
Formal Verification of Causal
Order-Based Load Distribution
Mechanism Using Event-B

Pooja Yadav, Raghuraj Suryavanshi, Arun Kumar Singh and Divakar Yadav

1 Introduction

Distributed systems are very complex to understand and develop. There is a need
to formally verify and ensure the correctness of distributed systems and algorithms.
During last few years, the research in the field of formal methods has done significant
work in the development of describing and analysing the complex systems in formal
languages [1, 2]. In distributed systems, formal methods take an important role for
ensuring the correctness of several protocols and algorithms. Formal verification is
done either through model checking or theorem proving [3, 4]. Model checking is
a model-oriented approach, which verifies the correctness of system automatically
by traversing every possible execution path. It is expressed in terms of finite state
automata that describe all possible transitions states. In this technique, for a given
problem, a formal model describing its behavioural properties is developed in formal
language. All the properties of models are verified. In order to verify all possible
execution paths, it is required that the model must be finite. The problem may also
appear when the model which is finite has considerable size. Theorem proving is
the act of generating a mathematical proof for a mathematical statement to be true

P. Yadav
Abdul Kalam Technical University, Lucknow 226031, India
e-mail: poojayadav255@gmail.com

R. Suryavanshi (B)
Pranveer Singh Institute of Technology, Kanpur 209305, India
e-mail: raghuraj_singh09@yahoo.co.in

A. K. Singh
Rajkiya Engineering College, Kannauj 209732, India
e-mail: aksingh_uptu@rediffmail.com

D. Yadav
Institute of Engineering and Technology, Lucknow 226021, India
e-mail: divakar_yadav@rediffmail.com

© Springer Nature Singapore Pte Ltd. 2019
R. K. Shukla et al. (eds.), Data, Engineering and Applications,
https://doi.org/10.1007/978-981-13-6351-1_18

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6351-1_18&domain=pdf
mailto:poojayadav255@gmail.com
mailto:raghuraj_singh09@yahoo.co.in
mailto:aksingh_uptu@rediffmail.com
mailto:divakar_yadav@rediffmail.com
https://doi.org/10.1007/978-981-13-6351-1_18


230 P. Yadav et al

[3, 5, 6]. In this proving technique, system and its properties are specified in terms
of mathematical logic. The verification of properties is done by discharging proof
obligations generated by the system. If the proof is discharged for a statement, then
it is known to be true and is said to be a theorem. The main advantage of theorem
proving over model checking is that it can be used to verify the system having infinite
states.

We have considered Event-B as a formal method for verification of our model.
Event-B [7–9] is a formal technique, which is used to develop and formalize such
system whose component can be modelled as discrete transition systems. It also
provides refinement-based development of a complex model and has control systems
within its scope. Event-B modelling can be used in various application areas like
sequential programmes, concurrent programmes and distributed systems [10].

In this paper, we have developed formal model of distributed load migration
mechanism using Event-B. Distributed system is a collection of autonomous systems
connected by the network and they communicate with each other for the completion
of common goal [11]. In this environment, the users submit the task at their sites for
processing. The random arrival of tasks and their service order create the possibility
that several sites may become heavily loaded and others may ideal or lightly loaded.
It may degrade the performance of the whole system. Therefore, load distribution
scheme is required for efficient use of resources and to enhance the performance
[11–13]. In this paper, we have considered maximum load count value of site as the
threshold value. This threshold value indicates maximum number of tasks that can be
executed without affecting the performance of system.When a new task is submitted
at site, the load count value of that site will be increased. When load count value of
any site exceeds threshold value, then that site will become heavily loaded site. The
load of this site should be transferred to idle or lightly loaded site. In order to find
out low load site, heavily loaded site broadcasts load transfer request message to all
sites. Site, whose load count value is lesser than threshold value, sends load reply
message to sender. At any instance, lightly loaded site may receive number of load
request messages from several heavily loaded sites. It will not send a reply message
to all heavily loaded sites. It will send a reply only to that site first whose request
for load transfer message arrived first. For ensuring ordered delivery of message, we
have introduced a notion of causal order delivery [14]. The lightly loaded site will
send a reply only to that site whose request for load transfer causally precedes the
request from others. After receiving reply message from low load site, load from
heavily loaded site will be transferred to it.

The remainder of this paper is organized as follows: Sect. 2 describes Event-B
as formal method, Sect. 3 presents causal order broadcast, Sect. 4 outlines Event-B
Model of causal order-based load distribution. This model consists of events like
task submission event for submission of new task, enable and disable load transfer
event for changing status of site when load count value increase and decrease from
threshold value, broadcast and deliver event to formalize ordered delivery of load
request message, reply message event, which models the sending of reply message
to heavily loaded site and load reduction event to reduce load value. Finally, Sect. 5
concludes the paper.



Formal Verification of Causal Order-Based Load Distribution … 231

2 Event-B

Event-B [14–18] is a formal technique, which captures complete system specifica-
tions on the basis of requirement and system behaviour. It can be expressed in form
of states and events. It specifies the model in mathematical form. It defines math-
ematical structures as context and machine [19–21]. The context part of the model
contains sets, constants and axioms, which are used to describe static properties of
system. The dynamic part of the model is shown by machine part, which contains
set of variables, invariants and events that modify the value of state variable when
it triggers. The variables of model are constrained by invariants. The invariants of
model which describe the properties of model should not be violated when an event
occurs. The event contains guards which are necessary conditions for an event to
trigger and list of actions. When all guards of an event become true, then set of
actions written under it will be performed. The action of an event is expressed by
substitution operation. It specifies how the state of system may change. The event
may use local variables. The scope of that variable will be local to the event.

For ensuring correctness of the model, Event-B method requires to discharge all
proof obligations generated by themodel. Proof obligations serve to verify properties
of the model.

There are several tools which support to write Event-B specifications. We have
considered Rodin tool [22–24] for the development of our model. In order to dis-
charge proof obligations generated by the model, there are various plug-ins which
are provided by this tool. Event-B uses set-theoretic notations to specify the model.
The syntax and detail description of Event-B notations can be found in [15].

3 Causal Order Broadcast

The formalization of causal relationship in distributed system was initiated by Lam-
port in [25]. Later, causal ordering of messages is proposed by Birman, Schiper and
Stephenson [26]. The causal order property can be ensured by combining FIFO order
and local order property [27].

FIFO order property says that if any site Si broadcasts a message Ma before
broadcast another message Mb, then each receiving site delivers Ma before Mb.

Local order property says that if any site Si delivers message Ma before broad-
casting message Mb, then every receiving site delivers Ma before Mb.

The causal order property says that if broadcasting of a message Ma causally
precedes broadcasting of a message Mb, then delivery of message Ma at each site
should be done before message Mb (Fig. 1).

We can say that message Ma causally precedes message Mb if send event of
messageMa; send(Ma) at site Si happened before message sending event send(Mb)
of message Mb at site Sj. The causality of the message can also be related with
receive event of the message. AmessageMa causally precedesMb if receive event of



232 P. Yadav et al

Fig. 1 Causal order
broadcast

Ma

Mb

Mc

S1

S2

S3

messageMa causally precedes the broadcast ofMb.As given inFig. 1, broadcastingof
messageMa causally precedes broadcasting ofMb and each recipient site deliversMa
before Mb. Similarly, broadcasting of message Mb causally precedes broadcasting
of message Mc and each recipient site delivers Mb before Mc.

4 Event-B Model of Load Distribution Mechanism

We start with the distributed system model having a set of sites. Since there is no
system-wide global clock or shared memory, the information from one site to other
site is exchanged throughmessages. At any site, new taskmay be submitted. The task
may be process or transaction which will perform some operation (reading or writing
on data objects) at that site. Therefore, submission of new task will increase the load
at that site. When the load count value exceeds a certain limit known as threshold
value, then the performance of the systemwill degrade. In order to capture maximum
throughput from the system, we need to distribute load from heavily loaded site to
idle site in efficient manner.

In ourmodel, the context part contains SITE andMESSAGE as carrier set.TRANS-
FERSTATUS and TYPE are declared as enumerated set. The set TRANSFERSTATUS
represents load transfer status of site informs of disable and enable.

Initially, load transfer status of every site is disable because every site is under-
loaded.When load count value exceeds threshold value, then load transfer status will
be set as enable. The set TYPE has element LOAD_REQ and LOAD_REP which is
used to formalize type of message as load request and load reply, respectively. The
machine part consists of variables, invariants and events. The description of variables
is as follows (Fig. 2):

(i) The variable load_at_site is specified as total function. It represents load count
value of every site.

(ii) The variable loadtransferstatus is a total function between site to TRANS-
FERSTATUS. Depending on the loadcount value, the load transfer status of
every site may be either disable or enable.

(iii) The variable threshold value is declared as natural number.



Formal Verification of Causal Order-Based Load Distribution … 233

Fig. 2 Variables and invariants of model

(iv) The variable sender is specified as partial function fromMESSAGE to SITE.
It models the sending of message m by site s.

(v) The variable cdeliver is declared as:

cdeliver ∈ SI T E ↔ MESSAGE

The operator ↔ defines the set of relations between SITE and MESSAGE. It
represents causal delivery of messages at any site.



234 P. Yadav et al

(vi) The variable messagesent represents the set of messages which have been
sent.

(vii) The variable messagetype maps each sent message with its type. The type of
message may be load request message or load reply message.

(viii) The variable corder models the causal relationship between messages. The
mapping (mmmm) ∈ corder indicates that message m causally precedes mes-
sage mm.

(ix) The delivery order of messages at any site is shown by delorder. It is declared
as relation between site to set of ordered pair of messages. The mapping
ssm(mmmm)∈ delorder indicates that at site ssmessage,m is delivered before
message mm.

(x) The variable replymsgsent models the sending of reply message correspond-
ing to request message. The mapping (m1mm2) ∈ replymsgsent indicates that
reply message m1 has been sent corresponding to its request message m2.

4.1 Submission of Task

The event TASK SUBMISSION is given in Fig. 3. This event model the submission
of task at any site ss. Every time when this event occurs, it increases the load count
value of site by one. The action act1 represents that load at site ss is incremented by
one.

4.2 Enabling and Disabling Load Transfer Status

The event ENABLE TRANSFER updates load transfer status of site (Fig. 3). When
load count value of any site exceeds threshold value, then this event updates load
transfer status of that site as enable. The guard grd2 ensures that load of site ss is
greater than threshold value. The guard grd3 ensures that load transfer status of site
ss is disable. The action act1 updates the load transfer status of site ss as enable.

The event DISABLE TRANSFER is given in Fig. 3. The guard grd2 ensures that
load count value of site ss is less than threshold value. The action act1 set load
transfer status of that site as disable.

4.3 Broadcasting and Delivery of Load Request Message

This event enables broadcasting of load request message to all sites (see Fig. 4).
When the load count of any site exceeds its threshold value, then this site broadcast
load request message to all sites. The purpose of the broadcasting request message
is to know that which site is under loaded. The message that has not been sent is



Formal Verification of Causal Order-Based Load Distribution … 235

Fig. 3 Task submission, enable transfer and disable transfer event

ensured by guard grd2 and grd4. The load transfer status of site ss is enable and is
ensured through guard grd3. Due to the occurrence of this event, message mm will
be broadcast (act2). The message mm will be added to messagesent set (act1). The
action act3 set the status of message mm as load request message. In this event, we
are also ensuring ordered delivery of request message at sending site. The action
act4 ensures that all those messages which are sent by site ss will causally precede
message mm (FIFO Order). The action act5 specifies delivery of message mm at site
ss. The action act6 gives delivery order of message.

Delivery of load request message is given in Fig. 5. The guard grd3 and grd4
ensure that message mm has been sent but it is not delivered to site ss. The guard
grd5 is written as

∀m · (m ∈ MESSAGE ∧ (m �→ mm) ∈ corder ⇒ (ss �→ m) ∈ cdeliver )

It ensures that all messages m which causally precede message mm have already
been delivered at site ss. Delivery of messagemm at site ss is ensured by action act1.
The action act2 makes the delivery order of messages at site ss.



236 P. Yadav et al

Fig. 4 Broadcast event

4.4 Sending of Reply Message

The event REPLY is given in Fig. 6. This event models sending of load replymessage
(LOAD_REP) by those sites whose load count value is lesser than threshold value.
The load request message mm has been received by site s is ensured by guards grd3
and grd4. Site may receive number of load request messages from several heavily
loaded sites but it will send a reply only to that site whose load request message
LOAD_REQ message causally precedes other requests. The guard grd5 ensures that
load request messagemm causally precedes all load request messagemsg. Therefore,
site s will send load reply message m corresponding to load request message mm
only. The load count value of site s is lesser than threshold value and is ensured by
guard grd6. The reply message m has not been previously sent is ensured through
guard grd7 and grd8. The action act1 ensures sending of message m by site s. The
action act2 adds the message m to messagesent set. The action act3 set the status



Formal Verification of Causal Order-Based Load Distribution … 237

Fig. 5 Deliver event

of message m as load reply (LOAD_REP). The action act4 makes the entry of reply
message m corresponding to request message mm.

4.5 Load Reduction Event

This event model the load reduction from heavily loaded site (Fig. 7). The guard
grd2 ensures that site ss is heavily loaded because its load count value is greater than
threshold value. Guards grd3, grd4 and grd5 ensure that site ss has received the load
reply message m. Receiving of reply message also indicates that there is some site
whose load count value is less than threshold value. Request message mm sent by
site ss is ensured through guards grd6, grd7 and grd8. The guard grd9 ensures that
message m is reply message of request message mm. Due to the occurrence of this
event, load count value of site ss is reduced by one (act1). After the reduction of load,
it will be submitted at low load site in the form of task through TASK SUBMISSION
event.



238 P. Yadav et al

Fig. 6 Reply event

5 Conclusion

Distributed systems provide tremendous processing capacity. In order to maximize
the performance of the system, good load transfer or task migration schemes are
required. The random arrival order of task and its random system service may create
the situation that all resources and systems may not properly be utilized. Due to
uneven load distribution, few of the sites may become heavily loaded and others may
be ideal. We have introduced causal order delivery of load transfer request message
which ensures ordered service of load request message.

In this paper, a formal development of causal order-based load distribution mech-
anism is done. Formal methods are mathematical techniques to verify the correctness
of system properties. We have considered Event-B as a formal method for the devel-



Formal Verification of Causal Order-Based Load Distribution … 239

Fig. 7 Load reduction event

opment of ourmodel. In Event-Bmodel, the properties ofmodel are specified through
invariants. These invariants should not be violated during the execution of the model.
Event-B model generates proof obligations, and we need to discharge all proofs gen-
erated by it. A total of 42 proof obligations are generated by the model out of which
30 proofs are discharged automatically whilst 12 proofs are discharged interactively.
In order to ensure correctness, we have added the following invariants:

ran(cdeliver) (dom(sender) . . . (inv11)

dom(corder) (dom(sender) . . . (inv12)

ran(corder) (dom(sender) . . . (inv13)

! ss(ss ∈ SITE& loadtransferstatus(ss) 	 enable)G load at site(ss) > (threshold value) . . . (inv1

The invariant inv11 ensures that messages which are delivered should be a subset
of messages which have been sent. Similarly, invariants inv12 and inv13 ensure that
messages for which ordering is maintained (causal order) should be a subset of sent



240 P. Yadav et al

messages. The invariant inv14 ensures that if load transfer status of any site is enable,
then load of that site exceeds threshold value of that site.

The invariants and proofs of model give a clear insight of model. In future, we
plan to strengthen invariants and add fault-tolerance property to this model.

References

1. Bjrner, D.: Logics of formal specification languages. Comput. Inform. 22(1–2), This double
issue contains the following papers on B, CafeOBJ, CASL, RAISE, TLA+ and Z (2003)

2. Bjrner, D.: Special double issue on formal methods of program development. Int. J. Softw.
Inform. 3 (2009)

3. Shankar, N.: Combining theorem proving and model checking through symbolic analysis. In:
Proceeding of CONCUR ’00, vol. 1877, pp. 1–16. LNCS, Springer (2000)

4. Fitzgerald, J., Larsen, P.G.: Modelling Systems—Practical Tools and Techniques in Software
Development. Cambridge University Press, Cambridge, UK, Second edition (2009)

5. Clarke, E., Zhao, X.: A theorem prover for mathematica. In automated deduction-CADE-II.
In: 11th International Conference on Automated Deduction, pp. 761–763. Saratoga Springs,
New York, 15–18 June 1992

6. Clarke, E., Zhao, X.: A theorem prover for Mathematica. Math. J. (1993)
7. Abrial, J., Butler,M., Hallerstede,S., Voisin, L.: An open extensible tool environment for Event-

B. In: Liu, Z., He, J. (eds.) ICFEM, LectureNotes in Computer Science, vol. 4260, pp. 588–605.
Springer (2006)

8. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. CambridgeUniversity
Press (2010)

9. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete models.
Appl. Event B Fundam. Inform. 77(1–2), 1–28 (2007)

10. Butler, M.: An approach to the design of distributed systems with B AMN. In: Bowen,
J.P., Hinchey, M.G., Till, D. (eds.) ZUM, Lecture Notes in Computer Science, vol. 1212,
pp. 223–241. Springer (1997)

11. Singhal, M., Shivratri, N.G.: Advanced Concepts in Operating Systems. Tata McGraw-Hill
Book Company (2012)

12. Lazowska,D.E., Zahorjan, J.: Adaptive load sharing in homogeneous distributed systems. IEEE
Trans. Softw. Eng. 12(5), 662–675 (1986)

13. Lazowska, D.E., Zahorjan, J.: A Comparison of receiver-initiated and sender-initiated adaptive
load sharing. Perform. Eval. 6(1) 53–68 (1986)

14. Yadav, D., Butler, M.: Application of Event B to global causal ordering for fault tolerant
transactions. In: Proceeding of Workshop on Rigorous Engineering of Fault Tolerant System,
REFT05, Newcastle upon Tyne, pp. 93–103, 19 July 2005

15. Yadav, D., Butler, M.: Rigorous design of fault-tolerant transactions for replicated database
systems using Event B. In: Butler, M., Jones, C.B., Romanovsky, A, Troubitsyna, E. (eds.)
Rigorous Development of Complex Fault-Tolerant Systems. Lecture Notes in Computer Sci-
ence, vol. 4157, pp. 343–363. Springer, Heidelberg (2006)

16. Yeganefard, S., Butler, M., Rezazadeh, A.: Evaluation of a guideline by formal modelling of
cruise control system in Event-B. Proc. NFM 2010, 182–191 (2010)

17. Liu, J., Liu, J.: A formal framework for hybrid Event B. Electron. Notes Theor. Sci. 309(2014),
3–12 (2014) (Elsevier)

18. Suryavanshi, R., Yadav, D.: Formal development of byzantine immune total order broadcast
system using Event-B. In: Andres, F., Kannan, R. (eds.) ICDEM 2010. LNCS, vol. 6411,
pp. 317–324. Springer, Germany (2010)

19. Hallerstede, S., Leuschel, M.: Experiments in program verification using Event-B. Form. Asp.
Comput. 24, 97–125 (2012)



Formal Verification of Causal Order-Based Load Distribution … 241

20. Suryavanshi, R., Yadav, D.: Rigorous design of lazy replication system using Event-B. In:
Communications in Computer and Information Science, vol. 0306, pp. 400–411. Springer,
Germany (2012). ISSN 1865-0929

21. Suryavanshi, R., Yadav, D.:Modeling of multiversion concurrency control system using Event-
B. In: FederatedConference onComputer Science and Information systems (FedCSIS), Poland,
indexed and published by IEEE, pp. 1397–1401, 9–12 Sept 2012. ISBN 978-83-60810-51-4

22. Banach, R.: Retrenchment for Event-B: usecase-wise development and Rodin integration.
Form. Asp. Comput. 23, 113–131 (2011)

23. Abrial, J.R., Cansell, D., Mery, D.: A mechanically proved and incremental development of
ieee 1394 tree identify protocol. Form. Asp. Comput. 14(3), 215–227 (2003)

24. Metayer, C., Abrial,J.R., Voison, L.: Event-B language. RODIN deliverables 3.2. http://rodin.
cs.ncl.ac.uk/deliverables/D7.pdf (2005)

25. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM
25(7), 558–565 (1978)

26. Birman, K., Schiper, A., Stephenson, P.: Lightweight causal and atomic group multicast. ACM
Trans. Comput. Syst. 9(3), 272–314 (1991)

27. Yadav, D., Butler, M.: Formal specifications and verification of message ordering properties in
a broadcast system using Event B. In: Technical Report, School of Electronics and Computer
Science, University of Southampton, Southampton, UK (2007)

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

	Formal Verification of Causal Order-Based Load Distribution Mechanism Using Event-B
	1 Introduction
	2 Event-B
	3 Causal Order Broadcast
	4 Event-B Model of Load Distribution Mechanism
	4.1 Submission of Task
	4.2 Enabling and Disabling Load Transfer Status
	4.3 Broadcasting and Delivery of Load Request Message
	4.4 Sending of Reply Message
	4.5 Load Reduction Event

	5 Conclusion
	References




