
Efficient MapReduce Framework Using
Summation

Sahiba Suryawanshi and Praveen Kaushik

1 Introduction

BigData can be defined as huge quantity of data, in which data is beyond the normal
database software system tool to capture, analyze, andmanage. The data is within the
limits of three dimensions which are data volume, data variety, and data velocity [1].
Primary analysis data contains surveys, observations, and experiences; and secondary
analysis data contains client information, business information reports, competitive
and marketplace information, business information, and location information that
contains mobile device information. Geospatial information and image information
contains a video and satellite image and provides chain information containing rating
and vendor catalogs, to store and process this information that is done by BigData.
To process this variety of data, the velocity is incredibly necessary.

The major challenge is not to store the big datasets in our systems, but, to retrieve
and analyze the large data within the organizations, that too, for information stored
in various machines at completely different locations [1]. Hadoop comes in a picture
in these situations. Hadoop has been adopted by many people leading companies,
for example, Yahoo!, Google, and Facebook along with various BigData programs,
for example, machine learning, bioinformatics, and cybersecurity. Hadoop has the
power to analyze the info very quickly and effectively. Hadoop works best on semi-
structured and unstructured data. Hadoop hasMR andHadoop distributed file system
[2]. The HDFS can provide a storage for clusters, and once the info is stored within
the HDFS then it breaks into number of small pieces and distributes those small items
into number of servers that are presentwithin the clusters, wherever each server stores

S. Suryawanshi (B) · P. Kaushik
Department of Computer Science and Engineering, Maulana Azad National Institute of
Technology (MANIT), Bhopal, India
e-mail: sahiba686@gmail.com

P. Kaushik
e-mail: kaushikp@manit.ac.in

© Springer Nature Singapore Pte Ltd. 2019
R. K. Shukla et al. (eds.), Data, Engineering and Applications,
https://doi.org/10.1007/978-981-13-6351-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6351-1_1&domain=pdf
mailto:sahiba686@gmail.com
mailto:kaushikp@manit.ac.in
https://doi.org/10.1007/978-981-13-6351-1_1


4 S. Suryawanshi and P. Kaushik

these small pieces of whole information set and then for each piece of information
a copy stored on more than one server, this copied information set will be retrieved
once the MR is process and within which one or a lot ofMapper or Reducer fails to
process [3].

MR appeared as the preferred computing framework for large processing because
of its uncomplicated programming model and the execution is done in parallel auto-
matically. MR has two computational phases, particularly mapping and reducing,
that is successively carried through many maps and reduce tasks unalike. The map
reads input data and manages to create <key, value> pairs depending on the input
data. This <key, value> pairs are the intermediary outputs within the native machine.
Within themap phase, the tasks begin in parallel which generates <key, value> pairs
of intermediate data by the input splits. The <key, value> pairs are kept on the native
(local) machine and well ordered into various data partitions as one for each reducer
phase. Reducer is liable for processing the intermediary outcomes which receive
from various mappers and generating ultimate outputs within the reducer phase.
Every reducer takes their part of information from data partitioning coming from all
themapper phases to get the ultimate outcome. In between themapper phase and the
reducer phase, there is a phase, i.e., shuffle phase [4]. During this, the info created
at the mapper phase is ordered, divided, and shifted to the suitable machine execute
the reducer phases. The MR is performed over a distributed system composed of the
master and a group of workers. The input is split into chunks that are allocated to the
mapper phases [5]. The map tasks are scheduled by a master to the workers, which
consider the data locality. The map tasks provide an output which will be divided
into a number of pieces according to the number of reducers for the job. Record with
the similar intermediary key should go to the same partition so that it will guarantee
the correctness for the execution. All the intermediary <key, value> pairs’ partitions
are arranged and delivered with the task of reducer that needs to be executed. By
default, the constraint of data locality does not take into considerationwhile doing the
scheduling tasks for the reducer. As the result, the quality of data at the shuffle phase,
which needs to transfer via a network, is significant. Using tradition, a hash-based
function which is used for partitioning the intermediary data in reducer tasks is not
traffic-efficient because topologies of network and size of data corresponding to each
key are not considering it. Thus, this paper proposes a scheme which sums up the
intermediate data. The proposed scheme will reduce the data size that has to be sent
to the reducer. By reducing the size of data, the network traffic at reduce functionwill
minimize. Even though the combiner also performs the same function, the combiner
operates on the generated data by map task individually which thus fails to operate
between the multiple tasks [4]. For summing up the data, it put summation function.
Summation function can be put in both either within the single machine or among
different machines. For finding the best suitable place for summation function, it
uses distributed election algorithm. At the shuffle phase, the summation function
will work simultaneously, and then it removes the user-irrelevant data. In this, the
data of volume and traffic is reduced up to 55%, and then it sends to the Reducer.
It is more efficient way to process the data, for those jobs which have hundreds and
thousands of key ends, and each of the keys is associated with number of values.



Efficient MapReduce Framework Using Summation 5

The rest of the paper is organized as follows. In Sect. 2, we review recent related
work. Section 3 provides the proposed model. Section 4 analyzes the result. Finally,
Sect. 5 concludes the paper.

2 Literature Survey

In this section, different techniques for optimization generally applied in theMapRe-
duce framework and BigData are discussed. The paper also discussed the attributes
of various techniques for optimization and how BigData processing is improved by
these techniques.

In [6], the author examined that whether the network optimizing can make a bet-
ter performance of the system and realize that utilizing the high network and low
congestion in a network; good performance can also be achieved parallel with a
job in the optimizing network system. In [7], the author gives purlieus, a system
which allocates the resources in MR, which will increase the MR Job’s performance
in the cloud, via positioning intermediary data to the native machines or nearer to
the physical machines. This reduces the traffic of data within the shuffle part pro-
duced in the cloud data center. In [8], paper designs a good key partition approach,
in which the distribution of all frequencies of intermediate keys is watched, and
it will guarantee that the fair distribution in reduce tasks, in which it inspects the
partitioning of intermediary key and distribution of data with the key and its respec-
tive value among all the machines of map to reducer, for the data correctness, is
also examined. In [9], the author gives two effective approaches (load balancing)
to skew the data handling for MR-based entity resolution. In [10], the author pro-
poses MRCGSO mode; it adjusts very well with enlarging data set sizes and the
optimization for speedup is very close. In [11], the author relates the parallel and
distributed optimization algorithm established on alternating direction method of a
multiplier for settling optimization problem in adapting communication network.
It has instigated the authorized framework of the extensive optimization problem
and explains the normal type of ADMM and centers on various direct additions and
worldly modifications of ADMM to tackle the optimization problem. In [12], the
author pays attention to accuracy using cross-validation; the paper gives sequential
optimize parameters for plotting a conspiracy of accuracy. In [13], the author gives a
method to initiate Locality-Sensitive Bloom Filter (LSBF) technique in BigData and
also discusses how LSBF can be used for query optimization in BigData. In [14], the
author initiates the optimization algorithms using these rules and models can deliver
a moderate increase to the highest productivity on inter-cloud and intra-cloud trans-
fers. Application-level transfer adapts parameters just like analogousness pipelining,
and concurrency is very needful mechanisms for happening across data transfer bot-
tlenecks for scientific cloud applications, although their optimal values juncture on
the environment on which basis the transfers are generally done. By using actual
models and algorithms, these can spontaneously be optimized to achieve maximum
transfer rate. In [15], the author offers an algorithm for cache consistency bandwidth



6 S. Suryawanshi and P. Kaushik

optimization. In this perspective, the user data shift is optimized without considera-
tion of the user expectation rate. The debated algorithm differentiates with trending
data transmission techniques. In [16], the author recommends improved computing
operators focused on smart grids optimization for BigData through online. This set-
tles a problem of generic-constrained optimization by utilizing amodule based on the
MR framework, which is a trending computing platform for BigData management
commenced at Google. Online answer to urged optimization problems is a necessary
requirement for a secure, reliable smart grid operation [17]. Many authors proposed
methods for optimizingMR, but very less work is done for optimizingMR by reduc-
ing the traffic generated, while the data is sent to reducer phase. So we proposed a
method which is based on distributed summation.

3 Proposed Method

In Hadoop MR, normally the reduce task resides in different machines/racks. As
the massive intermediate data goes to reduce task, it will create heavy traffic in the
network. By analyzing the intermediate output, we saw that there are redundant <key,
value> pairs. So we can sum up all the similar <key, value> pairs before sending it to
the reducer, which will minimize the quantity of intermediate data. The summation
can be done in both either within the machine or among different machines.

Summation at single machine: The summation function can put at each machine
in which it will sum up the similar <key, value> pairs within the samemachine before
it is sent to the reducer. As a result, the data from each machine will minimize by
summation function that will minimize the traffic too.

Summation among different machines: When the summation function put at each
machine, it will reduce the size of data. But for massive data, it needs manymappers
and reducers. There may chances that at reducer there might be number of inputs
even though the inputs are already minimized by summation. But due to number
of map functions, it will also create traffic at reducer. For that, it will sum up data
among different machines.

In Fig. 1a, it needs to send three rows of data, wherein Fig. 1b it needs to send
two rows of data to the summation function reside in different machines. As a result,
if the position of node where the summation is done will change, the traffic cost will
also change; it is the extra challenge to handle.

Architecture: Hadoop has a master node (Job Tracker), and number of slave nodes
(Task Trackers) located on remaining nodes. The job tracker handles all the submitted
jobs and takes the decision for scheduling and parallelizing the work across the
Hadoop cluster. And the task trackers do the work in parallel, allotted by the job
tracker. For summating the intermediate data, it needs two things; one piece of code
for summation, i.e., summation phase, and a manager who will handle the location
of that code. The manager resides in job tracker, which has the information where
the summation code will place for more efficient processing. This architecture will
minimize the network traffic in shuffle phase.



Efficient MapReduce Framework Using Summation 7

Fig. 1 MapReduce using summation among different machines

Summation phase: In the framework, the summation phases are located between
shuffle phases and reducer phases. All the intermediate data acts as input to this
and generated output is sent to the reducer. It performs the summation of similar
<key, value> pairs in such a way that each key has single summated pair value. After
that, output of summation phase along with the similar key has to be delivered to a
single reducer. In the architecture, the execution of summation is managed by the
task tracker at each node. When the manager who is placed in job tracker sends the
request to generate the summation code at task tracker, task tracker will initialize
the instance and specify the tasks attached to the request. Finally, when the task is
completed, the summation code is removed by task tracker and conveys the message
to the manager.

Manager: The manager has two main issues—where the summation code resides
and routes so that the summated intermediated data will generate less amount of
traffic.

Summation code placement—Number of summation codes will be generated to
reduce the traffic alongwith the path; the pathwill define fromwhere the intermediate
data will go among different machines. To do this, manager has two main questions;
by answering that, it will minimize the traffic during shuffle phase:

• On which machine the summation code will generate for minimum traffic?
• To which machine the intermediate data come from different machines, i.e., what
is the route?

For answering these questions, manager needs the whole information about the
map and reduce function along with the positions and the frequency of intermedi-
ate data (volume). Furthermore, manager also requires the information about the
resources of slave nodes, i.e., the availability of memory and CPU for processing
of summation. All these information will be sent by the task tracker to job tracker
with the heartbeat. It is sent by task tracker to job tracker so that job tracker has
knowledge of whether the task tracker alive or not; here, alive means its working
condition. According to that information, the manager will send the info about the
summation code and the route. The manager has information about the positioning
of all the task trackers, so it will send the request to find the central node for summing



8 S. Suryawanshi and P. Kaushik

up the data in different machines by creating small clusters. As the slave nodes get
the request, one of them elects itself as the central node and finds whether any of
other is interested, finds the central node, and informs the manager. Algorithms 1
and 2 are as follows:

Assume the clusters are connected to each other in a ring form; each node can
send information to its next node only so that all nodes have the information and it
will create less traffic. But if there is any node failure, then it will bypass it.

Distributed algorithm does not assume the existence of the previous central node;
every time according to the requirement, it will change which depends on the fre-
quencies of <key, value> pairs and the availability of resources. It will choose a node
among a group of different nodes in different machines as a central node.

Assume each node has their own IDs, and the priority of node Ni is i, which
is calculated according to the availability of resources and the frequency of <key,
value> pairs, i.e., volume.

Background: Any node Ni(among the nodes to which manager sends the function
for processing data) tries to find any other active node which is more suitable, by
sending a message; if no response comes in T time units, Ni tries to elect itself.
Details are as follows:

Algorithm 1 for sender node Ni that select suitable node

1. Ni sends an “Elect Ni” with Pi
2. Ni waits for time T

a. If Pi < Pj it receives “elect Nj ”
i. update central node as Nj

b. If no response comes then Ni will be
selected as the central node.

Algorithm 2 for node receiver Nj

1. Nj receive “elect Ni”
2. If Pj > Pi 

a. Send “
3. Else forward “

elect Nj”
elect Ni”



Efficient MapReduce Framework Using Summation 9

4 Implementation

The performance baseline is provided by the original scheme (i.e., no summation is
provided) and by the proposed method. We create an Oracle VM virtual machine;
we configure it with the required parameters (here we use two processors, 3 GB
RAM, 20 GB memory) and settings to act as a cluster node (especially the network
settings). This referenced virtual machine is then cloned as many times as there will
be nodes in the Hadoop cluster. Only a limited set of changes are then needed to
finalize the node to be operational (only the hostname and IP address need to be
defined). We have created pseudo-cluster. Our prototype has been implemented on
Hadoop 2.6.0.0.

In Fig. 2, it gives output sizes of mappers on nodes for respective actual sized.
It executes the proposed algorithm using the same data source for comparison in
Hadoop environment. It shows the data size for different files of size 250 MB,
500MB, 750MB, and 1 GB are minimized after applying the summation and the file
size reduced to 180 MB, 220 MB, 335 MB, and 450 MB, respectively. As a result,
the reduction ratios are 28%, 32%, 48%, and 55% for file size of 250 MB, 500 MB,
750 MB, and 1 GB, respectively. The proposed method will work more efficiently
as the size increases, and thus it will work well for BigData.

To compute, the capability of the proposed algorithm by comparing traditional
hash-based function is shown here. Hash-based partition without summation, as
default method in Hadoop, makes the traditional hash partitioning for the intermedi-
ate data, which are sent to reducers without summing up intermediate data. And our
proposed method is summation within same machine and summation among differ-
ent machines, in which before sending to reduce function the intermediate data will
be summed up so that it will minimize the size (traffic); sometimes, after summing
up, intermediate data at each machine data at reducer will be huge because of many
mappers, so it can be minimized if the summing up will be done among different
machines also as per requirements. In Fig. 3, the performance is shown which takes
the same file and performs the traditional method, summation on single machine and
summation among different machines. Here, if the number of keys is increased, the
traffic in shuffle phase also increases. For example, for 20 keys, traditional, summa-

Fig. 2 Data size at reducer

0

200

400

600

800

1000

1st
file

2nd
file

3rd
file

4th
file

data
in

MBs

tradi onal
method

proposed
method



10 S. Suryawanshi and P. Kaushik

Fig. 3 Traffic cost

tion in single, and summation in different machines generate 0.6 * 10ˆ5, 0.4 * 105,
and 0.3 * 105 bytes, respectively.

5 Conclusion

The significance of proposed scheme is discussed, i.e., summation in Hadoop MR
to process the BigData that minimizes the network traffic produced by intermediate
data: intermediate data is output of map function. For verification, we have given an
architecture where summation functions can be easily attached to the existing MR
framework. How the positioning of summation code among various machines will
affect the size is also shown, for which we give a distributed election algorithm that
fills to find the best suitable positions for the central summation function among
various machines. By applying the proposed method, it will reduce the size of data
up to 55%.

The implantation for the proposed scheme is in a pseudo-cluster for computing
the behavior; it can compute on heterogeneous distributed clusters.

References

1. Philip Chen, C.L., Zhang, C.-Y.: Data-intensive applications, challenges, techniques and tech-
nologies: a survey on big data (2014). Science Direct

2. Apache Haddop HDFS Homepage. http://HADOOP.apache.org/hdfs

http://HADOOP.apache.org/hdfs


Efficient MapReduce Framework Using Summation 11

3. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media (2009)
4. Patel, A.B., Birla, M., Nair, U.: Addressing big data problem using Hadoop and map reduce.

IEEE (2013)
5. Ke, H., Li, P., Guo, S., Guo, M.: On traffic-aware partition and aggregation in MapReduce for

big data applications. IEEE Trans. Parallel Distrib. Syst. (2015)
6. Blanca, A., Shin, S.W.: Optimizing network usage in MapReduce scheduling (2013)
7. Palanisamy, B., Singh, A., Liu, L., Jain, B.: Purlieus: locality-aware resource allocation for

MapReduce in a cloud. ACM (2011)
8. Ibrahim, S., Jin, H., Lu, L.,Wu, S., He, B., Qi, L.: Leen: locality/fairness-aware key partitioning

for MapReduce in the cloudm. IEEE (2011)
9. Hsueh, S.-C., Lin, M.-Y., Chiu, Y.-C.: A load-balanced MapReduce algorithm for blocking-

based entity-resolution with multiple keys (2014)
10. Al-Madi, N., Aljarah, I., Ludwig, S.A.: Parallel glowworm swarm optimization clustering

algorithm based on MapReduce. In: 2014 IEEE Symposium on Swarm Intelligence (2014)
11. Liu, L., Han, Z.: Multi-block ADMM for Bigdata optimization in smart grid. IEEE (2015)
12. Liu, Y., Du, J.: Parameter optimization of the SVM for Bigdata. In: 2015 8th International

Symposium on Computational Intelligence and Design (ISCID) (2015)
13. Bhushan, M., Singh, M., Yadav, S.K.: Bigdata query optimization by using locality sensitive

bloom filter. IJCT (2015)
14. Ramaprasath, A., Srinivasan, A., Lung, C.-H.: Performance optimization of Bigdata in mobile

networks. In: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering
(CCECE) (2015)

15. Ramprasath, A., Hariharan, K., Srinivasan, A.: Cache coherency algorithm to optimize band-
width in mobile networks. Lecture Notes in Electrical Engineering, Networks and Communi-
cations. Springer Verlag (2014)

16. Yildirim, E., Arslan, E., Kim, J., Kosar, T.: Application-level optimization of Bigdata transfers
through pipelining, parallelism and concurrency. In: IEEE Transactions on Cloud Computing
(2016)

17. Jena, B., Gourisaria, M.K., Rautaray, S.S., Pandey, M.: A survey work on optimization tech-
niques utilizing map reduce framework in Hadoop cluster. Int. J. Intell. Syst. Appl. (2017)


	Efficient MapReduce Framework Using Summation
	1 Introduction
	2 Literature Survey
	3 Proposed Method
	4 Implementation
	5 Conclusion
	References




