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Roles, Collaboration,
and the Development of Computational
Thinking in a Robotics Learning
Environment

P. Kevin Keith, Florence R. Sullivan and Duy Pham

Abstract Robotics is a robust vehicle for supporting the development of computa-
tional thinking in students. Educational robotics activities unfold in a multidimen-
sional problem space that requires the integration of programming, building, and
environmental aspects of the activity. Students working collaboratively with robotics
have the opportunity to adopt roles within the group that are aligned to these multiple
dimensions (e.g., programmer, builder, and analyst). Group roles are an important
element of all collaborative learning, but especially in a Computer-Supported Collab-
orative Learning (CSCL) environment, as the roles help to regulate group activity and
learning. In this observational, microgenetic case study, we investigated the relation-
ship of the roles middle school-aged girls adopted to the collaborative interactions
they engaged in, and, ultimately to the development of computational thinking evi-
denced as a result of role participation. The video and audiotaped data used in this
studywere collected at a 1-day introduction to roboticsworkshop for girls. Ourmixed
methods approach included sequential and qualitative analysis of the behavioral and
verbal interactions of two groups of girls (n � 6) who participated in the workshop.
Our results indicate that the emergence of distinct roles correlates with periods of
collaboration and periods of parallel solo work, which, in turn, had an impact on
student’s engagement in computational thinking including solution planning, algo-
rithmic and debugging operations, and the design of the robotic device. Moreover,
students who engaged in greater levels of collaboration selected more difficult chal-
lenges to solve within the robotics environment. Suggestions for future research are
provided.
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13.1 Introduction

In this chapter, we examine the relationship of group roles to collaboration and
computational thinking in an educational robotics setting. Robotics is an immersive
activity (Rieber, 2005) that unfolds in a multidimensional problem space, featuring
programming, building, and environmental aspects. Due to this multidimensionality,
robotics is an activity that lends itself well to collaborative group learning; students
can take on different roles including programmer, builder, and analyst in a team effort
to solve the robotics problem. Moreover, the external, 3D nature of two of the three
activities (building and testing in the environment), supports reasoning in the third,
2D activity (programming). Robotics is an activity of growing interest for children
and youth as evidenced by their global participation in the FIRST Lego League
(FLL) (First Lego League, n.d.) Moreover, our recent literature review of robotics
studies indicates that it is a collaborative activity that has the potential to develop
students’ computational thinking abilities (Sullivan & Heffernan, 2016). Yet, while
this potential exists, there is little research specifically devoted to understanding the
relationship of student collaborative learning with robotics and the development of
computational thinking.

Meanwhile, the development of computational thinking is increasingly recognized
as an important ability for life in the new millennium. Indeed, in the context of the
US, there is a national movement to integrate computer science education into K12
education (National Science Foundation, 2016). This movement is powered by the
increasingly ubiquitous nature of computing and computer science in all fields, the
growing demand for computer scientists, (US Bureau of Labor Statistics, 2017), and
a more diverse corps of computer scientists in the US workforce. Our work is aimed
at bringing computer science learning opportunities to girls, in order to improve their
awareness and knowledge of computer science, as well as to engage their interest in
the field.

In this chapter, we report on a recent study in which we examined how collab-
orative arrangements in the multidimensional problem space of robotics influences
group participation and engagement in computational thinking for middle school-
aged girls. Aswill be demonstrated through our analysis, studentswho share themain
roles afforded by the robotics environment (i.e., programmer, builder, and analyst)
were able to develop a greater understanding of robotics and engage in computational
thinking more frequently.

We chose to work with middle school-aged girls, and it is at this age that people
begin to explore the possibility of future identities (Ji, Lapan&Tate, 2004). And, it is
through exposure to an area of study, and opportunities for accomplishments within
that area that support a feeling of self-efficacy and further interest in the field (Ali,
Brown, & Loh, 2017). Therefore, in conducting research with middle school-aged
girls, we aim to create knowledge that will support the development of successful
educational interventions for girls that will improve girls interest and participation
in computer science. Our chapter is organized in the following way: first, we provide
a brief definition of computational thinking from the literature, we then provide
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an overview of research on educational robotics, how it relates to computational
thinking, and to collaborative learning and role adoption as an emergent quality of
participation. We then present our research questions, our methods for investigating
these questions, our results, and our interpretation of these results. We end with
suggestions for practice and future research.

13.1.1 Computational Thinking

Computational Thinking (CT) reflects the habits of the mind engaged in by computer
scientists including, but not limited to “…solving problems, designing systems, and
understanding human behavior, by drawing on the concepts fundamental to com-
puter science” (Wing, 2006). CT can be thought of as a broad foundation consisting
of the heuristics used by computer scientists and as a way to think about the diverse
thinking skills associated with computing. The Computer Science Teachers Associa-
tion (CSTA) has disseminated a definition of CT as including: formulating problems
in ways that enable us to use a computer to solve them, and automating solutions
through algorithmic thinking. They further indicate that these skills are important
because they create a tolerance for ambiguity, allow for persistence in working with
difficult problems, and provide an opportunity to practice collaborating with oth-
ers to achieve a common goal (Computer Science Teachers Association, 2016). An
understanding of the aspects of teaching CT is important because it has been argued
that CT skills are essential skills that should be taught to all school-aged learners
(Lee, et al., 2011). Not only because these skills are used by computer scientists, but
influence an abundance of other fields (Wing, 2006) and people with a command
of these competencies will be better positioned to participate in a world where the
computer is ubiquitous (Grover & Pea, 2013).

13.1.2 Educational Robotics and Computational Thinking

Robotics kits are computational manipulatives that enable student engagement in
computational thinking and doing (Sullivan & Heffernan, 2016). Designed and pro-
grammed robotics devices provide immediate, concrete feedback to students on
the efficacy of their programs, thereby promoting reflection and debugging anal-
ysis (Sullivan &Heffernan). These activities—designing, programming, testing, and
debugging—form a troubleshooting cycle students typically enact as they work with
robotics systems (Sullivan, 2011). Hence, robotics is an ideal activity for engendering
computational thinking and doing in students.

Novices engaged in robotics study, begin by building a robotic device, usually
using blueprints provided by Lego as part of the Mindstorms kit. They then learn
how to write simple algorithms to make the robotic device move (Sullivan, 2008).
This process is facilitated by the graphical programming language used in the Lego
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Fig. 13.1 EV3 Mindstorms graphical programming language

Mindstorms robotics kit. This programming language is a modified version of Lab-
VIEW (see Fig. 13.1). LabVIEW is a graphical programming language developed
by National Instruments, whose power derives from its ability to make “…computer
science accessible to non-programmers. LabVIEW object-oriented programming
brings some of the most advanced programming techniques into the grasp of begin-
ning users” (National Instruments, 2014).

The graphical nature of the programming language allows students to immedi-
ately begin programming, writing algorithms to move the robot. The physical nature
of the robotic device provides students with concrete and immediate feedback on
the efficacy of the algorithm they have written (Sullivan & Heffernan, 2016). The
iterative nature of the robotic activity, embodied in the troubleshooting cycle (Sulli-
van, 2011), allows the students to experiment with elements of the programming to
broaden and deepen their knowledge of programming and to engage in computational
thinking. This is supported as each of the graphical icons in the programming lan-
guage has variable properties that can be set. As students test their robotic device in
the environment, they begin to think about how to more precisely program the move-
ment of the robot within the given environment (e.g., to avoid obstacles). Having the
ability to vary the speed of the robot, the angle of a turn, or the distance a robotic
device will travel, allows for a more precise program, more complex algorithms, and
more practice with computational thinking to solve the robotics problems with algo-
rithms. Therefore, robotics is a very robust activity for stimulating the development
of computational thinking.
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13.1.3 Collaborative Learning with Robotics: Emergent
Roles

When working collaboratively, students take on roles as the group seeks to regulate
its work. Group roles are an important element of all collaborative learning, but
especially in a Computer-Supported Collaborative Learning (CSCL) environment
(Hoadley, 2010), such as robotics. According to Stijbos and De Laat (2010), roles
come into being in one of two ways: scripted or emergent. Scripted roles are those
that is assigned by a teacher to facilitate the process of collaborative learning, and
include precise instructions on how students should interact with one another in
the group setting to promote learning. This is contrasted with emergent roles that
“emerge spontaneously or are negotiated spontaneously by group members without
interference by the teacher or researcher” (p. 496).

Research on scripting collaborative roles for students demonstrates mixed results.
While there is a fair amount of support for the efficacy of providing students with
scripts for how to interact with one another while working collaboratively (Fis-
cher, Kollar, Mandl, & Haake, 2007; O’Donnell, 1999). There is also research that
indicates that scripts lose their efficacy when students are engaged in collaborative
learning over longer periods (Rummel & Spada, 2007); and that other approaches,
for example, students observing a model of collaborative learning, are more effective
than scripts in enabling successful collaborative learning in student groups (Rum-
mel & Spada, 2009). Moreover, providing students scripts for collaborative learning
interactions has been criticized as overly directive, depriving students of the oppor-
tunity to engage in the type of thinking that will lead to creativity in problem-solving
(Dillenbourg, 2002).

Meanwhile, robotics learning environments are multidimensional problem spaces
which afford multiple roles that may be taken up in an emergent fashion, including
the role of programmer, builder, and analyst. Themultiple tools in this problem space
can create a situation where students vie for control of the tools through adopting
certain roles (Jones & Issroff, 2005). Such vying for control can create tension in the
group and interfere with opportunities to learn (Sullivan&Wilson, 2015). Therefore,
it is not only the functions of the role that are important, but the shifting of roles,
and the negotiation of roles that may also affect student learning (Sullivan &Wilson,
2015; Wise, Saghafian, & Padmanabhan, 2012).

In collaborative learning settings, work is meant to be done by the entire group
and through these social interactions new knowledge is built (Vygotsky, 1978). How-
ever, collaborative groups do not always work well together, hence, these learning
interactions may not take place (Dillenbourg, 1999). Successful collaborative group
work requires ongoing, well-coordinated group interactions (Barron, 2003). Barron
has argued that the accomplishment of this coordination occurs through a complex
array of cognitive and social tasks, which may be categorized into three areas of
collaborative interaction: shared task alignment, joint attention, and mutuality. Col-
laborative groups may demonstrate varying degrees of these interactions, indicating
both higher and lower levels of coordination. In this way, the level of coordination
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will have an impact on the group’s learning outcomes. Recent research has shown that
students who have adopted emergent roles in group work can successfully achieve
higher levels of coordination (Sullivan &Wilson, 2015). Given this, and the fact that
emergent roles may better support creative thinking (Dillenbourg, 2002) scripted
collaborative learning was avoided. In our study, students were asked to collaborate,
they were not assigned specific roles, but they had access to the three primary roles
associated with the activity: programmer, builder, and analyst. Here, we examine
how the specific emergent roles the students inhabit impacts both their collaborative
interactions and their engagement in computational thinking.

This research proceeds from the Vygotsky (1978) perspective, which holds that
through direct interaction with the robotics tools and engagement in collaborative
group discussions, students will develop knowledge and ideas about computation.
Here, we aim, through descriptive and qualitative analysis, to characterize the nature
of girls’ computational thinking as they “do” robotics. This analysis will serve as a
starting point for designing effective curricular and pedagogical scaffolds for sup-
porting girls’ development of computational thinking abilities and computer science
knowledge.

Our focus is on how emergent roles in the multidimensional problem space of
robotics relates to collaboration and to different types of computational thinking.
For the purposes of this study, we define three working modes: working individually,
working cooperatively (defined as working jointly toward a solution through a divide
and conquer approach), and working collaboratively (defined as working jointly
toward a solution through discussion and dialogue). This analysis is accomplished
through systematic observational methods and sequential analysis which allows for
the understanding of behavior as it unfolds over time (Bakerman & Quera, 2011).
The goal of this research is to improve our knowledge of how the emergent roles
enabled in a robotics learning space are taken up and how they relate to collaborative
interactions, engagement in computational thinking and learning outcomes as mea-
sured by the difficulty of challenges undertaken. This knowledge will assist teachers
and curriculum developers in creating robotics learning settings that best support
student learning in computer science. Our specific research questions are presented
below.

13.1.4 Research Questions

RQ1. What are the role transitions made by novice programmers in this study?
RQ2. How do different roles in a robotics programming environment relate to dif-
ferent types of collaboration?
RQ3.Howdodifferent types of collaboration in a robotics programming environment
relate to different types of computational thinking?
RQ4. How does engagement in specific types of computational thinking relate to
student learning of robotics as measured by the difficulty of challenges undertaken?



13 Roles, Collaboration, and the Development of Computational … 229

13.2 Methods

This observational case study took place at a 1-day, all-girl introduction to robotics
event called “Girls Connect.” The students spent 2 hours learning how to design and
program the robot (Lego® EV3), they then spent the remainder of the day working on
solving robotics challenges. The participants in the workshop included 17 girls, ages
8–13 (M � 11.725) who attended five different schools in New England. Purposeful
sampling was used to select students from various backgrounds and geographic areas
from the pool of students who volunteered for the event. Students were drawn from
schools that were struggling academically; four of the five schools who sent student
participants were not meeting state standards for student academic performance. All
of the participants were working with robotics for the first time. The “Girls Connect”
event was designed to introduce girls to the FIRST LEGOLeague (FLL)® in order to
stimulate their interest in the FLLand robotics. Theworkshop featured the FLLs 2011
challenge: “Food Factor.” This challenge includes 11 missions of varying degrees of
difficulty. The students were allowed to select the mission(s) they wished to solve. In
the morning of the 1-day workshop, the girl participants did team building exercises,
learned a little about programming, learned about the food factor challenge, and
built a basic robotic car from blueprints. After lunch, the girls devoted themselves to
solving the robotics missions that were laid out on the food factor challenge board. In
our study, the aggregate of missions attempted across all groups was seven. In other
words, collectively the six groups of girls attempted to solve seven of the missions.
The students were divided into six teams (five teams of 3 and one team of 2); girls
from the same schools were on the same team. Each of the six teams were given
color-coded t-shirts to wear for the day. For example, one team wore green t-shirts,
one yellow, etc. The t-shirts bore the “Girls Connect” logo and were presented both
as commemorative gifts to participating girls and also to function as an aid to the
researchers in keeping track of who was on which team as the girls roamed about
the room.

The data analyzed in this study are drawn from two of the teams who participated.
For purposes of analysis, we selected a team that appeared to demonstrate higher lev-
els of coordination (worked collaboratively), and a team that appeared to demonstrate
lower levels of coordination (worked in parallel), based on viewing of the videotapes.
The purpose of making this selection is to aid analysis of the relationship of role to
collaboration and computational thinking. By selecting a more collaborative team
and a less collaborative team, we are better able to delineate the relationship of our
constructs of interest. The data consists of the afternoon problem-solving activities
and discussions, and includes 3 h of video for each of two teams. Pseudonyms of
Anna, Becky, and Cindy were used to identify each of the girls on the light blue team,
and Janet, Kaylee, and Lisa on the dark blue team. Consent was obtained from the
parents of the participants and assent from the participants themselves.

We collected audio and video data at the 1-day event. Each of the girl participants
in the studywore awirelessmicrophone. Each group of girls had their ownworktable,
a LEGOMindstorms EV3 robotics kit, and a laptop computer. Two challenge arenas
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Fig. 13.2 FLL challenge arena

were set up in the room so that the girls could test their solutions (see Fig. 13.2). A
stationary video camerawasmounted at each groupworktable to capture the building
and programming of the robots. Two additional cameras were focused on each of the
challenge arenas. From these data, we created a video and audio recording of each
group’s activity and discussion for the day as they moved between their individual
worktables and the challenge arenas. See Fig. 13.3 for an illustration of the room
and camera setup. A professional transcriptionist transcribed all group talk. We also
ran a screen capture program on each groups’ laptop. In this way, we collected all
of the robotics programming activity engaged in by each group. This data includes
the final robotics program(s) created by each group. The data analysis unfolded over
four distinct phases including: (1) behavior analysis of the roles students enacted and
collaborative interactions observed; (2) discourse analysis of student talk related to
computational thinking; (3) descriptive statistics related to the observed roles and
collaborations; and (4) learning outcomes analysis based on a challenge difficulty
score, role enactment and observed collaboration.

13.2.1 Phase I—Behavior Analysis: Roles and Collaboration

The first phase was to record onset and offset times of certain behaviors as observed
on the videos. The role of the student and the type of collaboration were coded
as continuous and mutually exclusive. This means that all 3 h of video data were
coded (for each student) and no overlapping of the codes occurs. The unit of analysis
for this phase of data coding was “shift of focus.” In other words, when students
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Fig. 13.3 Research video camera setup

switched their attention from one activity to another activity, we initiated a new code
(Chi, 1997). The codes for the emergent roles were derived from attending the event
and watching the video recording numerous times and included Programmer, Tester,
Builder, Analyst, and Other.

The codes for collaboration are based on Forman and Cazden’s (1985) codes for
participation in groups as markers of coordination, discussed above. They included
Parallel (little to no focus on the group), Cooperative (Working together, focused
on own results), Collaborative (Working together and sharing ideas), and External
(Focused on something outside of the group).

Inter-rater reliability was assessed by training a second coder. A timed-event
alignment kappa (Bakerman & Quera, 2011) was used since it allows for tolerances
between onset and offset times. Results for inter-rater reliability for the role were
κ � 0.83 and for collaboration were κ � 0.92. In order to achieve this kappa, the
coders reviewed disagreements in their coding and resolved conflicts.

13.2.2 Phase II—Discourse Analysis: Computational
Thinking

This phase focused on the discourse related to the robotics activity. First, we seg-
mented the 3-hour conversations into Individual Troubleshooting Cycles (TSC) for
each group. As discussed above, the troubleshooting cycle is iterative and consists of
building the device, writing a program, testing the program, diagnosing and debug-
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Table 13.1 Computational thinking coding system

Major level Subcategory Code Description

Analysis A Any planning of a mission solution, including
developing ideas or approaches for mission
solutions that are specific to the physical
space the robot must negotiate, like the initial
placement of the robot

Algorithmic
thinking

Variable ATV When quantity is discussed in determining
how far something should turn or move. Often
will be thought of as degrees, seconds, or
revolutions

Operation ATO When discussing the type of programming
block that should be used. Most programs in
the data set will only use two blocks, turn or
move. Often will be used as turn left, turn
right, move forward, move backward

Debugging Observation DO When students describe the movement of the
robot during a test, or discuss the outcome of
the test in terms of the robots interaction with
the pieces on the gaming arena

Designing D When working on building additions to the
robot. Or any discussion about the design of
the robot including physical changes that need
to be made

ging the program, and revising the program, or revising the design of the built device
(Sullivan, 2011). The transcripts were then coded using a priori codes we developed
based on the work of Wing (2006) and Barr and Stephenson (2011). These codes
have been synthesized to be relevant for the activities and type of behavior expected
and observed for novice programmers in a robotics environment. Table 13.1 presents
the coding scheme.

Two undergraduate students were trained in the use of the coding scheme and
all utterances from both groups over the course of the challenge period (3 h in
the afternoon) were coded. This chapter is concerned with student’s computational
thinking. Therefore, all comments that were not related to computational thinking
were coded as other. Inter-rater reliability was calculated utilizing Krippendorff’s
alpha (Krippendorff, 2004). Results for inter-rater reliability for the discourse were
α � 0.901, which indicate that inter-rater reliability for this study was high.

13.2.3 Phase III—Descriptive Statistics: Roles

The first step in phase III was to calculate descriptive statistics to summarize the
coded observations of student behavior. The total time and relative duration were
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calculated for role and collaboration. Then, once we had segmented, coded, and
scored the discourse data, we tabulated the instances of the CT codes in each TSC
for each group. As a result, we created one table of data for each group. The rows
of the tables were the eight CT codes described above. The columns listed out all
the TSCs of the group. In each cell of the tables, we put the number of instances we
observed for each CT code at each TSC. Using those tables as input, we conducted
one-way ANOVAs to compare the means of the number of instances of the CT codes
across all the TSCs. For each group, the null hypothesis we tested was whether the
discussions underlying the codes occurred at the same frequency on average across
the TSCs. To visually inspect the frequency differences among the groups, we then
created boxplots for the instance counts of each CT code for each group. We used
those plots to visually assist the comparison of how frequent the discussions were
with each group.

The second step in phase III was to calculate the joint probabilities of roles and
type of collaboration. A joint probability is the probability that an event will occur
given another event. This is also called Lag(0) (Bakerman & Quera, 2011) analysis
since the calculation describes the co-occurrence of events in the same time frame.
Transitional probabilities, or Lag(1) (Bakerman&Quera, 2011)were also calculated.
These show the probability of one event following another event.

13.2.4 Phase IV—Difficulty Score Calculation: Learning
Outcomes

The last phase of the analysis included examining the difficulty of the programs that
each of the two groups attempted as a proxy for the level of learning each group had
achieved. We reasoned that the more confident each of the teams felt over the course
of the afternoon, the more likely they would be to select more challenging tasks to
accomplish on the game board. We developed a rubric to score these programs. This
rubric is based on the difficulty of the mission tasks presented on the FLL challenge
arena. There were 11 missions on this particular arena. However, the students in
our study only attempted seven of those missions. The missions (also referred to as
challenges in this chapter), consisted of moving the robot to different sections of the
game board in order to act upon materials placed on the game board. In the Food
Factor challenge, students learn about bacteria, overfishing, and other aspects of food
safety and food production. The missions relate to these ideas and consist of moving
materials, maneuvering around materials, and collecting materials.

The first author on this chapter is a computer science professor and an expert in
the field. The first author calculated the difficulty of each of the missions by creating
an optimal solution for each task. Due to the fact that students were novices, with
no prior programming or robotics experience, the challenge solutions were simple
and relied primarily on moving the robot forward and backward and turning the
robot. These elements, forward/backward and turning, could be programmed by
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Fig. 13.4 Annotated student program

adjusting power to the motors, and/or setting the number of rotations of the attached
wheels on the robotic device. We have annotated an example of a student program,
drawn from the data, to highlight the nature of student programs (see Fig. 13.4).
The annotations highlight the meaning of the icons in each block, as well as provide
an English language translation of the meaning of each block as arranged in the
program. After we had developed optimal solutions, we then compared the relative
difficulty of each solution based on three variables including: (1) the number of
programmed moves forward/backward needed, (2) the number of turns needed, and
(3) the distance needed to be crossed on the board to attempt that mission (based
on # of wheel rotations). We reasoned that attempting a mission that was far away
required more precision in navigating the board to arrive at the mission. Therefore,
for the far missions, we doubled the sum of turns + moves to account for the added
difficulty presented by the distance. Student programs were then scored based on
the difficulty of the mission attempted. Table 13.2 presents the scoring rubric by the
mission for the seven missions attempted by participants in the study.

In the final step, we focused on examining the relationship between the frequency
of the discussions that are the most relevant to computational thinking and the overall
scores for the groups. Those discussions were those that received the codes A, ATO,
ATV,D, andDO. For each group, we computed the frequencymeans of the five codes
across all the TSCs. Then, we plotted those means along with the overall program
scores in the same scatter plot for each group. To guide the interpretation of the
relationship, we used different colors and symbols for each group and each CT code.
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Table 13.2 Final program scoring rubric by mission

Mission name # of turns req.
(a)

# of moves req.
(b)

Distance
traveled (near
or far)

Score � (a + b)
× 2

Blue Ball 0 2 Near 2

Green Bacteria 0 2 Near 2

Yellow Ball 2 4 Near 6

Harvester 4 6 Near 10

Pink Bacteria 4 6 Near 10

Pizza 2 3 Far 10

Red Bacteria 3 4 Far 14

13.3 Results

13.3.1 Role Transitions

In answer to research question #1—What are the role transitionsmade by novice pro-
grammers in this study?, we present the results of our behavior analysis of transitional
probabilities; this gives us an overall view of how the students organized themselves.
Transitional probabilities in this analysis are indicated by the arrow (direction) and
percentage (probability). The transitional probabilities in this analysis specify the
probability of the next role taken up by the student given their current role. For
example, in Fig. 13.4, there is a 76% probability that for Anna, the role of succeed-
ing programmer would be tester. The light blue Team (Fig. 13.5) took a divide and
conquer approach to solving the programming challenges. This is evidenced by the
lack of continuity shown in their paths between roles. Each student has a unique path,
indicating variation in student activity. Anna has taken on a primary role of program-
mer, Becky the role of builder, which left Cindy with no primary individual role, but
she did take part in the collaborative role of analyst. The dark blue team (Fig. 13.6)
have taken up a more collaborative strategy that is highlighted by the similarity of
their role transitions. In other words, in visually examining the role transitions for
the dark blue team, there is less variation, indicating that the students were jointly
involved in sharing the roles and collaborating.

13.3.2 Collaboration

In answer to research question #2—How do different roles in a robotics program-
ming environment relate to different types of collaboration?, we first determined the
amount of time spent in the types of collaboration (parallel or collaboration). No
episodes of cooperation were observed. Students were either working together with



236 P. Kevin Keith et al.

Fig. 13.5 Roles transitions by light blue team

Fig. 13.6 Roles transitions by dark blue team

one set of materials (collaboration) or working alone (individual).We then calculated
the duration and relative duration of collaboration for each of the students, presented
in Figs. 13.7 and 13.8.

The data indicate that the students on the light blue team spent at least half of
the time working collaboratively. However, the students on the dark blue team were
jointly attentive at least 80% of the time. The understanding of collaboration is
further explored by examining the joint probabilities between the role and the type
of collaboration. Notable outcomes from this analysis show that when a team divides
up the roles and a member is involved in a primary role, they perform that role in a
non-collaborative way. For example, when Anna assumed the role of programmer,
there was a 72% chance that she would be working alone and a 27% chance that she
would be working collaboratively. This is contrasted to the dark blue team where no
one took on a primary role, but each took turns sharing the roles during the day. For
example, when Janet assumed the role of programmer, there was an 84% probability
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Fig. 13.7 Collaboration light blue

Fig. 13.8 Collaboration dark blue

that she would be working collaboratively. Overall, and for both groups, the two roles
of tester and analyst do stand out as having a higher probability of being collaborative
for all students.

13.3.3 Computational Thinking

In answer to research question #3—How do different types of collaboration in a
robotics programming environment relate to different types of computational think-
ing?, we first present the frequency and relative frequency of the different computa-
tional thinking codes for each student in each group, across the afternoon (Table 13.3).
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Table 13.3 Frequency and relative frequency of CT codes per student

Analysis Alg. thinking —
variable

Alg. thinking— Design Debugging

Freq Pct (%) Freq Pct (%) Freq Pct (%) Freq Pct (%) Freq Pct (%)
Anna 66 34 13 7 58 30 36 18 23 12
Becky 124 48 1 0 20 8 105 40 11 4
Cindy 81 29 5 2 34 12 123 45 34 12
Janet 97 26 133 35 62 16 31 8 53 14
Kaylee 61 19 105 33 70 22 36 11 50 16
Lisa 46 23 60 30 22 11 45 21 32 16

operation

The idea of the variable is a foundational concept in computer programming
(Soloway, Ehrlich, Bonar, & Greenspan, 1982). However, the total frequency of
discourse concerning the variable is 19 for the light blue team as compared to 298
for the dark blue team. This pattern was set early in the process. When Anna was
learning to use the software, she would bench test the robot. Through this process,
she was learning how the values of the variables affected the movement of the robot.
However, she did this in complete silence. The dark blue team completed the same
process but did this collaboratively.

To shed further light on students’ computational thinking, we present a short
vignette of the dark blue team’s discussion as they discuss changes to their algorithm
(Table 13.4).

Next, we present boxplots (Fig. 13.9) for each of the two groups that depict
the group’s CT coded discourse frequency per troubleshooting cycle. The bold line
represents the median and the size of the box the variance. The light blue team
engaged in 92 complete troubleshooting cycles over the afternoon, the dark blue
team completed 78 troubleshooting cycles.

Analysis of the box plots revealed differences across the two groups as regards
CT talk. While the light blue team spent a lot of time discussing the physical design
of the robot, the dark blue group spent more time discussing the algorithms needed
to program the robot, and in particular, variable aspects of the algorithm. Given
the nature of the programming environment and the structure of the programs, for
computational thinking to bemore evident, wewould have expected to hear discourse
about the values of the variables. The dark blue group discusses the variables more,
and the value of the variables more. It may be reasonable to argue that they are
learning more about the robotics environment by discussing the variables in the
context of the gaming environment.

In answer to research question #4—How does engagement in specific types of
computational thinking relate to student learning of robotics as measured by the dif-
ficulty of challenges undertaken?, and to further explore the impact of the differences
in group CT-based conversations, we developed an analysis of the difficulty of the
challenges each group sought to solve over the course of the afternoon. Table 13.5
presents missions attempted per group.
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Table 13.4 Dark blue group
CT discussion example

Speaker: Utterance CT Code

J: That distance just needs to be a little longer.
Yeah, we got it there.

DO

K: This one a little longer and then we add the
thing. Because it goes waaa.

DO

J: We can have it go diagonal and then diagonal
and then straighten itself out, but I…

A

K: Okay so the last turn is a little longer right? ATO

J: Yeah should be like two. ATV

K: So two point five?…wait I mean not two
point five, two, one, one point…

ATV

J: Wait, was it the turn or the distance, oh that’s
the, oh that’s moving it.

ATO

K: Distance was good the turn I think was a
little short because…

ATO

J: No I think it, the distance should be longer
when it goes.

ATO

K: Yeah, yeah that’s right, sorry, so one point
five do you think?

ATV

J: Um lets make it two, ATV

K: Okay O

J: Lets make it two. ATV

K: Okay. Right, now… O

Fig. 13.9 Boxplots of for the two teams
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Table 13.5 Missions attempted per group

Score Dark blue team Light blue team

Blue Ball (pollution
reversal)

2

Green Bacteria
(disinfect)

2 x

Yellow Ball (poll.
reversal)

6

Harvester (Corn) 10 x

Pink Bacteria
(disinfect)

10 x

Pizza and Ice Cream 10

Red Bacteria
(disinfect)

14 x

As can be seen from this table, the dark blue team attempted two missions that
were rated as more difficult, whereas the light blue team attempted two missions
that were relatively simpler. We take this as evidence of the knowledge the dark blue
team built, working collaboratively over the course of the day. With a greater level
of knowledge shared among the group, the group chose to attempt more challenging
missions.

The final analysis consists of a scatter plot, which visualizes the relationship of
student scores on their final programs (y-axis) and the amount and type of CT talk
each group engaged in during each TSC (x-axis). The scatter plot is presented in
Fig. 13.10.

Fig. 13.10 Scatter plots for the most frequent CT codes and program scores
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The scatter plot indicates that the dark blue team, who had the highest program-
ming score, also had the highest mean for all of the computational thinking codes,
except for the design code. This team spent a lot of time discussing the algorithm
they were working to develop. Meanwhile, the light blue team spent a lot of time
discussing the design of the robot. The design relates to the physical elements.

13.4 Discussion

This study investigated the relationship of roles to collaboration and computational
thinking in the multidimensional problem space of robotics. Our analysis indi-
cates that the emergent roles commonly adopted in robotics learning environments,
emerged in this study. Moreover, the roles afforded by the environment: (a) influ-
enced the type of discourse that was used to discuss the activity and (b) affected the
common understanding of the different systems in a robotics environment. Indeed,
these emergent roles played a part in the level of collaboration that occurred within
the group. However, it is not the nature of the roles that mattered, but rather how
the roles were negotiated within the groups themselves that influenced collaboration
and student learning outcomes.

In the light blue group, the roles were adopted early on and adhered to, roles were
not shared among the group members, and therefore, collaboration was hindered.
Since Becky and Cindy had little chance to program, they were not able to engage
in much algorithmic thinking at either the variable or operational level. For exam-
ple, together, Becky and Cindy made 54 algorithmic thinking operations comments
overall, whereas, Anna, the main programmer, made 58 such comments overall.
Meanwhile, in the dark blue group, the three girls shared the main roles, each taking
a turn as programmer, builder, tester, and analyst. This led to a common language
and a common understanding that allowed for collaboration and, arguably, greater
understanding of programming and robotics, as evidenced by the group’s selection
of more challenging tasks. Importantly, as noted above, this group also worked with
the variable aspects of the programming icons. Through engaging with the vari-
ables of power and rotations, the group was able to develop more control over the
movement of their robotic device and feel confident to attempt the more challenging
tasks. It is probable that the joint engagement in programming supported the group’s
deeper engagement with the activity. Also, as shown in the scatter plot, the dark blue
group spent more time discussing abstract elements of the activity (the algorithms),
whereas the light blue group spent more time discussing the physical design of the
robot, which is, arguably, less abstract. It is likely that the collaborative discussions
had in the dark blue group supported the group’s computational thinking.

Moreover, we note that the greatest probability for collaboration for both groups
occurred when students were enacting the tester and analyst roles. This stands to
reason, testing the robot is the activity where all group members can equally partic-
ipate through observation and discussion. And the role of the analyst was enacted
subsequently to testing. In other words, students would test the robot, jointly observe
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the execution of the program, and then jointly enact the analyst role in discussing
the executed program. Therefore, this result is not surprising, but expected. It is the
external andmanipulative nature of the robotic activity that supports robust cognitive
engagement (Sullivan & Heffernan, 2016).

Collaboration in groups is difficult, but due to the expense of educational robotics,
many teachers are forced to create groups. In order to increase the probability that
groups will collaborate, scaffolding is necessary (Winne, Hadwin, & Perry, 2013).
However, in order for scaffolding to be successful, wemust understand the conditions
for interactions and the interactions that are indicative of learning (Hoadley, 2010).
This research illustrates the importance of scaffolding role rotation in robotics activ-
ity. While some may be tempted to interpret these findings as support for a scripted
approach,we resist such an interpretation. Rather than providing studentswith scripts
for how to interact, we believe that a simple enforcement of the idea of role rotation
could support a group in building enough intersubjective understanding to develop
high levels of coordination in the group. Robotics is a very creative activity (Sul-
livan, 2017). Groups should be supported to share roles, but also given freedom to
explore problem solutions in an authentic way. Perhaps it is time to think about a
middle ground between completely emergent roles and highly scripted roles. We
would advocate for a middle ground in the case of robotics and other highly creative
activities. For example, one way to structure this would be to have students intention-
ally switch roles after a certain amount of time. In this way, the roles would rotate
among students and would support collaboration as students would gain knowledge
and share it with one another. Another idea would be to introduce a wide-screen
multi-touch display, in place of a laptop, for programming. It is possible that such a
technology would create more access to the programming tool and allow for greater
conversations among students.

Future research should focus on providing varying levels of scaffolded support
to students working with robotics. Is it enough to enforce a role rotation within
groups, or will students need more support to engage in collaboration? We believe
that collaboration within a group is influenced by amultitude of factors. However, we
also believe that setting certain conditions for participation may enable higher levels
of coordination, for example enforcing role rotation. Future research studies could
create conditions that include role rotation and those that support emergent roles.
Engagement in collaboration and the development of computational thinking could
then be measured in each of the conditions. Moreover, environments where students
are developing computational thinking abilities often have a material technological
component. Future research should examine how scaffolding student participation
by prescribing shared control of the material artifacts affects student discussions and
the ability to coordinate the work of the group. For example, as mentioned above, we
think that a wide screen multi-touch display may shift collaborative interactions by
virtue of allowing students to more closely observe programming activities. In this
scenario, students who are not directly manipulating the software could still mean-
ingfully participate through developing a deeper understanding of the programming
blocks, thereby improving their ability to reason about the program and recommend
possible changes to programs by virtue of close observation. Again, such research
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may include conditions (widescreen, multi-touch display, vs. laptop). Such studies
will improve our ability to provide robust collaborative robotics learning environ-
ments for students.
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
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