
Chapter 1
Introduction to Computational Thinking
Education

Siu-Cheung Kong, Harold Abelson and Ming Lai

Abstract This chapter provides an overviewof this edited volumeonComputational
Thinking Education (CTE). It starts with a historical review of CTE, beginning from
the pioneering ideas of Seymour Papert on promoting the need to think computation-
ally, the seminal work by Jeanette Wing, who argued that computational thinking
(CT) should be an essential skill for everyone, and efforts to incorporate CT intoK-12
education, such as those made by the National Research Council (Report of a work-
shop on the scope and nature of computational thinking, National Academies Press,
2010). With this background, the chapter introduces its conceptual framework of
CTE and identifies six sub-themes. The section on the ‘Computational Thinking and
Tool Development’ sub-theme includes an in-depth discussion of abstraction, a key
concept of CT, and the development of a programming environment to facilitate CT
development. ‘Student Competency and Assessment’ contains chapters that identify
the key components, methods and tools for assessing CT. ‘Computational Thinking
and Programming Education in K-12’ focuses on how CT can be taught and culti-
vated in K-12. ‘Computational Thinking in K-12 STEM Education and Non-Formal
Learning’ discusses the combination of STEM and game activities with CT devel-
opment. ‘Teacher and Mentor Development in K-12 Education’ sheds light on the
capacity building of teachers and teaching assistants in implementing CT education.
‘Computational Thinking in Educational Policy and Implementation’ discusses the
educational policy related to CT and a 10-year project with thinking skills embedded

S.-C. Kong (B)
Department of Mathematics and Information Technology,
The Education University of Hong Kong, 10 Lo Ping Road, Tai Po,
N.T. Hong Kong, China
e-mail: sckong@eduhk.hk

H. Abelson
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, USA
e-mail: hal@mit.edu

M. Lai
Centre for Learning, Teaching and Technology, The Education University of
Hong Kong, Hong Kong, China
e-mail: mlai@eduhk.hk

© The Author(s) 2019
S.-C. Kong and H. Abelson (eds.), Computational Thinking Education,
https://doi.org/10.1007/978-981-13-6528-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6528-7_1&domain=pdf
mailto:sckong@eduhk.hk
mailto:hal@mit.edu
mailto:mlai@eduhk.hk
https://doi.org/10.1007/978-981-13-6528-7_1


2 S.-C. Kong et al.

in computer studies. Among the issues discussed in these chapters, the key focus of
CTE is the importance of learning to think computationally.

Keywords Computation thinking · Computational thinking education · Computer
science education · Programming education · STEM education

1.1 Introduction

This collection presents the latest research on and implementations of Computa-
tional Thinking Education (CTE). Our book includes contributions from educators
and leading researchers around the world aimed at deepening the understanding of
CTE theories and pedagogies, with an emphasis on education at the K-12 level.
The term ‘Computational Thinking Education’ emphasizes the role of computing
and computational ideas in facilitating learning, a perspective that is the legacy of
Seymour Papert (discussed below). The term ‘computational thinking’ appeared as
early as the nineteenth century in reference to the use of quantitative analysis in sci-
ence, and appeared later regarding the emphasis on reasoning in teaching arithmetic
(Childs, 2015). The modern association of the term with computers and education is
due to Papert.

Since emerging from the laboratory in the 1950s, computers have become ever-
present in modern life. With that growth has come increasing attention from the
educational establishment, minuscule at first but building to a groundswell over the
past decade. At the tertiary level, the first computer science degree programme began
at the University of Cambridge in 1953, while the first programme in the US opened
at Purdue University in 1962. There were 89 computer science Bachelor’s degrees
awarded in the US in 1966, compared to 60,000 such degrees in 2015 (National
Academies of Sciences, Engineering, and Medicine, 2018).

Introducing K-12 students to CT has been slower and more sporadic. One sem-
inal line of work stems from the invention of the BASIC programming language
by John Kemeny and Thomas Kurtz at Dartmouth College in 1964. Their vision for
BASIC (Beginner’s All-purpose Symbolic Instruction Code) was that everyone, or at
least every Dartmouth undergraduate, would learn to code. BASIC ran on terminals
connected to the Dartmouth Time-Sharing system DTSS, which the university made
available to Dartmouth undergraduates and to several universities and high schools.
BASIC grew explosively with the introduction of the Apple II and other home com-
puters in 1977, and it remains extremely popular with hobbyists and school computer
clubs with a focus on learning to program.

A second stream inK-12CT—and the direct precursor of present-dayCTE—orig-
inated from thework of Seymour Papert and the 1967 creation of the Logo computing
language by Papert, Cynthia Solomon and Wallace Feurzeig (see Solomon, 1986,
for a comparative overview of BASIC, Logo and other early research in computing
for K-12 learners).



1 Introduction to Computational Thinking Education 3

Logo was created at the Cambridge research firm Bolt Beranek and Newman
and then moved to the MIT Artificial Intelligence Laboratory with the start of the
MIT Logo project in 1969. Papert had worked at the University of Geneva with the
renowned Swiss psychologist Jean Piaget, and he brought to Logo Piaget’s construc-
tivist theory of learning, which emphasizes that children construct meaning through
the interaction between experience and ideas. Papert’s extension of constructivism
(andwordplay on the term), which he called constructionism, holds that learning hap-
pens ‘especially felicitously in a context where the learner is engaged in constructing
a public entity’ (Papert, 1991).

For Papert, constructing entities with the Logo computer language could provide
such a felicitous context. The perspective arose that computing could be a powerful
intellectual tool for all children, and that technology, as Papert wrote, could become

…something children themselves will learn to manipulate, to extend, to apply to projects,
thereby gaining a greater and more articulate mastery of the world, a sense of the power of
applied knowledge and a self-confidently realistic image of themselves as intellectual agents.
(Papert, 1971)

The full expression of this idea and its characterisation as ‘computational thinking’
first appeared in Papert’s book Mindstorms (Papert, 1980), although Papert also
referred to the same idea as ‘procedural thinking’. He wrote:

In this book I have clearly been arguing that procedural thinking is a powerful intellectual
tool and even suggested analogizing oneself to a computer as a strategy or doing it. … The
cultural assimilation of the computer presence will give rise to computer literacy. This phrase
is often taken as meaning knowing how to program, or knowing about the varied uses made
of computer. But true computer literacy is not just knowing how to make use of computers
and computational ideas. It is knowing when it is appropriate to do so. (Papert, 1980, p. 155)

Even here, in the first articulation of the idea, there was a concern to clarify the
distinction between computational (or procedural) thinking and the knowledge of
how to program or to use computational tools. This concern for clarification has
persisted through the growth of the CT movement and is present in several papers in
the present volume.

The appearance of the personal computer in the late 1970s produced an outburst
of optimism about computing’s potential to play a major role in K-12 education.
Apple II BASIC appeared in 1978 and Apple Pascal in 1979. MIT worked with
Texas Instruments to create a Logo implementation for the TI 99/4 home computer,
piloting it in a 450-student Dallas elementary school in 1980 and later in several
New York City public schools. Versions of Logo for the Apple II appeared in 1982
(Abelson, 1982a, b).

While the impact of these implementations on the emerging home hobbyist com-
puter community was significant, there was little take-up in K-12 education. School
adoption was meagre, with little adherence to the vision that computation could be
a powerful learning framework for everyone, not only for students working towards
careers involving computer programming. As several leaders of the school com-
puting movement observed in 2003: ‘while the literature points to the potential for



4 S.-C. Kong et al.

impact, the reality is sobering: to a first order approximation, the impact of comput-
ing technology over the past 25 years on primary and secondary education has been
essentially zero’ (Norris, Sullivan, Poirot, & Soloway, 2003).

However, the adoption of computers in K-12 began to increase with the tremen-
dous increase in the impact of information technology in society and with the emer-
gence of computing as a continuous presence in daily life. An important catalyst for
change was Jeanette Wing’s (2006) seminal essay ‘Computational Thinking’ (Wing,
2006).Wing reintroduced the term ‘computational thinking’ together with the notion
in Papert’s tradition that CT was not just programming and that it should be a funda-
mental skill for everyone. The appearance of Wing’s essay, contemporaneous with
the start of an enormous upwelling of the computing industry, led to a surge of inter-
est in CT and computing in K-12 education that surprised many long-time observers
of computing education. Even Wing herself observed:

“Not in my lifetime.” That’s what I said when I was asked whether we would ever see
computer science taught in K-12. It was 2009, and I was addressing a gathering of attendees
to a workshop on computational thinking convened by the National Academies. I’m happy
to say that I was wrong. (Wing, 2016)

Yet even with this burgeoning interest, there remains a widespread lack of clarity
about what exactly CT is, and the struggle continues to articulate its fundamentals.
The report of the 2009 National Academies workshop that Wing mentions above
expressed the motivation behind it:

Various efforts have been made to introduce K-12 students to the most basic and essential
computational concepts, and college curricula have tried to provide students a basis for
lifelong learningof increasingly newandadvanced computational concepts and technologies.
At both ends of this spectrum, however, most efforts have not focused on fundamental
concepts.

One common approach to incorporating computation into the K-12 curriculum is to empha-
size computer literacy,which generally involves using tools to create newsletters, documents,
Web pages, multimedia presentations, or budgets. A second common approach is to empha-
size computer programming by teaching students to program in particular programming
languages such as Java or C++. A third common approach focuses on programming appli-
cations such as games, robots, and simulations.

But in the view of many computer scientists, these three major approaches—although useful
and arguably important—should not be confused with learning to think computationally.
(National Research Council, 2010)

It is sobering that the concern to distinguish CT from programming and from the
use of computer tools is the same as that expressed by Papert in Mindstorms at the
genesis of the CT movement 30 years previous.

Many of the papers in this volume grapple with this same concern, and readers
will find several discussions of what ‘computation thinking’ means in the papers
that follow. Much of the 2009 NRC workshop was devoted to a discussion of this
same definitional question. The workshop participants, all experts in the field, did
not come to any clear agreement, nor do the authors in this volume. Yet as in the



1 Introduction to Computational Thinking Education 5

NRC report, they agree that the cluster of ideas around CT is important in a world
being increasingly transformed by information technology.

A second theme in the papers in this volume is the need to confront issues of
educational computing at scale. One result of the increasing attention to CT is that
jurisdictions are beginning to mandate computing education in K-12. Estonia, Aus-
tralia, New Zealand, Taiwan, the United Kingdom and the US states of Virginia,
Arkansas and Indiana have already taken this step, and other nations are formulat-
ing strategies to do so. This has led to serious issues of equipment availability and
teacher education; several of the papers below present overviews of plans enacted or
in progress. Key among the issues here is assessment, as the increasing mandates for
computer learning are requiring increasing accountability from citizens and policy
makers.

1.2 Conceptual Framework and Chapters in This Book

The chapters of the book were selected based on our conceptual framework of com-
putational thinking education with six sub-themes, as illustrated in Fig. 1.1. At the
top of Fig. 1.1 is ‘Computational Thinking and Tool Development’, the basic build-
ing block of CTE, which involves issues of the definition of CT and the design of
the programming environment for facilitating CT. Students’ CT development can
occur in K-12 and can be combined with STEM education and non-formal learn-
ing, as captured by the sub-themes of ‘Computational Thinking and Programming
Education in K-12’ and ‘Computational Thinking in K-12 STEM Education and
Non-formal Learning’, respectively. To evaluate the effectiveness of students’ CT
development, we need to consider assessment issues, which include the articulation
of the competencies involved, and the latest methods of assessing CT, as reflected in
the sub-theme of ‘Student Competency and Assessment’. Teacher and mentor devel-
opment is a key factor to support the implementation of CTE, as captured by the
sub-theme of ‘Teacher andMentor Development in K-12 Education’. From a broader
perspective, policymatters can also play a supportive role in CTE, as illustrated in the
sub-theme of ‘Computational Thinking in Educational Policy and Implementation’.
The chapters in this book were chosen according to these six sub-themes.

1.2.1 Sub-theme 1: Computational Thinking and Tool
Development

The sub-theme of ‘Computational Thinking and Tool Development’ includes two
chapters. Hoppe and Werneburg consider the abstraction involved in CT and in sci-
entific inquiry, arguing that the former has more ‘representational flexibility’, and
that therefore an important goal in CT education is to identify the specificity of CT



6 S.-C. Kong et al.

Fig. 1.1 Conceptual framework of computational thinking education

arising from its abstraction. The available abstractions, from either data representa-
tion or processing, form a repertoire of possible choices to generate computational
artefacts. The programming environment supports different models of computation
for users to choose from (e.g. visual programming interface), thus enabling pro-
gramming flexibility. Furthermore, in terms of abstract operational mechanisms and
data structure, computational media in inquiry learning contexts are of finite repre-
sentational flexibility. In the other chapter, Patton, Tissenbaum and Harunani doc-
ument the development of an online platform for facilitating CT, the App Inventor,
at the Massachusetts Institute of Technology (MIT). They identify the logic and
goals underlying the design of the platform and document how it can be used for
educational purposes, focusing on empowerment through programming. These two
chapters indicate the importance of the use of abstraction and a well-designed pro-
gramming environment to facilitate students in learning to think computationally.

1.2.2 Sub-theme 2: Student Competency and Assessment

Among the key issues that require further exploration is how to measure students’
CT ability and examine the effects of the teaching of CT, especially in terms of
major assessment approaches and research methodologies. The sub-theme of ‘Stu-
dent Competency and Assessment’ includes five chapters on related issues. Eickel-
mann presents a large-scale international comparative study on CT, with problem
conceptualisation and solution operationalisation as the two main strands of con-
structs of students’ achievements in CT to be assessed. The identification of these
constructs echoes Papert’s idea that to think computationally involves ‘not just know-
ing how to make use of computers and computational ideas… [but] knowing when



1 Introduction to Computational Thinking Education 7

it is appropriate to do so’ (Papert, 1980, p. 155). Labusch, Eickelmann and Ven-
nemann align CT with problem solving and information processing, reporting on
the design of a cross-national study of students’ processes of CT with a focus on
a cognitive approach. Roman-Gonzalez, Moreno-Leon and Robles review and clas-
sify tools for assessing CT, with categories of CT diagnostic, CT summative, CT
formative-iterative, CT data-mining, CT skill-transfer, CT perceptions-attitude and
CT vocabulary assessment. They present the findings of two convergent validity
studies conducted using a variety of tools, and they put forward a comprehensive
framework that involves the chronological uses of various tools to evaluate CT.
Swanson, Anton, Bain, Horn and Wilensky evaluate the effectiveness of a computa-
tional biology curriculum among ninth-grade students and find that their modelling
and simulation practices, which are an important strand of CT practices, improved
significantly. Kong conducts a comprehensive review of the literature and identifies
the key components and methods for evaluating students’ CT development based
on the differentiation of CT concepts, practices and perspectives proposed by Bren-
nan and Resnick (2012). The consideration of computational identity and program-
ming empowerment as important components of CT perspectives particularly merits
research attention.

1.2.3 Sub-theme 3: Computational Thinking
and Programming Education in K-12

There are three chapters under the sub-theme of ‘Computational Thinking and Pro-
gramming Education in K-12’. Kong, using an example of learning prime and com-
posite numbers through the development of an app, illustrates how learners’ CT can
be developed in their learning of primary mathematics, highlighting the pedago-
gies that can be used. Tan, Yu and Lin, who regard CT as the cultivation of logical
thinking and problem-solving skills, present a study on how CT can be taught using
mathematical gamification. They develop mobile games to help students develop
problem-solving skills and gain mathematical insights by solving linear equations.
The difficulty at each level is calibrated based on the users’ performance to ensure a
reasonable growing curve and prevent users from becoming frustrated at early levels.
They argue that gamification can be considered an effective educational approach to
gaining arithmetic proficiency and computational skills. Lee and Chan document the
design of an educational website guided by a fun-based CT framework integrated
with a knowledge management approach, and they discuss how the different com-
ponents in this website can facilitate students’ mathematics learning. These chapters
illustrate how CT and programming education can be implemented in K-12 class-
rooms.



8 S.-C. Kong et al.

1.2.4 Sub-theme 4: Computational Thinking in K-12 STEM
Education and Non-formal Learning

The sub-theme of ‘Computational Thinking in K-12 STEM Education and Non-
formal Learning’ contains four chapters. Zhang and Biswas extend a framework to
evaluate students’ synergistic learning of CT skills and science content. With the use
of a computer-based learning environment, the authors illustrate students’ learning
gains in CT and science concepts, and they indicate that by focusing on the synergies
between STEM and CT, the difficulties that students might encounter in their sim-
ulation tasks in the learning of science content could be overcome. Keith, Sullivan
and Pham use a microgenetic case study approach to investigate the roles played by
two groups of girls in educational robotics activities, finding that the emergence of
distinct roles is related to the time of collaboration and the time of solo work, and
that it thus affects students’ engagement in CT. The authors also find that in the more
collaborative group, students shared their major roles, while in the less collaborative
group, the roles were adopted much earlier and adhered to thereafter, leaving some
group members with no chance to engage in algorithmic thinking. Ch’ng, Low, Lee,
Chia and Yeong examine the correlation between video gaming experience and indi-
vidual CT skills, finding a significant correlation between the former and a specific
category of CT skills, abstraction and problem decomposition. This finding can help
address the concern that computer games might negatively influence students’ intro-
ductory programming course performances. Non-formal learning happens outside
of the formal education system, and training in a company can be seen as a perfect
setting for equipping targeted people with specific knowledge, such as CT. Chong
and Wong, who believe that employees in the Industry 4.0 era need to be equipped
with computational and logical thinking, document the experience of a textile and
apparel company in which employees were empowered to solve problems and use
creative ideas to improve their daily work by developing mobile apps. These works
are dedicated to providing more teaching and learning practices on CT and stim-
ulate further questions regarding how to evaluate and validate non-formal learning
outcomes.

1.2.5 Sub-theme 5: Teacher and Mentor Development
in K-12 Education

Three chapters are included in the sub-theme of ‘Teacher andMentorDevelopment in
K-12 Education’. Sanford and Naidu (2016) argue that ‘computational thinking does
not come naturally and requires training and guidance’ and thus that qualified teach-
ers for future CT education are urgently needed. Fields, Lui and Kafai identify the
teaching practices that can support students’ iterative design in CT, including teach-
ers’ modelling of their own CT processes and mistakes and of students’ mistakes
in front of the whole class. They highlight an iterative design process as a crucial



1 Introduction to Computational Thinking Education 9

aspect of CT and the importance of revision and working through mistakes. Hsu
considers the readiness of CT education from the perspective of school leaders, rat-
ing computer hardware readiness and leadership support readiness most favourably
and instructor readiness and instructional resources readiness lower. Wong, Kwok,
Cheung, Li and Lee discuss the supportive roles played by teaching assistants in CT
classes and analyse their self-development through the process of service-oriented
stress-adaption-growth.

1.2.6 Sub-theme 6: Computational Thinking in Educational
Policy and Implementation

The sub-theme of ‘Computational Thinking in Educational Policy and Implemen-
tation’ contains two chapters. Seow, Looi, Wadhwa and Wu review the educational
policy of CT in Singapore, which uses a pragmatic approach that depends on an
eco-system with a focus on cultivating students’ interests and allowing schools to
opt in rather than making CT education compulsory. Singapore’s policy offers good
opportunities to educational stakeholders with interests in coding. Learning activities
correspond to age and cognitive discrepancies, aiming for learning through playing
in pre-school, interest cultivation in primary school and computing application in
secondary school. In the final chapter, Sridhar describes a 10-year project called
Computer Masti in India that embeds thinking skills such as CT into computer stud-
ies. The project involves the development of a curriculum and textbooks and the
large-scale training of teachers to implement the curriculum. These chapters indi-
cate the importance of good policies and good planning in facilitating everyone in
learning to think computationally.

References

Abelson, H. (1982a). Logo for the Apple II . Byte Books.
Abelson, H. (1982b). Apple Logo. Byte Books.
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the develop-
ment of computational thinking. In 2012 Annual Meeting of the American Educational Research
Association (AERA’12), Canada.

Childs, K. (2015). Computational thinking—The origins (part 1). Computing & Digital Mak-
ing. Blog post, https://primaryicttech.wordpress.com/2015/12/29/the-origins-of-computational-
thinking-part-1/.

National Academies of Sciences, Engineering, and Medicine (2018). Assessing and responding
to the growth of computer science undergraduate enrollments. Washington, DC: The National
Academies Press. https://doi.org/10.17226/24926.

National Research Council. (2010). Report of a workshop on the scope and nature of computational
thinking. National Academies Press.

https://primaryicttech.wordpress.com/2015/12/29/the-origins-of-computational-thinking-part-1/
https://doi.org/10.17226/24926


10 S.-C. Kong et al.

Norris, C., Sullivan, T., Poirot, J., & Soloway, E. (2003). No access, no use, no impact: Snapshot
surveys of educational technology in K-12. Journal of Research on Technology in Education,
36(1), 15–27.

Papert, S. (1971). Teaching children thinking. MIT Artificial Intelligence Laboratory Memo no.
2247, Logo Memo no. 2. http://hdl.handle.net/1721.1/5835.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Papert, S. (1991). Situating constructionism. In S. Papert & I. Harel (Eds.), Constructionism
(pp. 1–11). Norwood, NJ: Ablex.

Sanford, J. F., & Naidu, J. T. (2016). Computational thinking concepts for grade school. Contem-
porary Issues in Education Research, 9(1), 23–32.

Solomon, C. (1986). Computer environments for children: A reflection on theories of learning and
education. Cambridge, MA: MIT press.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Wing, J. M. (2016). Computational thinking, 10 years later. Microsoft Research Blog. https://www.
microsoft.com/en-us/research/blog/computational-thinking-10-years-later/.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://hdl.handle.net/1721.1/5835
https://www.microsoft.com/en-us/research/blog/computational-thinking-10-years-later/
http://creativecommons.org/licenses/by/4.0/

	1 Introduction to Computational Thinking Education
	1.1 Introduction
	1.2 Conceptual Framework and Chapters in This Book
	1.2.1 Sub-theme 1: Computational Thinking and Tool Development
	1.2.2 Sub-theme 2: Student Competency and Assessment
	1.2.3 Sub-theme 3: Computational Thinking and Programming Education in K-12
	1.2.4 Sub-theme 4: Computational Thinking in K-12 STEM Education and Non-formal Learning
	1.2.5 Sub-theme 5: Teacher and Mentor Development in K-12 Education
	1.2.6 Sub-theme 6: Computational Thinking in Educational Policy and Implementation

	References




