
Chapter 8
Fourier Multipliers and Singular
Integrals on C

n

In this chapter, we introduce a class of singular integral operators on the n-complex
unit sphere. This class of singular integral operators corresponds to bounded Fourier
multipliers. Similar to the results of Chaps. 6 and 7, we also develop the fractional
Fourier multiplier theory on the unit complex sphere.

8.1 A Class of Singular Integral Operators
on the n-Complex Unit Sphere

In this section, we study a class of singular integral operators defined on n−complex
unit sphere. The Cauchy–Szegö kernel and the related theory of singular integrals
of several variables have been studied extensively, see [1–4]. The singular integrals
studied in this section can be represented as certain Fourier multiplier operators
with bounded symbols defined on Sω. This class of singular integrals constitute an
operator algebra, that is, the bounded holomorphic functional calculus of the radial
Dirac operator

D =
n∑

k=1

zk
∂

∂zk
.

A special example of these singular integrals is the Cauchy integral operator.
We will still use the following sector regions in the complex plane. For 0 � ω <

π/2, let

Sω =
{
z ∈ C | z �= 0, and | arg z| < ω

}
,

Sω(π) =
{
z ∈ C | z �= 0, |Rez| � π, and | arg(±z)| < ω

}
,

Wω(π) =
{
z ∈ C | z �= 0, |Rez| � π, and Im(z) > 0

}
∪ Sω(π),
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Hω =
{
z ∈ C | z = eiw, w ∈ Wω(π)

}
.

The sets Sω, Sω(π), Wω(π) and Hω are cone-shaped, bowknot-shaped region, W-
shaped region and heart-shaped region, respectively.

Let

φb(z) =
∞∑

k=1

b(k)zk . (8.1)

By Lemma 6.1.1, for b ∈ H∞(Sω), φb can be extended to Hω holomorphically, and

∣∣∣∣
(
z
d

dz

)l
φb(z)

∣∣∣∣ � Cμ′l!
δl(μ, μ′)|1 − z|1+l

, z ∈ Hμ, 0 < μ < μ′ < ω, l = 0, 1, 2, · · · ,

where δ(μ, μ′) = min
{
1/2, tan(μ′ − μ)

}
. Cμ′ is the constant in the definition of

b ∈ H∞(Sω).
In the sequel, we use z to denote any element in C

n , that is, z = (z1, . . . , zn),
zi ∈ C, i = 1, 2, . . . , n, n � 2.Write z = (z1, · · · , zn). z can be seen as a row vector.

Denote by B the open ball {z ∈ C
n : |z| < 1}, where |z| =

( n∑
i=1

|zi |2
)1/2

, and ∂B is

the boundary, i.e.,

∂B =
{
z ∈ C

n : |z| = 1
}
.

The open ball centered at z with radius r is denoted by B(z, r). Any element on the
unit sphere is usually denoted by ξ or ζ . Below the constant ω2n−1 occurring in the
Cauchy–Szegö kernel is the surface area of ∂B = S2n−1 and equals to 2πn/	(n). For

z,w ∈ C
n , we use the notation zw′ =

n∑
k=1

zkwk . The object of study in this section is

the radial Dirac operator

D =
n∑

k=1

zk
∂

∂zk
.

We shall make somemodifications on the basis of holomorphic function spaces in
B and the corresponding function spaces on ∂B. We apply the form given in [1]. Let
k be a non-negative integer. We consider the column vector z[k] with the components

√
k!

k1! · · · kn! z
k1
1 · · · zknn , k1 + k2 + · · · kn = k.

The dimension of z[k] is

Nk = 1

k!n(n + 1) · · · (n + k − 1) = Ck
n+k−1.
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Set ∫

B
z[k]′ · z[k]dz = Hk

1

and ∫

∂B
ξ [k]′ξ [k]dσ(ξ) = Hk

2 ,

where dz is the Lebesgue volume element in R
2n = C

n , and dσ(ξ) is the Lebesgue
area element of the unit sphere S2n−1 = ∂B. It is easy to prove that Hk

1 and Hk
2 is the

positive definite Hermitian matrix of order Nk . Hence there exists a matrix 	 such
that {

	′ · Hk
1 · 	 = �,

	′ · Hk
2 · 	 = I,

(8.2)

where � = [βk
1 , · · · , βk

n ] is the diagonal matrix and I is the identity matrix.
We set {

z[k] = z[k] · 	,

ξ[k] = ξ [k] · 	.

and use {pkν(z)} to denote the components of the vector z[k]. By (8.2), we have

∫

B
pkν(z)p

l
μ(z)dz = δνμ · δkl · βk

ν (8.3)

and ∫

∂B
pkν(ξ)plμ(ξ)dσ(ξ) = δνμ · δkl . (8.4)

The following theorem is well-known.

Theorem 8.1.1 ([1]) The function system

(βk
ν )

−1/2 pkν , k = 0, 1, 2, . . . , ν = 1, 2, . . . , Nk,

is a complete orthogonal system of the holomorphic function space in B. In the space
of continuous functions on ∂B, the function system {pkν(ξ)} is orthogonal, but is not
complete.

In [1], applying the function system {pkν} and relation

H(z, ξ) =
∞∑

k=0

Nk∑

ν=1

pkν(z)p
k
ν(ξ), z ∈ B, ξ ∈ ∂B,

L. Hua gave the explicit formula of the Cauchy–Szegö kernel on ∂B:
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H(z, ξ) = 1

ωn

1

(1 − zξ
′
)n

. (8.5)

In the following, we give a technical result.

Theorem 8.1.2 Let b ∈ H∞(Sω) and

Hb(z, ξ) =
∞∑

k=1

b(k)
Nk∑

ν=1

pkν(z)p
k
ν(ξ), z ∈ B, ξ ∈ ∂B. (8.6)

Then for any z ∈ B and ξ ∈ ∂B such that zξ
′ ∈ Hω,

Hb(z, ξ) = 1

(n − 1)!ω2n−1
(rnφb(r))

(n−1) |r=zξ ′ (8.7)

are all holomorphic, where φb is the function defined in (8.1). In addition, for
0 < μ < μ′ < ω, l = 0, 1, 2, . . . ,

|Dl
zHb(z, ξ)| � Cμ′l!

δl(μ,μ′)|1 − zξ ′|n+l
, zξ ′ ∈ Hμ, (8.8)

where δ(μ, μ′) =
{
1/2, tan(μ′ − μ)

}
; Cμ′ is the constant in the definition of

H∞(Sω).

Proof In (8.5), letting z = rζ and |ζ | = 1, we obtain

H(rζ, ξ) = 1

ω2n−1

1

(1 − rζ ξ ′)n
. (8.9)

Taking H(rζ, ξ) as a function of r , we know that in the Taylor expansion of this
function, the term with respect to rk is

1

k!
( ∂

∂r

)k( 1

ω2n−1

1

(1 − rζ ξ ′)n
)∣∣∣

r=0
rk (8.10)

= 1

ω2n−1

n(n + 1) · · · (n + k − 1)

k! (rζ ξ ′)k .

Let rζ = z. We get the projection from H(z, ξ) to the k-homogeneous function
space of variable z is

Nk∑

ν=1

pkν(z)p
k
ν(ξ) = 1

ω2n−1

n(n + 1) · · · (n + k − 1)

k! (zξ ′)k .
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By the definition of φb, a direct computation gives the formula of Hb(z, ξ). The
corresponding estimate can be deduced from Lemma 6.1.1. �

Remark 8.1.1 In the former chapters, the size of ω is very important and is related
to the Lipschitz constant of Lipschitz curves or Lipschitz surfaces, see also [5–16].
Now, the Lipschitz constant of the unit sphere is 0, and ω can be chosen as any
number in the interval (0, π/2]. In this section, we always assume that ω is any
number in (0, π/2] but should be determined via discussion. We also take μ = ω/2
and μ′ = 3ω′/4 large enough to adapt to our theory.

For z,w ∈ B ∪ ∂B, denote by d(z,w) the anisotropic distance between z and w
defined as

d(z, w) = |1 − zw′|1/2.

It is easy to prove d is a distance on B ∪ ∂B. On ∂B, denote by S(ζ, ε) the ball
centered at ζ with radius ε which is defined via d. The complementary set of S(ζ, ε)

in ∂B is denoted by Sc(ζ, ε).
Let f ∈ L p(∂B), 1 � p < ∞. Then the Cauchy integral of f

C( f )(z) = 1

ω2n−1

∫

∂B

f (ξ)

(1 − zξ ′)n
dσ(ξ)

is well defined and is holomorphic in B.
It is fairly well known that the operator

P( f )(ζ ) = lim
r→1−0

C( f )(rζ )

is the projection from L p(∂B) to the Hardy space H p(∂B) and is bounded from
L p(∂B) to H p(∂B), 1 < p < ∞. Moreover, P( f ) has a singular integral expression
[3, 4]

P( f )(ζ ) = 1

ω2n−1
lim
ε→0

∫

Sc(ζ, ε)

f (ξ)

(1 − ζ ξ ′)n
dσ(ξ) + 1

2
f (ζ ) a.e.ζ ∈ ∂B.

Let

A =
{
f : f is a holomorphic function in B(0, 1 + δ) for some δ > 0

}
.

It is easy to verify that A is dense in L p(∂B), 1 � p < ∞. If f ∈ A , then

f (z) =
∞∑

k=0

Nk∑

ν=0

ckν p
k
ν(z),

where ckν is the Fourier coefficient of f :
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ckν =
∫

∂B
pkν(ξ) f (ξ)dσ(ξ).

Also, for any positive integer l, the series

∞∑

k=0

kl
Nk∑

ν=0

ckν p
k
ν(z)

uniformly absolutely converges in any ball contained B(0, 1 + δ) on which f is
defined.

Let U be the unitary group consisting of all unitary operators in the sense of
complex inner product 〈z, w〉 = zw′ on Hilbert spaces in C

n . These operators are
linear operators U which keep the inner product invariant:

〈Uz, Uw〉 = 〈z, w〉.

Obviously,U is a compact subset in O(2n). It is easy to prove thatA is invariant
under the operation of U ∈ U . If f ∈ A , then f is determined by its value on ∂B.
Belowwe shall regard f |∂B as f ∈ A . For a given function b ∈ H∞(Sω), we define
an operator Mb : A → A as

Mb( f )(ζ ) =
∞∑

k=1

b(k)
Nk∑

ν=0

ckν p
k
ν(ζ ), ζ ∈ ∂B,

where ckν is the Fourier coefficient of the test function f ∈ A .
The principal value of the Cauchy integral defined via the surface distance

d(η, ζ ) = |1 − ηζ ′|1/2

can be extended as in the following Theorem 8.1.3:

Theorem 8.1.3 The operator Mb can be expressed as the form of the singular inte-
gral. Precisely, for f ∈ A ,

Mb( f )(ζ ) = lim
ε→0

[ ∫

Sc(ζ, ε)

Hb(ζ, ξ) f (ξ)dσξ (8.11)

+ f (ζ )

∫

S(ζ, ε)

Hb(ζ, ξ)dσ(ξ)
]
,

where ∫

S(ζ, ε)

Hb(ζ, ξ)dσ(ξ)

are bounded functions for ζ ∈ ∂B and ε.
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Proof Let f ∈ A and ρ ∈ (0, 1). On the one hand,

Mb( f )(ρζ ) =
∞∑

k=1

b(k)
Nk∑

ν=1

ckν p
k
ν(ρζ ),

where ckν is the Fourier coefficient of f . Because {b(k)}∞k=1 ∈ l∞ and the Fourier
expansion of f ∈ A is convergent, we obtain

lim
ρ→1−0

Mb( f )(ρζ ) = Mb( f )(ζ ). (8.12)

On the other hand, applying the formula of the Fourier coefficients and the definition
of Hb(z, ξ) given in (8.5), we have

Mb( f )(ρζ ) =
∫

∂B
Hb(ρζ, ξ) f (ξ)dσ(ξ).

For any ε > 0, we get

Mb( f )(ρζ ) =
∫

Sc(ζ, ξ)

Hb(ρζ, ξ) f (ξ)dσ(ξ)

+
∫

S(ζ, ξ)

Hb(ρζ, ξ)( f (ξ) − f (ζ ))dσ(ξ)

+ f (ζ )

∫

S(ζ, ξ)

Hb(ρζ, ξ)dσ(ξ)

= I1(ρ, ε) + I2(ρ, ε) + f (ζ )I3(ρ, ε).

For ρ → 1 − 0, we have

I1(ρ, ε) →
∫

Sc(ζ, ε)

Hb(ζ, ξ) f (ξ)dσ(ξ).

Now we consider I2(ρ, ε). Because the metric d, the Euclidean metric | · | and the
function classA are allU −invariant, without loss of generality, we can assume that
ζ = (1, 0, . . . , 0). For the variable ξ ∈ ∂B, we adopt the parameter system

ξ1 = re1θ , ξ2 = v2, . . . , ξn = vn.

Write v = (v2, . . . , vn). The integral region S(ζ, ε) is defined by the following
condition:

vv′ = 1 − r2, cos θ � 1 + r2 − ε4

2r
. (8.13)

Now, because 1+r2−ε4

2r � cos θ � 1, we have (1 − r)2 � ε4. Then 1 − r � ε2, or
1 − ε2 � r . This implies that



282 8 Fourier Multipliers and Singular Integrals on C
n

vv′ = 1 − r2 � 1 − (1 − ε2)2 = 2ε2 − ε4.

Write

a = a(r, ε) = arccos
(1 + r2 − ε4

2r

)
.

Because (1 − r)2 � ε4 and 1 − y = O(arccos2(y)), we obtain a = O(ε2).
It is not difficult to verify that

|ζ − ξ |2 = |1 − reiθ |2 + (|v2|2 + · · · + |vn|2) (8.14)

= (1 + r2 − 2r cos θ) + (1 − r2)

= 2 − 2r cos θ

and

d4(ζ, ξ) = |1 − ζ ξ ′|2 = 1 + r2 − 2r cos θ (8.15)

= (2 − 2r cos θ) − (1 − r2)

= |ζ − ξ |2 − (1 + r)(1 − r).

Now, it follows from (8.14) that 1 − r2 � d2(ζ, ξ). This fact together with (8.15)
implies that

d4(ζ, ξ) + (1 + r)d2(ζ, ξ) � |ζ − ξ |2.

Because d2(ζ, ξ) < 2, the last inequality indicates that

|ζ − ξ | � 2d(ζ, ξ). (8.16)

Noticing that for f ∈ A ,

| f (ζ ) − f (ξ)| � C |ζ − ξ |.

Hence
| f (ζ ) − f (ξ)| � Cd(ζ, ξ).

For any ρ ∈ (0, 1), because (8.13), we have

|I2(ρ, ε)| �
∫

S(ζ, ε)

|Hb(ρζ, ξ)|| f (ζ ) − f (ξ)|dσ(ζ )

� C
∫

S(ζ, ε)

1

d2n−1(ζ, ξ)
dσ(ξ)

� C
∫

vv′�2ε2−ε4

∫ a

−a

1

|1 − reiθ |n−1/2
dθdv.
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Now we estimate the inner integral. For n = 2, Hölder’s inequality gives

1

2a

∫ a

−a

1

|1 − reiθ |2−1/2
dθ �

( 1

2a

∫ a

−a

1

|1 − reiθ |2 dθ
)3/4

�
( 1

2a

∫ π

−π

1

|1 − reiθ |2 dθ
)3/4

�
( 1

2a

)3/4 1

(1 − r2)3/4
.

In this case, when ε → 0,

|I2(ρ, ε)| � C
∫

vv′�2ε2−ε4
a1/4

1

(1 − r2)3/4
dv

� Cε1/2
∫

vv′�2ε2−ε4

1

(vv′)3/4
dv

� Cε1/2
∫ √

2ε2−ε4

0

1

t3/2
dt

� Cε → 0.

For n > 2, because r approaches 1, we have

∫ a

−a

1

|1 − reiθ |n−(1/2)
dθ � C

(1 − r2)n−5/2

∫ π

−π

1

|1 − reiθ |2 dθ

� C

(1 − r2)n−3/2
.

Hence as ε → 0,

|I2(ρ, ε)| � C
∫ √

2ε2−ε4

t2n−3 1

t2n−3
dt � Cε → 0.

Now we prove that if ρ → 1 − 0, then I3(ρ, ε) has a uniform bound for ε near 0.
Similar to the above integral, we have

I3(ρ, ε) =
∫

S(ζ, ε)

Hb(ρζ, ξ)dσ(ξ)

=
∫

vv′�2ε2−ε4

∫ a

−a
(tn−1φb(t))

(n−1)
∣∣∣
t=ρreiθ

dθdv

= 1

i

∫

vv′�2ε2−ε4

∫ ρreia

ρre−ia

(tn−1φb(t))(n−1)

t
dtdv.

Using integration by parts, the inner product for the variable t reduces to
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[ n−1∑

k=1

(k − 1)! (t
n−1φb(t))(n−1−k)

t k

]ρreia

ρre−ia
+ (n − 1)!

∫ ρreia

ρre−ia

φb(t)

t
dt

=
n−1∑

k=1

[
Jk(t)

]ρreia

ρre−ia
+ L(r, a).

We first estimate the integral of Jk . We have

∫

vv′�2ε2−ε4
Jk(ρre

±ia)dv � C
∫

vv′�2ε2−ε4

1

|1 − ρre±ia|n−k
dv.

It can be directly verified that

|1 − ρre±ia| � |1 − re±ia| = ε2.

So the above integral is dominated by

1

ε2n−2k

∫

vv′�2ε2−ε4
dv � 1

ε2n−2k

∫ √
2ε2−ε4

0
t2n−3dt

� Cε2k−2,

where the terms are bounded when k = 1, tends to zero when k � 2. When
ρ → 1 − 0, the existence of the limit can be deduced from the Lebesgue dominated
convergence theorem.

Now,

(n − 1)!
∫ ρreia

ρre−ia

φb(t)

t
dt = (n − 1)!i

∫ a

−a
φb(t)

∣∣∣
t=ρreiθ

dθ.

By Cauchy’s theorem and the estimate of φb, we can prove that for any ρ → 1 − 0,
the above is a bounded function. This implies that

lim
ε→0

∫

vv′�2ε2−ε4
L(ρr, a)dv = 0.

At last we obtain lim
ρ→1−0

I3(ρ, ε) exists and is bounded for small ε > 0. This

proves Theorem 8.1.3. �

Remark 8.1.2 A corollary of (8.14) is

d(ζ, ξ) � |ζ − ξ |1/2,

which is not used in the proof.
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Theorem 8.1.4 The operator Mb can be extended a bounded operator from L p(∂B)

to L p(∂B), 1 < p < ∞, and from L1(∂B) to weak L1(∂B).

Proof The boundedness of Mb = MbP from L2(∂B) to H 2(∂B) is a direct corollary
of the orthogonality of the function system {pkν(ξ)}. We only prove the operator is
bounded from L1(∂B) to weak −L1(∂B), that is, the operator is weak (1,1) type.
For 1 < p < 2, the L p(∂B)−boundedness can be deduced from Marcinkiewicz’s
interpolation. For 2 < p < ∞, the L p−boundedness can be obtained by the property
of the kernel

Hb(ζ, ξ) = Hb(ξ, ζ )

and the bilinear pair

〈 f, g〉 =
∫

∂B
f (ζ )g(ζ )dσ(ζ ),

in the standard duality method.
The weak (1, 1) type boundedness of Mb is based on a Hömander type inequality.

The proof given below is different from that of the Cauchy integral in [3]. We will
use the non-tangential approach regions

Dα(ζ ) =
{
z ∈ C

n : |1 − zζ ′| <
a

2
(1 − |z|2)

}
, ζ ∈ ∂B, a > 1.

�

We shall prove

Lemma 8.1.1 Assume that ξ , ζ , η ∈ ∂B, d(ξ, ζ ) < δ, d(ξ, η) > 2δ, and z ∈
Dα(η). Then ∣∣Hb(z, ξ) − Hb(z, ζ )

∣∣ � δCα|1 − ξη′|−n−1/2.

Proof By the estimate

∣∣∣
(
rn−1φb(r)

)(n)∣∣∣ � Cω

|1 − r |n+1
,

and the mean value theorem, for some t ∈ (0, 1), the real part

∣∣Re(rn−1φb(r))
(n−1) |r=zξ ′ −Re(rn−1φb(r))

(n−1) |r=zζ ′
∣∣ (8.17)

�
∣∣Re(rn−1φb(r))

(n) |r=zw′
∣∣ · |zξ ′ − zζ ′|

� Cω|zξ ′ − zζ ′|
|1 − zw′

t |n+1
,

where wt = tξ ′ + (1 − t)ζ ′ ∈ B.
The imaginary part satisfies a similar inequality.
Denote by ξt the projection onto ∂B of ωt . We can easily prove
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(i) as δ → 0, |ξt − wt | = 1 − |zt | = A(t) → 0 ;
(ii) ξt ∈ S(ξ, δ) ∩ S(ζ, δ).

It follows from (i) that ξt = 1
1−A(t)wt . Because Dα(η) is an open set, for small δ > 0,

i.e., 0 < δ � δ0, we have zt = (1 − A(t))z ∈ Dα(η). We write

|1 − zw′
t | = |1 − ztξ ′

t |. (8.18)

On the other hand, by (4) on page 92 of [3], we have

|zξ ′ − zζ ′| = 1

1 − A(t)
|ztξ ′ − ztζ ′| (8.19)

� 1

1 − A(t)

(
|ztξ ′ − ztξ ′

t | + |ztζ ′ − ztξ ′
t |
)

� 6

1 − A(t)
δα1/2|1 − ztξ ′

t |1/2

� δCα|1 − ztξ ′
t |1/2.

By (3) on page 92 of [3], we have

|1 − ztξ ′
t |−1 � 16α|1 − ξη′|−1. (8.20)

The relations (8.18)–(8.20) imply that for δ � δ0, the last part of the inequality (8.17)
is dominated by δCα|1 − ξη′|−n−1/2.

For δ � δ0, on the right hand side of the desired inequality,

δ|1 − ξη′|−n−1/2

has a positive lower boundwhich depends on δ0. Hence it is easy to chooseC = Cα, δ0

such that the inequality holds. This proves Lemma 8.1.1. �
The weak (1, 1) type boundedness is a special case of Theorem 8.1.5.

Theorem 8.1.5 For any α > 1, there exists a constant Cα < ∞ such that for any
f ∈ A and t > 0,

σ
(
{MαMb( f ) > t

}
� Cαt

−1‖ f ‖L1(∂B),

where
MαMb( f )(ζ ) = sup

{
|Mb( f )(z)| : z ∈ Dα(ζ )

}

is defined as the non-tangential maximal function of Mb( f ) in the region Dα(ζ ).

The proof of Theorem 8.1.5 is based on Lemma 8.1.1 and a covering lemma
[3]. To adapt to this case, we can make some modifications on the proof for the
corresponding result of the Cauchy integral operator in [3].
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It should be pointed out that the class of bounded operators Mb generates an
operator algebra. In fact, this operator class is equivalent to the Cauchy–Dunford
boundedholomorphic functional calculus of DP ,where D is the radialDirac operator
and P is the projection operator from L p to H p.

The operator Mb has the following properties, and hence the operator class
{Mb, b ∈ H∞(Sω)} is called the bounded holomorphic functional calculus.

Let b, b1, b2 ∈ H∞(Sω), and α1, α2 ∈ C, 1 < p < ∞, 0 < μ < ω. Then

‖Mb‖L p(∂B)→L p(∂B) � Cp, μ‖b‖L∞(Sμ),

Mb1b2 = Mb1 ◦ Mb2 ,

Mα1b1+α2b2 = α1Mb1 + α2Mb2 .

The first property follows from Theorem 8.1.4. The second and the third properties
can be obtained by the Taylor series expansion of test functions.

Denote by
R(λ, DP) = (λI − DP)−1

the resolvent operator of DP at λ ∈ C. For λ /∈ [0, ∞), we prove

R(λ, DP) = M 1
λ−(·)

.

In fact, by the relation

DP( f )(ζ ) =
∞∑

k=1

k
Nk∑

ν=1

ckν p
k
ν(ζ ), f ∈ A ,

where ckν are the Fourier coefficients of f , the Fouriermultiplier (λ − k) is associated
with the operatorλI − DP . Hence theFouriermultiplier (λ − k)−1 is associatedwith
R(λ, DP). The properties of the functional calculus in relation to the boundedness
indicate that for 1 < p < ∞,

‖R(λ, DP)‖L p(∂B)→L p(∂B) � Cμ

|λ| , λ /∈ Sμ.

By this estimate, for a function b ∈ H∞(Sω) with good decay properties at both the
origin and the infinity, the Cauchy–Dunford integral

b(DP) f = 1

2π i

∫

I I
b(λ)R(λ, DP)dλ f

is well defined and is a bounded operator, where I I denotes the path containing two
rays in
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Sω =
{
s exp(iθ) : s is from ∞ to 0

} ⋃ {
s exp(−iθ) : s is from 0 to ∞

}
, 0 < θ < ω.

Such functions b generate a dense subclass of H∞(Sω) in the sense of the covering
lemma of [17]. By this lemma, we can generalize the definition given by the Cauchy–
Dunford integral and define a functional calculus for b ∈ H∞(Sω).

Now we prove b(DP) = Mb. Assume that b has good decay properties at both
the origin and at the infinity, and f ∈ A . In the following deductions, the order of
the integral and the summation can be exchanged. Then we have

b(DP)( f )(ζ ) = 1

2π i

∫

I I
b(λ)R(λ, DP)dλ f (ζ )

= 1

2π i

∫

I I
b(λ)

∞∑

k=1

(λ − k)−1
Np∑

ν=1

ckν p
k
ν(ζ )dλ

=
∞∑

k=1

(
1

2π i

∫

I I
b(λ)(λ − k)−1dλ

) Np∑

ν=1

ckν p
k
ν(ζ )

=
∞∑

k=1

b(k)
Np∑

ν=1

ckν p
k
ν(ζ )

= Mb( f )(ζ ).

It follows from the estimate of the norm of the resolvent operator R(λ, DP)

that DP is a type ω operator (see [17]). For the bilinear pair and the dual pair
(L2(∂B), L2(∂B)) used in the proof of Theorem 8.1.4, the operator DP equals to
the dual operator on L2(∂B), that is,

〈
DP( f ), g

〉
=

〈
f, DP(g)

〉
, f, g ∈ A ,

which can be deduced from the Parseval identity

∞∑

k=0

Nk∑

ν=1

ckνc′
kν =

∫

∂B
f (ζ )g(ζ )dσ(ζ ).

The Parseval identity follows from the orthogonality of {pkν}, where ckν and c′
kν are

the Fourier coefficients of f and g, respectively.
Under the same bilinear pair, a counterpart result holds for the Banach space dual

pair (L p(∂B), L p′
(∂B)), 1 < p < ∞, 1/p + 1/p′ = 1. In [17, 18], the authors

studied the properties on Hilbert spaces and Banach spaces for the generalized type
ω operator. It can be verified, without difficulty, that the results of [17, 18] hold for
the operator DP .
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8.2 Fractional Multipliers on the Unit Complex Sphere

The contents of this section is an extension of the results in Sect. 8.1. We state some
new developments of the study on unbounded Fouriermultipliers on the unit complex
ball, see Li–Qian–Lv [19]. Let

Sω =
{
z ∈ C | z �= 0 and | arg z| < ω

}
,

Sω(π) =
{
z ∈ C | z �= 0, |Re(z)| � π and | arg(±z)| < ω

}
,

Wω(π) =
{
z ∈ C | z �= 0, |Re(z)| � π and Im(z) > 0

} ⋃
Sω(π),

Hω =
{
z ∈ C | z = eiω, ω ∈ Wω(π)

}
.

We also need the following function space:

Definition 8.2.1 Let −1 < s < ∞. Hs(Sω) is defined as the set of all functions in
Sω which satisfy the following conditions:

(1) for |z| < 1, b is bounded;
(2) |b(z)| � Cμ|z|s, z ∈ Sμ, 0 < μ < ω.

Remark 8.2.1 The spaces Hs(Sω) are extensions of H∞(Sω) introduced byA.McIn-
tosh et al. For further information on H∞(Sω), see [10, 17, 20, 21] and the reference
therein.

Letting

ϕb(z) =
∞∑

k=1

b(k)zk .

we have the following result.

Lemma 8.2.1 Let b ∈ Hs(Sω), −1 < s < ∞. Then ϕb can be extended holomor-
phically to Hω. In addition, for 0 < μ < μ′ < ω and l = 0, 1, 2, . . . ,

∣∣∣
(
z
d

dz

)l
ϕb(z)

∣∣∣ � Cμ′l!
δl(μ,μ′) |1 − z|l+1+s , z ∈ Hμ,

where δ(μ,μ′) = min{1/2, tan(μ,μ′} and Cμ′ is the constant in Definition 8.2.1.

Proof Let

Vω =
{
z ∈ C : Im(z) > 0

} ⋃
Sω

⋃
(−Sω),

Wω = Vω ∩
{
z ∈ C : −π � Rez � π

}

and ρθ is the ray r exp(iθ), 0 < r < ∞, where θ is chosen such that ρθ � Sω.Define
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�b(z) = 1

2π

∫

ρ(θ)

exp(iξ z)b(ξ)dξ, z ∈ Vω,

where as ξ → ∞, exp(i zξ) is decreasing exponentially along ρθ . Then we obtain

∣∣|z|1+s �b(z)
∣∣ =

∣∣∣∣
1

2π

∫

ρ(θ)

exp(iξ z) |z|1+s b(ξ)dz

∣∣∣∣ (8.21)

� Cμ′

2π

∫ ∞

0
exp(−r |z| sin(θ + arg z))(r |z|)sd(r |z|)s

� Cμ′ .

Hence we get |�b(z)| � 1/|z|1+s . Define

ψb(z) = 2π
∞∑

n=−∞
�b(z + 2nπ), z ∈

∞⋃

n=−∞
(2nπ + Wω).

It is easy to see thatψb is holomorphic, 2π -periodic and satisfies |ψb(z)| � C/|z|1+s .

Let

ϕb(z) = ψb

(
log z

i

)
.

For z ∈ exp(i Sω), we write z = eiu , where u ∈ Sω. Then sin(|u|/2) � c|u|/2. This
implies that 2 − 2 cos |u| � c|u|2 and |1 − ei |u|| � c|u|. Therefore, (8.21) yields

|ϕb(z)| � Cμ′

| log z|1+s
� Cμ′

| log |z||1+s

� Cμ′

|1 − z|1+s
.

Take the ball

B(z, r) =
{
ξ : |z − ξ | < δ(μ,μ′)|1 − z|

}
.

By Cauchy’s formula, we have

ϕ
(l)
b (z) = l!

2π i

∫

∂B(z,r)

ϕ(η)

(η − z)1+l
dη.

For any η ∈ ∂B(z, r), we have |η − z| � (1 − δ(μ,μ′))|1 − z|. Then we obtain
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∣∣∣ϕ(l)
b (z)

∣∣∣ �
Cl!‖b‖Hs (Scω)

δl(μ,μ′)|1 − z|l
∣∣∣
∫

∂B(z,r)

1

|1 − η|1+s
dη

∣∣∣

� Cl!
δl(μ,μ′)|1 − z|l+1+s

.

�
Theorem 8.2.1 Let b ∈ Hs(Sω) and

Hb(z, ξ̄ ) =
∞∑

k=1

b(k)
Nk∑

v=1

pkv (z)p
k
v (ξ), z ∈ Bn, ξ ∈ ∂Bn.

Then for z ∈ Bn, ξ ∈ ∂Bn such that zξ̄ ′ ∈ Hω,

Hb(z, ξ) = 1

(n − 1)!ω2n−1
(rn−1ϕb(r))

(n−1)

∣∣∣∣
r=zξ̄ ′

is holomorphic, where ϕb is the function defined in Lemma 8.2.1. In addition, for
0 < μ < μ′ < ω and l = 0, 1, 2, . . . ,

∣∣Dl
zHb(z, ξ̄ )

∣∣ � Cμ′l!
δl(μ,μ′)

∣∣1 − zξ̄ ′∣∣n+l+s , zξ̄ ′ ∈ Hμ,

where δ(μ,μ′) = min{1/2, tan(μ′ − μ)} and Cμ′ is the constant in the definition of
the function space Hs(Sω).

Proof We know that ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕb(z) =
∞∑

k=1

b(k)zk,

rn−1ϕb(r) =
∞∑

k=1

b(k)rn+k−1.

Then we have

1

(n − 1)!
(
rn−1ϕb(r)

)(n−1) = 1

(n − 1)!
∞∑

k=1

b(k)(n + k − 1)(n + k − 2) . . . (k + 1)rk

=
∞∑

k=1

b(k)rk
(n + k − 1)!
(n − 1)!k!

=
∞∑

k=1

(n + k − 1)(n + k − 2)(n + 1)n

k! b(k)rk .

Therefore,
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1

(n − 1)!
(
rn−1ϕb(r)

)(n−1)
∣∣∣∣
r=zξ̄ ′

=
∞∑

k=1

b(k)
(n + k − 1)(n + k − 2)(n + 1)n

k! (zξ̄ ′)k

= ω2n−1

∞∑

k=1

b(k)
Nk∑

v=1

pkv (z)p
k
v (ξ)

= ω2n−1Hb(z, ξ̄ ).

�

By [12, Theorem 3], we can get the following result.

Theorem 8.2.2 Let s be a negative integer. If b ∈ Hs(Sω,±),

Hb(z, ξ) =
∞∑

k=1

b(k)
Nk∑

v=1

pkv (z)p
l
μ(ξ), z ∈ B, ξ ∈ ∂Bn,

then
∣∣Dl

zHb(z, ξ̄ )
∣∣ �

Cμl!
[| ln |1 − zξ̄ ′|| + 1

]

δl(μ,μ′)|1 − zξ̄ ′|n+l+s
.

Proof The proof is similar to that of Theorem 8.2.1. We omit the details. �

Given b ∈ Hs(Sω). We define the Fourier multiplier operator Mb : A → A as

Mb( f )(ξ) =
∞∑

k=1

b(k)
Nk∑

v=0

ckv p
k
v (ξ), ξ ∈ ∂Bn,

where {ckv} is the Fourier coefficient of the test function f ∈ A.
For the above operator Mb, there holds a Plemelj type formula.

Theorem 8.2.3 Let b ∈ Hs(Sω), s > 0. Take b1(z) = z−s1b(z), where s1 = [s] + 1.
The operator Mb has a singular integral expression. Precisely, for f ∈ A,

Mb( f )(ξ) = lim
ε→0

[ ∫

Sc(ξ,ε)

Hb1(ξ, η)Ds1
η f (η)dσ(η) + (Ds1

z f )(ξ)

∫

Sc(ξ,ε)

Hb1(ξ, η)dσ(η)
]
,

where
∫
S(ξ,ε)

Hb1(ξ, η)dσ(η) is a bounded function of ξ ∈ ∂Bn and ε.

Proof Let

Mb( f )(ρξ) =
∞∑

k=1

b(k)
Nk∑

v=1

ckv p
k
v (ρξ), ξ ∈ ∂Bn,

where

ckv =
∫

∂B
pkv (η) f (η)dσ(η).
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We can see that

Dzz
[l] =

√
l!

l1!l2! · · · ln!
n∑

k=1

zk
∂

∂zk

(
zl11 z

l2
2 · · · zlnn

)

=
√

l!
l1!l2! · · · ln!

n∑

k=1

zklk z
l1
1 z

l2
2 · · · zlk−1

k−1z
lk−1
k zlk+1

k+1 · · · zlnn

=
√

l!
l1!l2! · · · ln!

( n∑

k=1

lk
)
zl11 z

l2
2 · · · zlnn

= lz[l],

which yields Dz pkv = kpkv . Then we have

Mb( f )(ρξ) =
∞∑

k=1

b(k)
Nk∑

v=1

∫

∂B
pkv (ρξ)pkv (η) f (η)dσ(η)

=
∞∑

k=1

b(k)
1

ks1

Nk∑

v=1

∫

∂B
pkv (ρξ)ks1 pkv (η) f (η)dσ(η)

=
∞∑

k=1

b(k)
1

ks1

Nk∑

v=1

∫

∂B
pkv (ρξ)Ds1

η pkv (η) f (η)dσ(η).

By integration by parts,

Mb( f )(ρξ) =
∞∑

k=1

b(k)
1

ks1

Nk∑

v=1

∫

∂B
pkv (ρξ)pkv (η)(Ds1

η f )(η)dσ(η)

=
∞∑

k=1

b1(k)
Nk∑

v=1

∫

∂B
pkv (ρξ)pkv (η)(Ds1

η f )(η)dσ(η).

For any ε > 0, we have

Mb( f )(ρξ) =
∫

Sc(ξ,ε)

Hb1(ρξ, η̄)Ds1
η f (η)dσ(η)

+
∫

S(ξ,ε)

Hb1(ρξ, η̄)(−Ds1
ξ f (ξ) + Ds1

η f (η))dσ(η)

+ Ds1
ξ f (ξ)

∫

S(ξ,ε)

Hb1(ρξ, η̄)dσ(η)

=: I1(ρ, ε) + I2(ρ, ε) + Ds1
ξ f (ξ)I3(ρ, ε),

where
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I1(ρ, ε) =
∫

Sc(ξ,ε)

Hb1(ρξ, η̄)Ds1
η f (η)dσ(η),

I2(ρ, ε) =
∫

S(ξ,ε)

Hb1(ρξ, η̄)(−Ds1
ξ f (ξ) + Ds1

η f (η))dσ(η),

I3(ρ, ε) =
∫

S(ξ,ε)

Hb1(ρξ, η̄)dσ(η).

For ρ → 1 − 0, we have

lim
ρ→1−0

I1(ρ, ε) = lim
ρ→1−0

∫

Sc(ξ,ε)

Hb1(ρξ, η̄)Ds1
η f (η)dσ(η)

=
∫

Sc(ξ,ε)

Hb1(ξ, η̄)Ds1
η f (η)dσ(η).

Now we consider I2(ρ, ε). Let ξ = (1, 0, . . . , 0). For η ∈ ∂Bn , write

{
η1 = reiθ , η2 = v2, η3 = v3, . . . , ηn = vn,

v = [v2, v3, . . . , vn].

For such η ∈ ∂Bn , vv̄′ = 1 − r2. Without loss of generality, assume that ξ = 1. We
get ∣∣1 − ξ η̄′∣∣1/2 = ∣∣1 − reiθ

∣∣1/2 = [(1 − r cos θ)2 + (r sin θ)2]1/4 � ε.

This implies

cos θ � 1 + r2 − ε4

2r
.

The above estimate indicates

S(ξ, ε) =
{
η | vv̄′ = 1 − r2, cos θ � 1 + r2 − ε4

2r

}
.

Because
1 + r2 − ε4

2r
� cos θ � 1,

we obtain 1 − r � ε2 and

vv̄′ = 1 − r2 � 1 − (1 − ε2)2 = 2ε2 − ε4.

Set

a = a(r, ε) = arccos

(
1 + r2 − ε4

2r

)
.
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Because (1 − r)2 � ε4 and 1 − y = O(arccos2 y), we get a = O(ε2). It is easy to
see

|ξ − η|2 = |1 − reiθ |2 +
n∑

k=2

|vk |2

= (1 + r2 − 2r cos θ) + (1 − r2)

= 2 − 2r cos θ

and

d4(ξ, η) = 1 + r2 − 2r cos θ

= (2 − 2r cos θ) − (1 − r2)

= |ξ − η|2 − (1 + r)(1 − r),

that is, d2(ξ, η) � |ξ − η|. Since

d2(ξ, η) = [1 + r2 − 2r cos θ ]1/2 � 1 − r,

we have 1 − r � d2(ξ, η), and thus

|ξ − η|2 � d4(ξ, η) + (1 + r)d2(ξ, η).

The fact that d2(ξ, η) � 2 implies

|ξ − η|2 � 2d2(ξ, η) + 2d2(ξ, η) = 4d2(ξ, η),

that is, |ξ − η| � 2d(ξ, η). Since f ∈ A, we have

| f (ξ) − f (η)| � C |ξ − η| � Cd(ξ, η).

For ρ ∈ (0, 1)

∣∣∣I2(ρ, ε)

∣∣∣ � C
∫

S(ξ,ε)

∣∣∣Hb1(ρξ, η̄)

∣∣∣
∣∣∣ f (ξ) − f (η)

∣∣∣dσ(η)

� C
∫

S(ξ,ε)

d(ξ, η)

|1 − ξ η̄′|n dσ(η)

� C
∫

vv̄′�2ε2−ε4

∫ a

−a

1

|1 − reiθ |n−1/2
dθdv.

For n = 2,
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1

2a

∫ a

−a

1
∣∣∣1 − reiθ

∣∣∣
2−1/2 dθ �

( 1

2a

∫ a

−a

1
∣∣∣1 − reiθ

∣∣∣
2 dθ

)3/4

�
( 1

2a

∫ π

−π

1
∣∣∣1 − reiθ

∣∣∣
2 dθ

)3/4

�
( 1

2a

)3/4 1

(1 − r2)3/4
.

Then we obtain

|I2(ρ, ε)| �
∫

vv̄′�2ε2−ε4
a1/4

1
(
1 − r2

)3/4 dv

� ε1/2
∫

vv̄′�2ε2−ε4

1

(vv̄′)3/4
dv

= ε1/2
∫ √

2ε2−ε4

0

t

t3/2
dt

� ε → 0.

For n > 2, we have

∫ a

−a

1
∣∣1 − reiθ

∣∣n−1/2 dθ � C
∫ a

−a

∣∣1 − r2
∣∣n−1/2−2

∣∣1 − reiθ
∣∣n−1/2

1
∣∣1 − r2

∣∣n−1/2−2 dθ

� C
1

∣∣1 − r2
∣∣n−1/2−1

∫ π

−π

1
∣∣1 − reiθ

∣∣2
dθ

� C
1

∣∣1 − r2
∣∣n−1/2−1 .

Then we obtain

|I2(ρ, ε)| �
∫ √

2ε2−ε4

0
t2n−3 1

t2n−3
dt �

√
2ε2 → 0.

Now we prove that if ρ → 1 − 0, I3(ρ, ε) has a uniformly bounded limit for ε near
0. Integrating as above, we can deduce that

I3(ρ, ε) =
∫

S(ξ,ε)

Hb1(ρξ, η̄)dσ(η)

=
∫

vv̄′�2ε2−ε4

∫ a

−a

(
tn−1ϕb1(t)

)(n−1)
∣∣∣
t=ρreiθ

dθdv.
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Let s = ρreiθ . Then ds = isdθ. We can obtain

I3(ρ, ε) = −i
∫

vv̄′�2ε2−ε4

∫ ρreia

ρre−ia

(
sn−1ϕb1(s)

)(n−1)
dsdv.

Using integration by parts, we can see that the inner integral for the variable t reduces
to

∫ a

−a

(
tn−1ϕb1(t)

)(n−1)
∣∣∣
t=ρreiθ

dθ

=
[
n−1∑

k=1

(k − 1)!
(
tn−1ϕb1(t)

)(n−k−1)

t k

]∣∣∣∣∣

ρreia

ρre−ia

+ (n − 1)!
∫ ρreia

ρre−ia

ϕb1(t)

t
dt

=
n−1∑

k=1

[Jk(t)]
ρreia

ρre−ia + L(r, a).

We first estimate Jk as

∫

vv̄′�2ε2−ε4
Jk

(
ρre±ia

)
dv

� C
∫

vv̄′�2ε2−ε4
(k − 1)!

(
ρre±ia

)k
(
ρre±ia

)k
1

∣∣1 − ρre±ia
∣∣n−k dv

� C
∫

vv̄′�2ε2−ε4

1
∣∣1 − ρre±ia

∣∣n−k dv.

Since
∣∣1 − ρre±ia

∣∣2 = 1 + ρ2r2 − 2ρr cos a, we have

∣∣1 − ρre±ia
∣∣2 − ∣∣1 − re±ia

∣∣2 = ρ2r2 − 2ρr cos a − (r2 − 2r cos a)

= r2(ρ2 − 1) + 2r cos a(1 − ρ).

It follows from the relation cos a = (1 + r2 − ε4)/2r that we have

∣∣1 − ρre±ia
∣∣2 − ∣∣1 − re±ia

∣∣2 = r2(ρ2 − 1) + (1 + r2 − ε4)(1 − ρ)

= (1 − ρ)[1 + r2 − ε4 − (1 + ρ)r2]
= (1 − ρ)(1 − ρr2 − ε4) > 0.

Therefore, ∣∣1 − ρre±ia
∣∣ �

∣∣1 − re±ia
∣∣ = ε2.

For any fixed k, as ε → 0, we obtain
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∫

vv̄′�2ε2−ε4
Jk

(
ρre±ia

)
dv � C

1

ε2n−2k

∫

vv̄′�2ε2−ε4
dv

� C
1

ε2n−2k

∫ √
2ε2−ε4

0
t2n−3dt

� C
ε2n−2

ε2n−2k
� 1.

On the other hand, as ρ → 0,

(n − 1)!
∫ ρreia

ρre−ia

ϕb1(t)

t
dt = i(n − 1)!

∫ a

−a
ϕb1(t)

∣∣
t=ρreiθ dθ

� C,

which implies ∫

vv̄′�2ε2−ε4
L(ρr, a)dv.

�

8.3 Fourier Multipliers and Sobolev Spaces on Unit
Complex Sphere

We define Sobolev spaces on the n-complex unit sphere ∂Bn through defining as
follows. We define the fractional integrals Is on ∂Bn . Let

f (z) =
∞∑

k=0

Nk∑

v=0

ckv p
k
v (z).

For −∞ < s < ∞, the operator Is is defined as

Is f (z) =
∞∑

k=0

Nk∑

v=0

ksckv p
k
v (z).

For s ∈ Z+, we see that the operator Is reduces to the high-order ordinary differ-
ential operator.

Theorem 8.3.1 Let s ∈ Z+. Ds
z = Is on L2(∂Bn).

Proof Without loss of generalization, we assume that f ∈ A. Then

f (z) =
∞∑

k=0

Nk∑

v=0

ckv p
k
v (z),
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where ckv is the Fourier coefficient of f :

ckv =
∫

∂Bn

pkv (ξ) f (ξ)dσ(ξ).

So

Ds
z f (z) =

∞∑

k=0

Nk∑

v=0

∫

∂Bn

pkv (ξ) f (ξ)dσ(ξ)Ds
z (p

k
v )(z)

=
∞∑

k=0

ks
Nk∑

v=0

∫

∂Bn

pkv (ξ) f (ξ)dσ(ξ)pkv (z).

�

Definition 8.3.1 Let s ∈ [0,+∞). The Sobolev norm ‖ · ‖W 2,s (∂Bn) on ∂Bn is defined
as

‖ f ‖W 2,s (∂Bn) =: ‖Is f ‖2 < ∞.

The Sobolev space on ∂Bn is defined as the closure ofA under the norm ‖ · ‖W 2,s (∂Bn),
that is,

W 2,s(∂Bn) = A‖·‖W2,s (∂Bn ) .

Remark 8.3.1 According to Plancherel’s theorem, f ∈ W 2,s(∂Bn) if and only if

( ∞∑

k=1

k2s
Nk∑

v=0

|ckv|2
)1/2

< ∞.

Now we study the boundedness properties of Mb on Sobolev spaces.

Theorem 8.3.2 Givenr, s ∈ [0,+∞) and b ∈ Hs(Sω). TheFouriermultiplier oper-
ator Mb is bounded from W 2,r+s(∂Bn) to W 2,r (∂Bn).

Proof Set

Is f (z) =
∞∑

k=0

Nk∑

v=0

cskv p
k
v (z).

By the orthogonality of {pkv }, we see that cskv = ksckv. Let b(z) = z−sb(z). Because
b ∈ Hs(Sω), we have b1 ∈ H∞(Sω). This implies that
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Ir (Mb( f ))(ξ) =
∞∑

k=1

b(k)kr
Nk∑

v=0

ckv p
k
v (ξ)

=
∞∑

k=1

b1(k)k
r+s

Nk∑

v=0

ckv p
k
v (ξ)

= Mb1(Ir+s f )(ξ).

Finally, by Theorem 8.1.4, we get

‖Mb( f )‖W 2,r = ‖Ir (Mb( f ))‖2
= ‖Mb1(Ir+s f )‖2
� C‖Ir+s f ‖2.

This completes the proof of Theorem 8.3.2.
�
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