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Abstract. Bounded knapsack problem (BKP) is a classical knapsack problem.
At present, methods for solving the BKP are mainly deterministic algorithms.
The literature that using evolutionary algorithms solve this problem has not been
reported. Therefore, this paper uses a binary particle swarm optimization
(BPSO) to solve the BKP. On the basis of using the repair and optimization
method to deal with the infeasible solutions, an effective method of using BPSO
to solve the BKP is given. For three kinds of large-scale BKP instances, the
feasibility and efficiency of BPSO are verified by comparing the results with
whale optimization algorithm and genetic algorithm. The experimental results
show that BPSO is not only more stable, but also can obtain the approximation
ratio closer to 1.
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1 Introduction

Knapsack problem (KP) [1–3] is a class of combination optimization problem, and it is
also a kind of NP-hard problem. It has important theoretical significance and appli-
cation value in the fields of industry, economy, and finance. The KP includes different
expanded forms, such as the classic 0-1 knapsack problem (0-1KP) [4], the multidi-
mensional knapsack problem (MDKP) [5], the multiple knapsack problem (MKP) [6],
the bounded knapsack problem (BKP) [7], the unbounded knapsack problem
(UKP) [8], the quadratic knapsack problem (QKP) [9], the randomized time-varying
knapsack problem (RTVKP) [10] and the set-union knapsack problem (SUKP) [11]
etc., and most of them have been successfully applied in various fields.

Because the time complexity of the deterministic algorithms for solving the KP is
pseudo polynomial time, it is not suitable for solving the large-scale KP instances.
Therefore, one often uses the evolutionary algorithms (EAs) to solve KP [12]. At
present, many effective evolutionary algorithms have been proposed successively, such
as genetic algorithm (GA) [13], particle swarm optimization (PSO) [14], differential
evolution (DE) [15], ant colony optimization (ACO) [16], artificial bee colony
(ABC) [17] and whale optimization algorithm (WOA) [18] etc. Among them PSO is a
famous evolutionary algorithm proposed by Kennedy and Eberhart in 1995, and they
proposed the binary particle swarm optimization (BPSO) in 1997 [19]. Since then,
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several versions of discrete PSO have been proposed. For example, Clerc [20] pro-
posed an improved discrete PSO for solving TSP problem. Van Den Bergh [21]
introduced a new construction model of cooperative PSO and used it to solve IP
problem. Liu et al. [22] presented a hybrid PSO for solving pipeline scheduling
problem. Li et al. [23] proposed a binary particle swarm algorithm based on multiple
mutation strategy to solve 0-1 KP. Bansal et al. [24] proposed an improved BPSO by
limiting the update equation of position and used it to solve 0-1KP. He et al. [10, 11]
solved RTVKP and SUKP respectively by BPSO, and obtained good results. There-
fore, it is not difficult to see that BPSO is very suitable for solving combination
optimization problems in discrete domain.

BKP is a classical KP problem, which has not been solved by evolutionary algo-
rithms. Therefore, this paper uses BPSO to solve the BKP, and verifies the efficiency by
comparing with other algorithms. The rest of this paper is organized as follows: Sect. 2
introduces the mathematical model of BKP. In Sect. 3, we firstly introduce the binary
particle swarm optimization (BPSO), the repair optimization method is given to handle
the infeasible solution, and the pseudo-code of BPSO to solve the BKP is given at the
end. In Sect. 4, the feasibility and efficiency of this method are verified according to the
calculation results of BPSO, improved whale optimization algorithm (IWOA) [25] and
GA on three kinds of large-scale BKP instances. Finally, we summarize the whole
paper and look forward to the future research directions.

2 Definition and Mathematical Model of BKP

BKP is defined as: Given a set of m items, each item i has a profit pi, a weight wi, and a
bound bi. The target is to select a number of each item i such that the sum of the profit
is maximized, and the sum of weight is not exceed C.

BKP is an expanded form of the 0-1 KP, it can be converted to the 0-1KP. In the
BKP, each item i has a bound bi. Set the sum of the quantity of each item is n ¼P

bi,
it can be regarded as a 0-1 KP with n items. Let the value set is P ¼ p1; p2; . . .; pnf g,
the weight set is W ¼ w1;w2; . . .;wnf g, and the knapsack capacity is
C. pi;wið1� i� nÞ, C are positive integers. According to the definition, a mathematical
model of the 0-1KP form of BKP can be established. X ¼ x1; x2; . . .; xn½ � 2 0; 1f gn
stand for a feasible solution of the BKP. xi ¼ 1 means that item i is included in the
knapsack, and xi ¼ 0 that it is not. The mathematical model of the 0-1KP form of BKP
is as follows:

Max:
Xn

i¼1 pixi ð1Þ

s:t:
Xn

i¼1 wixi�C xi 2 0; 1f g ð2Þ
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3 Solve BKP with BPSO

3.1 BPSO

In BPSO, each individual is treated as a particle in the n-dimensional space.
Xi ¼ ðxi1; xi2; . . .; xinÞ and Vi ¼ ðvi1; vi2; . . .; vinÞ stand for the current position and
velocity of the ith particle. Pi ¼ ðpi1; pi2;. . .; pinÞ is the local best position. Assuming
that the problem to be solved is a minimum optimization problem, the Pi is determined
by the formula (3):

Pi tþ 1ð Þ¼ Pi tð Þ; if f ðXi tþ 1ð Þ � f Pi tð Þð Þ
Xi tþ 1ð Þ; if f ðXi tþ 1ð Þ\ f Pi tð Þð Þ

�
ð3Þ

The size of population is N. Pg(t) is the global best position, and determined by the
following formula:

Pg tð Þ 2 P0 tð Þ;P1 tð Þ; . . .;PN tð Þf g j f Pg tð Þ� � ¼ min f P0 tð Þð Þ; f P1 tð Þð Þ; . . .; f PN tð Þð Þf g
ð4Þ

the evolution equation of BPSO can be described as:

vij tþ 1ð Þ ¼ vij tð Þþ c1r1j tð Þ pij tð Þ � xij tð Þ
� �þ c2r2j tð Þ pgj tð Þ � xij tð Þ

� �
; ð5Þ

xij tþ 1ð Þ¼ 0; sig vij tþ 1ð Þ� �� r3 tð Þ
1; sig vij tþ 1ð Þ� �

[ r3 tð Þ
�

: ð6Þ

where c1 and c2 are acceleration constants, and the values are usually between 0 and 2.
r1*U(0, 1), r2*U(0, 1), r3*U(0, 1) are three independent random functions. sig xð Þ ¼
1= 1þ e�xð Þ is a fuzzy function, 1� i�N; 1� j� n.

The initialization process of BPSO is as follows:

(1) Set the size of population is N.
(2) vij is subject to uniform distribution in �vmax; vmax½ �.
(3) Randomly generate xij = 0 or xij = 1.

3.2 Repairing and Optimization Method

Because the BKP is a constrained optimization problem, the infeasible solution may be
generated when solving it by BPSO. Therefore, the infeasible solution needs to be
processed. There are three main methods to deal with this problem: penalty function
method [26, 27], repair method [26] and repairing and optimization method [28, 29].
This paper refers to the idea of the literature [29, 30], and uses the repairing and
optimization method to solve the BKP problems. Let pi/wi be the density of item i. In
the repair phase, the items with less density corresponding to the infeasible solution are
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removed from the knapsack one by one to ensure that the sum of the weight is within
C, that is, the infeasible solution is repaired as a feasible solution. In the optimization
phase, the items that are not loaded with relatively large density are loaded into the
knapsack as much as possible, and will not be overweight after loading.

According to the density, all items are sorted in descending order. The index of
each item are stored in an array H 1. . .n½ �. The BKP-GROA is shown in Algorithm 1.

Algorithm 1. BKP-GROA

Input: A potential solution X=[x1,...,xn]and array H[1…n] 
Output: A feasible solution X=[x1,...,xn] and f(X) 
1. fweight← ,j←n 
2. WHILE (fweight>C) DO
3. IF (xH[j]=1) THEN
4. xH[j]←0,fweight←fweight-wH[j]

5. END IF
6. j←j-1 
7. END WHILE
8. FOR j←1 to N do
9. IF (xH[j]=0) AND(fweight+wH[j]≤C) THEN
10. xH[j]←1,fweight←fweight+wH[j]

11. END IF
12. END FOR
13. RETURN (X f(X)) 

3.3 Application of BPSO to BKP

The main steps to solve BKP by using BPSO are as follows: firstly, randomly initialize
N particles, calculate the fitness of each particle, and determine Pg. Then, the following
process is repeated until the termination condition is met: update the velocity and
position according to formulas (5) and (6), and calculate the fitness of each particle; For
each particle, if its fitness is better than the fitness of Pi, it will be the local best position
at present. Then, the Pg can be determined. Finally, output the optimal solution and
optimal value of BKP.

H 1. . .n½ �  QuickSort fpj
�
wj j pj 2 P;wj 2 W ; 1� j� ng� �

, where QuickSort is
used for sorting all items to descending order according to the density, and all items’
index are stored in an array H 1. . .n½ �. Then, the pseudo-code description of BPSO for
the BKP is shown in Algorithm 2.
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Algorithm 2. BPSO

Input: The population size N, the number of iterations
MaxIter, and c1,c2

Output: Optimal position X* and f(X*)
1. H[1…n]←QuickSort({pj/wj|pj P,wj W,1≤j≤n})
2. Generate initial population Xi (i=1…N) randomly, cal-

culate the fitness of each particle and set Pi=Xi; 
3. t←0;
4. WHILE (t≤MaxIter) 
5. FOR i←1 TO N
6. Update position and velocity of the particles by

formula(5)(6)
7. (Xi,f(Xi))←BKP-GROA (Xi,H[1…n]);
8. END FOR
9. FOR i←1 TO N
10. IF f(Xi(t+1))>f(Pi(t)) then Pi(t+1)←Xi(t+1)
11. Else Pi(t+1)←Pi(t) 
12. END IF
13. Pg=max{Pi|1≤i≤N}
14. END FOR
15.  t←t+1;
16. END WHILE 

4 Experimental Results and Discussions

4.1 BKP Instance and Experimental Environment

In this section, we tested three different types of the BKP: Uncorrelated instances of BKP
(UBKP), Weakly correlated instances of BKP (WBKP), and Strongly correlated BKP
instances (SBKP), each of which contains 10 BKP instances of size 100; 200; . . .; 1000,
namely UBKP1*UBKP10, WBKP1*WBKP10 and SBKP1*SBKP10. For specific
data of all instances, please refer to the document from http://xxgc.hgu.edu.cn/uploads/
heyichao/ThreekindsofBKPInstances.rar.

The HP 280 Pro G3 MT desktop computer is used for all the calculations in this
paper. The hardware configuration is Intel (R) Core (TM) i5-7500 CPU@3.40 GHz
with 4 GB. Programming with C language, the compiler environment is VC++ 6.0;
The line charts are drawn with Python in JetBrains PyCharm.
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4.2 Parameter Settings of Algorithms and Comparison of Calculation
Results

In order to verify the effectiveness of BPSO, it is compared with IWOA and GA, the
detailed parameters of each algorithm are set as follows: In IWOA, N = 50, b = 0.5.
In GA, N = 50, the crossover probability Pc = 0.8, and the mutation probability
Pm = 0.001. In BPSO, N = 50, w = 1.0, c1 = c2 = 1.8. The number of iterations of
each algorithm is twice the size of the instance.

The calculation results of solving the BKP instances are shown in Tables 1, 2 and
3, where OPT is the optimal value of the instance calculated by the dynamic pro-
gramming method (DP), and Best denote the best values by using all algorithms among
50 times. Mean and Std denote the average values and the standard deviations.

Table 1. Comparison of 3 algorithms for solving UBKP instances

Instance Results DP IWOA GA BPSO

UBKP1 Best 201616 201616 201616 201616
Mean 201609.16 201616 201615.18
Std 23.4635 0 4.165

UBKP2 Best 414114 414114 414114 414114
Mean 414114 413995.12 414114
Std 0 69.4964 0

UBKP3 Best 594613 594586 594610 594603
Mean 594580.98 594610 594602.12
Std 6.562 0 3.5757

UBKP4 Best 831629 831612 831611 831614
Mean 831601.72 831594.3 831613.68
Std 11.2855 69.4067 0.7332

UBKP5 Best 1003643 1003628 1003602 1003633
Mean 1003619.98 1003589.74 1003633
Std 6.6588 71.1347 0

UBKP6 Best 1228085 1228083 1228073 1228085
Mean 1228075.68 1227988.58 1228085
Std 3.5465 254.3668 0

UBKP7 Best 1524770 1524759 1524739 1524759
Mean 1524753.82 1524703.04 1524757.88
Std 4.9018 121.1483 1.796

UBKP8 Best 1692853 1692835 1692835 1692844
Mean 1692835 1692684.64 1692841.78
Std 0 431.4943 2.8865

UBKP9 Best 1869142 1869131 1869095 1869138
Mean 1869122.44 1868982.32 1869135
Std 8.8253 360.0176 3.3941

UBKP10 Best 2066060 2066060 2066025 2066060
Mean 2066043.78 2065995.86 2066060
Std 10.6645 66.85 0
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From Table 1, we can see that when using BPSO to solve the UBKP instances, the
best values are better than IWOA and GA except for the instance UBKP3; Except for
the instance UBKP1 and UBKP3, the average values of BPSO are better than IWOA
and GA.

As can be seen from Table 2, when BPSO solves the WBKP instances, the best
values and average values are better than IWOA and GA.

It can be seen from Table 3 that when BPSO solves the SBKP instances, all
instances can reach the optimal value obtained by the deterministic algorithm. Except
that the average values of the instance SBKP4 and SBKP5 are not as good as GA, the
calculation results of other instances are better than IWOA and GA.

Table 2. Comparison of 3 algorithms for solving WBKP instances

Instance Results DP IWOA GA BPSO

WBKP1 Best 119312 119309 119308 119312
Mean 119306.68 119308 119312
Std 3.1333 0 0

WBKP2 Best 297700 297700 297700 297700
Mean 297700 297700 297700
Std 0 0 0

WBKP3 Best 444156 444147 444147 444156
Mean 444144.42 444145.36 444155.82
Std 2.3246 7.375 1.26

WBKP4 Best 605678 605668 605653 605676
Mean 605660.6 605652.68 605675.76
Std 6.5635 1.0852 1.1926

WBKP5 Best 772191 772187 772168 772188
Mean 772184.88 772168 772188
Std 2.8889 0 0

WBKP6 Best 890314 890307 890303 890313
Mean 890303.32 890300.6 890313
Std 2.6566 6.3119 0

WSBKP7 Best 1045302 1045297 1045291 1045297
Mean 1045294.38 1045272.3 1045297
Std 2.125 56.1 0

WBKP8 Best 1210947 1210944 1210936 1210944
Mean 1210941.14 1210936 1210944
Std 2.9121 0 0

WBKP9 Best 1407365 1407364 1407364 1407364
Mean 1407364 1407318.18 1407364
Std 0 168.6493 0

WBKP10 Best 1574079 1574074 1574066 1574075
Mean 1574071.92 1574000.56 1574074.4
Std 2.2076 183.7961 0.4899
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In order to compare the performance of IWOA, BPSO and GA more intuitively, the
average approximation ratio and the best approximation ratio are used to verify the
performance. The average approximation ratio is defined as OPT/Mean, and the best
approximation ratio is defined as OPT/Best. Figures 1, 2 and 3 shows the comparison
of the average approximation ratio and the best approximation ratio of IWOA, GA and
BPSO for three types of BKP instances.

As can be seen from Fig. 1(a), the average approximation ratio of BPSO is better
than GA except UBKP1 and UBKP3, and BPSO is better than IWOA in solving all
UBKP instances. From Fig. 1(b), we can see that the best approximation ratio obtained
by BPSO is better than IWOA and GA except UBKP3. As can be seen from Fig. 2, the

Table 3. Comparison of 3 algorithms for solving SBKP instances

Instance Results DP IWOA GA BPSO

SBKP1 Best 144822 144821 144822 144822
Mean 144815.12 144822 144822
Std 7.8426 0 0

SBKP2 Best 259853 259853 259853 259853
Mean 259844.92 259853 259853
Std 5.5239 0 0

SBKP3 Best 433414 433414 433414 433414
Mean 433406.42 433414 433414
Std 6.2421 0 0

SBKP4 Best 493847 493847 493847 493847
Mean 493841.46 493847 493846.94
Std 4.8092 0 0.2375

SBKP5 Best 688246 688246 688246 688246
Mean 688240.14 688246 688245.938
Std 5.0991 0 0.1972

SBKP6 Best 849526 849526 849526 849526
Mean 849523.98 849523.08 849526
Std 3.3555 4.6897 0

SBKP7 Best 1060106 1060106 1060105 1060106
Mean 1060104.38 1060100.82 1060106
Std 1.7192 5.2486 0

SBKP8 Best 1171576 1171576 1171566 1171576
Mean 1171570.18 1171554.18 1171576
Std 5.2103 9.5408 0

SBKP9 Best 1263609 1263609 1263597 1263609
Mean 1263606.02 1263591.72 1263609
Std 3.1968 15.3467 0

SBKP10 Best 1412095 1412095 1412085 1412095
Mean 1412089.16 1412074.88 1412095
Std 3.7382 13.3396 0
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average approximation ratio and the best approximation ratio of BPSO are better than
IWOA and GA in solving WBKP instances, and the performance of BPSO is very
stable for ten different scales of WBKP instances.

Fig. 1. The approximation ratio of 3 algorithms for solving UBKP instances

Fig. 2. The approximation ratio of 3 algorithms for solving WBKP instances

Fig. 3. The approximation ratio of 3 algorithms for solving SBKP instances
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As can be seen from Fig. 3, the average approximation ratio and the best
approximation ratio of BPSO are almost all 1 when solving SBKP instances, and the
performance of BPSO is very stable for ten different scale SBKP instances; the per-
formance of IWOA and GA is not as good as BPSO and the stability is inferior to
BPSO when solving few instances.

5 Conclusion

In this paper, BPSO is used to solve the BKP problem, and the performance of BPSO is
verified by three kinds of large-scale BKP instances. The comparison with the
experimental results of IWOA and GA shows that the best values and average values
obtained by BPSO are better when solving BKP instances. In addition, by comparing
the average approximation ratio and the best approximation ratio, it is not difficult to
see that BPSO not only has good stability, but also has the approximation ratio closer to
1, so the calculation effect is optimal. Although BKP is a classical combination opti-
mization problem, the research of its solution by using evolutionary algorithms is
relatively weak. Therefore, it is worthy of further research to explore the performance
of BKP using other EAs.
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