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Abstract. Due to the use of a fixed-size state transition set, the traditional
dynamic programming Track-Before-Detect (DP-TBD) algorithm significantly
reduces the detection and tracking performance of maneuvering targets. This
paper proposes a DP-TBD algorithm with an adaptive state transition set
(ASTS-DP-TBD). The algorithm improves the search efficiency of the maneu-
vering target by introducing Kalman filtering and target state transition proba-
bility in the traditional algorithm. In addition, this paper also optimizes the
termination decision strategy of the algorithm, which significantly improves the
detection performance. Simulation results show that the proposed algorithm in
this paper has better detection and tracking results than traditional algorithms for
maneuvering targets.

Keywords: Track-Before-Detect (TBD) � Dynamic programming (DP) � State
transition set � State transition probability

1 Introduction

TBD technology is an effective method for detecting and tracking weak targets in a low
SNR environment [1]. TBD is a multi-frame signal accumulation technique. Compared
with the traditional detection method, TBD does not detect the target by setting a
threshold for each frame. Instead, after accumulating multiple frames of data, the target
trajectory is given at the same time when the detection result is obtained.

The principle of DP-TBD algorithm is clear and its performance is excellent. It is a
research hotspot in recent years. The basic idea of DP-TBD algorithm is to convert the
target detection from a multistage decision-making process to multiple single-stage
problems. Through each stage, the merit function is optimized to obtain a global
optimal solution. The DP-TBD algorithm was originally used for optical image pro-
cessing and this is the first application of DP in TBD [2]. The DP-TBD algorithm is
divided into probability density accumulation and energy accumulation [3, 4]. The first
one is suitable for maneuvering targets, but need to know clutter prior distribution
(CPD) information. The second one does not require CPD information, and constructs
the stage function directly with the target amplitude or energy, but it is only applicable
to weak maneuvering targets with approximate trajectories of the motion trajectories.
From then on, mountains of work have been done to improve the performance of DP-
TBD [5–8].
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This paper proposes an improved DP-TBD algorithm that can effectively achieve
the detection and tracking of maneuvering targets. The improved algorithm introduces
the acceleration component into the target state vector, which can optimize the pre-
diction of the position and velocity in the Kalman filtering, so that the state transition
set can be timely adjusted according to the change of the target speed. In addition, the
introduction of state transition probability enables the target to more accurately accu-
mulate energy along the true trajectory. At last, this paper optimizes the termination
decision strategy by improving the setting method of the threshold. And the detection
performance of maneuvering target is obviously improved.

2 Traditional Energy Accumulation Algorithm Model

2.1 System Model

In this paper, we assume the target is moving radially relative to the radar, and the radar
obtains a M � N size measurement sequence for each full scan, which is called a frame
and observes a total of K frames. The radar scanning interval is T and the measurement
data at frame k can be expressed as

Zk ¼ fzkðx; yÞjx ¼ 1; 2; . . .;M; y ¼ 1; 2; . . .;N; 1� k�Kg ð1Þ

Where zkðx; yÞ is the measurement recorded in cell (x, y), which is given by

zkðx; yÞ¼ Ak þ nkðx; yÞ; no target in cell (x,y) at frame k
nkðx; yÞ; target in cell (x,y) at frame k

�
ð2Þ

where Ak is the target amplitude, nk is the measurement noise which obeys normal
distribution.

Xk ¼ ½sxðkÞ; vxðkÞ; syðkÞ; vyðkÞ� represents the position and velocity of the target in
the x-direction and y-direction at frame k. The target trajectory sequence from the first
frame to the K-th frame is given by

XðkÞ ¼ fX1;X2; . . .;XKg ð3Þ

ZðkÞ ¼ fZ1; Z2; . . .; ZKg is a set of measurement sequences obtained by the target
trajectory. X̂ðkÞ is the target estimation sequence. It is hoped that X̂ðkÞ is most likely to
come from a trajectory of a real target.

2.2 Traditional DP-TBD Algorithm

(1) Initialization: For all states X1

I1ðx; yÞ ¼ jz1ðx; yÞj
W1ðx; yÞ ¼ 0

�
ð4Þ

where Ið�Þ denotes merit value function, wð�Þ stores states transition records.

A Dynamic Programming Track-Before-Detect Algorithm 639



(2) Recursion: For 2� k�K, for all states Xk

Ikðx; yÞ ¼ max
ðx�;y�Þ2Jkðx;yÞ

fjzkðx; yÞj þ Ik�1ðx�; y�Þg

Wkðx; yÞ ¼ arg max
ðx�;y�Þ2Jkðx;yÞ

ðIk�1ðx�; y�ÞÞ
� �

8><
>: ð5Þ

where Jkðx; yÞ denotes state transition set, which is a set of all possible positions of the
target from frame k − 1 to frame k. Determined by the target’s maximum speed vmax

x
and vmax

y , as follows:

Jkðx; yÞ ¼ fða; bÞjx� vmax
x � a� xþ vmax

x ; y� vmax
y � b� yþ vmax

y g ð6Þ

(3) Judgment and termination: For threshold VT , find

fX̂Kg ¼ fXK : IKðx; yÞ[VTg ð7Þ

(4) Backtracking: for k ¼ K � 1;K � 2; . . .; 1

X̂k ¼ Wkþ 1ðx; yÞ ð8Þ

Traditional DP-TBD algorithm is only a multi-frame accumulation of measured
data, ignoring the state-characteristic relationship between measurement data frames. If
the size of the state transition set is not suitable for the algorithm, it will reduce the
detection and tracking of the target, especially the radar maneuvering target. Therefore,
the selection of the state transition set is very important for the performance of the
algorithm.

3 The ASTS-DP-TBD Algorithm

When facing with maneuvering targets, the traditional DP-TBD with constant size of
transition set can hardly detect the targets. An improved DP-TBD algorithm is pro-
posed in this paper. In the DP, there exists an energy accumulation path for each
present resolution cell (i, j) at frame k, so we can take advantage of positions of the
plots included in the path to estimate the target state vector. According to the estimated
state vector, we can predict the target state vector at frame k + 1 by the one-step state
prediction in the Kalman filtering.

On the one hand, the acceleration component is introduced into the target state
vector. This can optimize the prediction of the position and velocity in the Kalman
filtering, so that the state transition set can be changed according to the target speed.
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On the other hand, in the process of target transfer, it is interfered by various noises,
which will reduce the probability of energy accumulation of the target on the real
trajectory. In this paper, the state transition probability is introduced in the energy
accumulation strategy. It can make the target more accurately accumulate energy along
the true trajectory and reduce the interference of process noise. Based on these, this
paper also optimizes the termination decision strategy of the algorithm by improving
the setting method of the threshold. The new threshold can be better adapted, and the
detection performance of maneuvering target is obviously improved.

(1) The introduction of acceleration component in target state vector

The improved target state vector xðkÞ and measurement state vector zðkÞ are as follows:

xðkÞ ¼ ½sxðkÞ; vxðkÞ; axðkÞ; syðkÞ; vyðkÞ; ayðkÞ� ð9Þ

zðkÞ ¼ ½�sxðkÞ;�vxðkÞ; �axðkÞ;�syðkÞ;�vyðkÞ; �ayðkÞ� ð10Þ

where sxðkÞ, vxðkÞ, axðkÞ is the position, velocity, acceleration on direction x respec-
tively, and syðkÞ, vyðkÞ, ayðkÞ is the counterparts on direction y.

In fact, we only have the measurements of target position, as to the measurements
of velocity and acceleration are given by

½�vxðkÞ;�vyðkÞ�T ¼ ½�sxðkÞ;�syðkÞ� � ½̂sxðk � 1Þ; ŝyðk � 1Þ�; k� 2 ð11Þ

½�axðkÞ; �ayðkÞ� ¼ ½~axðkÞ; ~ayðkÞ�; k� 2 ð12Þ

By introducing the acceleration component in the target state vector, the state
transition set can be adjusted timely according to the change of the target position and
speed. The state transition set is given by

Jkðx; yÞ ¼ fða; bÞjx� ~vxðkÞ� a� xþ~vxðkÞ; y� ~vyðkÞ� b� yþ~vyðkÞg ð13Þ

(2) The introduction of state transition probability

In order to make the target more accurately accumulate energy along the true trajectory,
this paper introduces the state transition probability in the energy accumulation strat-
egy. In the Kalman filtering process, the probability of the transition from xk�1ðx0

; y
0 Þ to

xkðx; yÞ can be calculated as

Dk�1ðx0; y0Þ ¼ 1ffiffiffiffiffiffi
2pr

p expð� d2
2r2Þ k� 2 ð14Þ

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx00 � xÞ2 þðy00 � yÞ2

q
denotes the distance between ðx00; y00Þ and ðx; yÞ.

And ðx00; y00Þ is the predicted value of ðx; yÞ at frame k.
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(3) ASTS-DP-TBD algorithm steps

Step 1: Initialization. For all states X1

I1ðx; yÞ ¼ jz1ðx; yÞj
W1ðx; yÞ ¼ ½0; 0�T

(
ð15Þ

x̂ð1Þ ¼ ½�sxð1Þ;�vxð1Þ; 0;�syð1Þ;�vyð1Þ; 0� ð16Þ

P̂1 ¼ ½rw; rw=T; rw=T2; rw; rw=T; rw=T
2��

½rw; rw=T ; rw=T2; rw; rw=T; rw=T2� ð17Þ

where P is predicted state error covariance matrix.
Step 2: State prediction.

~xðkÞ ¼ Fx̂ðk � 1Þ; k� 2 ð18Þ

where F is state transition matrix and is given by

F ¼

1 T T2=2 0 0 0
0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 1 T T2=2
0 0 0 0 1 T
0 0 0 0 0 1

2
6666664

3
7777775

ð19Þ

Step 3: Recursion. For 2� k�K, for all states Xk

Ikðx; yÞ ¼ max
ðx�;y�Þ2Jkðx;yÞ

fjzkðx; yÞj þDk�1ðx�; y�Þþ Ik�1ðx�; y�Þg

Wkðx; yÞ ¼ arg max
ðx�;y�Þ2Jkðx;yÞ

½Ik�1ðx�; y�Þ�
� �

8><
>: ð20Þ

where Jkðx; yÞ is state transition probability, which is determined by (13). And
Dk�1ðx�; y�Þ is determined by (14).

Step 4: Calculation of predicted state error covariance matrix

~Pk ¼ FP̂k�1F
T þCw; k� 2 ð21Þ

Gk ¼ ~Pkð~Pk þCvÞ�1; k� 2 ð22Þ

P̂k ¼ ðI � GkÞ~Pk; k� 2 ð23Þ

where Gk is filtering gain matrix. Cw, Cv is process noise covariance matrix and
measurement noise covariance matrix respectively.

Step 5: State estimation.
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x̂ðkÞ ¼ ~xðkÞþGk½zðkÞ � ~xðkÞ� k� 2 ð24Þ

Step 6: Judgment and termination: For threshold VT , find

fX̂Kg ¼ fXK : IKðx; yÞ[VTg ð25Þ

VT ¼ �bn � ln½� lnð1� pdÞ� þ an ð26Þ

an ¼ lþ r½ð2 lg nÞ1=2 � 1
2
ðlgðlg nÞþ lgð4pÞÞ

ð2 lg nÞ1=2
� ð27Þ

bn ¼ ð2 lg nÞ1=2
r

; n ¼ M � N � num ð28Þ

where pd is the detect probability, M and N are the number of distance units in the x
and y directions; num is the number of distance units the target may span between two
frames; l and r are the mean and variance of the merit function obtained by accu-
mulating k frames of the target trajectory.

Step 7: Backtracking: for k ¼ K � 1;K � 2; . . .; 1

X̂k ¼ Wkþ 1ðx; yÞ ð29Þ

4 Simulations and Result Analysis

To verify the performance of the improved DP-TBD algorithm, the ASTS-DP-TBD
algorithm is compared with other DP-TBD algorithms. Assume that the size of the
radar data received per frame is 70 � 60. There are a total of 22 frames of received
data, and the interval T ¼ 1. The target with initial state x1 ¼ ½1; 1:6; 0; 8; 2; 0�0 is to
make steering movements that change in both magnitude and direction in the obser-
vation area. In addition, we assume that measurement noise obeys a Gaussian distri-
bution. This paper uses target detect probability pdð Þ and track probability pkð Þ to verify
the performance of the algorithm. (1) Detect probability: the probability of maximal
accumulation value at last frame exceeds the threshold and error between the estimated
target position and the real target position is no more than two units at the last frame.
(2) Track probability: the probability of error between the estimated target position and
the real target position is no more than two units at every frame. In the simulation we
performed 100 Monte Carlo experiments.

Figure 1 shows a comparison of merit functions obtained after 22 frames of
accumulation for various DP-TBD algorithms with an SNR of 7 dB. Figure 1a shows
the merit function of traditional DP-TBD algorithm. Figure 1b shows the merit func-
tion of ASTS-DP-TBD algorithm with no state transition probability (NASTS-DP-
TBD). Figure 1c shows the merit function of ASTS-DP-TBD algorithm. The first two
algorithms have agglomeration effects so that the merit function amplitude value is not
highlighted from clutter. We can see that ASTS-DP-TBD algorithm can well overcome
the agglomeration effect and detect the true state of the target more accurately.
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(a) Merit function of traditional DP-TBD Algorithm (b) Merit function of NASTS-DP-TBD Algorithm

(c) Merit function of ASTS-DP-TBD Algorithm
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Fig. 1. Comparison of merit functions
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Fig. 2. Detect probability

Figure 2 shows the detect probability of basic DP-TBD algorithm, NASTS-DP-
TBD algorithm and ASTS-DP-TBD algorithm. When the state transition number
q = 9, the pd of basic DP-TBD is almost 0. When the state transition number q = 16,
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the performance of pd is still not ideal. This is because the mismatch between state
transition set and target velocity. From Fig. 2, we can see that the NASTS-DP-TBD
and ASTS-DP-TBD have better performance, further more, when considering the state
transition probability, the performance of ASTS-DP-TBD can obtain a further esca-
lation. As what Fig. 3 shows, when the track probability closes to 1, the demonded
SNR of ASTS-DP-TBD is less more 3 dB compare to the NASTS-DP-TBD. This is
because the proposed algorithm uses the measurement data and target motion character
jointly to confirm the real target. From Fig. 4, we can see that the NASTS-DP-TBD can
effectively track the maneuvering target compare to other algorithms.
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Fig. 4. Comparison of detection and tracking results
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5 Conclusions

Traditional DP-TBD with constant size of state transition set can hardly detect and
track the maneuvering targets because the mismatch between target velocity and
transition set, and ignoring of the state transition probability leads to a loss to the
algorithm’s performance. This paper proposes a new method that introduces Kalman
filtering and target state transition probability in the traditional algorithm. In addition,
this paper also optimizes the termination decision strategy of the algorithm, which
significantly improves the detection and tracking performance.
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