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Abstract. As a population-based intelligence algorithm, fireworks algorithm
simulates the firework’s explosion process to solve optimization problem.
A comprehensive study on Gaussian spark operator in enhanced fireworks
algorithm (EFWA) reveals that the search trajectory is limited by the difference
vector and the diversity of swarm is not effectively increased by new sparks
adding. An improved version of EFWA (IEFWA) is proposed to overcome these
limitations. In IEFWA, a new Gaussian spark operator utilizes the location
information of the best firework and randomly selected firework to calculate the
center position and explosion amplitude, which enhance the search for potential
region. Experiments on 20 well-known benchmark functions are conducted to
illustrate the performance of IEFWA. The results turn out IEFWA outperforms
EFWA and dynFWA on most testing functions.
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1 Introduction

In the last two decades, many swarm intelligence (SI) algorithms, which simulate the
behavior of simple nature agents to produce the intelligent ability, have been proposed
to solve engineering optimization problems. SI algorithms include such as ant colony
algorithm (ACO) [1], particle swarm optimization (PSO) [2], firefly algorithm (FA) [3],
cuckoo search [4], wolf colony algorithm (WCA) [5], whale optimization algorithm
(WOA) [6], fireworks algorithm (FWA) [7] and so on. FWA is inspired by the
explosion process of real fireworks in night sky and firstly proposed by Tan in 2010
[7]. The research work on FWA can be classified into two categories: (1) algorithm
improvements: single objective FWA [8–11], multi-objective FWA [12], parallel FWA
[13, 14], hybrid FWA with DE [15, 16]; (2) algorithm applications: FWA has been
used in digital filter design [17], parameters optimization [18], harmonic elimination
[19], multi-satellite control resource scheduling [20], and so on.

The remainder of this paper is organized as follows. Section 2 presents a detailed
introduction of FWA. The review of well-known improvement FWA versions is pre-
sented in Sect. 3. In Sect. 4, the behavior of Gaussian sparks in EFWA is analyzed and
a new Gaussian sparks operator is proposed to enlarge the search region. Experimental
results are presented to validate the performance of IEFWA in Sect. 5. The conclusion
is drawn in Sect. 6.
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2 The Classical FWA

With generality, FWA [7] is for solving global minimal problem,

min f ~xð Þ; ~x ¼ x1; � � � ; xDð Þ 2 X ¼
YD

i¼1
ai; bi½ �; ð1Þ

where f: RD! R is a continuous problem, the dimension of ~x is D, ai and bi are the
lower bound and upper bound of the ith component in feasible region X, and
�1\ai\bi\þ1.

FWA is a population-based heuristic algorithm which consists of three main
operators: the explosion operator, the Gaussian sparks operator and the selection
operator.

2.1 Explosion Operator

The explosion operator generates numerous sparks which explode with the center
(firework xi). For each firework xi, its explosion sparks’ number si is defined as follows,

si ¼ M
ymax � f xið Þþ nPn

i¼1ðymax � f xið ÞÞþ n
ð2Þ

where n is the number of fireworks, M is the total number of sparks generated by
n fireworks, ymax ¼ max f xið Þð Þ i ¼ 1; 2; . . .; nð Þ is the worst value of the objective
function of the fireworks, and n is smallest constant to ensure the divisor is nonzero.

To avoid the overwhelming effects of the best fireworks, si is limited in a range, as
follows:

si ¼
Smin if si\Smin
Smax if si\Smax
Si otherwise

8<
: ; ð3Þ

where Smin and Smax are the lower bound and upper bound for the spark number.
The firework’s explosion amplitude is calculated as follows:

Ai ¼ Â
f xið Þ � ymin þ nPn

i¼1ðf xið Þ � yminÞþ n
; ð4Þ

where bA is the maximum explosion amplitude, ymin ¼ min f xið Þð Þ i ¼ 1; 2; . . .; nð Þ is
the best value of the objective function of the fireworks.

From the formula (2) and (4) above, it can be found out the better the firework’s
fitness is, the more sparks it generates and the smaller amplitude it produces. Thus, the
firework’s fitness determines the search behavior, that is, the firework with better
fitness conducts exploitation and the firework with worse fitness conducts exploration.
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Then using the formula (2) and (4), the explosion sparks are generated by Algo-
rithm 1.

2.2 Gaussian Sparks Operator

To keep the population diversity, Gaussian sparks operator is used to generate sparks in
Gaussian distribution with the center which is the selected firwork’s location. The
Gaussian sparks operator is computed by

epkj ¼ epkj � 1þN 0; 1ð Þð Þ; ð5Þ

where N(0,1) is the Gaussian distribution function with the mean value 0 and the
standard deviation 1.

Then using the formula (5), the Gaussian sparks are generated by Algorithm 2.

2.3 Selection of Locations

Like other EA algorithms, certain number sparks and fireworks should be survived for
the next generation in FWA. Obviously, the best location (x*) with the minimal
objective function f(x*) is an optimal location in current generation and should be kept
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for the next generation. After that, for maintaining the diversity of the generation, the
other locations are selected based on their distance to other locations. The total distance
R(xi) between the spark xi and other locations xj is defined as follows:

R xið Þ ¼
X

j2K d xi; xj
� �

; ð6Þ

where K is the number of fireworks and sparks.
The selection probability P(xi) of location xi is calculated by formula (7).

P xið Þ ¼ R xið Þ=
X

j2K R xj
� � ð7Þ

From (7), the selection probability is proportional to the distance. The larger total
distance R(xi) is, the higher selection probability location xi has. Thus, the locations
which are far from other sparks and fireworks are prone to be selected. The selection
scheme ensures the population diversity to some extent.

2.4 Framework of Basic FWA

The framework of basic FWA is described as follows.

Algorithm 3. Framework of the classical FWA
Randomly initialize n locations of fireworks
while stop condition is not satisfied do

generate explosion sparks for fireworks by algorithm 1
generate Gaussian sparks for fireworks by algorithm 2

select the best location in the fireworks and sparks
randomly select other n-1 locations according to the probability (7)

end while

3 Related Work

In enhanced Fireworks algorithm (EFWA) [8], for the problem that the explosion
amplitude of the best fireworks is close to 0, the authors proposed a linear and non-
linear decreasing method with the evolution process to set the lower bound Amin of
explosion amplitude. Because the solutions out of feasible search space are mapped
close to the origin by the mapping operator, FWA has worse results with increasing
distance between function optimum and the origin of the search space. For this
drawback, the mapping operator in EFWA is replaced by uniform random mapping
operator in range [ai, bi]. In FWA, calculation of the distance between locations in
selection strategy costs a high computational time. The Elitism-Random selection
method whose computational complexity is linear with respect of the number of fire-
works is applied in EFWA, therefore the runtime of EFWA is reduced significantly.
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In [9], a new mutation operator with the covariance matrix (CM) is proposed.
In FWACM, l better sparks (vi) are selected from the sparks in each generation and
calculated the mean value m ¼ 1

l

Pl
i¼1 vi. Then the element cov(vi,vj) in covariance

matrix C is calculated. Finally, Gaussian sparks are produced according with Gaussian
distribution N(m,C) by mean value m and covariance matrix C. The covariance
mutation operator produces Gaussian sparks nearly at the direction of the gradient of
the function, which makes the new algorithm useful at finding the local optimum. From
the experimental results on CEC 2015 competition problems, FWACM outperforms
AFWA [10] on unimodal functions and hybrid functions.

The dynamic search fireworks algorithm (dynFWA) [11] is a state-of-the-art ver-
sion of the fireworks algorithm. It outperforms FWA and EFWA on the 28 benchmark
functions in CEC2013. There are two main improvements in dynFWA:

(1) Dynamic explosion amplitude for the elitist. In FWA and EFWA, the explosion
amplitude solely depends on the fitness. But, in dynFWA, the explosion amplitude
of the core firework (CF) which is the firework with the best fitness is dynamic in
each generation. In the initial stage, CF is the best one among all randomly
initialized fireworks. After that, if in generation g, the sparks of CF find a better
location than the best in generation g-1, the amplitude will be enlarged by an
amplification coefficient Ca > 1, otherwise it will be reduced by a coefficient
Cr < 1. Thus, the explosion amplitude is dynamically adjusted according the
search performance in the last generation,

ACF;g ¼ ACF;g�1 � Ca f xCF;g
� �

\f xCF;g�1
� �

ACF;g�1 � Cr f xCF;g
� � ¼ f xCF;g�1

� ��
; ð8Þ

where ACF,g is the explosion amplitude of the CF in generation g.
(2) Elimination of the Gaussian sparks operator. Based on the analysis of the

Gaussian sparks location, the Gaussian mutation operator is removed by
dynFWA.

4 The IEFWA

4.1 Analysis of Gaussian Sparks Operator in EFWA

In EFWA, the Gaussian sparks are generated by the formula:

epkj ¼ epkj þ xkbest � epkj� �
� e; ð9Þ

where xbest is the best firework that has been found so far and e is the Gaussian
distribution N(0,1).

From the formula (9), the new Gaussian sparks position will be located along the
direction of difference vector xbest � epj . For 2D problem, it can be represented as
Fig. 1. In Fig. 1, the black dot is the position of xbest, the white dot is the position of epj
and the grey dots are the possible locations that may be generated by Gaussian sparks.
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According to the Gaussian sparks operator, the position of the sparks may be located at
three situations: (1) close to the best firework xbest; (2) close to the selected firework epj ;
(3) some distance to both xbest and epj .

Figure 2 is the bell-shaped curve of Gaussian distribution. From the mathematical
statistic, the points have 95.45% possibility located in [−2, 2]. That means the first two
situations have a high probability to occur. However, for the first two situations, it is
similar to the effect of the explosion process made by the best firework xbest and the
selected firework epj .

4.2 An Improved Gaussian Sparks Operator in EFWA

From the above discussion in Sect. 4.1, Gaussian sparks operator has been removed by
dynFWA, because it has little effect in EFWA evolution process. In this section, a new
Gaussian Sparks operator is proposed.

Similar to the Gaussian operator in EFWA, the best firework xbest found so far and
the selected firework epj are still selected in the improved Gaussian sparks operator. But
in the new Gaussian sparks, the center of xbest and epj is assigned a new vector, the

Fig. 1. Gaussian sparks’ locations in EFWA.

Fig. 2. Gaussian distribution N(0,1).
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Euclidean distance xbest � epj�� �� is the amplitude for the Gaussian distribution. The new
Gaussian sparks formula is

epkj ¼ xkbest þ epkj
2

� xbest � epj�� �� � 1þN 0; 1ð Þð Þ; ð10Þ

where the symbol “±” means the minus and plus operator can be selected randomly,
and each has 50% possibility.

As shown in Fig. 3, because the distribution character of the Gaussian function, the
new mutation operator will have a high chance to scatter the spark in the area with the

center c ¼ xkbest þ epkj
2 and the radius xbest � epj�� ��. The search trajectory of Gaussian sparks

operator in EFWA is along the line between xbest and epj , but the improved Gaussian
sparks operator enlarge the search region.

The details of the improved Gaussian operator are given in Algorithm 4.

Fig. 3. The improved Gaussian sparks’ locations.
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4.3 Framework of IEFWA

Algorithm 5 summarizes the framework of IEFWA. In each generation, the population
goes through two types of explosions that generates explosion sparks and Gaussian
sparks. After the evaluation process, the best one will be conserved to next generation.
Suppose the algorithm is executed in T generations, the complexity of the IEFWA is O
(T•(M + m)).

5 Experiments and Discussion

5.1 Benchmark Functions

To investigate the performance of the proposed IEFA, we conducted the experiments
on 20 benchmark functions for 30 dimensions. The function name, the feasible bounds
and the optimal fitness are listed in Table 1. The functions in Table 1 can be classified
into three types, (1) unimodal functions; (2) multimodal functions; (3) shift functions.
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5.2 Comparison Experiments Among EFWA, dynFWA and IEFWA

In this section, we compare the performance of IEFWA with EFWA and dynFWA in
terms of both convergence speed and optimization accuracy. The parameters are set as
those used in the original literature.

(1) EFWA: n = 5, M = 50, Â ¼ 40, Ainit = 0.02(b − a), Afinal = 0.001(b − a), m = 5;
(2) dynFWA: Me(the maximum number of explosions sparks) = 150, Â ¼ 40, Cr =

0.9, Ca = 1.2;
(3) IEFWA: n = 5, M = 50, Â ¼ 40, Ainit = 0.02(b − a), Afinal = 0.001(b − a),

m = 5;

Each algorithm is executed independently 50 times, the mean solution error and
standard deviation are reported in Table 2 for D = 30. The wilcoxon’s rank-sum test at
the 0.05 significance level is employed to judge the significant difference between
IEFWA and other algorithms, “+”, “−” and “=” represent our proposed algorithm
IEFWA is, respectively, better than, worse than and similar to the compared one in the
Wilcoxon’s rank-sum test.

Table 1. Benchmark functions

Type Functions Name f X��!� �
Search range

Unimodal functions F01 Sphere 0 [−100, 100]
F02 Schwefel 2.22 0 [−10, 10]
F03 Schwefel 1.2 0 [−100, 100]
F04 Schwefel 2.21 0 [−100, 100]
F05 Rosenbrock 0 [−100, 100]
F06 Step 0 [−100, 100]
F07 Quartic with Noise 0 [−1.28, 1.28]

Multimodal functions F08 Schwefel 2.26 −1259.5 [−500, 500]
F09 Rastrigin 0 [−5.12, 5.12]
F10 Ackley 0 [−32, 32]
F11 Griewank 0 [−600, 600]
F12 Penalized1 0 [−50, 50]
F13 Penalized2 0 [−50, 50]

Shift functions F14 Shift Sphere 2 [−100, 100]
F15 Shift Schwefel 1.2 2 [−100, 100]
F16 Shift Schwefel 1.2 with Noise 2 [−100, 100]
F17 Shift Griewank 2 [−600, 600]
F18 Shift Ackley 2 [−32, 32]
F19 Shift Penalized1 2 [−50, 50]
F20 Shift Penalized2 2 [−50, 50]
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From Table 2, IEFWA obtains better results than EFWA and dynFWA on 14 out of
20 functions, respectively. For unimodal functions F1–F7, it is clear that IEFWA is the
best one, it beats EFWA and dynFWA on each function. That may be the reason that
IEFWA uses the globe best firework information in the Gaussian sparks operator and
expand the search direction. For multimodal functions F8–F13, IEFWA outperforms
EFWA on 5 out of 6 functions (except for function F8 where they are even) and
IEFWA performs better than dynFWA on 4 functions (except for function F8 where
they are even and function F13 where dynFWA is better). For shift functions F14–F20,
IEFWA is better than EFWA, but worse than dynFWA on 4 functions. It might be
because dynFWA’s dynamic explosion amplitude method and removal of Gaussian
explosion operator are suitable for shift type functions.

The convergence curves of EFWA, dynFWA and IEFWA on function F7, F12, F16,
F18 are shown in Fig. 4. The convergence curves show IEFWA has a fast convergence
speed without loss of accuracy.

Table 2. The results of EFWA, dynFWA and IEFWA

EFWA
Mean ± Std

dynFWA
Mean ± Std

IEFWA
Mean ± Std

F1 1.53E−01 ± 2.43E−02 + 1.74E−15 ± 2.26E−15 + 0.00E+00 ± 0.00E+00
F2 1.67E−01 ± 1.76E−02 + 8.91E−10 ± 6.77E−10 + 0.00E+00 ± 0.00E+00
F3 1.09E+00 ± 3.22E−01 + 5.32E−04 ± 6.41E−04 + 0.00E+00 ± 0.00E+00
F4 1.87E−01 ± 2.02E−02 + 2.72E−05 ± 2.84E−05 + 0.00E+00 ± 0.00E+00
F5 9.91E+01 ± 1.22E+02 + 9.02E+01 ± 9.28E+01 + 2.74E+01 ± 2.60E−01
F6 7.00E−01 ± 7.50E−01 + 4.63E+00 ± 1.96E+00 + 0.00E+00 ± 0.00E+00
F7 1.98E−03 ± 9.36E−04 + 6.99E−03 ± 2.58E−03 + 1.11E−04 ± 1.20E−04
F8 −7.16E+03 ± 6.06E+02 ¼ −7.38E+03 ± 7.77E+02 ¼ −7.19E+03 ± 7.74E+02
F9 1.52E+02 ± 2.62E+01 + 2.36E+01 ± 9.39E+00 + 0.00E+00 ± 0.00E+00
F10 4.69E+00 ± 8.22E+00 + 1.56E+00 ± 4.68E+00 + 0.00E+00 ± 0.00E+00
F11 2.38E−01 ± 3.71E−02 + 3.21E−02 ± 2.60E−02 + 0.00E+00 ± 0.00E+00
F12 6.78E+00 ± 2.14E+00 + 3.46E−03 ± 1.89E−02 + 4.80E−06 ± 2.81E−06
F13 6.48E−03 ± 3.83E−03 + 7.91E−12 ± 4.33E−11 − 6.61E−05 ± 3.99E−05
F14 1.56E−01 ± 2.75E−02 + 9.80E−15 ± 2.79E−14 − 1.47E−03 ± 6.41E−04
F15 9.76E−01 ± 2.43E−01 + 4.76E−04 ± 5.25E−04 − 2.36E−01 ± 6.41E−02
F16 2.08E+00 ± 9.36E−01 + 5.45E+02 ± 4.11E+02 − 2.22E−01 ± 6.71E−02
F17 2.47E−01 ± 4.69E−02 + 3.60E−02 ± 2.49E−02 ¼ 9.97E−02 ± 5.44E−02
F18 9.27E+00 ± 9.61E+00 + 6.02E+00 ± 8.41E+00 + 8.89E−03 ± 1.58E−03
F19 6.58E+00 ± 2.39E+00 + 2.37E−04 ± 1.30E−03 + 5.61E−06 ± 3.45E−06
F20 5.68E−03 ± 1.12E−03 + 2.28E−13 ± 1.23E−12 − 7.19E−05 ± 4.20E−05
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6 Conclusion

Based on the comprehensive study on EFWA, we propose an improved version of
enhanced fireworks algorithm (IEFWA) in this paper. In IEFWA, to fix the problem of
monotonous search trajectory in EFWA, a new Gaussian explosion operator which
generates the sparks with Gaussian distribution character by the locations and the
distance between the best firework and candidate firework is introduced.

Experimental results show that the IEFWA outperforms EFWA and dynFWA on
most competition functions. However, some research work should be done on IEFWA
to enhance the performance on shift functions.

Acknowledgment. This work is supported by the self-determined research funds of CCNU
from the colleges basic research and operation of MOE (No. CCNU18QN018).

a) the convergence curve on F7 b) the convergence curve on F12

c) the convergence curve on F16
d) the convergence curve on F18

Fig. 4. The convergence curves of EFWA, dynFWA and IEFWA.
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