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Abstract. Firefly algorithm (FA) is a global optimization algorithm with
simple, less parameter and faster convergence speed. However, the FA is easy to
fall into local optimum, and the solution accuracy of the FA is lower. In order to
overcome these problems. An improved Firefly algorithm hybrid with Fireworks
(FWFA) is proposed in this paper. Because the local search ability of the fire-
works algorithm’s search strategy is strong, we introduce the fireworks algo-
rithm neighborhood search operator of the fireworks algorithm into the firefly
algorithm to improve the local search ability of the Firefly algorithm. Through
the simulation and analysis of 28 benchmark functions, verify the effectiveness
and reliability of the new algorithm. The experimental results show that the new
algorithm has excellent search ability in solving unimodal functions and mul-
timodal functions.

Keywords: Swarm intelligence � Firefly algorithm (FA) � Domain search �
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1 Introduction

Firefly algorithm (FA) [1] is a new intelligent algorithm. It is proposed by Yang in
2008. Firefly algorithm simulates the biological characteristics of fireflies, such as
luminosity, mutual attraction and movement, and searches for partners in a certain
range. After several moves, the algorithm achieves the purpose of optimization. Firefly
algorithm is simple, with few parameters and fast convergence speed. It is applied to
optimal configuration of distributed power [2], train operation adjustment [3], no-wait
flowshop scheduling [4], path planning [5], assessment of groundwater quality [6] and
other problems, and successfully solved the production problem. It is an excellent
intelligent stochastic algorithm.

The shortcomings of FA are slow convergence speed, easy to fall into local opti-
mum, strong correlation between optimization results and parameters. Researchers
have made various improvements to it. In 2014, Yu et al. proposed a step setting
strategy based on individual best position and global best position [7], and in 2015,
they proposed a nonlinear dynamic adjustment step strategy [8], which improved the
search quality of the Firefly algorithm. In 2018, Wang [9] et al. proposed a new
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algorithm based on local uniform search and variable step size (UVFA), which reduces
the time complexity of the standard Firefly algorithm, improves the convergence
accuracy and enhances the robustness of the algorithm.

Researchers have proposed many personalized hybrid algorithms for various swarm
intelligence algorithms to obtain good performance of optimization problems. For
example, A hybrid algorithm based on Firefly algorithm and Differential Evolution
[10], A hybrid algorithm based on Particle Swarm and Fireworks [11], A hybrid swarm
intelligence optimization for benchmark models by blending PSO with ABC [12],
Obstacle avoidance path planning of intelligent mobile based on Improved Fireworks-
Ant Colony hybrid algorithm [13], Glowworm-Particle Swarm hybrid Optimiza [14], A
hybrid optimization algorithm of Cuckoo Search and DE [15], A Hybrid Optimization
algorithm based on Artificial Swarm and Differential Evolution [16].

This paper optimizes the search process of standard FA by using the strong
exploitation ability of Fireworks algorithm (FWA) [17], embeds the explosive search
process into the standard FA. An improved Firefly algorithm hybrid with Fireworks is
proposed. Although the mechanism of Firefly algorithm and Fireworks algorithm is
different, but the algorithm is parameterized, the interface can be interoperable, and the
unique parameters can be constant quantization.

2 Firefly Algorithm

The standard Firefly algorithm is a heuristic algorithm based on the glowing and
courtship behavior of fireflies. It is used to solve the stochastic optimization problem.
The algorithm handles the bioluminescence and photoluminescence behavior of firefly,
making the algorithm simple, efficient and practical. Three hypotheses are proposed.
Firstly, all fireflies are unisex. So, one firefly will be attracted to other fireflies regardless
of their sex. Secondly, attractiveness is proportional to their brightness. Thus, for any
two flashing fireflies, the less bright one will move toward the brighter one. The
attractiveness is proportional to the brightness and they both decrease as their distance
increases. If there is no brighter one than a particular firefly, it will move randomly.
Thirdly, the brightness of a firefly is affected or determined by the landscape of the
objective function. For a minimization problem, the brightness can be reciprocal of
objective function. It means that a brighter firefly has a smaller objective function value.

In FA, the main formulas include relative luminance formula, relative attractiveness
formula and position update formula [18].

The luminance formula is:

IðrÞ ¼ I0e�cr ð1Þ

where is the maximum fluorescence brightness of fireflies, i.e. the fluorescence bright-
ness at r = 0, which is related to the value of the objective function, the better the value
of the objective function, the higher the brightness of the firefly itself; c is the intensity
absorption coefficient to reflect the weakening characteristics of light intensity, in most
cases, c 2 [0.01, 100]; r is usually the Euclidean distance between fireflies i and j.
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The attractiveness can be calculated as follows:

bðrÞ ¼ b0e
�cr2 ð2Þ

where b0 is the attractiveness at r = 0, and c is the absorption coefficient of light
intensity.

The movement of a firefly Xj, which is attracted to another brighter firefly Xi, is
determined by

xjðtþ 1Þ ¼ xjðtÞþ bðxiðtÞ � xjðtÞÞþ aej ð3Þ

where xj(t + 1) is the position of firefly xj after the move of t + 1; a is a random value
with the range of [0, 1]; and e is a Gaussian random number with the range of [0, 1].

FA steps are shown in Algorithm 1.

1) Choose fitness func on. f(X),X= (x1,x2,…,xd)T

2) Randomly ini alize the fireflies popula on.Xi,(i=l, 2,…,n)
3) Ini aliza on algorithm basic parameters
4) FEs=n
5) While (FEs< MaxFEs) 
6) For i=1:n
7) For j=1:n
8) If (Ij>Ii) 
9) Compute rela ve a rac on. according to formula (2)
10) Move xi toward xj according to formula (3) 
11)        Compute the fitness value of f(X)
12) FEs= FEs+1
13)      End if
14)    End for
15) End for
16) Rank all fireflies and determine the best loca on
17) End while

Algorithm 1: The Standard FA

In the algorithm, individuals exchange information by fluorescence to form a
positive feedback mechanism, which ensures that the whole population can find the
optimal solution with a higher probability.

3 Proposed Approach

3.1 Domain Search Model

In the standard FA, the attraction between fireflies is random. If the number of
attractions is too large, it will cause repeated oscillations and increase the time cost. If
the number of attraction is too small, it will miss the best value and premature

An Improved Firefly Algorithm Hybrid with Fireworks 29



convergence. Therefore, attracting quantity and search scope has become an important
factor. If the local optimal value is found first and then iterate, the performance of the
optimization algorithm can be achieved by promoting the global optimization with the
local optimal value. That is, by enhancing the local exploitation capacity to promote the
overall exploration capability.

Based on the above considerations, an optimal solution is obtained in the domain
with radius ri1. After iteration, the optimal solution is regarded as the optimal individual
in the population, which is regarded as the central point and searched radially with
radius ri2. The second optimal value is obtained, and then the solution is regarded as the
individual of the population and the individual as the central point and the radius as the
ri3 radiation search, and so on. This radial search is similar to the fireworks and sparks
generated when the fireworks explode. The fireworks are the individual of the parent
population and the sparks are the children of the iterated update population.

Domain search is performed in D-dimensional space, and the search process in two-
dimensional space is shown in Figs. 1(a) to (d). Firefly individual Fi1 is a better
individual obtained for the first time. Based on this individual as a benchmark and
radius ri1 as a domain, the better individual Fj1 is obtained and Fj1 as the next gener-
ation Fi2. After the iteration, Fi2 is taken as the center and ri2 is taken as the radius to

(a)Domain search produces be er 
values Fj1

(b) Produce superior values Fj2 with Fj1 as 
a seed

(c) Produce superior values Fj3 with
Fj2 as a seed

(d) The process of genera ng a be er 
value for domain search
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Fig. 1. The search model for 2D space domain
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search the domain. The optimal value Fj2 is obtained, and Fj2 is taken as the Fi3 after the
iteration. Fi3 as the center and ri3 as the radius of the domain search, get a better value
of Fj3, so iterate on until the optimal or the maximum number of evaluations.

3.2 Fireworks Search Strategy

Based on the above model, the process of searching neighborhood by using Firefly
algorithm is introduced, and the standard FA is improved. In the Firefly algorithm, the
explosion radius and the number of sparks produced by each fireworks explosion are
calculated according to their fitness values relative to other fireworks in the fireworks
population. For the fireworks xi, the Ai of the explosion radius is calculated as follows:

Ai ¼ Â� f xið Þ � ymin þ e
PN

i¼1
f xið Þ � yminð Þþ e

ð4Þ

where ymin ¼ minðf ðxiÞÞ; ði ¼ 1; 2; . . .;NÞ, it is the minimum fitness value of the cur-
rent population. It is a constant used to adjust the size of the explosion radius.

The number of exploding sparks Si of fireworks xi is calculated as follows:

Si ¼ Ŝ� ymax � f xið Þþ e
PN

i¼1
ymax � f xið Þð Þþ e

ð5Þ

where ymax ¼ maxðf ðxiÞÞ; ði ¼ 1; 2; . . .;NÞ, it is the fitness maxima of the current
population. Ŝ is a constant that adjusts the number of explosions. e is the smallest part
of a machine to avoid zero operation.

In the improvement of FA, formula (4) is used to calculate the radius of neigh-
borhood search, and formula (5) is used to calculate the number of fireflies within the
radius.

3.3 An Improved Firefly Algorithm Hybrid with Fireworks

Based on the idea of neighborhood search model, a firework-type neighborhood search
operator is added to the standard FA. At the same time. An improved Firefly algorithm
hybrid with Fireworks (FWFA) is proposed using the above population generation
method. After each search of the standard FA, the number of fireflies within the search
radius and radius is calculated, and then a firework search is conducted to generate new
firefly individuals, and finally the population is updated to complete a search. The
algorithm steps are shown in Algorithm 2. The difference between the algorithm and
the standard FA is 13 to 16 rows.
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1) Choose fitness func on. f(X),X= (x1,x2,…,xd)T

2) Randomly ini alize the fireflies popula on.Xi,(i=l, 2,…,n)
3) Ini aliza on algorithm basic parameters
4) FEs=n
5) While (FEs< MaxFEs) 
6) For i=1:n
7) For j=1:n
8) If (Ij>Ii) 
9) Compute rela ve a rac on. according to formula (2)
10) Move xi toward xj according to formula (3) 
11) Compute the fitness value of f(X)
12) FEs= FEs+1
13) Compute search radius according to formula (4)
14)        Calculate the number of fireflies in the radius according to formula (5)
15) Fireworks search to create new fireflies
16)        Regenera on population
17)      End if
18)    End for
19) End for
20) Rank all fireflies and determine the best loca on.
21) End while

Algorithm 2: The proposed FWFA

4 Simulation Experiments

4.1 Experimental Setup and Benchmark Function

In this paper, 28 standard test functions in CEC2013 are used to analyze and verify the
convergence rate and the quality of the FWFA. The test functions are shown in
Table 1. See Reference [19] for a detailed description. The function f1–f5 is a unimodal
peak function, which is used to test the optimization accuracy of the algorithm and the
performance of the algorithm. The function f6–f20 is a basic multimodal function with
multiple minimum values. The number of local optimum points increases exponentially
with the increase of dimension, which is used to test the ability of the algorithm to jump
out of local optimum. The function f21–f28 is a composition function with both uni-
modal peak and multimodal functions.

The experimental hardware environment is Intel Core i7-4790 CPU@3.60 GHz
processor, 8 GB memory, 64-bit operating system; the software environment is Win-
dows 7 operating system, MATLAB R2016b version.

In the experiment, the dimension D of 28 test functions was set to 30, each function
was run 30 times, the maximum number of iterations MaxFEs was set to D * 5000, and
the population size was 50. The parameters of FA, WSSFA, VSSFA and FWFA are set
in the same way. Among them, the attractiveness of firefly b0 is 1, the step factor a is
0.2, and the optical absorption factor c is 1. The maximum number of sparks for
standard FWA and FWFA is 40, the minimum spark number is 2, and the number of
Gauss mutations is 5.
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4.2 Results

In order to directly evaluate the performance of FWFA, the standard FA, the improved
WSSFA [7], the improved VSSFA [8], the standard FA and the FWFA are compared,
and the Wilcoxon rank sum test [20], the specific data as shown in Table 2. At the
bottom of the table, the Wilcoxon’s rank sum test results at a 0.05 significance level
between FWFA and others are summarized, in which the symbol “−”, “+”, and “�”
represent that the performance of the related algorithm is worse than, better than and
similar to that of FWFA, respectively. The rough part is the average error optimal value
in the comparison algorithm.

Table 1. The CEC’13 benchmark functions

No. Function name Optimal
value

Unimodal function 1 Sphere function −1400
2 Rotated high conditioned elliptic function −1300
3 Rotated bent cigar function −1200
4 Rotated discus function −1100
5 Different powers function −1000

Basic multimodal
function

6 Rotated Rosenbrock’s function −900
7 Rotated Schaffers F7 function −800
8 Rotated Ackley’s function −700
9 Rotated Weierstrass function −600
10 Rotated Griewank’s function −500
11 Rastrigin’s function −400
12 Rotated Rastrigin’s function −300
13 Non-continuous rotated Rastrigin’s

function
−200

14 Schwefel’s function −100
15 Rotated Schwefel’s function 100
16 Rotated Katsuura function 200
17 Lunacek Bi_Rastrigin function 300
18 Rotated Lunacek Bi_Rastrigin function 400
19 Expanded Griewank’s plus Rosenbrock’s

function
500

20 Expanded Scaffer’s F6 function 600
Composition functions 21 Composition function 1 (n = 5, rotated) 700

22 Composition function 2 (n = 3, unrotated) 800
23 Composition function 3 (n = 3, rotated) 900
24 Composition function 4 (n = 3, rotated) 1000
25 Composition function 5 (n = 3, rotated) 1100
26 Composition function 6 (n = 5, rotated) 1200
27 Composition function 7 (n = 5, rotated) 1300
28 Composition function 8 (n = 5, rotated) 1400
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Comparing with standard FA, WSSFA and VSSFA, FWFA has absolute advan-
tages over standard FA, WSSFA and VSSFA in 28 functions. Compared with standard
FWA, FWFA achieves excellent results in 20 test functions, and the results of the other
8 functions are similar, and the average error values depend on. There is a slight
advantage. Overall, the FWFA is ideal.

In order to analyze whether there are significant differences in the overall distri-
bution of multiple independent samples, Friedman test is used to rank the rank mean of
each sample. As shown in Table 3, the rank also reflects the performance of the
algorithm. The smaller the rank mean, the better the performance of the algorithm [21].

Table 2. Experimental results of FA, WSSFA, VSSFA, FWA, and FWFA for all test functions
at D = 30

FA WSSFA VSSFA FWA FWFA

Functions Mean error Mean error Mean error Mean error Mean error
f1 9.40E + 04− 9.02E + 04− 9.04E + 04− 2.50E + 04− 1.88E + 04
f2 2.31E + 09− 2.39E + 09− 2.20E + 09− 1.91E + 08− 1.20E + 08
f3 4.30E + 20− 1.75E + 21− 2.76E + 21− 1.95E + 13− 3.09E + 12
f4 4.70E + 05− 6.94E + 05− 1.65E + 05− 6.79E + 04− 6.23E + 04
f5 5.59E + 04− 6.49E + 04− 5.99E + 04− 4.38E + 03− 1.69E + 03
f6 2.38E + 04− 2.15E + 04− 2.14E + 04− 2.32E + 03− 1.17E + 03
f7 2.60E + 07− 2.26E + 07− 1.18E + 07− 2.42E + 03� 1.85E + 03
f8 2.12E + 01− 2.12E + 01− 2.12E + 01− 2.10E + 01− 2.10E + 01
f9 4.74E + 01− 4.75E + 01− 4.68E + 01− 3.82E + 01� 3.71E + 01
f10 1.43E + 04− 1.29E + 04− 1.30E + 04− 2.77E + 03− 1.99E + 03
f11 1.44E + 03− 1.50E + 03− 1.40E + 03− 4.93E + 02− 3.92E + 02
f12 1.41E + 03− 1.34E + 03− 1.33E + 03− 6.19E + 02− 5.53E + 02
f13 1.39E + 03− 1.29E + 03− 1.32E + 03− 6.34E + 02� 6.26E + 02
f14 9.10E + 03− 9.12E + 03− 8.77E + 03− 4.01E + 03− 2.65E + 03
f15 9.15E + 03− 9.08E + 03− 8.92E + 03− 7.08E + 03− 5.51E + 03
f16 4.34E + 00− 4.37E + 00− 4.27E + 00− 2.15E + 00− 1.53E + 00
f17 2.58E + 03− 2.58E + 03− 2.44E + 03− 6.22E + 02− 5.36E + 02
f18 2.54E + 03− 2.47E + 03− 2.51E + 03− 8.02E + 02� 7.62E + 02
f19 1.10E + 07− 1.12E + 07− 8.30E + 06− 1.23E + 05− 1.20E + 04
f20 1.50E + 01− 1.50E + 01− 1.50E + 01− 1.46E + 01� 1.46E + 01
f21 5.87E + 03− 5.85E + 03− 5.54E + 03− 2.29E + 03− 2.08E + 03
f22 9.84E + 03− 9.75E + 03− 9.57E + 03− 4.94E + 03− 3.37E + 03
f23 9.84E + 03− 9.58E + 03− 9.67E + 03− 7.94E + 03− 6.62E + 03
f24 6.26E + 02− 5.86E + 02− 5.64E + 02− 3.33E + 02� 3.31E + 02
f25 4.53E + 02− 4.51E + 02− 4.56E + 02− 3.58E + 02� 3.55E + 02
f26 4.47E + 02− 4.45E + 02− 4.30E + 02− 2.29E + 02� 2.24E + 02
f27 1.87E + 03− 1.87E + 03− 1.84E + 03− 1.44E + 03− 1.36E + 03
f28 9.51E + 03− 9.32E + 03− 9.49E + 03− 4.76E + 03− 4.29E + 03
±/� 28/0/0 28/0/0 28/0/0 20/0/8 -
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Table 3. Average rankings based on the Friedman test

Algorithm FA WSSFA VSSFA FWA FWFA

Ranking 4.46 4.07 3.46 1.96 1.04
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Fig. 2. Convergence curves of five algorithms on functions f1, f5, f10, f15, f23, f27
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In order to intuitively reflect the convergence process of FWFA and other com-
parison algorithms, two functions are selected from single peak function, multi-peak
function and composite function to display here, as shown in Fig. 2. The abscissa
coordinates of the graph indicate the evaluation times of the function, and the upper
bound is 15000; the ordinate coordinates represent the mean value of the test function
in 30 experiments, with one value for each interval of a certain interval. The graphs
(a) to (f) are convergence curves of algorithms FA, WSSFA, VSSFA, FWA and FWFA
running on six test functions, respectively.

From Fig. 2, it is found that the convergence speed of FWFA is faster than that of
the algorithm in all test functions, and the final value is nearest to the target value.
Therefore, the algorithm FWFA significantly improves the performance of the standard
FA, which is the best of several comparison algorithms.

5 Conclusion

Based on the standard FA, An improved Firefly algorithm hybrid with Fireworks is
proposed in this paper, which uses idea of the neighborhood search, refers to the search
characteristics of Fireworks algorithm, adds the fireworks local search operator, and
changes the population generation method of the standard Firefly algorithm. The
improved FWFA is compared with the standard FA, WSSFA, VSSFA and standard
FA. The results show that the FWFA has excellent search ability in solving unimodal
functions, multimodal functions and composition functions problems. It is proved that
the FWFA is effective in improving the standard FA.
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