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Abstract. Approximate backbone subsection optimization algorithm is pro-
posed to solve the traveling salesman problem, for the precision accuracy of the
basic ant colony algorithm for solving the larger traveling salesman problem is
low. First, traveling salesman problem approximate backbone is obtained by the
ant colony algorithm, and then the original traveling salesman problem is sec-
tioned based on the approximate backbone. Then the ant colony optimization
algorithm is applied to solve the subsections to improve the precision accuracy
of the global optimal solution. The experimental results show that the algorithm
is more precision accuracy than the basic ant colony algorithms in the solution
of the typical traveling salesman problem.
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1 Introduction

Traveling Salesman Problem (TSP) is a classical NP-hard combinatorial optimization
problem [1]. Its model is simple but difficult to solve. Ant Colony Optimization
(ACO) is another heuristic search algorithm applied to combinatorial optimization
problems after the meta-heuristic search algorithms such as simulated annealing
algorithm, genetic algorithm, Tabu Search algorithm and artificial neural network
algorithm.

Dorigo et al. applied ant colony algorithm to classical optimization problems such
as TSP and the Quadratic Assignment Problem, and got good results. But using ant
colony algorithm to solve the large scale TSP directly, the efficiency is low, and the
quality of the solution is not high [2, 3].

Backbone refers to the intersection of all global optimal solutions of a problem
instance [4]. He et al. [4] divides the backbone application in heuristic algorithm design
into two types: probability type and deterministic type. Probabilistic backbone algo-
rithm [5–7] mainly has three stages: first, the local optimal solution solving stage;
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secondly, the approximate backbone probability computing stage; finally, the
probability-oriented solution stage, mainly using the approximate backbone probability
for the generation of initial solution, instance transformation or local search in the
neighborhood determination [6]. The deterministic backbone algorithm can be further
divided into space constrained and instance reduction [6]. Schneider [8, 9], Qi et al.
[10], Fischer et al. [11], Dong et al. [12] improve the efficiency of solving TSP
instances by conventions; Zou et al. [13] on the basis of conventions of TSP, through
the analysis of the experimental results of the instances, concluded that about 80% of
the local optimal solutions are the edges of the global optimal solution, and this
generalization. The rate is not related to the scale of the problem. Based on this
conclusion, an approximate backbone subsection of ACO (ABSACO) algorithm for
TSP is proposed.

ABSACO algorithm is based on the set of local optimal solutions obtained by ant
colony algorithm, through the statistics of the edges in the set of local optimal solu-
tions, and according to a certain weight proportion from the statistical results, select a
certain number of edges to form the approximate backbone of the optimal solution;
then based on the approximate backbone, the current optimal solution obtained by ant
colony algorithm is sectioned. Finally, the subsections are optimized by ant colony
optimization algorithm. The strategy based on approximate backbone subsection
effectively decomposes the original TSP, reduces the size of the solution, so that the
basic ant colony algorithm can improve the efficiency of solving large-scale TSP and
improve the quality of the solution.

2 Ant Colony Algorithm

Given a group of cities N, TSP can be described as finding a closed loop of the shortest
length that passes through each city only once. Let dij be the length of the path from the

city i to city j. In this paper, the Euclidean distance ðdij ¼ ½ðxi � xjÞ2 þðyi � yjÞ2�1=2Þ is
given. Then, a TSP is a known graph G(N, E), N represents a group of cities, E
represents the edges between the groups of cities, and solves the problem of a shortest
path through each city in the graph G. In this paper, we solve the symmetric TSP, that
is, dij ¼ dji.

2.1 Ant System

Ant colony algorithm is initially applied to solve TSP. A basic ant colony algorithm-ant
system (AS) can be simply described as follows: initialization parameters, m ants
randomly placed in one of the corresponding n cities, the construction of each ant’s
City taboo table and accessible table; then, each ant according to formula (1) in
accordance with the probability of moving from city i to city j, all the ants complete a
round trip after the N cycle; calculate the path length of each ant in a round trip, update
the pheromone according to formula (2); record the shortest round trip length of m ants.
Repeat this process until the maximum number of iterations is reached.
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The formula (1) is the probability formula for ant k moving from city i to city j.

pkij tð Þ ¼
sij tð Þ
� �a� gij

� �b
P

l2Nk
i
sil tð Þ½ �a� gil½ �b

; if j 2 Nk
i ð1Þ

Among, Nk
i is the collection of ant k to transfer cities. The sij tð Þ indicates the

pheromone concentration on the connection path between city i and city j at t time. The
heuristic function gij ¼ 1=dij denotes the expected degree of the ant’s transfer from the
city i to the city j. The parameters alpha and beta are the parameters controlling the
concentration of the pheromone and the expected degree of the transfer, respectively.

The formula (2) is the formula for updating pheromones.

sij tþ 1ð Þ ¼ 1� qð Þ � sij tð Þþ
Xm

k¼1

Dskij tð Þ ð2Þ

Among them, q is a parameter; 1� q represents the evaporation of pheromone on
the path between time t and time t + 1. The Dskij tð Þ is the increment of pheromone
released by the ant k on the edge e(i, j) from time t to time t + 1 per unit length. The
Dskij tð Þ is calculated by formula (3).

Dskij tð Þ ¼
Q
Lk tð Þ If the edge e(i; j) is used

by the ant k at t time
0 Otherwise

8
<

:
ð3Þ

Q is a constant. Lk is the path length traveled by ant k.

2.2 Ant System with Elitist Strategy

The ant system with elitist strategy (ASelite) mentioned in reference [14] is an improved
pheromone concentration updating method based on the basic ant colony algorithm
AS. The improved pheromone concentration updating formula is as follows:

sij tþ 1ð Þ ¼ qsij tð Þþ
Xm

k¼1

Dskij tð ÞþDs�ij ð4Þ

Among them, the Ds�ij is the increment of pheromone on path ij caused by elite ants,
which is calculated by formula (5).

Ds�ij ¼
q � Q

L� If the edge e(i; j) is part of the
optimal solution found

0 Otherwise

8
<

:
ð5Þ

In formula (5), q is the number of elite ants, and L� is the optimal solution path
length.
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3 Approximate Backbone Subsection of ACO

3.1 Approximate Backbone Subsection Strategy

There are a lot of random experiments on two typical examples in TSPLIB, in reference
[13]. The experiments show that approximately 80% of the edges in the local optimal
solution are the edges of the global optimal solution. Approximate Backbone Sub-
section (ABS) strategy is based on this discovery. The edges of the local optimal
solution are counted and the approximate backbone of the optimal solution is obtained.
From the approximate backbone, it is the starting edge of the subsection that we choose
a part of the statistical results which appear more frequently. Then the current local
optimal solution is sectioned. Sectioned subsections are then optimized separately. If
there is a better result, then the atomic path subsection is better instead of. The final
solution is the optimal solution. The main idea of approximate backbone subsection
optimization strategy is shown in Fig. 1.

For solving the traveling salesman problem in n cities, the current local optimal
solution path is C1. . .CiCiþ 1. . .CjCjþ 1. . .CkCkþ 1. . .Cn. The Sets, of Starting Edges
for Section of Selecting from Approximate Backbone, is A ¼ . . .; CiCiþ 1; . . .;f
CjCjþ 1; . . .g: Thus, the CiCiþ 1 is one of edges of current local optimal solution, it
belongs to set A, and the CjCjþ 1 is too. The CkCkþ 1 is one of edges of current local
optimal solution, but it does not belong to set A. Based on this, there are the subsection
C1. . .Ci;Ciþ 1. . .Cj and Cjþ 1. . .Cn from the current local optimal solution. Finally, the
subsection C1. . .Ci;Ciþ 1. . .Cj and Cjþ 1. . .Cn carries on the optimization separately,
the solution path after the subsection optimization renewal is the optimal solution path,
and the obtained solution is the optimal solution.

Fig. 1. Approximate backbone subsection optimization strategy main idea
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3.2 Approximate Backbone Subsection of ACO Algorithm

Approximate backbone subsection colony optimization algorithm flow chart is shown
in Fig. 2.
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Fig. 2. Approximate backbone subsection ant colony optimization algorithm flow chart
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The main steps of the algorithm are described below.
Step 1: ant colony algorithm iterates the maximum NCmax times to generate NCmax

local optimal solutions.
Step 2: The number matrix BorderNums is obtained by counting the edges of

NCmax local optimal solutions.
Step 3: According to the weight ratio x, the starting edges Set SSSB is obtained,

whose number of edge is greater than or equal to x � NCmax, from the matrix Bor-
derNums of times for each edge occurrence.

Step 4: The Rngb is a path of optimal solution to NCmax local optimal solution. It is
sectioned to obtain the optimal solution, whose path is Rugb.

Step5: Output optimal solution.

4 Experimental Results and Analysis

4.1 Experimental Environment and Parameter Description

Nine examples of universal TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/tsp/) were selected for the experiment. Among them, examples Oliver 30,
Att48, Eil51, Berlin 52, St70, Eil76, Eil101, Pr107, Ts225 in TSPLIB provide the
optimal values are 423.7406, 33523.7085, 426(429.9833), 7542(7544.3659), 675(678.
5975), 538(558.7119), 629 (642.3095), 678.44303, 126643. Among them, the value in
parentheses of the optimal value is the result of the optimal path provided by TSPLIB.
Deviation is the result that the difference between the optimal value minus the known
optimal value divide the known optimum value. In Step 1 and Step 4, ant system with
elitist(ASelite) is used. The values of parameters alpha and beta in ant colony algorithm
are set to 1 and 5. The pheromone decay factor p is 0.1 and local pheromone adjust-
ment factor Q is 1. The NCmax of the maximum number of iterations in Step 1 is 300
and the number of ants is 32. In Step 4, the value of InnerNCmax, maximum iterations
number, is 200. The minner, the number of ants, is 8. Proportional weight Omega is set
to 0.8.

4.2 Experimental Results and Analysis

1. Comparison with ACO
Table 1 shows the comparison results of 9 examples using ant colony algorithm and
ABSACO algorithm. As can be seen from Table 1, the overall quality of the solution
based on approximate backbone subsection is higher than that of the solution based on
ant colony algorithm, and the accuracy of the results obtained by Att48, Eil51, Berlin
52, St70, Eil76, Eil101, Pr107 based on approximate backbone subsection is up to or
higher than that of TSPLIB. The accuracy of the results of the optimal path is provided.

Figure 3 is the optimal solution path diagrams obtained by ABSACO algorithm for
some instances.
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Table 1. TSP instance test results of ACO and ABSACO

TSP
instances

Optimal ACO/ABSACO Average ACO/ABSACO Deviation
ACO/ABSACO

Oliver30 423.7406/423.7406 424.62568/423.7406 0.00000/0.00000
Att48 35221.8906/33523.7085 36061.26433/34122.03316 0.05066/0.00000
Eil51 449.2723/428.9816 460.58299/432.30439 0.05463/0.00700
Berlin52 7548.9927/7544.3659 7796.615208/7573.139225 0.00093/0.00031
St70 703.4685/677.1096 739.70106/701.960295 0.04218/0.00313
Eil76 572.4761/551.6946 588.080035/569.14083 0.06408/0.02545
Eil101 692.5415/641.0211 723.31598/680.26375 0.10102/0.01911
Pr107 46740.4675/44301.6837 47475.26795/44481.13528 0.05502/-0.00003
Ts225 131429.9493/128758.896 135826.9446/132692.7332 0.03780/0.01671

Fig. 3. Optimal solution path diagrams obtained by ABSACO algorithm
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2. Comparison with IPDULACO and NACA
Compared with the existing IPDULACO [15] and NACA [16] algorithms, the quality
of ABSACO algorithm is verified. As shown in Table 2, the accuracy of the solution
obtained by ABSACO algorithm is higher than that obtained by IPDULACO algorithm
for five instances, Eil51, St70, Eil76, Eil101, Ts225, etc. In these five instances, the
quality of the solution obtained by ABSACO algorithm is improved by 0.5, 21, 1,
16.71 and 2196.58 respectively, and the relative improvement rate is 0.1164%,
3.0086%, 0.1808%, 2.5406%, 1.6773%. IPDULACO and ABSACO have the same
precision for example Oliver 30, but the average value of ABSACO algorithm is
423.74. The algorithm only needs one time to get the global optimal solution; the two
algorithms solve the example Oliver 30, Eil51, St70, and the average value of the
optimal solution of ABSACO algorithm relative to IPDULACO algorithm is extracted
respectively, to 0.78, 8.37 and 6 higher. The ABSACO algorithm is more stable.

As can show in Table 3, the ABSACO algorithm is better than the NACA algo-
rithm in solving the example Eil51, Berlin 52, St70, Eil76, Pr107. The precision of the
optimal value is improved, which is 11, 58, 35, 23, 2338 less than the NACA algo-
rithm, and the quality of the solution is improved compared with the NACA algorithm
2.5000%, 0.7630%, 4.9157%, 4.0000%, 5.0129%. The average value of the optimal
value obtained by ABSACO algorithm is very close to the optimal value obtained by
ABSACO algorithm, which shows that ABSACO algorithm performs stably. The
deviation is calculated by the known optimal solution. From the deviation point of
view, the result obtained by ABSACO algorithm is closer to the known optimal
solution, especially the result obtained by ABSACO algorithm for example Pr107. The
result is preferable to the known optimal solution.

Table 2. Comparison of solution quality between IPDULACO and ABSACO

TSP
instances

Optimal
IPDULACO/ABSACO

Average
IPDULACO/ABSACO

Deviation
IPDULACO/ABSACO

Oliver30 423.74/423.74 424.52/423.74 0.00000/0.00000
Eil51 429.48/428.98 440.67/432.30 0.00817/0.00700
St70 698/677 708/702 0.03407/0.00296
Eil76 553/552 563/569 0.02788/0.02602
Eil101 657.73/641.02 675.23/680.26 0.04568/0.01911
Ts225 130955.48/128758.90 131974.80/132692.73 0.03405/0.01671

Table 3. Comparison of solution quality between NACA and ABSACO

TSP
instances

Optimal
NACA/ABSACO

Average
NACA/ABSACO

Deviation
NACA/ABSACO

Eil51 440/429 458/432 0.03286/0.00704
Berlin52 7602/7544 7892/7573 0.00796/0.00027
St70 712/677 768/702 0.05481/0.00296
Eil76 575/552 620/569 0.06877/0.02602
Pr107 46640/44302 48890/44481 0.05275/-0.00002
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5 Summary

Aiming at the problem that the precision of basic ant colony algorithm for solving
traveling salesman problem is not high, an optimization algorithm is proposed, which
gets the approximate backbone by statistical local optimal solution edge and solves the
traveling salesman problem piecewise on the basis of approximate backbone. The
experiment shows that the algorithm based on approximate backbone subsection has
high accuracy in solving large-scale traveling salesman problem, and can obtain the
optimal solution in an acceptable time. On the basis of a certain amount of local
optimal solution, the approximate backbone is obtained by statistics, and a certain
proportion of the edges in the approximate backbone are taken as the sectioned edges.
The original problem is sectioned to reduce the scale of the problem and improve the
quality of the solution. The next step is to reduce the statistics and the number of
subsections to improve the efficiency of solving the problem. The optimization strategy
based on approximate backbone subsection is applied to other combinatorial opti-
mization algorithms to solve other large-scale traveling salesman problems.
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