Chapter 7 ®)
The Fractional Fourier Multipliers e
on Lipschitz Curves and Surfaces

The main contents of this chapter are based on some new developments on the
holomorphic Fourier multipliers which are obtained by the two authors in recent
years, see the author’s paper joint with Leong [1] and the joint work [2]. In the
above chapters, we state the convolution singular integral operators and the related
bounded holomorphic Fourier multipliers on the finite and infinite Lipschitz curves
and surfaces. Let S, , and S}, be the regions defined in Sect. 1.1. The multiplier b
belongs to the class H* (S}, ;) defined as

H™(S) = {b L S¢ = C: ba = bypec. srecn0) € HO(SC . ]

where H> (S}, ) is defined as the set of all holomorphic function b satisfying |b(z)| <
C, in any Sy, 0 <v < u. A natural question is that whether we can establish
the corresponding theory of Fourier multiplier operators if b is dominated by a
polynomial?

On the other hand, in new progress of Clifford analysis studies, there exist some
examples which can not be included in the theory of singular operator on the Lipschitz
graph. We give the following example.

Example 7.0.1 In[3, 4], in order to investigate the so-called Photogenic-Dirac equa-
tion which have the singular-valued functional solution, D. Eelbode introduce the
Photogenic-Cauchy transform C} on the unit sphere in R”. To give the definition of
this transform, we state some backgrounds on this topic.

Let R be the real orthogonal space with the orthogonal basis By (e, ¢;) =
{e, el, ..., e,} endowed with the quadratic form

n
— 72 2_ g2 _ 2
Qu(T.X) =T =) X} =T - R,
=1
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where we take
1/2

R=X|=|) X}
j=1

The orthogonal space R!" is called the m-dimensional space-time, n denotes the
spatial dimension. The space-time Clifford algebra R, , is generated by the following
multiplication rules: for all 1 <i,j <n, e;ej + eje; = —2§;;. For all i and e =1,
e;e + ge; = 0. The vectors in R, i.e., (m + 1)-tuples (7', X) or space-time vectors
is identified with the 1-vectors in R ,, under the canonical mapping

T,X)=T,Xy,.... X)) — T +X e Ry .

The Dirac operator on R'" is given by the vector derivative

n
D(T. X)1, = edr — Y _ ¢y,
j=1

which factorizes the wave operator [J, = 37 — A, on R as

2

0. = | e0r — ) _ ey,
j=1

Fora +n > 0and w € S"~!, we consider the following Photogenic-Dirac equa-
tion
(07 — 0x)Fuu(T. X) =T '5(Tw — X)

and take the transformation:

X

A=Tandx == =rf € B,(1),

~

where B, (1) is the unit sphere in R” and |£| = 1. In [3], D. Eelbode proved that

(1 _ r2)a+(n71)/2

Falx, @) = Qo +n+ Dela, n)(e +)‘C)(l— <X, @ >)tn

(1 _ r2)a+(n+1)/2

+ (o +n)c(a, n)(e + w) (= < x.q =)ol

where c(«, n) is the constant depending on « and ». In addition, let f () be any func-
tion defined on the sphere S*~!. For all x € B, (1), the Photogenic-Cauchy transform
of f Cp[f1(x) is defined by
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o 1
Crlfl@) = Fox, 0)of (0)dw,
n JSm-1

where 2, is the surface area of the sphere §"~.

If we apply this transform Cy to the inner and outer spherical monogenic poly-
nomials P, and Q; on R" \ {0} and let » — 1—, we can obtain the boundary values
Cp[Pr] 1 and C3[Qx] 1 as follows:

F(n/2—1/2) (@+n+i)fla+n+k—1)+ (k —a)§e}Pr(§)

CiP 1 () =

8mn/1-1/2 (@+n/2+1/2)(ax+n/2—-1/2) ’
"  T(2—-1/2) M +a—=k){(a —k) + (@ +n+k—1)§}0c(§)
Crlad 1) = 8n/1-1/2 (@ 4+n/24+1/2)(a +n/2 —1/2) '

It is obvious that the occurrence of
K*Pr(£), kP(§), K> Qi (&), kQi(£)

indicates that for f € L*(S""), the boundary value C%[f] 1 does not belong to
L>(S"1). Hence, in order to obtain the boundedness of this operator, we need to
restrict f into a space smaller that L*(S™1). In [3], the author replaced XS
by a special Sobolev space and obtained the boundedness of C3[f] 1. Based on
the above result, in this chapter, we consider the Fourier multiplier b satisfying
|b(€)| < C|& + 1]° in some region for s # 0 and study the boundedness of the inte-
gral operators associated with these multipliers.

Remark 7.0.2 Particularly, if we take some special by in the definition of the Fourier
multiplier (see Definition 7.3.2 and the remark below), we can see that the multiplier
operator becomes the boundary value of the Cauchy transform on the hyperbolic
sphere which was studied in [3, 4].

Compared with the Photogenic-Cauchy transform in Example 7.0.1, there exist
two difficulties for the study of Fourier multipliers:

(1) The kernel ¥ (x, @) of the Cauchy transform Cj can be derived from the funda-
mental solution of the wave operator [],,, while the kernel of the Fourier multiplier
does not have an explicit expression.

(2) On the unit sphere in R”, the Plancherel theorem holds. After obtaining the
decomposition of C3 (f) with respect to the spherical harmonics, the author of [3] can
deduce easily that if f belongs to some Sobolev spaces, the function Cj (f) belongs
to L2(S*1). However, in the case of Lipschitz surfaces, there is no corresponding
Plancherel theorem, and the method of [3] is invalid.

To overcome the above difficulties, we use the Fueter theorem to estimate the
kernel of the multiplier operator. We prove that the kernel of the Fourier multiplier
operator has a decay with the form of a polynomial of degree —(n + s). The proof
is similar to that of Chap.6 but with some modifications. When we deal with the
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case s < 0, the function |x|* is unbounded in the domain H, . After getting the

estimate of the kernel on H, _, we can not use the Kelvin inversion to obtain the
corresponding estimate on H,, ., see Theorem 7.2.2 for details.

7.1 The Fractional Fourier Multipliers on Lipschitz Curves

In this section, we generalize the results in Chaps. 1 and 2 to the following cases:
|b,| < Cn®, —00 < s < o0o. Such result corresponds to the fractional integrations
and differentials on the closed Lipschitz curve and has a closed relation with the
boundary value problem on Lipschitz domains.

We still use the following sets in the complex plane C. For w € (0, /2], write

St = {Z e C: |arg(xz)| < a)}
as the sets defined in Definition 1.2.1. Define the sets

W, . = {z €7Z: |Re(z)] < and Im(4z) > o} us,,

see the following graph (Figs.7.1 and 7.2):
The periodization of W,, 4 is the following heart shaped regions:
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Fig.7.3 C,. .+

/!
il

Cot={z=cxplin €C: e W],

which are shown in the following figure (Figs.7.3 and 7.4):
Define
Sw = w,+ U Sw,fs

W, = Ww,+ N Wa),—v

and
Co=Co+NC,y .

Let O be a set in the complex plane. If rz € O for z € O and all 0 < r < 1,
we call O the inner starlike region with the pole zero. If rz € O for z € O and all
1 < r < oo, we call O the outer starlike region with the pole zero. For w € (0, 7 /2],
C, + is heart-shaped and inner starlike with the pole zero, while C,, _ can be regarded
as the complement of a heart shaped region and an outer starlike region with pole
zero.

The following function spaces defined on the sectors will be used in the rest of
this section. For —oco < s < 00,
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H*(Sy.+) = {b : Sw.+ — C | bis holomorphic and satisfies

Ib(z)] < Culzx 1| inevery S, 4,0 < p < a)}
Fors = —1, =2, ..., we will also use another class of function spaces.

H; (S,+) = {b : Sy, — C | b are holomorphic and satisfies

b(2)| < Culz£2 In|z£2|inevery S, +,0 < p < a)}

On the double sectors, we can define the corresponding function spaces. For —oo <
s < 00,

H'(S,) = {b: Sy = C by € H'(Sy1), Whete bs = bjeec, srec-
and
Hiy(S0) = {b: Sy = C | by € Hiy(Sus), Where ba = bjeec, srec-) |

where xg denotes the characteristic function of the set E.

Hence, the function spaces H*(S,) and H; (S,) defined above consist of the
functions on sectors which are bounded near zero and dominated by C,|z|* and
C,|z[*In |z| at infinity in any smaller sectors than those in which the functions are
holomorphically defined.

If a function defined by the Laurent series converges to a holomorphic function
in a region, then this function is called holomorphically defined. In this case, by the
Abel theorem, the power series part is holomorphically defined in the related inner
starlike region with the pole zero. The negative power series part is holomorphically
defined in the related outer starlike region with the pole zero.

For s > —1, define

K(Cyp ) = [d) : C,.+ — C | ¢ is holomorphic and satisfies

lp(2)] <

m inany C, +,0 <t < w}
and

K*(C,) = [qb : C, — C | ¢ is holomorphic and satisfies

C. .
¢ ()] < m inany C, 1,0 < p < a)}
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For —oco < s < —1, we only give the definition of K*(C,, ;). For —oo < s < —1,
the spaces K*(C,, _) and K*(S,,) can be defined similarly. Assume
1 l_7 = {bn},;.io e l*;
o0

(i) ¢p(z) = >_ b,z" is holomorphically defined in C,, 4 ;
n=0

[o.¢]
(iil) The series ¢»(1) = ) b, is convergent.
n=0

Form the difference

G2 — dp(1) = b1z = 1)+ b2 — D4+ b = D4+ (2 — Dy (2),

where

1(b) = (Zbk> €™
k=n n=1

and

D1 () = Z (Z bk) "L
k=n

n=1
Then by (ii), ¢;(p) is holomorphic in C,, .
The sequence I (b) constructed above may or may not satisfy the condition (iii).
If this sequence satisfies (iii), then it satisfies (i) automatically. Hence (1(b), ¢r))

satisfies (i), (ii) and (iii). Then we continue to consider if the sequence I (I (b)) = I*(b)
satisfies (iii), and so on. Write

1I"(D) =1""'(b) and I°(b) = b.
If the above procedure can be applied at most k times, then the pairs
®), ¢rw). 0<j <k,
all satisfy (i), (ii) and (iii), but 7 k+1(p) does not satisfy (iii). In this case, we have
$6(2) = $p(1) + (2 = Dy (1) + -+ + (2 = DF (). (7.1)

Now we begin to define the function class K*(C, +), —00 < s < —1:
K*(Cp 4+) = {¢Q 2 Cy+ — C | b el™, the above procedure can be applied at most k; times ,
where kg = [1 — s] or [—s] depending on whether s is an integer or not,

C
. ks ®
andinany C, +,0 <u <w, [(z—1) ~¢>,kf@(z)| < m}
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where for o > 0, [¢] denotes the largest integer which does not exceed «, that is,
[] =max{n € Z | n < «}.
For s = —1, —2, ..., we consider another class of functions

Ky (Co+) = {#p : Cor.y — C | b €I, the above procedure can be applied at most — s — 1

Injz—1
times, and inany C, 4,0 < u <o, [(z — 1)_5_1¢,ﬂ71@(z)\ < C%} .
It is easy to see that the above spaces {H*(S,, +)} and {K*(C, +)} are increasing
classes along with s — co. Now we state the main results of this section. In the rest
of this section, the symbol “+” should be understood as either all 4 or all —.

Theorem 7.1.1 Let —co <s <00, s #—1,—-2,..., be H (S, +), and ¢(z) =
+o0
> b(n)z". Then ¢ € K*(Cy +).

n==%1

Proof We first consider the case 0 < s < oo. Define
1 .
V(z) = —/ exp(iz{)b(§)ds, z € Vy 4,
2m Po

where
Vyy = {z eC|Im@) > 0} us,

and pp denotes the ray: rexp(if), 0 <r < oo. Here 6 satisfies pg € S, + and
exp(iz¢) is exponentially decaying as { — oo along py. It is easy to see that W
is well defined and holomorphic in V,, . In fact, the definition of W is independent
of the choice of 6. For any n € (0, w), we can see that

C
¥ () < Izlllf”’ z2€ Vg

‘We further define function
vl = / W)L, 2 € Sy,
8(2)

where §(z) is any path from —z to z in V,,. It follows from Cauchy’s formula that for
any u € (0, w),

C
[W'(2)] < # €S, ..

By the Poisson summation formula, define

Y@ =21 Y WE+2nm), ze | @+ W),

n=—00 n=—0oo
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where ) denotes the summation in the following sense:

(i) fors > 0, the series absolutely and locally uniformly converges to a 27 -periodic
holomorphic function v, and the function ¢ = ¢ oIn /i € K*(Cy +);
(i1) for s = 0, there exists a subsequence {n;}{° such that the partial sum

Sny (z2) =27 Z W(z + 2nm)

[l <y

locally uniformly converges to a 2z -periodic function ¥, and ¢ = Y oln /i €
K*(Cop).

It can be proved that different functions W defined via different subsequences {rn}
differ by bounded constants. By use of the estimate of W, it is easy to prove the case
s> 0.

Now we consider the case s = 0. Consider the decomposition

YN We+AD) =W@+ Y 4D € W
1 2

k=—n
where i
dYo=> (\I/(z + 2km) — \v(zkn))
1 k0
and

Z = Z(\yl)’(zkn).
2 k=1

We will prove that )_ is absolutely convergent and bounded, and ) is bounded

1 2
and convergent in the sense mentioned above. Hence, as the principal part of the
sum, W(z) is dominated by C|z|~! as z — 0 and so is the function v. Therefore, the

function ¢ = ¥ o In /i satisfies the desired estimate. To deal with ), we need the
1
following formula derived by Cauchy’s formula:

, C
W'(2)| < |Z|21f"5’ z€ W, .

To deal with ), by the mean value theorem, we obtain
2
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> (W k)

k=1

2(n+1)m n
= [ /2 WY (dr + Y (WY 2km) — Re((W!)) (&) — iIm((‘I"l)/)(ﬂk):|
& k=1

= W' @en+ D) — W' em + Y [ @km) — Re((W!)) ) — Am(¥)) (o) .
k=1

where &, 0, € (2kw, 2(k 4+ 1)r). Then by the estimate of W/, the series part in the
above expression is absolutely convergent. Because that part is bounded, by choosing
a suitable subsequence {n;}, we conclude that the part converges to a constant with
the same bounds. This completes the proof of the case s = 0.

For the case s < 0, we apply induction to the interval —k — 1 < s < —k, where
k > 01is an integer. We first consider —1 < s < 0. Let b € H*(S, 4) and

$(2) =Y bmz", ¢o(2) =) nbm)z",z¢'(z) = po(z).
n=1 n=1

Because b € H*(S,, ;), we have (-)b(-) € H**'(S,, ), where 0 < s + 1 < 1. As
proved above, we get ¢y € K**1(C,, 1), and the series ¢y locally uniformly con-
verges. This fact enables us to integrate the series ¢ (z)/z term by term. Notice that
the region C,, 4 is starlike. Denote by /(0, z) the segment fromOto 1 ~ z =x 4 iy €
C,..+. By the estimate of the functions in K s+1(C,.+), we obtain

$0(¢)

sl < | lac|
1(0,2) ¢

<c / ld¢|
S S0 1T =I5t

cof
S o (1= il eyt

To complete the proof, we divide the rest of the proof into two cases: x < 1 and
x > 1. For x < 1, the above estimate becomes

‘/' dt ‘_ 1 1 [ 1 1]
o (=1 =yl s+ 1x— |yl (11— x|+ [yDsH!
Cps
Sl =gt

where we used the condition thatz ~* 1 —= x~ 1,y =~ 0.
For x > 1, because z belongs to the starlike region C,, 1, we can deduce that

x—1=|1—-x| < (tan(w))ly|
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and
Iyl = Cu(I1 — x|+ yD-

This fact together with x &~ 1 and y & 0 implies

/1 dt
o (11— x| +tlyDs+2

_/'/" dt +/' dt
o A=t =)t S G Iy — D2

_ 1 [ 2% xt! n 1 1 1 j|

s L2 =y x AL =X+ D x =yl
Cyu

\|1_Z|s+l'

For s = —1, by using the result of the case s = 0, we can apply a similar argument
to obtain .
6] < CM/ i< cumi -z,
10,2 1 =€

wherez € Cy, ;.

This completes the proof for the case —1 < s < 0. Below we use induction to the
index s :

Let —k — 1 < s < —k, where k > 0 is an integer, and let b € H}. We define b =
(b)), and get ¢y, € K*(C,y 1),

Now we consider the case —k —2 < s < —k — 1, where k£ > 0 is an integer and
be H* (S, +). Set

6@ =3 b,

n=1

(@) = i bo(m)2",

oo
where by(z) = Y b(z + n). It is easy to see that by € H**!(S,, ;). Because —k —
n=0
1 < s+ 1 < —k,byinduction, we can obtain that ¢y € K,f)“.Hence, if s is an integer,
¢y, can be extended to C,, 4 holomorphically. If s is not an integer, ¢y,
can be extended to C,,  holomorphically. Here b, = {by(n)};2,. In both cases, for
z € Cy 4, we have

N In|z —1]|
[—s—2] |
I(z = 1) P2, (2)] < Cum

or
Cyu

sl _ G
[(z—1) Gri-s-1p (2)] < FEEE
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Because IkQO = I**1p for any k — 0, we have b1 p,) = Prr1py- When s is an
integer,
|In |z —1]|

[—s—1]
l(z—1) G- (2| < C/LW'

If s is not an integer,

C
[—s] M
@ = Do @) <

This proves ¢ € K forb e H}, —k —2 < s < —k — 1. |

The cases “+” and “—""in Theorem 7.1.1 are associated with power series and neg-
ative power series, respectively. By these results, we obtain the result corresponding
to the Laurent series.

Corollary 7.1.1 Let —co <s < 00,5 #—1,-2,...,b € H*(S,) and
[o.¢]
$@ = ) b
n=—o00

Then ¢ € K*(C,).
The inverse of Theorem 7.1.1 is the following.

Theorem 7.1.2 Let —0co0 < s < oo and ¢ € K°(C, +). Then for any u € (0, w),
there exists a function b* € H(S,, 1) such that

+oo
$@) = Y b

n==+1
Moreover, for s < 0 and z € S;i,:t’
. 1 . .
b*(z) = 7 exp(—inz)¢ (exp(in))dn, (7.2)
T Jia()

where
Ae() = {n € H . | n=rexp(i(m & w)), ris from 7 sec u to 0;

and n = rexp(Fiwn), r is from 0 to nsecu}

andfors >0,z € Sﬁ,i’

1 . . .
b'(z) = — lim < / exp(—inz)¢ (exp(in))dn + ¢LfL(z>> :
(e, 121" DU (2] =1 w)UA £ (1271, )

27 e—0
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where if r < 7,

l(e,r):{n:x+iy|y:0,xisfr0m —rto —e¢, andfrom ¢ to r],

ce(r, ) = {77 =rexp(io) | o from w £ uto m, then from O0to F ,u},
and

Asr 1) = {0 € W | 1 = pexplir & ), p is from 7 sec i to 1

and n = pexp(Fin), p from rto w secu};

Ifr > m,
1(8, I") =l(8,7T), ci(r, ,LL) =C:|:(7T9 M)
As(r,p) = Ax(m, ).
In any case,
[s] . . (—inz)[‘“]
¢e:(2) = oexpm) 1+ (—inz) +---+ ——— ) dn,
L (e) [s]!

where Ly () is any contour from —¢ to € in C,, .

Proof Let ¢ € K°(C,, 1), —00 < 5 < 00. We will apply (7.2) or (7.3) to prove that
o0

b* defined above belongs to H*(C,, ), and ¢(z) = Y_ b*(n)z".
n=1

We first consider the case —oco < s < 0. By the ex;;ressions (7.2) and (7.1), using
the estimate of the function ¢ and Cauchy’s theorem, we can prove

1
lim b"(z) = —/ exp(inz)@ (exp(in))dn, z € Sy +,
>0 270 Sy

where

Ap) = {n € Wy | n=rexp(i(m 4+ p)), risfrom msec(u) to 0,

and n = rexp(—iun), rfrom Oto w sec(,u)},

where | arg(z)| < n < w. Let | arg(z)| < 6 < w. By the estimate of ¢ and the prop-
erty of the path A(u), the function b* satisfies the following estimate (Fig.7.5):

o . dr s
16" ()] < Cy <|Z|S +/0 exp(—sin(u — 9)|Z|V)m> < Cuplzl’
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Y

- -r —& & r v/

Fig. 7.5 I (e,r)Ucy(r, ) UAL(r, 1)

Now we consider the case 0 < s < co. By (7.2), without loss of generality, as
7 & 00, assume that |z|~! < 7. We have

27‘[ e—0

1 !
b (z) = — lim {( / exp(—itz)¢ (exp(it))dt + ¢§](z)>
elr|<z| ™!
+/ exp(—inz)¢ (exp(in))dn
e (lz171 )
+/ eXP(—inZ)¢(eXp(in))dﬂ}
Ax(lzlt )
= ! li 1 I I
= Eeli%{ 1(€,2) + L(z, w) + B(z, M)},
where | arg(z)| < 4 < o,
cy(r,p) = {n =rexp(i) | ¢ is from 7 + p to w, and from Oto — u},
and

A1) = {n € W | 1= pexpliGr + ), pis from 7 sec(u) to 7,

and n = pexp(—in), pisfromrtomw sec(,u,)}.

Now we prove that I}, I, I3 are uniformly dominated by the bounds indicated in
the theorem, and the limit lin}) I, exists.
€e—



7.1 The Fractional Fourier Multipliers on Lipschitz Curves 235

By Cauchy’s theorem, we have

_q _it)\[s]
Li(e,2) = / <exp(—itz) —-1- ﬂ ————— (Zitz) )¢(exp(it))dt
e<ItI<el! 1! [s]!
_q _it-\[s]
+/ (1 IS ﬂ) #(exp(in)dr + oL (2)
e<ItI<el! 1! [s]!
i _ it [s]
= / <exp(—itz) —-1- ﬂ — = ﬂ) ¢ (exp(ir))dt
e<ItI<el! 1! [s]!
+op @)
Invoking the estimate of ¢, we obtain
i iyls)
/ [exp(—itz) o Em ﬂ] & (exp(it))dt
<l 1! [s]!

1
< CM |t|[Sl+1|Z|[S]+1_dt
_ t|l+s
e<IrI<lel! |

Izl
< CM|Z|[S]+1 / t[S]*Sdt
0

= Cylzl’.

The above argument implies that lir% I exists.
€—>
[s]

To estimate ¢|zrl

. (2), we only need to estimate the integral

_. k
[ S eepimdn k=0.1.... 15 (73)
Loy k!

Taking the contour L, (|z|~") as the upper half circle centered at 0 with radius |z| ™!,
we get

(—inz)* . e
f @ expin)dn| < C, Inz|“[n|™"~*1d ]
Li(lzI7) : Li(lzI™h)

< Culzl'.
To estimate I,, we have

dt

N
PES < Culzl’.

n
I W] < C, f exp (Inllz] sinGarg(2) + ) ) |
0

Now we consider /3. Letting | arg(z)| < 6 < u, we get
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. |dn|
[13(z, w)] < Cu/ exp(|nlz] sin(u — 0)) ——
Azt [n]i+

N

o0
C, / s exp(—r|z| sin(p — 0))dr
|

2|1
z|

< C;,L,9|Z|x'

For z ~ 0, assume that |z|~! > 7. We first prove that the integral on the contour
I (e, ) is uniformly bounded and has limit as € — 0. Except that the contour in (7.3)
should be replaced by L, (), the argument dealing with I, (¢, z) for |z]~' < 7 still
applies to the integral on I(e, 7). Let the contour L, (;r) be the upper half circle
centered at 0 with radius 7. We have

(=n2)* . < ki —1-=s
o ¢expin))dn| < Gy [nzl*n1~" " |dn|
L) K Ly ()
< Culelf
< Cy,

where k =1,2,...,[s].
To prove the integrals on ¢4 (7, ;) and A (7, n) are bounded, we use Cauchy’s
theorem to change the contour to the following one:

{z:x+iy|x: —m, yisfrom — mtan(w) to 0, and x = —m, yis from O to —ntan(u)}.

However, using the fact that Re(z) > 0, we can conclude that the integrals on the
above sets are bounded.
Now we are left to prove

o0
¢ = Zb“(n)z", —0<s<00, 0<pu<w.

n=1

This is equivalent to proving b(n) = b*(n),n = 1,2, ... in these cases.

oo
Let r € (0, 1). Since the series ¢ (rz) = Y_ b(n)r"z" is absolutely convergent in
n=1

lz| <1, we get

T

L exp(—itm)¢ (rexp(it))dt = r"b,. (7.4)
2

We first deal with the case s > 0. Write § = — In(7). Then r — 1 — 0 if and only
if § — 0+4. Taking the limits § — 0+ and r — 1 — 0 on both sides of (7.4), we
conclude that the right hand side tends to b,,, while the limit of the left hand side is

byg

lim exp(—itn)¢ (exp(—§8 + it))dt.

§—0+ J_
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For any fixed € € (0, ), we can get

lim </ —|—/ )exp(—im)qb(exp(—S + it))dt (7.5)
820+ NJogiige  Jeghign
_. _. 2 _. [Y]
= lim {/ (exp(—itn)— o Em _ GCim o Eim) )
§—0+ 0<11<e 1' 2' [S]‘

X ¢ (exp(—§8 + it))dt

_ )2 —itm)s]
+/ (1 + ﬂ 4 ﬂ Lt (= itn) ) ¢ (exp(—4 + it))dt
L.(e) 1! 2! [s]!

+ / exp(—itn)¢ (exp(—3 + it))dt}
e<|t|<m

. . (—itn)  (—itn)? (—itn)¥!
= lim exp(—itn) — 1 — —— — ——— — ... — A
=0+ Jogr<e 1! 2! [s]!

xplexp(—5 -+ i)t + ¢k + [ exp(-im)g exp(= + in)dr

el

where we used Cauchy’s theorem and the fact that the last two integrals are absolutely
integrable as § — 04. Invoking the estimate of ¢, the last expression of (7.5) is

dominated by
1
C, / [77] Lp—
0<rl<e [£]s+1

which is independent of § > 0. Taking the limits € — 0 on (7.5), the integral tends
to 0 and (7.5) reduces to

b, = lim ( f exp(—itn)¢ (exp(it))dt + ¢ (n)) ,
>0 \Jeglgn ’
which equals to (7.3). By the periodicity of the integrand function and Cauchy’s
theorem, this equals b*(n). The proof for the case s > 0 is complete.
For s < 0, by the estimate of the function ¢ and the Lebesgue dominated con-
vergence theorem, we take the limit r — 1 — 0 on both sides of (7.4) and therefore,
obtain

b(n) = % /ﬂ exp(—itn)¢ (exp(it))dt.

-7

Then by the 27 -periodicity of the integral, Cauchy’s theorem and (7.2), the above
expression equals to b*(n). This completes the proof of the theorem. (]

By Theorems 7.1.1 and 7.1.2, we obtain a result for the case s € Z_.

Theorem 7.1.3 Let s be a negative integer.

+o00
i) Ifbe H (Spx)and ¢(z) = > bn)z", then ¢ € K (Cp 1)
n=%1
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(ii)) If ¢ € K;,(Cy 1), then for any v € (0, w), there exists a function b* such that
b* € H} (S, +), and

+o0
$@ =Y b

n==x1
Moreover, b"* is given by (7.2).

Proof The conclusion (i) was obtained in Theorem 7.1.1. We only need to prove (ii).
By (7.2), it is easy to prove that b* is bounded near the origin. For large z, invoking
(7.1), we obtain that for | arg(z)| < 6 < u,

s o . _ar
1" (@) < Cu | l2I*+ | exp(=rlz|sin(u — 6))|Inr|r -
0

s s *© . _Yd}"
<c, |z|‘+|z|‘/ exp(—rsin(e — 6)|Inr — In 2l "
0

< Cuplzl’In|z|.

o0

This proves b* € Hj} (S, +). The verification of ¢ (z) = Y~ b*(n)z" is similar to the
n=1

case s < 0 in Theorem 7.1.2. The proof is complete. O

Remark 7.1.1 For {b,};2, € [*°, the series

$@) =) bu"
n=1

is well-defined on the unit disc and holomorphic. Theorem 7.1.1 and (i) of Theorem
7.1.3 indicate that if there exists b € H*(S,, +) such that b, = b(n), then ¢ can be
extended to C,  holomorphically. In any small C,, 4, when s is an integer, this
function satisfies the conditions in the definition of K}, (S,, +). When s is not an
integer, this function satisfies the conditions in the definition of K*(S,, +). Theorem
7.1.2 and (ii) of Theorem 7.1.3 give the inverse result.

Remark 7.1.2 Under the assumption of Theorem 7.1.2, the mapping ¢ — b sat-
isfying ¢(z) = Y_ b(n)z" is not single-valued. In fact, by Theorem 7.1.2, any b*,
0 < u < w, gives a solution of b, and if ] # Wy, then generally, b*' # b*2, see also
the example in Remark 7.1.3.

Remark 7.1.3 In the proof of Theorem 7.1.2, we need the following function space
P} which consists of all finite linear combinations of the holomorphic functions with
the following form

1, ifz=n,
gn(2) = [exp(in(z — n)) — exp(—in (z — n))] exp(—m(z — n) tan ®)
2im(z — n) ’

if z #n,
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where 7 is a non-negative integer. It is easy to prove

exp(—m (Re(z) tan w — [Im(z)]))
lz+ 1]

181 (@) < Cpun ,2€8,4+,0<u <o

oo ~
Hence g, € |J H*(S,,+). Itis remarkable that the functions in P} are the inverse
sS=—00
Fourier transforms of the finite polynomials of z given by (7.2) in Theorem 7.1.2.

Similarly, we can define the space P~ with respect to the negative integer.

Remark 7.1.4 The holomorphic extension given in Theorem 7.1.1 is optimal in the
following sense: if w is the largest angle such that b € H*(S,, +), then ¢ can not be
holomorphically extended to any larger heart-shaped region C, 45 4,8 > 0, which
satisfies the corresponding estimate. Or else, by Theorem 7.1.2, we can obtain con-
tradiction.

Remark 7.1.5 (i) of Theorem 7.1.3 corresponds to the function b(z) = z/(1 + z2).
Take s = —1 for example, A. Baernstein studied that how to construct a holomorphic
function in the unit disc such that when z — 1,

¢(z) =O0(n|z — 1)) and ¢'(z) # O(1/|z — 1)),

see [5]. At the same time he also proved that it is equivalent to considering the
matter in the unit disc instead of in the heart-shaped region. The reason is that the
estimates for s = —1 remain unchanged after applying a suitable conformal mapping.
In Theorem 7.1.1, letting s = 0, we conclude that b(z) # O(1/|z]) at oo. However,
it is still an open problem that the estimates given in (ii) of Theorem 7.1.3 are the
best possible in those cases.

7.2 Fractional Fourier Multipliers on Starlike Lipschitz
Surfaces

In this section, we consider a class of Fourier multiplier operators whose multipliers
are dominated by a polynomial and give the estimates of the kernels of the integral
operators associated with the Fourier multipliers. The main tool is still the gener-
alized Fueter theorem obtained in [6] (see Sect.3.5). The main idea is to establish
a relation between the set O in the complex plane C and the set 8 in the (n + 1)-

-
dimensional space RY, and then transfer the estimate for the functions defined on O
to the corresponding one defined on O.
As in Chap. 6, we still use the following intrinsic set. We recall

Definition 7.2.1

(i) A set O in the complex plane C is called an intrinsic set if the set is systemic
about the real axis, that is, the set is unchanged under the complex conjugate.
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(i) If a function f 0 is defined on an intrinsic set in C and @) =f 9() in the
domain, then the function f 0 is called an intrinsic function.

The functions of the form ) ¢ (z — a)¥, ke Z, a,cr € R, are all intrinsic
functions. If f = u + iv, where u and v are real-valued, then f° is intrinsic if and
only if in their domains, u(x, —y) = u(x, y) and v(x, —y) = —v(x, y).

We regard R’ as the (n + 1)-dimensional Euclidean space and define the intrinsic
setin R} as follows.

Definition 7.2.2 We call a setin R} an intrinsic setif it is invariant under all rotations
in R} that keep the e axis fixed. If O is a subset in the complex plane, then in R,
we call the intrinsic set

—
O ={xeR}: (x, |x]) € O}

the set induced by O

Definition 7.2.3 Let f°(2) = u(x, y) + iv(x, y) be the intrinsic functlon defined on

the intrinsic set U C C. Define the function f 70 on the induced set U as follows:

3 X
S (o +x) = ulxo, x]) + QV(xo, x]).

—
We call £ the function induced by f°.

We denote by t the mapping:

—
r(fo) _ kn—lA(n—l)/Zf()’

where A = DD and D = Dy — D, k, = (21')"’11”2(%) is the normalized constant
such that 7((-)~") = E. The operator A"~1/2 is defined via the Fourier multiplier
m(£) = (2mi|€|)"~" defined on the tempered distributions M : &' — S'. Precisely,

Mf = R(mFf),

where

FFE) = f T (x)dx

1

and

Rh(x) = / e T E p(E)dE.

The monogenic monomials in R} are defined by

PP =¢(()") and P4V = 1(PTP), k € Z*,
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where I denotes the Kelvin inversion I(f)(x) = E(x)f (x~1).
We also need the following set in the complex plane. For w € (0, 7), let

S(f)i = [z € C: larg(£2)| < a)}, the angle arg(z) € (—m, 7],

S (m)={zeC:|Rez| <m z€S, .},
S¢ =S¢, USS_and S5(r) =S5, (1) USS, (1),

W) = [Z €C:|Rez| <mand £ Imz > O} U S (),

HS . ={z=exp(in) e C,n e WS . (m)}
HE = H  OH .

We define the Fourier multipliers in the following function space

K'(Hy ,) = {¢0 : Hy . — C, ¢" is holomorphic and

: c 0 Cﬂ
inany H, ., O<u<w, |’ (@ < m ,

and
K'HS) ={¢°: H— C, ¢°=¢"" +¢"~, ¢"* € K'(H 1)}

The corresponding multiplier spaces are

H(S;, 1) = {b : S, + = C, bisholomorphic and in any S, .,

0 << lb@)| < Culz £ 1|S}.

and
HY(S(Z) = {b : SZ) — C, bt = b)(zeC:tRer>0) € HS(Ss),i)}.
Let .
—
Hy,+=3xeR]: (En ) <tanwp=HS ,,
' arg(eg, x) '
and
o IInx]| —
H,=H, NH,_={xeR]: ——— <tanw; =H;.
arg(eo, x)

Hence, the corresponding function spaces in R are

K'H, 1) = {q§ : H, + — Cy,, ¢ is monogenic and

I
|1 — xfrts’

600 < x€H, 0<M<w}
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and
K'(Hy) = {#: Hy— Cop. ¢ =67 +07, 9" € K'(Hon) |-

Now we consider the multipliers b € H X(Sgi). At first, in the following lemma, we
estimate the jth derivative of the intrinsic function ¢°.

Lemma 7.2.1 Assume that b € H*(S; ). For the multiplier defined by ') =
> o b(—k)z7k, its jth derivative satisfies

(") (2)] <

[1— Z|s+j+1 ’

where z € H;, _, 0 < 1 < w and j is a positive integer.

Proof Without loss of generality, for b € H*(S;, _), we assume that [b(—k)| < [k|*.
oo

By Theorem 7.1.1, for ¢°(z) = Y b(—k)z 7%,
k=1

19°(2)| <

|1 _Z|s+1'

Take a circle C(z, r) centered at z with radius r. By Cauchy’s formula, we obtain

. C; 0
|WW@<§/ 1O ).

cer lz—EPH!

Letr = %|1 —z|. Then & € C(z, r) implies that

1 1
1—&>21—zl—lz—&l=|1l—zl— |l —z| = =|1 — 2.
=&l Z211—zl—-|z—§l=1—¢ 2| z| 2| z|

Therefore we obtain

WC 1 e 1
§(u) |1 —gporz S T T

[0 (@) <

This proves Lemma 7.2.1. (|

Lemma 7.2.2 enables us to estimate the kernels of the Fourier multipliers generated
by the functions in H*(S{) and the spherical monogenic functions.

+o0

Theorem 7.2.1 Fors > 0, if b € H*(S;, ;) and ¢ (x) = > b(k)P® (x), then ¢ €
k=+1

K*(Hp ).

Proof Similar to Theorem 6.1.1, we divide the proof into two cases according to the
parity of n.
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Case 1. n is odd: We assume that n = 2m + 1 and restrict the proof to x ~ 1. By
Lemma 3.5.1, we only need to estimate the corresponding #; and v;. There are two
subcases to be considered.
Subcase (1.1). |x] > (8()/2™T1/?)|1 — x|. For this case, we write z = xo + i|x].
x ~ 1 implies that z &~ 1. We can write z = s + it, where s = x¢ and t = |x|. We
haver = |x| = |1 — z].

For ! =0, u; = up = u and v; = vo = v. By the estimate of ¢y, we have

C 1

uol, |vol < < —————.
luol, Ivol < ol < 5000 1T =2

For/=1andt~ |1 —z|, we get

1 dug 1 1 1
u| = 2l-—| < = ;
] ‘ t ot [T —z| |1 —z5t2 |1 —z5t3
and
| | 18V() Vo
vil=|-———
! t ot 12
. 1 1 + 1 1
T T e e T R T
B 1
- |1_Z|s+3'

Because A'¢°(x) = ui (xo, |x]) + 7v1(x0, x]), we have

1,0 i
|A'9° ()| < C |ui(xo, IxD| + le(xo, |x])

1
<C———.
|1 — z[s+3

Repeating the above procedure m times, for u,, and v,,, we obtain

1

lum O], V()| < TR T i T

Subcase (1.2). |x| < (8(n)/2"™1/?)|1 — x|. The points x in H, _ satisfying x ~
1, xo < 1 belong to Subcase (1.1). Hence we assume that xo > 1. Now we prove the
following conclusion: ifz = s +ir & 1,5 > 1,z € H, _and |t| < (8(n)/2"'/2|1 —
z|), then

(1) the function u; is an even function with respect to the second variable ¢.

(2) the jth derivation satisfies

By
guz(s, 1)

C,.C2YC; 1
52U+ |1 _ Z|2l+j+s+1 ’

<
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where the constant C; is

B { (G +40)!, jiseven, (7.7
Pl (450!, jis odd. (1.7)

We apply the mathematical induction to / in order to to prove (1) and (2). Clearly,
for [ = 0, by Lemma 7.2.1, we have

j! 1
()Y |1 — zps+l”

‘—Mo( ‘ PrAS )‘ —¢( )‘

Now we assume that (1) and (2) for 0 </ < m — 1. Because
w1 =201+ 1D (1/1)(0u; /91)(s, 1)
and y; is even, u; is also an even function. This proves (1).

For (2), we first consider the case that j is even. By the definition and (1), du; /9t
is an odd function with respect to the second variable . We can obtain

duy 2k+1
S5(5.0) = St (5,0) = 0.
By Taylor’s expansion, we have
_ 24D (g 1 2k 1L 9 2t
1 (s, 1) = ; </§) (2k)! 9r2k+1 ( 0= + Z (k + 1)! 9r2k+2 ( 0t
0 32k+l 2k
= Z Zk)' 312k+1 ( 0t

k=0

% ,
Letting k = j/2 + k' and noticing that (5“ zl) < (W%,Z)Zk , we conclude that

U+ (Sa t)

&
o0 .
(k)2k — 1)+ 2k —j + 1) 3% 2y, i

=Pu+n ) 2k + 1! gz & O

k=j/2
<» l | o0 (2k/ +])(2k/ +] _ 1) . (Zk/ + 1) C[J,Cl21(2k,+i+2)(2k,+i+2+41)
<20+ )Z k' +j + 1! S2U+2K +j+2

t2k’

x |1 _ Z|21+2k/-hi+2+s+l
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<2(1+1)

C,C210+D NG 2k 244D 2k +2)
52(1+1)+j|1 _ Z|2(l+1)+j+1+s Z 2k :
k=0

The rest of the proof is similar to that of Theorem 6.1.1. By use of (6.7), we obtain
that the series in the last inequality converges and satisfies

o]

5 G+ 2k + +2k) CR+2) a1 4 a1 4 4y,
k=0
Finally, we have
Y C G210+ 4= (i
‘ﬁum(s, n| <200+ 1)82(l+1)+j|1 - Z|2(l+1)+j+l+s2 Fal+an

Now we verify that ’ %M}+] (s, t)‘ satisfies the estimate for odd j. Similar to the proof
for j even, by Taylor’s expansion, we have

J

? 2 2kQk —1)--- 2k + 1 —j) 8%+2y
Tt (s, ) =20+ Dr Y ( ) ( /)
-

/ 2k—1—j
,0)¢ 7,
2k + 1! r2k+2 (s, 0)

ar

Let 2k — 1 — j = 2k’. We can obtain

—u S,
Py 1+1
o) . . 1(2k+3+)) i |
2k D2k +j) - 2k +2) C,C;2 2k +3 50)!
<20+ 2k +j+ 1)( f]) (2k +2) /L2[1(2k+3+') ( +21+:;<{r%t'+)+1 2%
kZ:O Qk+j +2)! B D1 —¢| 3+t

<20+1 : CuCi20™
<20+1 811 —z] §2U+D+j 1 _Z|2(I+1)+j+x+1

oo

Z(2k+j+1)(2k+j)~~-(2k+2) K
2k +j +2)!

1 2k
(2m+1/2) (2k +3 +j + 50)!
k=0
1 C,C210+3

j+51+4 (s
S2+D (5‘1 — Z|) §2(+D+j [1— Z|2(l+1)+j+s+1 Y (G+50+ 3)/2)!

Letting j = 0 and [ = m, we have

C,.Co(4m)! 1 C

|t (s, D] < §2m 11— Z|2m+s+1 = 11— Z|n+s'

Now we estimate v,,. As before, we divide the discussion into two cases.
Subcase (1.3). |x| > (8(u)/2’”+1/2).Whenl = 0, noticing that || ~ |1 — z|, we have
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vo(s, )] = [v(s, )] < C#
For [ = 1, because Si1c |
[CRUGIRS 8{(“’)‘ T
we have
vi(s, D] < 52(6/‘5) <|1 _1Z|2+s I iz| + ¥ _1Z|2 I _1Z|1+s)
C,

= |1 — z[s+3"
Repeating this procedure m times, we know

Cy Cyu
11— Z|2m+1+s - 11— Z|n+s’

|Vm(s9 t)' g

Subcase (1.4). |x] < (8(w)/2™T1/%)|1 — x|. For this case, we assume that xy > 1. For
0 < I < m, we have the following conclusion:

Conclusion (1). vi(s, t) is odd with respect to the second variable ¢. In fact, for/ = 0,

oo
vo(s, ) = Img(s, 1). Because ¢°(z) = Y. b(—k)z 7%, we have
k=1

$°@) =Y b(-hz* =) b(—k)z Tk = ¢O(z).
k=1

k=0
Let ¢°(2) = u(x, y) + iv(x, y), where u and v are real-valued functions. Then
ux, —y) +iv(r, =y) = ulx,y) — iv(xr,y) = u(x,y) = iv(x, y).
Hence v(x, —y) = —v(x, y), that is, v is an odd function for the second variable.

For [ = 1, because (vo/?) is an even function, v; = 2%(%“) is an odd function.
We assume that for 0 </ < m — 1, v; is odd. Hence

is also odd. This proves Conclusion (1).

Conclusion (2). For 0 <[ < m,

C,.C,Cjj! 1
§ 1 — Z|21+j+s+1 ’

By
)ﬁw(s, t)‘ <
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where the constant C; is defined by

(j + 50!, ifjiseven,
7T (44D, ifjis odd.

For simplicity, we only consider the case j is odd. When / = 0, it follows from the
estimate of |(¢°)?] that

C.Cjt 1
(8]) |1 — Z|j+s+l :

B
— <
‘ " vo(s, t)‘ <

Because v;(s, t) is odd with respect to the second variable, (3%%v;/3t%*)(s, 0) = 0.
By Taylor’s expansion, we have

lemf 1 1 aigr %y
=20+ 1)= - i ,0).
Vi (s, 0) = 20+ )ﬂ;((zk)! (2k+1)!> ot 50

Let k = k' + 1 and write k = k’. We get

[e°]

2% 2 82k+3
s, t)—2(l+l)z + M

2k + 3)! 9:%+3

3/Vl+1

5,002k + 1) -+ (2k + 2 — jr?k+1,

We assume that Conclusion (2) holds for 1 </ < m — 1. Letting 2k — j = 2k’, by
t/(8]1 —z]) < 27"/ we have

ale-H
} ov (s’t)‘

o0
2k +2 e 2t 1—j
<20+ 1)2 (2k+3)v(2k+ Do @k 42 = )| 5oy (5, 0t j
1 21(/+3) 1

<20+ 1)2m+1/2 S20HDH) |1 — |20+ Hjtst

Rk 4+j4+345D) - Q4+ ARk +j+2) -2k +2)
Z 2k '
k=0
This proves Conclusion (2).
Similarly, we can prove the case that n are even. For j = 0 and [ = m, we obtain

C,Cp(4m)! 1 Cus
§2m 11 _Z|2m+l+s = 11 _Z|n+s'

‘vm(s, t)) <
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Now we deal with the multipliers defined on the region S | . By the Kelvin inversion,

o0
forb € H*'(S,, , ), we estimate the function ¢ (x) = b(i)PD (x). We have

i=1

1)) = Y bHPP ),

i=—1

where Z(z) = b(—z) € H*'(S;, ). Because I(¢) = 7(¢°), where

- . 1 - ' -
0 — b(i i—1 i bz s,c
¢ (2) E ()z ; E (Hz' €H,_,

i=—1 i=—1
we have ¢ (x) = I*(¢) = E()I(¢)(x") and

o) = |[E@I(@) x| < 1 Cu _ Gl

el T =T~ 1=

c
Becausex € H, = H,

++» we can see that (xo, |x|) € H{ , and

bl = @ + )2 < 1 e,

Finally we obtain that |¢ (x)| < C, /|1 — x|"*5. This completes the proof of Case 1.

Case 2. n is even. As above, we only need to estimate the kernel ¢ defined on H,, _.
oo
Letb € H*' (S, ). Consider ¢ (x) = > b(—k)Pr(fk) (x). Because n + 1 is odd, we

k=1
have

S 00
() = 360 [ PLY G e
k=1 -

o0 1
<c / dx,
X n+1
F o 1= (6 + Xy [PHFS

o /‘” 11— x <Xn+1 )
|1 — x| +s o [1 T (/11 _x|)2](n+1+s)/2 1 — x|
C

= |1 — x|+’
This completes the proof of Theorem 7.2.1. (]

The following corollary can be deduced from Theorem 7.2.1.
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Corollary 7.2.1 Lets > 0, b € H*(S.) and

—00

¢ (x) = (Z + Z) b(i)P? (x).
i=1

i=—1
Then ¢ € K*(H.,).

For the case s < 0, the proof of the conclusion for the function ¢ is similar to that
given in the above theorem. In the following theorem, we prove the conclusion of
Theorem 7.2.1 holds for the spaces whose dimension n are odd.

+o00

Theorem 7.2.2 Fors < 0,b € H*(S;, ) and ¢ (x) = > b(k)P® (x), if the spatial
k=%1

dimension n is odd, we have ¢ € K*(H,, 1).

Proof Because the index s is negative, we can not use the method of Theorem 7.2.1
directly. Precisely, for s < 0, |z|® is unbounded as z approaches the origin. Hence,
after getting the estimate of the function ¢° on the region S ._» we will not use the
Kelvin inversion to obtain the estimate on the region S, .

To deal with this case, we estimate the function ¢ on the regions H,, + and H,, _.
On the region H,, _, the estimate for the function ¢ is the same as that of Theorem
7.2.1. We omit the details.

For the region H,, ., because the Kelvin inversion is invalid, we need to estimate
the intrinsic function ¢° in the region H .- For this purpose, we use Theorem 3.5.1
to obtain that for the odd n, P*~1D = 7((-)"+=2), where the mapping t denotes the

—
operator 7(f%) = k' A®~D/2f0 and

3 X
f7 ) = ulxo, x]) + QV(XO, x]).

Now we complete the estimate for the kernel ¢. We assume that b € H*"(Sg, ,)
and consider ¢ (x) = Y ;- | b(k)P® (x). By Fueter’s theorem, we have

¢ (x) = A"¢" (xo, |x]), where ¢°(z) = Zb(k)szrkfl.
k=1

oo
For simplicity, ) = z”’1¢? (z), where ¢? @)=Y b(k)z. By Theorem 7.1.1, for
k=1
b e H* (S, ),
167 (2)| <

|1_Z|1+s’

where z € H | . Then we have

|Z|”_l C
w
1 _Z|1+s = 1 _Z|1+s’

10°(2)| <
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where in the last inequality we have used the fact that the function |z|*~! is bounded
on Hf .. Then repeating the procedure used in Theorem 7.2.1, by the estimate of
the 1ntr1n51c function ¢°, we can deduce the estimate of the induced function ¢. This
completes the proof. (]

As a direct corollary of Theorem 7.2.2, we have

Corollary 7.2.2 For the case that the spatial dimension n is odd, Corollary 7.2.1
holds for s < 0.

On R”, The Fourier theory indicates that there exists a one-one correspondence
between the kernels of singular integrals and the symbols of Fourier multipliers.
By Theorem 7.2.1, for b € H*(S;), there exists a function ¢ € K*(H,). Now we
consider the converse of Theorem 7.2.1. For ¢ € K*(H,, +), we prove that there
exists a function b”(z) € H*(S; 1) such that by = b"(k), 0 < v < w.

Let n = 3. For the case s = 0, such function »” was obtained by T. Qian in [7].
The main tool is the following polynomial P®). For any z € S¢, let

P(Z) — TO((')Z) z e SC .
P(Z) T (( )Z+2) z€ Sw-t,-’

where (-)° = exp(zIn(-)). In the first case, the function In is defined by cutting the
positive half x-axis; while in the section case, the function is defined by cutting the
negative half x-axis.

By the new functions P and Pﬂf) , we can obtain the following result. For the
sake of simplicity, we assume that n = 3.

Theorem 7.2.3 Let n=3 and —oo <s<—-2. If ¢(x)= Y. bPP(x) e
keZN 0}

K*(H, +), then for any v € (0, w), there exists a function b® € HHZ(S‘f’i) such
that b; = b* (i), i = 1, £2, .. .. In addition,

v 1 @) (-1 +1
b'(z) = 11m = PE(TOHEWNM)@(r=y)do(y),

—1- 272 Ji+0
R
where L*(v) = exp(il*(v)) and the path 1% (v)) is defined as
) = [z € C:z=rexp(i(wr £ v)), ris fromm sec(v) to 0;

and 7 = rexp(—(£iv)), r is from 0 to sec(v)}.

ﬁ
Proof Recall that 7°: 0 — %Afo. Write 0 = %, where n = x + iy. For x =
(x0, |x|) € L*(v), there exists n € exp(il*(v)) such that n = (xo, |x|). Write e =
x/|x|. We have
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1 ov
NG ‘A(())‘ﬁ “ o, |x|)+2e(| i

1
- (o, [x) — x |2V(x0 IXI)>

Now f? = "%, where 1 € I*(v). Then f = u + iv, where u and v are the real part
and the imaginary part of f, respectively. We have 3 (e”’z) = ize™. Let n = re”*

and z = |z|]e™. We can get
e M = exp(—ir|z|e’® M) = exp(r|z| sin(@ — w)) exp(—ir|z| cos(®@ — w)).

Because ¢ € K*(S,,), we have

C
lp )] < T where x = xy + x € L*(v).

|1

For such a x, there exists a z=x+1iy € exp(ili(v)) such that z=¢" = exp
(rsinpu + ircos u) and |x| = "™ sin(r cos ). Then we get

T |z sin(u—6) 1 11,
b*(z <C/ z|e T MESIHT . — —rdr
RIS 0 el [T — em]s+3 |x] |x|

For the factor 1/|1 — el |“+3, we have
[1—eM> =14 XSt —2e 51 cos(rcos ).

Let f(r)=r> and g(r) =14 et _2¢" 5" cos(rcos ). We obtain
lim,_,¢ J; Er)) = 1. Hence we can find a constant C such that

r

|1 _ ersinﬂeircosul <Core (0’ T SeC 1),

that is, 1/]1 — e"Sinkeircosi|s+3 ~ 543 TFinally we have

T sy L1 r?
16" (2)] < C/ |z|e™ T — —— —
X 0 rs+3 eSr sin . prsin ji sm(r cos /L)
7 sin
—rlz\sm(u 6) —4rsinp
<cia [ L ey
< C|Z|Y+2’
where in the last inequality we used s < —2. ]

Theorem 7.2.3 indicates that using the method in [7], for s # 0, we only get
beH Y+2(SC +) rather than b € H*(S;, ). To obtain a more precise result, we need
apply a new method It will be based on the following things. First, the desired
function b is defined on S, . C C. Secondly, by Proposition 6.1.1, we know that
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if the dimension 7 is odd, the polynomials P™® and P*~D k e Z,, satisfy the
following relation:

PO — r(()7F), PED = ()2,

Our idea is to construct a function ¢° € K* (H; ) byuseof ¢ € K°(H,, +). Then we
can express the function b via ¢° by using techniques in complex analysis. At first
we give a lemma to show the relation between H, + and H, .

For any element e in the vector space Q, the hnear spanof 1 and ein R is called the
complex plane induced by e in R} denoted by C¢. Denote by H§ . and H§ the images
onC¢ c R of the sets H + and H{ in C under the mapping i, : a + bi —> a + be,
respectlvely By the same method as that of [7, Lemma 4], we can prove the following
lemma.

Lemma 7.2.2
Hyx=|JHS and H, . = | JH ..

ecJ ecJ

where the index set is the set of all unit elements.

Lemma 7.2.2 establishes the relation between the class of monogenic functions
and the corresponding holomorphic Fourier multipliers.

Theorem 7.2.4 Letnbeoddand p(x) = Y. b P®(x) € K*(H, +). If the series
keZ\{0}

3" bk converges in H .4 then for any v € (0, w), there exists a function b" €
keZ\{0}
HP(Sy 1) such that by = b"(k), k € Z\ {0}.

Proof We already know that if n is odd, for k € Z,
P(—k) — TO((')_k) and P(k—l) — _L,O((_)n-k—k—])‘

For ¢(x) = Y. bP®(x) on H, 1, we define the following function ¢° on
keZ\{0}

HS as¢’(x) = Y. bz, wherez € HS . For simplicity, we only estimate ¢ in
keZ\{0)

H Lete = |§ Foranyz =u+iv e H; ,,byLemma7.2.2, we getx = u + ve =

(xo )Q € H; , C H, 1. We have proved that for z € H;, ,, there exists a constant

3(v) = min {1/2 tan(w — v)} such that the ball S,(z) is contained in Hy, ,, where
z is the center and the radius is 6(v)|1 — z|. We denote by B(x, r) the ball {y €
R, [x — y| < 8|1 —x|} and have B(x, r) C HS , C H, ;.

Assume that f and g are the real part and the imaginary part of ¢°(z), respectively.
The induced function is defined by

-0
¢ (x) = f(xo, |x]) + eg(xo, |x])
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—
and satisfies A“"D/2¢0(x) = ¢ (x), where x = (xp, x) = u + ve. We can see that

18 )| </ c G 4

By X — Y7 [1 =yt

For any y € B(x, §(v)|1 — x|),
IT=y[ >l =x| = |x =yl > (1 =8W)H[ —xl.

We get

_()) C\J S(v)|[1—x| 1 1d
< — —x =y X —
#°1 < _xlnﬂ/o S (E)

< _ &
= — y|14s T
1 — x|

—
By the definition of |¢°|, we have

— C, C,
19°(2)] = |¢° ()] < =

IR

By the above estimate, we can construct the function b € H*(S;, ,) as follows.
Fors <Oandz € thi,

1
P = f exp(—inz)¢° (exp(in))dn,
T Jas()

where

() = {r) € H, . | n=rexp(i(m &+ w)), ris from 7 sec 1 to 0

and n = rexp(Fip), ris fromOtow secu}

andfors >0,z €S, ,

1. . . ,
b(z) = =— lim ( / exp(—inz)¢° (exp(in))dn +¢l;'i<z)),
27 e=0 \Ji(e, |21 Ues (121~ i)UAL (127 |, 0)

where if r < 7,

l(e,r) = {n:x+iy |y=0,xis from —rto —e, thenfromstor},

ci(r, ) = {n = rexp(iee) | o is from w &£ p to w, then from O to ¢ u},
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and

Ai(r,p) = {77 € Wyr | n=pexp(i(m £ n)), pis from 7 sec u to r;

then n = p exp(Fin), pisfromrtonw sec,u},
andif r > m,

le,r)y =1l m), ce(r,pn)=cx(m, ), Ax(r,p) = Ax(m, ).
In any case,

(—inz) :|

Pk (2) = ¢° (exp(in)) [1 +(=inz) +---+ o

Li(e)

where L, (¢) is any contour from —¢ to € in Cy, 4.

By Cauchy’s theorem and the Taylor series expansion, we can use the esti-
mate for ¢0 to show b” € H*(S{) and b; = b"(i), i = £1, £2, ..., see Sect. 7.1 for
details. (]

7.3 Integral Representation of Sobolev—Fourier Multipliers

In this section, we consider a class of Fourier multipliers defined on Sobolev spaces
on starlike Lipschitz surfaces. If a Lipschitz surface ¥ is n-dimensional and starlike
about the origin and there exists a constant M < oo such that x;, x, € X,

|1n |xf1x2| |
— <M, (7.8)
arg(xy, x2)

we call X a starlike Lipschitz surface. We denote by N = Lip(X) the minimum of
M such that (7.8) holds.

Let s € R”. For x € R", we define the mapping r, : x — sxs~!. By (i) and (iv)
of Lemma 6.2.1, we can prove that if x” and x belong to a starlike Lipschitz surface
with the Lipschitz constant NV, then

(Jin 1x~1'l| / arg(x, ¥)) = [in[[x|™'7]] /arg(1, [x]7'%) < N,

that is, |x|~'X € H,. This gives the relation between the set H, and the starlike
Lipschitz surface.

We use M, for the finite dimensional right module of £ homogeneous monogenic
functions in R} and use M_ ) for the right dimensional right module of —(k 4 n)-
homogeneous monogenic functions in R \ {0}. The spaces M; and M_g,,,) are
eigenspaces of the left Dirac operator I's. We define
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Pi:f = P(f)and Oy : f — Ok(f)

as the projections on M and M_ ), respectively.
The Fourier multipliers are defined on the following test function space:

A= Hf . for some s > 0, f (x) is left monogenic in p — s < |x| < l—l—s}.

For f € A, in the annuals where f is defined, we have the Laurant series expansion

FO =) P+ D ().

k=0 k=0

Here we have used the projection operators P and Qy defined as follows:

1
P = o /Z I CE L € MEGRGI 0)do ()

and

1
(W) = o /E ly "X C L EMEGNOf (0)do (),

where x = |x|&€,y = |y|n and n(y) is the outer unit normal of X aty. Here C;H’k(é, n)

and C,, (&, n) are the functions defined as
1 e
Croplm = 7| = (n+k =D "))
+ (1 =mc e e m - En)
and

1 e
Crora€m) = —= [k + DC ()

+ (1= (. 6D, §) = 76) .

where C} is the Gegenbaur polynomial of degree k associated with v (see [8]).

Now, on the starlike Lipschitz surface X, we give the Fourier multiplier induced
by the sequence {b;}, where b, = b(k) for any function b € H*(S¢). We can see from
Theorem 7.2.1 that the corresponding kernel ¢ satisfies

lp )| < Cu/I1 —x|" fors > 0.



256 7 The Fractional Fourier Multipliers on Lipschitz Curves and Surfaces

The regularity index s indicates that we can not define the Fourier multipliers for
f € L*(X) as the bounded Fourier multipliers in Sect.6.2. To compensate the role
of s, we need to restrict these multipliers on some subspace of L?>(X). Hence we use
the following Sobolev spaces on the starlike Lipschitz surface X.

Definition 7.3.1 Let s € Z* U {0} and T be a starlike Lipschitz surface. For 1 <
p < 00, define the norm of Sobolev space || - || y»s(x) as
&

R
I hwgecey = I sy + D NP ).

J=0

The Sobolev space associated with the spherical Dirac operator I'¢ is defines as the

— I llypos
L)

closure of the class A under the norm || - [[yzs (s, that is, A
&

Now we give the definition of the Fourier multipliers. By Definition 7.3.1, A is
dense in Wlﬂ’;s. Hence when we define the Fourier multipliers, we assume that f € A.

Definition 7.3.2 For the sequence {b; }icz satisfying |by| < k¥, we define the Fourier
multiplier M, as follows:

Muof () = Y bePe(f)®) + Y bx 10k () ().
k=0 k=0

Remark 7.3.1 When X is the unit sphere, if we take two sequences {b,({l)}and {b,(cz)},

where b,((l) = k? and b,(f) = k, the Fourier multipliers in Definition 7.3.2 reduce to the
boundary values of the Photogenic-Cauchy integrals on the hyperbolic unit sphere,
see Example 7.0.1.

Now for k > 0, we define
PO =y~ Ch &)

and ~
P(fk—l)(yflx) = |y71x|7k7"Cn_+1yk(§7 n.

The projections P, and Qy can be expressed by

1 ~
P = o L B (L EGnG)f ()do (y)

n
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and
1 ~
(W) = o /E PEDGTIE@MG)f ()do ().

If we use

6070 =Y b PP

to denote the kernel of the Fourier multiplier My, in Definition 7.3.2, we get the
following estimate.

Theorem 7.3.1 Let w € (arctan(N), w/2) and b € H*(S.). The kernel 5(})’%)
E(y) associated with {b;} in the manner given above is monogeneically defined
in a neighborhood of ¥ x ¥\ {(x,y) : x = y}. In addition, in this neighborhood,

10| <

[T—y s

Proof The proof of this theorem is similar to Proposition 6.2.3. We omit the
details. O

Forf € A, the multiplier M3, introduced above is well-defined. For b € H*(S?),
we consider the following multiplier M, ,:

M (@) =D biPe(F) () + > b1 Qe () 'x), p—s < x| < I+,

k=0 k=0

wherex € X, r~landr < 1.

We use M| and M, to denote the two sums in the expression of M b b Because b €
H*(S?), b is bounded near the origin and |b(z)| < |z|* when |z] > 1 We deduce that
for |z| > 1, |b(z)| < Iz]* < |z]*'. Hencefors; = [s]+1,b € H*'(S.). Write b (z) =
Z7'b(z). We see that |b1(z)| < |b(z)/z"!| < C implies by (z) € H*(S;), where

H>(S), 1) = {b : 8, + — C: bis holomorphic, and satisfies

b()] < Cyinany S¢,, 0 < v < M}

and
H¥(S5) = {bs S5 > €1 be = bipecc emeemo) € HE(SS 1) .

c c
where S, , and S, are sectors.
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For My, |by| = |b(k)| < k°', we take b1 (2) = z7%1b(z). It is easy to see that b is
also holomorphic in §¢. Then we have

My =) biPi(f) () = ) biick™ Pe(f) (),

where by = by (k) = b Because My is an eigenspace of the spherical Dirac oper-

1
ator ¢, we have
TePi(f) (rx) = kPr(f) (rx)

and

M, = Zbl,krglpk(f)(i’x) =Ty (Z bl,kPk(f)("X)> .

k=0 k=0

By a result of [8], we obtain another expression of Py (f).

1 ~
PeF)(0) = — / By ) EGIn)f ()do ()

— o [ X wrow. oo 0o,

el =k

where we have used the Cauchy—Kovalevska expansion

POGTOED) = ) Var)Wa(),

loe|=k

where V,(x) € My and Wy (y) € M_,_; (see [8, Chap. 2, (1.15)]). By the above
relation, we have

e Pr(F) (x) = —/ Y e V) ) Wo (IR ()0 ()

|or|=k

— o | X 0w omor oo o)

|or|=k

=—/ 2. ,,+k 5 Va1 + k= ) Wa IO ()do ()

|ar|=k
k

= G¥i—oa f Y Ve (T, W) 0 0)do ().

loe| =k

Because the Fourier expansion of the functions in A is rapidly decaying, via inte-
gration by parts, we have
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My =" b1 k" Pe(f)(rx)

la|=k

k=1

= k

S bi (m) / 3 V)T W) 0n(f (0o (3)
k=1

k=1

<n+k 2) Q. /ZV(X)W WnTHWdo ().

la|=k

Since |b1,k(n+,’§_2)"‘| < C, if we denote bl,k(,ﬁ],i—_z)‘” by b; x, we can obtain the
following singular integral expression of M:

M, = Zln - / SEGIOI ()do )

1 ~
o /2 (Z bl,kPk(ylrx)> E(y)n(y)(rfllf(y))da(y)
§ k=1

1 ~
o fz 5167 OEMRG) (T F 0o ).

Similarly, for M;, applying the Cauchy—Kovalevska expansion again ([8, Chap. II,
(1.16)]), we have

Z 1O ()

=§(k e ( ) o/ 3 Wl 0 VoY (o)

= g © +" T (” 1) — / gjkw LDV MO G)do ()

= g (kb e ('%) = f ‘;kw L Va0 0o ().
As above, we still denote 7=t (41)" by b_;_, and obtain the singular integral

expression of M, as



260 7 The Fractional Fourier Multipliers on Lipschitz Curves and Surfaces

) 1 N
Ma= Y by /E Bl EGInO) (TS ) () do ()
k=0

1 i - ,
= Q—/); <Z kaP—k—l(y—lr—lx)) E(y)n(y)(l";‘]lf)(y)do.(y)
" k=0

1 Y o
= Q—/Z¢2(y_1r_lx)E(y)n(y)(F;Ilf(y))do_(y).

Finally we rewrite the multiplier M, \(f)(x) as

1 ~ ~
My ()0 = lim — /E (@167 + a7 T EGINOM T 0o (),

where we have used the fact that for f € A, the series which defines M, (f) is
uniformly convergent as r — 1—.
For M, (f)(x), we have the following boundary value result.

Theorem 7.3.2 Lets > 0. If b € H*(S{), then for f € Aand x € %, we have

1 ~ ~
Mo () = lim - /X @167 + G207 T E@IRG (T ) (0)do ()

1 e et s
= lim — { /‘ sl 070 + 07 DIE@NG T (3)do (v)
y—x|>¢e,ye

e—0 2

+($1(8, %) + da(e, ) )] .

Here
Fi(ex) = / 5107 DEGNM o (y)
S(e,x,+)

and

Fale,x) = /S  BOTIEOROM ),

where S(¢g, x, X) is the part of the sphere |y — x| = € inside or outside ¥ depending
on the index of ¢; taking i = 1 ori = 2.

Proof The proof of this theorem is similar to the classical Plemelj formula of the
Cauchy integral. For simplicity, we only consider

1 ~
lim 1 = lim — /E 5167 OEMRG) (T H$)do ).

r—>1- r—1— Qn

The other integral can be dealt with similarly. For a fixed ¢ > 0, the above integral
can be divided into three parts:
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1 ~
= /; F1 0 EGIMO (L) (o ()

1 ~
= = $1 7 POEGnG) (T ) (0)do (7)
Qn yEX,|[y—x|>¢
1 ~
+ o o1 POEMNWITEN ) — (T 0)]do ()
2y Jyes.y-v<e
1 ~
+ o $107 IE@RE)do () () ()
n JyeZ,|y—x|<e
=L +5L+15h,

where the symbol I'sf (y) denotes the spherical Dirac operator I's acting on the
variable 1 of f, where y = |y|n.
Let r — 1—. The integral /; tends to

1 ~
= o167 VE@N@) T 3o ().

S2n yEX,[y—x|>¢

For I,, because f € A implies F‘;‘ f is a Lipschitz function, we have

lim lim I, = lim lim o1 IE()n(y)

e—>0r—1— r—1—¢e—0 yex, |y—x|<e
x[rEne) - TN ldow =o.

Finally we estimate /3. By Cauchy’s theorem, for any fixed ¢ > 0, we have

lim I; = lim ¢1 E@)n(y)do () (TLf) ()

r—1— r—1— yex, [y—x|<e

= 1 (e, 0)(TLf)(x).
This completes the proof of the theorem. ]

As a useful tool in the study of boundary value problems on the non-smooth
domains, the theory of Hardy spaces on Lipschitz curves and surfaces has attracted
attention of many mathematicians. In 1980s, Jerison and Kenig [9, 10] considered
the complex variable case. In [11], Mitrea introduced the theory of Clifford-valued
Hardy spaces on high-dimensional Lipschitz graphs.

Let A and A€ be the bounded and unbounded connected components of R} \ X,
respectively. For o > 0, define the non-tangential approach regions A, (x) and A, (x)
toapointx € X as

Ag(x) = {x €A, Iy —x| < (I +a)dist(y, z)}
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and
AS(r) = {y € AS, |y — x| < (1 + a)dist(y, z)}.

Let f be defined in A (A€). The interior non-tangential maximal function N, (f) is
defined as

NaF)@) = sup{ I ()] © ¥ € A € AL
For 0 < p < oo, Hardy spaces H”(A) and HP(A) are defined as

HP(A) = {f : f is left monogenic in A and N, (f) € LP(E)},

HP(AC) = {f -  is left monogenic in A° and N, (f) € L”(E)].

The theory of monogenic Hardy spaces in [11] indicates that for p > 1, the HP(A)-
norm of a function is equivalent to the L”-norm of its non-tangential maximal function
on the boundary. For the spaces HP(A¢), similar conclusions hold. Precisely, if
f € HP(A) for p > 1, we have

Cilf lzray < Wfllrsy < Clf Nl ay-

Iff e My andk # —1, =2, ..., —n + 1, because M; is the subspace consisting of
all k-homogeneous left monogenic functions, we have I'tf (§) = kf (§). For f € A,
we define I'(f |r) as the restriction of the monogenic extension of I't (f | SK'I) toI.
Then the definition of I's can be extended to I's : A — A.

In [3], Eelbode studied the boundary value of the Photogenic-Cauchy transform
Cy on the unit hyperbolic sphere. In Example 7.0.1, The occurrence of the factors
k%P (f) and k*>Qy (f ) implies that the boundary value Cylf1 1 of Cg is not a bounded
operator from L% (S"~!) to itself. If we restrict this operator to some smaller subspaces
of L*>(S"~1), we can obtain the corresponding boundedness.

Now we give the main result of this section.

Theorem 7.3.3 Let w € (arctan(N), 7/2). If b e H*(S.),s > 0, then with the
assumption b(0) = 0, the multipliers introduced in Definition 7.3.2 can be extended
to a bounded operator from WI%E"Y' () to L*(X), where s; = [s]. In addition,

”M(b(k))Hop < Cv

, arctan N < v < w.

|Z + 1|? L®(S¢)

Proof For f € WFZ;S‘(E) C L*(%), by Proposition 6.2.7, we have f =f* +f~,
where f* € H2(A) and f~ € H*(AC) such that

+
I~z < Cnllf llwes sy

By the linearity and Theorem 7.3.2, we have M, (f) = My+f* + M),-f ~, where



7.3 Integral Representation of Sobolev—Fourier Multipliers 263

Mief ) = lim [ Gorty WEGIG 0)do ). x € 3.
Hence, we only need to prove

IMpsf Fllze < CNITES* llgee-
We only prove the above inequality for f . For the sake of simplicity, we omit the
symbol “+”. The f ~ part can be similarly dealt.w
By Theorem 7.3.1, for b € H*(S;), we have

C
|1 _ y71x|n+s :

16" <

Hence by Holder’s inequality, we obtain

T3 Myf (x)]

d
< (/ e (y)> (f 60NN 0P "@))
- " -
12 g2 12
<c/ 1 do(y) / T f DI do(y)
S s, =Tyl s 11—y lxjmts yjn

Through change of variable, we have

1/2
1
riim gc/ -
T Myf ()] (2[(1_m2 e a(y))

12
1 1+s 2
L d ,
x (/Z v SO o(y))

where the integral in the last inequality satisfies

dby

/ 1 a(y)</ﬂ sin” 190
s [(1— VD2 + 64" S A=V 462
1
C————.
(1 — oy

Hence by the equivalent characterization given in Proposition 6.2.6, we have
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2
”be”HZ(A)

1
</ /|Fg+S’be(tx)|2(l—t)zs‘“do(x)%

(1 — >t / I f (Vi) )? gt
d d =
// (1= oy <z[(1—ﬁ>2+931"f o0) ) do()7

1 _lvfy
c rt 2 f —do 1 —Vndo(y)—
| [ireerdm < (1—J)2+9§]" (x)>( i ()%

1
<C /O /E ’Fs(Fg‘f)(«/?y)’ (1—ﬁ)do<y>7

< CIT f llgeay,

where in the forth inequality we used the fact that for # € (0, 1),

(1 _ \/;)2S1+175 — (1 _ %)1+S+25175 g (1 _ \/;)14*5

and i
(I -1
mdo (@) < C(1 = Vi ——=—
fz[(l—J)Zw ks 1—\f)*
In the last inequality, we used Proposition 6.2.6. This completes the proof of Theorem
7.3.3. O

For the classical convolution singular integral operator 7 on R”, one of the basic
facts is the endpoint estimate, that is, the weak-(1, 1) boundedness. If for all A > 0,

C
e X (TE@]> A< —Iflh

we call an operator T is weak-(1, 1) bounded on X. In other words, we say that
this operator is bounded from L' to the weak type space WL!, see [12-14] and the
reference therein. By this weak boundedness, we can use the interpolation theory
and the duality of operators to deduce the LP-boundedness of Ty, 1 < p < oo. In the
rest of this section, we study the endpoint estimate of the Fourier multipliers.

Theorem 7.3.4 Let w € (arg(N), 7). If b € H*(S;), s > 0 and b(0) = 0. Then the
multiplier M,):

Mo ()0 =D biPe(F)(x) + Y bt 1O () (x)

k=0 k=0

is bounded from Wllfl () to WL(X), where s; = [s].
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Proof For b € H*(S;) and z € S;, |b(z)| < C|z|°, s > 0. Hence it is natural to get
|b(z)/z°| < C, where C is a constant. On the other hand, b € H*(S) implies that b
is holomorphic in S¢. Then z~°b(z) is also holomorphic in S. Now for the Fourier
multiplier M), we have

Maof (¥) = Y biPe(f) () + Y b1 Qi) (x)
k=0 k=0
=141l

For simplicity, we only deal with the term /. As above, I can be represented as

1 ~
1= /Z FO DEGNG) (3o ().

If we write b(z) = z"'b (z) and by (z) € H*(S}), then the corresponding sequence is
{b1.r} whose the elements is by = k*' b, . Therefore we can rewrite [ as the following
form

I=" b1k Pe(f) ().

k=0
The kernel associated to M, , is denoted by ¢71 (y~'x)E(y) that satisfies
o0
L@ EQ) = > kbi (k)PP (v 0E().
k=1

By integration by parts, we get
1 ~
I = Q_/z Iy (@16~ E@RMS ()do (y)
1 ~
= o fz 016 DEGNOTN () 3o (y).

Similarly, if we take s = 0 in Theorem 7.3.1, (]31 (y’lx) satisfies

C

P10 < ———.
11—y~ lx|

Hence the multiplier M, , reduces to a H*-Fourier multiplier on starlike Lipschitz
graph and is weak-(1, 1) bounded. Then we have

{xe=: Mf@)|>21} =

—_—

x€ X My, (T8 > 2}

Irerl, -

<

> a
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This completes the proof of this theorem. |

At last, we consider the boundedness of the Fourier multipliers for s < 0. Let
—n < s < 0 and {b;} be a sequence which satisfies |b;| < k°. We define the Fourier
multiplier M, as follows.

My (1)) =D biPe(f)0) + D b1 Q) ().

k=1 k=1

Similar to the case s > 0, we can express the multiplier as

1 ~
Mun @ = o /E SO0 OEMRO) ()do ().

Here x € ¥ and

00 -1
T = (z . z) BP0,
k=1 —o0
where P® s the polynomial defined as

POG ) =y X Cl, &)

or
PGy = |y X TG (6 ).

To obtain the boundedness of the multiplier, we need to estimate the function 5 (x).

o0
By the method of Theorem 1.3.2, we can prove that the kernel ¢ (x) = Y. b P (x)

. k=—o00
satisfies )
Clxl®

m, where x € Hw

lp )] <

For the kernel $ (y~'x) defined above, we can use the method of Proposition 6.2.3 to
obtain 1

~ Cly™ x|’

—1

(™ x)| < “—)’TW
For any two points xi, x, on the starlike Lipschitz surface, we have x; X, e H,,
that is, there exist two constants Cy, C; such that C; < |x; 'xl | < C,. Hence for any
points x;, xy € X, the equality

-1 -1
[x1] = [x2x;, x1| = |x2]lx, x1]

implies that Cy|x;| < |x2] < Czlx1[. In other words, the norms of the two points on the
starlike Lipschitz surface are approximately a constant associated with X, denoted
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by Cx. Hence we can obtain the estimate

~ Cly~ x| 1
PO~ DEGNO| < —————
[T — y= x|t [yl
Clxl*
CEE S
Cs

S |y _x|n+s'

Because the Lipschitz surface is a homogeneous space, our Fourier multiplier
M, f (x) can be regarded as the fractional integral operator on X. By the classi-
cal theory of the fractional integral operator on homogeneous spaces, we can obtain
the L — L7 boundedness of the Fourier multiplier as follows.

Theorem 7.3.5 Let —n <5 <0, 1 <p <q < o0 and %} = ]l) + 5. If b € HY(SY),
the Fourier multipliers on starlike Lipschitz surface:

M f (6) =Y bePi(fH)@) + Db 10k (F) ()
k=1 k=1
with by = b(k) is bounded from [P (%) to L1(X).

Proof For a starlike Lipschitz surface X, if x;, x, € X, then x5 lxl e H,, i.e., there

exist two constants ¢y, ¢; depending on @ and X such that C; < |x; 'x1| < C,. For
any points xj, x; € X, the equality

-1 -1
[x1] = [x2x;, x1| = |x2]lx, x1]

indicates that Ci|x;| < |x2] < C;]x;|. In other words, the norm of any point on X is
about a constant Cy, which is related to . Then the kernel ¢ (y~'x)E(y) satisfies

B OEW] = 1o DIEW)]
C 1
< ———
|1 —y=lx|™ |y
Clyl*
Sy =
< L
ly — x|+

In addition, for any ball B(x, r) = {y eX, x—y|l < r}, we have

o (B(x, 1)) =/ do(y) < Cr',
B(x,r)
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that is, the surface measure of B(x, r) is dominated by the area of a sphere in R”".
Hence, we can use the classical method to prove the boundedness. Below we give
the details. At first, we define the auxiliary function 2 (x) by

o(B(x,7))

rl‘l

Qx) =

r>0

For the integral representation of M, we divide the integral into two parts.

M) (0] < (/ +f )(y>| — Loy =n+0
Bx.r)  JE\BG.r) x|

For I;, we have

1
he [ ol doo)
B(x.r) [y — x|**s

1
/ If )| ———do ().
B(x,27%)\B(x,27%=1r) ly — x|

k=0
Because |y — x| < 27%r fory € B(x, 27%r) \ B(x, 27%~'r), we can obtain

= 1
< 271{71 —hn—s B ’27/( - d
;( N BE ) s |, FOlde®)

3

<Y DT e BE 27 )M () ().

k=0

By the definition of 2 (x), we have

o (B(x, 27%r))

o(B(x,27%r) = P

< QE)Q7Fr)n.

Then by —s > 0, we get

L <rQWME)x) Y Q7)™ < Q@M (F)(x).

k=0

For I,, we have
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o0

Fol
L < d
? kX::O./l?(x,2k+lr)\B(x,2kr) |x — y[ts o0
<@ o B, 2 ) T (o (B(x, 2 )M /B iy, FONdO®)
k=0 X, r

< Y@ T Q) MM (F) (x)
k=0

9]
— rf.vfn)u/p (Z 2k(ns)2)1k(lk/p)> (SZ(x))lf)‘/”M;h/p(f)(x).

k=0

Because s —ni/p < O0for 1 < p < n)/s, then
IMy(F) ()| < rQEOM (F)(x) + " P (Q ) P M, (F) (x).

Letting

r_(Mup<f>(x>>”/”* 1
A\ M@ Q/n(x)’

we obtain

1+sp/nx

MO < (M 0)00) 7 () " (M ()00)
+ (M) " (M (f)(x)>_sp/m+] (ew) o
< (2w)"" (M 100) " (M)

Now we get

(14sp/ni)q

@@l < [ (p000) 0 (1) do ().
z

Let A = 1. Because o (B(x, r)) < cr", then Q7" 1(x) > C™/""! for —n < s < 0.
By the fact that M ,,f (x) < C||fl,, we see that
Q)™M (], = f My, (PO 1M (F) ()P do (x)
b

< Mupf 157 1M (O11
< CIFIETPIE NS
< CIIFIE.

This completes the proof of Theorem 7.4.1. (]
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7.4 The Equivalence of Hardy—Sobolev Spaces

In this section, we give an application of Fourier multipliers on the starlike Lipschitz
surface X. In the proof of Theorem 7.3.1, we used the Hardy decomposition of L2 (X):
forf € L*(X),f =f* +f",wheref* € H*(A)andf~ € H*(A).Iff ¢ WI%:(E),
St and f~ belong to the so-called Hardy—Sobolev spaces. For these spaces, there
exist two methods to given the definitions.

Method I. For f € L*(2),f =f* +f~,wheref* € H>* andf~ € H*>~. That
is f* belongs to the Hardy space, while f~ belongs to the conjugate Hardy space.
We define the Hardy—Sobolev space on X as

7—(_%_51 X)) = { f : there exists a function g € LZ(Z) such that
f=gteX(®)and Th(gh e (D), j=1,2, s]
and
‘HE:SI(Z) = [ f € L*(X) there exists a function g€ L*(%) such that
f =g €L*X)and rg(g—) el (%), j=1,2,. s}
Method II. At first for any f € WZ;‘Y, Féf € LZ(E),]‘ =1,2,...,s. We obtain

the decomposition Fé = (Fé;f)Jr + (F’éf)‘, where (r‘éf)+ € H>* and (Féf)‘ €
H?*~. The Hardy—Sobolev spaces are defined as follows.

7{3;"?2(2) = { f : there exists a function g € L?(X) such that
f=g"el’(D)and (Mg)* e [X(D), j=1,2, s}
and
7-(3"52(2) = { £ there exists a function g € L*(X) such that
f=g el and (Mg)” e [X(%), j=1,2,. s}
On the unit sphere, because we can exchange the order of the Riesz transform and
the Dirac operator, the above two Hardy—Sobolev spaces are the same one obviously.

On a general starlike Lipschitz surface, we will use the theory of Fourier multipliers
to show that the two kinds of Hardy—Sobolev spaces are equivalent on X.

Theorem 7.4.1 For the starlike Lipschitz surface %, let s be a positive integer, the
Hardy-Sobolev spaces H:',(£) and H3* () are equivalent.
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Proof Because A is dense in L?>(X), without loss of generality, we assume that
f € A. By the spherical harmonic expansion, we have

£=) P+ D 0c()(x).

k=1 k=1
Then letting f* = Y 2, Pe(f)(x) and f~ = Y ;2 Ok (f) (%), we get
Te(f*) =Te <Z Pk(f>(x)) :
k=1

Because P (f)(x) belongs to the k-homogeneous eigenspace My, we can deduce
that

Te(f M) = D kPe(f)(x) for f € A.

k=1

On the other hand,

1 ~
P = o /Z Py ' EGNG)f 0)do (y)

1
- Q, / Z Ve ) We 0n()f (do (v),
n Jx

la|=k

where we use the Cauchy—Kovalevska expansion

PCGTIER) = ) Va@)Wa (),

loe|=k

where V, (x) € My and W, (y) € M_3_,. Hence we can get

1 & k
Le(f () = o= ) /E D Ve K+ DWaIne 0)do ()
" k=1 )=k

1 & &
- Q, ; 1 fz Z Ve )T, Wo )n(0)f (0)do ().

loe|=k

Because f decays fast for f € A, we can use integration by parts to obtain that
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Te(F ) (x)

Z — / PO GTINEGNG)(T,f) ()do (y)

=k
= Z [P ().
" k=1

P~

Let by = k+1 We have T's (f T) (x) = M, ((Cgf) ™). Since |by| < C, it follows from
the theory of Fourier multipliers on ¥ that M) is bounded on L*(X), that is, there
exists a constant C; such that

I(Cef Dz < CllTef) Fllzs)-
Conversely, let b, = ’%1 Similarly, we can get

1 k+1
(T () = 5 32 = TP = Moy (TN ),

" k=1

and there exists a constant C, such that

I(TeNF iz < CHITe(F D (s

This proves Theorem 7.4.1. (]

7.5 Remarks

Remark 7.5.1 The definitions of Hj & K}, and Theorem 7.1.3 only concern the case
of the first power of the log function. In fact, if k is a positive integer, by the same
proof, we can extend (ii) of Theorem 7.1.3 to the kth power of the log function.

Remark 7.5.2 By the following method, we can obtain variations of Theorems 7.1.1—
7.1.3. Denote by exp(—i6-) the function z — exp(ifz). Define the spaces

H*(S,.4) = exp(i0)H’ (S, +), H""(S,) = exp(i6-)H*(S.,),

K (Coe) = {61 ¢ 0 exp(=if) € K (Cun) |

and
K5(S,) = {¢ | ¢ o exp(—if) € KS(SH,)}.

If we change the statements of the theorems by using these spaces with the parameter
0, then the singular point z = 1 of the functions ¢, and ¢ will be shifted to the point
z = exp(if) on the unit circle.
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Remark 7.5.3 For the case s = 0, the main results of Sect.7.1 are corollaries of the
Fourier theory of holomorphic functions on the sectors established in [15]. In [16],
the authors proved that if the Lipschitz constant of the curve is smaller than tan(w), as
the kernel, any element in K°(C,, +) and K°(S,,) induces a L?>-bounded convolution
singular integral operator on this starlike Lipschitz curve. In fact, these operators
can be represented as the H°°-functional calculus of the Dirac operator z(d/dz)
on the closed curve. By the conformal mapping, we can deduce a corresponding
singular integral operator on any simply-connected Lipschitz curve. The cases of
s # 0 correspond to the fractional integrations and differentials on these curves. All
those mentioned are closely related to boundary value problems associated with
Lipschitz domains. We refer to [17-19] for further information.

Remark 7.5.4 In[20], D. Khavinson proved the following result. Letf (z) = Y oo | by2",

n=1

where b, = g(n), g is a bounded holomorphic function in the sector Sy = [z :

|argz| < ¢}, 0 < ¢ < 7. Then f can be extended to a holomorphic function on

0

the heart-shaped region G4 = {z =re, 2m —cotg -logr > 6 > cot¢ - log r}.

Hence, in Sect.7.1, the result of the fractional integrals on the closed Lipschitz
curves can be deduced from the result of the unit circle.

Remark 7.5.5 If b € H°(S.), s > 0, there exists a holomorphic function b; such
that |b(z)] < C, and ¢ (x) = F§‘¢>1(x), where s; = [s] + 1. Here ¢, is the kernel
associated with b; in Theorem 7.2.1. However, in this way, we only obtain the
following estimate: |¢ (x)| < C/|1 — x|, which is not precise compared with the
result of Theorem 7.2.1.
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