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Abstract. In indoor localization scenarios, a sheer coordinate with respect to a
basis is insufficient to indicate the users’ situation due to a lack of information
about landmarks distributed in the environments. To extract landmarks’ infor-
mation manually, however, is inefficient and thus vulnerable to changes of the
environments. Simultaneous localization and mapping can solve the localization
and landmarks’ information extracting problems. This paper presents Walk-
SLAM, a SLAM solution that estimates both the path taken by the user and the
locations of Wi-fi devices in the indoor space, using a smartphone. This solution
extends the previous work by introducing human walking patterns into the
specific SLAM problem. Experiments demonstrate that the improvement con-
sists of increased efficiency of the particle filter, and hence, of the overall
algorithm, and a better estimation of the user’s location and path.
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1 Introduction

In the last decades, both military and civil have seen increasing need for efficient and
accurate location-based service. Location-based service, as its name indicates, controls
features and provides functions regarding location data of the users. Thus, the basis of
location-based service is to provide a location estimate of the user according to the
measurements of devices distributed in the environment taken by the user’s device,
which requires mapping measurements into exact locations.

In order to provide massive location-based service in large-scale indoor scenario
both efficiently and economically, the idea of using a smartphone to run SLAM
algorithm while the user carries it and walk around the indoor [1-3] space comes out
and draws researchers’ immediate attention. But the inaccurate nature of smartphone
sensors will lead to an undesirable uncertainty of both the location estimates and
landmark estimates.
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1.1 Related Work

Previous work has addressed this accuracy issue of smartphone SLAM in different
levels. SmartSLAM [3] used path-smoothing model and building orientation model to
supervise the heading orientation of the user in order to smooth the noisy path estimate;
simultaneously localization and configuring [1] used fixed step length model and EKF
to overcome the unreliability of motion measurements. However, fixed step length is
still not optimal. Some researches also focused on elimination of Gaussian noise in a
RSSI-based localization scenario [4].

This paper presents WalkSLAM, a SLAM solution runs on smartphones. Walk-
SLAM contributes previous work by adding human walking pattern elements into the
SLAM algorithm, both on prior stage and posterior stage. The evaluation on live data
shows a noticeable improvement on the path estimation and landmark estimation.

The rest of the paper is organized as follows: In Sect. 2, the problem statement and
the model are discussed. In Sect. 3, we introduce a new SLAM algorithm named
WalkSLAM. The implantation of WalkSLAM and some refining maneuvers are
introduced shortly after. In evaluation section, live data is analyzed and the average
errors of both path estimation and landmark estimation are discussed separately with a
comparison between WalkSLAM solution and common FastSLAM solution.

2 Problem Definition and Modeling

The original aim of the research is to map an indoor environment using a smartphone
without any prior information from the environment. The smartphone is capable of
motion sensing and RSSI observing, and in a common SLAM system, the motion
sensing ability guarantees the control info of a robot, where location estimation can be
extracted, and the RSSI observing achieved by Wi-fi module inside the smartphone can
obtain observation of the accessing points working as the landmarks. After this
thought, a hidden Markov model [5-7] can be applied to our scenario.

Figure 1 represents a hidden Markov model. The poses make the core Markov
chain, and in our situation, they are the locations on the path during the navigation; the
state transition means a step of the user is taken. Because we do not know the actual
coordinate of the locations, they become the hidden states.
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Fig. 1. Hidden Markov model in SLAM problems
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Now, we can effectively describe our problem as a SLAM problem. The poses are
the user’s location, and the current pose will be denoted s;. Poses evolve according to
the motion model [7]:

s,wp(s,|u,,s,,1) (1>

Among which s, is the current pose, s, the previous, and u, the current control.
The control consists of motion measurements from the device, which in our case is the
smartphone. After initializing each pose, to map the surroundings, the device senses
landmarks using sensors. Sensor observations follow the measurement model:

ZTNP(Zt|St>9) (2)

where 0 is a set consisting of all the landmarks. Now, the SLAM problem can be
formulated. SLAM problem is to make a refined estimation of all landmarks 0 and all
poses s' = {so, 51,52,...} along the user’s path from the controls and observations,
which can be described as p(s', 0|7, u"). The controls, as stated above, are the motion
measurements from motion sensors on the phone, which indicates a step’s heading and
orientation. After an initialization of the starting pose, given previous and current
control, an estimate of the current state can be calculated. However, the motion sensors
are alarmingly inaccurate; thus, in further discussion, we decide to add some prior
information into the controls for better performance.

3 WalkSLAM

3.1 Particle Path Sampling

With the control and the observation of our SLAM system defined, we can present our
SLAM problem solution in the following steps with implantation details. As shown in
Fig. 2, the algorithm begins with the path particle sampling after the input of motion
measurements u, from motion sensors. Due to the nature of human walking pattern, we
do not sample the pose s; directly but rather estimate the transition from s,_; to s, which

_
is denoted (s, — s,—1).

The transition can be described as a combination of the fixed step length and the
heading. For the filtering of the heading direction, instead of the path-smoothing
method, we present a new filtering model:

_ Jo, o — o] > e 3)
T lon o — o <

The rationale behind this model is that first the motion sensor is pretty noisy and
unreliable according to previous reports [1, 8], and because of that, in some degree we
can safely ignore small direction changes without worrying too much about losing the
details of heading since Monte Carlo method involved in the sampling phase can
guarantee the coverage of most minor direction changes.
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Fig. 2. SLAM algorithm loop. Notice that the dotted line connecting RSSI observation with
weight updating step means the observation takes part in the weight’s calculation

After the path sampling, we get a set of path particles, and according to our design,
the next step should be landmark estimation, where we initialize and update the
landmarks’ locations using the observations. However, since our observation is the 1D
RSSI measurements, a single observation is not enough to initialize a landmark’s
location. Thankfully this problem can be solved using the range-only localization
model presented in [9], and the major requirement of this method is several consecutive
poses and relative observations.

The updating of landmarks is guided by the observations, so we need a filter to
refine the landmark location, in this situation a 2D coordinate, with 1D RSSI as the
observations. An extended Kalman filter can be applied to this situation, using the
method mentioned in [1].

3.2 Importance Weight Updating

In robotic SLAM systems, the only indicator of the reliability of a particle is how the
observation matches up the landmark estimations, and it is called importance weight
factor:

im] target distribution p(stm |2 ut)
whl —

= 4)

~ proposal distribution  p(s"l|z=1 ut)

However, in our WalkSLAM scenario, another factor should be taken into con-
sideration to evaluate the degree of the particle path fitting human walking pattern [10],
specifically the walk ratio indicator [11]. For convenience, we call the original
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importance weight factor observation factor (OF), and the walk ratio indicator walk
factor (WF). Then, the new weight becomes:

wi"l = OF - WF (5)

As the matter of implantation, for the calculation of OF, we can use the conclusion
from [7]:

_op(st u) EKF [m ]
OF_p(s’v[’"”Z’*l,W) ~ s (Zz|9k ) S )P(Hk ) (6)

Since we are always sure about the identity of each RSSI scan result, the equation
can be simplified to:

OF" = 3" p (o}, ") (7)
k
Then, we can calculate OF using the Gaussian function:

"= 2wl

For the calculation of WF, since the proposal distribution is made to be a Gaussian
distribution, according to the Bayesian theory we can simplify the equation as:

m

00 (8)

WE o p (@A, Sy ) (9)

For implementation purpose, we first calculate the average WR of the path particle,
1

WR == "di- A (10)
oy

Then, through a Gaussian function, we can get the WF of the particle as:
WE" = f(WR|R, dwr) (11)
where d, is the step length and A; the time that step costs. R is the average walk ratio of

a healthy man, and dwr the variance of walk ratio.
To sum up, the new weight updating model becomes:

( de AR, 5WR> ZP(Zth m) (12)
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Then, for further use, we normalize the weights:

; -1
W,[m] = WEm] <Z Wf) (13)
=1

3.3 Resampling Particles

After getting the weights of the particle set, we now resample the particle set due to the
weight of each particle. To evaluate the effectiveness of a particle set using the weight
factor, the effectiveness index is introduced:

Negr = <z": Wf) (14)
k=1

As shown in Fig. 2, every time the value of Nl gets low enough, the resampling
step is triggered; this way we can resample only when we need to, to effectively use all
the particles and lower the time consumption.

4 Implementation and Evaluation

In the test, we choose a typical indoor scenario which is a floor of office with a long
corridor. The longest part of the corridor is 47.3 m at length, and the overall corridor is
3 m at width. Thirteen access points were accessible along the corridor. A live test in
comparison with the ground truth is given in Figs. 3 and 4. Since our goal is to estimate
both the path and the landmarks, the localization biases of them are evaluated.

Fig. 3. Replay of a live test

Considering the additive nature of the pedometer bias, tests were run on different
lengths to indicate the difference made by navigating different lengths and the results
are given in Table 1, although due to the variance of step length the tests can only be
grouped by a range of distance they cover.
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Fig. 4. Ground truth of the same test with a floorplan

Table 1. Result of three long tests and three short tests
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Path length Test Localization error (m) Standard deviation
90-100 m 1 2.97 0.37

2 2.34 0.29

3 2.78 0.30
35-40 m 4 1.17 0.11

5 1.41 0.17

6 0.94 0.10

We can still conclude from the results that for a short run of the WalkSLAM, the
average localization error falls below 3.0 m, which is good enough for a room-level
localization scenario. Another essential factor of the evaluation is the localization error
of the landmarks. In the three long runs, 12 access points are all observable; thus, we
use them to calculate the error.

To better demonstrate the overall performance when localizing the landmarks, we
take each landmark estimation in each run as an individual landmark estimation and use
the cumulative distribution function to bring out the result. When compared to a
common FastSLAM run with an S1 model applied and one without, as shown in Fig. 5,
the improvement in performance of WalkSLAM is quite noticeable.
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Fig. 5. Comparison
FastSLAM

of landmark estimating performance between WalkSLAM
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5 Conclusion

In this research, a simultaneous localization and mapping solution that focuses on
running on smartphones was developed. Compared to traditional SLAM solutions, in
this new solution, the human walking pattern was considered into the algorithm, with a
new sampling model and an advanced weight updating model presented, and the
implantation methods given in detail. Six live tests were run in a typical indoor
environment. The result indicated that the accuracy could fit a room-level localization
scenario and the landmark estimation performance of WalkSLAM is noticeably better
than that of a traditional solution.
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