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Abstract. It is difficult to solve the inventory-routing problem, because it is a
NP hard problem. To find the optimal solution with polynomial time is very
difficult. Many scholars have studied it for many years to find a good solving
method. This paper analyzed the inventory-routing optimization problem. Then
considered PSO has a good performance in solving combinatorial optimization
problems. The PSO was improved to make it be suitable for solving discrete
combination optimization problems. In order to improve the performance of the
PSO algorithm to solve the inventory routing problem, this paper put forward
dynamic adjustment of inertia weight and accelerator factor of the PSO, and
introduced mutation operator in PSO. It is proved by numerical experiments that
the proposed algorithm has certain performance advantages, and it also proves
that the improved algorithm can improve the performance of the algorithm.
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1 Introduction

Inventory routing problem (IRP) is to determine the inventory strategy and distribution
strategy. The inventory strategy aims to determine the distribution object and distri-
bution number of goods in every planning period, and distribution strategy is to
determine the commodity distribution route. IRP seeks to minimize the sum of
inventory costs and distribution costs. The IRP problem is the combination of inventory
problem and distribution problem, which is to solve these two problems on one plat-
form at the same time. Because these two problems are the opposite problem, in the
pursuit of the minimum inventory cost, it will inevitably bring the maximum distri-
bution cost; On the contrary, if the pursuit of distribution cost is minimized, it will
inevitably bring the maximum inventory cost. But at the same time solve the two
problems is a very tough job, both the problem itself is N-P difficult problem. Espe-
cially when the customer number of distribution goods is more, and the customer’s
demand is stochastic demand conditions, the problem of IRP optimal strategy is often
very complex. The solution of problem often makes delivery number, distribution
interval and the distribution route lack of stability. This paper tries to +adopt the greedy
algorithm and the improved discrete differential evolution algorithm to search IRP
approximate optimal solution.
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In the existing available literature, the literature [1] through theoretical analysis and
proof, there is a 98.5% chance of getting the best of the problem with the strategy of
fixed partition to solve the problem of inventory cost and distribution cost. The par-
tition can effectively simplify the problem and reduce the difficulty of the problem.
Therefore, this paper also adopts the idea of fixed partition, which does not need to cost
a lot of cost for the low probability event. Literature [2] is the earliest IRP partition
thought introduction. The author put the individual customer requirements decompo-
sition, and allow multiple vehicles to serve a customer, so that in the actual operation of
the problem there will be more difficult. Literature [3] improved the literature [2]. Each
customer can only allow a vehicle to server in a delivery period, can’t separate dis-
tribution, but the strategy is to seek the optimal solution, so that the scale of problem is
relatively small size. Literature [4] adopts the classic Lagrangian relaxation algorithm
to solve the IRP problem, which is complicated and not easy to implement. Moreover,
with the increase of the size of the problem, the complexity of the algorithm increases
exponentially.

In solving the questions of IRP, because of the complexity of the problem itself,
when the problem scale is larger, to find the optimal solution is a very tricky question.
Literature [5] to try using the variable neighborhood search heuristic intelligent
methods to solve the problem of IRP. The IRP problem is solved in two phases. First
using variable neighborhood search heuristic algorithm to solve the vehicle routing
problem with limited capacity, and this stage is not considering the inventory cost,
which purpose is to achieve a feasible initial solution. Then in the second stage the
initial solution is optimized with iteration method, and the ideal results have been
achieved. In literature [6], the author proposed a tabu search heuristic intelligent
algorithm to solve the problem of the shortest path of the inventory, and compared the
running effect of the algorithm with the effect of the original Lagrangian relaxation
algorithm, and proved that this method proposed is far superior effect.

From literature [7–9], from one side we can see that the PSO, in recent years, has
made significant effect, because of its global convergence and robustness in solving
massive combinatorial optimization problems. In this paper, the problem of IRP is
solved by using the greedy method and the improved discrete PSO algorithm.

2 Problem Model

2.1 Problem Description

For the logistics mode based on the supplier management inventory, a distribution
center corresponds to multiple n customers scattered in different geographical locations,
with n ¼ 0; 1; 2; 3. . .Nf g to represent the collection of customers, where 0 represents
the distribution center. Assuming that the requirements of n customers for the product
in the distribution center are random, but the needs of the customers are relatively
independent, and the customers demand distribution is the same. Each customer’s
needs cannot be broken up. Assuming that the inventory cost of the distribution center
is not considered, and the product assumption of the distribution center will not be out
of stock. Assuming that the number of vehicles is unlimited and the driving ability is
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unlimited, and have the same loading capacity, and the demand of each customer will
not exceed the load capacity of the vehicle. If the customer’s order quantity exceeds the
demand, the corresponding inventory cost will be increased. If the order quantity is less
than the quantity demanded, it will cause the loss of goods. The vehicle starts from the
distribution center and ends up at the distribution center. The goal of solving the
problem is to seek inventory strategy and distribution strategy of the minimization sum
of inventory cost and distribution cost.

2.2 Variable Definition and Problem Modeling

See Table 1.

Inventory cost:

Hi ¼ hi

Zxi þ di

0

ðxi þ di � uiÞfiðuiÞdui þ pi

Z1
xi þ di

ðui � ðxi þ diÞÞfiðuiÞdui ð1Þ

Delivery cost:

ct ¼
Xn
i¼0

Xn
j¼0

Xv

v¼1

cijxijv ð2Þ

Table 1. Variable definition

Variable Implication

n Customer number
ui Random quantity demand of customer i
xi Inventory of customer i
v Vehicle number
Cv Load capacity
cij Delivery cost between the customer i and customer j
hi Unit inventory rate of customer i
Pi Unit loss rate of customer i
di Delivery quantity of customer i
ci Maximum inventory of customer i
fi(ui) Density function of random demand of customer i
xijv xijv ¼ 1 delivery vehicle v drive from customer i to customer j

0 otherwise

�
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IRP total cost model:

min call ¼ ct þ
Xn
i¼1

Hi ð3Þ

s.t.

Xv

v¼1

Xn
j¼1

xijv ¼ 1 8i 2 N ð4Þ

Xv
v¼1

Xn
i¼1

xijv ¼ 1 8j 2 N ð5Þ

Xn
i¼1

xi0v ¼ 1 v ¼ 1; 2; � � � v ð6Þ

Xn
i¼1

x0iv ¼ 1 v ¼ 1; 2; � � � v ð7Þ

3 PSO Algorithm and Improvisation

3.1 PSO Algorithm Basic Idea

Assuming that the problem to be solved is a minimization problem, and the mathe-
matical model of the problem is min f ðx1; x2; . . .; xnÞ, where xj 2 Lj;Uj

� �
, and 1 �

j � n. The X(0) is the initial population. Let Xi tð Þ ¼ ðxi1 tð Þ; xi2 tð Þ; . . .; xinðtÞÞ is the ith
individual in the t-generation population, and the population individual is n-
dimensional spatial structure, and the population size is NP. The particle swarm
optimization algorithm (PSO) [7], which is a kind of superior performance of intelli-
gent algorithms, was put forward by the Eberhart and Kennedy in 1995. The algorithm
requires cooperation between individual in the population, using the outstanding
individuals in the population as well as the best individual in their own history for the
evolution of individuals, so as to achieve the population individual information sharing,
and excellent individual competitive learning each other, to realize swarm intelligence,
and guidance optimization of population evolution in the process of the whole [8, 9].
PSO algorithm using speed position search model, form is as follows:

VidðNþ 1Þ ¼W � VidðNÞþ c1 � randðÞ � ðPid � VidðNÞÞ
þ c2 � randðÞ � ðPgd � XidðNÞÞ

ð8Þ

XidðN þ 1Þ ¼ XidðNÞþVidðN þ 1Þ ð9Þ
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Equations (8) and (9) indicates that the position of the ith particle of n particles in
the solution space of D dimension is Xi ¼ ðXi1;Xi2; . . .;XidÞ, the velocity is
Vi ¼ ðVi1;Vi2; . . .;VidÞ, where i ¼ ð1; 2; . . .; nÞ, and d ¼ ð1; 2; . . .;DÞ. The fitness value
is calculated by substituting Xi into the optimization objective function, and the optimal
individual of the ith particle is Pi ¼ ðPi1;Pi2; . . .;PidÞ, called Pbest, and the optimal
individual of the whole particle swarm is Pg ¼ ðPg1;Pg2; . . .;PgdÞ, called Pgest. The
particle swarm searches the entire solution space through velocity and position update.
In [11], theW is the inertial weight, the c1 and c2 are acceleration factors, also known as
individual and social learning factors, and a random number which is between 0 and 1
can gained by the rand() function, and N is the number of current iterations. The
calculation ideas of individual optimal individuals and global optimal individuals are as
follows:

Pbestðtþ 1Þ ¼ PbestðtÞ if f ðPbestðtÞÞ\f ðxiðtþ 1ÞÞ
xiðtþ 1Þ; if f ðxiðtþ 1ÞÞ\ ¼ f ðPbestðtÞÞ

�
ð10Þ

Pgestðtþ 1Þ ¼ minfP1ðtþ 1Þ;P2ðtþ 1Þ; � � � ;PNðtþ 1Þg ð11Þ

Where, f (.) is the objective function of the optimization problem, corresponding to
the fitness function of PSO algorithm. The fitness function of different optimization
problems is also different. When the algorithm updates the extreme, it is the priority to
update the individual optimal value of the particles, and then to update the global
optimal value according to the individual optimal value of all particles. Since the Pgest
in the entire particle swarm is taken as the optimal position. The PSO described above
is also called global PSO. If the optimal location found in the fixed neighborhood of
each particle is Pgest, this is the local version of PSO.

The PSO algorithm is simple and requires fewer parameters to be controlled. The
specific algorithm is as follows:

Step 1: Initialize the algorithm and set the initial values of various basic parameters
(such as the number of particles, maximum iteration times, acceleration factor,
inertia weight, etc.).
Step 2: Randomly generate particles of the initial position and velocity sequences;
Step 3: Use the objective function to evaluate the particle, and calculate the Pbest
and pgest initial value;
Step 4: Use formulation (8) to update the particle’s velocity;
Step 5: Use formulation (9) to update the particle’s position;
Step 6: Calculate the fitness value of particles, and use the formulation (10) to
update the particle’s individual Pbest optimal position;
Step 7: Use formulation (11), according to the updated all particle Pbest values, to
update Pgest;
Step 8: Judge algorithm whether meets the termination conditions or not (reach the
specified number of iterations or already get the optimal value or meet other con-
ditions), if judgment result is to satisfy the condition, go to step 9, or return to step 4;
Step 9: Record and output pgest value and stop the algorithm.
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3.2 Improvement of Particle Swarm Optimization Algorithm for IRP
Problem

Discrete Particle Swarm Optimization Algorithm
PSO algorithm in solving large-scale, multidimensional problems has natural advan-
tages which avoided the inefficiencies of exhaustive search, also avoids the random
search without purpose. It has the direction, global search algorithm with a purpose. It
had been proved by theory and practical application that it is an excellent algorithm in
many intelligent algorithms for solving large-scale, multidimensional combinational
optimal problems.
This paper is to solve the IRP problem by step method, and the first step is to operate
partition and optimize partition.

The second step is to change the PSO algorithm into discrete PSO algorithm. First
of all, the traditional PSO algorithm which can solving continuous optimization
problems was improved, made him into can solve a discrete combination optimization
problems.

Because each partition obtained by the first step optimization is an independent
loop of Hamilton, and each individual solution is a Hamilton loop, therefore, need to
use PSO to solve partition optimization. The classical PSO algorithm must be improved
for the particle’s position, speed, and operating in the following the corresponding
improvement.

1. The position can be defined as a Hamilton circle with all nodes. Assuming that there
are N nodes, and the arc between them exists. The position of the particle can be
expressed as sequence x ¼ ðn1; n2; . . .; nN ; n1Þ.

2. The velocity can be defined as the exchange set of particle position, which can be
described as an ordered list of permutation sequence, denoted as: V ¼
ik; jkð Þ; ik; jk � 1; 2; . . .;Nf g; k � 1; 2; . . .;mf gf g; where m is the number of velocity

transformation. In the exchange sequence, first, the first exchange subset is per-
formed. Then, the second exchange is performed, and so on.

3. The addition operation Position and velocity
The operation is that a group of permutation sequences were acted on the position of
a particle, in turn. The operation result is a new position.

4. Subtraction of position and position
The result of subtraction of the particle position and position is too a new permu-
tation sequence. For example, if x ¼ 1; 3; 2; 5; 4; 1ð Þ, y ¼ 1; 2; 4; 5; 3; 1ð Þ, then
xþ s1 þ s2 ¼ y, s1 ¼ 5; 2ð Þ; s2 ¼ 3; 2ð Þ; y� x ¼ 5; 2ð Þ; 3; 2ð Þf g.

5. The addition operation of the particle velocity and velocity
The result of two permutation sequences combinations is a new permutation
sequence. That is, a new velocity.

6. The multiplication of real numbers and particle velocity
Assuming that c is a real number, which value is a random, in (0, 1), and the
velocity is a permutation sequence. The essence of the multiplication is to intercept
permutation sequence, where the intercept value is int(c * k).
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Dynamic Adjustment of the PSO Parameters
Because the inertia weight W has a great influence on the global search ability and local
search ability of the PSO algorithm, therefore, the specific setting method of its value is
worth studying. In the process of the operation of the algorithm. We hope that the
global convergence capability is getting weaker and weaker, while the local search
capability is getting stronger and stronger, so that we can give consideration to the both
convergence of the algorithm and avoiding premature phenomenon. Clearly setting a
fixed value to it does not balance the two factors. According to the analysis of the
problem, the inertia weight W should be in reverse relation with the number of evo-
lution generation, that is, with the gradual advance of the evolution, it gradually
decreases.

In addition, the choice method of the acceleration factor c1, c2 can adopt random
choice or purposeful choice. Appropriate choice method of them will improve the
convergence speed of algorithm and avoid be caught into the local extremum.

In view of the problem of IRP, this paper used the cauchy distribution to dynamic
adjust the inertial weight W. Cauchy distribution flanks are widely distributed, which is
suitable for research of IRP. The algorithm can expand in the evolution process of the
evolution of the range, so as not to fall into local optimum. Dynamic adjustment is
carried out according to the following formula.

F ¼ 1� fave�f
fave�fbest

��� ��� if fave [ f

Cauchyð�2; 0:4Þ otherwise

(
ð12Þ

Where f is the fitness value of Xa(t) individual, and fave is the average fitness value
of the current population, and fbest is the best fitness value of the current population.

The probability density function of cauchy distribution is

f ðxÞ ¼ 1
p
½ 0:4

ðx� 2Þ2 þ 0:4
� ð13Þ

Where the dynamic adjustment of the inertial weight W is related to the fitness
value, adjust dynamically according to the fitness value.

For C1, C2 acceleration factor dynamic adjustment, this paper adjusted it based on
evolution generation. In the initial stages of the evolution. Let the C1 smaller values, so
that keep the diversity of population. Along with the evolution of advancing step by
step, slowly increase the value of the C1 to speed up the convergence speed of the
algorithm. The C1 is adjusted according to the following formula.

c1 ¼
g

100�g þ 1 c1\3

3 otherwise

�
ð14Þ

Where, g is the value of the current generation variable. Let C1 value dynamic
adjust tin the [1, 3]. In addition, C2 = 4 − C1.
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Mutation Operation
Relative to the evolutionary algorithm, the particle swarm optimization has not
crossover and mutation operations. Although the method is simple, it inevitably
weakens algorithm’s ability to control the global search and local search. In order to
further improve the performance of particle swarm optimization algorithm, this paper
introduced mutation operator into PSO algorithm.

In previous studies, random mutation and gaussian mutation are the most frequently
used for mutation operator. The random mutations can significantly increase the
algorithm’s global search ability, but ignore the current solution, thereby reducing the
performance of the PSO, and Gauss algorithm can enhance the local search ability of
algorithm, also may let algorithm falls into local optimum, cause premature
phenomenon.

The ability of particle swarm optimization algorithm has a lot to do with inertia
weight W. The W Settings, in the last section, used cauchy distribution to dynamically
adjust, so that in solving practical problems the performance of the algorithm was
greatly improved. In order to increase the global searching ability in the early stage of
evolution, random mutation operator is introduced into PSO algorithm. In order to
increase the ability of local search, gaussian mutation operator is introduced into PSO
algorithm. In order not to allow the algorithm to search everywhere aimlessly at the
initial stage, random operators can be introduced in probability, and gaussian variation
can be introduced in probability to avoid the algorithm falling into the local optimum.
Formula (9) is improved as follows:

XidðNþ 1Þ ¼ XidðNÞþVidðNþ 1Þ rand½0; 1�\0:5
rand½xmin; xmax� otherwise

�
ð15Þ

XidðNþ 1Þ ¼ XidðNÞþVidðNþ 1Þ rand½0; 1�\0:5
Pgestð1þGaussðrÞÞ otherwise

�
ð16Þ

In the early evolution, using formula (15) instead of formula (9), and in the late
evolution, using formula (16) to replace the formula (9). In this way, the algorithm not
only considers the particularity of the individual, avoiding aimless global search, but, to
some extent, enhances the global search ability of the algorithm. It is considered to
avoid falling into the local optimum and to some extent enhance the local search
capability in the later stage of the algorithm.

Therefore, this paper improves the standard PSO algorithm from three aspects, so
as to guarantee the diversity of individual population and the convergence of the
algorithm.

4 PSO Idea of Solving Stochastic Demand IRP Problem

4.1 The Client is Partitioned by Greedy Algorithm

First of all, according to the vehicle capacity and client demand quantity and the
client’s location coordinates, used a greedy algorithm to partition the customers,
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consequently get partition set, and then optimized the partition set by discrete differ-
ential evolution, consequently get S collection of partition.

IRP is a very complex problem of N-P. This article first to establish the coordinate
system of coordinates dot with distribution center, and then sorted customer with
location of abscissa x value from small to large, and then sorted customer with ordinate
Y value from small to large. So we have a set of X Xm; y1ð Þ; x2; y2ð Þ; . . .; xn; ynð Þð Þ.
According to the initial demand quantity l of each customer, algorithm partitioned
customer. Partition started scanning from customer (Xm, y1) in collection X, with the
limit Cv vehicle capacity. The set X divided into M subset, respectively, the
XMð Xm; y1ð Þ; x2; y2ð Þ; . . .; xi; yið Þ;X2ðÞ; . . .;XmðÞ. The sum of customers demand
quantity in each subset is not more than Cv. Let’s say that this M subset is K1.

Adjusted partitions, Surrounded each customer in a loop according to coordinate in
the Fig. 1. The last element in the set Xm was transferred to the first element of the X1

collection, and then checked whether the sum of all customers demand quantity in X1

collection is more than vehicle capacity Cv, such as more than, transferred the last
element of the X1 set to X2 set, become the first element in the X2 set. Continued
checking where the sum of all customers demand quantity in X1 collection exceed the
vehicle capacity, such as more than, continued to transfer the current last element of the
X1 to become the first element in the X2. So repeatedly, until the sum demand quantity
in the set X1 did not exceed vehicle capacity. And then I was going to adjust X2 as the
method of adjustment X1, and then I was going to check X3 again, and I was going to
do it again and again until M sets were checked out. Let’s say that the set was K2.

Again to adjust set K2 as the method of adjustment set K1, and K3 set was gotten,
and so on, Ks sets were gotten. If the sum of demand of the last element in Xm-1 and the
demand of all the elements of Xm did not more than vehicle capacity, put this element to
the Xm set. Let’s go to consider the penultimate element of Xm-1 until the sum of new
elements demand which you consider and the all element demand of the new Xm set
was more than vehicle capacity. No longer join, at this point, the number of elements in
new Xm is S value.

Fig. 1. Customer coordinate
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4.2 The Improved Discrete PSO Algorithm is Used to Optimize
the Partition

Through the first step processing, the S partition sets is obtained. The improved discrete
difference evolution algorithm is adopted to optimize the path of s partition sets to find
the optimal partition set of S partitions.

The algorithm step

The algorithm for looking for the optimal partition set
1  Initialization population number NP, generation number g
2 Initial position sequence and initial velocity sequence of 

population particles randomly or greedy
3 The particle was evaluated by using the objective function of 

the problem and the initial values of Pbest and Pgest were cal-
culated 

4 According to formulation (12) (13) and (14), the W C1 C2 were 
calculated 

5  Formulation (8) is used to update the particle velocity
6 Formulation (14) or (15) is used to update the particle posi-

tion
7 Calculation the fitness value of particle and update individual 

optimal position of particle
8 Update the pgest using the formulation (11),according to all 

the Pbest
9 Judgment algorithm meets the termination conditions (reach 

the specified number of iterations or already get the opti-
mal value or meet other conditions), if meets the termina-
tion conditions, algorithm reached the step 10, if not to re-
turn to step 4

10  Record and output pgest values and stop the algorithm

5 Numerical Experiment

5.1 Set Relevant Parameters

1. Set population scale NP = 50
2. Set evolution generation g = 100
3. Set customer number n = 10
4. Cij is proportional to the distance between customer i and customer j, which is set

the line spacing between them.
5. Set inventory rate h = 1, and the loss rate p = 10
6. Set vehicle delivery capacity Cv = 600
7. Set customer requirement l < 200, which follow a poisson distribution
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5.2 Numerical Experiment

The Experiment Designed According to of Hybrid Algorithm Proposed in this
Paper

According to the greedy algorithm of Sect. 3.1, and according to the coordinate
value, client ranked as follows (Table 2):

(3, 9, 4, 7, 5, 10, 2, 6, 8, 1)
And then, according to the greedy algorithm, we got the first partition set K1:
((3, 9, 4, 7), (5, 10, 2)(6, 8, 1))
Finally, according to the greedy algorithm, a series of partition sets are obtained:
K2: ((1, 3, 9, 4), (7, 5, 10), (2, 6, 8))
K3: ((8, 1, 3), (9, 4, 7, 5), (10, 2, 6))

Through the greedy algorithm of Sect. 3, we end up with three partition sets, K1,
K2, K3. Furthermore, the discrete PSO algorithm of Sect. 3.2 is used to optimize the
three partitions, to find the optimal distribution path, to find the optimal partition.

K1: ((3, 9, 7, 4), (5, 10, 2), (61, 8)); total cost: 125.41 + 207.042 + 200.39
= 532.842
K2: ((3, 9, 1, 4), (7, 10, 5), (2, 6, 8)); total cost: 210.831 + 200.532 + 193.307
= 602.79
K3: ((1, 8, 3), (9, 5, 7, 4), (10, 6, 2)); total cost: 210.852 + 195.652 + 196.392
= 602.896

Thus, the optimal partition set is evolved: K1, and delivery routing is: (0-3-9-7-4-0)
(0-5-10-2-0) (0-2-6-8-0), total cost was 532.842.

Table 2. Client dataSet

Client Client coordinates Client requirement Maximum inventory

0* (0, 0) 150 200
1 (85, 29) 199 200
2 (50, 60) 180 200
3 (5, 40) 177 200
4 (18, 5) 140 200
5 (30, 88) 166 200
6 (60, 49) 88 200
7 (25, 48) 90 200
8 (72, 30) 199 200
9 (10, 39) 160 200
10 (45, 76) 197 200

*Client 0 is delivery center, which inventory is set infinity.
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The Experiment was Carried out With the Previous Ideas
According to [5], the results of the experiment were also obtained by the optimal set K1,

but the experiment time was 2.0375e−4s, and the experiment time of the paper algo-
rithm was 1.99041E−4s.

According to [6], the results of the experiment were also obtained by the optimal set
K1, and the experiment time was 2.0535E−4s.

Experiment adopted the discrete PSO algorithm, which was improved by standard
PSO algorithm. but the inertial weight W and accelerated factor C1, C2 were not
adjusted by dynamic adjustment mechanism, but a series of fixed values are used for
the experiment.

Table 3. Experimental results of different W adjustment methods

W adjustment
method

Optimal partition set Time
consumption

Minimum
cost

0.4 ((1, 8, 3), (9, 5, 7, 4), (10, 6,
2))

2.0037E−4 604.82

0.5 ((3, 9, 1, 4), (7, 10, 5), (2, 6,
8))

2.001E−4 602.93

0.8 ((3, 9, 7, 4), (5, 10, 2), (61, 8)) 3.407E−4 533.064
Self-adjustment ((3, 9, 7, 4), (5, 10, 2), (61, 8)) 1.99041E−4 532.842

Table 4. Experimental results of different C1 adjustment methods

C1 factor adjustment
method

Optimal partition set Time
consumption

Minimum
cost

0.4 ((3, 9, 7, 4), (5, 10, 2), (61,
8))

2.382E−4 533.072

0.6 ((3, 9, 1, 4), (7, 10, 5), (2, 6,
8))

2.0108E−4 603.076

0.9 ((1, 8, 3), (9, 5, 7, 4), (10, 6,
2))

2.0039E−4 605.059

Self-adjustment ((3, 9, 7, 4), (5, 10, 2), (61,
8))

1.99041E−4 532.842

Table 5. Experiment results of differential Xa(t) setting strategy

Xa(t) setting strategy Optimal partition set Time
consumption

Minimum
cost

Formulation (9) ((3, 9, 7, 4), (5, 10, 2), (61,
8))

2.3189E−4 532.842

Random mutation ((3, 9, 1, 4), (7, 10, 5), (2,
6, 8))

1.8311E−4 603.10

Gaussian mutation ((3, 9, 1, 4), (7, 10, 5), (2,
6, 8))

1.8294E−4 603.07

Strategy proposed by this
paper

((3, 9, 7, 4), (5, 10, 2), (61,
8))

1.99041E−4 532.842
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6 Analysis

Through the analysis of Sect. 4.1 experiment, it can be concluded that the algorithm
proposed in this paper is practical feasible, and can find the optimal solution in many
feasible solutions.

Through the analysis of Sect. 4.2 experiment, it shows that the proposed algorithm
has the advantages of real, although use [5, 6] thinking also can obtain the optimal
partition set, but time consuming compared with the algorithm of this paper, a little
less. [5] time consuming is 2.0375E−4, but the experiment by the algorithm proposed
by this paper is 1.99041E−4. Compared with the algorithm in this paper, which is 2.2%
slower. [6] it takes 2.0535e−4s, which is 3.0 points slower than the algorithm in this
paper.

Through the analysis of Table 3 experiments, this paper puts forward the adjust-
ment method of the W weight. When W is set to 0.4 and 0.5, the algorithm will go into
local optimum algorithm, but W is set to 0.8, although can obtain the optimal partition
set, but takes up a lot of 1.349e−6, increased by 0.67% than the dynamic adjustment
idea proposed by this paper.

Through the analysis of Table 4 obtained by experiment, this paper proposed the
adjustment of the crossover of differential evolution method is effective. When C1 is set
to 0.6 and 0.9, algorithm search the local optimum. When C1 is set to 0.4. The
algorithm time consumption will take longer. Compared with the algorithm of this
paper, it takes 19.6% slower.

Through the analysis of Table 5, the method proposed in this paper has some
advantages. Compared with the random mutation, the method is relatively time con-
sumption shorter. Compared with Gaussian mutation, it is relatively not easy to get into
local optimization.

7 Conclusion

Through the anatomy of the IRP problem, it is known that it is a NP hard problem, and
it is hard to find an ideal solution in a reasonable time. Considering the particle swarm
optimization algorithm outstanding performance in solving large-scale, multidimen-
sional performance on combinatorial optimization problems, this paper tried to adopt
the particle swarm optimization algorithm to solve the problem of IRP. given the
standard particle swarm optimization algorithm is to solve the problem of continuous,
and the IRP problem is discrete problems, thus in this paper, the particle swarm
optimization algorithm was improved to make it is suitable for solving discrete com-
bination optimization problems.

Additionally according to the particularity of the IRP, in this paper, the particle
swarm optimization algorithm is carried on the dynamic adjustment inertial weight
W and acceleration factor, to make them with the gradually development of evolution
of dynamic adjustment. The purpose is in the early stages of the evolution, the algo-
rithm has more diversity, and along with the advancement of evolution, the conver-
gence of the algorithm was gradually strengthen, such not only ensure the convergence
of the algorithm, and also helps the algorithm falls into local optimum.
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The feasibility of the proposed algorithm is verified by numerical experiments, and
compared with the latest algorithm, the optimal partition set obtained by this algorithm
is proved to be optimal. Finally, the experimental results show that the proposed
method had the advantage of adjusting the inertial weight and the acceleration factor,
and can balance the convergence and the diversity of the population.
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