A Comparative Analysis of Techniques m
for Executing Branched Instructions e

Sanjay Misra, Abraham Ayegba Alfa, Kehinde Douglas Ajagbe,
Modupe Odusami and Olusola Abayomi-Alli

1 Introduction

Though in well-defined pipeline stage that is at an appropriate instant, pipelining
allows enormous number of instructions to be performed simultaneously [1]. For
better performance to be achieved, pipelining is used to overlay the execution of
instructions. Instruction-level parallelism (ILP) describes the prospective overlay
for different sets of instructions [1]; simply because these instructions can be carried
out in parallel [2]. As a result of complication in nature and size of instructions
constructs, the circumstances curbing utilizing of ILP in compilers and processing
elements keep on increasing. Some of the drawbacks observed include greater part
supports only various problems of straight instructions, also prediction analysis is
needed to convert branch/conditional instructions to straight instructions, and this
usually result in stall of memory/compiler system. One inlet and outlet access in loop
body (which is not flexible to allow new instructions scheduling interrupts until the
inlet or outlet is detected) in basic block (BB) architecture is available [3]. Among the
instructions in basic block architecture, there is primarily tiny or no overlay. By using
different architectures and techniques, various forms of parallelism can be exploited.

S. Misra (<) - M. Odusami - O. Abayomi-Alli
Center of ICT/ICE Research, CUCRID Building, Covenant University, Ota, Nigeria
e-mail: sanjay.misra@covenantuniversity.edu.ng

M. Odusami
e-mail: modupe.odusami@covenantuniversity.edu.ng

O. Abayomi-Alli
e-mail: olusola.abayomi-alli@covenantuniversity.edu.ng

A. A. Alfa - K. D. Ajagbe
Kogi State College of Education, Ankpa, Nigeria
e-mail: abrahamsalfa@ gmail.com

K. D. Ajagbe
e-mail: dougajagbe @gmail.com

© Springer Nature Singapore Pte Ltd. 2019 255
R. K. Shukla et al. (eds.), Data, Engineering and Applications,
https://doi.org/10.1007/978-981-13-6351-1_20


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6351-1_20&domain=pdf
mailto:sanjay.misra@covenantuniversity.edu.ng
mailto:modupe.odusami@covenantuniversity.edu.ng
mailto:olusola.abayomi-alli@covenantuniversity.edu.ng
mailto:abrahamsalfa@gmail.com
mailto:dougajagbe@gmail.com
https://doi.org/10.1007/978-981-13-6351-1_20

256 S. Misra et al.

Techniques such as single instruction, multiple data (SIMD), very long instruction
Word (VLIW), and the superscalar execution could be used to attain parallel execution
at the instruction level. Practical usage of parallelism intrinsic in algorithms with
high level can be greatly achieved through multicore architectures [4]. This paper
shows the differences between the predication process and the two-way loop process
for branched instructions. The rest of the paper is structured as follows: the review
of branched instruction execution and execution cycle instructions are presented in
Sect. 2. Design methodology and various technique used are discussed in Sect. 3.
Results and discussion are presented in Sect. 4. Conclusion of the paper is done in
Sect. 5.

2 Review of Branched Instruction Execution

Unrolling loop technique is one of the most utilized techniques for executing
branched instruction. In order to exploit parallelism by bypassing branch instruc-
tions, many enlarged basic blocks are contained in the unrolling of loop techniques.
Enlarging basic block can be referred to as monotonous activities like loops using an
algorithm to attain an efficient and small-scale code. Provided the bound variables
are defined at compile time and unchanged, however, a loop body can be repeated
for a couple of times using this algorithm [4, 5].

Figure 1 depicts the beginning of every iteration for unrolling loop, and no control
exists for instruction. Although, there exist more compact in the loop form. In view
of stable bound loops making the control instruction by the loop form naturally irrel-
evant, total iterations are determined at compile time. Unrolling loop appropriated
the issue of instruction control. The unrolling loop has the capability to duplicate the
body of loop n time with iteration step n incrementation of induction variable by a
factor of two for every iteration and unrolling by a factor of two is shown in Fig. 1.
For parallel execution, the loop body yields » times longer and higher number of
instructions [4-6].

With the view of increasing the capacity for parallelism, unrolling loop expands
basic blocks. The loop body is duplicated n times and the counter of the loop changes

Fig. 1 Unrolling loop

architecture and code [6] For(i?;);i<(1)00:i++)
a(i)=a(i)+c;

i+2
i++ for(i=0;i<100:i=i+4){
a(i)=a(i)+c;

i*+3 a(i+1)=a(i+1)+c;
a(1+2)=a(i+2)+c;

a(i+3)=a(i+3)+c;}

I=i+4




A Comparative Analysis of Techniques ... 257

by the step n with the unrolling loop. One major drawback of the unrolling loop
technique is the difficulty in increasing the code size which does not apply to the
outer loop. Considering compiler-time scheduling, the advantage of benefits from
parallelism cannot be taken by unrolled adjacent. Out-of-order execution advantage
taken by dynamic scheduling make the successive iteration run in parallel alongside
the current one.

2.1 Instructions Execution Cycle

Instruction execution cycle is described as the implementation of a single basic block
of instructions on compiler sectioned to different operations. Successive instruction
address is being maintained by the program counter. Specific instruction to be carried
out is preserved by the instruction queue. Fetch, decode, and execute are the three
principal steps for carrying out a compiler instruction. If a memory operand is used
by the instruction, two additional steps are required, and these are: fetch operand and
store output operand [7]. Descriptions of each of the steps are as follows:

Fetch: Instruction is being fetched from the instruction queue by the control unit
and there is an increment in instruction pointer (IP).

Decode: To confirm what the instruction does, the function of instruction is
decoded the control unit. Signals are forwarded to arithmetic logic unit (ALU) defin-
ing the action to be executed as input operands of instruction are being accelerated.

Fetch operands: The control unit indulges the read operation to recollect operand
and duplicate it to internal registers as long as the instruction desires an input operand
saved on memory. User programs are hidden from internal registers.

Execute: Internal registers and named registers are used as operands as the ALU
executes instruction and forward the outcome to memory and/or named registers.
ALU updated the status flags by reading the state of processor information.

Store output operand: The advantage of a write operation is used by control unit
to save data as long as the location of the output operand is in the memory.

Loop unrolling hardware caching: Hardware made up of components such as a
negative branch displacement, stack-based approach, and a comparator (use to detect)
are used to classify loop bodies. Information for loop linked is recorded on the loop
stack upon loop entry discovery during commit time [8]. The total of successful
iterations per visit and for every iteration in-loop branch log is accounted for by this
dynamic information [8, 9].

3 Methodology

The design is divided into three stages and these include First stage: Choose the
pipelining and two-way loop as the materials for study. Second stage: Conduct
branched or conditional construct for each of the techniques is selected in the first
phase.



258 S. Misra et al.

Table 1 Setup of two-way loop technique [1]

Component Characteristics

ILP Overlapping/interleave of instructions that support multiple issues
Model Object/rapid iterative

Program style Code motion/transformation. Two-way algorithm

GUI Microsoft Visual Basic programming language

Unrolling loop Replicating loop bodies into many other independent sub-loops

Third stage: Evaluation of the performance of each technique using utilization,
execution rate, and regression coefficients indices.

3.1 A Two-Way Loop Technique Setup

The TWL technique offers a breakdown of the process of making more ILP accessible
to basic block instructions in loop structure as shown in Table 1.

3.2 An Algorithm for Two-Way Loop

Various issues/simultaneous instructions executions of branch and straight path of
loops is supported by two-way loop algorithm [10]. Three main things are achieved
by the TWL algorithm and these include transforms of control dependences into
data dependences, increasing in parallelism exploited by layers of instructions in
a compiler, and transforms unrolling of loop technique by increasing basic block,
respectively, in order to increase the chance of exploiting parallelism, thereby grant-
ing several branched instructions to be executed. For a competent and more solid
form of the resulting code to be achieved, repeated operations of an algorithm are
regularly revealed as a loop. The steps are [10]:

1. Establish conditional branch instructions //over a number of loop unrolling.

2. Step A instruction is converted to predicate defining instructions //instructions
that fix a certain degree known as a predicate.

3. Modification of instructions associated to both branch and straight constructs
into predicate instructions //according to the degree of the predicate, both of
them carried out instruction.

4. Fetch and execute predicated instructions regardless of the degree of their pred-

icate//over a number of loops unrolling.

Instructions retirement stage.

6. For predicate degree = TRUE //progress to the next and last pipeline phase.

b



A Comparative Analysis of Techniques ... 259

Fig. 2 Framework of < o A
two-way loop mechanism ¥ ¥ ,
I 2
[10] o I I
Basic block ‘ L » s
of I3
Instructions L ‘ ¢
I4
v — |

Sequential code

execution ILP Instruction execution

7. For predicate degree = FALSE //nullified: there is no need to write back the
results that is produced and hence lost.

Competent supervision of instruction control, conditional instructions, and storage
for predicate values of different basic blocks loops are supported by the algorithm
[10].

3.3 Framework of Branched Instructions Mechanism

The embedded algorithm in the new design enabled the processing unit of the mecha-
nism, which has fixed characteristic of ILP architecture to control multiple instruction
sets, which could be conditional or branch instructions and process them at the short-
est CPU cycles time [10]. The result is the capability to handle instructions such as
branch and straight instructions, parallelism exploitation among instructions, and the
speed of instructions execution as shown in Fig. 2.

3.4 Metrics of Performance

The comparisons of the two branched instruction processing techniques are measured
such as the closeness of execution results. ILP impact is measured using the speedup
in execution time and is expressed by Eq. (1)

70
ILP Speedup = Tk @9)

where

TO previous technique execution time
T1 TWL technique execution time.



260 S. Misra et al.

Amdahl’s Law
The states of Amdahl’s law gave the total speedup of a particular component or rate
of used up by the system as given by Eq. (2) [7, 11]

1

S=————. 2
A-f)+% @

where

S speedup for total system.
F section of work executed by the faster components.
K speedup for new component.

Flynn Benchmark

Execution time = total time required to run program, that is, product development
wall clock time and research [12, 13].

performance = m < 1 is overwhelmed by concurrency of execution,
ILP, I/O speed, processor speed, program type, looping, instruction paths available,

and system workload.

Utilization
Cantrell [11] generates a formula and benchmark to calculate total executed instruc-
1

tions (u), if T seconds is the mean time of execution, u is expressed by 1 = &

A
The Utilization: p = AT = — = 1.
m
When, mean waiting time, Tw = oo, and A = rate of issue of instructions.This
implies that parallelism is not available in the program.
4 Results and Discussion

ILP approach experimental execution time versus predicted approach is shown in
Table 2.

Table 2 gives details of the implementation of the mean time of executions in
ILP mechanism test for 50 students, 10,000 and over instructions set, 4 sub-loops

Table 2 Simulation mean time of executions

Time of execution | Loop fields

11 12 13 14
TO (sec) 952 374 476 604
T1 (sec) 401 137 143 431




A Comparative Analysis of Techniques ... 261

forms executed in parallel and simultaneously with predicted mechanism and £ 0.05
statistical sample error students records.

Total execution time, Tt =Y 70+ ) T1
where

TO time of execution for predicted technique.
T1 time of execution for ILP technique.

ZTO: 851 +205 + 337 + 514 = [1] = 1907
D T1=502+306+282+291 = [2] = 1381
'.Tt:ZTO+ZT1 =[1]+[2]

= 1907 + 1381
= 3288

Predicted and ILP techniques percentages of time of execution are given by

P . 0 > T0 100
= X —
ercentage o STt 1
1907 100
= —— x — =0.5799878 x 100 = 579987 = 58%
3288 1
and
Tt 100
Percentage ofT'1 = % X T
_ 1381 100

= —— x — =0.4200122 x 1 = 4200122 = 42
3288>< 1 0.4200 x 100 00 %

The performances (Py) of predicted technique and (P;) of ILP are given by

1 1

= — = — = —4
PO = 720 = 1907 5.2438 x 107" (Approx.)
1
Pl=—=——="72411 x 107%A .
Tel ~ 1ag1 24> 107 Approx.)

Units are cycle per second (CPS). The performance rate of (PI) improved over
(PO) due to lesser execution time of the ILP technique. The speedup (n) is computed
from Eq. 1 by

_TO 1907

— Y a81(Approx.
"T T T 1381 (Approx.)

This signifies that the ILP mechanism is 1.381 times faster than predicted mech-
anism.



262 S. Misra et al.

Comparisons: To estimate the strength and direction of a linear relationship
between the outcomes of two approaches for executing branched instructions con-
structs, linear correlation coefficient (r) statistical quantity is used as expressed in
Eq. 3:

nY.T0.T1 — (. TO) > T1)
r= 3

\/n(z T0%) — (% TO)Z.\/n(Z T12) - (% Tl)z'

where n is numbers loop iterations = 4,

Z T0 = 2406,

ZT] = 882,

> T0.T1 = 622462,
(Z T0)> = 1637572,
(Z T1)? = 240420,
ny T0.T1 - (Z TO) (Z T1> == 4% 622462) — (2406 * 882) = [3] = 367756

Jo(S10) - (S 10) u(S 1) - (S) =

= —2480389922

[3] 367756

— = —————— —(.000148265
[4] —2480389922

r =

The value of linear correlation coefficient (r) is (0.000148265), which indicates
a negative value tending toward zero. Again, the directions of execution times are
inverse of the other (that is, as TO increases, T1 decreases in long term). The slope of
fitness is in the negative region of the graph; and the correlation is random, nonlinear,
or weak between the branched instruction execution times of pipeline and TWL
techniques.

Similarly, to determine the proportion of the variance (or changes) of predictable
variable (T0) from unpredictable variable (T1) for execution times, coefficient of
determination (%) was chosen. This is the ratio of explained variance to total variance
given by Eq. 4.



A Comparative Analysis of Techniques ... 263

o nY.T0.T1 — (3 TO)X. T1) . @

Jr(ET0) = (CTOR /n(ST12) — (£ 71

where

r = —0.000148265,

2
rr = [%] = (—0.000148265)% = 0.0000000219826

The value of the coefficient of determination (+?) is 0.0000000219826 (or
2.919826 x 10%). This result shows that approximately one-quarter of the area is
covered by the line of regression in scatter plot. Therefore, the regression line passes
exactly at most one data point in the scatter plot to reveal that the regression line was
further away from the points and less explainable. The implication is that ILP tech-
nique used lesser execution times as compared to the predicted technique because,
it increased numbers of iterations, multiple issues, parallel execution of both con-
ditional and straight instructions constructs, and availability of overlaps in loops
processes.

Users estimate ILP from execution time simply as overall time needed to run a
program loop. According to Flynn’s benchmark, the numbers of instructions revolved
per cycle is equal or less than 1 (P1 < 1). That s1gn1ﬁes that for improved technique

with execution time of 1381; recall that: P; = m

1

— = —— =72411 x 107*(A .
Tel 1381 x 107 (Approx.)

P =

P1 < 1 satisfies Flynn’s benchmark, i.e., the user will perceive computer system
as high-performance system due to parallelism, number of loop pipelines, and I/O
speed.

The total work done per unit time is termed Capacity Index and can also be per-
ceived as the throughput. The total of requests completed per second is the quantities
measured. Utilization is the total instructions issued/total completed per sec.

If average time of execution is Tt seconds, the total instructions executed (L) is
given by

1
n=re = 0.00052438 x 3600 x 24 = 0.3020451

1
n= 1= 0.00072411 x 3600 x 24 = 62.563104

and A = no of loops = 4



264 S. Misra et al.

From Eq. 3, utilization for:
Predicted technique, p = AT0

4
A Y 13243056
w 0.3020451
and ILP, p = AT1
At 4 = 0.06393545
T u 62563104

This implies that p for ILP technique is lower than 1 satisfying the Cantrell’s
benchmark, which means several parallel processes and instructions can be executed
in a day.

5 Conclusion

The approach revealed that ILP exploits branched executions better than predicted
method on the basis of the time of execution, rate of execution, and utilization indexes.
ILP offers increased speed of execution in programs, enabling capabilities of pro-
cessing elements/compiler to point several instructions concurrently.

More so, ILP converts basic block of instructions to more dependent and inde-
pendent instructions, performs parallel executions unlike the predicted approach
(pipeline). ILP makes compiler/processing elements to overlap (or interleave) exe-
cution, replicates the original loops (loop iterations) loop copies, thereby encourag-
ing parallel execution of several loop bodies at the same time and several issues of
instructions.

This paper recommends ILP approach as the most preferable choice for speedup
and parallel execution of instructions from either instruction constructs as compared
to pipeline approach. Comparing several techniques with ILP could be considered
as future work.

Acknowledgements We acknowledge the support and sponsorship provided by Covenant Univer-
sity through the Centre for Research, Innovation and Discovery (CUCRID).

References

1. Hennessy, J., Patterson, D.A.: Computer Architecture, 4th edn, pp. 2—104. Morgan Kaufmann
Publishers Elsevier, San Francisco (2007)

2. Smith, J.E., Weiss, J.: PowerPC 601 and Alpha 21064: A tale of two RISCs. J. Comput. IEEE
Press 27(6), 46-58 (1994)



A Comparative Analysis of Techniques ... 265

Jack, W.D., Sanjay, J.: Improving instruction-level parallelism by loop unrolling and dynamic
memory disambiguation. Unpublished M.Sc. thesis of Department of Computer Science,
Thornton Hall, University of Virginia, Charlottesville, pp. 1—8 (1995)

Pepijn, W.: Simdization transformation strategies - polyhedral transformations and cost esti-
mation. Unpublished M.Sc thesis, Department of Computer/Electrical Engineering, Delft Uni-
versity of Technology, Netherlands, pp. 1-77 (2012)

Vijay, S.P., Sarita, A.: Code transformations to improve memory parallelism. In: 32nd Annual
ACM/IEEE International Symposium on Microarchitecture, pp. 147 — 155. IEEE Computer
Society, Haifa (1999)

Pozzi, L.: Compilation techniques for exploiting instruction level parallelism, a survey. Depart-
ment of Electrical and Information, University of Milan, Italy Technical Report 20133, pp. 1 31
(2010)

Parthasarathy, K.A.: Performance measures of superscalar processor. Int. J. Eng. Technol. JET
Publications, UK 1(3), 164-168 (2011)

Kaeli, D., Rosano, R.A.: Exposing instruction level parallelism in presence of loops. J. Comput.
Syst. 8(1), 74-85 (2004)

Marcos, R.D.A., David, R.K.: Runtime predictability of loops. In: 4th Annual IEEE Interna-
tional Workshop on Workload Characterization, I.C., Ed., Texas, pp. 91—98 (2001)

Misra, S., Alfa, A.A., Adewale, O.S., Akogbe, A.M., Olaniyi, M.O.: A two-way loop algorithm
for exploiting instruction-level parallelism in memory system. In: Beniamino, M., Sanjay, M.,
Ana, M., Rocha, A.C. (eds.) ICCSA 2014, LNCS, vol. 8583, pp. 255-264. Springer, Heidelbreg
(2014)

. Cantrell, C.D.: Computer system performance measurement. Lecture CE/EE 4304, The Uni-

versity of Texas, Dallas (2012). http://www.utdallas.edu/~cantrell/ee4304/perf.pdf
Flynn, M.J.: Computer Architecture: Pipelined and Parallel Processor Design, 1st edn,
pp. 34-55. Jones and Bartlett Publishers, New York (1995)

. Olukotun, K., Nayfeh, B.A., Hammond, L., Wilson, K., Chang, K.: The case for a single-chip

multiprocessor. Conf. ACM SIGPLAN Not. Stanf. 31(9), 2-11 (1996)


http://www.utdallas.edu/%7ecantrell/ee4304/perf.pdf

	A Comparative Analysis of Techniques for Executing Branched Instructions
	1 Introduction
	2 Review of Branched Instruction Execution
	2.1 Instructions Execution Cycle

	3 Methodology
	3.1 A Two-Way Loop Technique Setup
	3.2 An Algorithm for Two-Way Loop
	3.3 Framework of Branched Instructions Mechanism
	3.4 Metrics of Performance

	4 Results and Discussion
	5 Conclusion
	References




