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Abstract. Convolutional neural networks (CNN) have been applied to many
classic problems in computer vision. This paper utilized CNNs to reconstruct
super-resolution images from low-resolution images. To improve the perfor-
mance of our model, four optimizations were added in the training process.
After comparing the models with these four optimizations, Adam and RMSProp
were found to achieve the optimal performance in peak signal to noise ratio
(PSNR) and structural similarity index (SSIM). Considering both reconstruction
accuracy and training speed, simulation results suggest that RMSProp opti-
mization in the most scenarios.
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1 Introduction

Recent years, with the development of optimized algorithms, mass data, and the
increased performance of hardware, deep learning has received a lot of attentions in
many aspects, such as super-resolution imaging, image recognition, etc. Among these
topics, super-resolution imaging has been deeply studied. The goal of super-resolution
imaging is to rebuild high-resolution images from the low-resolution images, which is
one of the classic problems in computer vision.

Dong et al. proposed a relative new method for super-resolution imaging based on
deep learning [1]. They establish connections between the images with the low and
high resolution correspondingly. It is an end-to-end method that generates one high-
resolution image as the output from only one low-resolution image as the input. To
realize the connections between the inputs and the correspondingly outputs, they use
deep convolutional neural networks (CNN) to obtain the mapping between the inputs
and outputs.

In this paper, we further study the CNN model [1] and then train our own CNN
models with partial optimizations. We find that gradient descent algorithm, which is the
core of CNN’s weight update, can be optimized by some other strategies in deep
learning field. We improve one of the best models which have good performance by
these optimizations, such as stochastic gradient descent (SGD), adaptive gradient
(AdaGrad), adaptive moment estimation (Adam), and RMSprop. Among these
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optimizations, we find that RMSprop and Adam have the best performance on peak
signal to noise ratio (PSNR), and AdaGrad and SGD are relatively poorer.

The remainder of this paper is organized as follows. Section 2 presents the related
works about super-resolution imaging. In Sect. 3, we utilize some optimization algo-
rithms to improve our proposed model. Experimental results are conducted to confirm
the proposed method in Sect. 4.

2 Related Works

As a classic problem in computer vision, super-resolution has been studied in various
methods. To solve this underdetermined inverse problem, the early methods are mostly
based on sampling theory [2—4]. And the limitations that the detailed textures are not as
good as expected are then discovered.

Recently, deep learning has been used in various fields, and no exception in super-
resolution imaging. Convolutional neural networks have been invented for decades and
many computer vision fields, such as pedestrian recognition [5], image classification [6,
71, object detection [8], and face recognition [9].

Dong et al. [1] use their deep CNNs models to rebuild high-resolution images.
According to their results, 9-1-5 model has the best score considering performance and
running time, under contrast of bicubic interpolation. Their deep CNNs have three
convolution layers, each of which followed by an activation layer. The rectified linear
unit (ReLU) [10] is used as the activation layer. ReLU makes the model converge faster
in the case of high performance. The good performance of the deep CNNs models is
shown in their research, with a lot of experimental results as support.

Figure 1 shows the structure of the model. This model has three convolutional
layers (yellow), each of which is followed by an activation layer (green) named ReL. U,
except the third convolutional layer. Mean squared error (MSE) is used as loss function
(orange) to calculate the loss between data and label. The light blue blocks represent
the input and output data.
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Fig. 1. Model structure of CNNs

3 Optimization Methods

3.1 Model Structure

Dong et al. [1] proposed their 9-1-5 model to train the convolutional neural networks
for super-resolution imaging. As shown in Fig. 1, the model contains three
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convolutional layers, each of which is connected to an activation layer named ReLLU
except the third convolutional layer. The operation of ReLU is:

O = max(0,1) (1)

where O denotes the output of the ReLU as well as I, the input. Thinking of a
convolutional layer and a corresponding activation layer as a pair, the operation of the
first two pairs is:

Y; = max(0, W; x X; + B;) (2)

where i equals to 1 or 2 denoting the first or second pair and X; or Y; represent the input
or output of each pair, respectively. Here, W; corresponds to the weight coefficient of
the filter, as well as B; the bias coefficient. These parameters like W; and B; are achieved
by minimizing the loss function, which calculates the mean squared error (MSE) of the
reconstructed image and the corresponding high-resolution image. The formula for
MSE is:

1< 2
L:;ZHX,,- — Xl (3)
i=1

where n is the number of training samples, and X,; or X}, represent the reconstructed
image or the corresponding high-resolution image, respectively. L is the function of the
filter parameters, such as weight and bias coefficients.

3.2 Some Optimization Algorithms

3.2.1 Stochastic Gradient Descent (SGD) Algorithm

Gradient descent (GD) is widely used in deep learning field. In this paper, it can help
the CNNs determine the most suitable parameters of the filters as soon as possible,
under the premise of good performance. As a result of GD’s easily falling into a local
optimal solution, this paper replaces GD with SGD. SGD in this article refers to mini-
batch SGD. The difference of GD and SGD is only the quantity of the training samples.
The training sample in GD is the whole data set, while SGD uses only a part, which
calculates some training samples once a time instead of all. Samples for training in
SGD are randomly selected at each iteration.

For example, the weight coefficients are updated as

oL
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Here, # is learning rate, L denotes the loss function, and W represents the weight
coefficients. The iteration number is denoted by i.
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3.2.2 Momentum Algorithm

Momentum algorithm is such a method that it simulates the concept of momentum in
physics to optimize the SGD algorithm. The most notable feature is that the last
gradient is taken into account in current gradient calculation. It can be expressed as

oL
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Here, the added u € (0, 1) is momentum factor, which controls the effect of the last
gradient on the current gradient. The general value of p is 0.95.

3.23 AdaGrad Algorithm
The parameters in algorithms above, such as momentum algorithm, are needed to be set
based on experience. Therefore, the determination of specific values of these param-
eters is seem to be fixed, at most in several common values. Obviously, such setting
method cannot be convinced.

AdaGrad algorithm as well as the following methods can set parameters adaptively.
After calculating the gradient, AdaGrad algorithm calculates the cumulative squared
gradients for the next updating.

3.24 RMSProp Algorithm

Considering to the non-convex properties of the CNNs and RMSProp algorithm’s
adaptive to non-convex, RMSProp algorithm can be used for the optimization. Based
on the momentum and AdaGrad algorithms, RMSProp combines the superiority of
both two algorithms. It takes into account both the second-order moments of the
gradient and the historical effects.

3.2.5 Adam Algorithm

Considering the advantage of AdaGrad and RMSProp on dealing with sparse gradients
and non-stationary objectives, Adam algorithm can be seen as a combination of
AdaGrad and RMSProp. It makes full use of first and second moments of the gradients
to adjust the learning rate of each parameter, respectively.

Adam is superior to the other optimization algorithms in terms of performance. Yet
it calculates both the first and second moments of the gradients, the training speed is
relatively slower. In spite of this, Adam is still found to be robust in problems with
large datasets or parameters with high dimension and is widely applied.

3.3 Comparison of Several Optimization Algorithms

In Sect. 3.2, this paper introduces some optimization algorithms for traditional gradient
descent methods. The following part we will discuss these algorithms, such as SGD,
AdaGrad, RMSProp, and Adam.
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3.3.1 GD and SGD
In GD algorithm, the loss functions need to traverse the entire training data, which is
waste of time and is more possible to fall into local optimal solutions. Therefore, in
deep learning field like this super-resolution imaging problem, the CNNs model falls
into the unwanted solutions easily.

Compared to GD, the samples for training in SGD are randomly selected at each
iteration. In this way, we can avoid the local optimal solutions and save much running
time.

3.3.2 AdaGrad, RMSProp, and Adam

As shown in the algorithms, AdaGrad makes the use of cumulative squared gradients to
minimize the loss functions. As a result, it can make the learning rate adaptive.
However, the training speed of AdaGrad is relatively slower.

RMSProp optimizes AdaGrad using the Newton iteration method in the process of
accumulating squared gradient. The added coefficient in RMSProp is used to control
the acquisition of historical squared gradients.

Adam combines the advantages of both AdaGrad and RMSProp. It can calculate
different adaptive learning rates for different parameters and is suitable for big or high-
dimensional data. Beside these, Adam needs smaller requirements for memory.

The detailed performance comparisons of these algorithms are discussed in Sect. 4.

4 [Experiments

In this section, we first discuss the determination of training data and label. Next, we
add the four optimizations discussed in Sect. 3 to the model and compare the perfor-
mance of them, respectively. The last but not least, we examine the training loss and
speed of the model with four optimizations.

4.1 Training Data

To train our model for super-resolution imaging, we need to determine the data and
label in training sets. The purpose of our model is to rebuild the images, so the super-
resolution images generated from low-resolution images by CNNs are seen as data. In
order to continuously improve the performance of the model, it needs the label as
contrast. The corresponding high-resolution images are used as label, which is the same
as data as the input of the loss layer. Mean square error (MSE) is used as a loss function
in this paper.

To realize the process above, the size of data and label should be calculated ahead
of time. For example, the sizes of these three types of convolution kernels in the 9-1-5
model are set to 9 by 9, 1 by 1, and 5 by 5, respectively. With the stride of 1, the size of
data and label can be 33 by 33 and 21 by 21, respectively.
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4.2 Comparison of the Performance

Figure 2 shows the performance of bicubic reconstructed image and another four
images with optimizations. It displays one original image and five reconstructed images
as contrast. The first image is the original image, which is grayed out. The recon-
structed image below the original one is using bicubic interpolation, which is obviously
fuzzy. The right four images are clearer, which reflects on the effects of these
optimizations.

Original image AdaGrad optimization Adam optimization

Bicubic Reconstruction RMSProp optimization

Fig. 2. Original and five reconstructed images

Table 1 displays the specific PSNR and SSIM of five reconstructed images. It is
clear that Adam and RMSProp achieve the highest PSNR 33.30228 and 33.10496 dB,
respectively. As a result, Adam is the best choice in terms of performance and the

Table 1. PSNR and SSIM of five reconstructed images

Type PSNR (dB) SSIM
Bicubic 31.67762 0.859749
AdaGrad 32.20875 0.867244
Adam 33.30228 0.882372
RMSProp 33.10496 0.879238
SGD 32.42305 0.874023
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performance of RMSProp is slightly worse. It shows that Adam has the highest scores
of SSIM with 0.882372 while RMSProp ranks second with 0.879238, followed by
SGD and AdaGrad, respectively.

4.3 Comparison of the Training Process

Section 4.2 discusses the performance of the model with four optimizations, respec-
tively. Yet considering performance alone to choose the most suitable model cannot be
convinced. Thus, the training process is also recorded to be the basis for selecting the
most suitable model.

Figure 3 describes the changes in training loss of the models with optimizations
like AdaGrad, Adam, RMSProp, and SGD during the training process. It is obvious
that AdaGrad and Adam have the minimal training loss after convergence.
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Fig. 3. Comparison of the training loss of the four models

In addition, Adam has another advantage that it makes the model convergences
faster. As a result, considering the performance and effect of convergence, Adam is
superior to other optimizations.

Table 2 displays the accurate values of running time for every 100 iterations. As
described in Fig. 3, the fastest training speed for RMSProp and SGD is about 52.1928
and 51.85337 seconds for every 100 iterations. In contrast, Adam’s training speed is
two to three times slower. As a result, considering the performance, speed of con-
vergence, and training time, the model with RMSProp optimization is the most
suitable.
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Table 2. Average time required for 100 iterations
Type Time (s/100 iterations)
AdaGrad 272.9645
Adam 130.0681
RMSProp 52.1928
SGD 51.85337
5 Conclusion

In this paper, we first utilized the convolutional neural networks to reconstruct the
super-resolution images from the corresponding low-resolution images. Then, we
introduced four optimization algorithms and discussed the relationships between them.
At the end, we analyzed the performance and training process of the models with these
four optimizations, and we found that in the case of all these factors, RMSProp may be
the most suitable optimization algorithm for the super-resolution imaging.
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