
Chapter 10
Remote Sensing of Vegetation

Shin Nagai, Hideki Kobayashi, and Rikie Suzuki

10.1 Introduction

In eastern Siberia, interactions between terrestrial ecosystems above permafrost and
the atmosphere affect global warming through their effects on carbon, water, and
energy cycles. For instance, thawing permafrost produces continuous humid condi-
tions, leading to forest degradation (Iijima et al. 2014), which reduces photosynthetic
activity and thus the magnitude of the carbon sink, changes available water by
decreasing evapotranspiration, and increases albedo, causing long-wave emissions
to increase. The resulting increase in the thermokarst area may cause methane
emission to increase (Flessa et al. 2008). Such increases in greenhouse gas emissions
and albedo accelerate global warming. For an in-depth understanding of global
climate change, it is essential to evaluate the spatiotemporal variability of ecosystem
functions such as photosynthesis and evapotranspiration and ecosystem services
(especially climate control) in eastern Siberia.

To evaluate the spatiotemporal variability of ecosystem functions and services,
accurate observations of (1) aboveground biomass (stems, branches, and leaves),
(2) plant functional type (PFT; e.g., deciduous coniferous or deciduous broad-leaved
forest), and (3) growing season duration (i.e., the period from leaf-flush to leaf-fall)
must be made over wide areas. These three parameters affect the carbon cycle
through their effects on annual photosynthetic capacity and the carbon stock.
Changes in PFT caused by climate change and human activities lead to changes in
photosynthetic capacity, which in turn lead to changes in annual photosynthetic
activity. Here, photosynthetic capacity refers to the maximum potential annual rate
of photosynthesis and depends on leaf traits as well as the growing season duration
(Wright et al. 2004; Richardson et al. 2013). In contrast, the annual gross primary
production (GPP) reflects the actual rate of photosynthesis or photosynthetic activity
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under daily weather conditions and is affected by long-term meteorological changes.
Changes in photosynthetic activity cause changes in size of the annual carbon sink,
which is determined by subtracting heterotrophic and autotrophic respiration from
GPP, and in the amount of carbon (carbon stock) stored in stems and branches. Thus,
mutual relationships among aboveground biomass, PFT, and growing season dura-
tion affect carbon flows and the carbon stock through their effects on photosynthesis.

Remote-sensing techniques, which use sensors such as digital cameras, spectral
radiometers, and lasers mounted on platforms, including towers, drones, aircraft, and
satellites, to observe targeted parameters from a distance, are useful means of
obtaining data to evaluate spatiotemporal variabilities of aboveground biomass,
PFT, and growing season duration (Fig. 10.1). The great advantage of remote-
sensing techniques is that they make it possible to observe remote, mostly inacces-
sible areas, which are extensive in eastern Siberia. In this chapter, we review recent
studies and discuss the use of remote-sensing techniques to observe terrestrial
ecosystems in eastern Siberia. We focus on aboveground biomass, PFT, and grow-
ing season duration and how they affect interactions between terrestrial ecosystems
and the atmosphere in the region.

10.2 Observation of Aboveground Biomass

Forest ecosystems in eastern Siberia play an important role in stabilizing the local
and regional climate system through the surface energy transfer as evapotranspira-
tion. Further, carbon assimilation by woody and soil ecosystem components helps to
mitigate climate change through its effect on the global carbon cycle. Assimilated
carbon in wood (i.e., forest biomass) generally represents the available biological
resources. Remote-sensing techniques specifically detect the dry weight of the forest

Fig. 10.1 Spatial and
temporal scales of remote-
sensing observations
according to platform and
sensor type
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biomass that is visible from satellites, that is, the aboveground biomass. The pro-
portions of stems, branches, and leaves composing the aboveground biomass depend
on the tree species. The allometric relationships between these components in
Siberian larch (Larix gmelinii, L. cajanderi, and L. sibirica), a dominant tree species
in eastern Siberia, and the total aboveground biomass have been studied by ground-
based surveys (Kajimoto et al. 1999, 2006) at a limited number of field sites.
Remote-sensing observations together with these allometric relationships can poten-
tially be used to determine the spatial distributions over all of eastern Siberia of not
only total aboveground biomass but also leaf biomass, the distribution of which must
be known to estimate photosynthesis by the forest canopy.

10.2.1 Vegetation Indices

In satellite remote-sensing applications, vegetation indices have been widely used as
proxies for aboveground biomass since the 1970s. One commonly used vegetation
index is the normalized difference vegetation index (NDVI), which is derived from
red and near-infrared (NIR) surface reflectances observed from satellites, where
NDVI ¼ (NIR – red)/(NIR þ red) (Tucker 1979). NDVI, which typically takes a
value between 0 (bare soil) and 1 (fully vegetated surfaces), is an indicator of the
“amount of vegetation” and thus is closely related to biomass. High NDVI values
imply large amounts of vegetation and abundant aboveground biomass (Fig. 10.2).

The effects of Arctic warming on the dynamics of boreal forests, including the
forests of eastern Siberia, have been investigated by using NDVI data obtained by
satellite-borne sensors. The Advanced Very High Resolution Radiometer (AVHRR)
onboard National Oceanic Atmospheric Administration (NOAA) earth-observing
satellites (hereafter NOAA-AVHRR) observed global vegetation dynamics from the
1980s to the 2000s (e.g., James and Kalluri 1994; Pinzon and Tucker 2014). Global
analyses of NOAA-AVHRR data (NDVIAVHRR) have detected decadal-scale NDVI
changes (Myneni et al. 1997a; Zhou et al. 2001). These remote-sensing studies have
revealed lengthening growing seasons and increases in maximum summertime
NDVI values across the northern high latitudes, including in the larch forests of
eastern Siberia. These results suggest that the amount of vegetation in the northern
high latitudes was increased by the warming trend during the last 20 years of the
twentieth century. However, the trend toward increasing the amount of vegetation in
response to Arctic warming may not be monotonic. Studies in Eurasia covering an
analysis period extending to 2006 have reported that NDVI showed a consistent
increasing trend only until 1997 (1.8 � 10�3 year�1), after which it started to
decrease (�1.3 � 10�3 year�1, Piao et al. 2011). In eastern Siberia, in particular,
although the precipitation has a long-term increasing trend between 1982 and 2006
(0.39 mm yr.�1, Piao et al. 2011), the growing season precipitation was decreased by
�3.19 mm yr�1 in the time period between 1997 and 2006. This decreasing trend
after 1997 potentially caused the decrease in summer NDVI trend (Piao et al. 2011).
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Although satellite-based NDVI is an effective way to investigate at large scale the
duration of the forest growing season and the magnitude of vegetation changes, its
interpretation is limited in several ways, particularly because changes in atmospheric
conditions affect the monitoring results. For example, large-scale forest fires, which
occur frequently in eastern Siberia, enhance aerosol loading in the atmosphere, and
the presence of more aerosols in the atmosphere may cause the NDVI to decrease,
even though no actual change in the vegetation status has occurred. In addition,
cloud cover above eastern Siberia often prevents detection of vegetation signals.
Most satellite NDVI data are processed by applying a maximum-value compositing
procedure to extract the best NDVI values obtained during a specified time period
and using those values to create the NDVI product. NDVIAVHRR products often use
time periods of 10 days. If no days during a 10-day period are clear, then the highest
NDVI value is selected regardless of cloudiness. Because the sky in many parts of
eastern Siberia is likely to be cloud covered for periods exceeding 10 days, some
NDVI values are affected by clouds.

Furthermore, NDVI values can depend on the data processing procedures that
have been applied, such as sensor-related geometric and radiometric corrections,
atmospheric correction schemes, and post-processing schemes (gap filling,
compositing). Thus, to interpret the NDVI trends accurately, multiple data sets

Fig. 10.2 NDVI distribution in eastern Siberia observed by SPOT-VGT in July 2010. The Russian
political boarders are shown in bold lines. Rivers are shown in gray lines. White area shows higher
NDVI values. Yakutsk is located in the middle of Lena River, and the NDVI values around the city
of Yakutsk are higher than other regions
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should be compared to better understand the nature of the vegetation signal. These
limitations are further described in Sect. 10.4.2.

NDVI is often used as an indicator of “vegetation greenness” or the “amount of
vegetation,” but these parameters do not directly correspond to any forest structure
parameters. However, to the extent that aboveground biomass is related to leaf
biomass, NDVI also correlates with leaf biomass. The aggregate NDVIAVHRR
throughout the growing season is significantly correlated with ground-based mea-
surements of the aboveground biomass of diverse tree species across boreal and
temperate forests, and the relationship obtained by regression analysis between
NDVI and aboveground biomass can be used to quantify the large-scale geograph-
ical distribution of aboveground biomass (Myneni et al. 2001). It must be noted that,
unlike synthetic aperture radar (SAR), which can be used to estimate aboveground
biomass more directly (see Sect. 10.2.3), NDVI-based biomass estimation is an
indirect approach, because NDVI is sensitive mainly to leaf biomass rather than to
total woody biomass. Thus, the interpretation of biomass data derived from NDVI
data has inherent uncertainty.

10.2.2 Leaf Area Index

Among the three major aboveground biomass elements, leaf biomass, trunk bio-
mass, and branch biomass, leaf biomass is the one important for characterizing forest
canopy photosynthesis and thus productivity. In terrestrial biogeochemical models,
leaf biomass is often represented by the leaf area index (LAI), which is defined as the
one-sided leaf area per unit of ground area (m2 m�2). LAI is derived by dividing the
leaf biomass (g m�2) by the leaf mass per unit of leaf area (leaf mass area, LMA; g
m�2). When the forest LAI is larger, the amount of sunlight intercepted by leaves
increases, thus enhancing canopy-scale photosynthesis. The typical LAI of a forest
ecosystem varies greatly, depending on the tree species, climate, topography, and
soil water and nutrient conditions. In eastern Siberia, most forests are sparse, and the
maximum LAI in summer is less than 4 (Kobayashi et al. 2010). The actual LAI
varies spatially over eastern Siberia; however, so to evaluate forest ecosystem carbon
dynamics, the regional LAI distribution must first be determined. Because the
ground-based measurements cannot cover the whole area, remote-sensing observa-
tions are essential for producing regional distribution maps of LAI in eastern Siberia.

Two remote-sensing methods are used to produce regional- to global-scale LAI
distribution maps. The first method, the so-called vegetation index-based method, is
based on the biome-specific regression relationships between NDVI and LAI. Once
the NDVI–LAI regression relationship is determined, it can be applied to satellite
NDVI data sets to map LAI across eastern Siberia. NDVI is computed from the red
and NIR spectral reflectances (e.g., red, 0.58–0.68 μm, and NIR, 0.725–1.00 μm for
NOAA-AVHRR; see Sect. 10.2.1). Red reflectance is sensitive to the total chloro-
phyll content of the canopy, and NIR, which results from multiple scatterings within
the canopy, is sensitive to the quantity of leaves. The chlorophyll content of the
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forest canopy increases as LAI increases. As a result, more red sunlight is absorbed
by the leaves, and the red reflectance decreases. Because no pigments absorb
sunlight in the NIR spectral domain, when LAI increases, sunlight is reflected by
or transmitted through the leaf surfaces many times, enhancing the NIR reflectivity
of the forest canopy surface. These distinct features of the red and NIR spectral
domains explain why NDVI increases when LAI increases (e.g., Myneni et al.
1997b). Once the NDVI and LAI relationship is determined from field measure-
ments of LAI and red and NIR spectral reflectances, the relationship can be applied
to large-scale mapping of LAI. The vegetation index method (NDVI–LAI relation-
ship) is easy to apply to various forests once the NDVI–LAI relationship for the
specific forest types such as an open needleleaf forest is determined. However,
because of differences in forest structure, spatial leaf distribution (clumping), and
leaf-angle distribution, a single LAI value may be associated with several NDVI
values, which is a limitation on the accuracy of the LAI values retrieved by using this
simple empirical approach.

The second method uses a sophisticated forest canopy radiative transfer model for
inverse estimation of LAI from satellite-observed spectral reflectances. The
improved accuracy of the surface spectral reflectances retrieved by the VEGETA-
TION sensor onboard the French satellite SPOT (hereafter SPOT-VGT), which was
launched in 1998, and the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor onboard the US National Aeronautics and Space Administration
(NASA) satellite Terra (hereafter Terra-MODIS), compared with NOAA-AVHRR
data, allows LAI to be estimated by using a physically based radiative transfer model
inversion approach (Knyazikhin et al. 1998). For example, canopy total LAI for
application to climatic and vegetation dynamics studies has been operationally
mapped, including in eastern Siberia, with spatial resolutions of 500 m to 1 km by
using Terra-MODIS data acquired every 4–8 days since 2000 by the NASAMODIS
science team (Myneni et al. 2002, Fig. 10.3). Canopy LAI maps from Terra-MODIS
and SPOT-VGT are useful for studying eastern Siberia as a whole, though a
regional-scale study might need a higher-resolution data set. In this regard, the
Landsat series satellites provide reflectance images with a spatial resolution of
30 m. By using Landsat data, a detailed map of LAI in a specific area of eastern
Siberia can be produced. For example, a LAI distribution map of the forest around
the Lena River near the city of Yakutsk produced by radiative transfer model
inversion (Kushida et al. 2007) shows that in larch forests on the left bank of the
Lena River, LAI varies from 1 to 3 in the summer.

The dominant genus of trees in eastern Siberia is larch (Larix gmelinii,
L. cajanderi, and L. sibirica), where it forms large forests, either as pure stands or
in association with pine (Pinus sylvestris), spruce (Picea obovata), and other species.
More than 50% of the total forested area in eastern Siberia (2.5 � 106 km2) consists
of larch forest. Most larch forests are sparse with a typical LAI of no more than
4. Therefore, a large amount of sunlight penetrates the larch canopy and reaches
understory and forest floor plants. This light environment provides favorable condi-
tions for forest floor species such as cowberry (Vaccinium vitis-idaea, a small shrub),
mosses, and lichens. Because the floor of a larch forest is mostly covered by such
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plants, their contributions to photosynthesis and evapotranspiration of the forest as a
whole are not negligible. Although the size of their contributions depends on the age
of the forest stand, Iida et al. (2009) reported that more than 50% of total evapo-
transpiration from a larch forest near Yakutsk was attributable to the forest floor
layer.

The contribution of the forest floor vegetation to photosynthesis and evapotrans-
piration can be evaluated by estimating the LAI of the larch overstory and the forest
floor plants separately. Even though larch forests are sparse, satellites can rarely
observe the forest floor vegetation in summer owing to the greenness of the larch
canopy (Kobayashi et al. 2007). However, because larch is a deciduous needle-
leaved tree, during early spring (after snow melt and before larch foliation), it is
possible to monitor the forest floor vegetation by satellite (e.g., Kobayashi et al.
2010; Liu et al. 2017). Most forest floor plants such as cowberry are evergreen, so the
seasonal changes in their LAI are small. Once the forest floor plants’ signature which
is related to the forest floor LAI is determined from springtime satellite data, then the
LAI of the larch overstory can be estimated by using the forest floor information as
background data. Under the assumption that the forest floor LAI is constant through-
out the growing season, seasonal changes in satellite reflectance signals can be
attributed to seasonal changes in the larch canopy. For example, Kobayashi et al.
(2010) estimated the larch overstory LAI in Siberian larch forests from the seasonal
increase in the normalized difference water index (NDWI) after snow melt, where
NDWI ¼ (NIR – shortwave infrared)/(NIR þ shortwave infrared). The relationship

Fig. 10.3 LAI distribution in eastern Siberia estimated from Terra-MODIS data sets
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between increases in NDWI and LAI has been calibrated for various forest floor LAI
data sets by using a radiative transfer model. The spatial distribution of the larch
overstory LAI in eastern Siberia shows a distinct north–south gradient in summer
(Fig. 10.4). In addition, LAI can vary along elevation; LAI is lower in the Stanovoy
Mountains than in surrounding regions. The estimated LAI distribution is useful for
validating the LAI distribution simulated by ecosystem models. For example, Sato
et al. (2016) used satellite-based summer maximum (July) overstory LAI data
averaged over 1998 to 2013 in order to validate the latitudinal gradient of simulated
LAI at the present time (the year of 2005). The present study also estimated the
geographical distribution of forest floor information that is related to the forest floor
LAI (it was called as apparent forest floor LAI). However, the accurate quantification
of understory LAI is one of the challenging parts because there are few field
observations that are used for validation and calibration of the remote-sensing
measurements.

10.2.3 Radar and LiDAR Remote Sensing

Microwave satellite remote-sensing techniques provide a different view of forest
ecosystems. SAR is an active microwave radar technology commonly used in
satellite remote sensing. SAR observations, for example, those of the Phased

Fig. 10.4 Larch overstory LAI in eastern Siberia estimated from SPOT-VGT data sets
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Array type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced
Land Observing Satellite (ALOS), are particularly useful for distinguishing above-
ground biomass between forested and other regions (Fig. 10.5). L-band microwaves
with a wavelength of 23 cm, which penetrate the forest canopy and are scattered by
tree trunks, a phenomenon called volume scattering, are particularly useful for
estimating the aboveground biomass of the forest, because the returning
backscattered L-band SAR signal is an indicator of the trunk biomass. When the
aboveground biomass is relatively small, it can be estimated from SAR data merely
by removing the micro-topographical effect. However, the backscattered SAR signal
saturates as the aboveground biomass becomes higher.

The aboveground biomass can also be estimated by using canopy height infor-
mation obtained by the satellite-based laser altimetry measurements. The Geoscience
Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and land Elevation
Satellite (ICEsat), which was operational during 2003–2009, provided a global
canopy height map with a spatial resolution of 1 km (Simard et al. 2011). In eastern
Siberia, the forest canopy height in the middle basin of Lena River near Yakutsk
reaches up to 30 m and higher than downstream regions in the high latitudes
(Fig. 10.6), where LAI in the same region is also higher than other regions
(LAI ¼ 3–4; see Figs. 10.3 and 10.4).

Fig. 10.5 Map of forested (black) and non-forested areas of eastern Siberia determined by using
ALOS-2-PALSAR data sets
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10.3 Observation of Plant Functional Type

Plant functional type (PFT) is a classification system for plant species and simplifi-
cation of floristic complexity in global vegetation models (Prentice et al. 1992).
Species-specific mapping of plants at a continental scale is not feasible, so PFT is
mapped by first classifying the plant species in various regions according to plant
traits. PFT maps compiled in this way are used as fundamental information on the
ecosystem model simulation. PFT maps of eastern Siberia have been produced by
Terra/Aqua-MODIS (MCD12Q; resolution 500 m) and the Medium Resolution
Imaging Spectrometer (MERIS) onboard European Space Agency Envisat satellites
(GlobCover2009; resolution 300 m). Suzuki et al. (2004) produced a detailed
regional-scale PFT map from airborne observations of the area around the Lena
River from April 24 to June 19, 2000. These regional maps show spatial patterns of
larch on permafrost, evergreen needle-leaved species, and birch, as well as the spatial
pattern of thermokarst features such as alases.

During long-term environmental monitoring, the temporal variability of PFT
distributions must be taken into account. In eastern Siberia, large forest fires that
burn canopy trees, forest floor vegetation, and soil organic matter occur on a decadal
scale. Spatial and temporal variations of burned areas can be estimated by comparing
satellite images acquired before and after fires. For example, in eastern Siberia, the
burned area fraction in 0.25� latitude � 0.25� longitude grids was mapped by using

Fig. 10.6 Forest canopy height (m) distribution in eastern Siberia estimated from ICEsat-GLAS
data sets
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data from the Global Fire Emissions Database (GFED version 4.0; Giglio et al. 2013;
Fig. 10.7). Such burned area maps are useful for monitoring not only forested area
changes but also greenhouse gas and aerosol emissions (CO2, CO, black carbon)
from fires.

10.4 Observations of Growing Season Duration

10.4.1 Satellite Observation

AVHRR-NOAA, SPOT-VGT, and the MODIS sensors onboard Terra and Aqua
(hereafter Terra/Aqua-MODIS), which observe the whole world at a daily time step,
allow spatiotemporal variability in the timing of the start (SGS) and end (EGS) of the
growing season to be detected. The NDVIAVHRR time series, which covers more
than 30 years, is remarkable for its length, although there are some serious issues to
be considered (see Sect. 10.4.2) (Buitenwerf et al. 2015). Buitenwerf et al. (2015)
showed that the average of growing season duration from 2003 to 2012 became
longer in boreal regions than that from 1981 to 1990. The average of timing of SGS
from 2003 to 2012 became earlier than that from 1981 to 1990. In contrast, the
difference between the average of timing of EGS from 2003 to 2012 and that from
1981 to 1990 showed spatial characteristics. In the northern areas, the average of
timing of EGS became earlier. In the further south areas, the average of timing of
EGS did not change. In the still further south areas, the average of timing of EGS
became later. Delbart et al. (2006), who analyzed time series of NDVIAVHRR and
SPOT-VGT-based normalized difference water index (NDWI) from 1982 to 2004,
reported year-to-year variability in the spatial distribution of the timing of SGS in
Siberia. The NDWI data have the advantage that they allow the timing of snow melt

Fig. 10.7 Burned area fraction in eastern Siberia in July 2010 mapped by using data from
the GFED
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to be distinguished from that of SGS. Their analysis also showed that from 1982 to
2004, the timing of SGS tended to occur earlier each year in Northeast Siberian taiga
and areas from Lake Baikal toward Ob River’s mouth, but they observed delayed
trend in eastern Siberia (Yakutsk region).

Suzuki et al. (2001) examined the spatial characteristics of the relationships
among NDVIAVHRR, PFT, temperature, and precipitation. These relationships
explain the spatial differences in the growing season duration in boreal ecosystems.
Suzuki et al. (2007) showed that NDVIAVHRR was positively correlated with tem-
perature and negatively correlated with precipitation in eastern Siberia. These
relationships indicate that interannual changes in vegetation and the resultant
interannual changes in evapotranspiration are controlled by temperature in the
northern low-temperature region of eastern Siberia (Suzuki et al. 2007).

10.4.2 Satellite Observation Issues

Despite the usability of satellite remote-sensing observations, five issues remain that
can cause uncertainty in the detection of the growing season in eastern Siberia as
well as misleading results.

10.4.2.1 Issue 1: Systematic Noise

NOAA-AVHRR satellite data include systematic noise caused by satellite drift and
large volcanic eruptions (Jin and Treadon 2003). The SPOT-VGT and Terra/Aqua-
MODIS products have reduced systematic noise due to satellite drift, but no satellite
sensors can eliminate systematic noise due to large volcanic eruptions.

10.4.2.2 Issue 2: Atmospheric Noise and Cloud Contamination

Satellite observations are affected by atmospheric noise (e.g., smoke and chemical
emissions, yellow sand dust storms) and cloud cover. Motohka et al. (2011) showed
that about 40% of satellite data observed by Terra-MODIS with cloud screening by
the state flag of satellite product still included cloud contamination. In eastern
Siberia, satellite observations are often affected by atmospheric noise due to haze
and smoke from forest fires.

10.4.2.3 Issue 3: Heterogeneity of Plant Functional Type

PFT heterogeneity within single pixels of satellite data causes uncertainty in pheno-
logical observations. This uncertainty is larger in data from SPOT-VGT and Terra/
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Aqua-MODIS, which have spatial resolutions of 1.1 km and 250 m, than in data
from Landsat series satellites, with a spatial resolution of 30 m.

10.4.2.4 Issue 4: Effect of Solar Zenith and View Angles

In the high latitudes, the effect of solar zenith and view angles on satellite data also
causes uncertainty in phenological observations (Kobayashi et al. 2016). Particularly
in autumn (late August and September), the solar zenith angle becomes very high
(over 60�), and in boreal forests, sunlight coming from an oblique direction is mainly
reflected from the top of the canopy; the forest floor is rarely illuminated. As a result,
even in a sparse forest, phenological information about forest floor plants from
satellite observations is limited (Kobayashi et al. 2016).

10.4.2.5 Issue 5: Insufficient Ground-Truthing

Ecological interpretation of satellite data is difficult because the data are not yet
sufficiently constrained by ground-truthing (Nasahara and Nagai 2015). In areas
receiving heavy snowfall, in situ observations have shown that vegetation indices in
spring reflect both melting snow and leaf-flush, and in autumn they reflect both leaf-
fall and snowfall (Nagai et al. 2010). Confusion between phenological phenomena,
leaf-flush and leaf-fall, and melting and falling snow in time series of satellite-
observed vegetation indices produces misleading analysis results regarding the
timing of SGS and EGS.

10.4.3 In Situ Observations

To resolve these problems, satellite remote-sensing observations must be validated
by performing field studies with, for example, time-lapse digital cameras and
spectral radiometers (Nasahara and Nagai 2015). Continuous observations of phe-
nological phenomena such as leaf-flush, leaf-coloring, and leaf-fall by time-lapse
digital cameras, along with measurements of CO2 and H2O fluxes and micromete-
orological observations, have been carried out since June 2013 in a deciduous
coniferous (larch) forest at the Spasskaya Pad Scientific Forest Station near Yakutsk
in eastern Siberia (62�15018”N, 129�3700800E) (see Chap. 3). Time-lapse digital
cameras (Coolpix-4300/4500, Nikon, Tokyo, Japan) were installed at heights of
32 m on a CO2 flux tower and 3 m on the forest floor. The cameras acquire plant
phenology images of the overstory (forest canopy) and understory vegetation (forest
floor) every hour during the daytime (Nagai et al. 2018). This larch forest site is part
of the Phenological Eyes Network (http://www.pheno-eye.org; Nasahara and Nagai
2015).
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Typical phenological images of the Spasskaya Pad larch forest (Fig. 10.8)
obtained over a 3-year period show the timing of phenological events: leaf-flush in
larch during mid- to late May, leaf-coloring in birch from early to mid-September,
and leaf-fall in larch from late September to mid-October. In addition, snowmelt was
imaged between late April and early May, and the first snowfall was observed
between late September and early October. In birch, an understory component,
leaf-flush occurred about a week later than it did in larch, which composes the
overstory. In contrast, leaf-coloring was about a week earlier in birch than in larch. In
larch, leaf-flush occurred 13 days earlier in 2014 than in 2015, and leaf-fall occurred
about 10 days earlier in 2013 than in 2014 and 2015. Examination of the seasonal

Fig. 10.8 Typical phenological images in spring (top) and autumn (bottom) of the Spasskaya Pad
larch forest from June 2013 to June 2016. Date and day of year (in parenthesis) are shown on each
phenological image
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relationships between CO2 flux-based net ecosystem exchange {NEE, where
NEE ¼ � [GPP – autotrophic (AR) and heterotrophic respiration (HR)]; see
Chap. 4} and typical phenology (Fig. 10.9) showed that the first date on which
NEE was less than zero in spring (i.e., the first date on which carbon absorption was
greater than carbon emission) occurred just after leaf-flush in larch, whereas the first
date on which NEE was more than zero in autumn occurred before both leaf-coloring
in birch and leaf-fall in larch.

Long-term continuous phenological images are useful for detecting year-to-year
variations in the timing of leaf-flush, leaf-coloring, and leaf-fall in each tree species
as well as in the snow-covered period. However, visual inspection of phenological
images is qualitative. Depending on the individual conducting the inspection, the
timing of each phenological phenomenon can differ by as much as a few days.
Phenological images consist of red (DNR), green (DNG), and blue digital numbers
(DNB), each of which can range from 0 to 255. Therefore, the timing of leaf-flush,
leaf-coloring, and leaf-fall can be determined quantitatively by examining time
series of proportions of DNR, DNG, and DNB values as percentages of total DN
(denoted as %R, %G, %B, respectively) and a vegetation index based on average
DNR, DNG, and DNB values, such as the green excess index (denoted as GEI;
Richardson et al. 2007) in the region of interest.

Fig. 10.9 Seasonal changes in flux-based NEE in 2014 (from Kotani et al. unpublished) in relation
to typical phenological images of the Spasskaya Pad larch forest. The solid line shows the 5-day
moving average
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%R ¼ DNR= DNR þ DNG þ DNBð Þ ð10:1Þ
%G ¼ DNG= DNR þ DNG þ DNBð Þ ð10:2Þ
%B ¼ DNB= DNR þ DNG þ DNBð Þ ð10:3Þ

GEI ¼ ðDNG � DNRÞ þ ðDNG � DNBÞ ð10:4Þ

Among ecosystems and tree species, %R, %G, %B, and GEI show characteristic
seasonal patterns (Nagai et al. 2011; Wingate et al. 2015). At the Spasskaya Pad site
in 2014 (Fig. 10.10), %G increased during leaf-flush (DOY 135–150), but %B
decreased rapidly. During leaf-coloring and leaf-fall (DOY 240–270), %G
decreased. In contrast, %R first increased just before the leaf-coloring peak (DOY
258), after which %R fell steeply, while %B increased rapidly. The GEI time series
was characterized by a rapid increase during leaf-flush and a rapid decrease during
leaf-coloring and leaf-fall.

By selecting suitable threshold values of %R, %G, %B, and GEI, it is possible to
detect year-to-year variations in the timing of leaf-flush, leaf-coloring, and leaf-fall.
For example, Nagai et al. (2013) developed a statistical phenological model for
estimating the timing of leaf-flush and leaf-fall in a deciduous broad-leaved forest in
Japan by examining the relationship between leaf-flush and leaf-fall dates

Fig. 10.10 Seasonal changes in %R, %G, %B (upper graph), and GEI (lower graph) from April to
October 2014 along with typical phenological images of the Spasskaya Pad larch forest (SSP). Date
and day of year (in parenthesis) are shown on each phenological image
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determined from daily phenological images and daily mean air temperature. The
development of a statistical phenological model, based on observations obtained
with time-lapse digital cameras at multiple field sites, would be useful for estimating
leaf-flush and leaf-fall dates in eastern Siberia and for characterizing their spatial
distribution along a latitudinal gradient. Toward this aim, inexpensive, battery-
driven time-lapse digital cameras (e.g., Garden Watch Cam, Brinno, Taiwan) have
been installed at multiple field sites in Alaska (Kobayashi et al. 2016).

10.4.4 Integrating In Situ and Satellite Observations

Long-term continuous phenological images allow testing and validation of the
timing of SGS and EGS values determined by using satellite-observed vegetation
indices. In NDVI and enhanced vegetation index (EVI), where
EVI ¼ G � {(NIR � red)/[NIR þ (C1 � red) � (C2 � blue) þ L]} (G ¼ 2.5,
C1 ¼ 6, C2 ¼ 7.5, and L ¼ 1 are constants; Huete et al. 2002), analyses, it is more
difficult to determine the timing of EGS than of SGS, because the timing and spatial
patterns of leaf-coloring and leaf-fall vary among tree species (Nagai et al. 2010,
2014).

The green–red vegetation index (GRVI), where GRVI ¼ (green – red)/
(green þ red) (Tucker 1979; Motohka et al. 2010), which is based only on seasonal
changes in the color of the canopy, is more suitable for determining the timing of
EGS in deciduous broad-leaved forests than either NDVI or EVI (Nagai et al. 2014).
Before leaf-flush begins in spring, GRVI shows negative values, and it again
becomes negative values after the peak of leaf-coloring and leaf-fall in autumn
(Motohka et al. 2010; Nagai et al. 2014).

At the Spasskaya Pad site (Fig. 10.11), the first date in each year from 2003 to
2015 on which GRVIMODIS was more than or equal to zero in spring corresponded to
the beginning of leaf-flush in larch, whereas the first date on which GRVIMODIS was
less than zero in autumn corresponded to the peak of leaf-coloring in birch, which
was earlier than the leaf-coloring peak in larch. These results indicate that
GRVIMODIS ¼ 0 is a useful criterion for detecting both the start and end of the
functional growing season (i.e., duration of photosynthetic capacity) in larch forests
in eastern Siberia.

Using these ground-truthing data, we analyzed the spatial distribution of the first
dates on which GRVIMODIS was more than or equal to zero in spring and the first
dates on which it was less than zero in autumn in 2015 for the whole of eastern
Siberia (Fig. 10.12). The timing of SGS was earlier at low latitudes and elevations
than at high latitudes and elevations. In contrast, the timing of EGS was later at low
latitudes and elevations than at high latitudes and elevations. A similar analysis for
the period from 2003 to 2015 revealed the spatial characteristics of the year-to-year
variability in the timing of SGS and EGS (not shown). Analyses of the relationships
among year-to-year variability in the timing of SGS and EGS, PFT, aboveground
biomass, topography, and latitudinal gradients in eastern Siberia might allow the
sensitivity and vulnerability of plant phenology to climate change to be evaluated.
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10.5 Concluding Remarks

In this chapter, we summarized the usefulness and uncertainties of remote-sensing
techniques to monitor the spatiotemporal variability of aboveground biomass, PFT,
and growing season duration in eastern Siberia by refereeing previous studies and
introducing our own developed studies. To increase our understanding of interac-
tions between terrestrial ecosystems and the atmosphere in eastern Siberia, the
following three challenging tasks should be undertaken.

The spatiotemporal variability of the aboveground biomass and growing season
duration detected by remote-sensing observations are important for evaluating
photosynthetic capacity. However, this information cannot be used to evaluate
photosynthetic activity directly. One remote-sensing technique that allows their
activities to be directly evaluated is the measurement of the fluorescent intensity of
chlorophyll. Solar-induced chlorophyll fluorescence is being observed by the ther-
mal and NIR sensor for carbon observation–Fourier transform spectrometer sensor
onboard Japan’s Greenhouse Gases Observing Satellite (GOSAT) (Frankenberg
et al. 2011).

Fig. 10.11 Year-to-year variability in SGS and EGS (day of year, DOY), based on GRVI observed
by Terra/Aqua-MODIS (GRVIMODIS), in the Spasskaya Pad larch forest, along with phenological
images obtained on the first date on which GRVIMODIS was more than or equal to zero in spring
(SGS) and the first date on which it less than zero in autumn (EGS). We substituted the canopy
surface image on 12 September 2014 for the missing image on 11 September 2014. EGS in 2012
was missing
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To accurately detect the degradation of forests, the transition of forested areas to
bogs, and the expansion of alases in eastern Siberia, analyses of satellite data with a
high spatial resolution, such as data acquired by the AVNIR-2 (Advances Visible
and Near Infrared Radiometer type 2) sensor onboard ALOS (spatial resolution,
10 m) or the WorldView-3 satellite (spatial resolution, 1.24 m), are required.
Satellite observations by SAR, such as PALSAR-2 onboard ALOS-2, which are
not affected by atmospheric noise or cloud contamination and have a spatial reso-
lution of 3–10 m, are also useful for this purpose.

Ecosystem ecotones such as that between forest and tundra are considered to be
highly sensitive and vulnerable to climate change, but ground-truthing of high-
latitude ecotones is still insufficient. At the Kodac site near Chokurdakh in the
northern part of eastern Siberia (70�33047”N, 148�1504900E), CO2 fluxes have been
measured, and phenological observations have been made by using inexpensive
battery-powered time-lapse cameras since 2013. Further field studies at additional
ecosystem ecotone sites are needed for the validation and testing of satellite remote-
sensing observations.

Fig. 10.12 Spatial distribution of the first date on which GRVIMODIS was more than zero in spring
(i.e., SGS; top) and the first date on which GRVIMODIS was less than zero in autumn (i.e., EGS;
bottom) in 2015 in eastern Siberia between 70�N and 50�N and 105�E and 165�E. The color scales
show day of year (DOY)
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