
Chapter 3
Clifford Analysis, Dirac Operator
and the Fourier Transform

In this chapter, we state basic knowledge, notations and terminologies in Clifford
analysis and some related results. These preliminaries will be used to establish the
theory of convolution singular integrals and Fouriermultipliers onLipschitz surfaces.
In Sect. 3.1, we give a brief survey on basics of Clifford analysis. In Sect. 3.2, we state
themonogenic functions on sectors introduced by Li,McIntosh, Qian [1]. Section3.3
is devoted to the Fourier transform theory on sectors established by [1]. Section3.4 is
based on the Möbius covarian of iterated Dirac operators by Peeter and Qian in [2].
In Sect. 3.5, we give a generalization of the Fueter theorem in the setting of Clifford
algebras [3]. In Chaps. 6 and 7, this generalization will be used to estimate the kernels
of holomorphic Fourier multiplier operators on closed Lipschitz surfaces.

3.1 Preliminaries on Clifford Analysis

In this section, n and M denote the positive integers, L equals to 0 or n + 1, and
M � max{n, L}. The real 2M -dimensional Clifford algebra R(M) or the complex
2M -dimensional Clifford algebra C(M) has basis vectors eS , where S is any subset in
{1, 2, . . . , M}. Under the identifications

{
e0 = e∅,
e j = e{ j}, 1 � j � M,

the multiplication of basis vectors satisfies

⎧⎪⎨
⎪⎩
e0 = 1, e2j = −e0 = −1, 1 � j � M, e0 = 1;
e j ek = −eke j = e{ j,k}, 1 � j < k � M;
e j1e j2 . . . e js = eS, 1 � j1 < j2 < · · · < js � M and S = { j1, j2, . . . , js}.
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Let u = ∑
S
uSeS and v = ∑

T
vT eT be two elements in R(M) (or C(M)). Then the

product of u and v can be expressed as

uv =
∑
S,T

uSvT eSeT ,

where uS , vT ∈ R (orC), u∅e∅ is usually written as u0e0 or u0, and is called the scalar
part of u.

By identifying the standard basis vectors e1, e2, . . . , en of Rn with their counter-
parts inR(M) orC(M), we embed the vector spaceRn+1 in the Clifford algebrasR(M)

andC(M). There are two usual methods to embedRn+1 in Clifford algebras. We treat
them together by denoting standard basis vectors of Rn+1 by e1, e2, . . . , en, eL , and
identifying eL with either e0 or en+1.

OnR(M) andC(M), we use the Euclidean norm |u| = (
∑
S

|uS|2)1/2. For a constant
C depending only on M , |uv| � C |u||v|. If u ∈ R

n+1, then we can take the constant
C as 1. If u ∈ C

n+1, the constant C is taken as
√
2.

We write x ∈ R
n+1 as x = x + xLeL , where x ∈ R

n and xL ∈ R. We also write
the Clifford conjugate of x as x̄ = −x + xL ēL , where ēLeL = 1. Then

x̄ x = x x̄ =
n∑
j=1

x2j + x2L = |x |2.

The Clifford algebras R(0), R(1) and R(2) are the real numbers, the complex num-
bers and the quaternions, respectively. An important property of the three algebras is
that every non-zero element has an inverse. Although this is not true in general, but
every non-zero element x = x + xLeL in R

n+1 has an inverse x−1 in R(M). In fact,
x−1 = |x |−2 x̄ ∈ R

n+1 ⊂ R(M).
For the sake of convenience, we recall some basic knowledge in Clifford analysis.

The differential operator

D = D + ∂

∂xL
eL , where D =

n∑
k=1

∂

∂xk
ek,

acts on C1 functions f = ∑
S

fSeS of n + 1 variables to give

Df =
n∑

k=1

∂ fS
∂xk

ekeS + ∂ fS
∂xL

eLeS

and

f D =
n∑

k=1

∂ fS
∂xk

eSek + ∂ fS
∂xL

eSeL .
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Let f be a C1 function defined on an open subset of Rn+1 with values in R(M) or
C(M). If Df = 0, then f is called a left-monogenic function. If f D = 0, then f is
called a right-monogenic function. If f is both left-monogenic and right-monogenic,
we call f a monogenic function. For the left-monogenic function and the right-
monogenic function, each component is harmonic. It is easy to prove that for fixed
ζ , the function e(x, ζ ) is a left-monogenic and right-monogenic function of variable
x because

∂

∂xL
eLe(x, ζ ) = −eLiζeLe(x, ζ )

= −eLieLζe(x, ζ )

= −iζe(x, ζ ) = −De(x, ζ ).

Define a function E on Rn+1 \ {0} as

k(x) = 1

σn

x

|x |n+1
, x �= 0,

where σn is the volume of the unit n-sphere in R
n+1. In Clifford analysis, for the

above function E , the corresponding Cauchy integral formula holds.

Theorem 3.1.1 Let� be a bounded open subset ofRn+1 with the Lipschitz boundary
∂� and the exterior unit normal n(y) defined for almost all y ∈ ∂�. Assume that f is
a left-monogenic function on the neighborhood of� ∪ ∂� and g is a right-monogenic
function on the neighborhood of � ∪ ∂�. Then

(i)
∫

�

g(y)n(y) f (y)dSy = 0;

(ii)
∫

∂�

g(y)n(y)E(x − y)dSy =
{
g(x), x ∈ �,

0, x /∈ � ∪ ∂�;
(iii)

∫
∂�

E(x − y)n(y) f (y)dSy =
{
f (x), x ∈ �,

0, x /∈ � ∪ ∂�.

Proof (i) is a direct corollary of Gauss’s divergence theorem, while (ii) and (iii) can
be deduced from (i) and the following identity which is easily verified:

∫
|y−x |=r

n(y)E(y − x)dSy =
∫

|y−x |=r
E(y − x)n(y)dSy = 1, r > 0.

�

We also need the following result.
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Theorem 3.1.2 Let f be a right-monogenic function on R
n+1 \ {0} and satisfy

| f (x)| � C/|x |n for x ∈ R
n+1 \ {0}. Then for some constant c ∈ C(n), f (x) =

cx/|x |n+1.

For ξ ∈ R
n , ξ �= 0, define

χ±(ξ) = (1 ± iξeL |ξ |−1)/2

such that χ+(ξ) + χ−(ξ) = 1. By (iξeL)2 = |ξ |2, we get
⎧⎨
⎩

χ+(ξ)2 = χ+(ξ),

χ−(ξ)2 = χ−(ξ),

χ+(ξ)χ−(ξ) = 0 = χ−(ξ)χ+(ξ).

Moreover, iξeL = |ξ |χ+(ξ) − |ξ |χ−(ξ), and in fact, for any polynomial P(λ) =∑
akλk in one variable with scalar coefficients, we have

P(iξeL) =
∑
k

ak(iξeL)
k = P(|ξ |)χ+(ξ) + P(−|ξ |)χ−(ξ).

Hence, the polynomial p inm variables defined by p(ξ) = P(iξeL) satisfies p(0) =
P(0) and

p(ξ) = P(iξeL) = P(|ξ |)χ+(ξ) + P(−|ξ |)χ−(ξ), ξ �= 0.

It is natural to associate every function B of one real variable with a function b of n
real variables. Precisely, if |ξ | and −|ξ | are in the domain of B,

b(ξ) = B(iξeL) = B(|ξ |)χ+(ξ) + B(−|ξ |)χ−(ξ).

When 0 is in the domain of B, b(0) = B(0), where 0 denotes the 0-vector in Rn .
We repeat this procedure for holomorphic functions of complex variables. At first

for ζ = ξ + iη ∈ C
n , define

|ζ |2
C

=
∑
j=1

ζ 2
j = |ξ |2 − |η|2 + 2i〈ξ, η〉,

where ξ, η ∈ R
n , and note that (iζeL)2 = |ζ |2

C
. Hence, we extend |ξ |2 holomorphi-

cally to Cn . When |ζ |2
C

�= 0, take ±|ζ |C as its two square roots and define

χ±(ζ ) = 1

2

(
1 ± iζeL

|ζ |C
)

such that
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

χ+(ζ ) + χ−(ζ ) = 1,
χ+(ζ )2 = χ+(ζ ),

χ−(ζ )2 = χ−(ζ ),

χ+(ζ )χ−(ζ ) = 0 = χ−(ζ )χ+(ζ )

iζeL = |ζ |Cχ+(ξ) − |ζ |Cχ−(ξ).

Let P(λ) = ∑
akλk be a polynomial in one variable with complex coefficients, the

corresponding polynomial in n variables is defined by

p(ζ ) = P(iζeL) =
∑
k

ak(iζeL)
k

and satisfies if |ζ |2
C

�= 0, then

p(ζ ) = P(iζeL) = P(|ζ |C)χ+(ζ ) + P(−|ζ |C)χ−(ζ )

= 1

2

(
P(|ζ |C) + P(−|ζ |C)

)
+ 1

2

(
P(|ζ |C) − P(−|ζ |C)

)
iζeL

|ζ |C ;

if |ζ |2
C

= 0, then
p(ζ ) = P(0) + P ′(0)iζeL .

Let B be any holomorphic function in one variable defined on the open subset
S in C and let b be the holomorphic Clifford-valued function in n variables. For
all ζ ∈ C

n , {±|ζ |C} ⊂ S. The correspondence between B and b can be defined as
follows naturally. If |ζ |2

C
�= 0, then

b(ζ ) = B(iζeL) = B(|ζ |C)χ+(ζ ) + B(−|ζ |C)χ−(ζ )

= 1

2

(
B(|ζ |C) + B(−|ζ |C)

)
+ 1

2

(
B(|ζ |C) − B(−|ζ |C)

)
iζeL

|ζ |C .

If |ζ |2
C

= 0, then
b(ζ ) = B(0) + B ′(0)iζeL .

The reason that the above correspondence is natural because not only b is the
desired polynomial when B is a polynomial, but also the mapping from B to b is
an algebra homomorphism. In other words, if F is another holomorphic function
defined on S and c1, c2 ∈ C, then

(c1F + c2B)(iζeL) = c1F(iζeL) + c2B(iζeL)

and
(FB)(iζeL) = F(iζeL)B(iζeL).
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We give an example. For any real number t , define the holomorphic function
Et (λ) = e−tλ with variable λ ∈ C. The corresponding function in n variables is
defined as follows. If |ζ |2

C
�= 0,

e(teL , ζ ) = Et (iζeL) = e−t |ζ |Cχ+(ζ ) + et |ζ |Cχ−(ζ )

= cosh(t |ζ |C) − sinh(t |ζ |C)|ζ |−1
C
iζeL .

If |ζ |2
C

= 0,
e(teL , ζ ) = 1 − tiζeL .

Then
e(teL , ζ )e(seL , ζ ) = e((t + s)eL , ζ )

and e(teL ,−ζ ) = e(−teL , ζ ). In addition,

d

dt
e(teL , ζ ) = −iζeLe(teL , ζ ) = −e(teL , ζ )iζeL .

For any complex number α, another example is the function defined by Rα(λ) =
(λ − α)−1, λ �= α. Then

Rα(iζeL) = (iζeL − α)−1 = (iζeL + α)(|ζ |2
C

− α2)−1, |ζ |2
C

�= α2.

From now on, although we assume that |ζ |2
C

/∈ (−∞, 0] and Re|ζ |C > 0, it has
been unimportant which sign we assign to each square root of |ζ |2

C
. Now we prove

some estimates.

Theorem 3.1.3 Let ζ = ξ + iη ∈ C
n, where ξ, η ∈ R

n, and assume that |ζ |2
C

/∈
(−∞, 0]. Let

θ = tan−1
( |η|
Re|ζ |C

)
∈ [0, π/2).

Then

(a) 0 < Re|ζ |C � |ξ | � sec θRe|ζ |C,
(b) Re|ζ |C � ||ζ |C| � sec θRe|ζ |C � |ζ | � (1 + 2 tan2 θ)1/2Re|ζ |C,
(c) −θ � arg |ζ |C � θ ,
(d) |χ±(ζ )| � sec θ/

√
2.

Proof It is easy to prove

||ζ |C|2 = ||ζ |2
C
| =

(
(|ξ |2 − |η|2)2 + 4〈ξ, η〉2

)1/2
� |ξ |2 + |η|2 = |ζ |2.

Hence
Re|ζ |C � ||ζ |C| � |ζ |. (3.1)
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Taking the real part of the identity

−(ξ + iη)2 = −ζ 2 = |ζ |2
C

=
(
Re|ζ |C + iIm|ζ |C

)2
,

we obtain
|ξ |2 − |η|2 = (Re|ζ |C)2 − (Im|ζ |C)2 (3.2)

or
2|ξ |2 − |ζ |2 = 2(Re|ζ |C)2 − ||ζ |C|2.

Therefore, by (3.1), we get Re|ζ |C � |ξ |. In addition, by (3.2), we have

|ξ |2 � |η|2 + (Re|ζ |C)2 = (tan2 θ + 1)(Re|ζ |2
C
).

This means |ξ | � sec θRe|ζ |C and (a) is proved.
Another corollary of (3.2) is

|ζ |2 = 2|η|2 + (Re|ζ |C)2 − (Im|ζ |C)2 � (1 + 2 tan2 θ)(Re|ζ |2
C
),

which implies (b).
(c) is a direct corollary of the inequality ||ζ |C| � sec θRe|ζ |C, and (d) can be

deduced from |ζ | � (1 + 2 tan2 θ)1/2||ζ |C|. �
Define

S0μ =
{
ζ = ξ + iη ∈ C

n : |ζ |2
C

/∈ (−∞, 0] and |η| < Re(|ζ |C) tanμ
}
.

By (c) of Theorem3.1.3, we know that |ζ |C ∈ S0μ,+(C) and −|ζ |C ∈ S0μ,− when ζ ∈
S0μ(Cm). So for any holomorphic function B defined on S0μ(C) = S0μ,+(C) ∪ S0μ,−,
the corresponding holomorphic function b in n variables:

b(ζ ) = B(iζeL) = B(|ζ |C)χ+(ζ ) + B(−|ζ |C)χ−(ζ )

is defined on S0μ(Cn). In addition, by (d) of Theorem3.1.3, if B is bounded, then

‖b‖∞ �
√
2 secμ‖B‖∞.

Let
H∞(S0μ(Cn)) = H∞(S0μ(Cn),C(M))

be the Banach space of bounded Clifford-valued holomorphic functions on S0μ(Cn).
We have the following result.

Theorem 3.1.4 The mapping B → b defined above is a one-one bounded algebra
homomorphism from H∞(S0μ(C)) to H∞(S0μ(Cn)).
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Proof We only need to prove the mapping is one-one. In fact, this point can be
deduced from the following formula, and the reverse result from b to B still holds:

B(λ) = 2

σn−1

∫
|ξ |=1

b(λξ)χ±(ξ)dξ, λ ∈ S0μ,±(C),

where σn−1 is the volume of the unit (n − 1)-sphere in Rn . �
So far we have considered Clifford-valued holomorphic functions of n complex

variables.What is called Clifford analysis is the study of monogenic functions of n +
1 real variables. In the next section, we will relate these two concepts via the Fourier
transform. We need to introduce the following generalized exponential function:

e(x, ζ ) = e(x + xLeL , ζ )

= ei〈x, ζ 〉e(xLeL , ζ )

= ei〈x, ζ 〉(e−xL |ζ |Cχ+(ζ ) + exL |ζ |Cχ−(ζ )).

For any x = x + xLeL ∈ R
n+1, this function is holomorphic on ζ ∈ C

n and is a
left-monogenic function of x ∈ R

n+1 for any ζ ∈ C
n . This function satisfies

{
e(x, ζ )e(y, ζ ) = e(x + y, ζ ),

e(x,−ζ ) = e(−x, ζ ).

Specially, when x ∈ R
n and ξ ∈ R

n , e(x, ξ) = ei〈x, ξ〉, i.e., the usual exponential
function in the Fourier theory. Moreover, for any ζ ∈ C

n , e(x, ζ )eL is also a right-
monogenic function of x ∈ R

n+1. We point out that

e(x, ζ ) = exp i(〈x, ζ 〉 − xLζeL) =
∑
k=0

1

k! (i(〈x, ζ 〉 − xLζeL))
k .

3.2 Monogenic Functions on Sectors

On the Lipschitz surface, to establish the relation between holomorphic multipliers
and the functional calculus of Dirac operator, Li, McIntosh, Qian [1] introduced the
monogenic functions on sectors. In this section, we will give a detailed statement for
the function classes K (SNμ

), K (C+
Nμ

) and K (C−
Nμ

) which will be used in Sect. 3.3
and Chap.5 below.

We start by specifying some sets of unit vectors in

R
n+1
+ = {

x = x + xLeL ∈ R
n+1 : xL > 0

}
.

For these unit vectors, we use the metric ∠(n, y) = cos−1〈n, y〉.
Let N be a compact set of unit vectors in Rn+1

+ which contains eL and let
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μN = sup
n∈N

∠(n, eL).

Then 0 � μN < π/2. For 0 < μ < π/2 − μN , define the open neighborhood Nμ of
N in the unit sphere by

Nμ = {
y ∈ R

n+1
+ : |y| = 1, ∠(y, n) < μ for some n ∈ N

}
.

For every unit vector n, let C+
n be the open half space

C+
n = {

x ∈ R
n+1 : 〈x, n〉 > 0

}
,

and define the open cones in Rn+1 as follows. Let

⎧⎨
⎩

C+
Nμ

= ⋃{C+
n : n ∈ Nμ},

C−
Nμ

= −C+
Nμ

,

SNμ
= C+

Nμ
∩ C−

Nμ
.

Definition 3.2.1 K (C+
Nμ

) is defined as the Banach space of all right monogenic

functions � from C+
Nμ

to C(M) satisfying

‖�‖K (C+
Nμ

) = 1

2
σn sup

x∈C+
Nμ

|x |n|�(x)| < ∞.

Similarly, we can define K (C−
Nμ

).

Definition 3.2.2 Define K (SNμ
) as the Banach space of all function pairs (�,�),

where � is a right-monogenic function from SNμ
to C(M), and � is continuous on

(0,+∞)eL such that (�,�) satisfies

�(ReL) − �(reL) =
∫
r�|x |�R

�(x)dxeL ,

and

‖(�,�)‖K (SNμ ) = 1

2
σ sup

x∈SNμ

|x |n|�(x)| + sup
r>0

|�(reL)| < +∞.

Notice that � is determined by � up to an additive constant, and

�′(reL) =
∫

|x |=r
�(x)dxeL .

In addition, � has a unique and continuous extension to the cone
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TNμ
=
{
y = y + yLeL ∈ R

n+1
+ : y⊥ ⊂ SNμ

}
.

This extension satisfies

�(y) − �(z) =
∫
A(y,z)

f (x)n(x)dSx ,

where A(y, z) is a smoothly oriented n-manifold in SNμ
jointing the (m − 1)-sphere

Sy = {
x ∈ R

n+1 : 〈x, y〉 = 0 and |x | = |y|}

to the (n − 1)-sphere Sx , in which case, for all y ∈ TNμ
,

|�(y)| � ‖(�,�)‖K (SNμ ).

If N is rotationally symmetric, i.e.,

N = {
n = n + nLeL ∈ R

n+1
+ : |n| = 1, nL � |n| cot ω} ,

we use the symbol

T 0
μ = TNμ−ω

=
{
y = y + yLeL ∈ R

n+1 : yL > |x | cotμ
}

.

Now we state the relationship between these spaces. Here Hy,± denote the hemi-
spheres

Hy,± = {
x ∈ R

n+1 : ±〈x, y〉 � 0 and |x | = |y|} .

with the boundaries Sy .

Theorem 3.2.1 (i) Let �± ∈ K (C±
Nμ

). Define the function �± on TNμ
as

�±(y) = ±
∫
Hy,±

�±(x)n(x)dSx , y ∈ TNμ
,

where n(x) = x/|x | is the normal to the hemisphere Hy,±. Then

(�,�) = (�+ + �−, �+ + �−) ∈ K (SNμ
)

and
‖(�,�)‖K (SNμ ) � ‖�+‖K (C+

Nμ
) + ‖�−‖K (C−

Nμ
).

(ii) Conversely, assume that (�,�) ∈ K (SNμ
). There exists unique functions

�± ∈ K (C±
Nμ

) satisfying � = �+ + �− and � = �+ + �−. For all n ∈ Nμ and

x ∈ C±
n ⊂ C±

Nμ
,
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�±(x) = ± lim
ε→0

⎛
⎜⎝

∫
〈y,n〉=0, |y|�ε

�(y)n(x)E(x − y)dSy + �(εeL)k(x)

⎞
⎟⎠ ,

where E(x) = x/σ |x |n+1, and (�,�) satisfies

‖�±‖K (C±
Nμ

) � c‖(�,�)‖K (SNμ ),

where c only depends on μN , μ and the dimension n.

Proof (i) In order to prove

�±(y) − �±(z) =
∫

A(y,z)

�±(x)n(x)dSx ,

we apply Cauchy’s theorem to the right monogenic functions �±. The bound is
straightforward.

(ii) This is a direct corollary of the results of [4]. In other words, there exists a
natural isomorphism:

K (SNμ
) � K (C+

Nμ
) ⊕ K (C−

Nμ
).

We also need the closed linear subspaces M(C±
Nμ

) of K (C±
Nμ

). The functions in

M(C±
Nμ

) are both left monogenic and right monogenic. The subspaces M(SNμ
) of

K (SNμ
) satisfying

M(SNμ
) � M(C+

Nμ
) ⊕ M(C−

Nμ
)

are

M(SNμ
) = {

(�,�) ∈ K (SNμ
) : � is left monogenic and satisfies (3.3)

}
,

where for r > 0,

∫
|y|=r

〈y, x〉r−1(eL�(y)y − y�(yeL))dSy + x�(reL) − eL�(reL)xeL = 0. (3.3)

It is easy to see that

(i) the value of the integral is independent of r ,
(ii) if � ∈ M(C±

Nμ
), the integral equals to 0.

We only need to prove that when (�,�) ∈ M(SNμ
), the function �± defined in (ii)

of Theorem3.2.1 is left monogenic. We omit the details and refer to [4]. �
Now we consider convolutions. Assume that � ∈ K (C+

Nμ
), � ∈ M(C+

Nμ
) and

x ∈ C+
n ⊂ C+

Nμ
. Define (� ∗ �) as
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(� ∗ �)(x) =
∫

〈y,n〉=δ

�(x − y)n(y)�(y)dSy

=
∫

〈y, n〉=0, |y|�ε

�(x − y)n(y)�(y)dSy + �(εeL)�(x),

where 0 < δ < 〈x, n〉. By Cauchy’s theorem and the assumptions that � is right
monogenic and � is left monogenic, we can deduce that the integral is independent
of the choice of the surfaces. On the other hand, because � is right monogenic,
� ∗ � is right monogenic. In fact, we can see from the following Theorem3.3.1 that
for all ν < μ,

‖� ∗ �‖K (C+
Nν

) � cν,μ‖�‖K (C+
Nμ

)‖�‖K (C+
Nμ

).

Moreover, if �1 ∈ M(C+
Nμ

), then � ∗ �1 is both left monogenic and right mono-
genic, and

� ∗ (� ∗ �1) = (� ∗ �) ∗ �1.

For the functions defined on C−
Nμ
, we have a similar result.

If (�,�) ∈ K (SNμ
) and (�,�) ∈ M(SNμ

), define

(�,�) ∗ (�,�) ∈ M(SNμ
) = (�+ ∗ �+ + �− ∗ �−, �+ ∗ �+ + �− ∗ �−).

Hence we can get for all ν < μ,

‖(�,�) ∗ (�,�)‖K (S0ν,+) � Cν,μ‖(�,�)‖K (S0μ,+)‖(�,�)‖K (S0μ,+).

Let K+
N be the linear space of all functions � on Rn \ {0} which can be extended

monogenically to � ∈ K (C+
Nμ

) for some μ > 0. Similarly, we define K−
N , KN , M

+
N ,

M−
N and MN , such that

KN � K+
N ⊕ K−

N

and
MN � M+

N ⊕ M−
N ,

while MN , M
+
N and M−

N are all convolution algebras. The functions which belong to
both K+

N and K−
N are of the form �(x) = ck(x) for some c ∈ C(M), where

E(x) = 1

σn

−x

|x |n+1
, x ∈ R

n \ {0},

with the monogenic extension

k(x) = 1

σn

x

|x |n+1
.
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The embedding of K+
N into KN is defined as ck ∈ K+

N → (ck, c/2) ∈ KN , while
the embedding K−

N in KN is defined as ck ∈ K−
N → (ck, −c/2) ∈ KN .

3.3 Fourier Transforms on the Sectors

The section is devoted to the Fourier transform F±(�) of the function � ∈ K±
N and

the Fourier transform F (�,�) of (�,�) introduced by Li, McIntosh, Qian [1].
We will prove these transforms are bounded holomorphic functions defined on the
cones in Cm . We also prove that F+, F− and F are algebra homomorphism from the
convolution algebras M+

N , M
−
N and MN to holomorphic functions.

We first associate with every unit vector n = n + nLeL ∈ R
n+1 satisfying nL > 0,

a real n-dimensional surface n(Cm) in Cn , defined as follows.

n(Cn) =
{
ζ = ξ + iη ∈ C

n : ξ �= 0 and nLη = (n2L |ξ |2 + 〈x, n〉2)1/2n
}

=
{
ζ = ξ + iη ∈ C

n : |ζ |2
C

/∈ (−∞, 0] and nLη = Re(|ζ |C)n
}

=
{
ζ = ξ + iη ∈ C

n : |ζ |2
C

/∈ (−∞, 0] for some κ > 0, η + Re(|ζ |C)eL = κn
}
,

where

|ζ |2
C

=
n∑
j=1

ζ 2
j = |ξ |2 − |η|2 + 2i〈x, η〉.

The surfaces associated with distinct unit vectors are disjoint. In particular,
eL(Cn) = R

n \ {0}. On these surfaces, |ξ |, |ζ |, Re(|ζ |C) and ||ζ |C| are all equiv-
alent. In fact, by Theorem3.1.3,

Re|ζ |C � |ξ | � (nL)
−1Re|ζ |C,

and for all ζ ∈ n(Cn),

Re|ζ |C � ||ζ |C| � (nL)
−1Re|ζ |C � |ζ | � (nL)

−1(1 + |n|2)1/2Re|ζ |C.

Further, the parametrization used in the first definition of n(Cn) is smooth, with

∣∣∣∣det
(

∂ζ j

∂ξk

)∣∣∣∣ � 1

nL
, ξ �= 0.

To prove this, without loss of generality, we can assume that n = n1e1 + nLeL . So

ζ = ξ + i
n1

nL
(|ξ |2n2L + ξ 2

1 n
2
1)

1/2e1.
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Then if j � 2, ∂ζ j/∂ξk = δ jk and

∂ζ1

∂ξk
= δ1k + in1ξk(n2L + δ1kn

2
1)

nL(|ξ |2n2L + ξ 2
1 n

2
1)

1/2
.

Hence when k � 2, ∣∣∣∂ζ1

∂ξ1

∣∣∣ � 1

nL
and

∣∣∣∂ζ1

∂ξk

∣∣∣ � n1.

The estimate for the Jacobian follows.
For the open set Nμ of the unit vectors defined above, we define the open cones

Nμ(Cn) in Cn as follows:

Nμ(Cn) =
⋃
n∈Nμ

n(Cn)

=
{
ζ = ξ + iη ∈ C

n : |ζ |2
C

/∈ (−∞, 0] for some κ > 0 and n ∈ Nμ,

η + Re(|ζ |C)eL = κn
}
.

Because Nμ(Cn) ⊂ S0μN+μ(Cn), the estimates of Theorem3.1.3 all hold, where θ =
μN + μ.

When N is rotationally symmetric, namely

N =
{
n = n + nLeL ∈ R

n+1
+ : |n| = 1, nL � |n| cotw

}
,

we have S0μ(Cn) = Nμ−w(Cn). We let the functions take their values in the complex
Clifford algebra C(M), so for example H∞(Nμ(Cn)) denotes the Banach space of all
bounded holomorphic functions from Nμ(Cn) to C(M) with the norm defined as

‖b‖∞ = sup
{
|b(ζ )| : ζ ∈ Nμ(Cn)

}
.

The exponential functions are defined as

e(x, ζ ) = e+(x, ζ ) + e−(x, ζ ),

where
e+(x, ζ ) = ei〈x, ζ 〉e−xL |ζ |Cχ+(ζ )

and
e−(x, ζ ) = ei〈x, ζ 〉exL |ζ |Cχ−(ζ ).

For fixed ζ , these functions are entire left monogenic functions of x ∈ R
n+1. For

fixed x , these functions are holomorphic functions of ζ ∈ Nμ(Cn) which satisfy
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|e+(x, ζ )| = e−〈x,η〉−xLRe|ζ |C |χ+(ζ )|
� sec(μN + μ)√

2
e−〈x, n〉Re|ζ |C/nL , ζ ∈ n(Cn)

and

|e−(x, ζ )| = e−〈x, η〉+xLRe|ζ |C |χ−(ζ )|
� sec(μN + μ)√

2
e−〈x, n〉Re|ζ |C/nL , ζ ∈ n(Cn).

Let
H±

∞(Nμ(Cn)) =
{
b ∈ H∞(Nμ(Cn)) : bχ± = b

}
.

Then any function b ∈ H∞(Nμ(Cn)) can be uniquely decomposed as

b = b+ + b−, where b± = bχ± ∈ H±
∞(Nμ(Cn)).

H±∞(Nμ(Cn)) is the closed linear subspace of H∞(Nμ(Cn)). Actually, because for
all b ∈ H∞(Nμ(Cn)),

‖bχ±‖∞ �
√
2‖b‖∞‖χ±‖∞ � sec(μN + μ)‖b‖∞,

then
H∞(Nμ(Cn)) = H+

∞(Nμ(Cn)) ⊕ H−
∞(Nμ(Cn)).

We also introduce the subalgebra

A(Nμ(Cn)) =
{
b ∈ H∞(Nμ(Cm)) : ζeLb(ζ ) = b(ζ )ζeL for all ζ

}
.

Similarly, we can define A±(Nμ(Cn)). Notice that if b ∈ A(Nμ(Cn)), then b± =
bχ± ∈ A±(Nμ(Cn)) such that

A(Nμ(Cn)) = A+(Nμ(Cn)) ⊕ A−(Nμ(Cn)).

Particular functions b belonging toA(Nμ(Cn)) are those of the form

b(ζ ) = B(iζeL) = B(|ζ |C)χ+(ζ ) + B(−|ζ |C)χ−(ζ ),

where B∈ H∞(S0μN+μ(C)).All scalar-valuedholomorphic functions inH∞(Nμ(Cn))

belong to A(Nμ(Cn)). One of the simplest examples is rk(ζ ) = iζk/|ζ |C, k =
1, 2, . . . , n.

Let H+
N be the algebra of all functions b onRn \ {0}which can be holomorphically

extended to b ∈ H+∞(Nμ(Cn)) for some μ > 0. Let H−
N denote the algebra of all
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functionsb onRn \ {0}which canbeholomorphically extended tob ∈ H−∞(Nμ(Cn)),
where N = {n ∈ R

n+1 : n ∈ N }. Then H+
N ∩ H−

N = {0}.
Define HN as HN = H+

N + H−
N . Then HN = H+

N ⊕ H−
N . Let A+

N , A−
N and AN

be the spaces of the functions in H+
N , H

−
N and HN satisfying ξeLb(ξ) = b(ξ)ξeL ,

ξ �= 0. Then
A = A+

N ⊕ A−
N .

If we assume that N is connected, these holomorphic extensions are unique. In
fact we assume that the compact set N of unit vectors in R

n+1
+ satisfies a stronger

condition:N are starlike about eL , that is, if n ∈ N and 0 � τ � 1, then

(τn + (1 − τeL))

|τn + (1 − τeL)| ∈ N .

Under this case, the open set Nμ is also starlike about eL and Nμ(Cn) is the connected
open subset in Cn .

Theorem 3.3.1 Let N be a compact set of unit vectors in R
n+1
+ and starlike about

eL . For any (�,�) ∈ KN , there exists a unique function b ∈ HN such that for all u
in the Schwarz space S(Rn), we have the Parseval identity

(2π)−n
∫
Rn

b(ξ)û(−ξ)dξ = lim
α−→0+

∫
Rn

�(x + αeL)eLu(x)dx (3.4)

= lim
ε→0

( ∫
|x |�ε

�(x)eLu(x)dx + �(εeL)u(0)
)
.

Hence beL is the Fourier transform of the distributions of (�,�). We write b =
F (�,�)eL .

The Fourier transform F is linear and satisfies the following properties.

(i) F is one-one from KN to HN . In other words, for any b ∈ HN , there exists
unique functions (�,�) ∈ KN such that b = F (�,�)eL . Actually, if b =
b+ + b− and b± = bχ± ∈ H±

N , then

(�,�) = (�+,�+) + (�−,�−),

where �± = G±(b±eL ) ∈ K±
N . We write (�,�) = G(beL) and call G the

inverse Fourier transform.
(ii) If 0 < ν < μ � π/2 − μN and (�,�) ∈ K (SNμ

), then b+ ∈ H+∞(Nν(C
n)),

b− ∈ H−∞(N ν(C
m)) and

‖b±‖∞ � cν‖(�,�)‖K (SNμ ),

where the constant cν only depends on ν.
(iii) If 0 < ν < μ � π/2 − μN , b+ ∈ H+∞(Nμ(Cn)) andb− ∈ H−∞(Nμ(Cn)), then

(�,�) ∈ K (SNν
) and
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‖(�,�)‖K (SNν ) � cν(‖b+‖∞ + ‖b−‖∞),

where the constant cν depends on ν.
(iv) (�,�) ∈ MN if and only if b ∈ AN .
(v) If (�,�) ∈ KN , (�,�) ∈ MN, b = F (�,�)eL and f = F (�,�)eL , then

b f = F ((�,�) ∗ (�,�))eL .

(vi) The mapping (�,�) �−→ b is an algebra homomorphism from the convolu-
tion algebra MN to the function algebra AN .

(vii) If (�,�), (�,�) ∈ KN , b = F (�,�)eL , f = F (�,�)eL and if f = pb,
where p is a polynomial in n variables with values in C(M), then

� = p
(

− i
∂

∂x1
, . . . ,−i

∂

∂xn

)
�.

(viii) Let 0 < ν < μ � π/2 − μN , s > −n. If b+ (or b−) can be holomorphically
extended to a bounded function for some cs and all ζ ∈ Nμ(Cn) (correspond-
ingly, ζ ∈ Nμ(Cn)), which satisfies |b±(ζ )| � cs |ζ |s , then there exists cs,ν
such that for all x ∈ C+

Nν
,

|�(x)| � cs,ν |x |−n−s;

For all y ∈ TNμ
,

|�(y)| � cs,ν |y|−s .

In particular, when −n < s < 0, we have lim
y→0

�(y) = 0.

Proof Without loss of generality, we only verify (i)-(viii) for the case C+
Nμ
, Nμ(Cn),

K+
N , M+

N , H+∞(Nμ(Cn)), H+
N , A+

N and F+. The case C−
Nμ
, Nμ(Cn), K−

N , M−
N ,

H−∞(Nμ(Cn)), H−
N ,A−

N andF− can be dealt with similarly. In the proof, the constant
c may depend on μN , μ and the dimension n, and may vary from line to line. We
denote by cν a constant if the constant only depends on ν. Let � ∈ K (C+

Nμ
). Either

form of the Parseval identity uniquely determines b on R
n . Because Nμ(Cn) is a

connected open set, Parseval’s identity also determines b on Nμ(Cn).
We construct b as follows. For α > 0, define �α(x) = �(x + αeL), x + αeL ∈

C+
Nμ
. We have

‖�α‖K (C+
Nμ

) = 1

2
σn sup

{
|x |n|�(x + αeL)| : x ∈ C+

Nμ

}

� sup
{
|y|n|�(y)| : y ∈ C+

Nν
+ αeL

}
� ‖�‖K (C+

Nμ
).
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For
ζ ∈ n(Cn) ⊂ Nν(C

n) ⊂ Nμ(Cn), ν < μ,

define

bα(ζ ) =
∫

σ

�α(x)n(x)e+(−x, ζ )dSx ,

where the surface σ is defined as

σ =
{
x ∈ R

n+1 : 〈x, n〉 = −|x | sin(μ − ν)
}
.

Note that the function in the integral is continuous and exponentially decreasing at
infinity. As usual, n(x) denotes the normal of σ and nL(x) > 0. In fact, for x ∈ σ ,

|e+(−x, ζ )| � sec(μN + μ)√
2

e〈x, n〉Re|ζ |C/nL

� sec(μN + μ)√
2

e−|x ||ξ | sin θ ,

where θ = μ − ν.
By this fact and Cauchy’s theorem for monogenic functions, noticing that �α is

right monogenic and e+(−x, ζ ) is left monogenic in x , we can see that the definition
of bα(ζ ) is independent of the choice of the surfaces σ . So bα(ζ ) depends on ζ ∈
Nμ(Cn) holomorphically. Hence for all α, β > 0,

bα(ζ )eα|ζ |C =
∫

σ

�(x + αeL)n(x)e+(−(x + αeL), ζ )dSx

=
∫

σ

�(x + βeL)n(x)e+(−(x + βeL), ζ )dSx

= bβ(ζ )eβ|ζ |C .

Then we define b as the holomorphic function on Nμ(Cn)which satisfies the follow-
ing condition:

b(z) = bα(ζ )eα|ζ |C ∀ α > 0.

We shall prove that for all z ∈ Nμ(Cn),

|bα(ζ )| � cν‖�‖K (C+
Nμ

), (3.5)

where cν is independent of α and

(2π)−n
∫
Rn

bα(ξ)û(−ξ)dξ =
∫
Rn

�(x + αeL)u(x)dx . (3.6)
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As the estimate in (ii), the first form of Parseval’s identity (3.4) can be deduced as a
corollary.

We prove (3.5). Let

ζ ∈ n(Cn) ⊂ Nν(C
n) ⊂ Nμ(Cn)

and θ = μ − ν. Changing the surface in the integral by Cauchy’s theorem, we can
get

bα(ζ ) =
⎛
⎜⎝

∫
σ(0,0,|ζ |−1)

+
∫

τ(θ,|ζ |−1)

+
∫

σ(θ,|ζ |−1,∞)

⎞
⎟⎠�α(x)n(x)e+(−x, ζ )dSx ,

where

σ(θ, r, R) =
{
x ∈ R

n+1 : 〈x, n〉 = |x | sin θ, r � |x | � R
}
,

τ (θ, R) =
{
x ∈ R

n+1 : |x | = R, 0 � 〈x, n〉 � −R sin θ
}
.

We need the following estimates.

(i) For R � |ζ |−1,

∣∣∣
∫

σ(0,0,R)

�α(x)n(x)e+(−x, ζ )dSx
∣∣∣ (3.7)

� c
∣∣∣
∫

σ(0,0,R)

�α(x)n(x)e(−x, ζ )dSx
∣∣∣

� c
∣∣∣
∫

σ(0,0,R)

�α(x)n(x)[e(−x, ζ ) − 1]dSx
∣∣∣+ c

∣∣∣
∫

〈x,n〉�0,|x |=R

�α(x)n(x)dSx
∣∣∣

� c‖�α‖K (C+
Nμ

)

(
sup

{
|∇ye(−y, ζ )| : y ∈ σ(0, 0, R)

} ∫
σ(0,0,R)

|x |1−ndSx + 1
)

� c‖�α‖K (C+
Nμ

)(R|ζ | + 1) � c‖�α‖K (C+
Nμ

).

(ii) R � |ζ |−1,

∣∣∣
∫

τ(θ,R)

�α(x)n(x)e+(−x, ζ )dSx
∣∣∣ � c‖�α‖K (C+

Nμ
)R

−n
∫

τ(θ,R)

e〈x,n〉Re|ζ |C/nL dSx

= c‖�α‖K (C+
Nμ

)

∫
τ(θ,1)

e〈x,n〉R Re|ζ |C/nL dSx (3.8)

= c‖�α‖K (C+
Nμ

)

∫ 0

−θ

eR Re|ζ |C sin�/nL d�
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� c

R|ζ | ‖�α‖K (C+
Nμ

)

� c‖�α‖K (C+
Nμ

).

(iii) R � |ζ |−1,

∣∣∣
∫

σ(θ,R,∞)

�α(x)n(x)e+(−x, ζ )dSx
∣∣∣

� c‖�α‖K (C+
Nμ

)

∫
σ(θ,R,∞)

|x |−ne〈x, n〉Re|ζ |C/nL dSx (3.9)

= c‖�α‖K (C+
Nμ

)

∫ ∞

R
s−1e−s sin θRe|ζ |C/nL dSx

� cν

R|ζ | ‖�α‖K (C+
Nμ

).

In the above estimates (i)–(iii), taking R = |ζ |−1, we can use the representation of b
to obtain (3.5).

Now we prove (3.6). For ζ ∈ R
n , we define bα,N as

bα,N (ξ) =
∫

|x |�N
�α(x)eLe

i〈x, ξ〉dx .

Then it can be deduced from Parseval’s identity that for u ∈ S(Rn),

(2π)−n
∫
Rn

bα,N (ξ)û(−ξ)dξ =
∫

|x |�N
�(x + αeL)u(x)dx .

We will prove

for all ξ ∈ R
n and N > 0, |bα,N (ξ)| � c‖�‖K (C+

Nμ
), (3.10)

for any ξ ∈ R
n, when N → ∞, bα,N (ξ)χ+(ξ) → bα(ξ) (3.11)

and
for any ξ ∈ R

n, when N → ∞, bα,N (ξ)χ−(ξ) → 0α(ξ). (3.12)

Then (3.6) can be deduced from the above estimates and the Lebesgue dominate
convergence theorem.

To prove (3.10) and (3.11), letting n = eL in the definitions of σ , σ(θ, τ, R) and
τ(θ, R), we use the estimates (3.7)–(3.9).

At first, when |ξ |−1 � N , we prove (3.10). Taking 0 < θ < μ and using Cauchy’s
theorem, we have
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bα,N (ξ)χ+(ξ) =
⎛
⎜⎝

∫

σ(0,0,|ξ |−1)

+
∫

τ(θ,|ξ |−1)

+
∫

σ(θ,|ξ |−1,N )

−
∫

τ(θ,N )

⎞
⎟⎠�α(x)n(x)e+(−x, ξ)dSx .

So we can apply (3.7)–(3.9) to prove that bα,N (ξ)χ+(ξ) is uniformly bounded for ξ

and N . On the other hand, similar to the proof of (3.8), we get

|bα,N (ξ)χ−(ξ)| � c

N |ξ | ‖�‖K (C+
Nμ

) � c‖�α‖K (C+
Nμ

).

When |ξ |−1 � N , to prove (3.10), only (3.7) is needed. To prove (3.11), fix ξ ∈
R

m , ξ �= 0, and apply Cauchy’s theorem to write

bα(ξ) − bα,N (ξ)χ+(ξ) =
⎛
⎜⎝
∫

τ(θ,N )

+
∫

σ(θ,N ,∞)

⎞
⎟⎠�α(x)n(x)e+(−x, ξ)dSx .

So, by (3.8) and (3.9), as N → 0,

∣∣∣bα(ξ) − bα,N (ξ)χ+(ξ)

∣∣∣ � c

N |ξ | ‖�α‖K (C+
Nμ

) → 0.

Moreover, (3.12) follows from the estimate given above.
As noted previously, the first version of Parseval’s identity (3.4) holds. The next

aim is to prove the second version of (3.4). Let ε > 0. Then

(2π)−n
∫
Rn

b(ξ)û(−ξ)dξ = lim
α→0+

⎛
⎜⎝
∫

|x |�ε

�α(x + αeL )eLu(x)dx +
∫

|x |�ε

�α(x + αeL )eLu(0)dx

+
∫

|x |�ε

�α(x + αeL )eL (u(x) − u(0))dx

⎞
⎟⎠

=
∫

|x |�ε

�(x)eLu(x)dx + �(ε)u(0)

+ lim
α→0+

⎛
⎜⎝
∫

|x |�ε

�α(x + αeL )eL (u(x) − u(0))dx

⎞
⎟⎠ ,

where in the second integral we have used Cauchy’s theorem.
Now when u ∈ S(Rn),
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lim
ε→0

lim
α→0+

⎛
⎜⎝
∫

|x |�ε

∣∣∣�(x + αeL)eL(u(x) − u(0))
∣∣∣dx

⎞
⎟⎠

� lim
ε→0

lim
α→0+

⎛
⎜⎝C

∫
|x |�ε

|x + αeL |−n|u(x) − u(0)|dx
⎞
⎟⎠

� lim
ε→0

⎛
⎜⎝C

∫
|x |�ε

|x |−n|u(x) − u(0)|dx
⎞
⎟⎠ = 0,

so

(2π)−n
∫
Rn

b(ξ)û(−ξ)dξ = lim
ε0

⎛
⎜⎝
∫

|x |�ε

�(x)eLu(x)dx + �(ε)u(0)

⎞
⎟⎠ .

This gives (ii).
We prove (i) and (iii). It is easy to verify that F+ is one-one. By constructing the

inverse Fourier transform G+, we prove the mapping is onto H+
N .

Consider the function b ∈ H+∞(Nμ(Cn)). For n ∈ Nμ and

x = x + xLeL ∈ C+
n ⊂ C+

Nμ
,

define

�n(x) = (2π)−n
∫

n(Cn)

b(ζ )e(x, ζ )dζ1 ∧ dζ2 ∧ · · · ∧ dζneL

= (2π)−n
∫

n(Cn)

b(ζ )e+(x, ζ )dζ1 ∧ dζ2 ∧ · · · ∧ dζneL ,

where in the last equality we have used the facts that e(x, ζ ) = e+(x, ζ ) + e−(x, ζ )

and 〈b(ζ ), e−(x, ζ )〉 = 0 for b ∈ H+∞(Nμ(Cn)). On the surface n(Cn), the function
in the integral is exponentially decreasing at infinity. In fact, when ζ ∈ n(Cn), then

|ei〈x,ζ 〉e−xL |ζ |C | � ce−〈x,n〉Re|ζ |C/nL

and 〈x, n〉 > 0. Moreover, e(x, ζ )eL is right monogenic and�n is a right monogenic
function on C+

n satisfying

|�n(x)| � c‖b‖∞
〈x, n〉n ,

where c only depends on μN and μ.
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Moreover the integrand depends holomorphically on the single complex variable
z = 〈ζ, n〉. So by the starlike nature of Nμ and Cauchy’s theorem in the z-plane,
we find that for all x ∈ C+

n satisfying xL > 0, �n(x) = �eL (x). Hence there exists
unique right monogenic function � on C+

Nμ
which coincides with �n(x) on C+

n . We
call � the Fourier transform of beL and denote � = G+(beL). The above estimates
for �n indicate that for all ν < μ, � ∈ K (C+

Nν
) and

‖�‖K (C+
Nν

) � cν‖b‖∞.

For the special case xL = 0 and all ζ ∈ Nμ(Cn),

|b(ζ )| � c

1 + |ζ |n+1
.

Then by Cauchy’s theorem, we can change the surface of integration to obtain

G+(beL)(x) = �(x) = (2π)−n
∫
Rn

b(ξ)ei〈x, ξ〉dξeL = b̌(x)eL ,

which is the usual inverse Fourier transform of beL .
We prove that b and� = G+(beL) satisfy Parseval’s identity (3.4). Hence we can

deduce that G+ is the inverse of the Fourier transform F+, and complete the proofs
of (i) and (iii).

For α > 0, let bα(ζ ) = b(ζ )e−α|ζ |C . Then for x ∈ R
n ,

�(x + αeL) = G+(beL)(x + αeL) = G+(bαeL)(x) = (bα)̌(x)eL .

By the usual Parseval’s identity, we can obtain

(2π)−n
∫
Rn

bα(ξ)û(−ξ)dξ =
∫
Rn

�(x + αeL)eLu(x)dx,

and for all u ∈ S(Rn),

(2π)−n
∫
Rn

b(ξ)û(−ξ)dξ = lim
α→0+

∫
Rn

�(x + αeL)eLu(x)dx .

Now we prove (iv). Take � ∈ K (C+
Nμ

). Then � is left monogenic (and is also

right monogenic) if and only if for all x ∈ C+
Nμ
,

DeL�(x) = (�eL)D(x),

where the both sides all equal to −∂�/∂xL(x).
Let beL = F+(�) and define bα as above. Using twice Parseval’s identity for bα ,

we can see that for all u ∈ S(Rn),
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(2π)−n
∫
Rn

ξeLbα(ξ)û(−ξ)dξ = −i
∫
Rn

(DeL�)(x + αeL)eLu(x)dx

and

(2π)−n
∫
Rn

bα(ξ)ξeL û(−ξ)dξ = −i
∫
Rn

(�eL D)(x + αeL)eLu(x)dx .

Hence � ∈ M(C+
Nμ

) if and only if for all u ∈ S(Rn), DeL�(x) = (�eL)D(x). So
the above equality holds if and only if

DeL�(x + αeL) = (�eL)D(x + αeL) for all x ∈ R
n \ {0}.

The above equality is equivalent to ξeLbα(ξ) = bα(ξ)ξeL . This equation is equivalent
to ζeLb(ζ ) = b(ζ )ζeL for all z ∈ Nμ(Cn). This proves (iv).

The remaining part can be proved in a similar way with the estimates in (viii)
requiring a modification of the proof of (iii). �

Denote by G− : H−
N → K−

N the inverse of F−. We call F− the Fourier transform
and G− the inverse Fourier transform.

Remark 3.3.1 When N = N , b+ ∈ H+∞(Nμ(Cn)) and b− ∈ H−∞(Nμ(Cn)) if and
only if

b ∈ H∞(Nμ(Cn)).

Let B ∈ H∞(S0μ(C)), where 0 < μ < π/2. We have seen that B is associated
with the function b ∈ H∞(S0μ(Cn)) defined as

b(ζ ) = B(iζeL) = B(|ζ |C)χ+(ζ ) + B(−|ζ |C)χ−(ζ ).

In fact,

b ∈ A(S0μ(Cn)) =
{
b ∈ H∞(S0μ(Cn)) : ζeLb(ζ ) = b(ζ )ζeL for all ζ

}
,

and the mapping B �−→ b is a one-one algebra homomorphism from H∞(S0μ(C))

toA(S0μ(Cn)). Recall that

C0
μ,+(C) =

{
Z = X + iY ∈ C : Z �= 0,Y > −|X | tanμ

}
,

C0
μ,−(C) = −C0

μ,+(C),

S0μ,+(C) =
{
λ ∈ C : λ �= 0, | arg(λ)| < μ

}
,

S0μ,−(C) = −S0μ,+(C),
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C0
μ,+ =

{
x = x + xLeL ∈ R

n+1 : xL > −|x | tanμ
}
,

C0
μ,− = −C0

μ,+, S0μ = C0
μ,+ ∩ C0

μ,−,

T 0
μ =

{
y = y + yLeL ∈ R

n+1 : yL > |y| cotμ
}
,

S0μ(Cn) =
{
ζ = ξ + iη ∈ C

n : |ζ |2
C

/∈ (−∞, 0] and |η| < Re(|ζ |C) tanμ
}
.

We find the inverse Fourier transform of b in terms of the inverse Fourier trans-
form of B. We first assume that B ∈ H∞(S0μ,+(C)). In this case, the inverse Fourier
transform of B, � = G(B), is a complex-valued holomorphic function defined on
C0

μ,+(C). Specially, when Im(Z) > 0,

�(Z) = 1

2π

∫ ∞

0
B(r)eir Zdr.

When xL > 0,

�(x) = 1

(2π)n

∫
Rn

B(|ξ |)e+(x, ξ)dξeL

= 1

2(2π)n

∫
Rn

(eL + iξ

|ξ | )B(|ξ |)e−xL |ξ |ei〈x, ξ〉dξ

= 1

2(2π)n

∫
Sm−1

(eL + iτ)

∫ ∞

0
B(r)e−xLr ei〈x, τ 〉r rn−1drdSτ (3.13)

= 1

2(2π i)n−1

∫
Sn−1

(eL + iτ)�(n−1)(〈x, τ 〉 + i xL)dSτ

= 1

2(2π i)n−1

∫
Sn−1

(eL + i〈x, τ 〉x |x |−2)�(n−1)(〈x, τ 〉 + i xL)dSτ

= σn−2

2(2π i)n−1

∫ 1

−1
(1 − t2)(n−3)/2

(
eL + i t x

|x |
)
�(n−1)(|x |t + i xL)dt,

where �(n−1) is the (n − 2)th derivative of �. On C0
μ,+, � extends to a left and right

monogenic function. For all ν < μ, this function belongs to M(C0
ν,+).

For B ∈ H∞(S0μ,−(C)), � = G(B) and

b(ζ ) = B(iζeL) = B(−|ζ |C)χ−(ζ ).

Then b ∈ H−∞(S0μ(Cn)). Hence we can construct � = G−(beL). We see that if
xL < 0,
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�(x) = 1

(2π)n

∫
Rm

B(−|ξ |)e−(x, ξ)dξeL

= 1

2(2π)n

∫
Rn

(eL − iξ

|ξ | )B(−|ξ |)e−xL |ξ |ei〈x, ξ〉dξ

= 1

2(2π)n

∫
Sn−1

(eL − iτ)

∫ +∞

0
B(−r)exLr ei〈x, τ 〉r rn−1drdSτ

= (−1)n−1

2(2π)n

∫
Sn−1

(eL + iτ)

∫ 0

−∞
B(−r)e−xLr ei〈x, τ 〉r rn−1drdSτ

= 1

2(−2π i)n−1

∫
Sn−1

(eL + iτ)�(n−1)(〈x, τ 〉 + i xL)dSτ

= σn−2

2(−2π i)n−1

∫ 1

−1
(1 − t2)(n−3)/2

[
eL + i t x

|x |
]

�(n−1)(|x |t + i xL)dt.

When B∈H∞(S0μ(C)),write B= B+ + B−,where B+ = BχRe>0∈H∞(S0μ,+(C))

and B− = BχRe<0 ∈ H∞(S0μ,−(C)). Then b = b+ + b−, where b± is the function
with respect to B±. We can use this decomposition to relate the inverse Fourier trans-
form G(beL) = (�, �) of beL to the inverse Fourier transform G(B) = (�, �1)

of B.
In the end of this section, we give two examples to make the reader to understand

the relation between (�(z), �1(z)) and (b, B), and between (�(z), �1(z)) and
(�(x),�(y)), see [1] for more examples.

Example 3.3.1 As usual,

E(x) = 1

σn

x

|x |n+1
.

(i) (�(z), �1(z)) = (0, 1), B(λ) = 1, b(ζ ) = 1;
(ii) (�(z), �1(z)) = ( i

2π z ,
1
2 ), B(λ) = χRe>0, b(ζ ) = χ+(ζ );

(iii) (�(z), �1(z)) = ( i
2π z ,

1
2 ), B(λ) = χRe<0, b(ζ ) = χ−(ζ );

(iv) (�(z), �1(z)) = ( i
π z , 0), B(λ) = sgn(λ), b(ζ ) = iζeL

|ζ |C ;

The above example describes the relation between the function pair (�(z), �1(z))
and the function pair (�(x),�(y)).

Example 3.3.2 (i) Let (�(z), �1(z)) =
(

1
(z+i t) ,−iπ + log( z+i t

z−i t )
)
(t > 0). Then

(�(x),�(y)) = (k(x + teL), �(y)), lim
y→0

�(y) = 0.

(ii) Let (�(z), �1(z)) = t
2π

(
−1

(z+i t)2 ,
2z

z2+t2

)
(t > 0). Then

(�(x),�(y)) =
(

− t
∂k

∂t
(x + teL), φ(y)

)
, lim
y→0

�(y) = 0.
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(iii) Let (�(z), �1(z)) = �(1 + is)
(

i
2π e

−πs/2z−1−is, (πs)−1 sinh(πs/2)z−is
)
.

Then

(�(x),�(y)) =
( −1

�(1 − is)

∫ ∞

0
t−is ∂k

∂t
(x + teL)dt, �s(y)

)
,

where the function �s is represented as

�s(rn) = r−is

�(1 − is)

∫ ∞

0
t is−1F(n, nL , τ )dτeLn,

where r > 0, |n| = 1, and F is real-valued and satisfies

|F(n, nL , t)| � c(n, nL)
tn

(1 + t)n+1
.

In particular, if n = eL , then

�s(reL) = σn−1r−is

�(1 − is)

∫ ∞

0

tn+is−1

(1 + t2)(n+1)/2
dt, r > 0.

(To prove this, first show that the function � in the preceding row has the form
�(rn) = F(n, nL , r/t)eLn.)

The functions �1 and � are really only of interest near zero, and when they tend
to 0, these functions do not enter into Parseval’s identity or the convolution formulae.
It has been proved in Chap.1 that if |B(λ)| � cs |λ|s holds for all λ ∈ S0μ,+(C) and
some s < 0, then when z → 0 (z ∈ Sν,+(C), ν < μ), �1(z) → 0, and for all ζ ∈
S0μ(C), |b(ζ )| � cs |ζ |s . Hence by (viii) of Theorem3.3.1, we conclude that y → 0
(y ∈ T 0

ν , ν < μ),�(y) → 0. Therefore for |B(λ)| � cs |λ|s, s < 0, there is no need
to find �1 and �.

Let us turn our attention to the function B = B+ = BχRe>0, and substitute the
corresponding values of � and � in (3.13). Using the fact that

(eL + iτ)(a + ib)k = (eL + iτ)(a − beLτ)k

for τ ∈ S
n−1 and a, b ∈ R, we obtain

x

σn|x |n+1
= 1

2(2π i)n−1

∫
Sn−1

(eL + iτ)
i

2π

(−1)n−1(n − 1)!
(〈x, τ 〉 + i xL)n

dSτ

= (n − 1)!
2

( i

2π

)n ∫
Sn−1

(eL + iτ)(〈x, τ 〉 − xLeLτ)−ndSτ ,
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where xL > 0. If we take the real part of the right hand side, the above result is the
plane wave decomposition of the Cauchy kernel obtained by Sommen in [5]. For the
function B = χRe<0, we obtain

x

σn|x |n+1
= −(n − 1)!

2

(−i

2π

)n ∫
Sn−1

(eL + iτ)(〈x, τ 〉 − xLeLτ)−ndSτ ,

where xL > 0. This coincides with Sommen’s formula, see Ryan [6] for the details.

3.4 Möbius Covariance of Iterated Dirac Operators

In this section, we deduce the fundamental solutions of Dirac operators

Dl =
n∑

i=1

ei
∂

∂xi

and

Dl =
( ∂

∂x0
+ D

)l

in the setting of Clifford algebras. In [2], Peeter and Qian obtained the Möbius
covariance of iterated Dirac operators.

For α > 0, define the operator D−α as

D−α f (x) = cn

∫
Rn

e−i〈x, ξ〉(iξ)−α f̂ (ξ)dξ,

where (iξ)−α is defined by

(iξ)−α = |ξ |−αχ+(ξ) + (−|ξ |)−αχ−(ξ)

and

χ±(ξ) = 1

2

(
1 ± iξ/|ξ |

)
.

Hence if α = l is a positive integer, we have

(iξ)−l =
{
1/|ξ |l, if l is even,
iξ/|ξ |l+1, if l odd .

Therefore



3.4 Möbius Covariance of Iterated Dirac Operators 95

D−α f (x) = cn
2

[ ∫
Rn

e−i〈x, ξ 〉|ξ |−α f̂ (ξ)dξ + D
∫
Rn

e−i〈x, ξ〉|ξ |−α−1 f̂ (ξ)dξ

+
∫
Rn

e−i〈x, ξ〉(−|ξ |)−α f̂ (ξ)dξ + D
∫
Rn

e−i〈x, ξ〉(−|ξ |)−α−1 f̂ (ξ)dξ
]
.

If 0 < α, α + 1 < n, by the formula

(
1

|ξ |β
)∨

= cn,β

1

|x |n−β
,

we can deduce
D−α f (x) = Kn,α ∗ f (x),

where

Kn,α(x) = cn,α(1 + e−iαπ )
1

|x |n−α
+ dn,α(1 − e−iαπ )D

(
1

|x |n−α−1

)
.

For general α > 0, by the same method, we can get

Kn,α(x) = cn,α(1 + e−iαπ )Gn,α(x) + dn,α(1 − e−iαπ )DGn,α+1(x),

where Gn,β is the fundamental solution of the operator |D|β with the symbol |ξ |β .
Then for odd n,

Kn,l(x) =
{
cn,l

x
|x |n−l+1 , if l is odd;

cn,l
1

|x |n−l , if l is even.
(3.14)

For the even n,

Kn,l(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cn,l
x

|x |n−l+1 , if l is odd and l < n;
cn,l

1
|x |n−l , if l is odd and l < n;

(cn,l log |x | + dn,l)
x

|x |n−l+1 , if l odd and l > n;
(cn,l log |x | + dn,l)

1
|x |n−l , if l is even and l > n;

(3.15)

Now we consider the fundamental solutions of the operators Dl, l ∈ Z+. Write
D0 = ∂

∂x0
. Then

D−l = (D0 + D)−l = (D0 − D)l(D2
0 − D2)−l .

By the Fourier transform, the symbol of (D2
0 − D2)−l is |ξ |−2l . For 0 < 2l < n + 1,

the inverse Fourier transformof |ξ |−2l is cn,l |x |−(n+1−2l). This indicates that the kernel
of the operator D−l is
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Ln,l(x) = cn,l(D0 − D)l
(

1

|x |n+1−2l

)
, 0 < 2l < n + 1.

A direct computation gives

Ln,l(x) = cn,l
xl−1
0 x

|x |n+1
, l ∈ Z+. (3.16)

For any x = x0 + x1e1 + · · · + xnen , we write x = x0 + x and x = x1e1 + · · · +
xnen ∈ R

n . We define two elementary operations

(ei1 · · · eil )∗ =: eil · · · ei1 ,

(ei1 · · · eil )′ = (−1)l(ei1 · · · eil ).

Let �n be the multiplicative group of all elements in the Clifford algebra which
can be written as products of non-zero vectors in R

n . For any a, b ∈ �n ∪ {0},
aa = |a|2 and |ab| = |a| · |b|. If a ∈ �n , then a = ∏M(a)

j=1 a j , where a j ∈ R
n . Gen-

erally speaking, such a representation and M(a) are not unique. Denote by m(a) the
minimum of M(a) over all such representations. If a ∈ R \ {0}, we set m(a) = 0.
Hence, m(x) = 1, and for a ∈ �n , aa∗ = a∗a = (−1)m(a)|a|2. We call a group to be
a Möbius group if this group consists of orientation preserving transforms acting in
the Euclidean spaces. All Möbius transforms from R

n ∪ {∞} to R
n ∪ {∞} can be

represented as
φ(x) = (ax + b)(cx + d)−1,

where a, b, c, d ∈ � ∪ {0} and

ad∗ − bc∗ ∈ R \ {0}, a∗c, cd∗, d∗b, ba∗ ∈ R
n.

In addition, under 2 × 2 block matrix multiplication, the identification between the

φ’s and Clifford matrices

(
a b
c d

)
gives a homomorphism. For simplicity, we take

ad∗ − bc∗ = 1 to normalize the Möbius transform. We consider the following mul-
tipliers:

Tl(φ) f (x) = Jl,φ · f (φ(x)),

where for l ∈ Z,

Jl,φ(x) =
{

(cx+d)∗
|cx+d|n−l+1 , l is odd ,

1
|cx+d|n−l , l is even.

(3.17)

We will use the closed relation between Kn,l , Dl and the conformal weights Jl,φ
to prove the following result.
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Theorem 3.4.1 For l ∈ Z+, the iterated Dirac operator Dl intertwines the repre-
sentations Tl , T−l of the Möbius transform group, that is, for c �= 0,

Dl(Tl f ) =
{

(−1)m(c)+1T−l(Dl f ), l is odd;
T−l(Dl f ), l is even.

(3.18)

If c = 0, then d �= 0 and the factor (−1)m(c)+1 in the last formula should be replaced
by (−1)m(d).

Proof We only prove the case c �= 0. The case c = 0 can be dealt with similarly and
is easier, so we omit the proof. We only need to prove

(Tl f ) =
{

(−1)m(c)+1D−l T−l(D
l f ), l is odd;

D−l T−l(D
l f ), l is even.

(3.19)

At first, we assume that n is odd or n is even and l < n. Denote byψ the inverse ofφ. If
y = φ(x) = (ax + b)(cx + d)−1 ∈ R

n , then y(cx + d) = ax + b. Hence we have
x = ψ(y) = (yc − a)−1(−yd + b). Let z = z(y) = y − a and A = b − ac−1d. We
can get

x = z−1A − c−1d. (3.20)

On the other hand, because x = x∗, y = y∗, (3.20) is equivalent to

x = A∗(z∗)−1 − d∗(c∗)−1. (3.21)

By the Möbius transform and the formula (3.20), we deduce from c �= 0 that A �= 0
and

D−l (T−l (D
l f ))(ψ(x)) = cn,l

∫
Kn,l (ψ(x) − y) · J−l,φ(y)(Dl f )(φ(y))dy (3.22)

= cn,l

∫
Kn,l (ψ(x) − ψ(y)) · J−l,φ(ψ(y))(Dl f )(y)

∣∣∣∣dψ(y)

dy

∣∣∣∣dy,

where |dψ(y)/dy| is the Jacobian matrix. Noticing that x = ψ(y) is also a Möbius
transform, by the formula (2.4) in [7] and the condition ad∗ − bc∗ = 1, we can obtain
the Jacobian matrix equals to |z(y)|−2n . By equalities (3.15), (3.17) and

ψ(x) − ψ(y) = (z−1(x) − z−1(y))A,

z−1(x) − z−1(y) = −z−1(x)(z(x) − z(y))z−1(y)

z(x) − z(y) = (x − y)c,

we can deduce that (3.22) is equivalent to
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−cn,l
z−1(x)

|z−1(x)|n−l+1

∫
(x − y)

|x − y|n−l+1

c

|c|n−l+1

z−1(y)

|z−1(y)|n−l+1

A

|A|n−l+1

· A∗

|A|n−l+1

(z−1(y))∗

|z−1(y)|n−l+1

c∗

|c|n−l+1
(Dl f )(y)

1

|z(y)|2n d y

= cn,l
1

|A|2n
(−1)m(c)

|c|2n
z−1(x)

|z−1(x)|n−l+1

∫
(x − y)

|x − y|n−l+1
(Dl f )(y)(y)

= 1

|A|2n
(−1)m(c)

|c|2n
z−1(x)

|z−1(x)|n−l+1

∫
Kn,l(x − y)(Dl f )(y)(y)

= 1

|A|2n
(−1)m(c)

|c|2n
z−1(x)

|z−1(x)|n−l+1
f (x),

where in the above estimate we have used m(z−1A) = 1. Replacing x by φ(x) and
noticing that (x + d∗(c∗)−1) = z−1(φ(x))A, we get

D−l(T−l(D
l f ))(x) = (−1)m(c)cA∗

|cA|n+l+1

(cx + d)∗

|cx + d|n−l+1
f (φ(x)).

By bc∗ = ad∗ − 1 and c−1d ∈ R
n , we can deduce that b = −(c∗)−1 + ac−1d and

A = −(c∗)−1, which gives (3.19).
The case for even l can be proved similarly. The only difference is that we should

use the formulas (3.14), (3.15) and (3.17) for the case l even. Now we consider the
case l � n, where n is even. Similar to the case l being odd, it can be deduced from
(3.15) that

D−l(T−l(D
l f ))(ψ(x))

= 1

|A|2n
(−1)m(c)

|c|2n
z−1(x)

|z−1(x)|n−l+1

∫ [
(−cn,l) log |z(x)| + (cn,l log |x − y| + dn,l)

+cn,l log |c| + (−cn,l log |z(y)|)
] x − y

|x − y|n−l+1
(Dl f )(y)dy

=
4∑

i=1

Ii .

When n is even and l is odd satisfying l � n, (x − y)/|x − y|n−l+1 = ±(x −
y)l−n , I1 = I3 = 0. For I2, by the property of fundamental solution, we can deduce

I2 = 1

|A|2n
(−1)m(c)

|c|2n
z−1(x)

|z−1(x)|n−l+1
f (x).

We shall prove I4 = 0. In fact, because
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x − y

|x − y|n−l+1 = ±[(x − ac−1) − (y − ac−1)]l−n =
∑

k+ j=l−n

hk j (x − ac−1)k(y − ac−1) j ,

by integration by parts, we have

I4 = −cn,l

∑
k+ j=n−l

hk j (x − ac−1)k
∫

(log |y − ac−1| + log |c|)(y − ac−1) j (Dl f )((y))dy

= −cn,l

∑
k+ j=n−l

hk j (x − ac−1)k
∫

log |y − ac−1|(y − ac−1) j (Dl f )((y))dy

= −cn,l

∑
k+ j=n−l, j<l−n

hk j (x − ac−1)k
∫

(log |y − ac−1| + log |c|)(y − ac−1) j (Dl f )((y))dy

−cn,l h0,l−n

∫
log |y − ac−1|(y − ac−1)l−n(Dl f )((y))dy

= ±h0,l−n

∫
cn,l(log |y − ac−1| + dn,l)

(y − ac−1)

|y − ac−1|n−l+1 (Dl f )((y))dy

= ±h0,l−n f (ac
−1)

= 0,

where in the last stepwe have used the following fact: the function f ◦ φ is compactly
supported and hence

f (ac−1) = f ◦ φ ◦ ψ(ac−1) = f ◦ φ(∞) = 0.

As above, we still obtain

D−l(T−l(D
l f ))(ψ(x)) = 1

|A|2n
(−1)m(c)

|c|2n
z−1(x)

|z−1(x)|n−l+1
f (x).

Replacing x by φ(x), we get (3.19) for the case l odd and l � n with n even. The
case l even can be obtained similarly. �

Now we consider the following question: for the operator Dl , if we have the
similar conformal covariance. In fact, if we replace R

n in the Möbius transform,
the identification relation and the certain Clifford matrices by R

n
1, respectively, all

conclusions still hold. Now let φ denote a Möbius transform from R
n
1 ∪ {∞} to

R
n
1 ∪ {∞} and let g be a fixed function from R

n
1 ∪ {∞} to Rn

1 ∪ {∞}. Define

g(x) = x∗

|x |n+1
, x = x0 + x .

Define the representations

S1(φ) f (x) := Ln,1((cx + d)∗) f (φ(x))
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and
S−1(φ) f (x) := g(cx + d) f (φ(x)).

We have the following result.

Theorem 3.4.2
D(S1 f ) = S−1(Df ). (3.23)

Proof By the fundamental solution of the operator D and (3.16), replacing x and y
in Theorem3.4.1 by x and y, respectively, we have

D−1(S−1(Df ))(ψ(x)) =
∫

Ln,1(ψ(x) − ψ(y))g(cz−1(y)A)(Df )(y)
1

|z(y)|2(n+1)
dy

= cn,1
−z−1(x)

|z−1(x)|
∫

(x − y)cz−1(y)A

|x − y|n+1|c|n+1|z−1(y)|n+1|A|n+1

× A∗(z−1(y))∗c∗
|A|n+3|z−1(y)|n+3|c|n+3

1

|z(y)|2(n+1)
dy

= −1

|Ac∗|2n+2
−z−1(x)

|z−1(x)|
∫

Ln,1(x − y)(Df )(y)dy

= −1

|Ac∗|2n+2
−z−1(x)

|z−1(x)| f (x).

Replacing x by φ(x) and using Ac∗ = −1, we get (3.23). �

3.5 The Fueter Theorem

In this section, we elaborate Qian’s work on the generalization of Fueter’s mapping
theorem, see [3]. We shall work in R

n+1, the real-linear span of {e0, e1, . . . , en},
where e0 is identical with 1 and ei e j + e j ei = −2δi j .Rn+1 is embedded into Clifford
algebra R

n
1 generated by e1, . . . en . The elements in R

n+1 are represented as x =
x0 + x , where x0 ∈ R and x = x1e1 + · · · + xnen with x j ∈ R. If x �= 0, there exists
an inverse x−1: x−1 = x

|x |2 , where x = x0 − x . We will study the Rn+1-valued and
Clifford-valued functions, and the left and rightmonogeneity introduced by theDirac
operator

D = ∂

∂x0
+ e1

∂

∂x1
+ · · · + en

∂

∂n
.

The Kelvin inversion of a function f is I ( f )(x) = E(x) f (x−1). The symbols Z and
Z

+ denote the sets of all integers and positive integers, respectively.
For a function f on Rn+1, the Fourier transform of f is defined by

F ( f )(ξ) =
∫
Rn+1

e2π i〈x, ξ〉 f (x)dx .
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A useful result associated with Fourier transform is

F
( Pk(·)
| · |k+n+1−α

)
(ξ) = γk,α

Pk(ξ)

|ξ |k+α
, (3.24)

where 0 < α < n + 1, k ∈ Z
+, Pk is the homogeneous harmonic polynomial of

degree k, and

γk,α = i kπ(n+1)/2−α �(k/2 + α/2)

�(k/2 + (n + 1)/2 − α/2)
,

(� denotes the usual Gamma function).
For a function g, the inverse Fourier transform R(g) is defined as

R(g)(x) =
∫
Rn+1

e−2π i〈x, ξ〉g(ξ)dξ.

The Fourier transform of a function in the Schwartz class still belongs to the Schwartz
class. In this case, the Fourier inversion formula holds:RF ( f ) = f . In the sequel, the
Fourier transform and the inverse Fourier transform will be used in the distributional
sense.

For the function g defined onRn+1, we can introduce the Fourier multiplier Mg as
Mg f = R(gF f ). It is easy to prove that the Fourier multiplier induced by−4π2|ξ |2
is identical to the Laplace operator.

Let f 0 be a complex-valued function defined on an open set O in the upper-half
complex plane. Write f 0 = u + iv, where u and v are real-valued. For x ∈ −→

O , set

−→
f 0(x) = u(x0, |x |) + x

|x |v(x0, |x |),

where −→
O =

{
x ∈ R

n+1 : (x0, |x |) ∈ O
}
.

−→
f 0 is called the function induced from f 0, and

−→
O is call the set induced from O .

We shall work with the functions of the form

g(x) = p(x0, |x |) + i
x

|x |q(x0, |x |),

where p and q are real-valued. We call p and q the real part and the imaginary part
of g, respectively.

The concepts of intrinsic functions and intrinsic sets naturally fit to our theory.
On the complex plane C, if an open set is symmetric with respect to the real axis,
then the set is called an intrinsic set. If a function is defined on an intrinsic set and
satisfies f 0(z) = f 0(z) within its domain, then the function is called an intrinsic
function. For f 0 = u + iv, the above condition is equivalent to requiring that u is
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even respect to the second variable, and v is odd respect to the second variable. In
particular, v(x0, 0) = 0, i.e., if the domain f 0 is restricted on the real axis, then f 0

is real-valued.
Denote by τ the mapping

τ( f 0) = �(n−1)/2−→f 0,

where f 0 is any holomorphic intrinsic function and the differential operation is in
the distributional sense. For the sake of convenience, outside the intrinsic set

−→
O , we

take
−→
f 0 = 0.

Note that for odd n ∈ Z
+, the operator�(n−1)/2 is a pointwise differential operator,

while for even n ∈ Z
+, �(n−1)/2 is the Fourier multiplier induced by (2π i |ξ |)n−1

mapping some functions to the distributions. Ifb is a complex-valued function defined
on an intrinsic set, then ⎧⎪⎨

⎪⎩
g0(z) = 1

2

[
b(z) + b(z)

]
,

b0(z) = 1
2i

[
b(z) − b(z)

]

both are intrinsic functions defined on the same set, and b = g0 + ib0.
The above observation enables us to extend the domain of τ to the sets of the

complex-valued functionsb on the intrinsic set. These functionsbmaynot be intrinsic
functions. For such a function b, we define

τ(b) = τ(g0) + iτ(b0).

The mapping τ extended in such a way is linear under addition and real-scalar
multiplication. In the sequel, for the mapping τ , we only need to consider the holo-
morphic intrinsic functions. For intrinsic functions, the coefficients of their Laurent
series expansions in annuli centered at real points in their domains are all real. Hence
we only need to consider the functions τ((·)−k), k ∈ Z. For k ∈ Z

+, define

P (−k) = τ((·)−k), P (k−1) = I (P (−k)).

We have the following result.

Theorem 3.5.1 Let k ∈ Z
+. Then

(i) P (−k) and P (k−1) are monogenic functions;
(ii) P (−k) is homogeneous of degree (n + 1 − k) and P (k−1) is homogeneous of

degree (k − 1);
(iii) If n is odd, then P (k−1) = τ((·)n+k−2).

Proof (i) By the Fourier transform and the following relation:

−−→
(·)−k(x) =

(
x

|x |2
)k

= (−1)k−1

(k − 1)!
(

∂

∂x0

)k−1 ( x

|x |2
)

,
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we get

P (−k)(x) = τ((·)−k)(x) (3.25)

= (−1)k−1

(k − 1)!
(

∂

∂x0

)k−1

RF
(

�(n−1)/2 x

|x |2
)

= (−1)k−1

(k − 1)!
(

∂

∂x0

)k−1

R
(

γ1,n(2π i |ξ |)n−1 ξ

|ξ |n+1

)

= (−1)k−1

(k − 1)!
(

∂

∂x0

)k−1

γ 2
1,n(2π i)

n−1 x

|x |n+1

= (−1)k−1

(k − 1)! κn
(

∂

∂x0

)k−1

E(x),

where
κn = (2π i)n−1γ 2

1,n = (2i)n−1�2((n + 1)/2).

This means that for k ∈ Z
+, P (−k) is monogenic. The monogeneity of P (k) can be

deduced by the property of the Kelvin inversion, or the result of Bojarski, see [2].
The conclusion (ii) can be obtained by the expression of P (−k) and the property

of the Kelvin inversion.
(iii) Let n = 2m + 1. We have

κn = (−1)m22m(m!)2 = (−1)m((2m)!!)2.

We use the mathematical induction. The case k = 1 reduces to verifying�m(x2m) =
(−1)m(2m)!!. We need the following lemma.

Lemma 3.5.1 Let f 0(z) = u(x0, y) + iv(x0, y) be a holomorphic function defined
on an open set U in the upper-half complex plane. Write u0 = u, v0 = v, and for
s ∈ Z

+, write
us = 2s

∂us−1

∂y

1

y

and

vs = 2s

(
∂vs−1

∂y

1

y
− vs−1

y2

)
= 2s

∂

∂y

vs−1

y
.

Then
�s−→f 0(x) = us(x0, |x |) + x

|x |vs(x0, |x |), x0 + i |x | ∈ U.

This lemma can be proved using mathematical induction via a computation of
�(us−1 + ivs−1) invoking the following relation proved in [8]:
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∂us−1

∂x0
= ∂vs−1

∂y
+ 2(s − 1)

vs−1

y
,

∂us−1

∂y
= −∂vs−1

∂x0
.

Wewill frequently use the formula given in [8]: for any function f 0 = u + iv and
r ∈ Z

+,

(
−→
f 0)r (x) =

[r/2]∑
l=0

(−1)lC2l
r u

r−2l v2l + x

|x |
[r/2]∑
l=0

(−1)lC2l+1
r ur−2l−1v2l+1, (3.26)

where Cl
r are binomial coefficients with the convention that Cl

r = 0 for l > r , and
[s] denotes the largest integer that does not exceed s.

For f 0(z) = z, using the formula (3.26), by r = 2m and Lemma3.5.1, we can
obtain �m(x2m) = (−1)m((2m)!!)2, which proves the case k = 1. Now assume that
P (k) = τ((·)n+k−1). We need to prove P (k+1) = τ((·)n+k). This is equivalent to
proving

−1

k + 1

∂

∂x0
(I (�m((·)2m+k))) = I (�m((·)2m+k+1)), (3.27)

where k ∈ Z
+ or k = 0.

By (3.26) and Lemma3.5.1, we have

�((·)2m+k)(x)

= (2m)!!
[ m+[k/2]∑

l=0

(−1)lC2l
2m+k(2l)(2l − 2) · · · (2l − 2m + 2)x2m+k−2l

0 y2l−2m

+ x

y

m+[k/2]∑
l=0

(−1)lC2l+1
2m+k(2l)(2l − 2) · · · (2l − 2m + 2)x2m+k−2l−1

0 y2l+1−2m
]
,

where we take y = |x |.
By the Kelvin inversion, we replace x0, y and x/y by x0|x |−2, y|x |−2 and −x/y,

respectively. It follows that the above becomes

(2m)!! x

|x |n+2k+1

[ m+[k/2]∑
l=0

(−1)lC2l
2m+k (3.28)

(2l)(2l − 2) · · · (2l − 2m + 2)x2m+k−2l
0 y2l−2m + x

y

m+[k/2]∑
l=0

(−1)l+1C2l+1
2m+k

×(2l)(2l − 2) · · · (2l − 2m + 2)x2m+k−2l−1
0 y2l+1−2m

]
.

Applying the differential operator [−1/(k + 1)]∂/∂x0 to (3.28), we have
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−(2m)!!
k + 1

E(x)
1

|x |2k+2

{(
− (n + 2k)x0 + x

y
y
)
[· · · ] + (x20 + y2)

∂

∂x0
[· · · ]

}
,

(3.29)
where [· · · ] is as [· · · ] in (3.28).

Now we have
(

−(n + 2k)x0 + x

y
y

)
[· · · ]

=
⎧⎨
⎩
m+[k/2]∑

l=0

(−1)l+1C2l
2m+k(n + 2k)(2l)(2l − 2) · · · (2l − 2m + 2)x2m+k−2l

0 y2l−2m

+
m+[k/2]∑

l=0

(−1)lC2l+1
2m+k(2l)(2l − 2) · · · (2l − 2m + 2)x2m+k−2l−1

0 y2l+1−2m

⎫⎬
⎭

+ x

y

⎧⎨
⎩
m+[k/2]∑

l=0

(−1)l+1C2l+1
2m+k(n + 2k)(2l)(2l − 2) · · · (2l − 2m + 2)x2m+k−2l

0 y2l+1−2m

+
m+[k/2]∑

l=0

(−1)lC2l
2m+k(2l)(2l − 2) · · · (2l − 2m + 2)x2m+k−2l

0 y2l+1−2m

⎫⎬
⎭

and

(x20 + y2)
∂

∂x0
[· · · ]

=
{
m+[k/2]∑

l=0

(−1)lC2l
2m+k(2l)(2l − 2) · · · (2l − 2m + 2)(2m + k − 2l)

× (x2m+k−2l+1
0 y2l−2m + x2m+k−2l−1

0 y2l−2m+2)

}

+ x

y

{
m+[k/2]∑

l=0

(−1)l+1C2l+1
2m+k(2l)(2l − 2) · · · (2l − 2m + 2)(2m + k − 2l − 1)

× (x2m+k−2l
0 y2l+1−2m + x2m+k−2l−2

0 y2l+1−2m+2)

}
.

By comparing the coefficients of a general nomial x2m+k+1−2l
0 y2l−2m in the real

part of (3.29) with those in the real part of

I (�m((·)2m+k+1))(x) = E(x)(�m((·)2m+k+1))(x−1),

the latter being of the expression (3.28) but with k + 1 in place of k, we are reduced
to verifying
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−2l(n + 2k)C2l
2m+k + (2m − 2l)C2l−1

2m+k (3.30)

+2l(2m + k − 2l)C2l
2m+k + (2m − 2l)(2m + k − 2l + 2)C2l−2

2m+k

= −(k + 1)2lC2l
2m+k+1.

By (s − l)Cl
s = (l + 1)Cl+1

s , the second and fourth entries on the left hand side
of (3.30) add up to

2l(2m − 2l)C2l−1
2m+k, (3.31)

while the first and third to

− 2l(2l + k + 1)C2l
2m+k = [−4l2 − 2l(k + 1)]C2l

2m+k (3.32)

= −2l(2m + k − 2l + 1)C2l−1
2m+k − 2l(k + 1)C2l

2m+k .

Combining (3.31) with the right hand side of (3.32) and usingCl
s + Cl−1

s = Cl
s+1,

we get (3.30). Similarly, we can prove that the imaginary part of (3.29) is equivalent
to the imaginary part of I (�m((·)2m+k+1)). This proves (iii). �

In [9], Kou, Qian and Sommen obtained the following generalization of
Theorem3.5.1. For any x = x0 + x ∈ R

n , let Pk be a homogeneous polynomial of x
of degree k and satisfy

∂Pk(x) = 0.

We consider the following question: if

D�k+(n−1)/2
((

u(x0, x) + x

|x |v(x0, x)Pk(x)
))

= 0.

We first prove that if l ∈ Z, the function

�k+(n−1)/2
(
(x0 + x)l Pk(x)

)
(3.33)

is still a left monogenic function.
At first, we assume that l is negative. By a simple computation, we can see that

(x0 + x)−l =
(

x

|x |2
)l

= (−1)l−1

(l − 1)!
(

∂

∂x0

)l ( x

|x |2
)

, l = 1, 2, . . . .

Hence we only need to prove

�k+(n−1)/2

(
x

|x |2 Pk(x)
)

is left monogenic.

Lemma 3.5.2 Qk+1(x) = x Pk(x) is harmonic and homogeneous of degree k + 1.
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Proof By definition, it can be verified directly that

(
∂

∂x0

)2

Qk+1(x) = 0.

Using Leibniz’s formula for second derivative, we can get

(
∂

∂xi

)2

Qk+1(x) = 2

(
∂

∂xi

)
(x)

(
∂

∂xi

)
Pk(x) + x

(
∂

∂xi

)
Pk(x)

2.

This implies that

�Qk+1(x) = −2∂Pk(x) + x�Pk(x) = 0.

�

In the proof of Theorem3.5.1, we use the following Bochner type formula: in the
sense of tempered distributional sense,

(
Q j (·)

| · | j+(n+1)−α

)∧
(ξ) = γ j,α

Q j (·)(ξ)

|ξ | j+α
, j ∈ Z+, 0 < α < n + 1, (3.34)

where Q j is a harmonic homogeneous polynomial of degree j , and

γ j,α = i jπ(n+1)/2−α �( j/2 + α/2)

�( j/2 + (n + 1)/2 − α/2)
.

By the Fourier transform, (3.34) is equivalent to the following equality: for any
Schwartz function φ on R

n
1 and j ∈ Z+, 0 < α < n + 1,

∫
R
n
1

Q j (x)

|x | j+(n+1)−α
φ̂(x)dx = i jπ(n+1)/2−α �( j/2 + α/2)

�( j/2 + (n + 1)/2 − α/2)

∫
R
n
1

Q j (x)

|x | j+α
φ(x)dx .

Now we will generalize the above formula to the case Re(α) > − j and j ∈ Z+.

Lemma 3.5.3 Let − j < β, α < (n + 1) + j, α + β = n + 1 and j ∈ Z+. For any
Schwartz function φ on R

n
1 , we have

πβ/2�

(
j + β

2

)∫
R

n
1

Q j (x)

|x | j+β
φ̂(x)dx = i jπα/2�

(
j + α

2

)∫
R

n
1

Q j (x)

|x | j+α
φ(x)dx .

(3.35)

Proof For 0 < α < n + 1, both sides of (3.34) are holomorphic. For j � 1, by the
orthogonality of the spherical harmonic polynomials, there follows
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∫
R
n
1

Q j (x)

|x | j+β
φ̂(x)dx = lim

ε→0+
Q j (x)

|x | j+(n+1)−α

⎛
⎝φ̂(x) − φ̂(0) − 1

( j − 1)!

(
n∑

i=0

xi
∂

∂xi

) j−1

φ̂(0)

⎞
⎠ dx

+
∫

|x |>1

Q j (x)

|x | j+(n+1)−α
φ̂(x)dx,

that can be extended to all complex numbers α with Re(α) > − j holomorphically.
Similarly, the right hand side of (3.34) can also be extended holomorphically to all
complex numbers α such that Re(α) > − j . �

Proposition 3.5.1 Let l ∈ Z+, where n + 1 is odd and k is non-negative. Then the
functions

�k+(n−1)/2

((
x

|x |2
)l

Pk(x)

)
, l ∈ Z+

are all left monogenic.

Proof In Lemma3.5.3, letting α = 2 − j , we have

lim
ε→0+

∫
|x |>ε

Q j (x)

|x | j+(n+1)+ j−2
φ̂(x)dx = i jπ(n+1)/2+( j−2)

�((n + 1)/2 + j − 1)

∫
R

n
1

Q j (x)

|x |2 φ(x)dx .

Replacing φ by �k+(n+1)/2φ and j by k + 1, we get

lim
ε→0+

∫
|x |>ε

Qk+1(x)

|x |(n+1)+k
|x |2k+(n−1)φ̂(x)dx = βk

∫
R

n
1

�k+(n−1)/2

(
Qk+1(x)

|x |2
)

φ(x)dx,

where

βk = 21−n−2ki2−n−kπ−k−(n−1)/2 1

�((n + 1)/2 + k)
.

Hence we obtain
∫
R

n
1

Qk+1(x)

|x |2 φ̂(x)dx = βk

∫
R

n
1

�k+(n−1)/2

(
Qk+1(x)

|x |2
)

φ(x)dx .

Replacing Qk+1 by x Pk(x), we have

∫
R

n
1

Qk+1(x)

|x |2 φ̂(x)dx =
∫
R

n
1

( ·
|x |2 Pk(·)

)∧
(x)φ(x)dx

= γ −1
1,n

∫
R

n
1

E ∗ (Pk(∂)δ)(x)φ(x)dx,

where E(x) = x
|x |n+1 = γ1,n(

·
|·|2 )

∧(x) is the Cauchy kernel on R
n
1, δ is the Dirac

function. Therefore,
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�k+(n−1)/2

(
x

|x |2 Pk(x)
)

= γ −1
1,n β−1

k E ∗ (Pk(∂)δ)(x) = γ1,1β
−1
k E Pk(∂)(x).

This implies

�k+(n−1)/2

(
x

|x |2 Pk(x)
)

is left monogenic. In addition,

�k+(n−1)/2
((
x0 + x

)−l
Pk(x)

)
= �k+(n−1)/2

((
x

|x |2
)l

Pk(x)

)
(3.36)

= �k+(n−1)/2

(
(−1)l−1

(l − 1)!
(

∂

∂x0

)l−1 ( x

|x |2
)
Pk(x)

)

= γ1,1β
−1
k

(
∂

∂x0

)l−1

EPk(∂)(x).

So

�k+(n−1)/2
((

x0 + x
)−l

Pk(x)
)
, l ∈ Z+,

are all left monogenic. �

Now for the case l � 0, we prove the function

�k+(n−1)/2
[
(x0 + x)l Pk(x)

]
(3.37)

is left monogenic function. We first discuss the fundamental solution of the operator
D�k+(n−1)/2. Below we assume that 2s = 2k + (n − 1). Hence 2s may be even or
odd. It is even if and only if n + 1 is even.

Lemma 3.5.4 The operator D|D|2s in R
n
1 has a fundamental solution of the same

form as those in the above list for ∂2s+1 in R
n+1, except that the term x in the latter

is replaced by x.

Proof We divide the proof into two cases based on the parity of 2s.
(i) Case 1: 2s is even. The Fourier multiplier corresponding to the fundamental

solution of D|D|2s is
cn,k

1

ξ

1

|ξ |2s = cn,k
ξ

|s|2s+2
,

where cn,k is a constant depending on n and k. A fundamental solution of |D|2s+2 is
a radial function and is the same as the one in the above list for ∂2s+2 in R

n+1. We
denote the fundamental solution by K (x). By (3.14) and (3.15), when n + 1 is even
and 2s + 2 < n + 1,
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K (x) = 1

|x |n−2s−1
.

When n + 1 is even and 2s + 2 � n + 1,

K (x) = (c log |x | + d)
1

|x |n−2s−1
.

Then DK is a fundamental solution of D|D|2s . Hence the function DK can be
represented as follows. When n + 1 is even and 2s + 2 < n + 1,

K (x) = x

|x |n−2s+1
.

When n + 1 is even and 2s + 2 � n + 1,

K (x) = (c log |x | + d)
x

|x |n−2s+1
.

(ii) Case 2: 2s is odd. At first, because ξξ = |ξ |2, 1
ξ

1
|ξ |2s = 1

|ξ |
ξ

|ξ |2s+1 . Also, the

Fourier multiplier corresponding to a fundamental solution of D|D|2s−1 is ξ

|ξ |2s+1 .

By (3.14) and (3.15), when n + 1 is odd, the fundamental solution is x/|x |n−2s+2.
Because the Fourier transform of 1/|ξ | is the Riesz potential 1/|x |n , then in the
tempered distributional sense, the fundamental solution of D|D|2s can be represented
via convolution:

1

| · |n ∗ (·)
| · |n−2s+2

.

It is easy to see that the convolution is a locally integrable function away from
the origin. In fact, after being applied a certain times Laplace operator, the above
distribution becomes a locally integrable function away from the origin. Secondly,
as a distribution, the convolution is homogeneous of degree 2s − n. To show this,
letting M and N denote the distributions induced by 1

|x |n and x
|x |n−2s+2 , respectively,

then for any Schwartz function φ, we have

〈M ∗ N (x), φ(x/δ)〉 = δ(n+1)+(2s−n)〈M ∗ N (x), φ(x)〉.

Write τδ f (x) = f (δx). By the homogeneous properties of M and N , we know

〈
M ∗ N (x), φ(x/δ)

〉
=
〈
M ∗ N , τδ−1φ(x)

〉

=
〈
N (x), M ∗ (τδ−1φ)(x)

〉

= δ
〈
N (x), τδ−1M ∗ φ(x)

〉
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= δ1+2s
〈
N , M ∗ φ

〉

= δ1+2s
〈
M ∗ N , φ

〉
.

Let ρ denote the rotation about the origin in R
n
1. The representation matrix of ρ is

(ρi j ) and the operation of ρ on x is denoted by ρ−1x . The operation of ρ on the
functions is denoted by ρ( f )(x) = f (ρ−1x). Because M is scalar-valued and N is
vector-valued, the function M ∗ N is vector-valued and homogeneous with degree
2s − n. Write this vector-valued function as K (x) = M ∗ N (x). Then we can get

〈
ρK (x), φ(x)

〉
=
〈
K (x), ρ−1φ(x)

〉

=
〈
N (x), M ∗ ρ−1φ(x)

〉

=
〈
N (ρ−1x), M ∗ φ(x)

〉

=
〈
(ρi j )(N (x)), M ∗ φ(x)

〉

= (ρi j )
〈
K (x), φ(x)

〉

=
〈
(ρi j )(K (x)), φ(x)

〉
,

that is, K (ρ−1x) = ρ(K (x)). Applying the lemmaobtained in [10, Chap.3, Sect. 1.2]
to K (x)/|x |2s−n , we get K (x)/|x |2s−n = Cx/|x |, Hence

M ∗ N (x) = Cx

|x |n−2s+1
.

�

We prove when l ∈ Z+, the function

�k+(n−1)/2
((

x0 + x
)−l

Pk(x)
)

is left monogenic. We need the intertwining relation for the operator.

Lemma 3.5.5 Let n be any positive integer. Then for s = k + (n − 1)/2 and any
infinitely differentiable function g in Rn

1 \ {0}, we have

(D�s)
( x

|x |(n+1)−2s
g(x−1)

)
= αn,s

x

|x |(n+1)+2s+2
(D�s)(g)(x−1), (3.38)

where αn,s is a constant depending on n and s.

Proof Write L = D�s = D|D|2s . Because n + 1 is odd, by Case 2 of Lemma3.5.4,
the fundamental solution of L is G(x) = Cx

|x |n−2s+1 . We have
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L−1

(
(·)

|(·)|(n+1)+2s+2
(Lg)((·)−1)

)
(x−1)

=
∫
R

n
1

G(x−1 − y−1)
y−1

|y−1|(n+1)+2s+2

1

|y|2n+2
(Lg)(y)dy

= Cx−1

|x−1|n−2s+1

∫
R

n
1

−(x − y)

|x − y|n−2s+1

y−1

|y−1|n−2s+1

× y−1

|y−1|(n+1)+2s+2

1

|y|2n+2
(Lg)(y)dy

= Cx−1

|x−1|n−2s+1

∫
R

n
1

x − y

|x − y|n−2s+1
(Lg)(y)dy

= Cx−1

|x−1|n−2s+1
g(x).

Then we can deduce that

L

(
(·)

| · |(n+1)−2s
g((·)−1)

)
(x) = C

x

|x |(n+1)+2s+2
(Lg)(x−1).

�

In Lemma3.5.5, take g(x) =
(

x
|x |2
)l
Pk(x), l ∈ Z+. Because g(x−1) =

(−1)k xl |x |−2k Pk(x), we have

(
D�k+(n−1)/2

)(
(−1)k xl−1Pk(x)

)
= αn,s

x

|x |2n+2k+2

(
D�k+(n−1)/2

)(( ·
| · |2

)l

Pk(·)
)

(x−1).

(3.39)
By Proposition3.5.1, we can see that the right hand side of (3.39) is zero and conclude
that (

D�k+(n−1)/2
) (

(x0 + x)l−1Pk(x)
) = 0, l ∈ Z+.

Based on the following preliminary lemma, we give a generalization of
Theorem3.5.1.

Theorem 3.5.2 Let f be a holomorphic function defined on an open set B in the
upper half complex plane. Define the set

−→
B = {

x = x0 + x ∈ R
n
1, (x0, |x |) ∈ B

}
.

(i) Let Pk(x) be left-monogenic and homogeneous of degree k. If k + (n − 1)/2 is

a non-negative integer, then in the set
−→
B , the function
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�k+(n−1)/2[ f (x0 + x)Pk(x)]

is left monogenic.
(ii) If (n − 1)/2 is odd and k is a non-negative integer and Pk(x) is monogenic and

homogeneous of degree k, then in the set
−→
B , the function

�k+(n−1)/2[ f (x0 + x)Pk(x)]

is left monogenic.

Proof We only need to prove that if the function

�k+(n−1)/2((x0 + x)l Pk(x)), l ∈ Z,

is monogenic, then the function

�k+(n−1)/2( f (x0 + x)Pk(x))

is also monogenic. Through a translation, we may assume that the function f is
holomorphic in a disc centered at the origin of the complex plane. Further, we define
the holomorphic function

{
g(z) = 1

2 [ f (z) + f (z)],
h(z) = 1

2i [ f (z) − f (z)].

It is easy to see that f (z) = g(z) + ih(z). Thenwe can further assume that the Taylor
series expansion of f is of real coefficients. We will prove:

(i) the series
∑−1

l=−∞ cl zl and

−1∑
l=−∞

cl�
k+(n−1)/2[(x0 + x)l Pk(x)]

have the same convergence radius;
(ii) the series

∑∞
l=0 cl z

l and

∞∑
l=0

cl�
k+(n−1)/2[(x0 + x)l Pk(x)]

have the same convergence radius.

For (i), it can be deduced from (3.36) and (3.25) that

|�k+(n−1)/2[(x0 + x)l Pk(x)]| � C(1 + |l|)n+2k 1

|x |n+k+|l|−1
,
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which implies that the two series in (i) have the same convergence radius.
At last, we prove (ii). For this case, n is even. Because �s = |D|−1�k+n/2, the

fundamental solution of �s can be represented as the convolution of Riesz poten-
tial 1/|x |n and the fundamental solution of �k+n/2. Under the case that the spatial
dimension is odd, the fundamental solution of �k+n/2 is C/|x |(n+1)−2s−1, where C is
a constant depending on n and k. By Lemma3.5.4, the fundamental solution of �s

can be represented as C/|x |n+1−2s . Then applying Lemma3.5.5, we can get

(�s)

(
1

|x |(n+1)−2s
g(x−1)

)
= C

|x |(n+1)+2s+2
(�s)(g)(x−1).

Let g(x) =
(

x
|x |2
)l
Pk(x). Then g(x−1) = (−1)k xl Pk(x). Replacing s by s + 1, we

have

�k+1+(n−1)/2
(
(−1)k xl Pk(x)

)
= C

|x |2n+2k+2
�(k+1)+(n−1)/2

((
x

|x |2
)l

Pk(x)

)
(x−1).

By the Newton potential and (3.36), in the sense of distributions,

�k+1+(n−1)/2
(
xl Pk(x)

)
= C

(l − 1)!
∫
R
n
1

1

|x − y|n−1
1

|y|2n+2k−2
∂l−1
0 �EPk(x)(y

−1)dy.

By Lemma3.5.4,

|�k+(n−1)/2[(x0 + x)l Pk(x)]| � C(1 + |l|)n+2k |x |l−k−n+1.

�

3.6 Remarks

Remark 3.6.1 The idea of Theorem3.5.1 is to investigate the similarity between the
Clifford analysis and the complex analysis of single variable. Via the correspondence
zk → P (k), some similarity has been obtained in [11].

The quaternionic space does not coincidewith our result for n = 3. The quaternion
forms a complete algebra, and the latter is not a complete algebra. Fueter’s theorem
implies that τ maps a holomorphic function of one variable to a regular function of
variables in the quaternionic space. M. Sce generalized Fueter’s result and proved
that if n is odd, then τ maps the holomorphic functions defined on the subset in the
upper-half complex plane to the monogenic functions. Theorem3.5.1 (iii) indicates
that if n is odd, the result obtained by the Kelvin inversion coincides with the result
for f 0(z) = zk, k ∈ Z obtained by Sce.
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However, for even n, the method of using the the differential operator �(n−1)/2

introduced by Fueter and Sce is not valid. By the Fourier multiplier transform, the
results of Fueter and Sce can be extended to the case of the power function with
negative index, that is, f 0(z) = zk,−k ∈ Z

+; while for the power function with
non-negative index, this method is not directly valid.

Remark 3.6.2 There is the following generalization of the result in Sect. 3.5. In [12],
F. Sommen proved that if n + 1 is a positive even integer, Pk is any homogeneous
polynomial in x of degree k, and is left monogenic for the Dirac D: DPk(x) = 0,
then

D�k+(n−1)/2

((
u(x0, x) + x

|x |v(x0, x)Pk(x)
))

= 0.

It is readily seen that the above result is a special case of Theorem3.5.2.
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