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Abstract. Indoor WLAN intrusion detection technique for the
anonymous target has been widely applied in many fields such as the
smart home management, security monitoring, counterterrorism, and
disaster relief. However, the existing indoor WLAN intrusion detection
systems usually require constructing a passive radio map involving a lot
of manpower and time cost, which is a significant barrier of the deploy-
ment of WLAN intrusion detection systems. In this paper, we propose
to use the adaptive-depth ray tree model to automatically construct an
adaptive passive radio map for indoor WLAN intrusion detection. In
concrete terms, the quasi-3D ray-tracing model is enhanced by using the
genetic algorithm to predict the received signal strength (RSS) propa-
gation feature under the indoor silence and intrusion scenarios, which
improves the computational efficiency while preserving the accuracy of
passive radio map. Then, the RSS mean, variance, maximum, minimum,
range, and median are allied to increase the robustness of passive radio
map. Finally, we conduct empirical evaluations on the real-world data to
validate the high intrusion detection rate and low database construction
cost of the proposed method.
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1 Introduction

With the wide deployment of wireless local area network (WLAN) and general
support of WLAN protocol by various intelligent terminals, the intrusion detec-
tion with respect to the indoor target can be realized by using the existing WLAN
infrastructure. Among the existing anonymous target intrusion detection tech-
niques, the wireless local area network (WLAN) indoor target intrusion detection
system [1–4] proposed by the University of Maryland performs outstandingly
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because it can effectively protect the user’s location privacy and work stably
under non-line-of-sight and without special hardware at the same time. How-
ever, the main problem with this kind of algorithms is that the construction of
the prior passive radio map takes a lot of manpower and time, which is a major
barrier of WLAN intrusion detection systems deployment. On this basis, the
WLAN indoor target intrusion detection algorithm proposed in this paper uses
the adaptive-depth ray tree-based quasi-3D ray-tracing model to construct the
passive radio map automatically, which requires less labor overhead compared
with the traditional RSS feature database construction method. In addition, six
signal characteristics of the passive radio map are constructed, which results in
the better pattern recognition ability and learning convergence. The rest of this
paper is structured as follows. In Sect. 2, we describe the proposed indoor WLAN
intrusion detection method in detail, and the related experimental results are
shown in Sect. 3. Finally, we conclude this paper in Sect. 4.

2 System Description

The overall flow of the system is shown in Fig. 1. First, a number of WLAN
access points (APs) and monitor points (MPs) are arranged in the target area.
Second, the GA algorithm is used to optimize the limited number of depth of
the ray tree adaptively and the RSS characteristics under the indoor silence,
and intrusion scenarios are constructed according to the optimized ray-tracing
model. Then, the obtained RSS characteristics are used for probabilistic neural
network (PNN) training. Finally, the trained PNN is used to classify the new
observation RSS data by multiple classifications, so as to realize the intrusion
detection and area localization.

2.1 Signal Prediction

Considering the limitations of the existing 2D and 3D ray-tracing models [5,6]
on the accuracy of the signal prediction and the complexity of the algorithm
respectively, the quasi-3D ray-tracing model used in this paper first carries out
the ray-tracing in the 2D projection plane, and then transforms it into the prop-
agation path in the 3D space, and this process significantly improves the com-
putational efficiency while guaranteeing the accuracy of prediction. In this case,
as shown in Fig. 2, a quasi-3D ray-tracing model based on the adaptive-depth
ray tree is proposed in this paper, considering two factors: the model accuracy
and calculation efficiency.

The import of environmental information. Figure 3 gives a 3D modeling
of a simple environment and the corresponding 2D projection results. The gray
and black parts of the diagram represent the boundary face of environment and
the indoor facilities, respectively. In addition, in order to ensure the integrity
of the imported environmental information, the 3D vertex coordinates, height
information and relative permittivity, conductivity and permeability of the cor-
responding material will be recorded.
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Fig. 1. Overall system flowchart

Optimization of the limited number of depth. In order to significantly
improve the computing efficiency of the ray tree, the GA algorithm is used to
optimize the limited number of depth of the ray tree in different environments.
Specifically, first, the limited number of depth is initialized to 1; secondly, all
the vertical planes and vertical lines of the 3D modeling of the environment
are numbered; besides, the number of the functional parts of each ray is spliced
into a chromosome in chronological order, and the field strength of each ray
that reaches the MP is used as the fitness of its corresponding chromosome;
then, the contribution rate of the ray to the field strength at MP under the
condition of the current limited number of depth is calculated by Algorithm 1;
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Fig. 2. Signal prediction flowchart

finally, determine whether the contribution rate of the ray under the current
limited number of depth is greater than the preset threshold, and if so, add
1 to the limited number of depth and repeat the above steps, otherwise the
current limited number of depth is the optimal limited number of depth (or the
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Fig. 3. 2D projection from 3D modeling of environment

Algorithm 1 Calculation of contribution rate of ray to the field strength
Input: n (the limited number of depth); Dk(k=1, . . . , N)(the unique number of the

kth functional part); N (the total number of the functional parts); Pc (crossover
probability); Pm (mutation probability); M (population size); ρth(calculation rate
threshold); en−1(maximum field strength of the n-1 order ray)

Output: Cn(contribution rate of the ray to the n order field strength)
1: The first generation population T1 is randomly generated according to the limited

number of depth n (that is, M random number sequences with a length of n), and
set the current population T = T1

2: while ρ < ρth do
3: Use inverse ray-tracing method to calculate the fitness of each chromosome in

current population T , namely e1,...,eM (as described in Algorithm 2)
4: for i= 1:M do
5: 2 chromosomes were selected from T by fitness ratio selection algorithm[7]
6: if random(0,1)< Pc then
7: implement crossover operation on the selected 2 chromosomes
8: end if
9: if random(0,1)< Pm then

10: implement mutation operation on the selected 2 chromosomes
11: end if
12: Add this 2 new chromosomes to the updated population Tnew

13: end for
14: T ⇐ Tnew

15: Compute ρ = NC/Nn, and NC is the number of chromosomes types that have
appeared from the initial population to the current population

16: end while
17: Compute Tf = en−1/2
18: Compute m namely the number of chromosomes whose fitness> Tf in the current

population T
19: Compute Cn = m/M

optimal ray order). In Algorithm 1, the fitness of each chromosome in the current
population is calculated by the reverse ray-tracing method, and its calculation
process is described in Algorithm 2.
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Algorithm 2 Calculation of the n order chromosome fitness
Input: Dk(k=1, . . . , N (the unique number of the kth functional part); N (the total

number of the functional parts); Pk and Hk (k = 1, . . . , N1) (vertex coordinate
and height information of the kth vertical lines); N1 (the total number of the
vertical lines); ck εk and μk (k = 1, . . . , N2) (relative permittivity, conductivity
and permeability of the kth vertical planes); N2 (the total number of the vertical
planes); λ (working wavelength); n (the limited number of depth); PAP and PMP

(position coordinates of AP and MP); Pt (transmitting power of AP)
Output: ei(chromosome fitness of the ith n order ray)
1: Assign Bk (k = 1, . . . , n + 2) according to the number sequence of functional part

of the ith (i = 1, . . . , M) n order ray, in which B1 = 1 and Bn+2 = 1 is the initial
position of the ray AP and the termination position MP respectively; Bk=0 and 1
(k = 2, . . . , n + 1)represents reflection and diffraction occurs in the kth functional
part respectively.

2: The 2D projection coordinates of AP and MP are L1 and Ln+2, respectively
3: for k = 2: n + 1 do
4: if Bk = 0 then
5: Lk ⇐ 2D projection coordinates of the mirror points of Lk−1 with respect

to the kth vertical planes
6: else if Bk = 1 then
7: Lk ⇐ 2D projection coordinates of the kth vertical planes
8: end if
9: end for

10: while there exists k ∈ (1, ..., n) which makes Bk = 1 do
11: if Bk = 0 and Bk+1 = 1 then
12: Lk ⇐ 2D projection coordinates of the intersection point of the line con-

necting Lk and Lk+1 and the kth vertical planes
13: Bk ⇐ 1;
14: end if
15: end while
16: for k = 1 : n + 1 do
17: Set Tk,k+1 as the line connecting Lk and Lk+1

18: if there exists the intersection of Tk,k+1 and any functional part then
19: ei ⇐ 0
20: break;
21: end if
22: end for
23: if ei �= 0 then
24: The 2D projection of the ith n order ray extends to 3D space according to

the Fermat principle, and then the fitness of the corresponding chromosome ei is
calculated

25: end if

Calculation of received signal power. In order to calculate the received
signal power of MP, direct and non-direct rays are considered respectively. All
the direct and non-direct rays within the n order are superimposed on the signal
field strength, and the received signal power at MP can be obtained by the ray
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power summation method [8] as

Ptotal =
l∑

i=1

(
λ |Ei|
4π |E0|

)2

, (1)

in which E0 is the arrival signal field strength at 1 m from AP, and Ei is the
arrival signal field strength of the ith ray, l is the total number of rays.

2.2 Intrusion Detection

In this paper, the kernel density estimation method based on Bayesian decision
theory is applied to train the PNN feature data under the indoor silence and
intrusion scenarios.1 In particular, the kernel density function is used to estimate
the conditional probability of different states, and then the state of the maximum
posterior probability is used as the PNN output [9] according to the Bias decision
theory. In order to ensure the stability of RSS characteristic data between each
pair of AP and MP, this paper uses a sliding window function to segment the
original RSS data2 and calculates the mean, variance, maximum, minimum,
maximum, and middle value of each segment data. On the basis of these six signal
characteristics, six PNN structures are trained respectively. Finally, according
to the voting criterion, the indoor target detection and location are realized by
the multiclassification decision of the newly acquired RSS data.

3 Experimental Result

3.1 Environmental Layout

Figure 4 shows an experimental environment, in which two APs (AP1 and AP2
with model D-Link DAP 2310) and three MPs (MP1, MP2, and MP3 with model
SAMSUNG GT-S7568) are placed at 2 and 0.5 m high, respectively. At each MP,
5 min of RSS data from each AP are collected separately under the indoor silence
and intrusion scenarios.

3.2 GA Optimization Result

Figure 5 shows the change of the overall fitness of each generation of population
under the conditions of different values of ρth when the GA was used to calculate
the ray contribution rate. The overall fitness is defined as the ratio of m to
the population size M , and m is the number of chromosomes whose fitness is
greater than the threshold value Tf in the population. It can be seen that with
the increasing of population algebra, the overall fitness is on the rise and tends
to be the same when the population algebra reaches 30. In addition, Table 1
1 Considering the content of water in the human body more than 70%, the human

body is modeled as a 3D water column [10] with a certain height.
2 The length of each segment of the RSS data is the width of the sliding window.



An Adaptive Passive Radio Map Construction . . . 1319

Fig. 4. Structure of experimental environment

Fig. 5. Change of overall fitness
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compares the average time overhead required by the 3D ray-tracing model [5],
the traditional 2D ray-tracing model [6], and the proposed method for the ray
modeling between each pair of AP and MP under the condition of the limited
number of depth of 3. It can be seen from the table that this method performs
obviously better than the methods used in the literature [5,6] in terms of time
overhead.

Table 1. Average time cost for ray modeling between each pair of AP and MP

Performance index Paper [6] Paper [5] The proposed

Time overhead (s) 6.03 7.25 3.41

3.3 Signal Prediction Result

Figures 6 and 7 compare the cumulative density function (CDF) of RSS pre-
diction errors by the proposed method and the ones in [5,6] under the limited
number of depth of 3, from which we can find that the proposed method performs
better than the others.

Fig. 6. CDF of errors for AP1
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Fig. 7. CDF of errors for AP2

4 Conclusion

In this paper, we propose the adaptive-depth ray tree model, which can be
used to adaptively construct a passive radio map for indoor WLAN intrusion
detection. For one thing, we use the genetic algorithm to enhance the traditional
quasi-3D ray-tracing model to depict the RSS variation under the indoor silence
and intrusion scenarios with low labor and time cost. For another, six common
signal features are allied to ensure the stability of RSS data and robustness of
passive radio map. In future, we will continue to investigate a more effective
passive radio map construction method to accurately locate multiple targets in
the anonymous indoor WLAN environment.
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