
Chapter 2
Singular Integral Operators on Closed
Lipschitz Curves

In Chap.1, we state a theory of convolution singular integral operators and Fourier
multipliers on infinite Lipschitz curves. A natural question is whether there exists an
analogy on closed Lipschitz curves. In this chapter, we establish such a theory for
starlike Lipschitz curves. A curve is called a starlike Lipschitz curve if the curve has
the following parameterization: γ̃ = {exp(i z) : z ∈ γ }, where

γ =
{

x + ig(x) : g′ ∈ L∞([−π, π ]), g(−π) = g(π)
}

.

It can be proved that the starlike Lipschitz curves defined using such parameterization
are the same as those defined as star-shaped and Lipschitz in the ordinary sense.

In the same pattern as in the infinite Lipschitz graph case, we can define Fourier
series of L2 functions on γ . The question can now be specified into the following
two:

The first, what kind of holomorphic kernels give rise to L2-bounded operators on
starlike Lipschitz curves γ ?

The second, is there a corresponding Fourier multiplier theory? In other words,
what complex number sequences act as L p-bounded Fourier multipliers on the
curves?

It should be pointed out that these questions are not trivial even for the case p = 2,
as the Plancherel theorem does not hold in this case. However, on the other hand, the
case p = 2 is essential, as the boundedness for 1 < p < ∞ can be deduced from the
L2 theory using the standard Calderón-Zygmund techniques.

© Springer Nature Singapore Pte Ltd. and Science Press 2019
T. Qian and P. Li, Singular Integrals and Fourier Theory on Lipschitz Boundaries,
https://doi.org/10.1007/978-981-13-6500-3_2

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6500-3_2&domain=pdf
https://doi.org/10.1007/978-981-13-6500-3_2


44 2 Singular Integral Operators on Closed Lipschitz Curves

2.1 Preliminaries

Let γ be a Lipschitz curve defined on the interval [−π, π ] with the parameterization

γ (x) = x + ig(x), g : [−π, π ] → R,

where R denotes the real number field, g(−π) = g(π), g′ ∈ L∞([−π, π ]) with
‖g′‖∞ = N . Denote by pγ the 2π -periodic extension of γ to −∞ < x < ∞, and
by γ̃ the closed curve

γ̃ =
{

exp(i z) : z ∈ γ
}

=
{

exp(i(x + ig(x))) : −π � x � π
}

.

We call γ̃ the starlike Lipschitz curve associated with γ .
We use f , F and ˜F to denote the functions defined on pγ , γ and γ̃ , respectively.

For ˜F ∈ L2(γ̃ ), the nth coefficient of ˜F on γ̃ is defined as

̂
˜F γ̃ (n) = 1

2π i

∫

γ̃

z−n
˜F(z)

dz

z
.

In the case of no confusion, we will sometimes suppress the subscript and write
̂
˜F(n).

Set
σ = exp(−max g(x)), τ = exp(−min g(x)).

We consider the following dense subclass of L2(γ̃ ):

A(γ̃ ) =
{

˜F(z) : ˜F(z) is holomorphic in σ − η < |z| < τ + η for some η > 0
}

.

Without loss of generality, we assume that min g(x) < 0 and max g(x) > 0. In the
case, the domains of the functions inA(γ̃ ) contain the unit circleT, and by Cauchy’s
theorem,weknoŵ

˜F γ̃ (n) = ̂
˜FT(n). If ˜F and ˜G belong toA(γ̃ ), by theLaurent series,

we can obtain the inverse Fourier transform formula

˜F(z) =
∞

∑

n=−∞
̂
˜F γ̃ (n)zn, (2.1)

where z is in the annulus where ˜F is defined. We apply Cauchy’s theorem to get the
Parseval identity

1

2π i

∫

γ̃

˜F(z)˜G(z)
dz

z
=

∞
∑

n=−∞
̂
˜F γ̃ (n)̂˜G γ̃ (−n). (2.2)
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Similar to Chap.1, we will use the following half and double sectors on the
complex plane C. For ω ∈ (0, π/2], define the sets

S0ω,+ =
{

z ∈ C : | arg(z)| < ω, z �= 0
}

,

S0ω,− = −S0ω,+, S0ω = S0ω,+ ∪ S0ω,−,

and
C0

ω,+ = S0ω ∪
{

z ∈ C : Im(z) > 0
}

,

C0
ω,− = S0ω ∪

{

z ∈ C : Im(z) < 0
}

,

where S0ω,±, S0ω, C0
ω,± and C0

ω are shown in Figs. 1.2, 1.3 and 1.4. Let X be one of
the sets defined above. Denote by

X (π) = X ∩
{

z ∈ C : |Re(z)| � π
}

the truncated set and by

pX(π) =
∞
⋃

k=−∞

{

X (π) + 2kπ
}

the periodic set associated with the truncated set. The graphs of S0ω,±(π), S0ω(π) and
C0

ω,±(π) are shown in Figs. 2.1, 2.2 and 2.3.

(1) The figures of the sets S0ω,+ and S0ω,− are as follows:

Fig. 2.1 S0ω,−(π) ∪ S0ω,+(π)
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Fig. 2.2 C0
ω,+(π)

Fig. 2.3 C0
ω,−(π)

(2) The sets C0
ω,+(π) and C0

ω,−(π) are shown in the following figures:
We also use the sets of the form exp(i O) = {exp(i z) : z ∈ O}, where O is the
truncated set defined above. Let Q be a double or half sector defined above. H∞(Q)

denotes the function space

{

f : Q → C : f is bounded and holomorphic in Q
}

.

If no confusion occurs, we write ‖ · ‖∞ as ‖ · ‖H∞(Q).
Let b ∈ H∞(S0ω), ω ∈ (0, π/2]. Then b can be divided into two parts: b = b+ +

b−, where
{

b+ = bχ{z: Re(z)>0},
b− = bχ{z: Re(z)<0}.

(2.3)

Hence, b± ∈ H∞(S0ω,±).
In each of the following statements, the symbol “±” should be read as either all

“+”, or all “−”. The following transform has been used in Sect. 1.3:

G±(b±)(z) = φ±(z) = 1

2π

∫

ρ±
θ

exp(i zζ )b(ζ )dζ, z ∈ C0
ω,±,
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where ρ±
θ denotes the ray s exp(iθ), 0 < s < ∞, θ is a constant which depends on

z ∈ C0
ω,± and satisfies ρ±

θ ⊂ S0ω,±. Also

G±
1 (b±)(z) = φ±

1 (z) =
∫

δ±(z)
φ±(ζ )dζ, z ∈ S0ω,±,

where the integral is along any path from −z to z in C0
ω,±.

In what follows, we denote by c0, c1,C the fixed constants, and by Cω,μ the
constants which depend on ω,μ and so on. These constants may vary from one
occurrence to another. For b ∈ H∞(S0ω), using the decomposition b = b+ + b− and
Theorem 1.3.2, and letting

φ = φ+ + φ−, φ1 = φ+
1 + φ−

1 ,

we can see that the following two theorems are the main results obtained in Sect. 1.3.
We reformulate them for the sake of convenience.

Theorem 2.1.1 Letω ∈ (0, π/2] and b ∈ H∞(S0ω). Then there exists a pair of holo-
morphic functions (φ, φ1) defined in S0ω and S0ω,+ such that for any μ ∈ (0, ω),

(i) |φ(z)| � Cω,μ‖b‖∞/|z|, z ∈ S0μ;
(ii) φ1 ∈ H∞(S0μ,+), ‖φ1‖H∞(S0μ,+) � Cω,μ‖b‖∞, and φ′

1(z) = φ(z) + φ(−z), z ∈
S0ω,+;

(iii) for all f ∈ S(R)

(2π)−1
∫ ∞

−∞
b(ζ ) f̂ (−ζ )dζ = lim

ε→0

{

∫

|x |�ε

φ(x) f (x)dx + φ1(ε) f (0)
}

.

Theorem 2.1.2 Let ω ∈ (0, π/2] and b ∈ H∞(S0ω). There exists a pair of holomor-
phic functions (φ, φ1) defined in S0ω and S0ω,+ satisfying

(i) there exists a constant c0 such that

|φ(z)| � c0
|z| , z ∈ S0ω;

(ii) there exists a constant c1 such that ‖φ1‖H∞(S0ω,+) < c1, and

φ′
1(z) = φ(z) + φ(−z), z ∈ S0ω,+.

Then for any μ ∈ (0, ω), there exists a unique function b ∈ H∞(S0μ) such that

‖b‖H∞(S0μ) � Cω,μ(c0 + c1),

and the function pair determined by b according to Theorem 2.1.1 is identical to
(φ, φ1). Moreover, for all complex numbers ξ ∈ S0ω, the function b is given by
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b(ξ) = lim
ε→0

lim
N→∞

(∫

ε<|x |<N
exp(−iξ x)φ(x)dx + φ1(ε)

)

.

2.2 Fourier Transforms Between S0ω and pS0ω(π)

Theorem 2.2.1 Let ω ∈ (0, π/2] and b ∈ H∞(S0ω), and let (φ, φ1) be the function
pair associated with b in the pattern of Theorem 1.3.2. Then there exists a pair of
holomorphic functions (�,�1) defined in S0ω(π) and S0ω,+(π), respectively, satisfy-
ing, for every μ ∈ (0, ω),

(i) � can be holomorphically and periodically extended to pS0ω(π) and

|�(z)| � Cω,μ‖b‖∞
|z| , z ∈ S0μ(π).

Moreover, �(z) = φ(z) + φ0(z), z ∈ S0μ(π), where φ0 is a bounded holomor-
phic function in S0μ(π);

(ii) �1 ∈ H∞(S0μ,+(π)), ‖�1‖H∞(S0μ,+) � Cω,μ‖b‖∞, and

�′
1(z) = �(z) + �(−z), z ∈ S0ω(π);

(iii) � and�1 are uniquely determined (modulo constants) by the Parseval formula.
Precisely, for any continuous 2π -periodic function F defined on R,

2π
∞

∑

n=−∞
b(n)̂F(−n) = lim

ε→0

( ∫

ε�|x |�π

�(x)F(x)dx + �1(ε)F(0)

)

,

where ̂F(n) denotes the nth Fourier coefficient of F, and b(0) = 1
2π �1(π).

Proof By the Poisson summation formula, we define � as

�(z) = 2π
∞

∑

k=−∞
φ(z + 2kπ), z ∈ pS0ω(π), (2.4)

where the summation takes the following sense: there is a subsequence {nl} of {n}
such that for all z ∈ S0ω(π), when l → ∞, the partial sum locally uniformly converges
to a 2π -periodic and holomorphic function satisfying the assertion (i). In the sequel,
we call such sequences applicable sequences. Moreover, we shall show that the limit
functions defined through different applicable sequences differ from one another by
constants which are bounded by c‖b‖∞.
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We use the following decomposition

n
∑

k=−n

φ(z + 2kπ) = φ(z) +
±n
∑

k �=0

(φ(z + 2kπ) − φ(2kπ)) +
n

∑

k=1

φ′
1(2kπ)

= φ(z) +
∑

1

+
∑

2

.

Wewill prove that the series
∑

1 locally uniformly converges to a bounded holomor-
phic function in S0μ(π), and some subsequence of the partial sums of

∑

2 converges
to a constant dominated by Cμ‖b‖∞.

By (i) of Theorem 2.1.1, Cauchy’s theorem and the fact that φ is a holomorphic
function, we can deduce the estimate:

|φ′(z)| � Cμ

|z|2 , z ∈ S0μ,

so the convergence of
∑

1 is proved. For
∑

2, we use the mean value theorem for the
integrals to get

n
∑

k=1

φ′
1(2kπ) =

∫ 2(n+1)π

2π
φ′
1(r)dr +

n
∑

k=1

[

φ′
1(2kπ) − Re(φ′

1(ξk)) − iIm(φ′
1(ηk))

]

= φ1(2(n + 1)π) − φ1(2π)

+
n

∑

k=1

[

φ′
1(2kπ) − Re(φ′

1(ξk)) − iIm(φ′
1(ηk))

]

,

where ξk , ηk ∈ (2kπ, 2(k + 1)π). By the estimate of φ′, the above series converges
absolutely. It can be deduced from the boundedness of φ1 that there exists an applica-
ble subsequence {nl} such that φ1(2(nl + 1)π) converges to a constant c0. Therefore,
we have

1

2π
�(z) = φ(z) +

∑

k �=0

[

φ(z + 2kπ) − φ(2kπ)
]

+ lim
l→∞

nl
∑

n=1

φ′
1(2nπ)

= φ(z) + φ0(z) + c0,

where φ0 is a bounded holomorphic function in S0μ(π), c0 is a constant depending on
the subsequence {nl} chosen. At the same time, � can be extended holomorphically
to pS0ω(π), and the different �’s associated with different applicable sequences may
differ from one another by constants dominated by c‖b‖∞.

Now we prove (ii) and (iii). We use the decomposition b = b+ + b− given in
(2.3). Define

b±,α(z) = exp(∓αz)b±(z), α > 0.
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Let φ± and φ±,α be the functions associated with b± and b±,α , respectively. By
Remark 1.3.1, φ±,α(·) = φ±(· ± iα), and the latter are inverse Fourier transforms of
b±,α . Now we define the corresponding periodic functions �±,α and holomorphic
functions �± in pC0

ω,±(π), respectively, which satisfy the size condition in the
assertion (i). It is to be noted that for all �±,α , we choose the same applicable
sequence {nl} as we have chosen for �±. By the estimate in (i) of Theorem 2.1.1
and the fact that φ is holomorphic, we can prove that when α → 0,

∑

1 is locally
uniformly and absolutely convergent. Let

1

2π
�±,α(z) = φ±,α(z) + φ

±,α
0 (z) + c±,α

0

and
1

2π
�±(z) = φ±(z) + φ±

0 (z) + c±
0 ,

where φ
±,α
0 and φ±

0 are holomorphic and uniformly bounded in C0
μ,±(π). Since the

convergence as nl → ∞ is uniform for α → 0, we can change the order of taking
limits nl → ∞ and α → 0, and conclude that φ±,α , φ

±,α
0 and c±

0 are convergent
locally uniformly in C0

ω,±(π). Hence,

lim
α→0

�±,α(z) = �±(z).

Notice that for fixed α, �±,α ∈ L∞([−π, π ]), and when nl → ∞, the series which
define�±,α converges uniformly in x ∈ [−π, π ]. For all non-zero real ξ in the sense
of (3) in Theorem 2.1.2, we have

1

2π

∫ π

−π

exp(−iξ x)�±,α(x)dx =
∫ π

−π

exp(−iξ x) lim
l→∞

nl
∑

k=−nl

φ±,α(x + 2kπ)dx

=
∫ ∞

−∞
exp(−iξ x)φ±,α(x)dx = b±,α(ξ).

In particular, {b±,α(n)}, n �= 0, are the standard Fourier coefficients of �±,α . If F is
any smooth periodic function on [−π, π ], then Parseval’s identity holds:

2π
∞

∑

n=−∞
b±,α(n)̂F(−n) =

∫ π

−π

�±,α(x)F(x)dx,

where

b±,α(0) = (2π)−1
∫ π

−π

�±(x ± iα)dx .

Let ε > 0. Since ̂F(n) decays rapidly as n → ±∞, on letting α → 0+, we have
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2π
∞

∑

n=−∞
b±(n)̂F(−n) = lim

α→0+

{

∫

[−π,π]\(−ε,ε)

�±(x ± iα)F(x)dx

+
∫

|x |�ε

�±(x ± iα)(F(x) − F(0))dx

+
∫

|x |�ε

�±(x ± iα)F(0)dx
}

.

Then we can get

lim
α→0+

∫

[−π,π]\(−ε,ε)

�±(x + iα)F(x)dx =
∫

[−π,π]\(−ε,ε)

�±(x)F(x)dx

and

lim sup
α→0+

∫

|x |�ε

|�±(x + iα)| · |F(x) − F(0)|dx � lim sup
α→0

∫

|x |�ε

1

|x | · |x |dx � Cε.

Define

�±
1 (z) =

∫

δ±(z)
�±(η)dη,

where δ±(z) is a path from −z to z in C0
ω,±(π). Hence for �±

1 , (ii) holds and

lim
α→0+

∫

|x |�ε

�±(x ± iα)F(0)dx = �±
1 (ε)F(0).

This gives Parseval’s identity associated with b±:

2π
∞

∑

n=−∞
b±(n)̂F(−n) = lim

ε→0

( ∫

[−π,π]\(−ε,ε)

�±(x)F(x)dx + �±
1 (ε)F(0)

)

,

where b±(0) = 1
2π �±

1 (π). Note that if we replace �± by �± + c± in the above
formulas, then, correspondingly, we need to replace b±(0) by b±(0) + c± in order
to make the formulas still hold. Since � = �+ + �−, on letting �1 = �+

1 + �−
1 ,

we see that (ii) and (iii) hold. This completes the proof. �

Remark 2.2.1 When we prove Parseval’s identity related to b ∈ H∞(S0ω), the value
of b at the origin is naturally involved. For the sake of convenience, we take b(0) =
1
2π �1(π) in consistency with the formula as shown in the theorem. The proof of the
theorem indicates that adding a constant to� does not change the Fourier coefficients
̂�(n) = b(n), n �= 0, but we should add the same constant to b(0).

Theorem 2.2.2 Let ω ∈ (0, π/2] and (�,�1) be a pair of holomorphic functions
defined on pS0ω(π) and S0ω,+(π), respectively, satisfying
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(i) � is 2π -periodic, and there exists a constant c0 such that

|�(z)| � c0
|z| , z ∈ S0ω(π);

(ii) there exists a constant c1 such that ‖�1‖H∞(S0ω,+(π)) < c1, and

�′
1(z) = �(z) + �(−z), z ∈ S0ω,+(π).

Then for any μ ∈ (0, ω), there exists a function bμ such that bμ ∈ H∞(S0μ) and

‖bμ‖H∞(S0μ) � Cμ(c0 + c1).

By Theorem 2.2.1, the function pair determined by bμ is identical with (�,�1)

(modulo constants). Moreover, bμ = bμ,+ + bμ,−,

bμ,±(η) = 1

2π
lim
ε→0

( ∫

A±(ε,θ,|η|−1)

exp(−iηz)�(z)dz + �1(ε)

)

, η ∈ S0μ,±, (2.5)

where θ = (μ + ω)/2, A±(ε, θ, �) = l(ε, �) ∪ c±(θ, �) ∪ �±(θ, �). Here when
� � π ,

l±(ε, �) =
{

z = x + iy : y = 0, ε � ±x � �
}

,

c±(θ, �) =
{

z = � exp(iα) : α from π ± θ to π, and then from 0 to ∓ θ
}

,

�±(θ, �) =
{

z ∈ C0
ω,±(π) : z = r exp(i(π ± θ)), r from π sec θ to �,

and z = r exp(∓iθ), r from � to π sec θ
}

,

when � > π ,

l(ε, �) = l±(ε, π), c±(θ, �) = c±(θ, π), �±(θ, �) = �±(θ, π).

Proof The integral is along the path A±(ε, θ, |η|−1), see Figs. 2.4 and 2.5.
Fix μ ∈ (0, ω) and write bμ as b in the rest of the proof. For all ε ∈ (0, π)

and η ∈ S0ω ∪ {0}, define bε(η) = b+
ε (η) + b−

ε (η), where b±
ε are the functions in the

definition of b± in the theorem before taking the limit as ε → 0. We see that for all
ε, bε(0) = 1

2π �1(π).
For |η|−1 � π , applying the estimate in Theorem 1.3.3, we can prove that bε(η)

is uniformly bounded, and lim
ε→0+ bε(η) = b(η) exists.

If |η|−1 > π , for the integral over the contour l(ε, π), we use the same argument
as to the integral over l(ε, |η|−1) for the case |η|−1 � π . To estimate the integrals
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Fig. 2.4 l+(ε, �) ∪ c+(�, θ) ∪ �+(�, θ)

Fig. 2.5 l−(ε, �) ∪ c−(�, θ) ∪ �−(�, θ)

over c±(θ, π) and �±(θ, π), we use Cauchy’s theorem to change the contour of
integration and so to integrate over the set

{

z = x + iy : x = −π, y from − (±π) tan θ to 0, and x = π, y from 0 to − (±π tan θ)
}

.

However, by the condition ±Re(z) > 0, it is easy to prove that the integral over the
above contour is bounded. Then b is well-defined and bounded.

Let F be any 2π -periodic continuous function on [−π, π ]. Expanding F in a
Fourier series and using the definition of bε , we have

2π
∞

∑

n=−∞
bε(n)̂F[−π,π](−n) =

∫

ε<|x |�π

�(x)F(x)dx + �1(ε)F(0).

On letting ε → 0, we get

2π
∞

∑

n=−∞
b(n)̂F[−π,π](−n) = lim

ε→0

( ∫

ε<|x |�π

�(x)F(x)dx + �1(ε)F(0)

)

.

Denote by (G(b),G1(b)) a pair of holomorphic functions associated to b in the
pattern of Theorem 2.2.1. It can be deduced from Parseval’s identity that
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lim
ε→0

( ∫

ε<|x |<π

(G(b)(x) − �(x))F(x)dx + [G1(ε) − �1(ε)]F(0)

)

= 2π
(

b1(0) − b(0)
)

̂F[−π,π](0),

where b1(0) is the function associated with (G(b),G1(b)) in Parseval’s identity of
Theorem 2.2.1. By Theorem 2.2.1, we can add any constant to G(b) and accordingly
adjust the value of b1(0) such that (iii) of Theorem 2.2.1 holds. In particular, we can
take a constant such that b1(0) − b(0) = 0. The right hand side of the last displayed
equality then becomes 0. Using an approximation to identity {Fn} with the property
Fn(0) = 0, we conclude that G(b)(x) = �(x) for x �= 0. Because of analyticity, we
know for all z ∈ S0ω(π), G(b)(z) = �(z). For G1(b), using (iii) of Theorem 2.2.1
together with the assumption (ii) of �1, we can get �′

1 = G ′
1(b) and �1 − G1 is a

constant. Then by the use of

lim
ε→0

[

G1(b)(ε) − �1(ε)
]

= 0,

we have �1 = G1(b). The uniqueness of b can be proved similarly. �

2.3 Singular Integrals on Starlike Lipschitz Curves

The results obtained in Sect. 2.2 can be applied to study the relation between the
singular integral operators defined on periodic Lipschitz curves in Sect. 2.1 and the
Fourier multipliers. Taking the change of variable z → exp(i z) and substituting ˜� =
� ◦ ( 1i ln) and˜�1 = �1 ◦ ( 1i ln) inTheorems2.2.1 and 2.2.2,weobtain the following
theorem.

Theorem 2.3.1 Let ω ∈ (0, π/2] and b ∈ H∞(S0ω). There exists a pair of functions
(˜�, ˜�1) such that ˜� and ˜�1 are holomorphic in exp(i S0ω(π)) and exp(i S0ω,+(π)),
respectively. Moreover, for any μ ∈ (0, ω),

(i) |˜�(z)| � Cω,μ‖b‖∞/|1 − z|, z ∈ exp(i S0μ(π));

(ii) ˜�1 ∈ H∞(exp(i S0μ(π))), ‖˜�1‖H∞(exp(i S0μ(π))) < Cω,μ‖b‖∞ and

˜�′
1(z) = 1

i z

(

˜�(z) + ˜�(z−1)
)

, z ∈ exp(i S0ω,+(π));

(iii) For all continuous functions ˜F defined on T,

2π
∞

∑

n=−∞
b(n)̂˜FT(−n) = lim

ε→0

( ∫

| ln z|>ε,z∈T
˜�(z)˜F(z)

dz

z
+ ˜�1(exp(iε))˜F(1)

)

.

where ̂
˜FT(n) is nth Fourier coefficient of ˜F, and b(0) = 1

2π
˜�1(exp(iπ)).
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Theorem 2.3.2 Let ω ∈ (0, π/2] and (˜�, ˜�1) be a pair of functions defined on
exp(i S0ω(π)) and exp(i S0ω,+(π)), respectively, satisfying

(i) there exists a constant c0 such that

|˜�(z)| � c0
|1 − z| , z ∈ exp(i S0ω(π));

(ii) there exists a constant c1 such that ‖˜�1‖H∞(exp(i S0ω,+(π))) < c1, and

˜�′
1(z) = 1

i z

(

˜�(z) + ˜�(z−1)
)

, z ∈ exp(i S0ω,+(π)).

Then for any μ ∈ (0, ω), there exists a function bμ in H∞(S0μ) such that

‖bμ‖H∞(S0μ) � Cμ(c0 + c1).

The function pair determined by bμ according to Theorem 2.3.1 equals to (˜�, ˜�1)

(modulo constants). Moreover, bμ = bμ,+ + bμ,−,

b±(η) = 1

2π
lim
ε→0

(∫

−i ln z∈A±(ε,θ,�)

z−η dz

z
+ ˜�1(exp(iε))

)

, η ∈ S0μ,±,

where A±(ε, θ, �) is the path defined in Theorem 2.2.2, and

˜�1(exp(iε)) =
∫

l(ε)

˜�(exp(i z))dz,

where l(ε) is any path from −ε to ε lying in C0
ω,±.

The following corollaries are in terms of holomorphic extension of series with
positive and negative powers and can be deduced from Theorems 2.3.1 and 2.3.2
immediately.

Corollary 2.3.1 Let {bn}±∞
n=±1 ∈ l∞,˜�(z) =

±∞
∑

n=±1
bnzn, |z±1| < 1, andω ∈ (0, π/2).

If there exists δ > 0 such that ω + δ � π/2, and there exists a function b ∈
H∞(S0ω+δ,±) such that for all ±n = ±1,±2, . . . , b(n) = bn, then the function ˜�

can be extended holomorphically to the domain exp(iC0
ω+δ,±(π)). Moreover, we get

|˜�(z)| � Cω,δ

|1 − z| , z ∈ exp(iC0
ω,±(π)).

Corollary 2.3.2 Let ω ∈ (0, π/2) and let ˜� be a holomorphic function satisfying

|˜�(z)| � C

|1 − z| , z ∈ exp(iC0
ω,±(π)).
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Then for any μ ∈ (0, ω), there exists a function bμ such that bμ ∈ H∞(S0μ,±) and

˜�(z) =
±∞
∑

n=±1
bnzn. Moreover, bμ = bμ,+ + bμ,−, and for η ∈ S0μ,±,

bμ,±(η) = 1

2π
lim

ε→0+

(∫

−i ln z∈A±(ε,θ,�)

exp(−iηz)˜�(exp(i z))dz + ˜�1(exp(iε))

)

,

where A±(ε, θ, �) is defined by Theorem 2.2.2, and

˜�1(exp(iε)) =
∫

l(ε)

˜�(exp(i z))dz,

where l(ε) is any path from −ε to ε in C0
ω,±.

Remark 2.3.1 As indicated in Corollary 2.3.2, the mapping ˜� → b satisfying
˜�(z) = ∑

b(n)zn is not single-valued. In fact, if μ1 �= μ2, then both bμ1 and
bμ2 satisfy the requirement. In general, bμ1 �= bμ2 . This can be verified by using
˜�(z) = zn, n ∈ Z

+.

Corollary 2.3.3 For any ω ∈ (0, π/2), there does not exist any function b such that
b ∈ H∞(S0ω,+) and satisfies b(n) = 1 for n = 2k, k = 1, 2, . . . , and b(n) = 0 for
the other positive integers.

Proof Consider the function

˜�(z) = z + z2 + z2
2 + · · · + z2

k + · · ·

It is well known that ˜� does not have any holomorphic extension across any interval
on the unit circle, and according to Corollary 2.3.1, it is not induced by a function b
in H∞(S0ω,+). �

For the functions b and ˜F defined in Theorem 2.3.1, by the Laurent series theory,
the series ∞

∑

n=−∞
b(n)

̂

˜FT(n)zn

locally uniformly converges to a holomorphic function in the annulus on which ˜F is
defined. Noticing that ̂

˜FT(n) = ̂
˜F γ̃ (n), we can define an operator ˜Mb : A(˜�) −→

A(γ̃ ) as

˜Mb(˜F)(z) = 2π
∞

∑

n=−∞
b(n)̂˜F γ̃ (n)zn.

On the other hand, for the function pair (˜�, ˜�1) occurring in Theorem 2.3.2, there
holds
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T(˜�,˜�1)
˜F(z) = lim

ε→0

(∫

π�|Re(i−1 ln(ηz−1))|>ε,η∈γ̃

˜�(zη−1)˜F(η)
dη

η
+ ˜�1(exp(iεt (z)))˜F(z)

)

,

where t (z) is the unit tangent vector of γ at z in S0ω,+(π). We have the following
theorem:

Theorem 2.3.3 Let ω ∈ (arctan N , π/2], b ∈ H∞(S0ω) and let (˜�, ˜�1) be the pair
of functions corresponding to b in the pattern of Theorem 2.3.1. Then the following
conclusions hold.

(i) T(˜�,˜�1)
is awell-defined operator fromA(γ̃ ) toA(γ̃ ), and in the sense ofmodulo

constants,
T(˜�,˜�1)

= ˜Mb.

(ii) ˜Mb can be extended to a bounded operator on L2(γ̃ ), and the norm is dominated
by c‖b‖∞.

Proof (i) For anyα > 0, define b±,α
z (ξ) = −z−ξb±,α(−ξ), where b±,α is the function

defined in Theorem 2.2.1. Let (˜�±,α
z , (˜�±,α

z )1) be the pair of functions corresponding
to b in the pattern of Theorem 2.3.1. By (iii) of Theorem 2.3.1 and Cauchy’s theorem,
we have

˜Mb±,α
z

˜F(z) = 2π
∞

∑

n=−∞
b±,α
z (n)̂˜F γ̃ (n)

= 2π
∞

∑

n=−∞
b±,α
z (n)̂˜FT(n)

=
∫

T

˜�±,α
z (η−1)˜F(η)

dη

η

=
∫

γ̃

˜�±,α
z (η−1)˜F(η)

dη

η
.

Similar to the proof of Theorem 2.2.1, taking the limit α → 0 and noticing that

˜�±
z (η−1) = ˜�±(zη−1),

we can get the desired equality for b± and b.
(ii) Now we prove the boundedness of the following operator:

T(�,�1)F(z)= lim
ε→0

{

∫

ε<|Re(z−η)|�π

�(z − η)F(η)dη + �1(εt (z))F(z)
}

, F∈A(γ ),

where t (z) is the unit tangent vector of γ at z in S0ω,+(π). Here A(γ ) denotes the
class of all 2π -periodic holomorphic functions satisfying: F ∈ A(γ ) if and only if
˜F = F ◦ (i−1 ln) ∈ A(γ̃ ). By the decomposition of (i) of Theorem 2.2.1, we have
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T(�,�1)F(z) = lim
εn→0

{

∫

π�|Re(z−η)|>εn

φ(z − η)F(η)dη

+
∫

π�|Re(z−η)|>εn

φ0(z − η)F(η)dη
}

+ c1

∫ π

−π

F(η)dη + c2F(z),

where εn → 0 is a subsequence of the sequence ε → 0, c1 and c2 are constants.
The second and the third integrals are dominated by the L2-norm of F , while the

first integral is dominated by

sup
ε>0

∣

∣

∣

∫

|Re(z−η)|>ε

φ(z − η)F1(η)dη

∣

∣

∣ + cMF1(z), Re(z) ∈ [−π, π ],

where for |Re(η)| � 2π , F1(η) = F(η); otherwise F1(η) = 0. MF1 is the Hardy-
Littlewoodmaximal function of F1 on the curve . By the boundedness of the operators
introduced by (φ, φ1) and that of M, we obtain the desired boundedness. �

Theorem 2.3.4 Let φ be a holomorphic function satisfying |φ(z)| ≤ C/|z| on S0ω.
Assume that γ = x + i A(x) is a Lipschitz curve, ‖A′‖∞ < tanω. If there exists a
L2(γ )-bounded operator T such that

T ( f )(z) =
∫

γ

φ(z − ζ ) f (ζ )dζ, ∀ f ∈ Cc(γ ), z /∈ supp f,

where Cc(γ ) denotes the class of continuous functions with compact support on γ ,
then there exists a function φ1 ∈ H∞(S0ω) such that φ′

1 = φ(z) + φ(−z), z ∈ S0ω.

Proof Because T is bounded on L2(γ ), the formula for T can be extended to

T ( f )(z) =
∫

γ

φ(z − ζ ) f (ζ )dζ,

where f = χQ , Q is any finite interval on γ and z /∈ Q. Define a new family of
functions φε = φχ{z∈C: |z|>ε} and the corresponding operators:

Tε( f )(z) =
∫

γ

φε(z − ζ ) f (ζ )dζ.

By a standard argument, we can get the operator norm ‖Tε‖L2(γ )→L2(γ ) is uniformly
bounded. This implies that for any interval Q on γ and any ε, we have uniformly:

∫

Q
|TεχQ ||dζ | < c|Q|. (2.6)
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For z ∈ γ , denote by γz the curve γ − z. Because γ is a Lipschitz curve, then γz is
also a Lipschitz curve passing the origin. We also write Qz,η = {ζ ∈ γz : |ζ | < η}.
Fix z0 ∈ γ . For z1 ∈ Qz0,η/2, we will prove the following estimate:

∣

∣

∣Tε(χQz0 ,η
)(z1) −

∫

ζ∈γ0,ε<|ζ |<η

φ(ζ )dζ

∣

∣

∣ ≤ C < ∞, (2.7)

where C is a constant independent of ε, η and z1 ∈ Qz0,η/2.
In fact, denote by γ ±(z0, η) the right and the left endpoints of Qz0,η. Define

S1 =: {ζ ∈ γz1 , from z1 + γ +(z0, η) to z1 + γ −(z0, η), |ζ | > ε}

and
S2 =: {ζ ∈ γ0, from γ −(z0, η) to γ +(z0, η), |ζ | > ε}.

We have

TεχQz0 ,η
(z1) −

∫

ζ∈γ0,ε<|ζ |<η

φ(ζ )dζ

=
∫

S1

φ(ζ )dζ +
∫

S2

φ(ζ )dζ.

Using the Cauchy theorem, we can reduce the above integrals to the integrals along
circles of radius η and ε and along the directions of radius within {z ∈ C : η � |z| �
3η/2}. Then from the condition |φ(z)| ≤ C/|z|, we can conclude (2.7).

From (2.7), we have

∣

∣

∣

∫

ζ∈γz0 ,ε<|ζ |<η

φ(ζ )dζ

∣

∣

∣ � C + |TχQz0 ,η
|.

Taking average to both sides of this inequality w.r.t. z1 ∈ Qz0,η/2 and using (2.6), we
obtain for any 0 < ε < η < ∞,

∣

∣

∣

∫

ζ∈γz0 ,ε<|ζ |<η

φ(ζ )dζ

∣

∣

∣ � C. (2.8)

From the Cauchy theorem, the condition |φ(z)| � C/|z| and the inequality (2.8), we
have

∣

∣

∣

( ∫

l−(z−
1 ,z−

2 )

+
∫

l+(z+
1 ,z+

2 )

)

φ(ζ )dζ

∣

∣

∣ � C,

where z±
1 , z±

2 ∈ S0ω,±, and l−(z−
1 , z−

2 ) is a contour lying in S0ω,− from z−
1 to z−

2 ,
l+(z+

1 , z+
2 ) is a contour lying in S0ω,+ from z+

2 to z+
1 , and |z−

1 | = |z+
1 |, |z−

2 | = |z+
2 |.

For z ∈ S0ω,±, we let
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φ1(z) = 1

2

(∫

l−(−1,∓z)
φ(ζ )dζ +

∫

l+(1,±z)
φ(ζ )dζ

)

.

Now it is easy to check that φ1 ∈ H∞(S0ω) and for z ∈ S0ω,

φ′(z) = 1

2

(

φ(z) + φ(−z)
)

.
�

We state the following theorem.

Theorem 2.3.5 Assume that ω ∈ (arctan N , π/2]. Let ˜� be holomorphic in
exp(i S0ω(π)) and satisfy (i) of Theorem 2.3.2 with respect to ω. If T is a bounded
operator on L2(γ̃ ) and for all ˜F belonging to the class of continuous functionsC0(γ̃ ),

T (˜F)(z) =
∫

γ̃

˜�(zξ−1)˜F(ξ)
dξ

ξ
, z /∈ supp (˜F),

then there exists a unique function ˜�1 ∈ H∞(exp(i S0μ,+)), μ ∈ (0, ω) such that for
˜F ∈ C0(γ̃ ),

˜�′
1(z) = 1

i z

(

˜�(z) + ˜�(z−1)
)

, z ∈ exp(i S0ω,+(π))

and
T (˜F) = T(˜�,˜�1)

(˜F).

Proof On S0ω,+(π), we define the function φ as

φ(η) =: ˜�(eiη).

Then, on the one hand, we can get for η ∈ S0ω,+(π),

|φ(η)| � |˜�(eiη)| � C

|1 − eiη| � C

|η| .

On the other hand, let f (z) = ˜F(eiz). For z /∈ supp (˜F) and ξ ∈ γ̃ , without loss of
generality, we can write z = eiη and ξ = eiw, where z /∈ supp f and w ∈ γ . If the
operator

T (˜F)(z) =
∫

γ̃

˜�(zξ−1)˜F(ξ)
dξ

ξ
, z /∈ supp (˜F),

is bounded on L2(γ̃ ), then by change of variables, we can see that

T (˜F)(z) =
∫

γ

˜�(ei(η−w)˜F(eiw)
deiw

eiw
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= i
∫

γ

φ(η − w) f (w)dw

=: Tφ( f ),

which implies that the operator Tφ is also bounded on L2(γ ). By Theorem 2.3.4,
there exists a function φ1 ∈ H∞(S0ω) such that φ′

1(η) = φ(η) + φ(−η), η ∈ S0ω. For
z = eiη ∈ exp(i S0ω,+(π)) with η ∈ S0ω,+(π), define

˜�1(z) = ˜�1(e
iη) =: φ1(η).

Then

˜�′
1(z) = dη

dz

d

dη
(˜�1(e

iη))

= 1

ieiη
d

dη
(φ1(η))

= 1

ieiη
[φ(η) + φ(−η)]

= 1

ieiη

[

˜�(eiη) + ˜�(e−iη)
]

= 1

i z

[

˜�(z) + ˜�(z−1)
]

.

This completes the proof of Theorem 2.3.5. �

2.4 Holomorphic H∞-Functional Calculus on Starlike
Lipschitz Curves

The purpose of this section is to clarify that the theory of holomorphic H∞-functional
calculus on infinite Lipschitz curves established by A. McIntosh in [1] can also be
established in the case of closed curves. Precisely, we study the relations between
the operator classes ˜Mb, T(˜�,˜�1)

and the holomorphic H∞-functional calculus, see
also [2, 3] for further information.

For the functions ˜F ∈ A(γ̃ ), we define the differential operator d
dz |γ̃ as

d

dz
|γ̃ ˜F(z) = lim

h→0, z+h∈γ̃

˜F(z + h) − ˜F(z)

h
, z ∈ γ̃ .

For 1 < p < ∞, 〈L p(γ̃ ), L p′
(γ̃ )〉 is the dual of Banach spaces defined as follows:

〈˜F, ˜G〉 =
∫

γ̃

˜F(z)˜G(z)dz,
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where p′ = (1 − p−1)−1. Now by duality, we define Dγ̃ ,p as the closed operator with
the largest domain in L p(γ̃ ) which satisfies

〈

Dγ̃ ,p ˜F, ˜G
〉

=
〈

˜F, −z
d

dz
|γ̃ ˜G

〉

for all ˜F and ˜G inA(γ̃ ).
Let ω ∈ (arctan N , π/2] and λ /∈ S0ω. It is easy to prove Dγ̃ ,p is the surface Dirac

operator on γ̃ and 1
2π

˜�λ is the functions defined below.
Let λ /∈ S0ω. Then on any starlike Lipschitz curve , b(z) = 1

z−λ
corresponds to the

resolvent of the surface Dirac operator. If Im(λ) > 0, by (1.1) and (1.2), we have

φλ(z) =
{

i exp(iλz), Re(z) > 0,
0, Re(z) < 0.

If Im(λ) < 0, then we have

φλ(z) =
{

0, Re(z) > 0,
i exp(iλz), Re(z) < 0.

It is easy to prove that for every case, φλ belongs to L1(R) ∩ L2(R). Hence for the
two cases, we can use the remark made after Theorem 2.1.2.

For Im(λ) > 0, we can deduce from the definition that

�λ(z) =
{ i exp(iλ(z+2π))

1−exp(iλ2π)
, if − π < Re(z) < 0,

i exp(iλz)
1−exp(iλ2π)

, if 0 < Re(z) < π.

For Im(λ) < 0,

�λ(z) =
{ −i exp(iλ(z−2π))

1−exp(−iλ2π)
, if 0 < Re(z) < π,

−i exp(iλz)
1−exp(−iλ2π)

, if − π < Re(z) < 0.

For Im(λ) > 0,

˜�λ(z) =
⎧

⎨

⎩

i exp(iλ2π)zλ

1−exp(iλ2π)
, if − π < Re( ln zi ) < 0,

i zλ

1−exp(iλ2π)
, if 0 < Re( ln zi ) < π.

For Im(λ) < 0,

˜�λ(z) =
⎧

⎨

⎩

−i exp(−iλ2π)zλ

1−exp(−iλ2π)
, if 0 < Re( ln zi ) < π,

−i zλ

1−exp(−iλ2π)
, if − π < Re( ln zi ) < 0.
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We can verify that Dγ̃ ,p is the surface Dirac operator on γ̃ , and in the sense of
Theorem 2.3.3, the function 1

2π
˜�λ is the convolution kernel of the resolvent operator

(Dγ̃ ,p − λ)−1. Moreover,

‖(Dγ̃ ,p − λ)−1‖ � ‖ 1

2π
˜�λ‖ �

∞
∑

n=−∞
‖φλ(· + 2πn)‖L1(γ )

= ‖φλ‖L1(pγ ) �
√

1 + N 2{dist(λ, S0ω)}−1.

The above estimate implies that Dγ̃ ,p is a type ω operator. For the H∞ functions
b with good decay properties at both 0 and ∞, we can define b(Dγ̃ ,p) via spectral
integrals as follows:

b(Dγ̃ ,p) = 1

2π

∫

δ

b(η)(Dγ̃ ,p − ηI )−1dη.

Here δ is a path consisting of four rays:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{s exp(−iθ) : s from ∞ to 0};
{s exp(iθ) : s from 0 to ∞};
{s exp(−i(π − θ)) : s from ∞ to 0};
{s exp(i(π + θ)) : s from 0 to ∞},

where arctan N < δ < ω.
By the above estimates, it is easy to prove that any b(Dγ̃ ,p) is a bounded operator,

and
b(Dγ̃ ,p) = ˜Mb = ˜T (˜�, 0).

Taking limits of the sequences of Calderón-Zygmund operators, we can extend the
definition of b(Dγ̃ ,p) to all functions in H∞(S0ω), and prove that

b(Dγ̃ ,p) = ˜Mb = ˜T (˜�, ˜�1).

Alternative proofs of the boundedness of the operators can be found in [2] by G.
Gaudry, T. Qian and S. Wang. In addition, when b1, b2 ∈ H∞(S0ω) and α1, α2 are
complex numbers,

‖b(Dγ̃ ,p)‖ � Cω‖b‖∞,

(b1b2)(Dγ̃ ,p) = b1(Dγ̃ ,p)b2(Dγ̃ ,p)

and
(α1b1 + α2b2)(Dγ̃ ,p) = α1b1(Dγ̃ ,p) + α2b2(Dγ̃ ,p).
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Below we shall not restrict ourselves to H∞-multipliers. It should be pointed out
that all the results and methods of the Fourier multiplier theory for infinite Lipschitz
curves can be adapted to the present case. The main difference is that the function
classA(γ̃ ) has even better properties. When we deal with the kernels on γ , we refer
to its corresponding kernel on pγ via the Poisson summation formula. The following
theorem can be proved via the corresponding Schur lemma, and we omit the proofs.

For b = {bn}∞n=−∞ ∈ l∞, define

‖b‖Mp(γ̃ ) = sup
{∥

∥

∥

∑

bn
˜
˜F(n)zn

∥

∥

∥

L p(γ̃ )
: ‖˜F‖L p(γ̃ ) � 1

}

,

and
Mp(γ̃ ) =

{

b : ‖b‖Mp(γ̃ ) < ∞
}

.

We call the functions b in Mp(γ̃ ) the L p(γ̃ )−Fourier multipliers.

Theorem 2.4.1 Let ˜� be a holomorphic function defined on a simple connected
open neighborhood of the set

γ̃ − γ̃ =
{

z − ξ : z, ξ ∈ γ̃
}

satisfying |˜�(r exp(iθ))| � ψ(exp(iθ)), where
∫ π

−π
ψ(exp(iθ))dθ < ∞. Then

b = (̂˜�(n))∞n=−∞ ∈ Mp(γ̃ ), 1 < p < ∞,

and the corresponding convolution operator T
˜� can be represented as

T
˜�

˜F(z) =
∫

γ̃

˜�(zη−1)˜F(η)
dη

η
, ˜F ∈ A(γ̃ ).

Let γ̃1 and γ̃2 be two curves of the type under consideration. Define

Mp(γ̃1, γ̃2) =
{

b ∈ l∞ : ‖b‖Mp(γ̃1,γ̃2) < ∞
}

,

where

‖b‖Mp(γ̃1,γ̃2) = sup
{‖∑

bn
̂
˜F(n)zn‖L p(γ̃2)

‖˜F‖L p(γ̃1)

: ˜F ∈ A(γ̃1) ∩ A(γ̃2)
}

.

If γ̃3 is the third such curve, and b1 ∈ Mp(γ̃1, γ̃2), b2 ∈ Mp(γ̃2, γ̃3), then b2b1 ∈
Mp(γ̃1, γ̃3), and

‖b2b1‖Mp(γ̃1,γ̃3) � ‖b2‖Mp(γ̃2,γ̃3)‖b1‖Mp(γ̃1,γ̃2).
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Theorem 2.4.2 Let b ∈ l∞ and fβ(n) = b(n) exp(2β|n|). If for some β > M =
max A(x), fβ ∈ Mp(T), where T is the unit circle and 1 < p < ∞, then b ∈ Mp(γ̃ )

and
‖b‖Mp(γ̃ ) � (2πβ)2(β2 − M2)−1(1 + N 2)1/2‖ fβ‖Mp(T).

For flat curves γ , it is obvious that ‖b‖M2(γ̃ ) � Cγ̃ ‖b‖∞. But the following exam-
ple indicates that in general case, this fact may not hold.

Take γ (x) = x + i A(x) to be a piece of the Lipschitz curve defined on [−π, π ]
with g(0) > 0 and m = min g(x) < 0. For any integer S, let bS be a l∞-sequence
satisfying bS(n) = 1 for n � S and bS(n) = 0 otherwise. Using F(z) = 1

1−exp(i z) as
the test function, we can prove that for any ε > 0,

‖bS‖M2(γ̃ ) � Cε exp(−S(m + ε)).

2.5 Remarks

Remark 2.5.1 We can obtain the following generalizations of Theorems 2.3.1 and
2.3.2. Let γ be a closed starlike Lipschitz curve. Suppose that the multiplier b
satisfies |b(z)| � C |z ± 1|s in any Sμ,±, 0 < μ < w. Then it can be proved that
φ(z) = ∑±∞

n=±1 b(n)zn satisfies

|φ(z)| � Cμ

|1 − z|1+s
, z ∈ Cμ,±, 0 < μ < w. (2.9)

Conversely, if the holomorphic functionφ satisfies the estimate (2.9), then there exists
a function b such that |b(z)| � C |z ± 1|s and φ(z) = ∑±∞

n=±1 b(n)zn , see Sect. 7.1
for the details.
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