
Chapter 7
The Fractional Fourier Multipliers
on Lipschitz Curves and Surfaces

The main contents of this chapter are based on some new developments on the
holomorphic Fourier multipliers which are obtained by the two authors in recent
years, see the author’s paper joint with Leong [1] and the joint work [2]. In the
above chapters, we state the convolution singular integral operators and the related
bounded holomorphic Fourier multipliers on the finite and infinite Lipschitz curves
and surfaces. Let Sc

μ,± and Sc
μ be the regions defined in Sect. 1.1. The multiplier b

belongs to the class H∞(Sc
μ,±) defined as

H∞(Sc
μ) =

{
b : Sc

μ → C : b± = bχ{z∈C: ±Rez>0} ∈ H∞(Sc
μ,±)
}
,

whereH∞(Sc
μ,±) is defined as the set of all holomorphic functionb satisfying |b(z)| �

Cν in any Sc
ν,±, 0 < ν < μ. A natural question is that whether we can establish

the corresponding theory of Fourier multiplier operators if b is dominated by a
polynomial?

On the other hand, in new progress of Clifford analysis studies, there exist some
exampleswhich can not be included in the theory of singular operator on theLipschitz
graph. We give the following example.

Example 7.0.1 In [3, 4], in order to investigate the so-called Photogenic-Dirac equa-
tion which have the singular-valued functional solution, D. Eelbode introduce the
Photogenic-Cauchy transform Cα

P on the unit sphere in Rn. To give the definition of
this transform, we state some backgrounds on this topic.

Let R1,n be the real orthogonal space with the orthogonal basis B1,n(ε, ej) =
{ε, e1, . . . , en} endowed with the quadratic form

Q1,n(T ,X ) = T 2 −
n∑

j=1

X 2
j = T 2 − R2,
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where we take

R = |X | =
⎛
⎝

n∑
j=1

X 2
j

⎞
⎠

1/2

.

The orthogonal space R
1,n is called the m-dimensional space-time, n denotes the

spatial dimension. The space-timeClifford algebraR1,n is generated by the following
multiplication rules: for all 1 � i, j � n, eiej + ejei = −2δij. For all i and ε2 = 1,
eiε + εei = 0. The vectors inR1,m, i.e., (m + 1)-tuples (T ,X ) or space-time vectors
is identified with the 1-vectors in R1,n under the canonical mapping

(T ,X ) = (T ,X1, . . . ,Xn) �−→ εT + X ∈ R1,n.

The Dirac operator on R
1,n is given by the vector derivative

D(T ,X )1,n = ε∂T −
n∑

j=1

ej∂Xj ,

which factorizes the wave operator �n = ∂2
T − �n on R

1,n as

�n =
⎛
⎝ε∂T −

n∑
j=1

ej∂Xj

⎞
⎠

2

.

For α + n � 0 and ω ∈ S
n−1, we consider the following Photogenic-Dirac equa-

tion
(ε∂T − ∂X )Fα,ω(T ,X ) = T α+n−1δ(Tω − X )

and take the transformation:

λ = T and x = X

T
= rξ ∈ Bn(1),

where Bn(1) is the unit sphere in Rn and |ξ | = 1. In [3], D. Eelbode proved that

Fα(x, ω) = (2α + n + 1)c(α, n)(ε + x)
(1 − r2)α+(n−1)/2

(1− < x, ω >)α+n

+ (α + n)c(α, n)(ε + ω)
(1 − r2)α+(n+1)/2

(1− < x, ω >)α+n+1
,

where c(α, n) is the constant depending on α and n. In addition, let f (ω) be any func-
tion defined on the sphere Sn−1. For all x ∈ Bn(1), the Photogenic-Cauchy transform
of f Cα

P [f ](x) is defined by
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Cα
P [f ](x) = 1

�n

∫

Sm−1
Fα(x, ω)ωf (ω)dω,

where �n is the surface area of the sphere Sn−1.
If we apply this transform Cα

P to the inner and outer spherical monogenic poly-
nomials Pk and Qk on R

n \ {0} and let r → 1−, we can obtain the boundary values
Cα
P [Pk ] ↑ and Cα

P [Qk ] ↑ as follows:

Cα
P [Pk ] ↑ (ξ) = 
(n/2 − 1/2)

8πn/1−1/2

(α + n + k){(α + n + k − 1) + (k − α)ξε}Pk(ξ)

(α + n/2 + 1/2)(α + n/2 − 1/2)
,

Cα
P [Qk ] ↑ (ξ) = 
(n/2 − 1/2)

8πn/1−1/2

(1 + α − k){(α − k) + (α + n + k − 1)ξε}Qk(ξ)

(α + n/2 + 1/2)(α + n/2 − 1/2)
.

It is obvious that the occurrence of

k2Pk(ξ), kPk(ξ), k2Qk(ξ), kQk(ξ)

indicates that for f ∈ L2(Sn−1), the boundary value Cα
P [f ] ↑ does not belong to

L2(Sn−1). Hence, in order to obtain the boundedness of this operator, we need to
restrict f into a space smaller that L2(Sn−1). In [3], the author replaced L2(Sn−1)

by a special Sobolev space and obtained the boundedness of Cα
P [f ] ↑. Based on

the above result, in this chapter, we consider the Fourier multiplier b satisfying
|b(ξ)| � C|ξ + 1|s in some region for s �= 0 and study the boundedness of the inte-
gral operators associated with these multipliers.

Remark 7.0.2 Particularly, if we take some special bk in the definition of the Fourier
multiplier (see Definition 7.3.2 and the remark below), we can see that the multiplier
operator becomes the boundary value of the Cauchy transform on the hyperbolic
sphere which was studied in [3, 4].

Compared with the Photogenic-Cauchy transform in Example 7.0.1, there exist
two difficulties for the study of Fourier multipliers:

(1) The kernel Fα(x, ω) of the Cauchy transform Cα
P can be derived from the funda-

mental solution of the wave operator �n, while the kernel of the Fourier multiplier
does not have an explicit expression.
(2) On the unit sphere in R

n, the Plancherel theorem holds. After obtaining the
decomposition ofCα

P (f )with respect to the spherical harmonics, the author of [3] can
deduce easily that if f belongs to some Sobolev spaces, the function Cα

P (f ) belongs
to L2(Sn−1). However, in the case of Lipschitz surfaces, there is no corresponding
Plancherel theorem, and the method of [3] is invalid.

To overcome the above difficulties, we use the Fueter theorem to estimate the
kernel of the multiplier operator. We prove that the kernel of the Fourier multiplier
operator has a decay with the form of a polynomial of degree −(n + s). The proof
is similar to that of Chap. 6 but with some modifications. When we deal with the



224 7 The Fractional Fourier Multipliers on Lipschitz Curves and Surfaces

case s < 0, the function |x|s is unbounded in the domain Hω,+. After getting the
estimate of the kernel on Hω,−, we can not use the Kelvin inversion to obtain the
corresponding estimate on Hω,+, see Theorem 7.2.2 for details.

7.1 The Fractional Fourier Multipliers on Lipschitz Curves

In this section, we generalize the results in Chaps. 1 and 2 to the following cases:
|bn| � Cns, −∞ < s < ∞. Such result corresponds to the fractional integrations
and differentials on the closed Lipschitz curve and has a closed relation with the
boundary value problem on Lipschitz domains.

We still use the following sets in the complex plane C. For ω ∈ (0, π/2], write

Sω,± =
{
z ∈ C : | arg(±z)| < ω

}

as the sets defined in Definition 1.2.1. Define the sets

Wω,± =
{
z ∈ Z : |Re(z)| � π and Im(±z) > 0

}
∪ Sω,

see the following graph (Figs. 7.1 and 7.2):
The periodization of Wω,± is the following heart shaped regions:

Fig. 7.1 Wω,+

Fig. 7.2 Wω,−
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Fig. 7.3 Cω,+

Fig. 7.4 Cω,−

Cω,± =
{
z = exp(iη) ∈ C : η ∈ Wω,±

}
,

which are shown in the following figure (Figs. 7.3 and 7.4):
Define

Sω = Sω,+ ∪ Sω,−,

Wω = Wω,+ ∩ Wω,−,

and
Cω = Cω,+ ∩ Cω,−.

Let O be a set in the complex plane. If rz ∈ O for z ∈ O and all 0 < r � 1,
we call O the inner starlike region with the pole zero. If rz ∈ O for z ∈ O and all
1 � r < ∞, we callO the outer starlike region with the pole zero. For ω ∈ (0, π/2],
Cω,+ is heart-shaped and inner starlikewith the pole zero, whileCω,− can be regarded
as the complement of a heart shaped region and an outer starlike region with pole
zero.

The following function spaces defined on the sectors will be used in the rest of
this section. For −∞ < s < ∞,
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Hs(Sω,±) =
{
b : Sω,± → C | b is holomorphic and satisfies

|b(z)| � Cμ|z ± 1|s in every Sμ,±, 0 < μ < ω
}
.

For s = −1,−2, . . ., we will also use another class of function spaces.

Hs
ln(Sω,±) =

{
b : Sω,± → C | b are holomorphic and satisfies

|b(z)| � Cμ|z ± 2|s ln |z ± 2| in every Sμ,±, 0 < μ < ω
}
.

On the double sectors, we can define the corresponding function spaces. For −∞ <

s < ∞,

Hs(Sω) =
{
b : Sω → C | b± ∈ Hs(Sω,±), where b± = bχ{z∈C,±Rez>0}

}

and

Hs
ln(Sω) =

{
b : Sω → C | b± ∈ Hs

ln(Sω,±), where b± = bχ{z∈C,±Rez>0}
}
,

where χE denotes the characteristic function of the set E.
Hence, the function spaces Hs(Sω) and Hs

ln(Sω) defined above consist of the
functions on sectors which are bounded near zero and dominated by Cμ|z|s and
Cμ|z|s ln |z| at infinity in any smaller sectors than those in which the functions are
holomorphically defined.

If a function defined by the Laurent series converges to a holomorphic function
in a region, then this function is called holomorphically defined. In this case, by the
Abel theorem, the power series part is holomorphically defined in the related inner
starlike region with the pole zero. The negative power series part is holomorphically
defined in the related outer starlike region with the pole zero.

For s > −1, define

Ks(Cω,±) =
{
φ : Cω,± → C | φ is holomorphic and satisfies

|φ(z)| � Cμ

|1 − z|1+s
in any Cμ,±, 0 < μ < ω

}

and

Ks(Cω) =
{
φ : Cω → C | φ is holomorphic and satisfies

|φ(z)| � Cμ

|1 − z|1+s
in any Cμ,±, 0 < μ < ω

}
.
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For−∞ < s � −1, we only give the definition ofKs(Cω,+). For−∞ < s � −1,
the spaces Ks(Cω,−) and Ks(Sω) can be defined similarly. Assume

(i) b = {bn}∞n=0 ∈ l∞;

(ii) φb(z) =
∞∑
n=0

bnzn is holomorphically defined in Cω,+;

(iii) The series φb(1) =
∞∑
n=0

bn is convergent.

Form the difference

φb(z) − φb(1) = b1(z − 1) + b2(z
2 − 1) + · · · + bn(z

n − 1) + · · · + (z − 1)φI(b)(z),

where

I(b) =
( ∞∑

k=n

bk

)∞

n=1

∈ l∞

and

φI(b)(z) =
∞∑
n=1

( ∞∑
k=n

bk

)
zn−1.

Then by (ii), φI(b) is holomorphic in Cω,+.
The sequence I(b) constructed above may or may not satisfy the condition (iii).

If this sequence satisfies (iii), then it satisfies (i) automatically. Hence (I(b), φI(b))

satisfies (i), (ii) and (iii). Thenwe continue to consider if the sequence I(I(b)) = I2(b)
satisfies (iii), and so on. Write

I(I n(b)) = I n+1(b) and I0(b) = b.

If the above procedure can be applied at most k times, then the pairs

(I j(b), φI j(b)), 0 � j � k,

all satisfy (i), (ii) and (iii), but I k+1(b) does not satisfy (iii). In this case, we have

φb(z) = φb(1) + (z − 1)φI(b)(1) + · · · + (z − 1)kφI k (b)(z). (7.1)

Now we begin to define the function class Ks(Cω,+), −∞ < s � −1:

Ks(Cω,+) = {φb : Cω,+ → C | b ∈ l∞, the above procedure can be applied at most ks times ,

where ks = [1 − s] or [−s] depending on whether s is an integer or not,

and in any Cμ,+, 0 < μ < ω, |(z − 1)ksφI ks (b)(z)| � Cμ

|z − 1|1+s

}
,
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where for α > 0, [α] denotes the largest integer which does not exceed α, that is,
[α] = max{n ∈ Z | n � α}.

For s = −1,−2, . . . , we consider another class of functions

Ks
ln(Cω,+) = {φb : Cω,+ → C | b ∈ l∞, the above procedure can be applied at most − s − 1

times, and in any Cμ,+, 0 < μ < ω, |(z − 1)−s−1φI−s−1(b)(z)| � C
| ln |z − 1||
|z − 1|1+s

}
.

It is easy to see that the above spaces {Hs(Sω,±)} and {Ks(Cω,±)} are increasing
classes along with s → ∞. Now we state the main results of this section. In the rest
of this section, the symbol “±” should be understood as either all + or all −.

Theorem 7.1.1 Let −∞ < s < ∞, s �= −1,−2, . . ., b ∈ Hs(Sω,±), and φ(z) =
±∞∑
n=±1

b(n)zn. Then φ ∈ Ks(Cω,±).

Proof We first consider the case 0 � s < ∞. Define

�(z) = 1

2π

∫

ρθ

exp(izζ )b(ζ )dζ, z ∈ Vω,+,

where
Vω,+ =

{
z ∈ C | Im(z) > 0

}
∪ Sω

and ρθ denotes the ray: r exp(iθ), 0 < r < ∞. Here θ satisfies ρθ ∈ Sω,+ and
exp(izζ ) is exponentially decaying as ζ → ∞ along ρθ . It is easy to see that �

is well defined and holomorphic in Vω,+. In fact, the definition of � is independent
of the choice of θ . For any μ ∈ (0, ω), we can see that

|�(z)| � Cμ

|z|1+s
, z ∈ Vμ,+.

We further define function

�1(z) =
∫

δ(z)
�(ζ )dζ, z ∈ Sω,+,

where δ(z) is any path from −z to z in Vω. It follows from Cauchy’s formula that for
any μ ∈ (0, ω),

|�1(z)| � Cμ

|z|s , z ∈ Sμ,+.

By the Poisson summation formula, define

ψ(z) = 2π
∞∑

n=−∞
�(z + 2nπ), z ∈

∞⋃
n=−∞

(2nπ + Wω,+),
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where
∑

denotes the summation in the following sense:

(i) for s > 0, the series absolutely and locally uniformly converges to a 2π -periodic
holomorphic function ψ , and the function φ = ψ ◦ ln /i ∈ Ks(Cω,+);

(ii) for s = 0, there exists a subsequence {nk}∞1 such that the partial sum

snk (z) = 2π
∑

|n|�nk

�(z + 2nπ)

locally uniformly converges to a 2π -periodic function ψ , and φ = ψ ◦ ln /i ∈
Ks(Cω,+).

It can be proved that different functions � defined via different subsequences {nk}
differ by bounded constants. By use of the estimate of �, it is easy to prove the case
s > 0.

Now we consider the case s = 0. Consider the decomposition

n∑
k=−n

�(z + 2kπ) = �(z) +
∑
1

+
∑
2

, z ∈ Wμ,+,

where
∑
1

=:
±n∑
k �=0

(
�(z + 2kπ) − �(2kπ)

)

and ∑
2

=:
n∑

k=1

(�1)′(2kπ).

We will prove that
∑
1

is absolutely convergent and bounded, and
∑
2

is bounded

and convergent in the sense mentioned above. Hence, as the principal part of the
sum, �(z) is dominated by C|z|−1 as z → 0 and so is the function ψ . Therefore, the
function φ = ψ ◦ ln /i satisfies the desired estimate. To deal with

∑
1
, we need the

following formula derived by Cauchy’s formula:

|� ′(z)| � Cμ

|z|2+s
, z ∈ Wμ,+.

To deal with
∑
2
, by the mean value theorem, we obtain
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n∑
k=1

(�1)′(2kπ)

=
[∫ 2(n+1)π

2π
(�1)′(r)dr +

n∑
k=1

(�1)′(2kπ) − Re((�1)′)(ξk ) − iIm((�1)′)(ηk )
]

= �1(2(n + 1)π) − �1(2π) +
∑
k=1

[
(�1)′(2kπ) − Re((�1)′)(ξk ) − iIm((�1)′)(ηk )

]
,

where ξk , ηk ∈ (2kπ, 2(k + 1)π). Then by the estimate of � ′, the series part in the
above expression is absolutely convergent. Because that part is bounded, by choosing
a suitable subsequence {nk}, we conclude that the part converges to a constant with
the same bounds. This completes the proof of the case s = 0.

For the case s < 0, we apply induction to the interval −k − 1 � s < −k, where
k � 0 is an integer. We first consider −1 < s < 0. Let b ∈ Hs(Sω,+) and

φ(z) =
∞∑
n=1

b(n)zn, φ0(z) =
∞∑
n=1

nb(n)zn, zφ′(z) = φ0(z).

Because b ∈ Hs(Sω,+), we have (·)b(·) ∈ Hs+1(Sω,+), where 0 < s + 1 < 1. As
proved above, we get φ0 ∈ Ks+1(Cω,+), and the series φ0 locally uniformly con-
verges. This fact enables us to integrate the series φ0(z)/z term by term. Notice that
the region Cω,+ is starlike. Denote by l(0, z) the segment from 0 to 1 ≈ z = x + iy ∈
Cμ,+. By the estimate of the functions in Ks+1(Cω,+), we obtain

|φ(z)| �
∫

l(0,z)

∣∣∣φ0(ζ )

ζ

∣∣∣|dζ |

� Cμ

∫

l(0,z)

|dζ |
|1 − ζ |s+2

� Cμ

∫ 1

0

dt

(|1 − tx| + t|y|)s+2
.

To complete the proof, we divide the rest of the proof into two cases: x � 1 and
x > 1. For x � 1, the above estimate becomes

∣∣∣
∫ 1

0

dt

(1 − t(x − |y|))s+2

∣∣∣ = 1

s + 1

1

x − |y|
[

1

(|1 − x| + |y|)s+1
− 1

]

� Cμ,s

|1 − z|s+1
,

where we used the condition that z ≈ 1 =⇒ x ≈ 1, y ≈ 0.
For x > 1, because z belongs to the starlike region Cμ,+, we can deduce that

x − 1 = |1 − x| � (tan(μ))|y|
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and
|y| � Cμ(|1 − x| + |y|).

This fact together with x ≈ 1 and y ≈ 0 implies

∫ 1

0

dt

(|1 − tx| + t|y|)s+2

=
∫ 1/x

0

dt

(1 − t(x − |y|))s+2
+
∫ 1

1/t

dt

(t(x + |y|) − 1)s+2

= 1

s + 1

[
2x

x2 − y2
xs+1

|y|s+1
+ 1

x + |y|
1

(|1 − x| + |y|)s+1
− 1

x − |y|
]

� Cμ

|1 − z|s+1
.

For s = −1, by using the result of the case s = 0, we can apply a similar argument
to obtain

|φ(z)| � Cμ

∫

l(0,z)

1

|1 − ζ | |dζ | � Cμ| ln |1 − z||,

where z ∈ Cμ,+.
This completes the proof for the case −1 � s < 0. Below we use induction to the

index s :
Let −k − 1 � s < −k, where k � 0 is an integer, and let b ∈ Hs

ω.We define b =
{b(n)}∞n=1 and get φb ∈ Ks(Cω,+).

Now we consider the case −k − 2 � s < −k − 1, where k � 0 is an integer and
b ∈ Hs(Sω,+). Set ⎧⎪⎪⎨

⎪⎪⎩

φ(z) =
∞∑
n=1

b(n)zn,

φ0(z) =
∞∑
n=1

b0(n)zn,

where b0(z) =
∞∑
n=0

b(z + n). It is easy to see that b0 ∈ Hs+1(Sω,+). Because −k −
1 � s + 1 < −k, by induction,we can obtain thatφ0 ∈ Ks+1

ω . Hence, if s is an integer,
φI [−s−2](b0) can be extended to Cω,+ holomorphically. If s is not an integer, φI [−s−1](b0)
can be extended to Cω,+ holomorphically. Here b0 = {b0(n)}∞n=1. In both cases, for
z ∈ Cμ,+, we have

|(z − 1)[−s−2]φI [−s−2](b0)(z)| � Cμ

| ln |z − 1||
|z − 1|s+2

or

|(z − 1)[−s−1]φI [−s−1](b0)(z)| � Cμ

|z − 1|s+2
.



232 7 The Fractional Fourier Multipliers on Lipschitz Curves and Surfaces

Because I kb0 = I k+1b for any k → 0, we have φI k (b0) = φI k+1(b). When s is an
integer,

|(z − 1)[−s−1]φI [−s−1](b)(z)| � Cμ

| ln |z − 1||
|z − 1|s+1

.

If s is not an integer,

|(z − 1)[−s]φI [−s](b)(z)| � Cμ

|z − 1|s+1
.

This proves φ ∈ Ks
ω for b ∈ Hs

ω, −k − 2 � s < −k − 1. �

The cases “+” and “−” inTheorem7.1.1 are associatedwith power series and neg-
ative power series, respectively. By these results, we obtain the result corresponding
to the Laurent series.

Corollary 7.1.1 Let −∞ < s < ∞, s �= −1,−2, . . ., b ∈ Hs(Sω) and

φ(z) =
∞∑

n=−∞
b(n)zn.

Then φ ∈ Ks(Cω).

The inverse of Theorem 7.1.1 is the following.

Theorem 7.1.2 Let −∞ < s < ∞ and φ ∈ Ks(Cω,±). Then for any μ ∈ (0, ω),
there exists a function bμ ∈ Hs(Sμ,±) such that

φ(z) =
±∞∑
n=±1

bμ(n)zn.

Moreover, for s < 0 and z ∈ Sc
μ,±,

bμ(z) = 1

2π

∫

λ±(μ)

exp(−iηz)φ(exp(iη))dη, (7.2)

where

λ±(μ) =
{
η ∈ Hc

ω,± | η = r exp(i(π ± μ)), r is from π secμ to 0;
and η = r exp(∓iμ), r is from 0 to π secμ

}

and for s � 0, z ∈ Sc
μ,±,

bμ(z) = 1

2π
lim
ε→0

(∫

l(ε,|z|−1)∪c±(|z|−1,μ)∪�±(|z−1|,μ)

exp(−iηz)φ(exp(iη))dη + φ
|s|
ε,±(z)

)
,
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where if r � π ,

l(ε, r) =
{
η = x + iy | y = 0, x is from − r to − ε, and from ε to r

}
,

c±(r, μ) =
{
η = r exp(iα) | α from π ± μ to π, then from 0 to ∓ μ

}
,

and

�±(r, μ) =
{
η ∈ Wω,± | η = ρ exp(i(π ± μ)), ρ is from π secμ to r;
and η = ρ exp(∓iμ), ρ from r to π secμ

}
;

If r > π ,

l(ε, r) = l(ε, π), c±(r, μ) = c±(π, μ)

�±(r, μ) = �±(π, μ).

In any case,

φ
[s]
ε,±(z) =

∫

L±(ε)

φ(exp(iη))

(
1 + (−iηz) + · · · + (−iηz)[s]

[s]!
)
dη,

where L±(ε) is any contour from −ε to ε in Cω,±.

Proof Let φ ∈ Ks(Cω,+), −∞ < s < ∞. We will apply (7.2) or (7.3) to prove that

bμ defined above belongs to Hs(Cμ,+), and φ(z) =
∞∑
n=1

bμ(n)zn.

We first consider the case −∞ < s < 0. By the expressions (7.2) and (7.1), using
the estimate of the function φ and Cauchy’s theorem, we can prove

lim
z→0

bμ(z) = 1

2π

∫

λ(μ)

exp(iηz)φ(exp(iη))dη, z ∈ Sμ,+,

where

λ(μ) =
{
η ∈ Wω,+ | η = r exp(i(π + μ)), r is from π sec(μ) to 0,

and η = r exp(−iμ), r from 0 to π sec(μ)
}
,

where | arg(z)| < μ < ω. Let | arg(z)| < θ < μ. By the estimate of φ and the prop-
erty of the path λ(μ), the function bμ satisfies the following estimate (Fig. 7.5):

|bμ(z)| � Cμ

(
|z|s +

∫ ∞

0
exp(− sin(μ − θ)|z|r) dr

r1+s

)
� Cμ,θ |z|s.
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Fig. 7.5 l+(ε, r) ∪ c+(r, μ) ∪ �+(r, μ)

Now we consider the case 0 � s < ∞. By (7.2), without loss of generality, as
z ≈ ∞, assume that |z|−1 � π . We have

bμ(z) = 1

2π
lim
ε→0

{(∫

ε�|t|�|z|−1
exp(−itz)φ(exp(it))dt + φ[s]

ε (z)

)

+
∫

c+(|z|−1,μ)

exp(−iηz)φ(exp(iη))dη

+
∫

�+(|z|−1,μ)

exp(−iηz)φ(exp(iη))dη

}

= 1

2π
lim
ε→0

{
I1(ε, z) + I2(z, μ) + I3(z, μ)

}
,

where | arg(z)| < μ < ω,

c+(r, μ) =
{
η = r exp(iα) | α is from π + μ to π, and from 0 to − μ

}
,

and

�+(r, μ) =
{
η ∈ Wω,+ | η = ρ exp(i(π + μ)), ρ is from π sec(μ) to r,

and η = ρ exp(−iμ), ρ is from r to π sec(μ)
}
.

Now we prove that I1, I2, I3 are uniformly dominated by the bounds indicated in
the theorem, and the limit lim

ε→0
I1 exists.
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By Cauchy’s theorem, we have

I1(ε, z) =
∫

ε�|t|�|z|−1

(
exp(−itz) − 1 − (−itz)

1! − · · · − (−itz)[s]

[s]!
)

φ(exp(it))dt

+
∫

ε�|t|�|z|−1

(
1 + (−itz)

1! + · · · + (−itz)[s]

[s]!
)

φ(exp(it))dt + φ
[s]
ε,+(z)

=
∫

ε�|t|�|z|−1

(
exp(−itz) − 1 − (−itz)

1! − · · · − (−itz)[s]

[s]!
)

φ(exp(it))dt

+φ
[s]
|z|−1,+(z).

Invoking the estimate of φ, we obtain

∣∣∣∣
∫

ε�|t|�|z|−1

[
exp(−itz) − 1 − (−itz)

1! − · · · − (−itz)[s]

[s]!
]

φ(exp(it))dt

∣∣∣∣

� Cμ

∫

ε�|t|�|z|−1
|t|[s]+1|z|[s]+1 1

|t|1+s
dt

� Cμ|z|[s]+1
∫ |z|−1

0
t[s]−sdt

= Cμ|z|s.

The above argument implies that lim
ε→0

I1 exists.

To estimate φ
[s]
|z|−1,+(z), we only need to estimate the integral

∫

L±(|z|−1)

(−iηz)k

k! φ(exp(iη))dη, k = 0, 1, . . . , [s]. (7.3)

Taking the contour L+(|z|−1) as the upper half circle centered at 0 with radius |z|−1,
we get

∣∣∣∣
∫

L+(|z|−1)

(−iηz)k

k! φ(exp(iη))dη

∣∣∣∣ � Cμ

∫

L+(|z|−1)

|ηz|k |η|−1−s|dη|
� Cμ|z|s.

To estimate I2, we have

|I2(z, μ)| � Cμ

∫ μ

0
exp
(
|η||z| sin(arg(z) + t)

)
|η| dt

|η|1+s
� Cμ|z|s.

Now we consider I3. Letting | arg(z)| < θ < μ, we get
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|I3(z, μ)| � Cμ

∫

�(|z|−1,μ)

exp(|η||z| sin(μ − θ))
|dη|
|η|1+s

� Cμ

∫ ∞

|z|−1
r−1−s exp(−r|z| sin(μ − θ))dr

� Cμ,θ |z|s.

For z ≈ 0, assume that |z|−1 > π . We first prove that the integral on the contour
l(ε, π) is uniformly bounded and has limit as ε → 0. Except that the contour in (7.3)
should be replaced by L+(π), the argument dealing with I1(ε, z) for |z|−1 � π still
applies to the integral on l(ε, π). Let the contour L+(π) be the upper half circle
centered at 0 with radius π . We have

∣∣∣∣
∫

L+(π)

(−ηz)k

k! φ(exp(iη))dη

∣∣∣∣ � Cμ

∫

L+(π)

|ηz|k |η|−1−s|dη|

� Cμ|z|k
� Cμ,

where k = 1, 2, . . . , [s].
To prove the integrals on c+(π, μ) and �+(π, μ) are bounded, we use Cauchy’s

theorem to change the contour to the following one:

{
z = x + iy | x = −π, y is from − π tan(μ) to 0, and x = −π, y is from 0 to − π tan(μ)

}
.

However, using the fact that Re(z) > 0, we can conclude that the integrals on the
above sets are bounded.

Now we are left to prove

φ(z) =
∞∑
n=1

bμ(n)zn, −∞ < s < ∞, 0 < μ < ω.

This is equivalent to proving b(n) = bμ(n), n = 1, 2, . . . in these cases.

Let r ∈ (0, 1). Since the series φ(rz) =
∞∑
n=1

b(n)rnzn is absolutely convergent in

|z| � 1, we get
1

2π

∫ π

−π

exp(−itn)φ(r exp(it))dt = rnbn. (7.4)

We first deal with the case s � 0. Write δ = − ln(r). Then r → 1 − 0 if and only
if δ → 0+. Taking the limits δ → 0+ and r → 1 − 0 on both sides of (7.4), we
conclude that the right hand side tends to bn, while the limit of the left hand side is

lim
δ→0+

∫ π

−π

exp(−itn)φ(exp(−δ + it))dt.
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For any fixed ε ∈ (0, π), we can get

lim
δ→0+

(∫

0�|t|�ε

+
∫

ε�|t|�π

)
exp(−itn)φ(exp(−δ + it))dt (7.5)

= lim
δ→0+

{∫

0�|t|�ε

(
exp(−itn) − 1 − (−itn)

1! − (−itn)2

2! − · · · − (−itn)[s]

[s]!
)

×φ(exp(−δ + it))dt

+
∫

L+(ε)

(
1 + (−itn)

1! + (−itn)2

2! + · · · + (−itn)[s]

[s]!
)

φ(exp(−δ + it))dt

+
∫

ε�|t|�π

exp(−itn)φ(exp(−δ + it))dt

}

= lim
δ→0+

∫

0�|t|�ε

(
exp(−itn) − 1 − (−itn)

1! − (−itn)2

2! − · · · − (−itn)[s]

[s]!
)

×φ(exp(−δ + it))dt + φ
[s]
ε,+(n) +

∫

ε�|t|�π

exp(−itn)φ(exp(−δ + it))dt,

wherewe usedCauchy’s theorem and the fact that the last two integrals are absolutely
integrable as δ → 0+. Invoking the estimate of φ, the last expression of (7.5) is
dominated by

Cμ

∫

0�|t|�ε

|tn|[s]+1 1

|t|s+1
dt,

which is independent of δ > 0. Taking the limits ε → 0 on (7.5), the integral tends
to 0 and (7.5) reduces to

bn = lim
ε→0

(∫

ε�|t|�π

exp(−itn)φ(exp(it))dt + φ
[s]
ε,+(n)

)
,

which equals to (7.3). By the periodicity of the integrand function and Cauchy’s
theorem, this equals bμ(n). The proof for the case s � 0 is complete.

For s < 0, by the estimate of the function φ and the Lebesgue dominated con-
vergence theorem, we take the limit r → 1 − 0 on both sides of (7.4) and therefore,
obtain

b(n) = 1

2π

∫ π

−π

exp(−itn)φ(exp(it))dt.

Then by the 2π -periodicity of the integral, Cauchy’s theorem and (7.2), the above
expression equals to bμ(n). This completes the proof of the theorem. �

By Theorems 7.1.1 and 7.1.2, we obtain a result for the case s ∈ Z−.

Theorem 7.1.3 Let s be a negative integer.

(i) If b ∈ Hs(Sω,±) and φ(z) =
±∞∑
n=±1

b(n)zn, then φ ∈ Ks
ln(Cω,±).
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(ii) If φ ∈ Ks
ln(Cω,±), then for any ν ∈ (0, ω), there exists a function bμ such that

bμ ∈ Hs
ln(Sμ,±), and

φ(z) =
±∞∑
n=±1

bμ(n)zn.

Moreover, bμ is given by (7.2).

Proof The conclusion (i) was obtained in Theorem 7.1.1. We only need to prove (ii).
By (7.2), it is easy to prove that bμ is bounded near the origin. For large z, invoking
(7.1), we obtain that for | arg(z)| < θ < μ,

|bμ(z)| � Cμ

(
|z|s +

∫ ∞

0
exp(−r|z| sin(μ − θ))| ln r|r−s dr

r

)

� Cμ

(
|z|s + |z|s

∫ ∞

0
exp(−r sin(μ − θ))| ln r − ln |z||r−s dr

r

)

� Cμ,θ |z|s ln |z|.

This proves bμ ∈ Hs
ln(Sμ,+). The verification of φ(z) =

∞∑
n=1

bμ(n)zn is similar to the

case s < 0 in Theorem 7.1.2. The proof is complete. �

Remark 7.1.1 For {bn}∞n=1 ∈ l∞, the series

φ(z) =
∞∑
n=1

bnz
n

is well-defined on the unit disc and holomorphic. Theorem 7.1.1 and (i) of Theorem
7.1.3 indicate that if there exists b ∈ Hs(Sω,+) such that bn = b(n), then φ can be
extended to Cω,+ holomorphically. In any small Cμ,+, when s is an integer, this
function satisfies the conditions in the definition of Ks

ln(Sω,+). When s is not an
integer, this function satisfies the conditions in the definition of Ks(Sω,+). Theorem
7.1.2 and (ii) of Theorem 7.1.3 give the inverse result.

Remark 7.1.2 Under the assumption of Theorem 7.1.2, the mapping φ → b sat-
isfying φ(z) =∑ b(n)zn is not single-valued. In fact, by Theorem 7.1.2, any bμ,
0 < μ < ω, gives a solution of b, and ifμ1 �= μ2, then generally, bμ1 �= bμ2 , see also
the example in Remark 7.1.3.

Remark 7.1.3 In the proof of Theorem 7.1.2, we need the following function space
P̃+

ω which consists of all finite linear combinations of the holomorphic functions with
the following form

gn(z) =
⎧
⎨
⎩

1, if z = n,
[exp(iπ(z − n)) − exp(−iπ(z − n))] exp(−π(z − n) tanω)

2iπ(z − n)
, if z �= n,
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where n is a non-negative integer. It is easy to prove

|gn(z)| � Cμ,n
exp(−π(Re(z) tanω − |Im(z)|))

|z + 1| , z ∈ Sμ,+, 0 < μ < ω.

Hence gn ∈
∞⋃

s=−∞
Hs(Sω,+). It is remarkable that the functions in P̃+

ω are the inverse

Fourier transforms of the finite polynomials of z given by (7.2) in Theorem 7.1.2.
Similarly, we can define the space P̃− with respect to the negative integer.

Remark 7.1.4 The holomorphic extension given in Theorem 7.1.1 is optimal in the
following sense: if ω is the largest angle such that b ∈ Hs(Sω,+), then φ can not be
holomorphically extended to any larger heart-shaped region Cω+δ,+, δ > 0, which
satisfies the corresponding estimate. Or else, by Theorem 7.1.2, we can obtain con-
tradiction.

Remark 7.1.5 (i) of Theorem 7.1.3 corresponds to the function b(z) = z/(1 + z2).
Take s = −1 for example, A. Baernstein studied that how to construct a holomorphic
function in the unit disc such that when z → 1,

φ(z) = O(ln |z − 1|) and φ′(z) �= O(1/|z − 1|),

see [5]. At the same time he also proved that it is equivalent to considering the
matter in the unit disc instead of in the heart-shaped region. The reason is that the
estimates for s = −1 remain unchanged after applying a suitable conformalmapping.
In Theorem 7.1.1, letting s = 0, we conclude that b(z) �= O(1/|z|) at ∞. However,
it is still an open problem that the estimates given in (ii) of Theorem 7.1.3 are the
best possible in those cases.

7.2 Fractional Fourier Multipliers on Starlike Lipschitz
Surfaces

In this section, we consider a class of Fourier multiplier operators whose multipliers
are dominated by a polynomial and give the estimates of the kernels of the integral
operators associated with the Fourier multipliers. The main tool is still the gener-
alized Fueter theorem obtained in [6] (see Sect. 3.5). The main idea is to establish
a relation between the set O in the complex plane C and the set

−→
O in the (n + 1)-

dimensional space Rn
1, and then transfer the estimate for the functions defined on

−→
O

to the corresponding one defined on O.
As in Chap.6, we still use the following intrinsic set. We recall

Definition 7.2.1

(i) A set O in the complex plane C is called an intrinsic set if the set is systemic
about the real axis, that is, the set is unchanged under the complex conjugate.
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(ii) If a function f 0 is defined on an intrinsic set in C and f 0(z) = f 0(z) in the
domain, then the function f 0 is called an intrinsic function.

The functions of the form
∑

ck(z − ak)k , k ∈ Z, ak , ck ∈ R, are all intrinsic
functions. If f = u + iv, where u and v are real-valued, then f 0 is intrinsic if and
only if in their domains, u(x,−y) = u(x, y) and v(x,−y) = −v(x, y).

We regardRn
1 as the (n + 1)-dimensional Euclidean space and define the intrinsic

set in R
n
1 as follows.

Definition 7.2.2 We call a set inRn
1 an intrinsic set if it is invariant under all rotations

in R
n
1 that keep the e0 axis fixed. If O is a subset in the complex plane, then in R

n
1,

we call the intrinsic set

−→
O = {x ∈ R

n
1 : (x0, |x|) ∈ O

}

the set induced by O.

Definition 7.2.3 Let f 0(z) = u(x, y) + iv(x, y) be the intrinsic function defined on

the intrinsic set U ⊂ C. Define the function
−→
f 0 on the induced set

−→
U as follows:

−→
f 0 (x0 + x) = u(x0, |x|) + x

|x|v(x0, |x|).

We call
−→
f 0 the function induced by f 0.

We denote by τ the mapping:

τ(f 0) = k−1
n �(n−1)/2

−→
f 0 ,

where � = DD and D = D0 − D, kn = (2i)n−1
2( n+1
2 ) is the normalized constant

such that τ((·)−1) = E. The operator �(n−1)/2 is defined via the Fourier multiplier
m(ξ) = (2π i|ξ |)n−1 defined on the tempered distributions M : S′ → S′. Precisely,

Mf = R(mF f ),

where

F f (ξ) =
∫

R
n
1

e2π i〈x,ξ〉f (x)dx

and

Rh(x) =
∫

R
n
1

e−2π i〈x,ξ〉h(ξ)dξ.

The monogenic monomials in Rn
1 are defined by

P(−k) = τ((·)−k) and P(k−1) = I(P(−k)), k ∈ Z
+,
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where I denotes the Kelvin inversion I(f )(x) = E(x)f (x−1).
We also need the following set in the complex plane. For ω ∈ (0, π

2 ), let

Sc
ω,± =

{
z ∈ C : |arg(±z)| < ω

}
, the angle arg(z) ∈ (−π, π ],

Sc
ω,±(π) = {z ∈ C : |Re z| � π, z ∈ Sc

ω,±
}
,

Sc
ω = Sc

ω,+ ∪ Sc
ω,− and Sc

ω(π) = Sc
ω,+(π) ∪ Sc

ω,−(π),

Wc
ω,±(π) =

{
z ∈ C : |Re z| � π and ± Imz > 0

}
∪ Sc

ω(π),

Hc
ω,± = {z = exp(iη) ∈ C, η ∈ Wc

ω,±(π)
}

Hc
ω = Hc

ω,+ ∩ Hc
ω,−.

We define the Fourier multipliers in the following function space

Ks(Hc
ω,±) =

{
φ0 : Hc

ω,± → C, φ0 is holomorphic and

in any Hc
μ,±, 0 < μ < ω, |φ0(z)| � Cμ

|1 − z|1+s

}
,

and
Ks(Hc

ω) = {φ0 : Hc
ω → C, φ0 = φ0,+ + φ0,−, φ0,± ∈ Ks(Hc

ω,±)
}
.

The corresponding multiplier spaces are

Hs(Sc
ω,±) =

{
b : Sc

ω,± → C, b is holomorphic and in any Sc
μ,±,

0 < μ < ω, |b(z)| � Cμ|z ± 1|s
}
.

and
Hs(Sc

ω) =
{
b : Sc

ω → C, b± = bχ{z∈C:±Rez>0} ∈ Hs(Sc
ω,±)
}
.

Let

Hω,± =
{
x ∈ R

n
1 : (± ln |x|)

arg(e0, x)
< tanω

}
= −−→

Hc
ω,±,

and

Hω = Hω,+ ∩ Hω,− =
{
x ∈ R

n
1 : | ln |x||

arg(e0, x)
< tanω

}
= −→

Hc
ω.

Hence, the corresponding function spaces in Rn
1 are

Ks(Hω,±) = {φ : Hω,± → C(n), φ is monogenic and

|φ(x)| � Cμ

|1 − x|n+s
, x ∈ Hμ,±, 0 < μ < ω

}
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and
Ks(Hω) =

{
φ : Hω → C(n), φ = φ+ + φ−, φ± ∈ Ks(Hω,±)

}
.

Now we consider the multipliers b ∈ Hs(Sc
ω,±). At first, in the following lemma, we

estimate the jth derivative of the intrinsic function φ0.

Lemma 7.2.1 Assume that b ∈ Hs(Sc
ω,−). For the multiplier defined by φ0(z) =∑∞

k=1 b(−k)z−k , its jth derivative satisfies

|(φ0)(j)(z)| � C

|1 − z|s+j+1
,

where z ∈ Hc
μ,−, 0 < μ < ω and j is a positive integer.

Proof Without loss of generality, for b ∈ Hs(Sc
ω,−), we assume that |b(−k)| � |k|s.

By Theorem 7.1.1, for φ0(z) =
∞∑
k=1

b(−k)z−k ,

|φ0(z)| � C

|1 − z|s+1
.

Take a circle C(z, r) centered at z with radius r. By Cauchy’s formula, we obtain

∣∣(φ0)(j)(z)
∣∣ � Cj

2π

∫

C(z,r)

|φ0(ξ)|
|z − ξ |j+1

|dξ |.

Let r = 1
2 |1 − z|. Then ξ ∈ C(z, r) implies that

|1 − ξ | � |1 − z| − |z − ξ | = |1 − z| − 1

2
|1 − z| = 1

2
|1 − z|.

Therefore we obtain

∣∣(φ0)(j)(z)
∣∣ � 2j!Cμ

δj(μ)

1

|1 − z|j+s+2
|1 − z| � Cμ,j

1

|1 − z|j+s+1
.

This proves Lemma 7.2.1. �

Lemma7.2.2 enables us to estimate the kernels of theFouriermultipliers generated
by the functions in Hs(Sc

ω) and the spherical monogenic functions.

Theorem 7.2.1 For s > 0, if b ∈ Hs(Sc
ω,±) and φ(x) =

±∞∑
k=±1

b(k)P(k)(x), then φ ∈
Ks(Hω,±).

Proof Similar to Theorem 6.1.1, we divide the proof into two cases according to the
parity of n.
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Case 1. n is odd: We assume that n = 2m + 1 and restrict the proof to x ≈ 1. By
Lemma 3.5.1, we only need to estimate the corresponding ul and vl . There are two
subcases to be considered.
Subcase (1.1). |x| > (δ(μ)/2m+1/2)|1 − x|. For this case, we write z = x0 + i|x|.
x ≈ 1 implies that z ≈ 1. We can write z = s + it, where s = x0 and t = |x|. We
have t = |x| = |1 − z|.

For l = 0, ul = u0 = u and vl = v0 = v. By the estimate of φ0, we have

|u0|, |v0| � |φ0| � C

δ0(μ)

1

|1 − z|s+1
.

For l = 1 and t ≈ |1 − z|, we get

|u1| =
∣∣∣∣2l

1

t

∂u0
∂t

∣∣∣∣ �
1

|1 − z|
1

|1 − z|s+2
= 1

|1 − z|s+3
;

and

|v1| =
∣∣∣∣
1

t

∂v0
∂t

− v0
t2

∣∣∣∣

� 1

|1 − z|
1

|1 − z|s+2
+ 1

|1 − z|2
1

|1 − z|s+1

= 1

|1 − z|s+3
.

Because �1φ0(x) = u1(x0, |x|) + x
|x|v1(x0, |x|), we have

∣∣�1φ0(x)
∣∣ � C

∣∣u1(x0, |x|)
∣∣+
∣∣∣∣
x

|x|v1(x0, |x|)
∣∣∣∣ � C

1

|1 − z|s+3
.

Repeating the above procedure m times, for um and vm, we obtain

|um(x)|, |vm(x)| � C

|1 − z|s+2m+1
= 1

|1 − z|n+s
.

Subcase (1.2). |x| � (δ(μ)/2m+1/2)|1 − x|. The points x in Hω,− satisfying x ≈
1, x0 � 1 belong to Subcase (1.1). Hence we assume that x0 > 1. Now we prove the
following conclusion: if z = s + it ≈ 1, s > 1, z ∈ Hc

μ,− and |t| � (δ(μ)/2m+1/2|1 −
z|), then

(1) the function ul is an even function with respect to the second variable t.
(2) the jth derivation satisfies

∣∣∣∣
∂ j

∂tj
ul(s, t)

∣∣∣∣ �
CμCl2ljCj

δ2l+j

1

|1 − z|2l+j+s+1
,
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where the constant Cj is

Cj =
{

(j + 4l)!, j is even, (7.7)

(j + 5l)!, j is odd. (7.7′)

We apply the mathematical induction to l in order to to prove (1) and (2). Clearly,
for l = 0, by Lemma 7.2.1, we have

∣∣∣∣
∂ j

∂tj
u0(s, t)

∣∣∣∣ ,
∣∣∣∣
∂ j

∂tj
v0(s, t)

∣∣∣∣ �
∣∣∣∣
∂ j

∂tj
φ0(s, t)

∣∣∣∣ �
j!

(δ(μ))j

1

|1 − z|j+s+1
.

Now we assume that (1) and (2) for 0 � l � m − 1. Because

ul+1 = 2(l + 1)(1/t)(∂ul/∂t)(s, t)

and ul is even, ul+1 is also an even function. This proves (1).
For (2), we first consider the case that j is even. By the definition and (1), ∂ul/∂t

is an odd function with respect to the second variable t. We can obtain

∂ul
∂t

(s, 0) = ∂2k+1ul
∂2k+1t

(s, 0) = 0.

By Taylor’s expansion, we have

ul+1(s, t) = 2(l + 1)

t

( ∞∑
k=0

1

(2k)!
∂2k+1ul
∂t2k+1

(s, 0)t2k +
∞∑
k=0

1

(2k + 1)!
∂2k+2ul
∂t2k+2

(s, 0)t2k+1

)

=
∞∑
k=0

1

(2k)!
∂2k+1ul
∂t2k+1

(s, 0)t2k .

Letting k = j/2 + k ′ and noticing that
(

t
δ|1−z|

)2k ′
�
(

1
2m+1/2

)2k ′
, we conclude that

∣∣∣∣
∂ j

∂tj
ul+1(s, t)

∣∣∣∣

=
∣∣∣∣∣∣
2(l + 1)

∞∑
k=j/2

(2k)(2k − 1) · · · (2k − j + 1)

(2k + 1)!
∂2k+2ul
∂t2k+2

(s, 0)t2k−j

∣∣∣∣∣∣

� 2(l + 1)
∞∑

k ′=0

(2k ′ + j)(2k ′ + j − 1) · · · (2k ′ + 1)

(2k ′ + j + 1)!
CμCl2l(2k

′+j+2)(2k ′+j+2+4l)

δ2l+2k ′+j+2

× t2k
′

|1 − z|2l+2k ′+j+2+s+1
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� 2(l + 1)
CμCl2l(j+2)

δ2(l+1)+j|1 − z|2(l+1)+j+1+s

∞∑
k=0

(j + 2k + 2 + 4l) · · · (2k + 2)

2k
.

The rest of the proof is similar to that of Theorem 6.1.1. By use of (6.7), we obtain
that the series in the last inequality converges and satisfies

∞∑
k=0

(j + 2k + 2 + 4l) · · · (2k + 2)

2k
� 2j+4l−1(j + 4l + 4)!.

Finally, we have

∣∣∣∣
∂ j

∂tj
ul+1(s, t)

∣∣∣∣ � 2(l + 1)
CμCl2l(j+2)

δ2(l+1)+j|1 − z|2(l+1)+j+1+s
2j+4l−1(j + 4l + 4)!.

Now we verify that
∣∣∣ ∂ j

∂tj ul+1(s, t)
∣∣∣ satisfies the estimate for odd j. Similar to the proof

for j even, by Taylor’s expansion, we have

∂ j

∂tj
ul+1(s, t) = 2(l + 1)t

∞∑

k= j+1
2

2k(2k − 1) · · · (2k + 1 − j)

(2k + 1)!
∂2k+2ul
∂t2k+2

(s, 0)t2k−1−j.

Let 2k − 1 − j = 2k ′. We can obtain

∣∣∣ ∂
j

∂tj
ul+1(s, t)

∣∣∣

� 2(l + 1)t
∞∑
k=0

(2k + j + 1)(2k + j) · · · (2k + 2)

(2k + j + 2)!
CμCl2l(2k+3+j)

δ2l(2k+3+j)

(2k + 3 + j + 5l)!
|1 − z|2l+2k+3+j+s+1

t2k

� 2(l + 1)

(
t

δ|1 − z|
)

1

δ2(l+1)+j

CμCl2l(j+3)

|1 − z|2(l+1)+j+s+1

∞∑
k=0

(2k + j + 1)(2k + j) · · · (2k + 2)

(2k + j + 2)! 2kl
(

1

2m+1/2

)2k
(2k + 3 + j + 5l)!

� 2(l + 1)

(
t

δ|1 − z|
)

1

δ2(l+1)+j

CμCl2l(j+3)

|1 − z|2(l+1)+j+s+1
2j+5l+4((j + 5l + 3)/2)!

Letting j = 0 and l = m, we have

|um(s, t)| � CμC0(4m)!
δ2m

1

|1 − z|2m+s+1
� C

|1 − z|n+s
.

Now we estimate vm. As before, we divide the discussion into two cases.
Subcase (1.3). |x| > (δ(μ)/2m+1/2). When l = 0, noticing that |t| ≈ |1 − z|, we have
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|v0(s, t)| = |v(s, t)| � C
2Cμ

|1 − z|1+s
.

For l = 1, because

|(φ0)j(z)| � 2j!Cμ

δj(μ)

1

|1 − z|1+j+s
,

we have

|v1(s, t)| � 2Cμ

δ(μ)

(
1

|1 − z|2+s

1

|1 − z| + 1

|1 − z|2
1

|1 − z|1+s

)

� Cμ

|1 − z|s+3
.

Repeating this procedure m times, we know

|vm(s, t)| � Cμ

|1 − z|2m+1+s
= Cμ

|1 − z|n+s
.

Subcase (1.4). |x| � (δ(μ)/2m+1/2)|1 − x|. For this case, we assume that x0 > 1. For
0 � l � m, we have the following conclusion:

Conclusion (1). vl(s, t) is odd with respect to the second variable t. In fact, for l = 0,

v0(s, t) = Imφ0(s, t). Because φ0(z) =
∞∑
k=1

b(−k)z−k , we have

φ0(z) =
∞∑
k=1

b(−k)z−k =
∞∑
k=0

b(−k)z−k = φ0(z).

Let φ0(z) = u(x, y) + iv(x, y), where u and v are real-valued functions. Then

u(x,−y) + iv(x,−y) = u(x, y) − iv(x, y) = u(x, y) − iv(x, y).

Hence v(x,−y) = −v(x, y), that is, v0 is an odd function for the second variable.
For l = 1, because (v0/t) is an even function, v1 = 2 ∂

∂t (
v0
t ) is an odd function.

We assume that for 0 � l � m − 1, vl is odd. Hence

vm = 2m

(
1

t

∂vm−1

∂t
− vm−1

t2

)

is also odd. This proves Conclusion (1).

Conclusion (2). For 0 � l � m,

∣∣∣ ∂
j

∂tj
vl(s, t)

∣∣∣ � CμClCjj!
δj

1

|1 − z|2l+j+s+1
,
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where the constant Cj is defined by

Cj =
{

(j + 5l)!, if j is even,

(j + 4l)!, if j is odd.

For simplicity, we only consider the case j is odd. When l = 0, it follows from the
estimate of |(φ0)(j)| that

∣∣∣∂
j

tj
v0(s, t)

∣∣∣ � CμCjj!
(δj)

1

|1 − z|j+s+1
.

Because vl(s, t) is odd with respect to the second variable, (∂2kvl/∂t2k)(s, 0) = 0.
By Taylor’s expansion, we have

vl+1(s, t) = 2(l + 1)
1

t2

∞∑
k=0

(
1

(2k)! − 1

(2k + 1)!
)
t2k+1 ∂2k+1vl

∂t2k+1
(s, 0).

Let k = k ′ + 1 and write k = k ′. We get

∂ jvl+1

∂tj
(s, t) = 2(l + 1)

∞∑
k=0

2k + 2

(2k + 3)!
∂2k+3vl
∂t2k+3

(s, 0)(2k + 1) · · · (2k + 2 − j)t2k+1−j.

We assume that Conclusion (2) holds for 1 � l � m − 1. Letting 2k − j = 2k ′, by
t/(δ|1 − z|) � 2−(m+1/2), we have

∣∣∣∂
jvl+1

∂tj
(s, t)

∣∣∣

� 2(l + 1)
∞∑
k=0

2k + 2

(2k + 3)! (2k + 1) · · · (2k + 2 − j)
∣∣∣∂

2k+3vl
∂t2k+3

(s, 0)
∣∣∣t2k+1−j

� 2(l + 1)
1

2m+1/2

2l(j+3)

δ2(l+1)+j

1

|1 − z|2(l+1)+j+s+1

∞∑
k=0

(2k + j + 3 + 5l) · · · (2k + j + 4)(2k + j + 2) · · · (2k + 2)

2k
.

This proves Conclusion (2).
Similarly, we can prove the case that n are even. For j = 0 and l = m, we obtain

∣∣∣vm(s, t)
∣∣∣ � CμCm(4m)!

δ2m

1

|1 − z|2m+1+s
� Cμ,δ

|1 − z|n+s
.
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Nowwe deal with themultipliers defined on the region Sc
ω,+. By theKelvin inversion,

for b ∈ Hs,r(Sc
ω,+), we estimate the function φ(x) =

∞∑
i=1

b(i)P(i)(x). We have

I(φ)(x) =
−∞∑
i=−1

b̃(i)P(i−1)(x),

where b̃(z) = b(−z) ∈ Hs,r(Sc
ω,−). Because I(φ) = τ(φ0), where

φ0(z) =
−∞∑
i=−1

b̃(i)zi−1 = 1

z

−∞∑
i=−1

b̃(i)zi ∈ Hs,c
ω,−,

we have φ(x) = I2(φ) = E(x)I(φ)(x−1) and

|φ(x)| = ∣∣E(x)I(φ)(x−1)
∣∣ � 1

|x|n
Cμ

|1 − x−1|n+s
= Cμ|x|s

|1 − x|n+s
.

Because x ∈ Hv,+ = −−→
Hc

v,+, we can see that (x0, |x|) ∈ Hc
v,+ and

|x| = (x20 + |x|2)1/2 � 1 + etan ν .

Finally we obtain that |φ(x)| � Cν/|1 − x|n+s. This completes the proof of Case 1.

Case 2. n is even. As above, we only need to estimate the kernel φ defined on Hω,−.

Let b ∈ Hs,r(Sc
ω,−). Consider φ(x) =

∞∑
k=1

b(−k)P(−k)
n (x). Because n + 1 is odd, we

have

cn+1φ(x) =
∞∑
k=1

b(−k)
∫ ∞

−∞
P(−k)
n+1 (x + xn+1en+1)dxn+1

� cμ

∫ ∞

−∞
1

|1 − (x + xn+1en+1)|n+1+s
dxn+1

= 1

|1 − x|n+s

∫ ∞

0

|1 − x|[
1 + (xn+1/|1 − x|)2](n+1+s)/2

d

(
xn+1

|1 − x|
)

� C

|1 − x|n+s
.

This completes the proof of Theorem 7.2.1. �

The following corollary can be deduced from Theorem 7.2.1.
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Corollary 7.2.1 Let s > 0, b ∈ Hs(Sc
ω) and

φ(x) =
( ∞∑

i=1

+
−∞∑
i=−1

)
b(i)P(i)(x).

Then φ ∈ Ks(Hω).

For the case s < 0, the proof of the conclusion for the function φ is similar to that
given in the above theorem. In the following theorem, we prove the conclusion of
Theorem 7.2.1 holds for the spaces whose dimension n are odd.

Theorem 7.2.2 For s < 0, b ∈ Hs(Sc
ω,±) and φ(x) =

±∞∑
k=±1

b(k)P(k)(x), if the spatial

dimension n is odd, we have φ ∈ Ks(Hω,±).

Proof Because the index s is negative, we can not use the method of Theorem 7.2.1
directly. Precisely, for s < 0, |z|s is unbounded as z approaches the origin. Hence,
after getting the estimate of the function φ0 on the region Sc

ω,−, we will not use the
Kelvin inversion to obtain the estimate on the region Sc

ω,+.
To deal with this case, we estimate the function φ on the regions Hω,+ and Hω,−.

On the region Hω,−, the estimate for the function φ is the same as that of Theorem
7.2.1. We omit the details.

For the region Hω,+, because the Kelvin inversion is invalid, we need to estimate
the intrinsic function φ0 in the region Hc

ω,+. For this purpose, we use Theorem 3.5.1
to obtain that for the odd n, P(k−1) = τ((·)n+k−2), where the mapping τ denotes the

operator τ(f 0) = k−1
n �(n−1)/2

−→
f 0 and

−→
f 0 (x) = u(x0, |x|) + x

|x|v(x0, |x|).

Now we complete the estimate for the kernel φ. We assume that b ∈ Hs,r(Sc
ω,+)

and consider φ(x) =∑∞
k=1 b(k)P

(k)(x). By Fueter’s theorem, we have

φ(x) = �mφ0(x0, |x|), where φ0(z) =
∞∑
k=1

b(k)zn+k−1.

For simplicity, φ0(z) = zn−1φ0
1(z), where φ0

1(z) =
∞∑
k=1

b(k)zk . By Theorem 7.1.1, for

b ∈ Hs(Sc
ω,+),

|φ0
1(z)| � C

|1 − z|1+s
,

where z ∈ Hc
ω,+. Then we have

|φ0(z)| � |z|n−1

|1 − z|1+s
� Cω

|1 − z|1+s
,
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where in the last inequality we have used the fact that the function |z|n−1 is bounded
on Hc

ω,+. Then repeating the procedure used in Theorem 7.2.1, by the estimate of
the intrinsic function φ0, we can deduce the estimate of the induced function φ. This
completes the proof. �

As a direct corollary of Theorem 7.2.2, we have

Corollary 7.2.2 For the case that the spatial dimension n is odd, Corollary 7.2.1
holds for s < 0.

On R
n, The Fourier theory indicates that there exists a one-one correspondence

between the kernels of singular integrals and the symbols of Fourier multipliers.
By Theorem 7.2.1, for b ∈ Hs(Sc

ω), there exists a function φ ∈ Ks(Hω). Now we
consider the converse of Theorem 7.2.1. For φ ∈ Ks(Hω,±), we prove that there
exists a function bν(z) ∈ Hs(Sc

ν,±) such that bk = bν(k), 0 < ν < ω.
Let n = 3. For the case s = 0, such function bν was obtained by T. Qian in [7].

The main tool is the following polynomial P(k). For any z ∈ Sc
ω, let

{
P(z)

− = τ 0((·)z), z ∈ Sc
ω,−,

P(z)
+ = τ 0((·)z+2), z ∈ Sc

ω,+,

where (·)z = exp(z ln(·)). In the first case, the function ln is defined by cutting the
positive half x-axis; while in the section case, the function is defined by cutting the
negative half x-axis.

By the new functions P(z)
− and P(z)

+ , we can obtain the following result. For the
sake of simplicity, we assume that n = 3.

Theorem 7.2.3 Let n = 3 and −∞ < s < −2. If φ(x) = ∑
k∈Z\{0}

bkP(k)(x) ∈
Ks(Hω,±), then for any ν ∈ (0, ω), there exists a function bν ∈ Hs+2(Sc

ν,±) such
that bi = bν(i), i = ±1,±2, . . .. In addition,

bν(z) = lim
r→1−

1

2π2

∫

L±(ν)

P(z)(y−1)E(y)n(y)φ(r±1y)dσ(y),

where L±(ν) = −−−−−−−→
exp(il±(ν)) and the path l±(ν)) is defined as

l±(ν) =
{
z ∈ C : z = r exp(i(π ± ν)), r is from π sec(ν) to 0;
and z = r exp(−(±iν)), r is from 0 to π sec(ν)

}
.

Proof Recall that τ 0 : f 0 −→ 1
4�

−→
f 0 . Write f 0 = ηz, where η = x + iy. For x =

(x0, |x|) ∈ L±(ν), there exists η ∈ exp(il±(ν)) such that η = (x0, |x|). Write e =
x/|x|. We have
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�
−→
f 0 = �

−−→
((·)z) = 2

|x|
∂u

∂y
(x0, |x|) + 2e

(
1

|x|
∂v

∂y
(x0, |x|) − 1

|x|2 v(x0, |x|)
)

.

Now f 0 = eiηz , where η ∈ l±(ν). Then f = u + iv, where u and v are the real part
and the imaginary part of f , respectively. We have ∂

∂η
(eiηz) = izeiηz. Let η = re−iμ

and z = |z|eiθ . We can get

e−iηz = exp(−ir|z|ei(θ−μ)) = exp(r|z| sin(θ − μ)) exp(−ir|z| cos(θ − μ)).

Because φ ∈ Ks(Sω), we have

|φ(x)| � C

|1 − x|s+3
, where x = x0 + x ∈ L±(ν).

For such a x, there exists a z = x + iy ∈ exp(il±(ν)) such that z = eiη = exp
(r sinμ + ir cosμ) and |x| = er sinμ sin(r cosμ). Then we get

|bμ(z)| � C
∫ π secμ

0
|z|e−r|z| sin(μ−θ) 1

|1 − eiη|s+3

1

|x|
1

|x| r
2dr.

For the factor 1/|1 − eiη|s+3, we have

|1 − eiη|2 = 1 + e2r sinμ − 2er sinμ cos(r cosμ).

Let f (r) = r2 and g(r) = 1 + e2r sinμ − 2er sinμ cos(r cosμ). We obtain
limr→0

f (r)
g(r) = 1. Hence we can find a constant C such that

r

|1 − er sinμeir cosμ| � C, r ∈ (0, π secμ),

that is, 1/|1 − er sinμeir cosμ|s+3 ∼ rs+3. Finally we have

|bμ(z)| � C
∫ π sinμ

0
|z|e−r|z| sin(μ−θ) 1

rs+3

1

e3r sinμ

r2

er sinμ sin(r cosμ)
dr

� C|z|
∫ π sinμ

0
e−r|z| sin(μ−θ) r2

rs+4
e−4r sinμdr

� C|z|s+2,

where in the last inequality we used s < −2. �

Theorem 7.2.3 indicates that using the method in [7], for s �= 0, we only get
b ∈ Hs+2(Sc

ω,±) rather than b ∈ Hs(Sc
ω,±). To obtain a more precise result, we need

apply a new method. It will be based on the following things. First, the desired
function b is defined on Sc

ω,± ⊂ C. Secondly, by Proposition 6.1.1, we know that
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if the dimension n is odd, the polynomials P(−k) and P(k−1), k ∈ Z+, satisfy the
following relation:

P(−k) = τ((·)−k), P(k−1) = τ((·)k+n−2).

Our idea is to construct a function φ0 ∈ Ks(Hc
ω,±) by use of φ ∈ Ks(Hω,±). Then we

can express the function b via φ0 by using techniques in complex analysis. At first
we give a lemma to show the relation between Hc

ω,± and Hω,±.
For any element e in the vector spaceQ, the linear span of 1 and e inR is called the

complex plane induced by e inRn
1 denoted byC

e. Denote byH e
ω,± andH e

ω the images

onCe ⊂ R
(n)
1 of the setsHc

ω,± andHc
ω inC under themapping ie : a + bi −→ a + be,

respectively. By the samemethod as that of [7, Lemma 4], we can prove the following
lemma.

Lemma 7.2.2
Hω,± =

⋃
e∈J

H e
ω,± and Hω,± =

⋃
e∈J

H e
ω,±,

where the index set is the set of all unit elements.

Lemma 7.2.2 establishes the relation between the class of monogenic functions
and the corresponding holomorphic Fourier multipliers.

Theorem 7.2.4 Let n be odd and φ(x) = ∑
k∈Z\{0}

bkP(k)(x) ∈ Ks(Hω,±). If the series
∑

k∈Z\{0}
bkzk converges in Hc

ω,±, then for any ν ∈ (0, ω), there exists a function bν ∈
Hs(Sc

ν,±) such that bk = bν(k), k ∈ Z \ {0}.
Proof We already know that if n is odd, for k ∈ Z+,

P(−k) = τ 0((·)−k) and P(k−1) = τ 0((·)n+k−1).

For φ(x) = ∑
k∈Z\{0}

bkP(k)(x) on Hω,±, we define the following function φ0 on

Hc
ω,± as φ0(z) = ∑

k∈Z\{0}
bkzk ,where z ∈ Hc

ω,±. For simplicity, we only estimate φ0 in

Hc
ω,+. Let e = x

|x| . For any z = u + iv ∈ Hc
ω,+, by Lemma 7.2.2, we get x = u + ve =

(x0, x) ∈ H e
ω,+ ⊂ Hω,+. We have proved that for z ∈ Hc

ω,+, there exists a constant
δ(ν) = min {1/2, tan(ω − ν)} such that the ball Sr(z) is contained in Hc

ω,±, where
z is the center and the radius is δ(ν)|1 − z|. We denote by B(x, r) the ball

{
y ∈

R
n
1, |x − y| < δ(ν)|1 − x|

}
and have B(x, r) ⊂ H e

ω,+ ⊂ Hω,+.
Assume that f and g are the real part and the imaginary part of φ0(z), respectively.

The induced function is defined by

−→
φ0(x) = f (x0, |x|) + eg(x0, |x|)



7.2 Fractional Fourier Multipliers on Starlike Lipschitz Surfaces 253

and satisfies �(n−1)/2
−→
φ0(x) = φ(x), where x = (x0, x) = u + ve. We can see that

|−→φ0(x)| �
∫

B(x,r)

c

|x − y|2
Cν

|1 − y|n+s
dy.

For any y ∈ B(x, δ(ν)|1 − x|),

|1 − y| � |1 − x| − |x − y| > (1 − δ(ν))|1 − x|.

We get

|−→φ0(x)| � Cν

|1 − x|n+s

∫ δ(ν)|1−x|

0

1

|x − y|2 |x − y|n−1d(|x − y|)

� Cν

|1 − x|1+s
.

By the definition of |−→φ0 |, we have

|φ0(z)| = |−→φ0(x)| � Cν

|1 − x|1+s
= Cν

|1 − z|1+s
.

By the above estimate, we can construct the function b ∈ Hs(Sω
ω,±) as follows.

For s < 0 and z ∈ Sc
μ,±,

bμ(z) = 1

2π

∫

λ±(μ)

exp(−iηz)φ0(exp(iη))dη,

where

λ±(μ) =
{
η ∈ Hc

ω,± | η = r exp(i(π ± μ)), r is from π secμ to 0

and η = r exp(∓iμ), r is from 0 to π secμ
}

and for s � 0, z ∈ Sc
μ,±,

bμ(z) = 1

2π
lim
ε→0

(∫

l(ε,|z|−1)∪c±(|z|−1,μ)∪�±(|z−1|,μ)

exp(−iηz)φ0(exp(iη))dη + φ
|s|
ε,±(z)

)
,

where if r � π ,

l(ε, r) =
{
η = x + iy | y = 0, x is from − r to − ε, then from ε to r

}
,

c±(r, μ) =
{
η = r exp(iα) | α is from π ± μ to π, then from 0 to ∓ μ

}
,
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and

�±(r, μ) =
{
η ∈ Wω,± | η = ρ exp(i(π ± μ)), ρ is from π secμ to r;
then η = ρ exp(∓iμ), ρ is from r to π secμ

}
,

and if r > π ,

l(ε, r) = l(ε, π), c±(r, μ) = c±(π, μ), �±(r, μ) = �±(π, μ).

In any case,

φ
[s]
ε,±(z) =

∫

L±(ε)

φ0(exp(iη))

[
1 + (−iηz) + · · · + (−iηz)[s]

[s]!
]
dη,

where L±(ε) is any contour from −ε to ε in Cω,±.
By Cauchy’s theorem and the Taylor series expansion, we can use the esti-

mate for φ0 to show bν ∈ Hs(Sc
ω) and bi = bν(i), i = ±1,±2, . . ., see Sect. 7.1 for

details. �

7.3 Integral Representation of Sobolev–Fourier Multipliers

In this section, we consider a class of Fourier multipliers defined on Sobolev spaces
on starlike Lipschitz surfaces. If a Lipschitz surface � is n-dimensional and starlike
about the origin and there exists a constant M < ∞ such that x1, x2 ∈ �,

∣∣ln |x−1
1 x2|

∣∣
arg(x1, x2)

� M , (7.8)

we call � a starlike Lipschitz surface. We denote by N = Lip(�) the minimum of
M such that (7.8) holds.

Let s ∈ R
n
1. For x ∈ R

n
1, we define the mapping rs : x → sxs−1. By (i) and (iv)

of Lemma 6.2.1, we can prove that if x′ and x belong to a starlike Lipschitz surface
with the Lipschitz constant N , then

(∣∣ln |x−1x′|∣∣ / arg(x, x′)
) = ∣∣ln ||x|−1x̃|∣∣ / arg(1, |x|−1x̃) � N ,

that is, |x|−1̃x ∈ Hω. This gives the relation between the set Hω and the starlike
Lipschitz surface.

We useMk for the finite dimensional right module of k homogeneous monogenic
functions inRn

1 and useM−(k+n) for the right dimensional right module of−(k + n)-
homogeneous monogenic functions in R

n
1 \ {0}. The spaces Mk and M−(k+n) are

eigenspaces of the left Dirac operator 
ξ . We define
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Pk : f → Pk(f ) and Qk : f → Qk(f )

as the projections on Mk and M−(k+n), respectively.
The Fourier multipliers are defined on the following test function space:

A =
{
f : for some s > 0, f (x) is left monogenic in ρ − s < |x| < l + s

}
.

For f ∈ A, in the annuals where f is defined, we have the Laurant series expansion

f (x) =
∞∑
k=0

Pk(f )(x) +
∞∑
k=0

Qk(f )(x).

Here we have used the projection operators Pk and Qk defined as follows:

Pk(f )(x) = 1

�n

∫

�

|y−1x|kC+
n+1,k(ξ, η)E(y)n(y)f (y)dσ(y)

and

Qk(f )(x) = 1

�n

∫

�

|y−1x|−n−kC−
n+1,k(ξ, η)E(y)n(y)f (y)dσ(y),

where x = |x|ξ , y = |y|η and n(y) is the outer unit normal of� at y. HereC+
n+1,k(ξ, η)

and C−
n+1,k(ξ, η) are the functions defined as

C+
n+1,k(ξ, η) = 1

1 − n

[
− (n + k − 1)C(n−1)/2

k (〈ξ, η〉)

+ (1 − n)C(n+1)/2
k−1 (〈ξ, η〉)(〈ξ, η〉 − ξη)

]

and

C−
n+1,k(ξ, η) = 1

n − 1

[
(k + 1)C(n−1)/2

k+1 (〈ξ, η〉)

+ (1 − n)C(n+1)/2
k (〈η, ξ 〉)(〈η, ξ 〉 − ηξ)

]
,

where Cν
k is the Gegenbaur polynomial of degree k associated with ν (see [8]).

Now, on the starlike Lipschitz surface �, we give the Fourier multiplier induced
by the sequence {bk}, where bk = b(k) for any function b ∈ Hs(Sc

ω).We can see from
Theorem 7.2.1 that the corresponding kernel φ satisfies

|φ(x)| � Cμ/|1 − x|n+s for s > 0.
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The regularity index s indicates that we can not define the Fourier multipliers for
f ∈ L2(�) as the bounded Fourier multipliers in Sect. 6.2. To compensate the role
of s, we need to restrict these multipliers on some subspace of L2(�). Hence we use
the following Sobolev spaces on the starlike Lipschitz surface �.

Definition 7.3.1 Let s ∈ Z
+ ∪ {0} and � be a starlike Lipschitz surface. For 1 �

p < ∞, define the norm of Sobolev space ‖ · ‖Wp,s

ξ

(�) as

‖f ‖Wp,s

ξ

(�) = ‖f ‖Lp(�) +
s∑

j=0

‖
j
ξ f ‖Lp(�).

The Sobolev space associated with the spherical Dirac operator 
ξ is defines as the

closure of the classA under the norm ‖ · ‖Wp,s

ξ

(�), that is,A
‖·‖Wp,s


ξ
(�)

.

Now we give the definition of the Fourier multipliers. By Definition 7.3.1, A is
dense inWp,s


ξ
. Hence when we define the Fourier multipliers, we assume that f ∈ A.

Definition 7.3.2 For the sequence {bk}k∈Z satisfying |bk | � ks, we define the Fourier
multiplierM(bk ) as follows:

M(bk )f (x) =
∞∑
k=0

bkPk(f )(x) +
∞∑
k=0

b−k−1Qk(f )(x).

Remark 7.3.1 When � is the unit sphere, if we take two sequences {b(1)
k }and {b(2)

k },
where b(1)

k = k2 and b(2)
k = k, the Fourier multipliers in Definition 7.3.2 reduce to the

boundary values of the Photogenic-Cauchy integrals on the hyperbolic unit sphere,
see Example 7.0.1.

Now for k � 0, we define

P̃(k)(y−1x) = |y−1x|kC+
n+1,k(ξ, η)

and
P̃(−k−1)(y−1x) = |y−1x|−k−nC−

n+1,k(ξ, η).

The projections Pk and Qk can be expressed by

Pk(f )(x) = 1

�n

∫

�

P̃(k)(y−1x)E(y)n(y)f (y)dσ(y)
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and

Qk(f )(x) = 1

�n

∫

�

P̃(−k−1)(y−1x)E(y)n(y)f (y)dσ(y).

If we use

φ̃(y−1x) =
∞∑

−∞
bkP̃

(−k)(y−1x)

to denote the kernel of the Fourier multiplier M(bk ) in Definition 7.3.2, we get the
following estimate.

Theorem 7.3.1 Let ω ∈ (arctan(N ), π/2) and b ∈ Hs(Sc
ω). The kernel φ̃(y−1x)

E(y) associated with {bk} in the manner given above is monogeneically defined
in a neighborhood of � × � \ {(x, y) : x = y}. In addition, in this neighborhood,

|φ̃(y−1x)| � C

|1 − y−1x|n+s
.

Proof The proof of this theorem is similar to Proposition 6.2.3. We omit the
details. �

For f ∈ A, the multiplierM(bk ) introduced above is well-defined. For b ∈ Hs(Sc
ω),

we consider the following multiplier Mr
(bk )

:

Mr
(bk )(f )(x) =

∞∑
k=0

bkPk(f )(rx) +
∞∑
k=0

b−k−1Qk(f )(r
−1x), ρ − s < |x| < l + s,

where x ∈ �, r ≈ 1 and r < 1.
We useM1 andM2 to denote the two sums in the expression ofMr

(bk )
. Because b ∈

Hs(Sc
ω), b is bounded near the origin and |b(z)| � |z|s when |z| > 1. We deduce that

for |z| > 1, |b(z)| � |z|s < |z|s1 . Hence for s1 = [s] + 1, b ∈ Hs1(Sc
ω). Write b1(z) =

z−s1b(z). We see that |b1(z)| � |b(z)/zs1 | � C implies b1(z) ∈ H∞(Sc
ω), where

H∞(Sc
μ,±) =

{
b : Sc

μ,± → C : b is holomorphic, and satisfies

|b(z)| � Cν in any Sc
ν,±, 0 < ν < μ

}

and
H∞(Sc

μ) =
{
b : Sc

μ → C : b± = bχ{z∈C: ±Rez>0} ∈ H∞(Sc
μ,±)
}
,

where Sc
μ,± and Sc

μ are sectors.
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For M1, |bk | = |b(k)| � ks1 , we take b1(z) = z−s1b(z). It is easy to see that b1 is
also holomorphic in Sc

ω. Then we have

M1 =
∞∑
k=0

bkPk(f )(rx) =
∞∑
k=0

b1,kk
s1Pk(f )(rx),

where b1,k = b1(k) = bk
ks1 . BecauseMk is an eigenspace of the spherical Dirac oper-

ator 
ξ , we have

ξPk(f )(rx) = kPk(f )(rx)

and

M1 =
∞∑
k=0

b1,k

s1
ξ Pk(f )(rx) = 


s1
ξ

( ∞∑
k=0

b1,kPk(f )(rx)

)
.

By a result of [8], we obtain another expression of Pk(f ).

Pk(f )(x) = 1

�n

∫

�

P̃k(y−1rx)E(y)n(y)f (y)dσ(y)

= 1

�n

∫

�

∑
|α|=k

Vα(rx)Wα(y)n(y)f (y)dσ(y),

where we have used the Cauchy–Kovalevska expansion

P̃(k)(y−1x)E(y) =
∑
|α|=k

Vα(x)Wα(y),

where Vα(x) ∈ Mk and Wα(y) ∈ M−n−k (see [8, Chap. 2, (1.15)]). By the above
relation, we have


ξPk(f )(x) = 1

�n

∫

�

∑
|α|=k

(
ξVα)(x)Wα(y)n(y)f (y)dσ(y)

= 1

�n

∫

�

∑
|α|=k

kVα(x)Wα(y)n(y)f (y)dσ(y)

= 1

�n

∫

�

∑
|α|=k

k

n + k − 2
Vα(x)(n + k − 2)Wα(y)n(y)f (y)dσ(y)

= k

(n + k − 2)�n

∫

�

∑
|α|=k

Vα(x)(
ηWα)(y)n(y)f (y)dσ(y).

Because the Fourier expansion of the functions in A is rapidly decaying, via inte-
gration by parts, we have
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M1 =
∞∑
k=1

b1,kk
s1Pk(f )(rx)

=
∞∑
k=1

b1,k

(
k

n + k − 2

)s1 rk

�n

∫

�

∑
|α|=k

Vα(x)(
s1
η Wα)(y)n(y)f (y)dσ(y)

=
∞∑
k=1

b1,k

(
k

n + k − 2

)s1 rk

�n

∫

�

∑
|α|=k

Vα(x)Wα(y)n(y)(
s1
η f )(y)dσ(y).

Since |b1,k( k
n+k−2 )

s1 | � C, if we denote b1,k(
k

n+k−2 )
s1 by b1,k , we can obtain the

following singular integral expression of M1:

M1 =
∞∑
k=1

b1,k
1

�n

∫

�

P̃k(y−1rx)E(y)n(y)(
s1
η f (y))dσ(y)

= 1

�n

∫

�

( ∞∑
k=1

b1,k P̃
k(y−1rx)

)
E(y)n(y)(
s1

η f (y))dσ(y)

= 1

�n

∫

�

φ̃1(y
−1rx)E(y)n(y)(
s1

η f (y))dσ(y).

Similarly, for M2, applying the Cauchy–Kovalevska expansion again ([8, Chap. II,
(1.16)]), we have

M2 =
∞∑
k=0

b−k−1Qk(f )(r
−1x)

=
∞∑
k=0

b−k−1

(k + 1)s1

(
k + 1

k

)s1 1

�n

∫

�

∑
|α|=k

Wα(r−1x)ks1V α(y)n(y)f (y)dσ(y)

=
∞∑
k=0

b−k−1

(k + 1)s1

(
k + 1

k

)s1 1

�n

∫

�

∑
|α|=k

Wα(r−1x)(
s1
η V α)(y)n(y)f (y)dσ(y)

=
∞∑
k=0

b−k−1

(k + 1)s1

(
k + 1

k

)s1 1

�n

∫

�

∑
|α|=k

Wα(r−1x)V α(y)n(y)(
s1
η f )(y)dσ(y).

As above, we still denote b−k−1

(k+1)s1

(
k+1
k

)s1 by b−1−k , and obtain the singular integral
expression of M2 as
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M2 =
∞∑
k=0

b−k−1
1

�n

∫

�

P̃−k−1(y−1r−1x)E(y)n(y)(
s1
η f )(y)dσ(y)

= 1

�n

∫

�

( ∞∑
k=0

b−k−1P̃
−k−1(y−1r−1x)

)
E(y)n(y)(
s1

η f )(y)dσ(y)

= 1

�n

∫

�

φ̃2(y
−1r−1x)E(y)n(y)(
s1

η f (y))dσ(y).

Finally we rewrite the multiplierMr
(bk )

(f )(x) as

Mr
(bk )(f )(x) = lim

r→1−
1

�n

∫

�

(φ̃1(y
−1rx) + φ̃2(y

−1r−1x))E(y)n(y)(
s1
ξ f )(y)dσ(y),

where we have used the fact that for f ∈ A, the series which defines Mr
bk

(f ) is
uniformly convergent as r → 1−.

For M(bk )(f )(x), we have the following boundary value result.

Theorem 7.3.2 Let s > 0. If b ∈ Hs(Sc
ω), then for f ∈ A and x ∈ �, we have

M(bk )(f )(x) = lim
r→1−

1

�n

∫

�

(φ̃1(y
−1rx) + φ̃2(y

−1r−1x))E(y)n(y)(
s1
ξ f )(y)dσ(y)

= lim
ε→0

1

�n

{∫

|y−x|>ε,y∈�

[φ̃1(y
−1x) + φ̃2(y

−1x)]E(y)n(y)(
s1
ξ f )(y)dσ(y)

+(φ̃1(ε, x) + φ̃2(ε, x))f (x)
}
.

Here

φ̃1(ε, x) =
∫

S(ε,x,+)

φ̃1(y
−1x)E(y)n(y)dσ(y)

and

φ̃2(ε, x) =
∫

S(ε,x,−)

φ̃2(y
−1x)E(y)n(y)dσ(y),

where S(ε, x,±) is the part of the sphere |y − x| = ε inside or outside � depending
on the index of φ̃i taking i = 1 or i = 2.

Proof The proof of this theorem is similar to the classical Plemelj formula of the
Cauchy integral. For simplicity, we only consider

lim
r→1− I = lim

r→1−
1

�n

∫

�

φ̃1(y
−1rx)E(y)n(y)(
s1

ξ f )(y)dσ(y).

The other integral can be dealt with similarly. For a fixed ε > 0, the above integral
can be divided into three parts:
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I = 1

�n

∫

�

φ̃1(y
−1rx)E(y)n(y)(
s1

ξ f )(y)dσ(y)

= 1

�n

∫

y∈�,|y−x|>ε

φ̃1(y
−1rx)E(y)n(y)(
s1

ξ f )(y)dσ(y)

+ 1

�n

∫

y∈�,|y−x|�ε

φ̃1(y
−1rx)E(y)n(y)[(
s1

ξ f )(y) − (

s1
ξ f )(x)]dσ(y)

+ 1

�n

∫

y∈�,|y−x|�ε

φ̃1(y
−1rx)E(y)n(y)dσ(y)(
s1

ξ f )(x)

=: I1 + I2 + I3,

where the symbol 
ξ f (y) denotes the spherical Dirac operator 
ξ acting on the
variable η of f , where y = |y|η.

Let r → 1−. The integral I1 tends to

1

�n

∫

y∈�,|y−x|>ε

φ̃1(y
−1x)E(y)n(y)(
s1

η f )(y)dσ(y).

For I2, because f ∈ A implies 

s1
ξ f is a Lipschitz function, we have

lim
ε→0

lim
r→1− I2 = lim

r→1− lim
ε→0

∫

y∈�, |y−x|�ε

φ̃1(y
−1rx)E(y)n(y)

×
[
(


s1
ξ f )(y) − (


s1
ξ f )(x)

]
dσ(y) = 0.

Finally we estimate I3. By Cauchy’s theorem, for any fixed ε > 0, we have

lim
r→1− I3 = lim

r→1−

∫

y∈�, |y−x|�ε

φ̃1(y
−1rx)E(y)n(y)dσ(y)(
s1

ξ f )(x)

= φ̃1(ε, x)(

s1
ξ f )(x).

This completes the proof of the theorem. �

As a useful tool in the study of boundary value problems on the non-smooth
domains, the theory of Hardy spaces on Lipschitz curves and surfaces has attracted
attention of many mathematicians. In 1980s, Jerison and Kenig [9, 10] considered
the complex variable case. In [11], Mitrea introduced the theory of Clifford-valued
Hardy spaces on high-dimensional Lipschitz graphs.

Let � and �c be the bounded and unbounded connected components of Rn
1 \ �,

respectively. For α > 0, define the non-tangential approach regions�α(x) and�c
α(x)

to a point x ∈ � as

�α(x) =
{
x ∈ �, |y − x| < (1 + α)dist(y, �)

}
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and
�c

α(x) =
{
y ∈ �c, |y − x| < (1 + α)dist(y, �)

}
.

Let f be defined in � (�c). The interior non-tangential maximal function Nα(f ) is
defined as

Nα(f )(x) = sup
{

|f (y)| : y ∈ �α(x)(y ∈ �c
α(x))

}
.

For 0 < p < ∞, Hardy spaces Hp(�) and Hp(�c) are defined as

Hp(�) =
{
f : f is left monogenic in � and Nα(f ) ∈ Lp(�)

}
,

Hp(�c) =
{
f : f is left monogenic in �c and Nα(f ) ∈ Lp(�)

}
.

The theory of monogenic Hardy spaces in [11] indicates that for p > 1, theHp(�)-
normof a function is equivalent to theLp-normof its non-tangentialmaximal function
on the boundary. For the spaces Hp(�c), similar conclusions hold. Precisely, if
f ∈ Hp(�) for p > 1, we have

C1‖f ‖Hp(�) � ‖f ‖Lp(�) � C2‖f ‖Hp(�).

If f ∈ Mk and k �= −1,−2, . . . ,−n + 1, becauseMk is the subspace consisting of
all k-homogeneous left monogenic functions, we have 
ξ f (ξ) = kf (ξ). For f ∈ A,
we define 
(f |
) as the restriction of the monogenic extension of 
ξ(f |SRn1 ) to 
.
Then the definition of 
ξ can be extended to 
ξ : A → A.

In [3], Eelbode studied the boundary value of the Photogenic-Cauchy transform
Cα
P on the unit hyperbolic sphere. In Example 7.0.1, The occurrence of the factors

k2Pk(f ) and k2Qk(f ) implies that the boundary valueCα
P [f ] ↑ ofCα

P is not a bounded
operator from L2(Sn−1) to itself. If we restrict this operator to some smaller subspaces
of L2(Sn−1), we can obtain the corresponding boundedness.

Now we give the main result of this section.

Theorem 7.3.3 Let ω ∈ (arctan(N ), π/2). If b ∈ Hs(Sc
ω), s > 0, then with the

assumption b(0) = 0, the multipliers introduced in Definition 7.3.2 can be extended
to a bounded operator from W 2,s1


ξ
(�) to L2(�), where s1 = �s�. In addition,

‖M(b(k))‖op � Cν

∥∥∥∥
b

|z + 1|s
∥∥∥∥
L∞(Sc

ν )

, arctanN < ν < ω.

Proof For f ∈ W 2,s1

ξ

(�) ⊂ L2(�), by Proposition 6.2.7, we have f = f + + f −,
where f + ∈ H2(�) and f − ∈ H2(�c) such that

‖f ±‖L2(�) � CN‖f ‖W 2,s1 (�).

By the linearity and Theorem 7.3.2, we have Mb(f ) = Mb+ f + + Mb− f −, where



7.3 Integral Representation of Sobolev–Fourier Multipliers 263

Mb± f ±(x) = lim
r→−

∫

�

φ̃±(r±1y−1x)E(y)n(y)f (y)dσ(y), x ∈ �.

Hence, we only need to prove

‖Mb± f ±‖H2 � CN‖
s1
ξ f

±‖H2 .

We only prove the above inequality for f +. For the sake of simplicity, we omit the
symbol “+”. The f − part can be similarly dealt.w

By Theorem 7.3.1, for b ∈ Hs(Sc
ω), we have

|φ̃(y−1x)| � C

|1 − y−1x|n+s
.

Hence by Hölder’s inequality, we obtain

|
1+s1
ξ Mbf (x)|

�
(∫

�√
t

|φ(y−1x)|dσ(y)

|y|n
)1/2 (∫

�√
t

|φ(y−1x)||
s1+1
ξ f (y)|2 dσ(y)

|y|n
)1/2

� C

(∫

�√
t

1

|1 − y−1x|n+s

dσ(y)

|y|n
)1/2 (∫

�√
t

|
s1+1
ξ f (y)|2

|1 − y−1x|n+s

dσ(y)

|y|n
)1/2

.

Through change of variable, we have

|
1+s1
ξ Mbf (x)| � C

(∫

�

1

[(1 − √
t)2 + θ2

0 ] n+s
2

dσ(y)

)1/2

×
(∫

�

1

[(1 − √
t)2 + θ2

0 ] n+s
2

|
1+s1
ξ f (y)|2dσ(y)

)1/2

,

where the integral in the last inequality satisfies

∫

�

1

[(1 − √
t)2 + θ2

0 ] n+s
2

dσ(y) �
∫ π

0

sinn−1 θ0

[(1 − √
t)2 + θ2

0 ] n+s
2

dθ0

� C
1

(1 − √
t)s

.

Hence by the equivalent characterization given in Proposition 6.2.6, we have
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‖Mbf ‖2H 2(�)

�
∫ 1

0

∫

�

|
1+s1
ξ Mbf (tx)|2(1 − t)2s1+1dσ(x)

dt

t

� C
∫ 1

0

∫

�

(1 − √
t)2s1+1

(1 − √
t)s

(∫

�

|
1+s1
ξ f (

√
ty)|2

[(1 − √
t)2 + θ2

0 ] n+s
2

dσ(y)

)
dσ(x)

dt

t

� C
∫ 1

0

∫

�

|
1+s1
ξ f (

√
ty)|2

(∫

�

(1 − √
t)s

[(1 − √
t)2 + θ2

0 ] n+s
2

dσ(x)

)
(1 − √

t)dσ(y)
dt

t

� C
∫ 1

0

∫

�

∣∣∣
ξ(

s1
ξ f )(

√
ty)
∣∣∣
2
(1 − √

t)dσ(y)
dt

t

� C‖
s1
ξ f ‖H2(�),

where in the forth inequality we used the fact that for t ∈ (0, 1),

(1 − √
t)2s1+1−s = (1 − √

t)1+s+2s1−s � (1 − √
t)1+s

and ∫

�

(1 − √
t)s

[(1 − √
t)2 + θ2

0 ] n+s
2

dσ(x) � C(1 − √
t)s

1

(1 − √
t)s

� C.

In the last inequality, we used Proposition 6.2.6. This completes the proof of Theorem
7.3.3. �

For the classical convolution singular integral operator Tφ on Rn, one of the basic
facts is the endpoint estimate, that is, the weak-(1, 1) boundedness. If for all λ > 0,

|{x ∈ � : |T (f )(x)| > λ}| � C

λ
‖f ‖1,

we call an operator T is weak-(1, 1) bounded on �. In other words, we say that
this operator is bounded from L1 to the weak type space WL1, see [12–14] and the
reference therein. By this weak boundedness, we can use the interpolation theory
and the duality of operators to deduce the Lp-boundedness of Tφ, 1 < p < ∞. In the
rest of this section, we study the endpoint estimate of the Fourier multipliers.

Theorem 7.3.4 Let ω ∈ (arg(N ), π
2 ). If b ∈ Hs(Sc

ω), s > 0 and b(0) = 0. Then the
multiplier M(bk ):

M(bk )(f )(x) =
∞∑
k=0

bkPk(f )(x) +
∞∑
k=0

b−k−1Qk(f )(x)

is bounded from W 1,s1

ξ

(�) to WL1(�), where s1 = �s�.
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Proof For b ∈ Hs(Sc
ω) and z ∈ Sc

ω, |b(z)| � C|z|s, s > 0. Hence it is natural to get
|b(z)/zs| � C, where C is a constant. On the other hand, b ∈ Hs(Sc

ω) implies that b
is holomorphic in Sc

ω. Then z−sb(z) is also holomorphic in Sc
ω. Now for the Fourier

multiplierM(bk ), we have

M(bk )f (x) =
∞∑
k=0

bkPk(f )(x) +
∞∑
k=0

b−k−1Qk(f )(x)

= I + II .

For simplicity, we only deal with the term I . As above, I can be represented as

I = 1

�n

∫

�

φ̃(y−1x)E(y)n(y)f (y)dσ(y).

If we write b(z) = zs1b1(z) and b1(z) ∈ H∞(Sc
ω), then the corresponding sequence is

{b1,k}whose the elements is bk = ks1b1,k . Therefore we can rewrite I as the following
form

I =
∞∑
k=0

b1,kk
s1Pk(f )(x).

The kernel associated toMb1,k is denoted by φ̃1(y−1x)E(y) that satisfies


ξ(φ̃1(y
−1x))E(y) =

∞∑
k=1

kb1(k)P̃
(k)(y−1x)E(y).

By integration by parts, we get

I = 1

�n

∫

�



s1
ξ (φ̃1(y

−1x))E(y)n(y)f (y)dσ(y)

= 1

�n

∫

�

φ̃1(y
−1x)E(y)n(y)
s1

η (f )(y)dσ(y).

Similarly, if we take s = 0 in Theorem 7.3.1, φ̃1(y−1x) satisfies

|φ̃1(y
−1x)| � C

|1 − y−1x|n .

Hence the multiplier Mb1,k reduces to a H∞-Fourier multiplier on starlike Lipschitz
graph and is weak-(1, 1) bounded. Then we have

∣∣{x ∈ � : |Mbk f (x)| > λ
}∣∣ = ∣∣{x ∈ � : |Mb1,k (


s1
ξ f )(x)| > λ

}∣∣

� C

λ

∥∥
s1
ξ f
∥∥
L1

.
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This completes the proof of this theorem. �
At last, we consider the boundedness of the Fourier multipliers for s < 0. Let

−n < s < 0 and {bk} be a sequence which satisfies |bk | � ks. We define the Fourier
multiplierM(bk ) as follows.

M(bk )(f )(x) =
∞∑
k=1

bkPk(f )(x) +
∞∑
k=1

b−k−1Qk(f )(x).

Similar to the case s > 0, we can express the multiplier as

M(bk )(f )(x) = 1

�n

∫

�

φ̃(y−1x)E(y)n(y)f (y)dσ(y).

Here x ∈ � and

φ̃(y−1x) =
( ∞∑

k=1

+
−1∑
−∞

)
bkP̃

(k)(y−1x),

where P̃(k) is the polynomial defined as

P̃(k)(y−1x) = |y−1x|kC+
n+1,k(ξ, η)

or
P̃(−k−1)(y−1x) = |y−1x|−k−nC−

n+1,k(ξ, η).

To obtain the boundedness of the multiplier, we need to estimate the function φ̃(x).

By the method of Theorem 1.3.2, we can prove that the kernel φ(x) =
∞∑

k=−∞
bkPk(x)

satisfies

|φ(x)| � C|x|s
|1 − x|n+s

, where x ∈ Hω.

For the kernel φ̃(y−1x) defined above, we can use the method of Proposition 6.2.3 to
obtain

|φ̃(y−1x)| � C|y−1x|s
|1 − y−1x|n+s

.

For any two points x1, x2 on the starlike Lipschitz surface, we have x−1
2 x1 ∈ Hω,

that is, there exist two constants C1, C2 such that C1 � |x−1
2 x1| � C2. Hence for any

points x1, x2 ∈ �, the equality

|x1| = |x2x−1
2 x1| = |x2||x−1

2 x1|

implies thatC1|x1| � |x2| � C2|x1|. In otherwords, the norms of the two points on the
starlike Lipschitz surface are approximately a constant associated with �, denoted
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by C� . Hence we can obtain the estimate

|φ̃(y−1x)E(y)n(y)| � C|y−1x|s
|1 − y−1x|n+s

1

|y|n
� C|x|s

|y − x|n+s

� C�

|y − x|n+s
.

Because the Lipschitz surface is a homogeneous space, our Fourier multiplier
M(bk )f (x) can be regarded as the fractional integral operator on �. By the classi-
cal theory of the fractional integral operator on homogeneous spaces, we can obtain
the Lp − Lq boundedness of the Fourier multiplier as follows.

Theorem 7.3.5 Let −n < s < 0, 1 � p < q < ∞ and 1
q = 1

p + s
n . If b ∈ Hs(Sc

ω),
the Fourier multipliers on starlike Lipschitz surface:

M(bk )f (x) =
∞∑
k=1

bkPk(f )(x) +
∞∑
k=1

b−k−1Qk(f )(x)

with bk = b(k) is bounded from Lp(�) to Lq(�).

Proof For a starlike Lipschitz surface �, if x1, x2 ∈ �, then x−1
2 x1 ∈ Hω, i.e., there

exist two constants c1, c2 depending on ω and � such that C1 � |x−1
2 x1| � C2. For

any points x1, x2 ∈ �, the equality

|x1| = |x2x−1
2 x1| = |x2||x−1

2 x1|

indicates that C1|x1| � |x2| � C2|x1|. In other words, the norm of any point on � is
about a constant C� which is related to �. Then the kernel φ(y−1x)E(y) satisfies

|φ(y−1x)E(y)| = |φ(y−1x)||E(y)|
� C

|1 − y−1x|n+s

1

|y|n
� C|y|s

|y − x|n+s

� C�

|y − x|n+s
.

In addition, for any ball B(x, r) =
{
y ∈ �, |x − y| < r

}
, we have

σ(B(x, r)) =
∫

B(x,r)
dσ(y) � Crn,
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that is, the surface measure of B(x, r) is dominated by the area of a sphere in R
n.

Hence, we can use the classical method to prove the boundedness. Below we give
the details. At first, we define the auxiliary function �(x) by

�(x) = sup
r>0

σ(B(x, r))

rn
.

For the integral representation of Mb, we divide the integral into two parts.

|Mb(f )(x)| �
(∫

B(x,r)
+
∫

�\B(x,r)

)
|f (y)| 1

|y − x|n+s
dσ(y) =: I1 + I2.

For I1, we have

I1 �
∫

B(x,r)
|f (y)| 1

|y − x|n+s
dσ(y)

=
∞∑
k=0

∫

B(x,2−k r)\B(x,2−k−1r)
|f (y)| 1

|y − x|n+s
dσ(y).

Because |y − x| � 2−kr for y ∈ B(x, 2−kr) \ B(x, 2−k−1r), we can obtain

I1 �
∞∑
k=0

(2−k−1r)−n−sσ(B(x, 2−kr))
1

σ(B(x, r))

∫

B(x,2−k r)
|f (y)|dσ(y)

�
∞∑
k=0

(2−k−1r)−n−sσ(B(x, 2−kr))M (f )(x).

By the definition of �(x), we have

σ(B(x, 2−kr)) = σ(B(x, 2−kr))

(2−kr)n
� �(x)(2−kr)n.

Then by −s > 0, we get

I1 � r−s�(x)M (f )(x)
∞∑
k=0

(2−k−1)−s � r−s�(x)M (f )(x).

For I2, we have
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I2 �
∞∑
k=0

∫

B(x,2k+1r)\B(x,2k r)

|f (y)|
|x − y|n+s

dσ(y)

�
∞∑
k=0

(2k r)−s−n(σ (B(x, 2k+1r)))1−λ/p(σ (B(x, 2k+1r)))λ/p−1
∫

B(x,2k+1r)
|f (y)|dσ(y)

�
∞∑
k=0

(2k r)−s−n(2k+1r)n(1−λ/p)(�(x))1−λ/pMλ/p(f )(x)

= r−s−nλ/p

( ∞∑
k=0

2k(−n−s)2nk(1−λ/p)

)
(�(x))1−λ/pMλ/p(f )(x).

Because s − nλ/p < 0 for 1 � p < nλ/s, then

|Mb(f )(x)| � r−s�(x)M (f )(x) + r−s−nλ/p(�(x))1−λ/pMλ/p(f )(x).

Letting

r =
(
Mλ/p(f )(x)

M (f )(x)

)p/nλ 1

�1/n(x)
,

we obtain

|Mb(f )(x)| �
(
Mλ/p(f )(x)

)−sp/nλ
(
�(x)

)1+s/n(
M (f )(x)

)1+sp/nλ

+ (Mλ/p(f )(x)
)−ps/nλ−1+1

(
M (f )(x)

)−sp/nλ+1(
�(x)

)1+s/n

�
(
�(x)

)s/n+1(
Mλ/p(f )(x)

)−sp/nλ(
M (f )(x)

)1+sp/nλ
.

Now we get

∥∥∥(�(x))−s/n−1Mb(f )(x)
∥∥∥
q

Lq
�
∫

�

(
Mλ/p(f )(x)

)−spq/nλ
(
M (f )(x)

)(1+sp/nλ)q
dσ(x).

Let λ = 1. Because σ(B(x, r)) � crn, then �−s/n−1(x) � C−s/n−1 for −n < s < 0.
By the fact that M1/pf (x) � C‖f ‖p, we see that

∥∥(�(x))−s/n−1Mb(f )(x)
∥∥q
Lq =

∫

�

|M1/p(f )(x)|q−p|M (f )(x)|pdσ(x)

� ‖M1/pf ‖q−p
∞ ‖M (f )‖pp

� C‖f ‖q−p
p ‖f ‖pp

� C‖f ‖qp.

This completes the proof of Theorem 7.4.1. �
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7.4 The Equivalence of Hardy–Sobolev Spaces

In this section, we give an application of Fourier multipliers on the starlike Lipschitz
surface�. In the proof of Theorem7.3.1,we used theHardy decomposition ofL2(�):
for f ∈ L2(�), f = f + + f −, where f + ∈ H2(�) and f − ∈ H2(�c). If f ∈ W 2,s


ξ
(�),

f + and f − belong to the so-called Hardy–Sobolev spaces. For these spaces, there
exist two methods to given the definitions.

Method I. For f ∈ L2(�), f = f + + f −, where f + ∈ H2,+ and f − ∈ H2,−. That
is f + belongs to the Hardy space, while f − belongs to the conjugate Hardy space.
We define the Hardy–Sobolev space on � as

H2,s
+,1(�) =

{
f : there exists a function g ∈ L2(�) such that

f = g+ ∈ L2(�) and 

j
ξ (g

+) ∈ L2(�), j = 1, 2, . . . , s
}

and

H2,s
−,1(�) =

{
f :∈ L2(�) there exists a function g ∈ L2(�) such that

f = g− ∈ L2(�) and 

j
ξ (g

−) ∈ L2(�), j = 1, 2, . . . , s
}
.

Method II. At first for any f ∈ W 2,s

ξ

, 

j
ξ f ∈ L2(�), j = 1, 2, . . . , s. We obtain

the decomposition 

j
ξ f = (


j
ξ f )

+ + (

j
ξ f )

−, where (

j
ξ f )

+ ∈ H2,+ and (

j
ξ f )

− ∈
H2,−. The Hardy–Sobolev spaces are defined as follows.

H2,s
+,2(�) =

{
f : there exists a function g ∈ L2(�) such that

f = g+ ∈ L2(�) and (

j
ξg)

+ ∈ L2(�), j = 1, 2, . . . , s
}

and

H2,s
−,2(�) =

{
f : there exists a function g ∈ L2(�) such that

f = g− ∈ L2(�) and (

j
ξg)

− ∈ L2(�), j = 1, 2, . . . , s
}
.

On the unit sphere, because we can exchange the order of the Riesz transform and
the Dirac operator, the above two Hardy–Sobolev spaces are the same one obviously.
On a general starlike Lipschitz surface, we will use the theory of Fourier multipliers
to show that the two kinds of Hardy–Sobolev spaces are equivalent on �.

Theorem 7.4.1 For the starlike Lipschitz surface �, let s be a positive integer, the
Hardy–Sobolev spaces H2,s

±,1(�) and H2,s
±,1(�) are equivalent.
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Proof Because A is dense in L2(�), without loss of generality, we assume that
f ∈ A. By the spherical harmonic expansion, we have

f =
∞∑
k=1

Pk(f )(x) +
∞∑
k=1

Qk(f )(x).

Then letting f + =∑∞
k=1 Pk(f )(x) and f − =∑∞

k=1 Qk(f )(x), we get


ξ (f
+) = 
ξ

( ∞∑
k=1

Pk(f )(x)

)
.

Because Pk(f )(x) belongs to the k-homogeneous eigenspace Mk , we can deduce
that


ξ (f
+)(x) =

∞∑
k=1

kPk(f )(x) for f ∈ A.

On the other hand,

Pk(f )(x) = 1

�n

∫

�

P̃k(y−1x)E(y)n(y)f (y)dσ(y)

= 1

�n

∫

�

∑
|α|=k

Vα(x)Wα(y)n(y)f (y)dσ(y),

where we use the Cauchy–Kovalevska expansion

P̃k(y−1x)E(y) =
∑
|α|=k

Vα(x)Wα(y),

where Vα(x) ∈ Mk and Wα(y) ∈ M−3−k . Hence we can get


ξ(f
+)(x) = 1

�n

∞∑
k=1

∫

�

∑
|α|=k

Vα(x)
k

k + 1
(k + 1)Wα(y)n(y)f (y)dσ(y)

= 1

�n

∞∑
k=1

k

k + 1

∫

�

∑
|α|=k

Vα(x)
ηWα(x)n(y)f (y)dσ(y).

Because f decays fast for f ∈ A, we can use integration by parts to obtain that
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ξ (f
+)(x) = 1

�n

∞∑
k=1

k

k + 1

∫

�

P̃(k)(y−1x)E(y)n(y)(
ηf )(y)dσ(y)

= 1

�n

∞∑
k=1

k

k + 1
Pk(
ξ f )(x).

Let bk = k
k+1 . We have 
ξ (f +)(x) = M(bk )((
ξ f )+). Since |bk | � C, it follows from

the theory of Fourier multipliers on � that M(bk ) is bounded on L2(�), that is, there
exists a constant C1 such that

‖(
ξ f
+)‖L2(�) � C1‖(
ξ f )

+‖L2(�).

Conversely, let b′
k = k+1

k . Similarly, we can get

(
ξ f )
+(x) = 1

�n

∞∑
k=1

k + 1

k
(
ξPk(f ))(x) = M(b′

k )
(
ξ (f

+))(x),

and there exists a constant C2 such that

‖(
ξ f )
+‖L2(�) � C1‖
ξ (f

+)‖L2(�).

This proves Theorem 7.4.1. �

7.5 Remarks

Remark 7.5.1 The definitions ofHs
ln &Ks

ln and Theorem 7.1.3 only concern the case
of the first power of the log function. In fact, if k is a positive integer, by the same
proof, we can extend (ii) of Theorem 7.1.3 to the kth power of the log function.

Remark 7.5.2 By the followingmethod,we can obtain variations of Theorems 7.1.1–
7.1.3. Denote by exp(−iθ ·) the function z → exp(iθz). Define the spaces

Hs,θ (Sω,±) = exp(iθ ·)Hs(Sω,±), Hs,θ (Sω) = exp(iθ ·)Hs(Sω),

Ks,θ (Cω,±) =
{
φ | φ ◦ exp(−iθ) ∈ Ks(Cω,±)

}

and
Ks,θ (Sω) =

{
φ | φ ◦ exp(−iθ) ∈ Ks(Sω)

}
.

If we change the statements of the theorems by using these spaces with the parameter
θ , then the singular point z = 1 of the functions φ+ and φ will be shifted to the point
z = exp(iθ) on the unit circle.
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Remark 7.5.3 For the case s = 0, the main results of Sect. 7.1 are corollaries of the
Fourier theory of holomorphic functions on the sectors established in [15]. In [16],
the authors proved that if the Lipschitz constant of the curve is smaller than tan(ω), as
the kernel, any element in K0(Cω,±) and K0(Sω) induces a L2-bounded convolution
singular integral operator on this starlike Lipschitz curve. In fact, these operators
can be represented as the H∞-functional calculus of the Dirac operator z(d/dz)
on the closed curve. By the conformal mapping, we can deduce a corresponding
singular integral operator on any simply-connected Lipschitz curve. The cases of
s �= 0 correspond to the fractional integrations and differentials on these curves. All
those mentioned are closely related to boundary value problems associated with
Lipschitz domains. We refer to [17–19] for further information.

Remark 7.5.4 In [20],D.Khavinsonproved the following result. Let f (z) =∑∞
n=1 bnz

n,

where bn = g(n), g is a bounded holomorphic function in the sector Sφ =
{
z :

| arg z| � φ
}
, 0 < φ � π

2 . Then f can be extended to a holomorphic function on

the heart-shaped region Gφ =
{
z = reiθ , 2π − cot φ · log r > θ > cot φ · log r

}
.

Hence, in Sect. 7.1, the result of the fractional integrals on the closed Lipschitz
curves can be deduced from the result of the unit circle.

Remark 7.5.5 If b ∈ Hs(Sc
ω), s > 0, there exists a holomorphic function b1 such

that |b1(z)| � Cμ and φ(x) = 

s1
ξ φ1(x), where s1 = [s] + 1. Here φ1 is the kernel

associated with b1 in Theorem 7.2.1. However, in this way, we only obtain the
following estimate: |φ(x)| � C/|1 − x|n+s1 , which is not precise compared with the
result of Theorem 7.2.1.
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