioning of
ecosystems or certain chemical reactions). Usually, the computational media used
in scientific inquiry learning contexts are largely predetermined in terms of data
structures and processing mechanisms. In this sense, they are of limited “represen-
tational flexibility” regarding the free choice of data representations and algorithmic
strategies.
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2.3 Specific Approaches and Examples

2.3.1 From Reactive Rule-Based Programming to Block
Structures

We have already seen that even for the practical activities CT cannot be reduced
to programming only. However, there is no doubt that programming resonates with
and requires CT. Programs are the most prominent examples of computational arti-
facts. Starting the construction and creation of a program is a difficult challenge
especially for beginners. Guzdial (2004) discusses different approaches and tools
for novices, such as the Logo family, the rule-based family, and traditional program-
ming approaches. These tools provide different underlyingmodels of computation as
a basis to create computational artifacts. Although there is a wider variety of options
block-based programming tools became a standard for introductory programming
(Weintrop & Wilensky, 2015). However, depending on which tool best supports the
implementation of an idea, students should be able to choose the way how they
represent their ideas as computational artifacts.

We propose a “reactive rule-based programming” tool, in which the user/learner
defines program elements as reactions of a programmable agent to situations and
events in the learning environment. There is a close interplay between “running”
and “teaching” the agent. Whenever the agent finds itself in a situation for which
there is no applicable rule the learner will be prompted to enter such a rule. The
condition part of the rule is generated by the system in correspondence to the given
situational parameters (context). The user then specifies the actions to be applied.
Once a suitable rule is entered the system will execute it. If more and more rules are
provided the system will be able to execute chains of actions without further user
input.

As can be seen in Fig. 2.4, the current context determines the conditions that must
be considered for the rule. If none of the already defined rules applies the system
requests the student to define actions for the current situation. Then, the defined rule
can be executed and the cycle restarts in a new situation or ends in a predefined end.
This loop puts the learner in a first person perspective of identifying herself/himself
with the agent in the environment.

The reactive rule-based programming approach is the basis for the ctMazeStudio,
a web-based programming environment to develop algorithms steering an agent

Start
Is a rule for the 

conditions of the current 
situation defined?

Execute the 
defined rule End

No
Current 
situation

Yes

User 
defines a 

rule

Fig. 2.4 Flow diagram for the reactive rule-based programming paradigm
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who tries to find a way out of a maze. The goal for the students is to implement a
universal solution that works on any maze. This learning environment contains three
components: the rule editor, the behavior stage and a rule library (Fig. 2.5).

As can be seen in Fig. 2.5, the rule editor (d) provides a visual programming
interface, which is available when a new situation is encountered. The editor com-
prises a condition component (IF part) and an action component (THEN part). For
the given conditions, the students can select the desired actions for the current and
corresponding situations with the same conditions to define a local “reactive” behav-
ior. The users can also delete conditions, which implies that the corresponding rule
will be applied more generally (generalization).

The rule library (c) manages the collection of all defined rules. In this user inter-
face, the students can edit or delete already defined rules, directly enter new rules
and change the order (and thus priority) of the rules to be checked. In the behavior
stage (a), the behavior of the agent is visualized. Depending on the entries in the

Only the way to 
the left is opened.

(a)

(d)

(b)

(c)

Fig. 2.5 Visualization of the reactive approach in ctMazeStudio
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rule library, the corresponding actions are executed and the specific entry in the rule
library is highlighted.

To support CT, it is possible to apply different strategies to improve the program-
ming code.When learners investigate and test their rulesets in consecutive situations,
they may revise formerly defined rule sets through generalization (of conditions) or
reordering. The challenge is to create a maximally powerful ruleset with a minimum
number of rules. This requires a level of understanding that allows for predicting
global behavior based on locally specified rules. In the maze example, as one of the
first steps, a small set of rules will be created to implement a wall-following strategy.
This strategy will be later refined, e.g., to avoid circling around islands.

The ctMazeStudio environment can also be programmed through a block-
structured interface to represent conditions and loops governed by a global control
strategy. In this sense, it provides a choice between different models of computa-
tion and thus supports “representational flexibility”. Based on these options, we are
currently studying transitions from rule-based reactive to block-structured iterative
programs.

2.3.2 “Computational Metacognition”

CT is based on the principle of externalizing and “reifying”mental constructs or ideas
in a computationalmedium.Accordingly, there is a close correspondence between the
mental and the computational model. However, not all mental or cognitive constructs
may lend themselves to such a mapping. How far can this approach be extended? In
the sequel, we discuss the potential of extending this correspondence towards second
order, “reflexive” constructs:

From a pedagogical point of view, thinking skills or cognitive skills comprise
metacognition and reflection as important ingredients (see, e.g., Schraw, 1998). This
raises the question if such a mapping from the mental to computational realm is also
possible formetacognition. Indeed, advanced abstraction techniques in programming
and program analysis allow for such mappings.

A first example of adding “computational metacognition” to CT environments
is the application of analytic (computational) techniques to learner generated com-
putational artifacts, especially to programs. We have to distinguish between static
analyses based on the source code (as is the case for certain types of software met-
rics) and dynamic analyses based on the run-time behavior and results of programs
(including “testing” approaches such as JUnit for Java).

Matsuzawa et al. (2017) used coding metrics to analyze characteristics of pro-
gramming exercises and visualized these through a dashboard. The provision of this
visualization could improve the teaching and understanding of classroom exercises in
introductory programming. Manske and Hoppe (2014) have used static and dynamic
analysis techniques to assess “creativity” in student programs created as solutions to
so-called “Euler Problems” (see https://projecteuler.net/). Usually, it is easy to pro-
vide a brute force solution but additional insight is needed to make it more elegant

https://projecteuler.net/
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and efficient. An example challenge is finding the sum of all even Fibonacci numbers
with values below 4 million (Problem 2). These Euler problems define challenges
of both mathematical and computational nature. Manske and Hoppe introduced sev-
eral metrics to capture different features of the programming solutions. Static and
dynamic code metrics (including lines of code, cyclomatic complexity, frequency
of certain abstractions, and test results) cover structural quality and compliance,
while similarity based metrics address originality. In a supervised machine learning
approach, classifiers have been generated based on these features together with cre-
ativity scores from expert judgments. The main problem encountered in this study
was the divergence of human classification related to creativity in programming.

Logic programming in combination with so-called meta-interpreters allows for
dynamically reflecting deviations of actual programbehavior from intended results or
specifications (Lloyd, 1987). The method of deductive diagnosis (Hoppe, 1994) uses
this technique in the context of a mathematics learning environment to identify and
pinpoint specific mistakes without having to provide an error or bug library. From a
CT point view, these meta-level processing techniques are relevant extensions of the
formal repertoire. In the spirit of “open student modeling” (Bull & Kay, 2010), not
only the results but also the basic functioning of such meta-level analyses could be
made available to the learners to improve reflection on their computational artifacts
and to extend their understanding of computational principles.

Of course, metacognition has also been addressed and discussed in several
approaches to inquiry learning (White, Shimoda, & Frederiksen, 1999; Manlove,
Lazonder,& Jong, 2006;Wichmann&Leutner, 2009). In these approaches,metacog-
nition is conceived as an element of human learning strategies, possibly supported by
technology but not simulated on a computational level. The examples above show that
“second order” computational reflection techniques can be applied to “first order”
computational artifacts in such way as to reveal diagnostic information related to the
underlying human problem-solving and construction processes. In this sense, we can
identify computational equivalents of metacognitive strategies. Making these second
order computations susceptible to human learning as tools of self-reflection is a big
challenge, but certainly of interest for CT education.

2.4 Conclusion

The current scientific discourse centered around the notion of “Computational Think-
ing” is multi-disciplinary with contributions from computer science, cognitive sci-
ence, and education. In addition, the curricular application contexts of CT are mani-
fold. Still, it is important to conceive the basic computational concepts and principles
in such a way as to keep up with the level of understanding developed in modern
computer science. This is especially the case for the notion of “abstraction”.

Our comparison of the perspectives on CT from computer science education and
Inquiry Learning in science has brought forth the following main points:
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1. The essence of Computational Thinking (CT) lies in the creation of “logical arti-
facts” that externalize and reify human ideas in a form that can be interpreted and
“run” on computers. Accordingly, CT sets a focus on computational abstractions
and representations—i.e., the computational artifact and how it is constituted is
of interest as such and not only as a model of some scientific phenomenon.

2. Beyond the common sense understanding of “abstraction”, computational
abstractions (plural!) are constructive mind tools. The available abstractions (for
data representation and processing) form a repertoire of possible choices for the
creation of computational artifacts.

3. Inquiry learning uses computational artifacts and/or systems as models of natural
phenomena, often in the form of (programmable) simulations. Here, the choice
of the computational representation is usually predetermined and not in the focus
of the learners’ own creative contributions.

4. Inquiry learning as well as CT-related learning activities both exhibit and rely on
cyclic patterns of model progression (cycle of inquiry steps - creation/revision
cycle).

There is a huge potential for a further productive co-development of CT-centric
educational environments and scenarios from multiple perspectives. “Representa-
tional flexibility” as the handing over of choices related to data structuring and
other abstractions to the learners is desirable from a computer science point of view.
This does not rule out the meaningful and productive use of more fixed compu-
tational models in other learning contexts. Yet, this future co-development of CT
should benefit from taking up and exploring new types of abstractions and models
of computation (including, e.g., different abstract engines or meta-level reasoning
techniques) to enrich the learning space of CT. This may also reconnect the discourse
to epistemological principles.
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