
Chapter 4
Convolution Singular Integral Operators
on Lipschitz Surfaces

As the high-dimensional generalization of the boundedness of singular integrals on
Lipschitz curves, the L p(�)-boundedness of the Cauchy-type integral operators on
the Lipschitz surfaces � is a meaningful question. The increase of the dimensions
means that we need to apply a new method to solve the above question. In 1994,
C. Li, A. McIntosh and S. Semmes embedded R

n+1 into Clifford algebra R(n) and
considered the class of holomorphic functions on the sectors Sw,±, see [1]. They
proved that if the function φ belongs to K (Sw,±), then the singular integral operator
Tφ with the kernel φ on Lipschitz surface is bounded on L p(�).

In [2], G. Gaudry, R. Long and T. Qian applied Clifford-valued martingales to
prove the same result as is proved in [1], that i.e., the L2-boundedness of the Cauchy
integral operators on Lipschitz surfaces [2]. The authors of [2] then indicated how to
prove the Clifford T (b) theory. The idea of the proof is similar to that of [3], but there
is some difference. We define a suitable sequence of atomic σ -fields onRn . Because
Clifford algebra is non-commutative, it is necessary to associate each atom with a
pair of Clifford-valued Haar functions. Hence, the appropriate Haar system is in fact
a system of pairs of Clifford-valued functions. We only use the martingale technique
to prove the L2-norm equivalence between the function f and its Littlewood–Paley
function S( f ).

4.1 Clifford-Valued Martingales

Wefirst state somebackgrounds of themartingales and theLittlewood–Paley estimate
of Clifford-valued functions. Let X be a set and B be a σ -field in X . Assume that ν
is a non-negative measure onB and {Fm}∞m=−∞ is a non-decreasing family of σ -field
in X satisfying
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(i)
∞⋃

m=−∞
Fm generates B;

(ii)
∞⋂

m=−∞
Fm = {∅, X};

(iii) the measure ν is σ−finite on B and on each Fm .
Let F be a sub-σ−field of B such that ν is σ -finite on F . Because (X, F ) is

σ−finite, X can be written as X = ⋃

j
U j , whereUj ∈ F and ν(Uj ) < +∞. If f is a

locally integrable scalar-valued function on (X,B, ν), i.e., a function whose integral
is finite on every set of finite ν-measure, its conditional expectation Ẽ( f | F ) is
well-defined. On each Uj , Ẽ( f | F ) equals to the conditional expectation of f |Uj

with respect to (F |Uj , ν |Ui ). If A is any set in F with finite ν−measure, then

∫

A
Ẽ( f | F )dν =

∫

A
f dν. (4.1)

If f is integrable, then (4.1) also holds for any A ∈ F , whether of finite ν−measure
or not.

Let R(n) denote the Clifford algebra generated by {e0, e1, . . . , en}. The definition
of the conditional expectation can be extended to locally integrable R(n)-valued
functions. In fact, if f = ∑

S
fSeS , then

Ẽ( f | F ) =
∑

S

Ẽ( fS | F )eS.

The characteristic martingale property (4.1) holds also for R(n)-valued functions f .
We denote by L p(F , dν; R(n)) or simply L p(dν; R(n)), 1 � p � ∞, the

Lebesgue spaces of all R(n)-vauled F− measurable functions on X . The space
L1
loc(dν;R(n)) has the obvious interpretation.
Assume that ψ is a fixed L∞ function on X with values in R1+n .

Definition 4.1.1 Suppose that Ẽ(ψ | F ) /∈ 0 a.e., and let f ∈ L1
loc(dν; R(n)). Then

the left and the right conditional expectations El and Er of f respect to F are given
by the following formulas

El( f ) = El( f | F ) = Ẽ(ψ | F )−1 Ẽ(ψ f | F ) (4.2)

and
Er ( f ) = Er ( f | F ) = Ẽ( f ψ | F )Ẽ(ψ | F )−1. (4.3)

The left conditional expectation of f respect to Fm is denoted by El( f | Fm) or
El
m( f ), and the right conditional expectation of f respect toFm is denoted by Er ( f |
Fm) or Er

m( f ).

The mapping properties of El and Er are good only under further assumptions
on the function ψ .
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Proposition 4.1.1 Let 1 � p � ∞. The operators El and Er are bounded on L p if
there exists a constant c0 > 0 such that for x a.e.,

c−1
0 � |Ẽ(ψ | F )(x)| � c0. (4.4)

Proof This theorem can be proved via modifying the corresponding argument
in [4]. �

If a function ψ ∈ L∞(X;R1+n) and satisfies (4.4), we call this function pseudo-
accretive with respect to F . Now we assume that for a general F , the condition (4.4)
holds, and for all Fm , the constant in (4.4) is independent of n. That being so, it
follows that, if f ∈ L1

loc(dν;R(n)), then El( f ) and Er ( f ) are locally integrable. The
main elementary properties of El and Er are as follows:

Proposition 4.1.2 (a) If g ∈ L∞(F , dν;R(n)), then El( f g) = El( f )g. Similarly,
the right conditional expectation Er commutes with the multiplication on the
left by g.

(b) El(1) = Er (1) = 1.

(c) If f ∈ L1
loc(dν;R(n)) and A is of finite measure (or f ∈ L1(dν;R(n)) and A is

F -measurable), then ∫

A
ψEl( f )dν =

∫

A
ψ f dν, (4.5)

∫

A
Er ( f )ψdν =

∫

A
f ψdν. (4.6)

(d) For m � κ , we have
Em(Eκ( f )) = Em( f ), (4.7)

where Em denotes the left (or right) conditional expectation with respect to Fm.
(e) Set �l

m = El
m − El

m−1, �
r
m = Er

m − Er
m−1, and

〈 f, g〉ψ =
∫

f ψgdν.

We have for all m �= κ and f, g ∈ L2(dν;R(n)),

〈�r
m f, �l

κg〉ψ = 0.

Proof (a) and (b) are obvious. To prove (c), assume that A ∈ F . Because El f and
A is F−measurable,

∫

A

ψEl f dν =
∫

X

χAψEl f dν =
∫

X

Ẽ(χAψEl f )dν =
∫

X

χA Ẽ(ψ)El f dν =
∫

A

ψ f dν.



120 4 Convolution Singular Integral Operators on Lipschitz Surfaces

For Er , we can give a similar proof and so is omitted.
The conclusion (d) can be proved as follows. For example, for the left conditional

expectation,

El
m(El

κ( f )) = Ẽm(ψ)−1 Ẽm(ψ Ẽκ(φ)−1 Ẽκ(ψ f ))

= Ẽm(ψ)−1 Ẽm(Ẽκ [ψ Ẽκ(ψ)−1 Ẽκ(ψ f )])
= Ẽm(ψ)−1 Ẽm(ψ f ) = El

m( f ).

The proof for the right conditional expectation is similar.
At last, we prove (e). For n > κ ,

〈�r
m, �l

κg〉ψ =
∫

�r
m f ψ�l

κgdν

=
∫

Ẽm−1(�
r
m f ψ�l

κg)dν

=
∫

Ẽm−1(�
r
m f ψ)�l

κgdν

=
∫

Ẽm−1(�
r
m f ψ)Ẽm−1(ψ)−1 Ẽm−1(ψ)�l

κgdν

=
∫

Ẽr
m−1(�

r
m f )Ẽm−1(ψ)�l

κgdν = 0,

where in the last step we have used (4.7). The proof for κ > n is similar. �

Definition 4.1.2 Let f ∈ L1
loc(dν;R(n)). The left martingale with respect to

{Fm}∞m=−∞ generated by f is the sequence { f lm}∞m=−∞ = {El
m( f )}∞m=−∞. If the limit

f l−∞ = lim
m→−∞ El

m( f ) exists a.e., the left-Littlewood–Paley square function Sl( f )

is defined by

Sl( f ) =
(
| f l−∞|2 +

∞∑

m=−∞
|�l

m f |2
)1/2

.

The right martingale and the right-Littlewood–Paley square function can be
defined similarly. If f ∈ ⋃

1�p<∞
L p(dν;R(n)) and ν(X) = +∞, then f l−∞ = 0.

If f ∈ L1
loc(dν;R(n)), then the BMO-norm of f is defined as

‖ f ‖BMO = sup
m

‖Ẽm(| f − Ẽm−1 f |2)‖1/2∞ . (4.8)

We need the following facts: ifψ ∈ L∞(dν;R1+n) thenψ ∈ BMO and for everym,

Ẽm

( ∞∑

k=m

|�̃k(ψ)|2
)

� C‖ψ‖2BMO � C‖ψ‖2∞. (4.9)
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By the John–Nirenberg inequality, the right hand side of (4.8) is equivalent to

sup
m

∥
∥
∥Ẽm

(∣
∣
∣ f − Ẽm( f )

∣
∣
∣
)∥
∥
∥∞

,

see [5, 6] for the proof.
The following Littlewood–Paley result is one of the essential ingredients of this

chapter. We use C to denote a constant which may vary from line to line.

Lemma 4.1.1 There exists a constant c > 0 depending only on c0 and d such that
for all f ∈ L2

loc(dν;R(n)),

c−1‖S( f )‖L2 � ‖ f ‖L2 � c‖S( f )‖L2 , (4.10)

where S denotes Sl or Sr .

Proof We only consider the case of left martingales and the case of right martin-
gales can be dealt with similarly. Fix m0. Consider the sequence {Fm}n�m0 and the
corresponding square function:

( ∑

m�m0+1

|�l
m f |2

)1/2
.

If n � n0 + 1, we have

�l
m f = Ẽ(ψ | Fm)−1 Ẽ(ψ f | Fm) − Ẽ(ψ | Fm−1)

−1 Ẽ(ψ f | Fm−1)

=
[
Ẽ(ψ | Fm)−1 − Ẽ(ψ | Fm−1)

−1
]
Ẽ(ψ f | Fm) (4.11)

+Ẽ(ψ | Fm−1)
−1

[
Ẽ(ψ f | Fm)−1 − Ẽ(ψ f | Fm−1)

−1
]
.

Hence by (4.4),

|δlm( f )|2 � C
(
|�̃m(ψ)|2|Ẽ(ψ f | Fm)|2 + |�̃m(ψ f )|2

)
. (4.12)

Because ν is σ -finite on Fm0 , we can write X =
∞⋃

j=1
Uj , where U1 ⊆ U2 ⊆ · · · ,

and the set Uj ⊂ Fm0 that has a finite measure. Fix M � 1. Then by (4.12) and the
standard Littlewood–Paley estimate, we get

∫

UM

∑

m�m0+1

|�l
m f |2 (4.13)

� C
( ∫

UM

∑

m�m0+1

|Ẽm(ψ f | Fm)|2|�̃nψ |2dν +
∫

UM

∑

m�m0+1

|�̃m(ψ f )|2dν
)
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� C
( ∫

UM

∑

m�m0+1

|Ẽ∗
m(ψ f )|2|�̃m(ψ)|2dν +

∫

X

|ψ f |2dν
)

� C
( ∫

UM

∑

m�m0+1

|Ẽ∗
m(ψ f )|2|�̃m(ψ)|2dν +

∫

X

| f |2dν
)
,

where
Ẽ∗
m( f ) = sup

m0+1� j�m

∣
∣
∣Ẽ( f | F j )

∣
∣
∣.

For m � m0 + 1, let Tm = ∑∞
k=m |�̃kψ |2 and set Tm0 = 0. If N > m0, we have

N∑

m=m0+1

|Ẽ∗
m(ψ f )|2|�̃m(ψ)|2 =

N∑

m=m0+1

|Ẽ∗
m(ψ f )|2(Tm − Tm+1)

=
N−1∑

m=m0

Tm+1

[
|Ẽ∗

m+1(ψ f )|2 − |Ẽ∗
m(ψ f )|2

]
− |Ẽ∗(ψ f )|2TN+1.

It can be deduced from (4.9) and (4.14) that

∫

UM

∑

m�m0+1

|Ẽ∗
m(ψ f )|2|�̃m(ψ)|2dν (4.14)

�
∫

UM

∞∑

m=n0

( ∞∑

k=m+1

|�̃k(ψ)|2
)[

|Ẽ∗
m+1(ψ f )|2 − |Ẽ∗

n (ψ f )|2
]
dν

�
∫

UM

∞∑

m=m0

Ẽm+1

( ∞∑

k=m+1

|�̃k(ψ)|2
)[

|Ẽ∗
m+1(ψ f )|2 − |Ẽ∗

m(ψ f )|2
]
dν

� ‖ψ‖2BMO

∫

UM

|ψ f |∗2dν

� C‖ψ‖2∞
∫

UM

| f |2dν.

In the last step, we have used the L2(UM)-boundedness of the maximal function.
The constant is independent of M or m0.

By (4.13) and (4.14), we can obtain

∫

UM

∑

m�m0+1

|�l
m f |2dν � C

∫

UM

| f |2dν. (4.15)

In (4.15), letting M → ∞ and then letting m0 → −∞, we can conclude that the
inequality on the left hand side of (4.10).
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To prove the inequality on the left hand side of (4.10) we need the following facts.
If g ∈ L2(dν;R(n)), then

(a) lim
m→+∞ El

mg = g = lim
m→+∞ Er

mg in the sense of L2.

(b) lim
m→−∞ El

mg = 0 = lim
m→−∞ Er

mg in the sense of L2−.

(c) g =
∞∑

m=−∞
�l

mg =
∞∑

m=−∞
�r

mg.

These facts can be proved in the same way as the corresponding scalar-valued results
in [5, Chap. 5]. Of course, the condition (4.4) is crucial in the proofs.

Suppose that f, g ∈ L2(dν;R(n)). By (4.4) and the right hand inequality in (4.10),
we can get

∣
∣
∣

∫

X

f ψgdν

∣
∣
∣ =

∣
∣
∣

∫

X

( ∞∑

m=−∞
�r

mg
)
ψ

( ∞∑

κ=−∞
�l

κ f
)
dν

∣
∣
∣ (4.16)

=
∣
∣
∣

∫

X

( ∞∑

m=−∞
�r

mgψ�l
n f

)
dν

∣
∣
∣

� C‖Sr g‖2‖Sl( f )‖2.
In (4.16), taking supremum over all g satisfying ‖g‖2 � 1 and using again the

condition (4.4), we complete the proof. �

We now construct a special example, and the associated Haar functions are appro-
priate to the analysis of the Cauchy integral. Let X = R

n andB be the Borel σ−field.
Assume that dν is the Lebesgue measure, also denoted by dx . The Lebesgue mea-
sure of a measurable set U is denoted by |U |. Let F0 be the σ− field generated
by the family J0 of cubes with side length 1 whose corners lie at the points of
the integer lattice.

Let I be any cube in J0. Divide I equally by the hyperplane that bisects the
edges parallel to the x1−axis, and letJ1 denote the family of dyadic-quasi-cubes so
produced. LetF1 be the σ− generated byJ1. Now subdivide each dyadic-quasi-cube
by the hyperplane that bisects the edges parallel to the x2−axis, and let F2 be the
σ−field generated by the new family of dyadic-quasi-cubes.

Continue in this manner, at each stage bisecting each dyadic-quasi-cube of the
previous family by the hyperplane perpendicular to the next coordinate axis. This
produces the sequence {Fm}∞m=0. For m < 0, the σ− field Fm are produced by the
reverse procedure to the one just described-successive doubling in the coordinate
directions. Note that each dyadic-quasi-cube in Fkn , k ∈ Z, i.e., atom, is actually a
standard dyadic cube of side length 2−k .

At last, let J =
∞⋃

m=−∞
Jm . Note that any I ∈ J is a dyadic-quasi-cube, say I ∈

Jm−1, and so can be written as I = I1 ∪ I2, where I1 and I2 are dyadic-quasi-cubes
in Jm .
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From now on, we only discuss the left martingale. Hence we simplify the notation
by writing Em , �m , fm etc. in place of El

m , �l
m , f lm etc. We still assume that the

functionψ ∈ L∞(X : R1+n) = L∞(Rn;R1+n) satisfies (4.4), but corresponds to the
particular sequence {Fm}∞−∞ in the σ−field. The following lemma is an essential
ingredient of this chapter.

Lemma 4.1.2 For any I ∈ Jm−1, where I = I1 ∪ I2 with I1, I2 ∈ Jm, there exist a
pair of R(n)-valued functions αI and βI on R

n and a positive constant C such that

(i)

αI = a1χI1 + a2χI2 , a j ∈ R(n),

βI = b1χI1 + b2χI2 , b j ∈ R(n);

(ii) For all f ∈ L1
loc(R

n;R(n)),

�m f (x) = αI (x)〈βI , f 〉ψ, x ∈ I ;

(iii) C−1|I |−1/2 � |αI (x)| � C |I |−1/2, and for all x ∈ I , C−1|I |−1/2 � |βI (x)| �
C |I |−1/2;

(iv) ∫

ψαI dx =
∫

βIψdx = 0.

Proof Define αI and βI as in (i). We need to choose a1, a2, b1 and b2 such that
(ii)–(iv) hold.

We consider (ii). Because Fm and Fm−1 are atoms, on I , we have

Ẽm−1 f =
( 1

|I |
∫

I
f (y)dy

)
χI .

For Ẽm( f ), a similar formula holds. Let

u =
∫

I
ψ(t)dt, u j =

∫

I j

ψ(t)dt, j = 1, 2.

Then on I ,

�m f = Ẽ(ψ | Fm)−1 Ẽ(ψ f | Fm) − Ẽ(ψ | Fm−1)
−1 Ẽ(ψ f | Fm−1)

= u−1
1

( ∫

I1

ψ f dx
)
χI1 + u−1

2

( ∫

I2

ψ f dx
)
χI2

−u−1
( ∫

I1

ψ f dx +
∫

I2

ψ f dx
)
(χI1 + χI2)
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=
(

(u−1
1 − u−1)

∫

I1

ψ f dx − u−1
∫

I2

ψ f dx

)

χI1

+
(

(u−1
2 − u−1)

∫

I2

ψ f dx − u−1
∫

I1

ψ f dx

)

χI2 .

On the other hand,

αI 〈βI , f 〉ψ =
(

a1b1

∫

I1

ψ f dx + a1b2

∫

I2

ψ f dx

)

χI1

+
(

a2b2

∫

I2

ψ f dx + a2b1

∫

I1

ψ f dx

)

χI2 .

Comparing the last two expressions, we choose ai , bi , i = 1, 2, such that

a1b1 = u−1
1 − u−1, a2b2 = u−1

2 − u−1, a1b2 = −u−1 = a2b1.

Letting u = u1 + u2 and applying the equality

a−1 − b−1 = a−1(b − a)b−1 = b−1(b − a)a−1, (4.17)

we can see that the above equation has a concise expression:

a1b1 = u−1u2u
−1
1 , a2b2 = u−1u1u

−1
2 , a1b2 = −u−1, a2b1 = −u−1. (4.18)

The solutions of (4.18) can be represented as

a1 = u−1u2c, a2 = −u−1u1c, b1 = c−1u−1
1 , b2 = −c−1u−1

2 , (4.19)

where c is any invertible element in R(n). We want to choose c such that (iii) holds.
In fact, by (i) and (4.19), it is obvious that if c is taken to be |I |−1/2, then (iii) holds.

At last, we verify (iv). By (i) and (4.19), we can get
∫

ψαI dx =
∫

ψ(a1χI1 + a2χI2)dx

= u1a1 + u2a2
= (u1u

−1u2 − u2u
−1u1)c

= u1u
−1(u − u1)c − (u − u1)u

−1u1c = 0.

We can deduce from (4.19) that
∫

βIψdx = 0. �

4.2 Martingale Type T(b) Theorem

In this section, we prove the boundedness of Cauchy singular integral operators via
the Clifford martingale. The main result is as follows. We suppress the fact that the
Cauchy singular integral is a principal value by writing our operators in terms of
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ordinary integrals. The principal values are to be interpreted as the ones obtained by
projecting the Euclidean balls in � onto Rn and integrating over their complements.

Theorem 4.2.1 If� is a Lipschitz graph, then the Cauchy singular integral operator
is bounded from L2(�;R(n)) to L2(�;R(n)).

Let φ(v) = A(v)e0 + v (v ∈ R
n) be the coordinate system on � defined by A.

The unit normal of � is

n(φ(v)) = (e0 − ∇A(v))
√
1 + |∇A(v)|2.

For these coordinates, we have

T�h(φ(u)) =
∫

Rn

φ(v) − φ(u)

|φ(v) − φ(u)|1+n
n(φ(v))h(φ(v))

√
1 + |∇A(v)|2dv

=
∫

Rn

φ(v) − φ(u)

|φ(v) − φ(u)|1+n
ψ(v)h(φ(v))dv,

where ψ(v) = e0 − ∇A(v). Because |∇A(v)| � C , we can see that T� is bounded
on L2(�;R(n)) if and only if the operator

T : f �→
∫

Rn

φ(v) − φ(u)

|φ(v) − φ(u)|1+n
f (v)dv (4.20)

is bounded from L2(Rn;R(n)) to L2(Rn;R(n)).
Notice that if I is a dyadic-quasi-cube, then the principal value integral

T (ψχI )(u) = p.v.
∫

Rn

φ(v) − φ(u)

|φ(v) − φ(u)|1+n
ψ(v)χI (v)dv

exists and defines a locally integrable function. The existence and the local integrabil-
ity of T (ψχI )(u) onRn \ I are straightforward. Moreover, inRn \ I , the singularity
of T (ψχI )(u) is O(log(dist(u, ∂ I ))) as u → ∂ I . To deal with the case u ∈ I , we
only need to consider

T�F(x) = p.v.
∫

�

y − x

|y − x |1+n
n(y)F(y)dσ(y),

where F vanishes outside φ(I ) and satisfies a uniform Lischitz condition. Write

T�F(x) = p.v.
∫

�

∫

�

y − x

|y − x |1+n
n(y)

[
F(y) − F(x)

]
dσ(y)

+
∫

�

y − x

|y − x |1+n
n(y)F(x)dσ(y).
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The Lipschitz condition of F gives an appropriate control on the first integral.
By Cauchy’s theorem, the monogenicity and cancellation properties of the kernel
(y − x)/|y − x |1+n , we obtain a suitable control on the second integral.

We write the operator in (4.20) as

T f (u) =
∫

Rn

K (u, v) f (v)dv.

In the following lemma, we give some elementary properties of the kernel K .

Lemma 4.2.1 For all x, x ′, y such that x �= y and |x − x ′| < 1/2|x − y|, the kernel
K satisfies

|K (x, y)| � C

|x − y|n , x �= y, (4.21)

|K (x, y) − K (x ′, y)| � C
|x − x ′|

|x − y|1+n
, (4.22)

and

|K (y, x) − K (y, x ′)| � C
|x − x ′|

|x − y|1+n
. (4.23)

Let S denote the span overR(n) of the set of all characteristic functions of dyadic-
quasi-cubes. The space Sψ of pointwise products with the function ψ is a left-linear
space overAd . By use of the idea of [7], we can define Tψ as a Clifford left functional
on the subspace (Sψ)0 of Sψ . The space (Sψ)0 consists of the functions having
integral 0: fix gψ ∈ (Sψ)0 and choose N large enough such that the ball BN of
radius N centered at 0 contains the support of g. Then we define

Tψ(gψ) = T (ψχBN )(gψ) +
∫∫

g(x)ψ(x)
[
K (x, y) − K (0, y)

][
1 − χBN (y)

]
ψ(y)dxdy

= I (1)N + I (2)N .

By (4.22) and (4.23), this definition is meaningful. An important fact is that

〈βJ , Tψ〉ψ = Tψ(βJψ) = 0. (4.24)

This can be proved as follows.

(a) When N → ∞, I (2)
N → 0.

(b) By the monogenicity of the Cauchy kernel, using Cauchy’s theorem, we can
prove that lim

N→∞ T (ψχBN )(x) exists and is independent of x ∈ suppβJ .

Because the integral of βJψ is 0, we can conclude that
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lim
N→∞ T (ψχBN )(βJψ) = 0.

In establishing (b), one works on the surface �.
We note that, if T t is the operator f �→ ∫

f (y)K (y, x)dy, then for all dyadic-
quasi-cubes I and J ,

〈T t (χIψ), χJ 〉ψ = 〈χI , T (ψχJ )〉ψ.

Similar to T , we have

〈T tψ, βJ 〉ψ = T tψ(ψβJ ) = 0. (4.25)

By Lemma4.1.2, if f ∈ L2(Rn;R(n)), we get

f =
∞∑

m=−∞
�m f =

∑

I

αI 〈βI , f 〉ψ

and

T (ψ f ) =
∑

J∈J
T (ψαJ )〈βJ , f 〉ψ

=
∑

J,I

αI 〈βI , T (ψαJ )〉ψ 〈βJ , f 〉ψ

=
∑

I

αI

∑

J

〈βI , T (ψαJ )〉ψ 〈βJ , f 〉ψ.

Let uI J = 〈βI , T (ψαJ )〉ψ . By Lemmas 4.1.1 and 4.1.2, we only need to prove the
linear transform defined by the matrix (uI J ) on l2(J;R(n)) is bounded. We need the
following Schur lemma.

Lemma 4.2.2 (Schur) Assume that there exist a family of positive numbers (ωI ) and
a constant C such that

∑

J

|ωJ u I J | � CωI , I ∈ J, (4.26)

and ∑

I

|ωI u I J | � CωJ , I ∈ J . (4.27)

Then the matrix (uI J ) defines a bounded operator on l2(J;R(n)).

Proof This is a natural modification of the proof of the scalar version. �
Nowwestate some facts associatedwith the estimate of |〈βI , T (ψαJ )〉ψ |.Assume

that I and J are atoms in Fm and Fκ , and assume that m � κ . If the atom A ∈ Fn is



4.2 Martingale Type T (b) Theorem 129

not contained in J ( or J c) but a part of its boundary is in common with the boundary
of J , then A is said to be contiguous to J ( or contiguous to J c). If the atoms of A
are in the same σ−field as I and are contiguous to J , we denote the union of J and
such atoms by I + J . Specially, 2J denotes the union of J with all of atoms in Fm
which are contiguous to J . The bottom-left corner xJ of J is the vertex of J having
minimal coordinates.

Lemma 4.2.3 Let I and J be atoms of Fm and Fκ , respectively, and m � κ . There
exists a constant C, independent of κ and m, such that if I ⊆ 2J\J , then

∫

I×J

dxdy

|x − y|n � C |I |
(
log

|J |
|I | + 1

)
.

Proof We can prove this lemma via a simple calculation and we omit the details. �

Lemma 4.2.4 Let I and J be atoms in
∞⋃

j=−∞
F j . Then

(i) for all x /∈ 2J ,
|T (ψαJ )| � C |J |1/2+1/n|x − xJ |−1−d; (4.28)

(ii) if I ⊆ (2J )c, then

|〈βI , T (ψαJ )〉ψ | � C |I |−1/2|J |1/2+1/n
∫

I
|x − xJ |−1−ndx; (4.29)

(iii) for all x /∈ J ,

|T (ψαJ )(x)| � C |J |−1/2
∫

J
|x − y|−ndy;

(iv) if I ⊆ 2J\J , then

|〈βI , T (ψαJ )〉ψ | � C
|I |1/2
|J |1/2

(
log

|J |
|I | + 1

)
.

(In the above (i)–(iv), the constant C is independent of I and J ).

Proof The assertion (i) can be proved by the canceling property of Haar functions.
Hence

T (ψαJ ) =
∫

K (x, y)ψ(y)αJ (y)dy

=
∫

J
[K (x, y) − K (x, xJ )]ψ(y)αJ (y)dy.

So we can deduce from (4.23) that if x /∈ 2J , then
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|T (ψαJ )(x)| � C |J |−1/2
∫

J

|y − xJ |
|x − xJ |1+n

dy

� C |J |1/2|x − xJ |−1−n sup
y∈J

|y − xJ |

� C |J |1/2+1/d 1

|x − xJ |1+n
.

To prove (ii), we can use (i) and (iii) of Lemma4.1.2. The assertion (iii) follows from
(4.21). The assertion (iv) is clear from (iii) and Lemma4.2.3. �

We divide the estimate of

∑

I

|I |t |〈βI , T (ψαJ )〉ψ |

into three parts, each with a number of separate cases based on the relative size and
disposition of the atoms I and J .

Case 1. The sum with respect to atoms I larger that J .
Fix J ∈ Fκ and consider the set 2J . Let xJ be the bottom-left corner of J . Consider
I ∈ Fm , m < κ .

(a) If I lies outside 2J , by (ii) of Lemma4.2.4 and (iii) of Lemma4.1.2, we have

|〈βI , T (ψαJ )〉ψ | � C |I |−1/2|J |1/2+1/n
∫

I
|x − xJ |−1−ndx .

Hence, in this case, if t < 1/2, the estimate for the Schur sum is

∑

I∈ ⋃

m<κ

Fm ,I⊆(2J )c

|I |t |〈βI , T (ψαJ )〉ψ |

� C
∞∑

j=1

(2 j |J |)t−1/2
∑

I∈Fκ− j , I⊆(2J )c

|J |1/2+1/n
∫

I
|x − xJ |−1−ndx

� C
∞∑

j=1

2 j (t−1/2)|J |t+1/d
∫

(2J )c
|x − xJ |−1−ndx

� C
∞∑

j=1

2 j (t−1/2)|J |t

� C |J |t .

(b) For a fixedm < κ , the dyadic-quasi-cubes which meet 2J are of two kinds: those
that lie in 2J\J , and one that contains J . If I lies in 2J\J , then because the ration
of the measures of I and J is bounded above and away from 0 and independent of
I and J , by (iv) Lemma4.2.4, we know
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|I |t |〈βI , T (ψαJ )〉ψ | � C
|I |t+1/2

|J |1/2
(
log

|J |
|I | + 1

)
� C |J |t .

Because the number of such terms is bounded and is independent of I and J , the
corresponding part of the Schur sum is O(|J |t ).

If I contains J and is larger than J , the I can be written as I = I1 ∪ I2, where I1
and I2 are atoms in Fm+1. Assume that J ⊆ I1 and write βI = β1χI1 + β2χI2 . Then
similar to (4.24) and (4.25), we can get

〈
β1χI1 , T (ψαJ )

〉

ψ
= −

〈
β1χI c1 , T (ψαJ )

〉

ψ
.

Now I c1 contains part of the region 2J\J . We can use (i) of Lemma4.2.4 on this
region. In particular,

|〈β1χI1 , T (ψαJ )〉ψ | =
∣
∣
∣β1

∫

I c1

ψ(x)T (ψαJ )(x)dx
∣
∣
∣ (4.30)

� C |β1|
( ∫

2J\J
|T (ψαJ )(x)|dx +

∫

(2J )c
|T (ψαJ )(x)|dx

)

� C |I |−1/2|J |−1/2
∫

2J\J
dx

∫

J
|x − y|−ndy

+ C |I |−1/2|J |1/2+1/n
∫

(2J )c
|x − xJ |−1−ndx

� C
{
|I |−1/2|J |−1/2 + |I |−1/2|J |1/2

}
� C

|J |1/2
|I |1/2 ,

where in the second-last step we have used Lemma4.2.3. As for 〈β2χI2 , T (ψαJ )〉ψ ,
we have I2 is disjoint with J , so we can obtain an estimate similar to that of (4.30).

The estimate for the Schur sum of the dyadic-quasi-cubes satisfying I ⊇ J is

∑

I∈ ⋃

m<κ

Fm , I⊇J

|I |t |〈βI , T (ψαJ )〉ψ | � C
∞∑

k=1

(2k |J |)t−1/2|J |1/2 � C |J |t ,

where t < 1/2.

Case 2. The sum with respect to atoms I smaller than J .
For this case, we deal with the atoms J ∈ Fκ and I ∈ Fm with m > κ .

(a) If I lies outside 2J , then J lies outside 2I . Hence we apply (i) of Lemma4.2.4
to T t and get

|T t (βIψ)(x)| � C |I |1/2+1/n

|x − xI |1+n
,
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which implies that

|〈T t (βIψ), αJ 〉ψ | � C |I |1/2+1/n|J |−1/2
∫

J

dx

|x − xI |1+n

� C |I |1/2+1/n|J |1/2 1

|x − xJ |1+n

� C |I |1/n−1/2|J |1/2
∫

I

dx

|x − xJ |1+n
,

where in the middle step we have used the fact that I ⊆ (2J )c. The estimate of the
corresponding Schur sum is

∑

I∈⋃
m>κ Fm , I∩2J=∅

|I |t+1/n−1/2|J |1/2
∫

I

dx

|x − xJ |1+n

� C
∞∑

j=1

(2− j |J |)t+1/n−1/2|J |1/2
∫

(2J )c

dx

|x − xJ |1+n

� C
∞∑

j=1

(2− j )t+1/n−1/2|J |t � C |J |t ,

where t > 1/2 − 1/n.
(b) If I ∩ J = ∅ and I ⊆ 2J \ (I + J ), then J ⊆ (2I )c. So for T t , we can use (ii)
of Lemma4.2.4 to obtain

|〈βI , T (ψαJ )〉ψ | = C
∣
∣
∣
〈
T t (βIψ), αJ

〉

ψ

∣
∣
∣ (4.31)

� C |J |−1/2|I |1/2+1/n
∫

J

dx

|x − xI |1+n
.

Let d(x, J ) denote the distance of the point x from J . The atom I may have unequal
side length. Let l(I ) be the smallest side length. We can deduce from (4.31) that

|〈βI , T (ψαJ )〉ψ | � C |J |−1/2|I |1/2+1/n 1

d(xI , J )
(4.32)

� C |J |−1/2|I |1/2+1/n|I |−1
∫

I

dx

d(x, J ) + l(I )
.

Denote by L the maximal side length of J and by l the minimal side length
of J , respectively. Then L � 2l and ln � |J | � 2nln . The smallest side length of
the dyadic-quasi-cubes I ∈ Fκ+ j is l(I ) � l/2k/n+1. It follows from (4.32) that the
estimate of the relevant part of the Schur sum is: if t > 1/2 − 1/n, then
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∑

I∈ ⋃

m>κ

, I⊆2J\(I+J )

|I |t |〈βI , T (ψαJ )〉ψ |

�
∞∑

j=1

(2− j |J |)t+1/n−1/2|J |−1/2
∫

2J\(I+J )

dx

d(x, J ) + 2− j/n−1l

� C
∞∑

j=1

(2− j |J |)t+1/n−1/2|J |−1/2
∫ 3L

0
dx1 · · ·

∫ 3L

0
dxd−1

∫ 2l

2− j/n−1l

du

u + 2− j/n−1l

� C
∞∑

j=1

(2− j |J |)t+1/n−1/2|J |−1/2|J |(n−1)/n log
(2l + 2− j/d−1l

2− j/nl

)

� C
∞∑

j=1

(2− j )t+1/n−1/2 j

n
|J |t � C |J |t .

(c) If I ⊆ (I + J )\J , we have I ⊆ 2J\J . By (iv) of Lemma4.2.4,

|〈βI , T (ψαJ )〉ψ | � C
|I |1/2
|J |1/2

(
log

|J |
|I | + 1

)
. (4.33)

In the region (I + J )\J , there exist O(Ld−1/(2− j/n−1l)n−1) atoms which belong to
Fm . In other words, there exist O(2 j (1−1/n)) atoms. By (4.33), if t > 1/2 − 1/n, the
corresponding estimate of the Suchr sum is

C
∞∑

j=1

(2− j |J |)t+1/2|J |−1/2 j2 j (1−1/n) = C |J |t
∞∑

j=1

j (2− j )t−1/2+1/n � C |J |t .

(d) If I ⊆ J and L is contiguous to J c, we write J = J1 + J2, where J1 and J2
are atoms in Fm+1. Let αJ = α1χJ1 + α2χJ2 , and assume that I ⊆ J1.

We first consider the atoms I ⊆ J1 which are contiguous to J c
1 . We have

∣
∣
∣
〈
βI , T (ψα1χJ1)

〉

ψ

∣
∣
∣ =

∣
∣
∣
〈
βI , T (ψα1χJ c1 )

〉

ψ

∣
∣
∣

=
∣
∣
∣
〈
T (β1ψ), αIχJ c1

〉

ψ

∣
∣
∣

�
∣
∣
∣

∫

J c1 ∩2I
T t (βIψ)(x)α1dx

∣
∣
∣ +

∣
∣
∣

∫

J c1 \2I
T t (βIψ)(x)α1dx

∣
∣
∣.

Hence by Lemma4.2.3, applying (i) of Lemma4.2.4 to T t (βIψ), we get
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∣
∣
∣
〈
βI , T (ψα1χJ1)

〉

ψ

∣
∣
∣ � C |I |−1/2|J |−1/2

∫

2I\I
dx

∫

I

dy

|x − y|n

+ C |I |1/2+1/n
∫

(2I )c

dx

|x − xI |1+n
(4.34)

� C |I |−1/2|J |−1/2|I | log
( |I |
|I | + 1

)
+ C |I |1/2|J |−1/2

� C
|I |1/2
|J |1/2 .

Because J2 ⊆ J c
1 , we can use an estimate similar to (4.34) to obtain

∣
∣
∣
〈
βI , T (ψα2χJ2)

〉

ψ

∣
∣
∣ � C

|I |1/2
|J |1/2 . (4.35)

In Fκ+ j , there exist O(2 j (1−1/n)) atoms that are contiguous to J c
1 . It follows from

(4.34) and (4.35) that for the atoms which are contiguous to J c
1 , the corresponding

estimate of the Schur sum is

C
∞∑

j=1

(2− j |J |)t+1/2|J |−1/2|J |−1/22 j (1−1/n) = C |J |t
∞∑

j=1

(2− j )t−1/2+1/n � C |J |t ,

where t > 1/2 − 1/n.
(e) If I ⊆ J and I is disjoint with J c

1 , similar to (i) of Lemma4.2.4, we have

∣
∣
∣
〈
βI , T (ψα1χJ1)

〉

ψ

∣
∣
∣ =

∣
∣
∣
∣

∫

T t (βIψ)(x)ψ(x)α1χJ c1 (x)dx

∣
∣
∣
∣

� C |J |−1/2
∫

J c1

|T t (βIψ)(x)|dx

� C |I |1/2+1/n|J |−1/2
∫

J c1

dx

|x − xI |1+n

� C |I |1/2+1/n|J |−1/2 1

d(x, J c
1 )

.

For |〈βI , T (φα2χJ2)〉ψ |, a similar estimate holds. So the corresponding estimate of
the Schur sum is

∞∑

j=1

(2− j |J |)t+1/2+1/n|J |−1/2
2 j (1−1/n)

∑

j=1

1

j2− j/n

� C
∞∑

j=1

(2− j |J |)t+1/2+1/n|J |−1/2−1/n2 j log(2 j (1−1/n))
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� C
∞∑

j=1

k(2− j )t−1/2+1/n|J |t

� C |J |t ,

where t > 1/2 − 1/n.

Case 3. Atoms of the same size.
Here we only need to estimate the term 〈βI , T (ψαI )〉ψ since the arguments for Case
1 can be used to estimate the other parts of the Schur sum.

By Lemma4.1.2, it suffices to prove that for all dyadic-quasi-cubes I ,

|〈χI , T (ψχI )〉ψ | � C |I |.

For this, we need to use the monogenicity of the Cauchy kernel. So we pass from
T back to T� . The coordinate mapping is φ(v) = A(v)e0 + v. For small ε > 0 and
x = φ(u)(u ∈ I ), consider

∫

|x−y|>ε

y − x

|y − x |1+n
n(y)χφ(I )(y)dσ(y). (4.36)

Let Pz be the tangent hyperplane� to at x . Set a(u) = dist(u, ∂φ I ) and b = b(x) =
dist(x, ∂φ(I )). Write (4.36) as I1 + I2, where

I1 :=
∫

b>|x−y|>ε

y − x

|y − x |1+n
n(y)χφ(I )(y)dσ(y)

and

I2 :=
∫

|x−y|>b

y − x

|y − x |1+n
n(y)χφ(I )(y)dσ(y).

Then

|I | � C log
(C |I |1/n

a(u)

)
.

By Cauchy’s theorem, we write

I1 =
∫

Sb

y − x

|y − x |1+n
n(y)χφ(I )(y)dσ(y) +

∫

Sε

y − x

|y − x |1+n
n(y)χφ(I )(y)dσ(y)

+
∫

x, y∈Px , b>|x−y|>ε

y − x

|y − x |1+n
n(y)χφ(I )(y)dσ(y), (4.37)

where Sb and Sε are the portions of the sphere of radii b and ε, respectively, that lie
between � and Px . Because the kernel is anti-systemic and the integrals on Sb and
Sε are dominated by a constant, independent of x , ε and b, then the third integral in
(4.37) is 0. Hence
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|〈χI , T (ψχI )〉ψ | � C |I | + C
∫

I
log

( |I |1/n
a(u)

)
du � C |I |.

Assume that b1 and b2 are two pseudoaccretive functions. The space b1L2(Rn;
R(n)) is defined as the set of all products of the formb1 f, f ∈ L2(Rn;R(n)). Similarly,
we can define L2(Rn;R(n))b2. These spaces are isomorphic to L2(Rn;R(n)). Let S
denote the space of finite linear combinations overR(n) of characteristic functions of
dyadic-quasi-cubes. Then b1S is dense in b1L2(R(n)). Denote by (Sb2)∗ the space
of all Clifford left linear functionals on Sb2 with values in R(n). Similarly, (b1S)∗
denotes the space of all Clifford right linear functionals on b1S.

Let T be a Clifford right linear mapping from b1S to (Sb2)∗ and let� = {(x, y) :
x = y}. We call T a standard Calderón-Zygmund operator, if there exists a C∞
function K in Rn × R

n\� with values in R(n) satisfying:

(i) for x �= y,

|K (x, y)| � C
1

|x − y|n ; (4.38)

(ii) there exist a constant δ such that for 0 < δ � 1 and |y − y0| < |y − x |/2,

|K (x, y) − K (x, y0)| + |K (y, x) − K (y0, x)| � C
|y − y0|δ
|x − y|n+δ

; (4.39)

(iii) for all f, g ∈ S having disjoint supports,

T (b1 f )(gb2) =
∫∫

g(x)b2(x)K (x, y)b1(y) f (y)dxdy. (4.40)

In conformity with (4.40), we write

T (b1 f )(gb2) = 〈g, T (b1 f )〉b2 .

If T t is a left linear mapping from Sb2 to (b1S)∗ such that for all f, g ∈ S,

〈g, T (b1 f )〉b2 = 〈T t (gb2), f 〉b1
and T is associated with the kernel K , then T t is associated with the kernel K (y, x)
in the sense that

T t (gb2)(b1 f ) =
∫ ( ∫

g(x)b2(x)K (x, y)dx
)
b1(y) f (y)dy.

If there exists a constant C such that for all dyadic-quasi-cubes Q,

|T (b1χQ)(χQb2)| � C |Q|,
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We say that T is weakly boundedwith respect to b1 and b2. This definition is formally
different from the usual one in [7, 8], in which the test functions are taken to be
smooth. However, the two definitions are equivalent.

If h ∈ L∞(Rn;R1+n), then Th can be defined as a linear functional on the sub-
space (Sb2)0 ofSb2 consisting of functions having integral 0. In the next theorem,we
say T (b1) ∈ BMO if there exists a locally integrable BMO function φ such that for
all g ∈ (Sb2)0, 〈g, T (b1)〉b2 = 〈g, φ〉b2 . A similar interpretation applies to T t (b2).
For the sequence of σ−fields, the space BMO is the one defined in (4.8).

Theorem 4.2.2 (T (b) theorem) Let T and T t ba as above and T be associated with
the standard Calderón-Zygmund kernel K . Then T is extendible to a bounded linear
operator from b1L2(Rn;R(n)) to L2(Rn;R(n))b2 if and only if

(i) T (b1), T t (b2) ∈ BMO;

(ii) T is weakly bounded for b1 and b2.

Proof The necessity of the conditions (i) and (ii) was proved in the classical case by
[9–11]. Their proof adapted to the more general Clifford algebra setting.

To prove the sufficiency, we first deal with the case T (b1) = T t (b2) = 0. For
every pair of pesduoaccretive functions b1 and b2, we associate a Haar basis and
denote the respective pair-base by {(α(1)

I , β
(1)
I )}I∈J and {(α(2)

I , β
(2)
I )}I∈J . Formally,

we have the following expansion

T (b1 f ) =
∑

I,J

α
(2)
I

〈
β

(2)
I , Tb1α

(1)
J

〉

b2

〈
β

(1)
J , f

〉

b1
.

Let
uI J =

〈
β

(2)
I , Tb1α

(1)
J

〉

b2
.

It suffices to prove for a suitable number t , when ωI is taken to be |I |t , the conditions
of Lemma4.2.2 are satisfied.

Because T (b1) = T t (b2) = 0 and the kernel with respect to T satisfies (4.38)
and (4.39), for the present more general operator T , the statement and the proof
of Lemma4.2.4 still hold. Because of the assumption that T (b1) = T t (b2) = 0, we
find that the estimates for Case 1 and Case 2 go through unchanged. The estimate
of the part of the Schur sum corresponding to Case 3 holds by virtue of the weak
boundedness assumption.

The general case: T (b1), T t (b2) ∈ BMO . Let T (b1) = φ1 and T t (b2) = φ2. We
define

Ui f =
∞∑

k=−∞
�

( j)
k (φi )E

(i)
k−1(b

−1
i f ), i, j = 1, 2, i �= j, (4.41)

where E (i)
k and �

(i)
k are the left conditional expectation operator and the left mar-

tingale difference with respect to the pseudoaccretive function bi . It is obvious that
Uibi = φi , i = 1, 2. The kernel Ki of the operator Ui is given by the expression



138 4 Convolution Singular Integral Operators on Lipschitz Surfaces

Ki (x, y) =
∞∑

k=−∞

∑

I∈Jk−1

χI (x)α
( j)
I (x)

〈
β

( j)
I , φi

〉

b j

( ∫

I
bi

)−1

χI (y). (4.42)

By (4.42), it is easy to verify

�(i)
m Ui f = �( j)

m (φi )E
(i)
m−1(b

−1
i f ).

We claim
‖S(i)(Ui f )‖2 � C‖ f ‖2, (4.43)

where S(i) denotes the Littlewood–Paley square function with respect to bi . Hence
Ui is bounded on L2. To prove (4.43), note that

‖S(i)(Ui f )‖22 (4.44)

=
∫ ∑

k

|�( j)
k (φi )E

(i)
k−1(b

−1
i f )|2dx

� C
∫ ∑

k

|�( j)
k (φi )|2

(
E (i)∗
k−1(b

−1
i f )

)2
dx

� C
∫ ∞∑

k=−∞
Ẽk−1

( ∞∑

m=k

|�( j)
m (φi )|2

)[(
E (i)∗
k−1(b

−1
i f )

)2 −
(
E (i)∗
k−2(b

−1
i f )

)2]
dx,

where E (i)∗
k g = sup

m�k
|E (i)

m g|. Now, for every k,

Ẽk−1

( ∞∑

m=k

|�( j)
m (φi )|2

)
� C‖φi‖2BMO . (4.45)

This is because, if I ∈ Jk−1, then we can restrict σ−field {Fm}∞m=k−1 to I and deduce
that on I ,

Ẽk−1

( ∞∑

m=k

|�( j)
m (φi )|2

)
= 1

|I |
∫

I

∞∑

m=k

|�( j)
m (φi )|2dx

= 1

|I |
∫

I

∞∑

m=k

|�( j)
m (φi − E ( j)

k−1(φi )|2dx

= C

|I |( j)
∫

I

∣
∣
∣φi − 1

|I |( j)
∫

I
b jφi

∣
∣
∣
2
dx

= C

|I |
∫

I

∣
∣
∣φi − 1

|I |
∫

I
φi dy + 1

|I |( j)
∫

I
b j

(
φi − 1

|I |
∫

I
φi dz

)
dx

∣
∣
∣
2

� C‖φi‖2BMO ,
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where we have used the fact that |I ( j)| = ∫
I b j dx . This gives (4.45). Returning to

(4.43), we have

‖S(i)(Ui f )‖22 � C‖φi‖2BMO

∫

(M f (x))2dx � C‖ f ‖22,

whereM f denotes theusualHardy–Littlewoodmaximal function.This proves (4.43).
By Lemma4.1.1,Ui is bounded on L2. The operatorUt

i is still bounded on L2. If
i �= j , because

∫
b jα

( j)
I dx = 0,

〈Ut
i (b j ), f 〉bi = 〈b j , Ui (bi f )〉

=
∞∑

k=−∞

∑

I∈Jk−1

( ∫

b jα
( j)
I

)
〈β( j)

I , φi 〉b j

( ∫

I
bi

)−1( ∫

I
bi f

)

= 0.

Hence if i �= j , Ut
i (b j ) = 0. Letting R = t −U1 −Ut

2, we have

R(b1) = Rt (b2) = 0. (4.46)

The operator R is also weakly bounded. Applying the method of Theorem4.2.1,
we wish to show that R and T are bounded on L2. This effectively reduces to
checking that the operator R and Rt satisfy the same kind of conditions as those
given in Lemma4.2.4. The proofs of (iii) and (iv) of Lemma4.2.4 use only the
property (4.21) of the kernel K . Consider the kernels associated with the operators
U1 and Ut

2. For i = 1, 2, they are given by (4.42). Now for fixed x �= y, and k, there
exists at most one I ∈ Jk−1, denoted by Ik−1, such that the summand in (4.42) is
nonzero. For such a term,

|x − y| � C2−k, (4.47)

where C is independent of x, y and k. Let k0 be the largest integer such that (4.47)
holds. By (4.47), the sum in (4.42) is then, in norm, at most

C
k0∑

k=−∞
|Ik−1|−1/2 1

|Ik−1|
∫

Ik−1

|β( j)
Ik−1

(y)b j (y)||φi − (φi )Ik−1 |dy

� C‖φi‖BMO

k0∑

k=−∞
|Ik−1|−1

� C‖φi‖BMO

k0∑

k=−∞
2nk

� C‖φi‖BMO2
nk0

� C‖φi‖BMO |x − y|−n .
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As to (i) and (ii) of Lemma4.2.4, we note that, if J is a dyadic-quasi-cube with
x /∈ 2J , then

U1(b1α
(1)
J )(x) =

∞∑

−∞

∑

I∈Jk−1

α
(2)
I (x)χI (x)〈β(2)

I , φ1〉b2
( ∫

I
b1

)−1( ∫

I
b1α

(1)
J

)

= 0.

In fact, the last factor in a term of the double summation is nonzero only when I ⊆ J .
But because x /∈ 2J , then χI (x) = 0. So this term is 0. A similar argument applies
to Ut

2. Hence, (i)–(iv) of Lemma4.2.4 hold for the operator R. The operator Rt can
be dealt with similarly. Assume that R(b1) = Rt (b2) = 0. With some appropriate
modifications, the proof of Theorem4.2.1 applies to the operator R. �

4.3 Clifford Martingale �−Equivalence Between
S( f ) and f ∗

In Sect. 4.2, the L2-norm equivalence between a Clifford martingale and its square
function plays an important role in the proof of themain results. The L2-boundedness
of the maximal function f ∗ indicates the L2 equivalence between f ∗ and its square
function. The later mentioned result is associated with �(t) = t2. In this section, we
will generalize this result to more general functions �.

Let (�,F , ν) be a nonnegative σ−finite space and let φ be a bounded Clifford-
valued measurable function. Consider the Clifford-valued measure dμ = φν. The
martingales are with respect to dμ and a family of {Fm}∞−∞ of sub-σ -field satisfying

{Fm}∞−∞ nondecreasing, F = ∪Fm, ∩Fm = ∅, (4.48)

and
(�,Fm, ν) complete, σ − finite ∀ m. (4.49)

Let e1, · · · , en be the basic vectors of Rn satisfying

e2 = −1, ei e j = −e j ei , i �= j, i, j = 1, 2, . . . , n, (4.50)

and R(n) be the Clifford algebra on 2n-dimensional real number field generated
by the increasingly ordered subset eA, {1, · · · , n}, where eA = e j1 · · · e jl , A =
{ j1, . . . , jl}, 1 � l � n, e∅ = e0 = 1. We will use the following norm in R(n):

|λ| =
( ∑

A

λ2
A

)1/2
, λ =

∑

A

λAeA. (4.51)
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For this norm, we have the following relation:

|λμ| � k|λ||μ| ∀ λ,μ ∈ R(n), (4.52)

where k is a constant which depends only on the dimension m. When at least one of
λ and μ, say λ, is of the form λ = ∑d

i=0 λi ei , i.e., a vector in Rn+1 ⊂ R(n), we have

k−1|λ||μ| � |λ|. (4.53)

For a martingale f = ( fm)∞−∞, the maximal square function is defined as

f ∗
m = sup

k�m
| fk |, f ∗ = f ∗

∞. (4.54)

For 1 � p � ∞, f = { fm}∞−∞ is called bounded on L p if

‖ f ‖p = sup
m

‖ fm‖p < ∞. (4.55)

In the next proposition, we prove the boundedness of the maximal operator f ∗.

Proposition 4.3.1 Let 1 < p � ∞. The maximal operator “∗” is (p, p) type and
weak (1, 1) type. For 1 < p � ∞, every L p-bounded martingale f = { fm}∞−∞ is
generated by some function f ∈ L p(ν) which satisfies ‖ f ‖p ≈ supm ‖ fm‖p.

Proof Let f = { fm}∞−∞ be a martingale. On the one hand,

fm = E( fm+1 | Fm) = Ẽ(φ | Fm)−1 Ẽ(φ fm+1 | Fm).

On the other hand,

fm = E( fn+2 | Fm) = Ẽ(φ | Fm)−1 Ẽ(φ fm+2 | Fm)

= Ẽ(φ | Fm)−1 Ẽ(Ẽ(φ fm+2 | Fm+1) | Fm).

The above estimates give

Ẽ(φ fm+1) = Ẽ(Ẽ(φ fn+2 | Fm) | Fm).

Hence {Ẽ(φ fm+1)}∞−∞ is the martingale with respect to (�,F , ν, {Fm}∞−∞). We can
deduce from the expression of fm that the following relation holds:

Ẽ(φ fm+1 | Fm) = Ẽ(φ | Fm) fm .
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Then it is L p-bounded. Moreover, we have

sup
n

‖ fn‖p ≈ sup
m

‖Ẽ(φ fm+1 | Fm)‖p,

f ∗ ≈ sup
m

|Ẽ(φ fm+1 | Fm)|.

Because of the result in the classical case, ∗ is (p, p) type and weak (1, 1) type.
For 1 < p � ∞ and any integer M > 0, we decompose � = ∪k�k , where �k ∈
F−M and |�k | < ∞. Because for any k, {Ẽ(φ fm+1 | Fm)χ�k }n�−M is a classical
martingale, we can obtain some φ f ∈ L p(�k, ν) such that on �k ,

Ẽ(φ fm+1 | Fm) = Ẽ(φ f | Fm), n � −M.

Therefore, for n � −M ,

fm = Ẽ(φ | Fm)−1 Ẽ(φ fn+1 | Fm)

= Ẽ(φ | Fm)−1 Ẽ(φ f | Fm)

= E( f | Fm).

Letting M → ∞, we can see that fm = E( f | Fm) ∀ n. Moreover, we have

‖ f χ�k‖p � C sup
n

‖ fmχ�k‖p

and
‖ f ‖p � C sup

m
‖ fm‖p.

In addition, supm ‖ fm‖p � C‖ f ‖p and ‖ f ‖p ≈ supm ‖ fm‖p. �

By Proposition4.3.1, we can identify a L p-bounded martingale with the function
that generalizes the martingale as follows

f = { fm}∞−∞ = {E( f | Fm) ∀ m}∞−∞.

Proposition 4.3.2 Let 1 � p � ∞ and f = { fm}∞−∞ be a L p-bounded martingale.
Then

lim
m→∞ fm = f, 1 < p � ∞, (4.56)

where f is the L p-function which generates { fm}∞−∞ in Proposition4.3.1, and for
p = 1, the following limits exists:

lim
m→∞ fm exists , p = 1 (4.57)
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and
lim

m→−∞ fm = 0, 1 � p < ∞. (4.58)

Proof Let � = ∪�k , where �k ∈ F0 with |�k | < ∞ ∀ k. Then {Ẽ(φ | Fm)χ�k }m>0

and {Ẽ(φ fm+1 | Fm)χ�k }m>0 are L p-bounded martingales with respect to (�k,F ∩
�k, {Fm ∩ �k}m�0), and have their respective limits:

⎧
⎪⎨

⎪⎩

on every �k, lim
m→∞ Ẽ(φ | Fm) = φ a.e.;

on every �k, for some g, limm→∞ Ẽ(φ fm+1 | Fm) = φg a.e.;
for 1 < p � ∞, g = f.

The last two limits imply that (4.56) and (4.57) hold. Now we prove (4.58). Write
θ(ω) = limm→−∞| fm |. Then θ(ω) � f ∗(ω) and θ(ω) are ∩Fm measurable. This
means that θ(ω) = a � 0 a.e. Because ∗ is weak (p, p) type, for 1 � p < ∞, we
have

|{θ(ω) > λ}|ν � |{ f ∗ > λ}|ν �
(
C

λ
‖ f ‖p

)p

∀ λ > 0.

Hence a = 0. This gives (4.58). �
Let� be a nondecreasing and continuous function fromR

+ toR+ satisfying�(0) =
0 with the moderate growth condition

�(2u) � C1φ(u), u > 0. (4.59)

We begin to establish the �−equivalence between S( f ) and f ∗, where f is the
martingale such that for any m,

|�m f | � Dm−1, (4.60)

where D = {Dm} is a nonnegative nondecreasing and adapted process to {Fm}. We
only consider the case {Fm}m�0.

Theorem 4.3.1 Let f = { fm}m�0 be a l−martingale or a r−martingale satisfying
(4.60). Then ∫

�

�(S( f ))dν � C
∫

�

�( f ∗ + D∞)dν (4.61)

and ∫

�

�( f ∗)dν � C
∫

�

�(S( f ) + D∞)dν, (4.62)

where the involved constants depend only on C0 and C1.

Proof We shall use the stopping time argument and the good λ− inequality. Let α

be any real number larger than 1, β > 0 to be determined and λ be any level. Notice
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that
| fm | � | fm−1| + |�m f | � f ∗

m−1 + Dm−1 = ρm−1.

Define the stopping time τ = inf{m : ρm > βλ} and the associated stopping mar-
tingale

f (τ ) = { f (τ )
m }m�0 = { fmin{m,τ }}m�0.

Then we have

{τ < ∞} = {ρ∞ > βλ}, f (τ )∗ = sup
m

| fmin{m,τ }| � f ∗
τ � ρτ−1 � βλ.

Now consider the adapted process {Sm( f (τ )) > λ} and define the stopping time

T = inf{m : Sm( f (τ )) > λ}.

Then we have
{T < ∞} = {S( f (τ )) > λ}, ST−1( f

(τ )) � λ.

Hence

{S( f ) > αλ} ⊂ {τ < ∞} ∪ {τ = ∞, Sτ ( f )
2 > α2λ2}

⊂ {τ < ∞} ∪ {S( f (τ ))2 − ST−1( f
τ )2 > (α2 − 1)λ2}

and

Ẽ(χS( f (τ ))2−ST−1( f τ )2>(α2−1)λ2 | FT )

� 1

(α2 − 1)λ2
Ẽ(S( f (τ ))2 − ST−1( f

τ )2 | FT ).

Nowwe consider a new underlying space (�,F , ν, {Jm}m�0)with Jm = FT+m , and
the martingale

g = {gm}m�0 such that gm = f (τ )
T+m − f (τ )

T−1.

Then we have

�mg = f (τ )
T+m − f (τ )

T−1 − ( f (τ )
T+m−1 − f (τ )

T−1) = �T+m f (τ )

and

S(g)2 =
∞∑

m=0

|�mg|2 =
∞∑

m=0

|�T+m f (τ )|2

=
∞∑

k=T

|�k f
(τ )|2 = S( f (τ ))2 − ST−1( f

(τ ))2.
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By Lemma4.1.1, we get

Ẽ(S( f (τ ))2 − ST−1( f
(τ ))2 | FT ) = Ẽ(S(g)2 | J′)

� C Ẽ(|g|2 | J0)

= C Ẽ(| f (τ ) − f (τ )
T−1| | FT )

� Cβ2λ2.

Now, because {S( f τ ) > αλ} ⊂ {T � ∞}, we obtain

|{S( f (τ )) > αλ}|ν �
∫

{T<∞}
χ{S( f (τ ))>αλ}dν

=
∫

{T<∞}
Ẽ(χ{S( f (τ ))>αλ} | FT )dν

�
∫

{T<∞}
Ẽ(χ{S( f (τ ))2−ST−1( f (τ ))2>(α2−1)λ2} | FT )dν

� Cβ2

α2 − 1
|{S( f (τ )) > λ}|ν � Cβ2

α2 − 1
|{S( f ) > λ}|ν,

and hence

|{S( f ) > αλ}|ν � |{ρ∞ > βλ}|ν + Cβ2

α2 − 1
|{S( f ) > λ}|ν,

which is the desired good λ inequality for the couple (S( f ), f ∗ + D∞). The one for
the couple ( f ∗, S( f ) + D∞) is similar. From them, we obtain (4.61) and (4.62). �

We can get rid of D∞ in the following cases:

(i) � is convex;
(ii) (�,F , ν, {Fm}∞−∞) is regular in some sense.

For simplicity, we only consider the simplest regularity, i.e., the dyadic type one: each
Fm is atomic, whose atom I (m) = I (m+1)

1 + I (m+1)
2 satisfies ||I (m+1)

1 |μ| = ||I (m+1)
2 |μ|.

A little more general regularity is applicable to our case. We have

Theorem 4.3.2 Under theadditional condition (i) on�or (ii) on (�,F , ν, {Fm}∞−∞),
we have ∫

�

�(S( f ))dν ≈
∫

�

�( f ∗)dν,

where in the above equivalence, all the constants only depend on C0 and C1.

Proof We first consider {Fm}m�0. Davis’ decomposition holds in such case: every
Clifford martingale f = { fm}m�0 can be decomposed into a sum of twomartingales:
g = {gm}m�0 and h = {hm}m�0 satisfying
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|�mg| � 4d∗
m−1, d∗ = sup

k�m
|dk |, dk = �k f, (4.63)

and ∫

�

�(

∞∑

m=0

|�mh|)dν � C
∫

�

�(d∗)dν ∀ convex �. (4.64)

Now for f = { fm}m�0, we have

∫

�

�(S( f ))dν � C
∫

�

�(S(g))dν + C
∫

�

�(S(h))dν

� C
∫

�

�(g∗) + C
∫

�

�(d∗) + C
∫

�

�(

∞∑

m=0

|�mh|)dν

� C
∫

�

�( f ∗)dν.

The proof for the reverse inequality is similar. Next we consider the dyadic type
case. We claim that in such case, (4.60) holds for any martingale f = { fm}∞−∞ and
suitably defined D = {Dm}. In fact,

Dm−1 |I m−1= sup
k�m

max(|�k f | |I (k)
1

, |�k f | |I (k)
2

)

is a nonnegative, nondecreasing and adapted process such that

|�m f | � Dm−1

and
D∞ � C min( f ∗, S( f )).

Only the last assertion needs to be verified. In fact,

∫

I (k−1)
�k f dμ = 0

implies ∫

I (k−1)
1

�k f dμ = −
∫

I (k−1)
2

�k f dμ.

This gives
�k f |I (k)

1
|I (k)

1 |μ = −�k f |I (k)
2

|I (k)
2 |μ



4.3 Clifford Martingale �−Equivalence Between S( f ) and f ∗ 147

or |�k f |I (k)
1

|
|�k f |I (k)

2
| = ||I (k)

2 |μ|
||I (k)

1 |μ| .

Therefore, on I (k−1),

max(|�k f | |I (k)
1

, |�k f | |I (k)
2

) � C |�k f |

and
D∞ � C sup

k
|�k f | � C min{S( f ), f ∗}.

�

4.4 Remarks

Remark 4.4.1 Another method to prove the boundedness of Calderón-Zygmund
operators lays on the multi-resolution technique developed by R. Coifman, Y. Meyer
etc. That method is usually called the fast algorithm of Calderón-Zygmund. The
basic idea is to decompose the kernel of the Calderón-Zygmund operator T under
consideration by wavelet basis and then represent T as a linear combination of
quasi-annular operators. Then applying the smoothness and the canceling condition
of the regular wavelets, we estimate the coefficients of the kernel and obtain that the
L2−norms of the quasi-annular operators have a good rate of decay. This implies the
L2-boundedness of Calderón-Zygmund operators. In 1994, similar to the result on
R

n , using Clifford-valued regular wavelets, M. Mitrea obtained the L2-boundedness
of singular integral operators on Lipschitz surface, see [12].
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