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1  �Introduction

Heart failure (HF) is a structural or functional cardiac abnormal syndrome character-
ized with series of symptoms and signs such as breathlessness, fatigue, pulmonary 
crackles, and peripheral edema. Being a terminal phase of most myocardial lesions, 
HF has become a leading cause of mobility and mortality worldwide, associated with 
heavy clinical burden and economic costs affecting over 23 million people [14]. There 
is an increase to 5.5% with systolic dysfunction and an increase to 36.0% with dia-
stolic dysfunction in people 60 years or older [85]. The costs accompanied with heart 
failure stand 2–3% of the total healthcare system expenditure in high-income coun-
tries and are expected to increase >2-fold in the next 2 decades [34].
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The pathological mechanisms of HF include hemodynamic abnormalities,  
neuroendocrine cytokine system over-activation, bioenergetics defects, signal  
transduction pathway dysfunction, and abnormal calcium homeostasis [54].  
In addition, oxidative stress and inflammatory disorders also contribute to the  
pathogenic process [58, 87]. HF is caused by multiple different etiologies; however, 
all causes have final common pathways, at least in part, independent of the original 
cause. Based on previous clinical trials of neurohormonal therapies, neurohormonal 
activation plays a pivotal role in its pathophysiology [56, 57]. Any cardiovascular 
diseases can cause cardiac injury; as a consequence, myocyte cells loss and the 
remaining myocytes become eccentric hypertrophy. Followed by neurohormonal 
activation, the left ventricle changes from elliptical to spherical and is characterized 
by functional mitral regurgitation. Afterward, left ventricular remodeling occurs 
with fibrosis and ventricular dilatation in which process myocardial oxygen con-
sumption increases and myocardial contraction efficiency reduces [10, 69]. As the 
course progresses, concomitant renal dysfunction and gut congestion cause reduced 
response to diuretics and inflammatory activation, leading to worse outcomes [58, 
84]. Existing therapies including angiotensin-converting enzyme (ACE) inhibitors, 
angiotensin receptor blockers (ARBs), β-blockers, mineralocorticoid receptor 
antagonists, and advanced device therapies provide symptomatic and clinical ben-
efits; however, they do not completely solve the molecular abnormalities. Thus, it is 
urgent to find other effective therapeutic targets.

Recently, energetic impairment in the pathophysiology and progression of HF 
has caused lots of interest. Mitochondria accounts for 30% of the volume of 
cardiomyocytes whose dysfunction has been recognized as the key link in the 
development of heart failure [69]. Mitochondrial dysfunctions cover altered 
utilization of metabolic substrates, increased formation of reactive oxygen species, 
impaired mitochondrial electron transport chain activity, abnormal mitochondrial 
dynamics, and altered ion homeostasis [4]. In view of the above evidences, 
mitochondria appear to be the main target for direct improvement of cardiac 
function. Acetaldehyde dehydrogenase 2 (ALDH2) is firstly regarded as an alcohol 
metabolism enzyme, which mainly distributed in the mitochondria. Increasing 
evidences have supported its important cardioprotective role [44, 53, 61]. In the 
following review, we will summarize its beneficial role and novel insights in heart 
failure due to different etiologies, as well as the potential therapeutic measures.

2  �Characteristics of ALDH2

Acetaldehyde dehydrogenase (ALDH) is an enzyme superfamily responsible for the 
catalytic oxidation of acetaldehyde to acetic acid both physiologically and 
pathologically [38]. It has been identified 19 isozymes till now. ALDH2 is the most 
active isozyme and its molecule form is a 56 kDa tetramer. The precursor protein of 
ALDH2 encodes from chromosome 12, enters the mitochondria under the guidance 
of the signal peptide, and cleaves off the signal peptide to locate in mitochondria 
[28]. ALDH2 is widely distributed in human liver, kidney, heart, lung, brain, and 
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other tissues. It contains three domains including coenzyme-binding or NAD+-
binding domain, catalytic domain, and oligomerization domain [61]. ALDH2 also 
processes three kinds of enzyme activities including dehydrogenase, esterase, and 
reductase activities detoxifying aldehyde, 4-nitrophenyl acetate, and nitroglycerin, 
respectively [55].

A total of 84 single nucleotide polymorphism (SNP) loci have been found on 
human ALDH2 gene [46]. The foremost is rs671 G > A mutation which presents in 
exon 12 and results in amino acid substitutions of p.Glu504Lys [74]. The genotypes 
of ALDH2 comprise wild homozygous (GG also known as ALDH2 *1/*1), owning 
normal catalytic activity of the enzyme; mutant heterozygous (GA also known as 
ALDH2 *1/*2), processing a decrease in enzyme catalytic activity with only 10%–
45% of the wild homozygous; and mutant homozygotes (AA type also known as 
ALDH2 *2/*2) having only 1%–5% enzyme catalytic activity of the wild 
homozygous [15]. In general, the prevalence of the genetic polymorphism (ALDH2 
*2/*2) is found in nearly 8% of world populations and 40% of East Asian popula-
tion [103].

3  �Beneficial Role and Mechanisms of ALDH2 in Heart 
Failure

Experimental and clinical studies have proved that ALDH2 plays a pivotal role in 
heart failure via maintaining cellular homeostasis [13, 17]. Evidences from our 
group and others have verified ALDH2 is closely related to various etiologies of 
heart failure, such as coronary artery disease (CAD) [80], hypertension [71], 
alcoholism [73], and other susceptibilities [102, 106]. Next we will review the 
pathological role and underlying mechanisms of ALDH2 involved in heart failure.

3.1  �ALDH2 and Ischemic Heart Failure

Numerous studies have shown that ALDH2 has cardioprotective effects in ischemic 
with or without reperfusion myocardial injury. The expression of ALDH2 was 
found decreased in infarction border zone [90]. Cardiac function deteriorated in 
ALDH2 knockout posts myocardial infarction (MI) mice as evidenced by increased 
left ventricle (LV) cavity, LV end-diastolic pressure, and infarct size [80]. Meanwhile, 
there were more apoptotic cells in the non-infarcted LV region as compared with 
wild-type (WT) MI mice. In contrast, overexpression of ALDH2 in the heart could 
alleviate these injures. Ma, et  al. found that ALDH2 induced autophagy during 
ischemia and inhibited autophagy during reperfusion which reduced hypoxic and 
reoxygenation cell death [53]. These data demonstrated that ALDH2 deficiency 
aggravated mitochondrial dysfunction and increased cardiomyocyte apoptotic cell 
death.
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DNA methylation is a process adding methyl groups to cytosine residues into 
DNA sequences, which can prevent transcription factors from entering the gene 
regulatory region, thereby inhibiting gene transcription [65]. Increasing studies 
indicated that DNA methylation provided a potential molecular basis on energy 
metabolism between environmental and genetic factors interaction and might 
contribute to myocardial injury [40]. We also found DNA methylation at CpG sites 
(CpG1, CpG2, and CpG7) in the upstream sequence of ALDH2 promoter was 
upregulated post MI.  These abnormal hypermethylations at the CpG sites 
downregulated ALDH2 enzyme activity and aggravated ischemic damages [90]. 
DNA methylation reflected the upstream mechanism of ALDH2 regulating cardiac 
function after ischemia.

We also demonstrated the downstream mechanisms of ALDH2 in protecting car-
diac from ischemic injures. ALDH2 could increase the intracellular levels of 4-HNE, 
which could exacerbate apoptosis by inhibition of HSP70, phosphorylation of JNK, 
and activation of p53 [80]. 4-HNE is also a diffusible product of membrane lipid 
peroxidation and relates to oxidative stress-induced cell death [70]. Mitochondrial-
derived ROS also attacked polyunsaturated fatty acids, leading to membrane lipid 
peroxidation, thereby increasing reactive aldehydes [7, 8]. We demonstrated both 
experimentally and clinically that ALDH2 was vital in regulating microenvironment 
homeostasis. ALDH2 could promote angiogenesis post chronic ischemia. ALDH2 
deficiency inhibited tubelike construction formation of hypoxia endothelial cell 
through HIF-1α/VEGF pathway, deteriorating perfusion recovery in ischemia tis-
sue, while overexpression of ALDH2 promoted angiogenesis. Furthermore, clinical 
data suggested that the dysfunction of ALDH2 due to gene variant was an unfavor-
able factor for revascularization in patients with chronic total occlusion (CTO). 
Therefore, targeting ALDH2 activity may be a potential therapeutic strategy for 
chronic ischemic heart failure, and we have used this achievement to guide clinical 
decision-making [49].

3.2  �ALDH2 and Stress-Induced Heart Failure

Endoplasmic reticulum (ER) stress refers to an increase in unfolded and misfolded 
proteins in the ER that disrupts the homeostasis in response to cellular stressors, 
such as heat, hypoxia, metabolic starvation, angiotensin II, and tumor necrosis 
factor-α [29, 42]. Substantial evidences indicated ES stress as important target for 
the treatment of cardiovascular disease, including ischemia/reperfusion injury, 
atherosclerosis, cardiac hypertrophy, and heart failure [29, 82]. Our results suggested 
that ALDH2 deficiency aggravated cardiac contractile dysfunction following 
activation of ES stress, manifested as descend of ejection fraction and fractional 
shortening. NADPH oxidase (p47phox subunit) increased in ALDH2 knockout 
mice, suggesting that ALDH2 might regulate Akt signaling pathway through 
p47phox NADPH oxidase-dependent manner against ER stress and ER stress-
induced apoptosis [47].
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Persistent pressure overload such as refractory hypertension is a significant risk 
factor for heart failure and sudden death. Series of pathological cardiac remodeling 
were characterized by increased myocardial cells, “fetal gene program” activation, 
cytoskeletal reorganization, and irreversible systolic dysfunction [35, 51]. 
Autophagy is an important homeostatic pathway in degrading damaged proteins 
and intracellular organelles [24]. It has been found to be involved in pressure-
induced heart failure [22]. Autophagy-related signaling pathways involved in 
pressure overload included the classic AMPK-mTOR-autophagy, Beclin-1-
dependent pathway, Akt/mTOR/FoxO3a signal pathway, and PI3K/Akt signaling 
[48, 89, 96, 98]. In early compensated cardiac hypertrophy after transverse aortic 
constriction (TAC), autophagy played an adverse role with worse cardiac function 
and severer mitochondria damage. In this process, ALDH2 acted through the 
regulation of PI3K/PTEN/Akt signaling [95]. Besides, ALDH2 deficiency further 
inhibited autophagy during decompensated cardiac hypertrophy accompanied with 
inactive Beclin-1-dependent autophagy signaling [71]. Therefore, autophagy works 
in both early stage and late stage of ALDH2 regulation in pressure-overload adaptive 
response.

3.3  �ALDH2 and Alcoholic Heart Failure

Alcoholic cardiomyopathy is characterized by a dilated left ventricle and reduced 
myocardial contractility due to a long-term history of heavy alcohol consumption. 
It was estimated that about one-third of alcoholics suffered from varying degrees of 
alcoholic cardiomyopathy and approximately half of them resulted in death within 
4 years [43, 101]. Mitochondrial defects, cell death, heart rate variability, and 
cardiac remodeling would eventually result in heart failure [31].

As early as the twentieth century, it was found about 50% of Asians had facial 
flushing after drinking alcohol, and these individuals were tested having an inactive 
form of mitochondrial ALDH2 [88]. rs671 in ALDH2 gene was the most influential 
genetic variant linked to alcohol consumption [83]. ALDH2 deficiency aggravated 
alcoholic myocardiopathy by weakening acetaldehyde-biogenic amine condensation 
products detoxification, breaking intracellular Ca2+ homeostasis, increasing 
apoptosis, upregulating autophagy, as well as impairing mitochondrial function [52, 
66, 72, 73, 101]. Besides, our study explored the role of ALDH2 in low-to-moderate 
alcohol consumption. On one hand, we confirmed the cardioprotective effects of 
low-to-moderate alcohol consumption which manifested by elevated HDL-c levels 
and upregulated HO-1 expression in the myocardium. However, the benefits were 
disrupted when ALDH2 was deficient, possibly by activating ROS-dependent 
apoptosis and RIP1/RIP3/MLKL-mediated necrosis [73]. A Guangzhou biobank 
cohort study genotyped rs671 of ALDH2 in 4867 men. Diastolic blood pressure and 
HDL cholesterol which associated with ALDH2 variants were attenuated after 
adjusting for alcohol use. The result suggested the apparent associations between 
physical activity and alcohol use in ALDH2 variants population [3]. Even moderate 
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alcohol use was found associated with subclinical adverse effects with greater left 
ventricle mass and more impaired diastolic functions in subjects carrying ALDH2 
variants, especially among East Asians [36]. Individuals with inactive isoforms of 
ALDH2 should be warned to avoid drinking alcohol, even for social or occupational 
promotion.

3.4  �ALDH2 and Diabetes Mellitus-Related Heart Failure

The increasing morbidity and mortality of heart failure are related to the increase in 
aging, obesity, and diabetes mellitus in a large part. The prognosis of heart failure in 
patients with diabetes is much worse than that in patients without diabetes. The 
early symptom of diabetic cardiomyopathy is diastolic dysfunction and can 
gradually develop into systolic dysfunction. Metabolic disorder is an important 
feature of diabetic cardiomyopathy, manifested as reduced glucose uptake and 
increased fatty acid utilization accompanied by oxidative stress, inflammation, 
cardiomyocyte apoptosis, and myocardial fibrosis [37]. Beyond these, mitochondrial 
dysfunction, impaired mitochondrial and cardiomyocyte calcium handling, 
endoplasmic reticulum stress, and reduced nitric oxide bioavailability were also 
implicated in the development and progression of diabetic cardiomyopathy [39].

A genome-wide association study contained 12,720 participants found rs671 
(ALDH2) was associated with metabolic syndrome (MetS) in Han Chinese. What’s 
more, the effects of rs671 on metabolic components were significantly correlated 
with drinking [108]. Previous studies showed that ALDH2 improved the contractile 
function of advanced diabetic cardiomyopathy by regulating Ca2+ homeostasis and 
autophagy [32, 104]. Our data found that ALDH2 deficiency impaired diastolic 
function in early stage of diabetic cardiomyopathy, while cardiac contractile 
function remained normal. In this stage, ALDH2 deficiency disrupted energy 
metabolism with increased AMP/ATP and ADP/ATP and decreased PCr/ATP ratio, 
which in turn induced activation of energy regulatory LKB1/AMPK pathway. The 
progressive accumulation of phosphatidylcholine and phosphatidylinositol in heart 
tissue induced metabolic homeostasis disequilibrium and led to deterioration of 
diastolic function [20, 91].

3.5  �ALDH2 and Aging-Related Heart Failure

Aging is an irreversible biological process. In the cardiovascular area, age-depen-
dent increases include left ventricular hypertrophy, diastolic dysfunction, atrial 
fibrillation, as well as vascular intimal thickening and vessel stiffness. Aging-related 
cardiac dysfunction is characterized with loss of cardiac contractile reserve, 
increased fibrosis and remodeling, impaired cardiomyocyte proteostasis, and loss of 
autophagy [21, 50]. Heart failure can be regarded as an aging-related phenotype. 
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Aging-associated cardiac pathological changes involve oxidative stress, short 
telomere defect, mitochondrial damage, intracellular Ca2+ mishandling, etc. [2, 99].

Numerous studies suggested ALDH2 participated in the process of aging and 
age-related cardiovascular diseases [18, 106]; however, whether ALDH2 is 
beneficial or detrimental is still controversial. Wu found that ALDH2 ablation led to 
cardiac aging and sustained usage of Alda-1 (a specific activator of ALDH2) 
abrogated the aging effect [94]. ALDH2 activity was discovered to be significantly 
decreased in aged hearts which also demonstrated the benefits of activation of 
ALDH2 on retarding the aging process. In the meantime, ALDH2 was also 
discovered to exert age-dependent vasoprotective effects with decreased 
mitochondrial ROS formation and oxidative mtDNA damage [92]. On the contrary, 
our lab found ALDH2 overexpression such as using Alda-1 accentuated aging-
related cardiomyocyte. The dysfunction was characterized by increased contractile 
dysfunction, oxidative stress, intracellular Ca2+ mishandling, and mitochondrial 
injury [105]. Moreover, AMPK/Sirt1 signaling cascades were found taken part in 
ALDH2-accenuated cardiac aging [106]. In the light of the debates, further 
epidemiological of different races or experimental studies will be needed to provide 
more evidence about the effect of ALDH2 in aging.

3.6  �ALDH2 and Drug-Induced Heart Failure

Several chemical agents and drugs could impair cardiac mitochondrial function via 
destroying mitochondrial respiratory chain (e.g., uncoupling) or inhibiting 
mitochondrial enzymes. The most common agents are anticancer drugs such as 
anthracycline doxorubicin (DOX), cisplatin, and Trisenox; antiviral compound 
azidothymidine (AZT zidovudine); and several oral antidiabetic drugs such as 
Avandia [86].

The chemotherapy drug DOX is frequently found in inducing cardiotoxic. Left 
ventricular systolic pressure would significantly reduce, and left ventricular end-
diastolic pressure would overtly increase after DOX treatment. ALDH2 attenuated 
this cardiotoxicity by inhibiting oxidative stress, decreasing the expression and 
activity of NADPH oxidase 2, and reducing myocardial apoptosis. In addition, 
DOX-induced myocardial dysfunction was severer with increased levels of 4-HNE 
and autophagy in ALDH2 knockout mice. Besides, these symptoms could be 
improved when ALDH2 activity was restored, suggesting that inhibition of 4-HNE 
and autophagy may be the possible mechanisms of ALDH2 against DOX-induced 
cardiac dysfunction [79].

Oxidative stress-induced cardiomyocyte apoptosis is also a main part in the 
pathogenesis of heart failure [59]. ROS production and accumulation caused 
intracellular redox imbalance, leading to mitochondrial dysfunction and decreased 
production of ATP [26]. We elucidated the relationship between ALDH2 deficiency 
and oxidative stress-induced apoptosis in an antimycin-induced heart failure model. 
Inhibiting ALDH2 activity by daidzin increased intracellular ROS levels and 
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apoptosis in which associated with the upregulated phosphorylation of ERK1/2, 
JNK, and p38-MAPK [102]. Thus, these data suggested the beneficial role of 
ALDH2 in drug-induced heart failure.

4  �ALDH2-Related Therapy

The following mediators have been reported mediating the cardiac dysfunction in 
ALDH2 deficiency: (1) ROS and toxic aldehydes [53]; (2) apoptosis pathways [80], 
involving caspase 3, Bcl- 2; (3) oxidative stress signaling cascade [1], involving 
MAP kinase cascades ERK1/2, SAPK/JNK, and p38 MAP kinase; and (4) autophagy 
[1], involving Beclin-1 and AMPK-mTOR. The indispensable role of ALDH2 in the 
pathogenesis of heart failure sheds light on the development of potential therapeutic 
target of it (Fig. 1). Here we summarized activators of ALDH2 and several other 
aspects which have already been proved to have therapeutic effects or just have a 
therapeutic potential on heart failure.

4.1  �ALDH2 Activator

Alda-1, a small molecule activator of ALDH2, is a potential new therapeutic candi-
date. Alda-1 was reported to exert its cardioprotective effect through reducing oxi-
dative stress, restoring calcium and CaMKII homeostasis, and detoxifying 
O2

•– induced reactive aldehydes to less reactive acids [16, 93]. It was also been 

Fig. 1  A scheme depicting how ALDH2 plays the protective role in heart failure. ALDH2 protects 
myocardium by maintaining myocardial cell survival and angiogenesis. At the same time, ALDH2 
can determine the efficacy of stem cell transplantation by increasing the quality of seed stem cells 
and metabolic microenvironment
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reported to ameliorate pulmonary vascular remodeling in pulmonary arterial hyper-
tension and inhibit atherosclerosis in apolipoprotein E-knockout mice [76, 97]. In 
addition, it played a protective role in cardiac dysfunction induced by abnormal 
glucose and lipid metabolism as well as DOX or 4-HNE-induced autophagic reduc-
tion and cell death [30, 79]. However, the efficiency of the activation by Alda-1 is 
variant, for example, Alda-1 increases acetaldehyde oxidation in wild-type ALDH2 
(ALDH2*1) and East Asian variant of ALDH2 (ALDH2*2) approximately 1.5- and 
6-fold, respectively [6]. Thus, the patients undergoing pathological processes such 
as cardiac ischemia with wild type or mutant ALDH2 might gain more benefits with 
the treatment of pharmacologic enhancement of ALDH2 activity [16]. Belmont 
conducted kinetic experiments to characterize Alda-1 on the properties of ALDH2 
and found it was a complex behavior, where Alda-1 acted as inhibitor in low 
concentrations of aldehyde and as an activator in high concentrations [5]. Moreover, 
Alda-1 has exogenous and toxic characters. All factors should be taken into 
consideration when considering Alda-1 as an exogenous stimulator of ALDH2, 
including the working concentration, half-life period, continuity of stimulation, 
toxic, and side effects.

Protein kinase C ε (PKCε) has been found as another ALDH2 activator via direct 
phosphorylation. In vitro, phosphorylation of wild-type ALDH2 recombinant 
protein was reported increased its enzymatic activity [16]. The enzymatic activity of 
the phosphorylated ALDH2*2 is 270% of the non-phosphorylated ALDH2*2 [60]. 
Following phosphorylation by recombinant εPKC, there was an increase of 70% of 
the ALDH2 activity. Similar to Alda-1, the effect of εPKC phosphorylation was 
more pronounced on ALDH2*2 mutant enzyme. T185E, S279E, and T412E were 
three common phosphomimetic mutations sites by εPKC in the protection of 
ALDH2 against reactive aldehydes. Treatment with PKC activator upregulated 
ALDH2 activity, while applying PKC inhibitor had the opposite effect. Some study 
demonstrated that PKCε-ALDH2 interaction had disincentive effects in 4-HNE-
induced aberrant PPARγ regulation, which suggest that PKCε-ALDH2 regulatory 
axis may be a therapeutic target for treating metabolic syndrome [100].

4.2  �MicroRNAs

MicroRNAs are a class of endogenous interfering RNAs whose primary function 
are regulating the expression of genes. Evidences indicated that microRNAs could 
participate in diverse pathophysiological processes of cardiovascular disease, 
including hypertrophy, apoptosis, cardiac conduction, fibrosis, and angiogenesis 
[25, 75]. MiR-34a has been elucidated in many cell lines and was found related to 
apoptosis, energy metabolism, lipid metabolism, aging, and stem cell division [12, 
33]. Bioinformatics analysis produced a protein-protein interaction network in 
HepG2 cells and revealed that ALDH2 was a potential target of miR-34a [19]. Our 
study found that increased circulating miR-34a could decrease ALDH2 activity and 
increase cardiomyocyte apoptosis post-MI injury [23]. Although miR-34a is not a 
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cardiac-specific miRNA, the expression abundance of miR-34a in myocardium 
ranks third in all tissues [9], and it is reasonable to regard miR-34a as a diagnostic 
marker for MI.  MiR-28 could also promote ischemia via inhibition of ALDH2 
expression in myocardium [45]. In addition, Shen predicted ALDH2 as target genes 
of miR-224 [72]. The target sites existed in 3’UTR of ALDH2 suggesting that miR-
224 downregulated the expressions of ALDH2 and finally regulated target genes in 
lipid metabolism. MicroRNAs might be new diagnostic indicators and therapeutic 
targets for heart failure patients. But it requires further studies in large cohort to 
assess the specificity and sensitivity of them.

4.3  �Mesenchymal Stem Cell (MSC) Therapy

Mesenchymal stem cell (MSC) therapy is a promising approach in alleviating isch-
emic injury and promoting tissue regeneration [64]. A present meta-analysis includ-
ing 64 studies strongly supported the potential of MSCs therapy for ischemic stroke 
[68]. Up to now, various strategies have been used to increase transplant effects in 
ischemic diseases, including tissue engineering scaffolds, genetic modification, and 
hypoxia-based pretreatment [27]; however, implanted cell dysplasia is still a prob-
lem [78]. Many factors could affect the efficiency including regenerative cell source, 
injectable delivery vehicles, and microenvironmental signals [67, 77]. Our results 
showed that host ALDH2 affected the survival of transplanted MSCs. Protein array 
analysis also revealed that ALDH2−/− tissues expressed low levels of angiogenic 
factors, including cysteine-rich angiogenic inducer 61, endoglin, epidermal growth 
factor, fibroblast growth factor-1, angiopoietin-1, matrix metallopeptidase-3/-9, and 
insulin-like growth factor binding protein, all of which could enhance the tolerance 
of engrafted MSCs during vasculogenesis in hypoxia injury [107]. Thus, ALDH2 
may be regarded as a homeostatic mediator of microenvironment by increasing 
local capillary density and energy supply and decreasing oxidative stress after 
ischemia.

4.4  �ALDH Bright Cells

Autologous bone marrow-derived aldehyde dehydrogenase bright (ALDHbr) cells 
isolated by flow sorting express high activity of ALDH [41]. They have been applied 
in clinical practice to repair tissue damage and have been proven safe and efficient 
in patients with chronic myocardial ischemia [62]. Our observations supported the 
effective therapeutic effect of ALDHbr cells on ischemic myocardium; in addition, 
we demonstrated ALDH2 as a key mediator in the process [81]. Weakened 
glycolysis, mitochondrial respiratory abnormalities, and increased mitochondrial 
ROS gave rise to the diminished therapeutic efficacy of ALDHbr cells in ALDH2 
deficiency mice rather than oxidative phosphorylation impairment. The results gave 
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us a hint that ALDH2 activity was a pivotal precondition in the efficacy of ALDHbr 
cell therapy; therefore individuals with loss of ALDH2 function are unsuitable for 
ALDHbr cell therapy. However, recently a clinical trial didn’t find significant 
positive outcomes of ALDHbr cells in patients with peripheral artery disease [63]. 
Future investigational trial tests about cell therapy should be carried out to find new 
anatomic and perfusion insights.

5  �Conclusion

Just as Braunwald said, heart failure is the last battle of cardiovascular diseases [11]. 
It is urgent to find a novel prospective to illustrate the mechanism of heart failure 
and to improve the prognosis. This review summarizes the roles of ALDH2 gene 
polymorphisms and ALDH2 enzyme activity in heart failure induced by multiple 
causes, such as ischemic injury, hypertension, alcohol, diabetes, and aging. Except 
the controversial role of ALDH2 in aging-related cardiac dysfunction, studies have 
suggested a cardioprotective role of ALDH2 to counteract cardiac dysfunction due 
to different etiologies. Emerging evidences provided new insight in understanding 
the epigenetic and transcriptional regulation of ALDH2 as well as the effect of 
ALDH2 in stem cell transplantation. Strategies aim to enhancing ALDH2 activity or 
expression, as well as improving mitochondrial function, will bring novel prospects 
for the treatment of heart failure.
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