
Low-Complexity Robust Adaptive
Beamforming Based on Covariance Matrix

Reconstruction

Zhiwei Guan1, Heping Shi1(&), Lizhu Zhang1, and Ning Ma2

1 School of Automobile and Transportation, Tianjin University of Technology
and Education (TUTE), Tianjin 300222, China

shiheping@tju.edu.cn
2 School of Electronic Engineering, Tianjin University of Technology

and Education (TUTE), Tianjin 300222, China

Abstract. A new beamformer based on covariance matrix reconstruction is
introduced. The essence of the new approach is to eliminate the desired signal
component in the sample covariance matrix and thus complex integral operation
is avoided in the procession of covariance matrix reconstruction. Besides, the
actual array steering vector is estimated by a new technique. Contrary to other
reference beamformers, simulation results demonstrate the effectiveness of our
proposed method.
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1 Introduction

Adaptive beamforming has been one of the most important research areas in sensor
array signal processing for decades, which has possessed many applications such as
wireless communication and microphone array speech processing. It is well known that
conventional adaptive beamforming such as standard Capon beamforming needs to
assume exact knowledge of desired signal (DS). It will suffer significant performance
degradation when the information of DS is not known accurately.

Numerous robust adaptive beamforming (RAB) techniques have been proposed to
deal with this problem [1, 2]. For instance, diagonal loading is known to be a popular
approach, however, it is difficult to choose the optimal loading factor. In [3], a new
beamformer named worst-case performance optimization based on the second-order
cone programming (SOCP) problem was reported. However, to solve this problem,
specific optimization toolbox such as CVX is needed.

In order to achieve robustness against large look direction mismatch, a new method
is introduced in this paper. In [4], the interference-plus-noise (IPN) covariance matrix
was reconstructed by using the Capon spectrum to integrate over an angular sector
separated from the direction of the desired signal. However, this caused complex
integral operation. To reduce the computational complexity, the IPN covariance matrix
is reconstructed by utilizing a new approach in this paper. The essence of the new
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approach is to wipe up the desired signal component in the sample covariance matrix
and thus complex integral operation can be avoided in the procession of covariance
matrix reconstruction. Furthermore, unlike traditional uncertainty set based robust
beamformers, it is not necessary to use a large size of the uncertainty set against
direction-of-arrival (DOA) mismatch in the proposed algorithm.

2 Array Signal Models

Consider a uniform linear antenna array with N omnidirectional equispaced antenna
sensor elements receiving multiple far-field narrowband signals. Let n(k) be a N*1
complex vector representing the array observation at the kth snapshot

x kð Þ ¼ s kð Þþ i kð Þþ n kð Þ ð1Þ

where s kð Þ ¼ s kð Þd hsð Þ, i(k) and n(k) respectively represent the statistic independent
desired signal, interference and noise.

The beamformer output is given by

yðkÞ ¼ wHx kð Þ ð2Þ

where w ¼ ½w1; . . .;wN �T is the complex weight vector of the antenna array, and ð�ÞT
and ð�ÞH denote the transpose and Hermitian transpose operator.

In general, we introduce the output signal-to-interference-plus-noise ratio (SINR) to
measure the beamformer performance. Assuming the desired signal steering vector is
aðh0Þ, h0 is the DOA of the DS.

SINR ¼ r2s w
Haðh0Þj j2

wHRiþ nw
ð3Þ

where r2s denotes the DS power and the N*N ideal IPN covariance matrix Ri+n can be
acquired from Riþ n ¼ Ef½iðkÞþ nðkÞ�½iðkÞþ nðkÞ�Hg.

The standard Capon beamformer can be obtained by solving the following opti-
mization problem:

min
w

wHRiþ nw s:t: wHaðh0Þ ¼ 1 ð4Þ

The solution to (4) optimization problem is

w ¼ R�1
iþ naðh0Þ

aHðh0ÞR�1
iþ naðh0Þ

ð5Þ

Note that the perfectly known array covariance matrix Ri+n is unavailable and it is
often replaced by the sample covariance matrix
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Rx ¼ ð1=KÞ
XK
k¼1

xðkÞxðkÞH ð6Þ

K is the number of snapshots. As K increases, the matrix Rx will converge to the
theoretical covariance matrix R ¼ r2aðh0Þaðh0ÞH þRiþ n, that is to say, the desired
signal steering vector lies in the sample covariance matrix Rx. The DS may be treated
as an interference signal, which leads to DS “self-cancelation”, and thus the array
system performance is affected. Therefore, it is necessary to eliminate the DS com-
ponent in the sample covariance matrix Rx.

3 The Proposed Algorithm

In the proposed method, instead of using the spatial distribution, the IPN covariance
matrix is reconstructed by regulating sample covariance matrix, and the desired signal
steering vector is estimated with the help of the parallelogram rule of vectors.

3.1 IPN Covariance Matrix Reconstruction

The essence of the proposed IPN covariance matrix reconstruction technique is to wipe
out the desired signal component in the sample covariance matrix. To achieve this goal,
the sample covariance matrix Rx is decomposed as follows:

Rx ¼
XN
i¼1

kieieHi ¼ EsKsEH
s þEnKnEH

n ð7Þ

where fki; i ¼ 1; . . .;Ng is the eigenvalues of matrix Rx in descending order, ei is the
eigenvector associated with ki� Es ¼ ½e1; e2; . . .; eMþ 1� and En ¼ ½eMþ 2; . . .; eN �. Ks ¼
diagfk1; k2; . . .; kMþ 1g and Kn ¼ diagfkMþ 2; . . .; kNg is a diagonal matrix. M is the
number of interference.

As mentioned above, the DS component in the sample covariance matrix will
reduce the beamformer performance. To minimize the impact of this component, refer
to the idea of diagonal loading, the signal-plus-interference subspace matrix can be
processed as follows:

K̂s ¼ ½k1 � 10r2n; k2 � 10r2n; . . .; kMþ 1 � 10r2n� ð8Þ

However, nothing is done with other eigenvalues which are associated with the
noise subspace. That is to say, all the eigenvalues associated with the signal-plus-
interference subspace minus a small amount and the eigenvalues associated with the
noise subspace remain the original sample. Although the above processing will also
have an effect on the interference signal, this operation can better reduce the impact of
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the DS component. The presence of the DS is critical to the performance of beam-
former. Next, we recombine the adjusted matrix and get the reconstructed IPN
covariance matrix.

Rre ¼ EsK̂sEH
s þEnKnEH

n ð9Þ

3.2 Desired Signal Steering Vector Estimation

In practical applications, for the actual DS steering vector, the presumed DS steering
vector aðh0Þ always exists mismatch. In [5],

ffiffiffiffi
N

p
et is used as the estimation of the

actual DS steering vector, where the eigenvalue vector et is most similar to the DS
steering vector aðh0Þ. Simulation results have demonstrated that this estimation is also
deviated from the actual value to a certain extent. In this paper, the actual DS steering
vector is estimated as follows:

ba ¼
ffiffiffiffi
N

p
et þD ð10Þ

where D denotes the mismatch vector with an expression of D ¼ aðh0Þ � et. That is to
say, the actual DS steering vector can be expressed as the difference between the
presumed DS steering vector aðh0Þ and estimation of the actual DS steering in [3].

From a complexity point of view, the main computational cost in this algorithm is
the eigendecomposition operation on the sample covariance matrix Rx, which has a
complexity of O(N3). Compared to the other RAB methods, the presented method does
not need an integral operation or any optimization toolbox, so it can be applied to
practical engineering easily.

4 Simulation Results

Computer simulations are performed using a 10-element uniform linear array with
elements spaced a half wavelength apart. Three independent narrowband signal sources
are present in the directions of 0°, 30°, and 50°, respectively. The first signal is the
desired signal, and the other two are interferences. The noise is presumed to be white
noise with unit covariance.

Three other RAB approaches are compared with the proposed method in terms of
the array output signal-to-interference-plus-noise ratio (SINR): the traditional diagonal
loading beamformer; the beamformer using worst-case performance optimization
(WCB) [3], and the beamformer based on steering vector estimation with as little as
possible prior information (API) [4]. The angular location of the signal of interest is
presumed to be H ¼ ½h0 � 5�; h0 þ 5�� in the beamformer of [3]. For each scenario,
100 independent Monte Carlo trials are used.

In the first example, we set h0 = 2°, that is to say, there is a 2° look direction error.
In this example, the SNR equals 10 dB. The output SINR against the number of
snapshots is investigated and the corresponding results are shown in Fig. 1.
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It is found that the proposed approach enjoys the best performance among the RAB
methods tested and converges to a relatively high level with fewer snapshots. The
performance improvement is a direct result of the DS elimination and the ASV
estimation.

5 Conclusion

A new low-complexity RAB approach is presented in this letter. Based on the sample
covariance matrix, in the proposed method, the IPN covariance matrix is reconstructed
and the actual ASV is estimated using a desired signal steering vector and the eigen-
vectors of the sample covariance matrix. In contrast to other RAB approaches, the
proposed method does not involve any optimization and integral operation, and it can
achieve better performance.
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Fig. 1. Output SINR of beamformers against the number of snapshots

Low-Complexity Robust Adaptive Beamforming 205



3. Vorobyov, S.A., Gershman, A.B., Luo, Z.Q.: Robust adaptive beamforming using worst-case
performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal
Process. 51(2), 313–324 (2003)

4. Khabbazibasmenj, A., Vorobyov, S.A., Hassanien, A.: Robust adaptive beamforming based
on steering vector estimation with as little as possible prior information. IEEE Trans. Signal
Process. 60(6), 2974–2987 (2012)

5. Chen, F.F., Shen, F., Song, J.Y.: Robust adaptive beamforming using low-complexity
correlation coefficient calculation algorithms. IEEE Electron. Lett. 51(6), 443–445 (2015)

206 Z. Guan et al.


	Low-Complexity Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction
	Abstract
	1 Introduction
	2 Array Signal Models
	3 The Proposed Algorithm
	3.1 IPN Covariance Matrix Reconstruction
	3.2 Desired Signal Steering Vector Estimation

	4 Simulation Results
	5 Conclusion
	Acknowledgment
	References




