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Abstract The present study concerns the modeling and optimization of surface
roughness in dry hard turning of high-strength low-alloy (HSLA) grade AISI 4340
steel (49HRC)with coated ceramic tool. For parametric study, the turning operations
have been established according to Taguchi L27 orthogonal array consisting of an
experimental design matrix 3 levels and 3 principal turning parameters (factors) such
as, cutting speed, axial feed, and depth of cut. Analysis of sixteen set experimental
datawithANOVAshowed that axial feed and speed are themost significant controlled
cutting parameters for hard turning operation, if the improvement of the machined
surfacefinish is considered.Thereafter, statistical regressionmodel basedon response
surface methodology has been proposed for correlation of cutting parameters with
machined workpiece surface roughness. Finally, optimal cutting conditions with the
aim to minimize the surface roughness via desirability function approach of RSM
are proposed.
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1 Introduction

Nowadays in metal cutting-based manufacturing industries, dry hard turning is
widely used in machining of hardened steel because of its low cost, high machin-
ing efficiency and green environmental protection, and surface finish of hard turned
components has greater influence on functionality of product concerning tribologi-
cal behavior, fatigue strength, and wear as well as corrosion resistance. The cutting
mechanism of dry hard turning is different from that of traditional turning because of
multi-field coupling effect in machining process. Thus, the above-cited advantages
of hard turning (HT) can only be obtained with appropriate selection of process
parameters, cutting tool materials and geometry, and cutting environment. A number
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of investigative studies have been carried out for the assessment of various process
variables (cutting parameters, tool geometry, workpiece hardness, and environmental
conditions) using the statistical approach via analysis of variance (ANOVA) [1–4].
Similarly, researchers have focused on modeling as well as optimization in order
to predict and control the result for minimizing surface roughness of various hard-
ened steel materials (AISI D2, D3, D6, 1015, 1045, 4140, 4340, 52100, H11, and
H13) during HT process using response surface methodology [5–7], which allowed
to enrich the saving cost and time. However, relatively few investigations as well as
lack of systematic studies have been executed concerning processmodeling and para-
metric optimization for surface roughness, which is need to be explored for practical
improvement in productiveness by hard turning as it is categorical worthy and bene-
ficial for machining industries point of view to achieve their goal. Thus, the present
research is focused on parametric study (assessment), process modeling, and opti-
mization of surface roughness during turning hardened HSLA steel (49 HRC) with
PVD–TiN coated Al2O3–TiCN mixed ceramic tool using Taguchi’s OA, analysis of
variance, response surface methodology, and desirability function approach.

2 Experimental Procedure

Cylindrical specimens (diameter and length of 90 mm and 220 mm, respectively)
made of AISI 4340 steel were turned on a high precision and accuracy CNC lathe
(make: Batliboi ltd., model: SPRINT 16TC), having 7.5 kW power capacity and
spindle speed varies from 50 to 5000 rpm. High-strength low-alloy (HSLA) grade
AISI 4340 steel (49 HRC) was chosen in the experiment because of its hardenability
and wide application. For experimentation, PVD coated ceramic with TiN layer,
designated as ISO grade CNGA120408 AB2010, having negative rake angle 60,
nose radius of 0.8 mm, and approach angle of 950 is used for finish hard turning
employing design of experiments. The coated ceramic insert was rigidly held on a
ISO-designated tool holder of PCLNL2525M12. The measurements of machined
surface for each cutting conditions were acquired from Mitutoyo (Surftest SJ210)
roughness tester. The arithmetic mean surface roughness (Ra) was taken at different
three positions on the cylindrical surface of test specimen and its mean is taken as
final average surface roughness value. Statistical Minitab 16 software has been used
for optimization, modeling, normality plot, and surface plot. The schematic view of
experimental work and methodology proposed in the current study is presented in
Fig. 1.

To accomplish the objective of proposed research work, depth of cut, axial feed,
and cutting speed are taken as major process variables with an attempt to analyze
surface roughness as the only technological response parameter. The different cutting
parameters and their values are shown in Table 1. The levels of the parameters were
selected based on the recommendation of tool’s manufacturer (TaeguTec). Taguchi’s
orthogonal array (OA) has been established as balanced approach for design of
experiments which ensures the all levels of all factors equally and assures accuracy of
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Fig. 1 Schematic of experimental setup and methodology presented
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Table 1 Parameters and
levels

Parameters Levels

1 2 3

Cutting speed, v (m/min) 100 170 240

Feed, f (mm/rev) 0.05 0.10 0.15

Depth of cut, d (mm) 0.1 0.2 0.3

the statistical model. Hence, employing the selected controllable parameters (three)
and levels (three), a well sequential design layout was established based on L27 OA
in order to perform the dry longitudinal turning operation (Table 2).

3 Results and Discussion

3.1 Analysis of Surface Roughness

Experimental results by Taguchi OA are analyzed by employing analysis of variance
which involves statistical treatment to access the significance as well as determines
the percentage of contribution of each process variables (v, f , d) against a stated
level of confidence (here, 95%) on the response under consideration (here, surface
roughness Ra). Here, P-value indicates the influence of the factor on Ra as: sig-
nificant if P ≤ 0.05, and insignificant if P > 0.05. The ratio of factor-mean-square
to the error-mean-square called Fisher’s ratio (F) determines significant parameter
affecting quality characteristic comparing the F-test value of the parameter with the
standard F-table value at the 0.05 significance level. ANOVA for surface roughness
has been illustrated in Table 3. From the analysis, it is illustrated that feed is the most
effective variable, revealing significant contribution (80.05%) on surface roughness
(Ra) as itsP-value is under 0.05 and overF-value (4.46). The next parameter based on
F-value is the cutting speed with 27.54 for Ra and its contribution on Ra is 13.56%.
The depth of cut (d) does not have any noticeable effect on Ra (0.76% only). Also,
the interaction of cutting variables like cutting speed-feed (v*f ), feed-depth of cut
(f *d), and cutting speed-depth of cut (v*d) do not exhibit any statistical imprint on
the observed surface roughness. Respectively, their contributions are (0.96, 1.47, and
1.23% to Ra) and the error associated with the ANOVA is 1.97% for Ra.

Three dimension (3D) effect plots for surface roughness Ra is shown in Fig. 2.
It was found that with increase in feed, Ra increased resulting degradation of sur-
face finish predominantly (see, Fig. 2a). This phenomenon may be attributed to the
following reasons: (1) neglecting the effect of BUE formation and tool flank wear
[1], (2) increase in axial feed leads to increase in thrust force which in turn induces
vibration followed by heat generation [8], and (3) as feed increases, the plowing
action becomes predominant thereby forming deeper and broader helicoid furrows
on machined surface due to insert’s nose profile and workpiece-tool movements [9].
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Table 2 Experimental design and results

Test
no.

Coded values Actual settings Surface
roughness Ra
(µm)

v f d v (m/min) f (mm/rev) d
(mm)

1 1 1 1 100 0.05 0.1 0.854

2 1 1 2 100 0.05 0.2 0.643

3 1 1 3 100 0.05 0.3 0.843

4 1 2 1 100 0.1 0.1 0.951

5 1 2 2 100 0.1 0.2 1.188

6 1 2 3 100 0.1 0.3 1.073

7 1 3 1 100 0.15 0.1 1.569

8 1 3 2 100 0.15 0.2 1.620

9 1 3 3 100 0.15 0.3 1.596

10 2 1 1 170 0.05 0.1 0.829

11 2 1 2 170 0.05 0.2 0.762

12 2 1 3 170 0.05 0.3 0.629

13 2 2 1 170 0.1 0.1 0.914

14 2 2 2 170 0.1 0.2 0.955

15 2 2 3 170 0.1 0.3 0.928

16 2 3 1 170 0.15 0.1 1.361

17 2 3 2 170 0.15 0.2 1.382

18 2 3 3 170 0.15 0.3 1.463

19 3 1 1 240 0.05 0.1 0.516

20 3 1 2 240 0.05 0.2 0.631

21 3 1 3 240 0.05 0.3 0.573

22 3 2 1 240 0.1 0.1 0.629

23 3 2 2 240 0.1 0.2 0.705

24 3 2 3 240 0.1 0.3 0.788

25 3 3 1 240 0.15 0.1 1.071

26 3 3 2 240 0.15 0.2 1.267

27 3 3 3 240 0.15 0.3 1.427

It is also observed that the surface roughness decreases as cutting speed increases
(refer, Fig. 2c). This can be attributed to intense elastic deformation and squeezing
effect within workpiece-tool junction area at slower cutting speeds as compared to
higher speeds, reported by Tang et al. [10]. Another possible explanation is that the
heat dispersed by chip is much lesser than that absorbed by the turned surface at low
cutting speed which is manifested as higher surface roughness Ra. Aouici et al. [11]
also obtained similar results. As the cutting speed rises, the tool chip contact dura-
tion decreases thereby subsiding the BUE resulting improvement in surface finish,
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Table 3 Analysis of variance (ANOVA) for surface roughness criteria (Ra)

Source DOF Seq SS Adj SS Adj MS F P-value C (%)

v (cutting speed) 2 0.41872 0.41872 0.20936 27.54 <0.000 13.56

f (feed) 2 2.47242 2.47242 1.23621 162.63 <0.000 80.05

d (depth of cut) 2 0.02335 0.02335 0.01167 1.54 0.273 0.76

v*f 4 0.02960 0.02960 0.00740 0.97 0.473 0.96

v*d 4 0.04558 0.04558 0.01139 1.50 0.290 1.47

f*d 4 0.03812 0.03812 0.00953 1.25 0.363 1.23

Error 8 0.06081 0.06081 0.00760 1.97

Total 26 3.08859 100

Fig. 2 Surface plots of surface roughness, Ra

in accordance with the previous study [2]. The depth of cut is not very sensitive to
influence the surface roughness of turned surfaces; nevertheless, Ra increases slightly
with increase in depth of cut (Fig. 2b) for harder material mainly due to chatter, as
revealed by Naigade et al. [12].

3.2 Prediction of Optimal Performance

From the ANOVA analysis (Table 3), two cutting parameters (feed and speed) were
found significant and obtained the lowest surface roughness at feed of 0.05 mm/rev
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(level-1) and cutting speed of 240 m/min (level 3). Optimal performance of Ra when
two most significant factors are at their best level, i.e., at f 1v3 level, then

μRa � f 1 + v3 − T Ra � (0.6978 + 0.8452) − 1.006

� 0.537 µm (T Ra � 1.006 from Table 2)

Confidence interval (CI) for surface roughness (Ra) is calculated with the help of
following equation

CI �
√

F95%;(1,DF error) × Ve

ηeff
(1)

where

ηeff � Number of trials

1 + degrees of freedom corresponding to that level
� 27

1 + 2 + 2
� 5.4

F95%;(1, 8) � 5.32 and Ve � 0.0076 (from Table 3)

Hence, CIRa �
√

5.32×0.0076
5.4 � 0.086 µm

The best optimal range of Ra is predicted as,
[
μRa − CIRa

] ≤ μRa ≤ [μRa + CIRa]
i.e. 0.451 ≤ μRa ≤ 0.623 µm.

3.3 Empirical Modeling for Surface Roughness

Empirical modeling can be described as compilation of mathematical function and
statistical approach for the analysis and modeling of numeric problems which are
connected with design of experiments as well as least square error fitting. The output
responses are resolvedbyvarious input parameters and themajor objective is to obtain
the relation between the output response (here, Ra) and the input variables (here,
v, f , d) studied. Predictive mathematical model for response, Ra is expressed using
regression analysis named response surfacemethodology (RSM)with uncodedunit at
95% confidence level taking into consideration of L27 orthogonal array experimental
result data set. From the surface roughness model Eq. (2), it is noticed that coefficient
of determinations (experimental and adjusted) are R2 � 96.4% andR2 (adj)� 94.5%,
respectively.

Ra � 1.1259 − 0.9467d − 5.6443 f − 0.0003v − 1.6222d2 + 61.6444 f 2 − 0.000v2

+ 10.6500 f ∗ d + 0.0052v ∗ d − 0.0095v ∗ f (2)

The R2 value is very close to unity, which ensures the excellence of fit for the
model with greater statistical significance. Additionally, normal probability plot has
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Fig. 3 Normal probability plot for Ra

been displayed for surface roughness as shown in Fig. 3, which ensures that the resid-
uals distributed fairly approach to a straight line indicating the errors are dispersed
normality that implies to good correlation between measured and predicted values.
With P-value (0.07) complimented by Anderson-Darling test is over significance
level value (0.05), which confirms the adequacy of model due to favorable reception
of null-hypothesis.

4 Optimization of Surface Roughness Using RSM

In this study, with the goal to minimize the surface roughness, desirability function
analysis of RSM is utilized for response optimization which is basically employed
to determine the best parametric arrangement for single and multi-objective opti-
mizations. This optimization unit looks for a combination of parameter levels that
concurrently fulfill the necessities placed on each and every one of the responses, and
parameter trying to set up the suitable model. Performance of the optimization pro-
cedure adopted is given by composite desirability index through gradient algorithm.
It is the weighted geometric average of individual desirability indices for different
responses in the range 0–1. If the value of desirability lies nearer to zero, the response
would be absolutely rejected. On the other hand, if its value approaches unity, the
response would be acknowledged. Optimum cutting speed, axial feed, and doc dur-
ing hard turning of AISI 4340 steel obtained using RSM technique (see, Fig. 4) are
240 m/min, 0.0556 mm/rev, and 0.10 mm, respectively, for corresponding estimated
minimum surface roughness (Ra) 0.5451 µm, is approaching good predictive ability
as the percentage of error about 4.8% when it is compared with the experimental
value (refer, Table 4).
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Fig. 4 Optimization plot for Ra

Table 4 Summary of confirmation experiments and comparison of results

Optimal control parameters Surface roughness, Ra (µm) Error (%)

V f d Predicted Experimental

240 m/min 0.0556 mm/rev 0.1 mm 0.545 µm 0.52 µm 4.8

5 Conclusions

Based on experimental findings, modeling, and optimization in finish dry hard turn-
ing (FDHT) of HSLA steel utilizing PVD–TiN coated mixed (Al2O3–TiCN) ceramic
tool, machined surface quality of HSLA steel with coated ceramic insert produced
roughness within 1.6 µ and can be comparable with cylindrical grinding. Surface
roughness was highly emulated by the feed (Ra: 80.05%) followed by the cutting
speed (Ra: 13.56%), which well agrees with ANOVA results. Increase in feed the
surface roughness increases, but the opposite is seen with cutting speed. The pre-
dicted optimal range of surface roughness criteria (Ra) at 95% CI level is 0.451 ≤
μRa ≤ 0.623 µm. Empirical model developed for response such as surface rough-
ness has R2 value close to unity. This ensures the excellence of fit for the model with
greater statistical significance. The normal probability plots ensures that the residu-
als distributed fairly near to a straight line indicating that the errors are dispersed in
normality and implying that the sources associated with the model are significant.
Anderson–Darling test for model show adequate, as P-value is more than 0.05 at
95% confidence level.
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