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Abstract. In order to reduce the spectral redundancy of hyperspectral remote
sensing images and reduce the computational complexity of subsequent pro-
cessing, an unsupervised hyperspectral image band selection algorithm based on
low-rank representation (LRBS) was proposed in this paper. First, a low-rank
representation of the hyperspectral image is proposed and a low-rank coefficient
matrix is obtained. Then, each column of the low-rank coefficient is used as a
vertex of the graph to perform spectral clustering. Lastly, we use the fixed initial
k-means cluster centers for clustering to get the salient band of each cluster. The
experimental simulation results show that the bands selected by LRBS algorithm
can improve the classification accuracy and have better performance than other
methods.
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1 Introduction

HYPERSPECTRAL imaging (HSI) is one of the most powerful technologies to
remotely detect and recognize the material properties of the object in the interest scene
for the broadband wavelength and high spectral resolution [1–3] However, a large
number of spectral bands pose a great challenge for information extraction. For
example, in hyperspectral image classification, the classification accuracy decreases
with the increase of the number of bands relative to a small number of tag samples.
Therefore, it is very necessary to reduce the amount of data and save resources. Two
methods are selected for dimension reduction: feature extraction and band selection.
Feature extraction uses mapping methods to convert raw data to fewer new features
including principal component analysis (PCA) and independent component analysis
(ICA) [4]. However, feature extraction will change the original data to a certain degree.
Different from feature extraction, bands selection selects proper band subsets from the
original data set [5]. It not only preserves the original features and physical meaning of
remote sensing data but also reduces the size of the data to achieve the goal of
dimensionality reduction.
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Recently, some hyperspectral BS methods have been proposed for hyperspectral
classification and target detection. Weiwei sunpresented a novel symmetric sparse
representation (SSR) method to solve the band selection problem in hyperspectral
imagery classification [6]. H Su et al. proposed a particle swarm optimization (PSO)-
based system to select bands and determine the optimal number of bands to be selected
simultaneously [7]. Low-rank representation (LRR) is a new tool for robustly and
efficiently processing high-dimensional data. Xiaotao Wang proposed a predimension-
reduction algorithm that couples weighted low-rank representation (WLRR) with a
skinny intrinsic mode functions (IMFs) dictionary for hyperspectral image (HSI) clas-
sification. Alex Sumarsono et al. introduced the LRR model into the hyperspectral
image and used it to estimate the number of subspaces [8–11]. However, these low-
rank-based methods do not make full use of the resulting low-rank information.

In this paper, we developed an unsupervised BS approach, to be called low-rank
band selection (LRBS) for hyperspectral image processing where no a priori knowl-
edge available to be used. The organization of this paper is organized as follows. In
Sect. 2, the proposed method is specifically described. Section 3 presents the extensive
experiments and conclusions are drawn in Sect. 4.

2 LRBS Method

2.1 The LRR Model

A hyperspectral image is denoted as X ¼ ðx1; x2; � � � ; xLÞT 2 RL�n, where L is the
number of bands, n is the total number of pixels, and xi ¼ ðxi;1; xi;2; � � � ; xi;nÞT is the ith

spectral band. The HSI data includes the low-rank target parts and the noise
part. Therefore, the following model is defined as low-rank representation of HSI:

minCðZÞþ k Ek k1;2; st: X ¼ DZ þE; ð1Þ

where Cð�Þ is the coefficient of the low-rank matrix, D is the dictionary of HSI, E
denotes the noise, k is the balance parameter of the two parts of the equation. You can
get k by

k ¼ 1
ffiffiffiffiffiffiffiffiffiffi

log L
p ð2Þ

The hyperspectral image contains redundancy and noise information. The singular
value decomposition is used to filter the image noise to get the data dictionary in this
paper. The specific approach is as follows: First, singular value decomposition is
performed on X ¼ URV , and V is right singular matrix with the size of n*m, U is left
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singular matrix with the size of L*m, R is semi-positive definite m*m order diagonal
matrix whose diagonal elements are singular value. The data dictionary is calculated by
the following equation:

D ¼ U � R � V 0 ð3Þ

2.2 Solution of the LRR Model

The rank minimization problem is known to be NP-hard, and the most popular choice
is to replace rank with the nuclear norm to make the minimization to be convex
relaxation problem. Therefore, the Eq. (1) can be written as follow:

min Zk k� þ k Ek k1;2; s:t: X ¼ DZ þE; ð4Þ

where Zk k� is the nuclear norm of Z.
The augmented Lagrange multiplier (ALM) method is quite prevalent in the LRR-

related works [12]. In this section, inexact-ALM is extended to handle the proposed
LRR problem in (4). By introducing the intermediate variable J, it can be rewritten in
the following equivalent form

min Jk k� þ k Ek k1;2 s:t: X ¼ DZ þE; Z ¼ J ð5Þ

With the aid of the Lagrange multipliers Y1 and Y2, (5) can be redefined in the
final optimization problem (6)

min
Z;E;J;Y1;Y2

jjZjj� þ kjjEjj1;2 þ\Y1;X � DZ � E[

þ\Y2; Z � J[ þ l
2
ðjjX � DZ � Ejj2F þ jjZ � Jjj2FÞ

ð6Þ

In (6), each unknown variable of Z, E, J, Y1, and Y2 is optimized in iterative
fashion that is to successively optimize one variable with the other fixed variables. The
solving procedure is summarized in Algorithm 1. In each iteration, the variables J and
E are updated by the singular value thresholding operator and the l2;1 norm thresh-
olding operator. As for the variable Z, it has a closed solution for each column shown in
step 2.2. The steps of algorithm is described as bellow.
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Algorithm 1 Solving Problem by Inexact ALM

Input: data matrix X, dictionary D, parameter λ , μ
Output: ,Z E
Step 1. Initialize:

664
1 2 max0, 0, 0, 0, 10 , 10 , 1.1, 10Z J E Y Y μ μ ρ ε −−= = = = = = = = =

Step 2. While not converged X DZ E− − → 0 do
1) Fix the other variables and update J by

2
* 2

1 1
arg min ||J|| || ( ) ||

2 FJ J Z Y μ
μ

= + − +

2) Fix the others and update Z by
1 1 2( ) ( )

T
T T T Y D Y

Z D D E D X D E J
μ μ

−= + − + + −

3) Fix the others and update E by

2,1 1
1arg min || || + || -
2

E E E X DZ Yλ μ
μ

= − +

4) Update the multipliers
( ) , ( )Y Y X DZ E Y Y Z Jμ μ21 1 2= − =− −+ +

5) Update the parameter μ by ( )maxmin ,μ μ ρμ=
6) Check the convergence conditions
End while

( )

2.3 The LRBS Algorithm

This section describes the proposed band selection algorithm based on low-rank rep-
resentation (LRBS). We use the technique of spectral clustering algorithm to compute
the eigenvectors of graph Laplacian which weight is composed of the low-rank matrix.
The algorithm implementation needs to use K-means to cluster a data set into some
subsets. The number of categories k in k-means is obtained by virtual dimensionality
(VD) algorithm. Different from the classic K-means, in this paper, we utilized a fixed
initial cluster centers instead of the random initial ones.

Assume that blf gLl¼1 is a set of band number of a hyperspectral image cube where bl
is the l th spectral band represented by a column vector, bl ¼ bl1; bl2; � � � ; blNð ÞT and
blif gNi¼1 is the set of all N pixels in the l th band image. The implementation steps of the

BS method proposed in the paper is listed as following.
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Algorithm 2 The LRBS algorithm
Input: All the hyperspectral bands
Output: The selected bands 
Initialize: k (obtained by virtual dimensionality(VD) algorithm) 
Step 1: Divide all the bands are into N subsets, calculate the euclidean dis-

tances between the bands of each set,
Step2: Find the band 1b with the largest correlation value in the cluster center 

set.
Step 3: Find the band nb with the largest value different from 1b in the left 

band subsets. 
Step 4: k=k+1; if k<p, go to step 2.
Step 5: Using k-means algorithm with the initial center set to cluster k sub-

sets. 
Step 6: k=1; calculate the center of the subset.
Step 7: Find the band nb with the smallest value with the subset center, put 

nb in the set { }sb . 
Step 8: k=k+1; if k<k, go to step 6.

3 Hyperspectral Image Experiments

In this section, we conducted a series of experiments to evaluate the classification
performance of the selected bands by different BS methods. The compared algorithms
include uniform BS (UBS), minimum estimated abundance covariance (MEAC),
multigraph determinantal point process (MDPP), dominant set extraction BS (DSEBS),
and the proposed BS method. The experiment platform is listed as follows: the machine
operating system used is Windows10, the machine configuration is: CPU frequency
2.50 GHz, running memory 8 GB software environment: MATLAB R2014a. The
three hyperspectral datasets we used in the experiment include Purdue University’s
Indiana Indian Pines image, Salinas Valley image, and the image of University of
Pavia.

Table 1 shows the specific band subsets selected using different methods on three
datasets. Tables 2, 3, and 4 show the classification accuracy of the bands selected using
different methods for hyperspectral classification. It can be seen from Table 2 that the
band subsets selected by the LRSB method have higher classification accuracy than
other classifications in subsequent classifications such as 1st, 2nd, 6th, 7th, 8th, 9th, and
14th classes in Purdue’s data. It can also be seen from Tables 3 and 4 that the band
classification selected by the LRBS method generally achieves higher classification
accuracy in image classification. Therefore, the experiment shows that the LRBS
algorithm provided in this paper can indeed select a subset of frequency bands that
perform better.
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4 Conclusion

This paper proposed an unsupervised low-rank representation of the band selection
method. First, the low-rank representation of the hyperspectral image is solved using an
inexact -ALM algorithm to obtain a low-rank coefficient matrix. Each column of the
low-rank coefficient is used as a vertex of the graph to perform spectral clustering to
determine the initial k-means. The clustering center is clustered to finally obtain a band
that satisfies the conditions. Experiments on three HSI datasets show that the frequency
band selected by the LRBS algorithm can select a better band subset for image
classification.

Table 1. Bands selected by UBS, MEAC, MDPP, DSEBS, LRBS

Data Methods Selected bands

Purdue Indian
Pines (18 bands)

UBS 1, 14, 27, 40, 53, 66, 79, 92, 105, 118, 131, 144, 157, 170,
183, 196, 209, 220

MEAC 159, 3, 92, 96, 82, 36, 39, 55, 41, 1, 2, 33, 206, 38, 163,
17, 204, 9

MDPP 10, 39, 59, 75, 79, 85, 92, 130, 140, 146, 147, 149, 150,
152, 160, 164, 175, 193

DSEBS 42, 129, 97, 131, 174, 16, 176, 177, 172, 43, 192, 193, 98,
171, 99, 132, 40, 33

LRBS 72, 35, 31, 147, 167, 128, 112, 65, 108, 109, 137, 189,
155, 162, 170, 182, 200, 210

Salinas (21 bands) UBS 1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 111, 122, 133, 144,
155, 166, 177, 188, 199, 210, 224

MEAC 107, 148, 203, 149, 5, 8, 105, 3, 28, 12, 18, 10, 44, 36, 25,
17, 51, 32, 110, 68, 58

MDPP 1, 8, 11, 22, 27, 28, 50, 57, 58, 65, 90, 99, 105, 119, 123,
134, 142, 157, 175, 191, 204

DSEBS 99, 101, 16, 119, 177, 112, 44, 46, 120, 47, 131, 175, 196,
121, 17, 102, 174, 180, 187, 135, 42

LRBS 51, 16, 66, 36, 43, 129, 45, 76, 89, 98, 109, 118, 125, 137,
142, 159, 165, 207, 184, 196, 203

Univ. of Pavia (14
bands)

UBS 1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 103
MEAC 1, 23, 24, 40, 42, 58, 56, 59, 48, 31, 47, 83, 25, 54
MDPP 2, 23, 44, 46, 50, 62, 66, 73, 89, 91, 92, 93, 96, 102
DSEBS 86, 102, 64, 20, 21, 63, 65, 6, 19, 22, 7, 66, 95, 67
LRBS 70, 14, 20, 27, 1, 34, 47, 51, 62, 64, 68, 91, 99, 94
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Table 2. PD, POA, PR calculated from the classification results for Purdue’s data

Class Full Bands UBS MEAC MDPP DSEBS LRBS
PD PD PD PD PD PD

1 95.65 95.65 93.48 95.65 95.65 100
2 96.01 97.13 93.07 96.08 96.99 94.47
3 96.99 96.51 96.27 97.35 97.23 96.99
4 98.73 98.73 98.31 99.58 98.31 98.31
5 89.44 90.68 91.51 92.34 93.58 94.62
6 97.12 97.67 97.40 96.71 97.12 98.08
7 100 100 100 100 100 100
8 98.78 98.54 99.16 97.49 97.91 99.16
9 100 100 90.00 100 100 100
10 93.93 91.98 93.31 94.65 93.00 95.37
11 94.70 96.13 94.55 95.48 95.85 95.44
12 95.45 94.94 96.29 96.80 97.30 96.80
13 98.54 98.54 99.02 97.56 96.59 98.54
14 93.52 94.15 94.78 94.70 94.55 96.28
15 90.67 95.60 92.49 96.89 93.52 94.30
16 98.92 98.92 98.92 98.92 98.92 98.92
POA 95.09 95.69 94.91 95.89 95.88 96.09
PR 97.61 97.90 97.52 98.00 97.99 98.09

Table 3. PD, POA, PR calculated from the classification results for Salinas

Class Full Bands UBS MEAC MDPP DSEBS LRBS
PD PD PD PD PD PD

1 95.52 97.16 97.71 97.76 97.16 97.56
2 98.42 98.85 98.44 97.99 99.17 98.95
3 93.78 95.5 94.03 93.98 95.65 95.85
4 95.62 94.69 94.33 97.49 94.74 95.19
5 96.9 96.45 95.19 95.22 96.9 95.44
6 98.79 98.59 98.56 98.79 98.56 97.83
7 98.63 98.21 98.18 97.99 97.65 97.54
8 96.69 95.81 97.4 95.23 96.11 97.14
9 95.87 95.6 94.74 95.29 95.73 95.92
10 96.67 96.37 96.34 96.46 97.25 96.71
11 97.75 97.85 91.1 97.75 98.31 97.1
12 97.15 96.16 95.54 97.46 97.66 96.63
13 96.51 96.94 93.35 96.4 95.63 96.4
14 95.89 98.14 97.66 97.01 98.04 98.88
15 94 95.27 96.52 95.42 95.25 96.42
16 93.3 96.07 93.86 95.07 95.02 95.52
POA 96.37 96.49 96.45 96.25 96.63 96.86
PR 98.23 98.29 98.27 98.17 98.36 98.47
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