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Preface

Growing adversarial environmental impact, escalating energy demand,
ever-expanding utilization of fossil fuels coupled with rising production costs have
brought substantial attention to sustainable development worldwide. In this context,
global efforts have been made to promote utilizing more renewable energy
resources, among which solar photovoltaic contributes is one of the most promising
clean energy sources to the world energy consumption. Approximately, 90% of the
global installed photovoltaic systems are integrated with grid. Megawatt photo-
voltaic power plants are generally preferred to install in remote areas due to the
requirement of wide land area. Usually, a medium voltage network is adopted to
transfer power to load centers. Therefore, compact, reliable, dynamic control and
system stability, photovoltaic power plant planning and optimal sitting and uti-
lization have become increasingly important. This book discusses control and
optimization techniques (i.e., improved fuzzy control, artificial intelligence,
back-propagation neural network, adaptive neuro-fuzzy control, sliding-mode
control, predictive control, backstepping, secant incremental gradient based on
Newton–Raphson, cuckoo search algorithm, particle swarm optimization, and gray
wolf optimizer) in the broadest sense, covering new theoretical results and the
applications of newly developed methods in photovoltaic systems. Going beyond
classical control techniques, it promotes the use of control and optimization
strategies with improved efficiency, based on linearized models and purely con-
tinuous (or discrete) models and proved by appropriate performance indices. These
new strategies not only enhance the performance of the photovoltaic systems, but
also decrease the cost per kilowatt-hour generated.

The material of the book is organized into the following eleven chapters. All the
chapters have been included in this book after a rigorous review process. Special
importance was given to chapters offering novel control and optimization tech-
niques in solar photovoltaic systems. The contributed chapters provide new ideas
and approaches, clearly indicating the advances made in control system analysis
and simulation with respect to the existing state-of-the-art.
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Inverter (DC–AC converter) is the key interface between the solar photovoltaic
array and mains in the grid-integrated photovoltaic system. The inverter must
follow the frequency and voltage of the grid and extract maximum power from the
solar photovoltaic. Therefore, the quality of the output current in an inverter inte-
grated photovoltaic systems is an important standard. Chapter “Adaptive Control
Techniques for Three-Phase Grid-Connected Photovoltaic Inverters” provides the
development of model reference adaptive control techniques for grid-connected
photovoltaic inverter systems under uncertain parameters and disturbances. The
control objectives are analyzed based on the photovoltaic inverter output require-
ment. The ability to compensate grid-side harmonic disturbances and asymptotic
adaptive disturbance rejection is enhanced.

The output power of a photovoltaic system depends on solar radiation that falls
on its PN junction as well as the percentage of solar radiation it converts into
electricity (conversion efficiency). Since there is always a unique maximum power
point on each power–voltage curve, maximum power point tracking units should be
utilized in photovoltaic sources to increase their efficiency. Chapter “Application of
Sliding-Mode Control for Maximum Power Point Tracking of PV Systems” pre-
sents one-loop and two-loop sliding-mode control schemes to increase the effi-
ciency in photovoltaic systems. A maximum power point searching unit is utilized
in the searching loop, and a tracking controller is utilized in the other loop to extract
the maximum photovoltaic power photovoltaic power source.

In photovoltaic systems, DC bus voltage balancing is critical. Fluctuations in bus
voltage cause power imbalance that originates from different sources of distur-
bances such as sudden change in load and/or weather parameters. Such a power
imbalance results in extra energy. Chapter “Predictive Control of Four-Leg
Converters for Photovoltaic Energy Systems” is devoted to predictive control of
four-leg converters for photovoltaic systems. The predictive current control enables
grid-connected operation, whereas predictive voltage control is used for stand-alone
operation of photovoltaic energy systems. The predictive control strategies fulfill
the control requirements concerning output current control, load voltage control,
balancing of DC link capacitor voltage, and neutral-leg switching frequency min-
imization. Chapter “A Novel Maximum Power Point Tracking Method for
Photovoltaic Application Using Secant Incremental Gradient Based on Newton
Raphson” discusses some common algorithms dedicated to maximum power point
tracking of the photovoltaic system such as perturb and observe, particle swarm
optimization and gray wolf optimizer. The chapter also develops a new maximum
power point tracking method for photovoltaic application using secant incremental
gradient based on Newton–Raphson method. The proposed method has better
performance in achieving global maximum power point with more tracking effi-
ciency and convergence speed versus classical methods.

Solar photovoltaic experiences some deficiencies and some fundamental prob-
lems when utilized as a stand-alone energy source. In this context, solar photo-
voltaic is integrated with certain power sources and/or storage systems in a hybrid
power system to increase the reliability. Chapter “Study on Control of Hybrid
Photovoltaic-Wind Power System Using Xilinx System Generator” describes a
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photovoltaic–wind hybrid power system using a Xilinx system generator.
Maximum power point tracking techniques are adopted in order to extract the
maximum energy from the renewable energy sources. The virtual flux-oriented
control scheme is adopted to control the grid-connected three-phase inverter based
on the backstepping approach.

Over the last few years, fuzzy, neural networks, and other artificial intelligence
techniques have contributed substantially in the modeling, control, and optimization
of solar photovoltaic systems. Chapter “Artificial Intelligence for Photovoltaic
Systems” presents an overview on the applications of artificial intelligence tech-
niques in photovoltaic systems. Particular attention is devoted to forecasting and
modeling of meteorological data, basic modeling of solar cells, and sizing of
photovoltaic systems. A comparison between conventional techniques and the
added benefits of using machine learning methods is given. Similarly, Chapter
“Applications of Improved Versions of Fuzzy Logic Based Maximum Power Point
Tracking for Controlling Photovoltaic Systems” reviews the applications of dif-
ferent conventional and improved fuzzy logic-based maximum power point
tracking techniques in photovoltaic systems. Based on simulation and experimental
results, the chapter provides a comparative study considering the main assessment
criteria such as fast convergence, conversion efficiency, algorithm’s complexity,
and practical implementation to figure out the relative merits and limitations of the
available maximum power point tracking techniques.

Chapter “A New Method for Generating Short-Term Power Forecasting Based
on Artificial Neural Networks and Optimization Methods for Solar Photovoltaic
Power Plants” introduces the application of artificial neural networks and particle
swarm optimization to generate short-term power forecasting for solar photovoltaic
plants. Power prediction is estimated using real-time data of 1 MW photovoltaic
power plant in use. Estimation power data are compared with real-time data, and the
precision of the proposed method is demonstrated. Chapter “Evaluation on Training
Algorithms of Back Propagation Neural Network for a Solar Photovoltaic Based
DSTATCOM System” suggests a back-propagation neural network control algo-
rithm based on fast Fourier transform control algorithm for distribution static
compensator integrated solar photovoltaic systems. Harmonic elimination in terms
of accuracy, number of iterations (epochs), and training time has been improved in
the proposed algorithm.

Chapter “Power Extraction from PV Module Using Hybrid ANFIS Controller”
presents the implementation of a hybrid adaptive neuro-fuzzy inference system
controller for maximum power extraction from PV module. This chapter also
provides the effect of load impedance and converter topologies on adaptive
neuro-fuzzy inference system controller design. The hardware results are very
promising and show that the adaptive neuro-fuzzy inference system control system
performance is better than other conventional control systems in terms of efficiency,
stability, and precision. Chapter “An Online Self Recurrent Direct Adaptive Neuro-
Fuzzy Wavelet Based Control of Photovoltaic Systems” focuses on a new
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wavelet-based online direct adaptive neuro-fuzzy control of photovoltaic systems.
The conversion efficiency and output power are better than the well-known used
traditional and intelligent maximum power point tracking controllers.

Timișoara, Romania Radu-Emil Precup
Serdivan/Sakarya, Turkey Tariq Kamal
Chongqing, China Syed Zulqadar Hassan
December 2018
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Adaptive Control Techniques for
Three-Phase Grid-Connected
Photovoltaic Inverters

Wanshi Hong, Gang Tao and Hong Wang

Abstract This chapter presents a framework of model reference adaptive control
(MRAC) techniques for three-phase grid-connected photovoltaic (PV) inverter sys-
tems with uncertain parameters and disturbances. Such adaptive controllers are
employed to achieve two main goals: (i) the asymptotic tracking for the output
of a time-varying reference signal by the PV system with high-order dynamics and
parameter uncertainties, which cannot be achieved by some conventional control
techniques, and (ii) the asymptotic rejection of a practical class of unknown high-
order harmonic signal disturbances, which is crucial for desired PV system oper-
ations. In this chapter, a full PV inverter system dynamic model is derived, and
adaptive control design conditions are verified for such system models. An MRAC
based disturbance rejection scheme is also developed for the PV inverter systemwith
parameter and disturbance uncertainties. Desired system performances are ensured
analytically and simulation results are listed to verify the result. This study shows the
potential advantages of using adaptive control techniques for PV inverter systems,
for ensuring desired PV system stability, output tracking, and disturbance rejection
properties.

Nomenclature

δ(t) System disturbance term
ω Grid fundamental frequency
ω(t) Compact form of signals
Ψ (t) Estimate of high frequency gain matrix
ρi Control relative degrees of ith control input
Θ(t) Parameter estimates
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Θ∗ Compact form of nominal parameters
Θ̃(t) Difference between parameter and its estimates
ε(t) Estimation error
ξ(t), ζ(t) Estimation signals
ξm(s) Left interactor matrix
A,B,Bd ,C Inverter system parameters
a∗
ij jth coefficient of di(s)
Cf Filter capacitance
di(s) Polynomial at ith diagonal term at the left interactor matrix
da,b,c Three phase duty cycle
e(t) Tracking error
G(s) Transfer matrix of inverter system
ig,a,b,c Grid side three-phase current
Igd , Igq Inverter d -q axis output current
I∗
gd , I

∗
gq Reference d -q axis current signals

ii,a,b,c Inverter side three-phase current
IPV , UPV Input current and voltage of the inverter system
K1(t), K2(t), K3f (t) Adaptive control parameter estimate
K∗
1 , K

∗
2 , K

∗
3f Nominal control parameter

Kp High frequency gain matrix
L6 Observability matrix of inverter system
Lf Inverter side filter inductance
Lg Grid side filter inductance
m(t) Normalize matrix
P Active power
P∗ Maximum power point
Q Reactive power
r(t) Reference input
Rf , Rg , Rc Filter ESR
S6 Controllability matrix of inverter system
Sp, Γp,Ks Gain matrices
T DQZ transformation
t Time variable
Ua,b,cN Grid voltage in a-b-c axis
uabc Control signal in a-b-c axis
Uc,a,b,c Three-phase capacitance voltage
Ud ,qN Grid voltage in d -q axis
Ud1N , Ud ,q6s,cN Grid side voltage magnitudes
Wm(s) Reference model
x State representation
xa,b,c State representation in a-b-c reference frame
xd ,q,o State representation in d -q-o reference frame
y(t) Inverter output signal
ym(t) Reference output signal.
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1 Introduction

This section introduces the photovoltaic (PV) inverter and provides background about
renewable energy and some conventional control methods for PV inverter systems.
It then describes the state-of-the-art research into the PV inverter control problem.

1.1 Research Motivation

Solar energy is inexhaustible and eternal. Most energy on Earth comes directly or
indirectly from the sun. Every year, about 1.8 × 1018 kWh of energy is radiated
from the sun to Earth, that is about 10 thousand times more than Earth’s power
consumption. The use of photovoltaic (PV) energy has become a trend around the
world. By the end of 2015, the USA ranked the fourth for solar energy usage in the
world. By the end of 2016, USA had 40GWof installed PV capacity, which is almost
twice as much as the PV capacity for the previous year [1]. From February 2016 to
January 2017, utility-scale solar power generated 35.5TWh, or 0.92% of total U.S.
electricity demand. All these figures show the important strategic position of solar
energy in the field of power generation.

PV Inverter

A PV inverter is a crucial part of the power system because it converts the direct
current (DC) of the PV power generation devices (such as solar panels) into an
acceptable utility frequency alternating current (AC) for grid-connected or off-grid
users [2]. Hence, PV inverters are the core of any PV power generation system
(grid-connected or off-grid). The quality of the output current of a PV inverter is
an important inverter standard, so the control strategy for inverter systems has been
studied to guarantee the desired output quality [3, 4].Moreover, to have a PV inverter
work most efficiently, the output current of the inverter should follow the reference
currents that are obtained from theMaximum Power Point Tracking (MPPT) module
(to be introduced in Sect. 2).

Major Technical Problems for PV Inverter Systems

With the continuously increasing demand for solar energy over the past decades,
the grid-connected PV inverter system control problem has been of a great research
interest. However, the large variations in weather mean sunlight intensity is often
uncertain and the distributed installation of solar panels makes it difficult to detect
system damages. These factors will lead to difficulties in controlling the PV inverters
to assure that theywork efficiently.As a result, improving the reliability of PV inverter
systems has been a major research task. The main technical problems are as follows:

• Randomness of the energy source. For a renewable power source, random effects
such as temperature, environment, or light intensity can influence the inverter
system output. Therefore, the controller for the inverter should have the ability
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to make the inverter output track a given time-varying reference signal, which is
obtained from the MPPT module.

• Harmonic pollution. For inverter systems, the power of electronic devices might
cause the output current harmonics to increase. Moreover, when a polluted grid
is connected to a PV inverter system, i.e., the grid-side current contains harmonic
components, this will influence the performance of the PV inverter system. Thus,
the PV inverter system should have the ability to reduce high-order harmonic
influences.

• Islanding effect.An islanding effect occurs when the grid is powered off but the PV
system does not detect this and continues working alone. This condition endangers
power company customers and workers. Other protections, such as the isolation
of AC and DC units, should also be applied to prevent the inverter from caus-
ing damage to the grid. Thus, PV systems should have anti-islanding protection
modules [5].

• Parameter uncertainty. System uncertainties have major influences on PV inverter
systems due to the unreliable characteristics of the solar energy source. A major
challenge in grid integration for distributed PV systems is the unknown system
uncertainties. Adaptive control technology has the desired potential to solve these
problems.

Conventional Control Methods and Their Drawbacks

A Proportional and Integral (PI) controller [6, 7] and a PI controller combined with
a Proportional and Resonant (PI + PR) controller are most commonly used by the
photovoltaic industry. However, some weak points still remain in these conventional
controllers: (i) The classical PI controller does not have the ability to deal with
harmonic effects from the grid. (ii) Although a PI + PR controller can reduce the
effect of the harmonics, for three-phase inverter systems the controller structure is
rather complicated [3]. They may not work for distributed PV systems whose orders
are high. (iii) Tracking of a time-varying reference signal cannot be achieved only
by using classical controllers, which is a major issue for PV systems because the
reference signal is generated from the online updatingMPPTmodule. This drawback
will cause some major problems in achieving integrated control of distributed PV
inverter systems,which require control cooperation. (iv) The PV systemuncertainties
cannot be effectively handled by conventional methods.

System Uncertainty Issue

System uncertainties have major influences on a PV inverter system because of the
unreliable characteristics of the renewable energy source. That is, (i) the uncer-
tainty of system parameters, such as inverter system resistance or inductance; (ii) the
uncertainty of the output voltage of the photovoltaic generation devices, such as solar
panels; and (iii) the uncertainty of system loads and faults (for distributed PV inverter
systems, the distance among the solar panels can lead to different sunlight intensity
for each inverter system, and there are uncertain factors such as load variation and
failure or damage of system components). A major challenge in grid integration for
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distributed PV systems is the system uncertainty problem, but the adaptive control
technique has the desired potential to solve the main uncertainty issues.

Hence, advanced adaptive control techniques that can effectively deal with system
uncertainties are needed to improve PV inverter system reliability.

Adaptive Control

In this chapter, the ability of adaptive control techniques to meet the desired control
objectives of PV inverter systems is studied. Adaptive control is particularly aimed
at the design of controllers for the system that has uncertainties [8] (including envi-
ronmental, structural, and parameter uncertainties). These sources of uncertainty are
common to power systems. Payload variation or component aging cause paramet-
ric uncertainties. In power systems, PV and other types of renewable energy-based
power systems, in particular the randomness of input power sources such as solar
energy and wind power also leads to parametric uncertainties. Component failure
in a power system leads to structural uncertainties, and external weather influences
and harmonic effects are typical environmental uncertainties. Adaptive control has
been successful in addressing new challenging problems and offering encouraging
solutions, when dealing with uncertainties that often appear in automobile engines,
electronic devices, and other industrial processes.

Unlike other control methods like proportional-integral-derivative (PID) control
[9], robust, optimal, or nonlinear control [10]methods,which require a certain knowl-
edge of system parameters, adaptive controllers do not require such knowledge and
they use online performance error information to adapt parameter uncertainties [11,
12].

1.2 Literature Review

Many research approaches have been taken to improve the reliability of PV inverter
systems. In this chapter, we introduce some exciting methods that address the
improvement of the control strategy of PV inverter systems.

In [3], the authors developed PI + PR control techniques for PV inverter sys-
tems to eliminate the high-order harmonic effects. The function of a PR controller
is to eliminate the harmonics in a particular frequency, in which frequency the har-
monic component cannot be reduced by the PI controller. In this research, a specific
method of modeling the inverter has been applied. In [4], the authors constructed
classical controllers for the inverter using LCL filters. This method eliminated the
current harmonics and the basic control objectives of an inverter system. However,
for the three-phase inverter, the topology of the control structure is rather complicated
because of the complexity of the three-phase system, and the uncertainty problem
for the PV inverter systems has not been considered.

In [13], the authors used an LCL filter in the inverter system to physically elimi-
nate high-order harmonics, derived an inverter system model with an LCL filter, and
developed a controller for this type of inverter system. In this chapter, the significance
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of the LCL filter is mentioned, because an LCL filter can improve the efficiency of
filtering and also reduce the volume of the filter. The authors used a classical control
method for the inverter control problem, and they did not consider the harmonic
problem for this system. Moreover, with this improvement for the PV inverter sys-
tems, the controller will be harder to design because the order of the filter system
has increased.

In [14], three-phase inverter control using a nonlinear Kalman filter is introduced.
This paper develops a nonlinear approach to the inverter system using aKalman filter.
To simplify the control problem, in this research the authors proposed to directly
control the power to track the maximum power point P∗.

In [15–17], someadaptive approaches to thePV inverter control problemare given.
In [17], an adaptive control scheme was used to help predict the system parameters
when the system is working in a polluted environment. However, the authors still
used the classical PI + PR controller for control of the main circuit. In [15], an
adaptive droop control was also used to help predict system parameters. A simple
adaptive control design was developed in [16] by only considering the off-grid case
without an LCL filter in the inverter system.

1.3 Technical Contributions

From the discussion above, it can be seen that it is crucial to develop a reliable
controller to deal with high-order harmonics disturbances and system uncertainties,
so as to achieve the output tracking of a time-varying signal for PV inverter systems.
This need motivated our research on multivariable model reference adaptive control
(MRAC) techniques for PV inverter systems. The main contributions of this work
are the following:

• The control objectives are analyzed based on the PV inverter output requirement.
• The ability to compensate grid-side harmonic disturbances and asymptotic adap-
tive disturbance rejection is enhanced.

• A state feedback output tracking MRAC scheme is developed with some key
techniques established for PV inverter systems.

The remainder of this chapter is organized as follows. Section2 first introduces the
details of three-phase grid-connected PV inverter systems, then derives a model for
three-phase PV inverter systems, and analyzes control objectives for three-phase PV
inverter systems. Section3 develops an adaptive control design for the PV inverter
system and analyzes the stability of the inverter system relative to the proposed
adaptive control design. Section4 presents a simulation study using the developed
adaptive controller to verify the desired system performance. Section5 summarizes
this chapter and discusses the future topics related to this research.
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Fig. 1 Inverter circuit structure [18]

Fig. 2 Adaptive PV inverter control system structure [18]

2 PV Inverter System Modeling

The function of a three-phase inverter is to manipulate the input DC voltage and
current with switching signals to change it into the desired three-phase AC current.
Figure1 shows the circuit structure of the three-phase grid-connected PV inverter
system. The solar panel generates current and voltage (IPV and UPV ), which are the
input of this inverter system. The current and voltage go through a series of insulated
gate bipolar transistors (IGBTs) and are converted to inverter side current ii,a,b,c.
Passing the LCL filter (represented by Lf , Lg and Cf , Rf , Rg , and Rc, which are
the Equivalent Series Resistance) the inverter-side current is filtered and the inverter
system produces the output ig,a,b,c.

The adaptive control system structure is shown in Fig. 2, where the subscripts
a, b, c in the signals da,b,c, ii,a,b,c,Uc,a,b,c etc., denote three components of each
signal. Our adaptive controller controls the switching state of the IGBTs to have
the PV inverter system constantly operating at the maximum power point P∗. To
achieve this goal, our adaptive controller should correspond with each module in
the inverter system. The reference current signals I∗

gd , I
∗
gq are for the inverter output

current Igd , Igq to track. In this design, we assume that I∗
gq = 0 for all time for
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simplicity, which means that the reference output power contains no reactive power.
For applications, the reactive power can be set to nonzero elements. In such cases,
I∗
gq can be time-varying as well. The control strategy to track I∗

gq(t) is similar to
the tracking of I∗

gd introduced in this chapter. The control signal uabc represents the
duty cycles of the pulse-width modulation (PWM) waveform [19], which generates
switching signals to the IGBTs inside the inverter and produces the inverter-side
currents ii,a,b,c. In this process, the DC-side current is changed to the desired AC
output current. Passing through the LCL filter, the final outputs ig,a,b,c are obtained.
Before the grid connection, an outer control loop is required to confirm whether
the phase and magnitude of the inverter output voltage are identical to the grid side
voltage. Thus, a closing signal generation module is required. Our work was to
design the adaptive controller (shown in Fig. 2) to track the maximum power point
and cooperate with other system components shown in Fig. 2.

Maximum Power Point Tracking

The MPPT module is a crucial part of the inverter system. For different solar panels
that have different insolation, there is a maximum power point within the allowed
range of the voltage (i.e., dependent on the variation of the sunlight intensity). The
goal of MPPT is to find the maximum power point P∗ which is used in the latter
part of the system to calculate the reference current for the adaptive controller. This
process constantly updates the maximum power point P∗.

LCL Filter

The conventional three-phase grid-connected inverter uses an LC filter or just an L
filter. However, with the power level of the inverter advanced to a new level, the
power electronic devices require a lower switching frequency to eliminate the power
loss, which will lead to an increase in the high-order harmonics of the grid side.
As a result, to meet the total harmonic distortion (THD) standard, the inductance
will become very high if one only uses the L filter. This will lead to a series of
problems that will cause not only higher cost and and require a larger size for the
system, but also increase the inductance affecting the system dynamically. Recently,
the replacement of the L filter by an LCL filter has been one of the most modern
solutions for solving the above problems. LCL filters show better performance in
reducing the high-order harmonics with a lower total inductance.

Grid-Connecting Process

As one of the crucial technical aspects of the inverter control problem, the inverter
systemfirst should generate voltage that has some relatedmagnitude, the same phase,
and the same frequency as the grid side. The grid-connecting process follows two
steps:

Step 1 The inverter should first start working in isolation from the grid using a
transformer to generate three-phase voltage that has the same magnitude as the grid
side voltage. The maximum tolerance error for the output voltage is 10% of the rated
voltage [20].
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Fig. 3 Scheme diagram for
the inverter-grid connecting
process

Step 2 With the inverter generating the same magnitude of the three-phase voltage,
the phase tracking method is used to generate the closing signal [21, 22]. The basic
principle is to connect the inverter to the grid at the moment when the inverter system
output has the same frequency and the same phase as the grid.

With the above steps accomplished, the inverter system can be successfully con-
nected to the grid. A block diagram showing the control of the grid-connection
process is provided in Fig. 3. In this chapter, we are mainly considering the current
control problem for the grid-connected system, which occurs after this grid connec-
tion process is accomplished.

Inverter System Modeling

We can write the three-phase circuit dynamic equations from Fig.1 as follows:

d

dt

[
Iia
Iib
Iic

]
= uPV√

3Lf

[
da
db
dc

]
− Rf

Lf

[
Iia
Iib
Iic

]
− Rc

Lf

[
Iia−Iga
Iib−Igb
Iic−Igc

]
− 1

Lf

[
Uac
Ubc
Ucc

]
(1)

d

dt

[
Iga
Igb
Igc

]
= 1

Lg

[
Uac
Ubc
Ucc

]
+ Rg

Lg

[
Iia
Iib
Iic

]
+ Rc

Lg

[
Iia−Iga
Iib−Igb
Iic−Igc

]
− 1

Lg

[
UaN
UbN
UcN

]
(2)

d

dt

[
Uac
Ubc
Ucc

]
= − 1

Cf

[
Iia−Iga
Iib−Igb
Iic−Igc

]
, (3)

where [da, db, dc]T = u(t) is the control vector, which are the duty cycles of the
PWM module.

To achieve maximum power point tracking, we need to change (1)–(3) into d -q-0
axis by applying the following DQZ transformation T [23–25]
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T =
√
2

3

⎡
⎣ cos(ωt) cos

(
ωt − 2π

3

)
cos

(
ωt + 2π

3

)
− sin(ωt) − sin

(
ωt − 2π

3

) − sin
(
ωt + 2π

3

)
,

1√
2

1√
2

1√
2

⎤
⎦ , (4)

⎡
⎣xd
xq
xo

⎤
⎦ = T

⎡
⎣xa
xb
xc

⎤
⎦ ⇔

⎡
⎣xa
xb
xc

⎤
⎦ = T−1

⎡
⎣xd
xq
xo

⎤
⎦ = TT

⎡
⎣xd
xq
xo

⎤
⎦ , (5)

where TTT = I . Because no neutral line connection existed, based on the properties
of this three-phase circuit topology, all terms related to 0 will be zero [23].

Thus, the state-spacemodel for d -q-0 axis will contain six states. This process also
reduces the number of unknown parameters to be estimated. Note that an accurate
phase tracking is for this coordinate transformation process. More studies about
phase tracking can be found in [21, 22].

State-Space Equation

The state-space model in d -q-0 axis is

ẋ(t) = Ax(t) + Bu(t) + Bdδ(t), y(t) = Cx(t), (6)

where

x = [
Iid Iiq Igd Igq Udc Uqc

]T
, u = [

dd dq
]T

, (7)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rf +Rc

Lf
ω Rc

Lf
0 − 1

Lf
0

−ω −Rf +Rc

Lf
0 Rc

Lf
0 − 1

Lf
Rc+Rg

Lg
0 −Rc

Lg
ω 1

Lg
0

0 Rc+Rg

Lg
−ω −Rc

Lg
0 1

Lg
1
Cf

0 − 1
Cf

0 0 ω

0 1
Cf

0 − 1
Cf

−ω 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

B =
[ UPV√

3Lf
0 0 0 0 0

0 UPV√
3Lf

0 0 0 0

]T

, Bd =
[
0 0 − 1

Lg
0 0 0

0 0 0 − 1
Lg

0 0

]T

, (9)

C =
[
C1

C2

]
=

[
0 0 1 0 0 0
0 0 0 1 0 0

]
, δ = [

UdN UqN
]T

, (10)

where u(t) = [dd , dq]T is the control vector, and δ is the grid side voltage. A,B,Bd

and C are the parameter matrices that contain all the system parameters. This state-
space model is the plant to construct adaptive control design.

Inverter Requirements

To obtain the control objectives, we need to analyze the requirements for the inverter
output:
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(i) The inverter voltage should have the same phase and frequency as that of the
grid-side voltage.

(ii) The inverter system should be robust for uncertainties. This requirement is
crucial especially for the PV inverters, because the randomness of solar energy may
cause more uncertainty situations.

(iii) The harmonic components of the output inverter current should stay below
a certain rate. Harmonics such as the 11, 13 and 17 and 19th…, can directly be
eliminated from the LCL filter, but lower-order harmonics, like the 5 and 7th, cannot
be fully eliminated by filters. In this research, we mainly consider the harmonics
from the grid side. The disturbance δ(t) in (6) can be expressed as

δ(t) =
[
UdN (t)
UqN (t)

]
=

[
Ud1N+Ud6cN cos(6ωt)+Ud6sN sin(6ωt)

Uq6cN cos(6ωt)+Uq6sN sin(6ωt)

]
, (11)

whereUd1n represents the grid fundamental voltage [13, 23]. By performing theDQZ
transformation, the 5th- and 7th-order harmonics on the a-b-c axis can be expressed
as a summation of sinusoid signals in the 6th order. From the control perspective,
the elimination of the high-order harmonics is equivalent to rejecting the grid-side
disturbance δ(t).

(iv) The inverter output power shouldmeet some requirements. The inverter power
expressions are

P = 2

3
(IgdUdN + IgqUqN ) = 2

3
IgdUd1N (12)

Q = 2

3
(IgqUdN + IgdUqN ) = 2

3
IgqUd1N , (13)

where P is the active power andQ is the reactive power. For this research, we assume
that the inverter system does not generate reactive power, i.e., I∗

gq = 0. In practice, we
can choose other I∗

gq(t) values to stabilize the output voltage, if needed. The reference
signal is chosen to be

I∗
gd (t) = 2P∗(t)

3Ud1N
, I∗

gq = 0, (14)

where P∗ is from MPPT module.
The first requirement (i) can be achieved by obtaining the frequency and phase

of the system from the phase lock loop (PLL) module. The results of studies of the
adaptive PLL module have been recently reported [17–21]. As for the controller
developed in this paper, requirements (ii)–(iv) are major considerations. To meet the
above inverter requirements, we propose the control objectives described below.

Control Objectives

From the above discussion, we can see that building a model reference adaptive
controller is important for achieving efficient control of the PV inverter system given
the presence of system uncertainties (characterized by the unknown parameters in
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(A,B,Bd ,C)) and unknowndisturbances (characterized by δ(t) in (11)with unknown
magnitudes). Thus, we propose an adaptive controller design for the inverter system
(6) to meet the following control objectives:

(a) All closed-loop signals are bounded.

(b) The inverter output y(t) = [Igd Igq]T achieves asymptotic tracking of the
reference signal ym(t), where

ym(t) = [I∗
gd (t)I

∗
gq(t)] (15)

with I∗
gd (t) = 2P∗(t)

3Ud1N
and I∗

gq = 0 from the inverter requirement.

(c) The inverter systemoperates normally under the effects of grid-side voltage
distortions.

The physical meaning of the stated control objectives is that the adaptive con-
troller should work at P∗ under the uncertainties caused by component aging and the
randomness of the solar energy, and it should eliminate the effect of high order har-
monic disturbances. Moreover, the proposed controller will make the inverter system
stable. With the control objectives stated, a model reference adaptive controller with
disturbance rejection ability is to be developed to achieve these control objectives.

3 Adaptive Control of PV Inverter Systems

This section first provides some necessary design conditions and their verification,
then derives the nominal control design with all parameters known. Finally, the
adaptive control design is presented.

3.1 Verification of Control Design Conditions

To begin the adaptive control design, we need to verify that the system (6) meets
some basic design conditions.

Basic Design Conditions for MRAC

The multi-input multi-output (MIMO) system for the MRAC design is given by

ẋ = Ax + Bu, y = Cx, (16)

where A ∈ Rn×n, B ∈ Rn×M and C ∈ RM×n. The objective of MRAC is to have the
output signal y(t) track the given reference signal ym(t), from the model reference
system:
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ym(t) = Wm(s)[r](t), (17)

where r(t) is a chosen reference input signal, and Wm(s) is an M × M stable trans-
fer matrix. As a notation, Wm(s)[r](t) � L −1[Wm(s)r(s)]. Wm(s) is chosen to be
Wm(s) = ξ−1

m (s), where ξm(s) is the left interactor matrix of G(s) = C(sI − A)−1B.
The left interactor matrix ξm(s) is defined in [11].

To meet the control objective, we need to assume the following

Design condition 1 All zeros of G(s) = C(sI − A)−1B are stable, and the system
(16) is stabilizable and detectable.

Design condition 2 G(s) is strictly proper with full rank and has a known modified
interactor matrix ξm(s) such that Kp = lims→∞ ξm(s)G(s) is finite and nonsingular.

Design condition 3 There exists a known matrix Sp ∈ RM×M such that Γp =
KT
p S

−1
p = Γ T

p > 0.
Design conditions 1 and 2 are needed to match the plant with the stable ref-

erence model Wm(s). Note that stabilizable and detectable are weaker conditions
compared to controllable and observable. They indicate that the non-controllable or
non-observable states are stable. Design condition 3 is used for the adaptive param-
eter update law. To verify Design condition 2, the following lemma is introduced.

Lemma 1 If the gain matrix

Ks =
⎡
⎢⎣

C1Aρ1−1B
...

CMAρM −1B

⎤
⎥⎦ ∈ RM×M , (18)

is nonsingular for some ρi > 0, i = 1, 2, . . . ,M, then G(s) has a diagonal interac-
tor matrix ξm(s) = diag{d1(s), d2(s), . . . , dM (s)}, where di(s) = sρi + a∗

iρi−1s
ρi−1 +

· · · + a∗
i1s + a∗

i0, i = 1, 2, . . . ,M, are any stable monic polynomials.

In this case, ρi, i = 1, 2, . . . ,M are the control relative degrees, and Kp = Ks is the
high frequency gain matrix associated with ξm(s).

Design Condition Verification

Controllability and observability For the PV inverter system, from the definition of
(A,B,C) in (8)–(10), by using Matlab we can verify that the controllability matrix S6
and observability matrix L6

S6 = [
B AB A2B . . . A5B

]
, (19)

L6 = [
CT (CA)T (CA2)T . . . (CA5)T

]T
, (20)

both have rank 6. This means that (A,B,C) for the three phase PV inverter system is
controllable and observable, signifying that (A,B,C) is stabilizable and detectable.
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System zeros It is hard to obtain a generic solution to prove that all system zeros
are stable due to the high-order matrices in this inverter system. As a result, a set
of system parameters was chosen for the inverter system (A,B,C) in Table1 from
Sect. 4. By applying this set of parameters to the system, we can verify that for this
system the zeros are (−5.56 + j0.0031) × 105, (−5.56 − j0.0031) × 105, and they
are indeed stable. Thus, the system satisfies design condition 1.
High-frequency gain matrixWe can verify that for the inverter system (A,B,C) which
is stated in Sect. 2, it follows that

CB =
[
0 0
0 0

]
, (21)

CAB =
⎡
⎣

√
3∗UPV (Rc+Rg)

3Lf Lg
0

0
√
3∗UPV (Rc+Rg)

3Lf Lg

⎤
⎦ = Kp. (22)

Because all the system parameters are nonzero, CAB is positive definite. Thus the
inverter systems has relative degrees ρi = 2, i = 1, 2, and Kp = CAB is a diagonal
matrix. Together with Lemma 2, we can verify that design condition 2 is satisfied,
and G(s) has a diagonal interactor matrix ξm(s) = diag{d1(s), d2(s)}, where di(s) =
s2 + a∗

i1s + a∗
i0 are stable monic polynomials. Also, because the high frequency gain

matrix is positive and diagonal, one can choose Sp = Γ1 such that Γ1 = Γ T
1 > 0 and

satisfy design condition 3.
For our control problem, the state space equation with presence of disturbance is

ẋ = Ax + Bu + Bdδ, y = Cx, (23)

where A ∈ R6×6, B,Bd ∈ R6×2 and C ∈ R2×6. In this case, the disturbance relative
degrees are defined as υi, i = 1, 2, such that CiAυi−1Bd �= 0, i = 1, 2. With the
definition of Bd for the inverter system given in (9), the disturbance relative degrees
for the inverter system are υi = 1, i = 1, 2. For the reference output given in (17),
we can define the reference input

r(t) = ξm(s)[ym](t), (24)

to be used for the control design.

3.2 Nominal Control Design

In this subsection, the nominal model reference control design is presented based
on knowledge of the system parameters. This forms the basis for establishing the
structure and parametrization of the adaptive controller to be developed in the next
subsection for the case of unknown parameters.
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Nominal Controller The nominal state feedback model reference controller struc-
ture is

u(t) = K∗
1 x(t) + K∗

2 r(t) + K∗
3 (t), (25)

where K∗
1 ∈ R2×6 and K∗

2 ∈ R2×2 are used for output tracking and K∗
3 (t) ∈ R2 is used

for eliminating the effect of the disturbance δ(t) in (6). For the inverter system, we
can establish the following theorem.

Theorem 1 For the multi-input multi-output inverter system (6) with disturbance
(11), there exist a state feedback control law (25) to achieve output tracking:
limt→∞(y(t) − ym(t)) = 0, where ym(t) = Wm(s)[r](t) is defined in (17), and asymp-
totic disturbance rejection of the disturbance is achieved.

Proof With the system Eq. (6), which is restated here

ẋ(t) = Ax(t) + Bu(t) + Bdδ(t), yi(t) = Cix(t), (26)

for y(t) = [y1(t), y2(t)]T , i = 1, 2, we can obtain the second-order derivative of yi(t)
as

y(2)
i (t) = CiA

2x(t) + CiABu(t) + CiABdδ(t) + CiBd δ̇(t), (27)

in which u(t) appears. For Kp defined in (22), we have Kpi = CiAρi−1B, i = 1, 2.
We can choose the following control law

u(t) = K−1
P v(t), v(t) = [

v1(t) v2(t)
]T

, (28)

to make (27) become

y(2)(t) = CiA
2x(t) + vi(t) + CiABdδ(t) + CiBd δ̇(t). (29)

Then, we can choose the feedback laws as

vi(t) = − CA2x(t) − a∗
i1ẏi − a∗

i0y(t) + ri(t) (30)

− CiABdδ(t) − CiBd δ̇(t) (31)

to make (29) become

y(2)
i (t) + a∗

i1ẏi + a∗
i0y(t) = ri(t) ⇒ yi(s) = 1

di(s)
ri(s), (32)

Then, we have

y(s) = diag

{
1

d1(s)
,

1

d2(s)

}
= Wm(s)r(s), (33)
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with Wm(s) = ξ−1
m (s). Similarly, signal v(t) can be expressed as v(t) = K0x(t) +

r(t) + Kdδ(t) + Kd1δ̇(t), where

K0 = [kT01, kT02]T , kT0i = −CiA
2 − a∗

i1CiA − a∗
i0Ci (34)

Kd = [kTd1, kTd2]T , kdi = −CiABd (35)

Kd1 = [kTd11, kTd12]T , kd1i = −CiBd . (36)

From the definition of u(t) in (28), we have

u(t) = K−1
p (K0x(t) + r(t) + Kdδ(t) + Kd1δ̇(t)) (37)

= K∗
1 x(t) + K∗

2 r(t) + K∗
3 (t), (38)

where,

K∗
1 = K−1

p K0, K∗
2 = K−1

p , (39)

K∗
3 = K−1

p (Kdδ(t) + Kd1δ̇(t)). (40)

Note that for the inverter system, the disturbance relative degree is lower than the
system relative degree. Thus, the knowledge of δ̇(t) is needed. By observing (11),
we can find that the disturbance is the summation of a series of sinusoidal signals.
As a result, δ̇(t) can be easily obtained by taking derivatives of sinusoidal signals.

Applying u(t) in (38) to the system (6), we have,

y(s) = Wm(s)r(s) ⇒ y(t) = Wm(s)[r](t). (41)

From (41) and design condition 2, we have established that the controller (37) can
ensure that the output y(t) and the states x(t) are bounded, and y(t) tracks ym(t)
asymptotically with the presence of disturbance. ∇
Matching Properties for K∗

1 , K
∗
2 , K

∗
3 (t) From (25), (26), (41), it can be verified that

there exist K∗
1 ∈ R2×6, K∗

2 ∈ R2×2 and a nonsingular matrix function K∗
3 (t) ∈ R2×3

satisfying the matching properties

C(sI − A − BK∗T
1 )−1BK∗T

2 = Wm(s) (42)

Wm(s)K∗−1
2 K∗

3 (s) + C(sI − A − BK∗T
1 )−1Bdd(s) = 0. (43)

Parameterization of K∗
3 (t) We need to construct parameterization for K∗

3 (t) for the
adaptive control design. We can parameterize K∗

3 (t) in to the following form

K∗
3 (t) = K−1

p (Kdδ(t) + Kd1δ̇(t)) (44)

= K−1
p (KdΦ

∗f (t) + Kd1Φ̄
∗f (t)) = K∗

3f f (t), (45)

K∗
3f = K−1

p (KdΦ
∗ + Kd1Φ̄

∗), (46)
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where Kd and Kd1 are control parameters from (35) and (36), Φ∗ and Φ̄∗ are the
parametrization matrices for δ(t) and δ̇(t), respectively; a detailed parameterization
process can be found in [18].

In summary, we have the following proposition.

Proposition 1 For the disturbance signal δ(t) in (11) being the summation of sinu-
soidal signals, the disturbance related control parameter K∗

3 (t) = K−1
p (Kdδ(t) +

Kd1δ̇(t)) can be parameterized to the form K∗
3f f (t), where f (t) contains all the fun-

damental sinusoidal signals.

Next, the adaptive control scheme is derived when system parameters are unknown.

3.3 Adaptive Control Design

With the nominal controller obtained, this subsection presents the adaptive version
of the model reference controller.
Controller Structure Similar to the nominal controller structure (25), the adaptive
controller structure is written as

u(t) = K1(t)x(t) + K2(t)r(t) + K3f f (t), (47)

where K1 ∈ R2×6, K2 ∈ R2×2 and K3f ∈ R2×3 are the estimates of K∗
1 , K

∗
2 and K∗

3f ,
respectively.
Tracking Error The closed-loop system with the adaptive controller is given by
applying the adaptive controller to the plant (6):

ẋ(t) = (A + BK∗T
1 )x(t) + BK∗

2 r(t) + BK∗
3 (t) + Bdδ(t)

+ B(KT
1 − K∗T

1 )x(t) + B(K2 − K∗
2 )r(t) + B[K3(t) − K∗

3 (t)] (48)

y(t) = Cx(t). (49)

Based on the reference signal definition in (17), the parameter matching proper-
ties (42)–(43), and this closed-loop system, we can obtain the output tracking error
equation as follows:

e(t) = y(t) − ym(t) (50)

= Wm(s)K∗−1
2 [Θ̃Tω](t) + Ce(A+BK∗T

1 )tx(t), (51)

where

Θ∗T = [K∗
1 ,K∗

2 ,K∗
3f ] ∈ R2×11 (52)

ω(t) = [xT (t), rT (t), f T (t)]T ∈ R11 (53)

ΘT (t) = [K1(t),K2(t),K3f (t)] ∈ R2×11 (54)
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Θ̃(t) = Θ(t) − Θ∗. (55)

Due to design condition 1, term Ce(A+BK∗T
1 )tx(t) is an exponential decay term. As a

result, we can write the output tracking error as

e(t) = Wm(s)K∗−1
2 [Θ̃Tω](t),Wm(s) = ξ−1

m (s). (56)

Estimation Error To derive the adaptive parameter update laws for the controller
parameter Θ(t), further definition of the estimation error is needed. First we define
a stable filter h(s) = 1

f (s) with f (s) being a stable polynomial f (s) = s2 + f1s + f0 of
degree 2. The estimation error is defined as

ε(t) = ξm(s)h(s)[e](t) + Ψ (t)ξ(t), (57)

where Ψ (t) estimates the high-frequency gain matrix Ψ ∗ = Kp defined in design
condition 2, ξm(s) is the diagonal interactor matrix, ξ(t) and ζ(t) are defined as

ξ(t) = ΘT (t)ζ(t) − h(s)[u](t) (58)

ζ(t) = h(s)[ω](t). (59)

Applying (56) to (57), we have

ε(t) = Ψ ∗Θ̃(t)ζ(t) + Ψ̃ (t)ξ(t), Ψ̃ (t) = Ψ (t) − Ψ ∗, (60)

to be the parametrized estimation error expression.
Adaptive Laws With the estimation error defined in (60), the adaptive parameter
update law is chosen to be

Θ̇T (t) = −Γ1ε(t)ζ T (t)

m2(t)
(61)

Ψ̇ (t) = −Γ2ε(t)ξT (t)

m2(t)
, (62)

whereΓ1 = Γ T
1 > 0,Γ2 = Γ T

2 > 0 are design parameters,m2(t) = 1 + ζ T (t)ζ(t) +
ξT (t)ξ(t).
Stability Analysis With the above adaptive parameter update laws, we can present
the following lemma

Lemma 2 The adaptive laws (61), and (62) guarantee that

(i) Θ(t) ∈ L∞, Ψ (t) ∈ L∞, ε(t)
m(t) ∈ L2 ∩ L∞;

(ii) Θ̇(t) ∈ L∞ ∩ L2, Ψ̇ (t) ∈ L∞ ∩ L2.
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Proof Choose the positive definite function

V = 1

2

(
tr[KpΘ̃

TΓ −1
1 Θ̃] + tr[Ψ̃ TΓ −1

2 Ψ̃ ]), (63)

where tr(A) means the trace of A. Recalling that Kp = kpI , kp > 0 is diagonal and
positive definite, with the adaptive laws (61), (62), the time derivative of V can be
derived as follows:

V̇ = −εT (t)ε(t)

m2(t)
≤ 0. (64)

Thus, we can conclude that Θ(t) ∈ L∞, Ψ (t) ∈ L∞, ε(t)
m(t) ∈ L2 ∩ L∞, Θ̇(t) ∈ L∞ ∩

L2, Ψ̇ (t) ∈ L∞ ∩ L2. ∇
With Lemma 2, we can estabilish the following theorem:

Theorem 2 For the plant (6) with uncertain parameters and the reference model
(17), the adaptive controller (47) with the adaptive parameter update laws (61)–(62)
guarantees uniform boundedness for all closed loop signals and asymptotic tracking
with respect to the reference output signal.

The proof of this theorem is based on multivariable model reference adaptive control
theory [11], and its main ideas can be found in [26, 27].

Remark 1 Note that the algorithm in this work has used state feedback to realize a
portion of the state components (i.e., the outputs of the system) to perfectly track
their desired reference signals generated from the reference model, where we have
assumed that the state information is obtainable. In comparison to an output feedback
tracking control scheme, the advantage of such a state feedback control scheme is that
it will result in a simpler adaptive control structure with fewer parameters to estimate
than that of output feedback control, where the number of calculations required can
thus be significantly reduced when it is implemented in practical systems.

With Theorem 2, the adaptive controller design presented in this chapter achieves
its objectives, that is the asymptotic output tracking and rejection of a disturbance
signal, with the presence of system uncertainties.

4 Simulation Study

This section first introduces the PV inverter system for simulation study, then some
simulation results are given to verify that our adaptive control design meets the
desired control objective.

Simulation System

The three-phase grid-connected PV inverter system is represented by the following
equation:
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Table 1 Simulation study parameters [13, 28]

Parameter Unit Value

Inductor Lf (mH) 0.9

Capacitor C (μF) 30

Inductor Lg (mH) 0.54

Resistance Rf (mΩ) 0.05

Resistance Rg (mΩ) 0.03

Resistance Rc (mΩ) 0.05

Line-to-line grid voltage Ua,b,c (V) 380

Grid frequency ω (rad/s) 314.15

Input voltage UPV (V) 750–820

Control parameter Γ1, Γ2 0.1 I

ẋ(t) = Ax(t) + Bu(t) + Bdδ(t), y(t) = Cx(t), (65)

where the signals x(t), u(t), δ(t), y(t) and the matrices A,B,Bd and C are defined in
(7)–(10). The nominal values of the components in system matrices (A,B,C) and
Bd can be found in Table1, where we can obtain the PV inverter system parameter
matrices as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−88.89 314.16 33.33 0 −1111.11 0
−314.16 −88.89 0 33.33 0 −1111.11
111.11 0 −55.56 314.16 1851.85 0

0 111.11 −314.16 −55.56 0 1851.85
33333.33 0 −33333.33 0 0 314.16

0 33333.33 0 −33333.33 −314.16 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(66)

B =
[
5.13 × 105 0 0 0 0 0

0 5.13 × 105 0 0 0 0

]
, (67)

Bd =
[
0 0 −1.85 × 103 0 0 0
0 0 0 −1.85 × 103 0 0

]
, C =

[
0 0 1 0 0 0
0 0 0 1 0 0

]
. (68)

Simulations are conducted on this linear model to verify the adaptive control scheme
performance.

Simulation Results

Four different scenarios were simulated. We have chosen the reference model to
be r(t) = [17a0, 0]T , a0 = 1 and ym(0) = [0, 0]T (for case 1, 2 and 3), and the initial
error to be e(0) = [−3, 1]. Control parameters K1(t),K2(t),K3(t) were obtained
from the adaptive parameter update laws.
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(a) Three-phase output current. (b) Igd , Igq and their tracking error.

Fig. 4 System response for Case 1, recovery from initial error

Case 1: Choose δ = [310, 0]T . Case 1 shows the inverter system works in a stan-
dard grid (δ(t) = [310, 0]T ) with unknown system uncertainties (i.e., A,B,C,Bd

unknown). This case tests the adaptive controller under system uncertainties. From
Fig. 4 we can see that the system output meets the desired performance.

Case 2: Case 2 shows the inverter works in a polluted grid (i.e., there exist some
unknown high order harmonics from the grid side). This will test the disturbance
rejection ability of the adaptive controller. The polluted grid is represented by

δ(t) =
[
δ1(t)
δ2(t)

]
=

[
310 + 15.5 cos(6ωt) + 7.75 cos(12ωt)

15.5 cos(6ωt) + 7.75 cos(12ωt)

]
. (69)

Figure5 shows the simulation results. The grid-side Total Harmonic Distortion
(THD) is greater than 5% and the output current THD is around 1.2%. Thus, we
can conclude that the inverter output distortion can remain at a sufficiently low level
even when connected to a polluted grid.

Case3:Choose δ = [310, 0]T . Case 3 is a comparisonbetween the adaptive controller
and the nominal controller under the scenario where a parameter in the inverter
system is going through sudden change. We consider UPV to change from 800V to
750V at t = 1. Figure6 shows the simulation results, from which we can see that as
parameter changes apply, the adaptive controller can handle the changes while the
nominal controller becomes unstable immediately.

Case 4: Choose δ = [310, 0]T . Case 4 shows the inverter works in the standard grid
with the reference signal containing sinusoidal components (simulating the variation
of sunlight). This case tests the adaptive controller’s ability to track a time-varying sig-
nal. For this purpose, we selected the reference input to be r(t) = [17 + 2sin(5t), 0]
and simulated the change of sunlight intensity. Simulation results are shown in Fig. 7.
We can see that the output current Igd performs a periodic trajectory (which asymp-
totically tracks the periodicMPPT output), indicating that the output power is always
at the maximum power point as the reference signal changes. As shown in Fig. 7a,
the magnitude of the output three-phase current is slightly increasing. Because the
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(a) Three-phase output current. (b) Igd , Igq and their tracking error.

Fig. 5 System response for Case 2, steady-state grid voltage distortion

(a) Adaptive controller performance. (b) Nominal controller performance.

Fig. 6 Adaptive and nominal response for Case 3, sudden change in UPV

(a) Three-phase output current. (b) Igd , Igq and their tracking error.

Fig. 7 System response for Case 4, variation in sunlight

change in sunlight intensity is slow with respect to the grid frequency, the magnitude
change in Fig. 7a is also slow.

The simulation results indicate that the adaptive controller we designed can make
the grid-connected PV inverter system work normally under system uncertainties
and grid side harmonics disturbance, and the asymptotic tracking is achieved. This
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indicates that the PV inverter system can continuously work at the maximum power
point P*.

5 Conclusions and Future Topics

This chapter has described the development of some technical foundations for apply-
ing adaptive control techniques to three-phase grid-connected PV inverter systems,
including system modeling, design condition verification, adaptive controller devel-
opment, control system analysis, and simulation validation. It shows that adaptive
control techniques are suitable for dealing with the parameter uncertainties of PV
inverter systems and have advantages in assuring desired system performance in the
presence of large uncertainties.

Based on this work, further research using adaptive control techniques for renew-
able energy-based power generation systems can be carried out as listed below

Adaptive Control for Distributed PV System Distributed solar power generation
systems are often subjected to load variations, weather uncertainties (variations of
sunlight intensity), and uncertain faults such as actuator failures and component dam-
age. By using effective adaptive fault detection and fault-tolerant control techniques,
one can design controllers capable of recovering the desired distributed PV inverter
system with parameter fault uncertainties.

Adaptive Frequency Control For the study presented in this chapter, we considered
the grid fundamental frequency to be fixed. For more general cases when the grid
side frequency may vary, further study for phase tracking should be considered.

Extension to Other Renewable Power Systems Many other types of renewable
energy sources systems share some of the solar energy system characteristics of
system uncertainty. The developed adaptive control technique for PV systems can be
extended to other renewable energy based power generation systems such as wind
power and marine power systems.
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Application of Sliding-Mode Control
for Maximum Power Point Tracking
of PV Systems

M. R. Mojallizadeh and M. A. Badamchizadeh

Abstract Sliding-mode controllers are widely utilized for increasing the output
power of photovoltaic sources. These sliding-mode controllers are primarily based
on one-loop or two-loop schemes. The two-loop scheme is composed of two loops,
i.e., searching and tracking loops. A maximum power point searching unit is utilized
in the searching loop, and a tracking controller is utilized in the other loop to extract
the maximum photovoltaic power. Compared to this scheme, the one-loop scheme
can extract the maximum photovoltaic power without any searching algorithm. In
this study, dynamic equations of a typical photovoltaic power source are derived
using the state-space averaging method. Afterwards, one-loop and two-loop sliding-
mode control schemes are used for extracting the maximum power. Stability of both
schemes is guaranteed using Lyapunov theory. Conditions of the robust stability are
derived analytically for both schemes. A deterministic cuckoo search algorithm is
used for maximum power point searching in the two-loop scheme. Performances of
the schemes are evaluated by some experiments and numerical simulations. Results
are compared in uniform and partially shaded conditions.

Nomenclature

IP Current of the PV array
VP Nominal PV voltage
ΔVP Uncertainty of PV voltage
Tp Temperature
Tref Reference temperature
Γ Irradiance level
Γm Maximum irradiance level
Ns No. of series cells
Np No. of parallel cells
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q Electron charge
A Ideality coefficient
ir Saturation current at Tref
Irs Saturation current
Iph Light generated current
K0 Boltzmann’s constant
rp Equivalent resistance
Isc Short circuit current
Ego Semiconductor band-gap energy
C Nominal capacitance
L Nominal inductance
R Nominal impedance of the load
ΔC Uncertainty of the capacitance
ΔL Uncertainty of the inductance
ΔR Uncertainty of the impedance
VO Output voltage
W1 and W2 Lumped uncertainties
s Sliding surface
u Control signal
ueq Equivalent control
un Curbing control
η Control gain of the one-loop scheme
c Control gain of the two-loop scheme
VMPP Optimal PV voltage
IMPP Optimal PV current
PMPP Maximum power
T Dwell-time of irradiance levels

1 Introduction

Maximum power point (MPP) tracking units should be utilized in photovoltaic (PV)
sources to increase their efficiency. Figure1 shows that DC converters are usually
utilized between the load and PV cells for MPP tracking. However, a tracking con-
troller is required to control this converter. In this case, many MPP tracking con-

Fig. 1 A typical
photovoltaic power source PV array DC converter Electrical load

Controller
Signal
Power
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PV array DC converter Electrical load

MPP 
Tracking

Controller

PV array DC converter Electrical load

MPP 
Tracking

ControllerSignal
Power

(One-loop scheme)

(Two-loop scheme)
MPP

Searching MPP

Fig. 2 One-loop and two-loop control schemes

trollers have been introduced, e.g., PID controller [1, 2], passivity-based control [3,
4], input-output linearization [5], feedback linearization [6] and sliding-mode con-
trol (SMC) [7–16]. Among these controllers, SMC is more popular due to its global
stability and robustness. However, the primary problem of the SMC is its chattering
problem. The discontinuous nature of the control law usually leads to the chattering
problem. Chattering deteriorates the performance of the control systems [17].

SMC is a type of variable structure controller [17]. Each SMC is composed of
a switching surface and a control law. One-loop and two-loop SMCs are shown in
Fig. 2. In the one-loop scheme, the MPP tracking controller does not require MPP.
On the other hand, the two-loop scheme requires an additional algorithm for MPP
searching. These schemes are analyzed in Sects. 3 and 4, respectively.

The one-loop SMC was introduced in [7]. In this scheme, the switching surface
is selected as dP/dI [7] or dP/dV [18], where P, I and V are power, current and
voltage, respectively. By converging the switching surface to zero, the maximum
power will be extracted. The number of required voltage sensors for this scheme is
decreased in [8]. The one-loop control scheme can also be used for grid-connected
PV systems [15]. Robust version of one-loop SMC is proposed in [12].

In two-loop scheme, the first and second loops are used for MPP searching and
MPP tracking, respectively. The interaction between the loops must be considered
in the designing procedure, i.e., the tracking loop should be faster than the searching
loop. In this context, a terminal SMCwas introduced in [10], which ensures the finite
time stability. Thus, it can be shown that the tracking loop is always faster than the
searching loop.

In order to calculate the MPP in the searching loop, many algorithms have been
proposed in the literature [19]. Perturbation and observation (P&O) [19] is a well-
known algorithm. This algorithm changes the current/voltage of PV cells and calcu-
lates the MPP by measuring the resulting power. It has a straightforward implemen-
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tation. However, its performance is affected by the size of perturbations. Incremental
conductance (IC) is another common MPP searching algorithm [20]. In this algo-
rithm, the MPP is calculated using the sign of dP/dV . The key problem of the
aforementioned methods is that they cannot be used in partially shaded conditions.
Deterministic cuckoo search (CS) algorithm has been recently developed in [21].
By comparing the performance of this algorithm, it is shown that it presents better
responses than conventional methods during partially shaded conditions [21].

The dynamic equations of a PV source are derived in Sect. 2. To provide a fair
comparison, typical one-loop and two-loop control schemes are designed in Sects. 3
and 4, respectively. The characteristics of these schemes have been compared using
numerical simulations and experiments in Sects. 5 and 6. Results are presented in
Sect. 7.

2 Equations of the PV Source

Figure3 shows a typical PV source. The system has a PV panel and a converter which
are modeled in Sects. 2.1 and 2.2.

2.1 Equations of the PV Array

The following equation describes the characteristic of the PV array [22]:

IP =
⎛
⎜⎝Iph − Irs

⎛
⎜⎝−1 + e

qVP

TpNsK0A

⎞
⎟⎠

⎞
⎟⎠Np (1)

where IP and VP are current and voltage, respectively. Iph is the light generated
current, ideality coefficient is denoted by A,K0 denotes the Boltzmann’s constant, Irs
denotes current of the saturation, Np and Ns indicate no. of parallel and series cells,
respectively, and Tp denotes the temperature. Irs and Iph can be described by Eqs. (2)
and (3) [22].

IPh ID C R

PV array

LIP

+
VP
-

+
VO
-

Boost converter

u PWM

Load

Fig. 3 Photovoltaic source
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Γ=200w/m2 Γ=400w/m2 Γ=600w/m2 Γ=800w/m2 Γ=1000w/m2

Fig. 4 The power-current characteristic

Irs = ir(Tp/Tref )
3e

qEgo

K0A

[
1/Tref −1/Tp

]
(2)

Iph = Γ
(
Isc + (Tp − Tref )Kl

)
/1000 (3)

where ir denotes the saturation current at Tref , Kl(A/K) denotes the temperature
effect. Γ denotes the irradiance. A series resistance rp is typically considered for
modeling the total Ohmic loss. Figure4 shows the characteristic of a typical PV
panel.

2.2 Equations of the Converter

The converter converges the array to its MPP. Using averaging method [23], the
equations of the PV source is derived as follows [24]:

⎧⎪⎨
⎪⎩
İP = − (1−u)

ΔL+LVO + VP + ΔVP

ΔL + L

V̇O = (1−u)
ΔC+C IP − VO

(C + ΔC)(ΔR + R)

(4)

where C, L and R are nominal capacitance, inductance and load, respectively. u
denotes the PWM control signal, VO and VP are output and input voltages of the
converter. ΔR, ΔL, ΔC, and ΔVP are uncertainties of R, L, C and VP , respectively.
Equation (4) can be rewritten as

⎧⎪⎨
⎪⎩
İP = −1 − u

L
VO + VP

L
+ W1

L
V̇O = 1 − u

C
IP − VO

CR
+ W2

C

(5)
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where W1 and W2 are the lumped uncertainties. W1 and W2 are calculated in Eq. (6).
From Eqs. (5) and (6), it can be seen that the real model of a PV system is uncertain.
Note that these uncertainties are not considered in many control design procedures.
This usually leads to a lack of robustness.

⎧⎪⎪⎨
⎪⎪⎩

W1 = L

(
−VP

L
− 1 − u

L + ΔL
VO + VP + ΔVP

L + ΔL
+ 1 − u

L
VO

)

W2 = C

(
VO

RC
− IP(1 − u)

C
− VO

(ΔR + R)(C + ΔC)
+ IP(1 − u)

ΔC + C

) (6)

3 One-Loop Sliding-Mode Control System

Each SMC has a switching surface and a control law. Based on Fig. 4, the switching
surface is considered as follow to converge the PV array to its MPP.

∂PP

∂IP
= ∂RPI2P

∂IP
= IP

(
2RP + ∂RP

∂IP
IP

)
= 0 (7)

where PP = IPVP and RP = VP/IP . Since IP �= 0, the switching surface is

s � 2RP + IP
∂RP

∂IP
(8)

The control signal is proposed as

u = ueq + un (9)

where un is the curbing control, and ueq denotes the equivalent control. un drives the
PV panel to the MPP. By setting W1 = 0, ueq is determined as follows [12]:

ṡ = (∂s/∂IP)İP = 0 → (−(1 − ueq)VO + VP)/L = 0 → ueq = 1 − VP/VO (10)

Moreover, un is selected as Eq. (11) [12]:

{
un = k · s + ·sgn(s)η
η = η0(| s | +δ)

(11)

where δ, k, and η0 are some positive constants and sgn is the sign function. Equa-
tion (11) shows η depends on the switching surface (s). Therefore, the chattering will
be suppressed as s → 0.

From Eq. (8), ∂s/∂IP can be calculated as follows:
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∂s

∂IP
= 3

∂RP

∂IP
+ IP

∂2RP

∂IP2
(12)

Considering RP = VP/IP , the following equations are achieved:

∂RP

∂IP
= ∂

∂IP

(
VP

IP

)
= 1

IP

∂VP

∂IP
− VP

I2P
∂2RP

∂IP2
= 2

VP

IP3
+ 1

IP

∂2VP

∂IP2
− 2

IP2
∂VP

∂IP

(13)

From Eq. (1), VP can be written as Eq. (14).

VP = Ns · A · K0 · T
q

ln

(
NP · Iph + NP · Irs − IP

NP · Irs
)

(14)

Derivatives of the VP are as follows:

∂VP

∂IP
= −Ns · A · K0 · T

q

NP · Irs
NP · Iph + NP · Irs − IP

< 0 (15)

∂VP
2

∂2IP
= −Ns · A · K0 · T

q

NP · Irs
(NP · Iph + NP · Irs − IP)2

< 0 (16)

Based on Eqs. (13)–(16), Eq. (12) is rewritten:

∂s

∂IP
= 1

IP

∂VP

∂IP
+ ∂2VP

∂IP2
− VP

IP2
< 0 (17)

From Eqs. (5), (9) and (10):

İP = −1 − ueq − un
L

VO + VP
L

+ W1 = −1 − 1 + VP/VO − un
L

VO + VP
L

+ W1

L
=

(VO/L)un + W1

L
(18)

Considering V = (1/2)s2 as the Lyapunov function and Eqs. (10), (11), (18), V̇ is

V̇ = sṡ = s
∂s

∂IP

(
VO
L

un + W1

L

)
= s

∂s

∂IP

(
VO
L

(η0(| s | +δ) · sgn(s) + k · s) + W1

L

)
=

∂s

∂IP

(
VO
L

η0s
2 + VO

L
η0δ | s | +VO

L
ks2 + s

W1

L

)
≤

∂s

∂IP

(
VO
L

η0s
2 + VO

L
η0δ | s | +VO

L
ks2− | s || W1

L
|
)

=
∂s

∂IP

(
VO
L

(η0s
2 + ks2) + VO

L
η0δ | s | − | s || W1

L
|
)

< 0, s �= 0

(19)
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Thus, the control system is stable for:

η0δ >
| W1 |
VO

, k > 0 (20)

Remark 1 To decrease the chattering amplitude, the parameters are designed such
that η0 >> δ.

Remark 2 At t = 0, VO = 0 may be achieved. However, with any arbitrary control
signal, VP < VO will be held and Eq. (20) can be satisfied with reasonable amounts
of η0δ.

4 Two-Loop Sliding-Mode Control Scheme

A typical two-loop SMC is as follows:

u = ueq + un

ueq = 1 − VP

VO
un = −csgn(s)

(21)

where c > 0. Sliding surface is defined as follows:

s = IP − IMPP (22)

where IMPP is current of the MPP. Considering V = 1

2
s2 as the Lyapunov function,

V̇ is:
V̇ = sṡ (23)

Using Eq. (5),

V̇ = ( − (1 − u)VO + VP + W1
)1
L
s (24)

Based on Eqs. (21) and (24):

V̇ = 1

L

( − c|s|VO + W1s
)

V̇ <
1

L

( − c|s|VO + |W1||s|
)

V̇ <
1

L
|s|( − cVO + |W1|

)
(25)

Equation (25) shows that the two-loop control system is stable for:



Application of Sliding-Mode Control for Maximum Power Point … 33

c >
|W1|
VO

(26)

Remark 3 At the initial time (t = 0), VO may be equal to zero. In this case, the
Eq. (26) does not hold. However, since a boost converter is used, VO > VP is always
achieved for any arbitrary condition. Therefore, Eq. (26) holds after a transient time.

Remark 4 To suppress the chattering amplitude, a continues functions, i.e., the sat-
uration function (sat) is usually replaced with the sign function in Eq. (21).

Start

Track I1, I2, I3 using the controller and measure P1,P2, P3

Pa=max(P1, P2, P3), Ia=current of Pa
Pb=mid(P1, P2, P3), Ib=current of Pb
Pc=min(P1, P2, P3), Ic=current of Pc

Ia is located at the leftmost
or rightmost position?

Calculate new current
commands using eq. (27)

Limit Ia, Ib and Ic
within [0.01Isc , 0.99Isc]

Criterion satisfied?

Calculate new current
commands using eq. (28)

I1=Ia_new
I2=Ib_new
I3=Ic_new

No

Yes

No

Yes

Fig. 5 Flowchart of the deterministic CS algorithm [21]
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Remark 5 From Eqs. (21) and (22), it can be seen that the two-loop MPP scheme
requires an extra MPP searching for calculating the IMPP . It should be noted that the
one-loop scheme does not need MPP reference or MPP searching loop.

Deterministic cuckoo search (CS) algorithm has been used for MPP searching.
Flowchart of this algorithm is shown in Fig. 5. This algorithm is as follows [21]:

1. Ia = 0.05Isc, Ib = 0.5Isc and Ic = 0.95Isc, where Ia, Ib and Ic are currents of the
PV panel at three different instants.

2. Sort the selected currents such that P(Ia) ≥ P(Ib) ≥ P(Ic), where P is the power.
3. If Ia is located at the rightmost or leftmost positions,modify the currents as follows

Eq. (27).
Ia,new = Ia

Ib,new = Ib + ε(Ia − Ib)
Ic,new = Ia + ε(Ia − Ib,new).

(27)

Else, update the currents using Eq. (28)

Ia,new = Ia
Ib,new = Ib + ε(Ia − Ib)
Ic,new = Ic + ε(Ia − Ic)

(28)

where ε > 0 is the multiplication constant.
4. If the following objective is met, stop the search.

max{|Ia − Ib|, |Ia − Ic|} < 0.01A. (29)

5 Numerical Simulations

Responses of the one-loop and two-loop control schemes are evaluated in a number
of simulations. Tables1 and 2 show the coefficients of the PV panel and related
MPPs. Parameters of the converter are designed for continuous conduction mode
(CCM) and shown in Table3 [25]. Thus, currents of the inductors will never reach
zero.

Table 1 Parameters of the
PV array

K0 = 1.3805 × 10−23 J/K Kl = 12 × 10−4 A/K

Np = 1 Ns = 92

ir = 5.98 × 10−8 A Isc = 3.5A

A = 1.13 q = 1.6 × 10−19 C

Ego = 1.21ev rp = 3�

Tref = 298K
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Table 2 MPPs of the PV
array in uniform insolation
conditions

Γ (w/m2) VMPP (V) IMPP (A) PMPP = VPIP (W)

200 30.71 0.631 19.38

400 30.8 1.26 38.81

600 30.38 1.87 56.8

800 29.72 2.46 73.11

1000 28.84 3.04 87.67

Table 3 Parameters of the
boost converter

Load R 100�

Inductors L 1mH

Capacitor C 100µF

Parameters of the one-loop controller are designed based on Eq. (20) as k = 0.01,
η0 = 1 and δ = 0.01.Moreover, the only parameter of the two-loop scheme c = 0.01
is designed based on Eq. (26).

The performances of the controllers are evaluated in uniform insolation and par-
tially shaded conditions in Sects. 5.1 and 5.2, respectively.

5.1 Uniform Insolation Condition

Responses of the controllers are examined under the irradiance profile of the inter-
national standard EN50530:2010 which is shown in Fig. 6. This profile evaluates the
performances in five different irradiance levels with uniform insolations. In this case,
the maximum irradiance level and dwell-time of the irradiance are Γm = 1000w/m2

and T = 10 s, respectively.
Responses of the one-loop and two-loop schemes under test profileEN50530:2010

are shown in Figs. 7 and 8, respectively. Based on the numerical simulations, the
tracking controller of the two-loop scheme can track the reference MPP of the MPP
searching loop within 20ms. In order to ensure the perfect tracking and avoid the

Fig. 6 Insolation profile of
the standard EN50530:2010

0.4Γm

0.6Γm

0.8Γm

Γm

T T T T T T T T T
9T

Γ (w/m2)

Time (s)
0.2Γm
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Fig. 7 Response of the one-loop scheme under test profile EN50530:2010

Fig. 8 Response of the two-loop scheme under test profile EN50530:2010

transient fluctuations, the tracking loop should be faster than the searching loop.
Therefore, the period of the searching loop is selected as 30ms which is higher
than the settling time of the tracking loop. Figure8 shows that the two-loop scheme
converges to the MPP in 400ms with zero steady-state error.
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From Fig. 7, it can be seen that the one-loop scheme eliminates the disturbances
of the irradiance change, completely. In this case, the one-loop scheme tracks its
MPP in 80ms. Therefore, compared to the two-loop scheme, it converges to its MPP
400ms/80ms = 5 times faster.

Conversion efficiencies (

∫ 90s
0 IPVPdt∫ 90s

0 IMPPVMPPdt
) of the one-loop and two-loop

schemes are 99.99 and 98.96%, respectively. Thus, the one-loop scheme presents
better efficiency under uniform insolation conditions. Note that power loss of the
converter is not considered in the definition of the efficiency.

5.2 Partially Shaded Condition

In order to examine the controllers more precisely, the controllers are tested under
a partially shaded condition. Figure9 shows the power-current curve under this par-
tially shaded condition. In this case, the power-current curve presents a local maxi-
mumwhich is not theMPP. It can be seen that the current of theMPP is (IMPP = 2.9A)
which corresponds to PMPP = 42.1W.

Figures10, 11 and 12 show the output current, voltage, and power in the one-loop
scheme, respectively. Since the one-loop scheme is mainly designed for uniform
insolation conditions, it is trapped in local maxima (IP = 0.83A). It can be seen
from Figs. 10 and 11 that the voltage and current do not converge to the MPP. As
a result, based on Fig. 12, the output power is 27.56W in the steady-states. In this

case, the steady-state efficiency (
IPVP

IMPPVMPP
) of the one-loop scheme is 65%.

Figures13, 14 and 15 show the output current, voltage and power in the two-loop
scheme, respectively. Note that the two-loop scheme tracks the MPP within 270ms.
Thus, the two-loop scheme converges to theMPP even in partially shaded conditions.
Figure15 shows that the MPP is achieved. Therefore, the efficiency is 99.99% for
the two-loop scheme. As mentioned before, the power loss of the converter is not
taken into account.

Fig. 9 Power-current curve under a partially shaded insolation condition
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Fig. 10 One-loop control scheme under the partially shaded insolation: output current

Fig. 11 One-loop control scheme under the partially shaded insolation: output voltage

Fig. 12 One-loop control scheme under the partially shaded insolation: output power
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Fig. 13 Two-loop control scheme under the partially shaded insolation: output current

Fig. 14 Two-loop control scheme under the partially shaded insolation: output voltage

Fig. 15 Two-loop control scheme under the partially shaded insolation: output power
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Fig. 16 Test bench
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Supply

Oscilloscope

Controller

Boost Converter

Programmable Load

6 Experimental Results

Digital implementations of the schemes have been written in C language.
ATmega2560 microcontroller is used to implement the control schemes as shown
in Fig. 16. The arduino software package is utilized for compiling the programs.
TLP250 gate driver is used to drive a IRLZ44n MOSFET switch. The PV current is
measured using a current module. The PV array is emulated by a emulator [26].

Conditions of the experiments are similar to the partially shaded case of the
numerical simulations (Sect. 5.2). Waveforms are recorded in the partially shaded
profile (Fig. 9). Figures17 and 18 show the current for the one-loop and two-loop
schemes, respectively. Similar to the simulations, the one-loop scheme is trapped
in the local maximum (IP = 0.83A), while the two-loop scheme tracks the MPP
(IMPP = 2.9A) perfectly. In this case, the steady-state efficiencies of the one-loop
and two-loop schemes are 65 and 99.9%, respectively. Results of the simulations and
experiment are summarized in Table4. It can be seen that the one-loop scheme can
increase the efficiency by 1% in uniform insolation conditions. However, it presents
poor performances in partially shaded conditions.
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Fig. 17 Experimental result of the one-loop scheme under the partially shaded condition: IP (1V/A)

Fig. 18 Experimental result of the two-loop scheme under the partially shaded condition: IP (1V/A)

Table 4 Summarized results

Parameters One-loop scheme (%) Two-loop scheme (%)

Average efficiency under test
profile EN50530:2010a

99.9 98.9

Steady-state efficiency in the
partially shaded conditiona

65 99.9

aNote that power loss of the converter is not taken into account
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7 Conclusion

Typical one-loop and two-loop sliding-mode control schemes are designed for a
photovoltaic power source. Robust stability of the schemes is guaranteed using Lya-
punov stability theory. Compared to the one-loop controller, the two-loop scheme
requires an additional maximum power point searching algorithm. Thus, determin-
istic cuckoo search algorithm has been utilized for maximum power point searching.
Characteristics of the control schemes are evaluated in a number of simulations and
experiments. Results of the control schemes are compared in uniform and partially
shaded conditions. It is shown that the one-loop scheme presents faster responses
than the two-loop scheme. As a result, it can increase the efficiency in uniform inso-
lation condition. However, since the one-loop scheme is mainly designed for uniform
insolation conditions, it will be trapped in local maxima. On the other hand, two-
loop scheme converges to the MPP and shows better responses in partially shaded
conditions compared to the one-loops scheme.
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Predictive Control of Four-Leg
Converters for Photovoltaic Energy
Systems

Venkata Yaramasu, Marco Rivera, Apparao Dekka and Jose Rodriguez

Abstract Photovoltaic energy systems are one of the most widely adopted dis-
tributed generation facilities. This book chapter presents predictive based current
and voltage control strategies for four-leg converters employed in grid-connected
and standalone photovoltaic energy systems, respectively. The proposed approach
employs the novel stationary frame sampled-data models of the four-leg converters
with inductive (L) and inductive-capacitive (LC) filters on the output side to predict
the control variables such as output currents and load voltages. These predictions are
performed using all the possible switching states of four-leg converters. The objec-
tive of minimizing the error between reference and predicted variables (load currents
or voltages) is fulfilled through a cost function in the predictive control schemes. In
addition, the voltage balancing of DC-bus capacitors is considered with the four-
leg neutral-point clamped converters. The optimal switching states corresponding
to the minimal cost function value are chosen and directly applied to the converter.
The predictive control strategies fulfil the control requirements such as load cur-
rent/voltage control, DC-bus voltage balancing, and neutral-leg switching frequency
minimization. The simulation and experimental studies conducted using unbalanced
and nonlinear loads to validate the proposed predictive control strategies.
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1 Introduction

Photovoltaic energy systems (PVES) are growing rapidly and worldwide installed
capacity reached about 403 GW by the end of 2017 [1]. In terms of cumulative
installed capacity, the PVES are the third most important renewable energy sources
after hydro andwind energy. In 2017, the PVES continued their global expansion and
reached almost 100 GW installed capacity. The cumulative installed capacity repre-
sents 500 billion kWh electricity produced, which is equivalent to 2% of electricity
demand worldwide. In some countries, PVES have high contribution to the national
electricity demand, for example, 13% in Honduras, 7.5% in Germany, and 7.3% in
Greece. The cost of PVES has dropped by 59% over the last decade as the industry
has escalated manufacturing and incrementally improved the technology with new
materials and power electronics technologies. For PVES, power electronic convert-
ers and their digital control greatly contributes to minimize the energy cost, increase
the energy yield from the sun and power density, improvement in reliability, smaller
footprint, lower weight, and enhanced power quality and grid codes compliance [2].

The PVES are mainly used for grid-connected operations with few off-grid (stan-
dalone) applications. The grid-connected PVES performs active filter function to
feed grid with sinusoidal currents, while supplying local loads [3]. The standalone
distribution generation (DG) systems are economical and efficient in supplying elec-
trical energy to the rural area customers where grid expansion is expensive and
complicated [4]. In the standalone operation, local loads are supplied by PVES with
constant voltage and frequency. The voltage source converters with output inductive
(L) and inductive-capacitive (LC) filters are used for grid-connected and standalone
operations, respectively. The output current is regulated in grid-connection operation,
whereas load voltage is controlled in standalone application.

In three-phase four-wire applications, the three-leg converters offer simple struc-
ture for grid connected and standalone operations,where the load neutral is connected
to the mid-point of the DC-bus capacitors. Due to the unbalanced and nonlinear
loads, the load neutral current flows through the DC-bus capacitors and damages
them if they are not overrated. Moreover, a voltage surge caused by the step-change
in loading conditions can also destroy the DC-bus capacitors. On the other hand,
the four-leg converters are an attractive alternative to three-leg converters and pro-
vide transformerless connection to the load neutral. In four-leg converters, the load
neutral is connected to the mid-point of fourth-leg instead of DC-bus capacitors
mid-point. Furthermore, the four-leg converter improves the DC-bus utilization by
15% and minimizes the DC-bus capacitance value and its voltage ripple compared
with the three-leg converters [5]. The four-leg two-level and three-level neutral-point
clamped (NPC) converters can handle the neutral currents effectively in low-power
and high-power applications, respectively [6, 7]. For high-power applications, the
NPC converter offers several advantages such as high quality output voltages and
currents, higher voltage handling capability, and smaller common-mode voltages
compared with the two-level converters [8].
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The classical output current and voltage control techniques for four-leg converters
use PI regulators to minimize steady-state tracking errors and a pulse width modula-
tor to generate the switching signals. Particularly, the three-dimensional space vector
modulation (3D-SVM) scheme is widely used to generate the switching signals for
the four-leg two-level and NPC converters due to higher DC-bus utilization and less
total harmonic distortion compared with the carrier-based pulse width modulation
(C-PWM) scheme [9–11]. However, due to complex modeling and higher computa-
tional burden, the 3D-SVM is less attractive to control the four-leg converters [12].
Recently, the predictive control has emerged as a promising and power tool to con-
trol the four-leg converters. The predictive control eliminates the PI regulators and
pulse width modulator, and thus improves the dynamic response and reduces the
complexity of the control scheme [13]. Furthermore, it is possible to achieve multi-
level control objectives using a cost function in the predictive control [14]. However,
the predictive control operates with the variable switching frequency, similar to the
hysteresis control.

Considering the discrete nature of the power converters, the predictive current con-
trol (PCC) and predictive voltage control (PVC) schemes for four-leg two-level and
NPC converters are studied in this chapter. To simplify the implementation of PCC
and PVC schemes in the digital control platforms, the number of predictions is opti-
mized. Furthermore, a novel mathematical model of the entire system is developed
in discrete-time domain for PCC and PVC schemes by incorporating the neutral-leg
inductor. These sampled-data models are defined in terms of converter switching
states and used to predict the future behavior of control variables (load currents or
voltages). In each sampling interval, the predicted variables are evaluated against
the reference variables with the help of a cost function. The reduction of switching
frequency constraint is also incorporated in the cost function to improve the reliabil-
ity of the fourth-leg (neutral-leg). The feasibility of the PCC and PVC schemes are
verified by simulation and experimental results during different operating conditions
such as unbalanced references and unbalanced/nonlinear loads.

This chapter is organized as follows:

• The continuous-time modeling of four-leg converters (two-level and NPC) with L
and LC filters on the output side is discussed in Sect. 2.

• The PCC scheme is analyzed for four-leg two-level and NPC converters in Sects. 3
and 4, respectively. The performance is validated through simulation and experi-
mental studies.

• The PVC scheme is studied for four-leg two-level and NPC converters in Sects. 5
and 6, respectively. The simulation and experimental results are presented to verify
the control schemes.

• Conclusions of this chapter are presented in Sect. 7.
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2 Modeling of Four-Leg Converters

To design the predictive control schemes for four-leg converters, the relationship
between converter input and output variables ismodeled in terms of converter switch-
ing states. This section deals with the system configurations, two-level and NPC con-
verter output voltage models, DC-bus capacitors voltage model of NPC converter,
and load models with L and LC filters.

2.1 Four-Leg Power Converter Topologies

The connection of four-leg two-level converter for grid-connected and standalone
operation are shown in Figs. 1 and 2, respectively. The boost converter performs
maximum power point tracking (MPPT) and the grid-connected two-level converter
controls the DC-bus voltage and grid reactive power [15]. The grid-connected two-
level converter supplies the unbalanced and nonlinear load currents and thereby
maintains sinusoidal grid currents [16]. The standalone two-level converter controls
the three-phase load voltages at their rated values [17], whereas the converter fourth-
leg controls the zero sequence voltage of the load [18].

The converter and load neutrals are denoted with n and o, respectively. The load
neutral o is connected to the mid-point n of the fourth-leg through a neutral inductor.
Ln and rn represent the neutral inductance and its internal resistance, respectively.
The ripple in the converter fourth-leg current is minimized by the neutral inductor.
ini, ino, and ing are converter, load, and grid neutral currents, respectively. The con-
verter voltages with respect to the fourth-leg mid-point n are represented by van,
vbn, and vcn. The load (output) voltages for standalone operation are represented by
vao, vbo, and vco. iai, ibi, and ici are the converter currents. iao, ibo, and ico are the
load (output) currents. iag , ibg , and icg are the grid currents. The filter inductance,
internal resistance of filter inductance, and filter capacitance are represented by Lf ,
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Fig. 1 Power circuit of a grid-connected four-leg two-level converter with arbitrary local loads
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Fig. 3 Power circuit of a grid-connected four-leg NPC converter with arbitrary local loads

rf , and Cf , respectively. The switching signals sa1, sb1, sc1, and sn1 form a total of
16 (24) switching state combinations. The switching signals sx1 and sx1 operate in
complementary manner for all x ∈ {a, b, c, n}. The increase in switching state com-
binations in comparison to the three-leg converters offers flexibility in control and
improvement in the converter output voltage and current quality.

The power circuit of a four-leg NPC converter for grid-connected and standalone
operation are shown in Figs. 3 and 4, respectively. Each leg of the converter is
realized by four active switches and two clamping diodes, whereas the DC-bus is
realized with two identical capacitors. In each leg, the mid-point (neutral-point) of
DC-bus capacitors and clamping diodes are tied together. The net DC-bus voltage
is equally distributed among the two DC-bus capacitors (i.e., vC1 = vC2 = vdc/2).
The neutral-point Z is assumed to be floating and it is not connected to the boost
converter. Each phase of four-leg converter has three switching states and a total
of 81 (34) switching combinations are available to control a four-leg converter.The
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Fig. 4 Power circuit of a standalone four-leg NPC converter with arbitrary loads

Table 1 Switching states for four-leg NPC converter ∀ x ∈ {a, b, c}
Switching Signals Output

Voltage
Input Currents DC-bus Current Coefficients

sx1 sx2 sx1 sx2 vxN iP iZ Kx1 Kx2

‘1’ ‘1’ ‘0’ ‘0’ vC1 + vC2 ix 0 −1 −1

‘0’ ‘1’ ‘1’ ‘0’ vC2 0 ix −1 0

‘0’ ‘0’ ‘1’ ‘1’ 0 0 0 0 0

switching states and their respective output voltages, DC-bus capacitors current, and
coefficients to estimate DC-bus capacitors current are summarized in Table 1 [19].

2.2 Four-Leg Two-Level Converter Model

With the help of semiconductor switches, the load terminal is connected to the positive
or negative DC-bus points (P or N ) to generate the positive or zero voltage levels at
the output, respectively. The four-leg two-level converter output voltage with respect
to the negative DC-bus (N ) is expressed as [20]:

⎡
⎢⎢⎣

vaN
vbN
vcN
vnN

⎤
⎥⎥⎦ = vdc

⎡
⎢⎢⎣
sa1
sb1
sc1
sn1

⎤
⎥⎥⎦ (1)

where vdc and vnN are DC-bus and load neutral voltages, respectively.
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The four-leg two-level converter AC-side voltages in terms of switching signals
and DC-bus voltage are given as follows:

⎡
⎣

van
vbn
vcn

⎤
⎦ = vdc

⎡
⎣
sa1 − sn1
sb1 − sn1
sc1 − sn1

⎤
⎦ . (2)

The stationary (αβγ ) reference frame uses less number of online calculations for
the predictive model in comparison to the natural (abc) reference frame. For this
reason, the four-leg two-level converter output voltages in (2) are transformed to the
αβγ -frame as follows: ⎡

⎣
vαn

vβn

vγ n

⎤
⎦ = vdc

⎡
⎣
sα1
sβ1
sγ 1

⎤
⎦ (3)

where sα1, sβ1, and sγ 1 represent the switching signals in αβγ -frame and they can
be defined offline.

The abc-frame to αβγ -frame transformation matrix is given as follows:

⎡
⎣
sα1
sβ1
sγ 1

⎤
⎦ = 2

3

⎡
⎣
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

⎤
⎦

⎡
⎣
sa1 − sn1
sb1 − sn1
sc1 − sn1

⎤
⎦ . (4)

2.3 Four-Leg NPC Converter Model

Depending on the switching signals, the converter terminals a, b, c, and n are con-
nected to the positive, neutral-point, or negative (P, Z , or N ) DC-bus. From Table1,
the four-leg NPC converter output voltage measured from N point is given in terms
of switching states and the DC-bus capacitors voltage [7],

⎡
⎢⎢⎣

vaN
vbN
vcN
vnN

⎤
⎥⎥⎦ = vC1

⎡
⎢⎢⎣
sa1
sb1
sc1
sn1

⎤
⎥⎥⎦ + vC2

⎡
⎢⎢⎣
sa2
sb2
sc2
sn2

⎤
⎥⎥⎦ . (5)

The above converter voltages are given with respect to the mid-point (n) of the
fourth-leg as, ⎡

⎣
van
vbn
vcn

⎤
⎦ = vC1

⎡
⎣
sa1 − sn1
sb1 − sn1
sc1 − sn1

⎤
⎦ + vC2

⎡
⎣
sa2 − sn2
sb2 − sn2
sc2 − sn2

⎤
⎦ . (6)

The converter output voltages are given in the αβγ -frame as follows:
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⎡
⎣

vαn

vβn

vγ n

⎤
⎦ = vC1

⎡
⎣
sα1
sβ1
sγ 1

⎤
⎦ + vC2

⎡
⎣
sα2
sβ2
sγ 2

⎤
⎦ (7)

where sα1, sβ1, sγ 1, sα2, sβ2, and sγ 2 represent the switching signals in the αβγ -frame.
Along with the load voltage and currents, the DC-bus capacitors voltage needs to

be controlled in a four-leg NPC converter. The DC-bus capacitors voltage are given
as follows [21]:

d

dt
vC1 = 1

C1
iC1

d

dt
vC2 = 1

C2
iC2

(8)

where iC1 and iC2 represent the current flowing through the DC-bus capacitors C1 and
C2, respectively.

The DC-bus capacitor currents are given in terms of converter output currents and
coefficients as,

iC1 = Ka1 ia + Kb1 ib + Kc1 ic
iC2 = Ka2 ia + Kb2 ib + Kc2 ic.

(9)

For a four-leg NPC with output L filter, ia, ib, and ic in the above expression are
replaced by iao, ibo, and ico, respectively, whereas for a four-leg NPC with output LC
filter, ia, ib, and ic in the above expression are replaced by iai, ibi, and ici, respectively.
The coefficients for the DC-bus capacitors current are defined in Table1. The calcu-
lation of these coefficients is not necessarily required to be done in online; therefore
the computational burden of overall control scheme becomes low.

2.4 Load Model with Output L filter

The converter’s control design and its performance is independent of the grid voltages
[15]. Hence, a simple R load is considered by eliminating grid connection in the
present study. Figure5 shows the equivalent model of four-leg converter with an
output L filter and R load. Due to the elimination of the grid, the converter output
currents in Fig. 1 are equal to the load currents, that is, iai = iao, ibi = ibo, ici = ico,
and ini = ino.

By applying Kirchhoff’s voltage law to Fig. 5, the converter AC-side voltages are
obtained as follows:

⎡
⎣

van
vbn
vcn

⎤
⎦ = rf

⎡
⎣
iao
ibo
ico

⎤
⎦ + Lf

d

dt

⎡
⎣
iao
ibo
ico

⎤
⎦ +

⎡
⎣
Rao 0 0
0 Rbo 0
0 0 Rco

⎤
⎦

⎡
⎣
iao
ibo
ico

⎤
⎦

− rnino − Ln
d

dt
ino.

(10)
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Fig. 5 Representation of an L filter and load connected to the four-leg converter

The loadneutral current is the summationof three-phase load currents as expressed
below:

ino = −(iao + ibo + ico). (11)

By combining (10) and (11), the converter’s output voltages are obtained as,

⎡
⎣

van
vbn
vcn

⎤
⎦ = Req

⎡
⎣
iao
ibo
ico

⎤
⎦ + Leq

d

dt

⎡
⎣
iao
ibo
ico

⎤
⎦ (12)

where,

Req =
⎡
⎣
rf + rn + Rao rn rn

rn rf + rn + Rbo rn
rn rn rf + rn + Rco

⎤
⎦ (13)

and,

Leq =
⎡
⎣
Lf + Ln Ln Ln

Ln Lf + Ln Ln
Ln Ln Lf + Ln

⎤
⎦ . (14)

The dynamic model of load currents is obtained from (12) as shown below:

d

dt

⎡
⎣
iao
ibo
ico

⎤
⎦ = A

⎡
⎣
iao
ibo
ico

⎤
⎦ + B

⎡
⎣

van
vbn
vcn

⎤
⎦ . (15)



54 V. Yaramasu et al.

where,
A = −L−1

eq Req

=

⎡
⎢⎢⎣

− Lf (rf +rn)+2 Ln rf
L2f +3 Ln Lf

Ln rf −Lf rn
L2f +3 Ln Lf

Ln rf −Lf rn
L2f +3 Ln Lf

Ln rf −Lf rn
L2f +3 Ln Lf

− Lf (rf +rn)+2 Ln rf
L2f +3 Ln Lf

Ln rf −Lf rn
L2f +3 Ln Lf

Ln rf −Lf rn
L2f +3 Ln Lf

Ln rf −Lf rn
L2f +3 Ln Lf

− Lf (rf +rn)+2 Ln rf
L2f +3 Ln Lf

⎤
⎥⎥⎦

(16)

and,

B = L−1
eq =

⎡
⎢⎢⎣

Lf +2 Ln
L2f +3 Ln Lf

−Ln
L2f +3 Ln Lf

−Ln
L2f +3 Ln Lf

−Ln
L2f +3 Ln Lf

Lf +2 Ln
L2f +3 Ln Lf

−Ln
L2f +3 Ln Lf

−Ln
L2f +3 Ln Lf

−Ln
L2f +3 Ln Lf

Lf +2 Ln
L2f +3 Ln Lf

⎤
⎥⎥⎦ . (17)

The state-space model in (15) is converted to the stationary-frame as follows:

d

dt

⎡
⎣
iαo
iβo
iγ o

⎤
⎦ = A

⎡
⎣
iαo
iβo
iγ o

⎤
⎦ + B

⎡
⎣

vαn

vβn

vγ n

⎤
⎦ . (18)

2.5 Load Model with Output LC filter

The equivalent model of the four-leg converter with an output LC filter is shown in
Fig. 6. With the help of Kirchhoff’s voltage law, the converter’s AC-side voltages
are given as follows:

⎡
⎣

van
vbn
vcn

⎤
⎦ = rf

⎡
⎣
iai
ibi
ici

⎤
⎦ + Lf

d

dt

⎡
⎣
iai
ibi
ici

⎤
⎦ +

⎡
⎣

vao
vbo
vco

⎤
⎦ − rnini − Ln

d

dt
ini. (19)

The converter neutral current is equal to the sum of three-phase converter currents,
that is,

ini = −(iai + ibi + ici). (20)

Measurement of the converter’s neutral current is unnecessary as it adds cost and
complexity to the system. By combining (19) and (20), the converter’s neutral current
term is eliminated from the converter AC-side voltages, that is,

⎡
⎣

van
vbn
vcn

⎤
⎦ = Req

⎡
⎣
iai
ibi
ici

⎤
⎦ + Leq

d

dt

⎡
⎣
iai
ibi
ici

⎤
⎦ +

⎡
⎣

vao
vbo
vco

⎤
⎦ (21)

where,
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Fig. 6 Representation of an LC filter and load connected to the four-leg converter

Req =
⎡
⎣
rf + rn rn rn

rn rf + rn rn
rn rn rf + rn

⎤
⎦ (22)

and,

Leq =
⎡
⎣
Lf + Ln Ln Ln

Ln Lf + Ln Ln
Ln Ln Lf + Ln

⎤
⎦ . (23)

The dynamic model of the converter’s currents is obtained from (21) as,

d

dt

⎡
⎣
iai
ibi
ici

⎤
⎦ = −L−1

eq

⎡
⎣

vao
vbo
vco

⎤
⎦ − L−1

eq Req

⎡
⎣
iai
ibi
ici

⎤
⎦ + L−1

eq

⎡
⎣

van
vbn
vcn

⎤
⎦ . (24)

From Fig. 6, the relationship between the converter and the load currents is
obtained as, ⎡

⎣
iai
ibi
ici

⎤
⎦ =

⎡
⎣
iao
ibo
ico

⎤
⎦ + Cf

d

dt

⎡
⎣

vao
vbo
vco

⎤
⎦ . (25)

The dynamic model of output voltages is deducted from the above model as
follows:

d

dt

⎡
⎣

vao
vbo
vco

⎤
⎦ = 1

Cf

⎡
⎣
iai
ibi
ici

⎤
⎦ − 1

Cf

⎡
⎣
iao
ibo
ico

⎤
⎦ . (26)

The system models in continuous-time demoain are given in (24) and (26) and
they are represented in state-space form as,
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d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

vao
vbo
vco
iai
ibi
ici

⎤
⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎣

vao
vbo
vco
iai
ibi
ici

⎤
⎥⎥⎥⎥⎥⎥⎦

+ B

⎡
⎢⎢⎢⎢⎢⎢⎣

van
vbn
vcn
iao
ibo
ico

⎤
⎥⎥⎥⎥⎥⎥⎦

(27)

where,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
Cf

0 0

0 0 0 0 1
Cf

0

0 0 0 0 0 1
Cf

a1 a2 a2 a3 a4 a4
a2 a1 a2 a4 a3 a4
a2 a2 a1 a4 a4 a3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(28)

with,

a1 = − Lf + 2 Ln
L2f + 3Ln Lf

a2 = Ln
L2f + 3Ln Lf

a3 = −Lf (rf + rn) + 2 Ln rf
L2f + 3Ln Lf

a4 = Ln rf − Lf rn
L2f + 3Ln Lf

(29)

and,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 − 1
Cf

0 0

0 0 0 0 − 1
Cf

0

0 0 0 0 0 − 1
Cf

Lf +2 Ln
L2f +3 Ln Lf

−Ln
L2f +3 Ln Lf

−Ln
L2f +3 Ln Lf

0 0 0
−Ln

L2f +3 Ln Lf

Lf +2 Ln
L2f +3 Ln Lf

−Ln
L2f +3 Ln Lf

0 0 0
−Ln

L2f +3 Ln Lf
−Ln

L2f +3 Ln Lf

Lf +2 Ln
L2f +3 Ln Lf

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

The state-space model in (27) is converted to the stationary-frame as follows:

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

vαo

vβo

vγ o

iαi
iβi
iγ i

⎤
⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎣

vαo

vβo

vγ o

iαi
iβi
iγ i

⎤
⎥⎥⎥⎥⎥⎥⎦

+ B

⎡
⎢⎢⎢⎢⎢⎢⎣

vαn

vβn

vγ n

iαo
iβo
iγ o

⎤
⎥⎥⎥⎥⎥⎥⎦

. (31)
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3 Predictive Current Control of Four-Leg Two-Level
Converter

This section deals with the PCC scheme for a four-leg two-level converter with output
L filter. As mentioned earlier, the control scheme is not affected by the grid voltages.
To simplify the analysis, unbalanced R loads are considered here. To validate the
PCC scheme, simulation and experimental results are presented.

3.1 Control Scheme

Figure7 shows the structure of PCC scheme for a four-leg two-level converter. The
PCC scheme is simple and intuitive to understand. The measured DC-bus voltage
and load currents at present (kth) sampling instant are used in the prediction pro-
cess. In grid-connected systems, the reference currents are obtained from the DC-bus
voltage and the grid reactive power control loops [15]. The measured and reference
load currents are converted into stationary frame by using the transformation matrix
in (4). These variables at (k + 1) sampling instant are evaluated in the cost function
subsystem.To calculate the load current error accurately, the vector angle extrapo-
lation is used to extrapolate the reference currents to the (k + 1) sampling instant
[22]: ⎡

⎣
î∗αo(k + 1)
î∗βo(k + 1)
î∗γ o(k + 1)

⎤
⎦ = ej2π fs(k)Ts

⎡
⎣
i∗αo(k)
i∗βo(k)
i∗γ o(k)

⎤
⎦ (32)

where, fs is the grid/load frequency which is updated at each sampling interval.
The proposed PCC scheme requires a discrete-time model of load currents to

implement in the digital control platforms. The continuous-time state-space model
in (18) is represented in discrete-time with zero-order hold (ZOH) discretization for
one-sample-ahead prediction as,

⎡
⎣
ipαo(k + 1)
ipβo(k + 1)
ipγ o(k + 1)

⎤
⎦ = �

⎡
⎣
iαo(k)
iβo(k)
iγ o(k)

⎤
⎦ + �

⎡
⎣

v
p
αn(k)

v
p
βn(k)

v
p
γ n(k)

⎤
⎦ . (33)

where, the superscript p denotes the predicted variable.
The discrete-time parameters in (33) are calculated by,

� = eATs , � = A−1(� − I)B (34)

where Ts is the sampling time.
The load voltages are predicted in stationary frame with the help of 16 switching

state combinations and the DC-bus voltage (reproduced from (3)):



58 V. Yaramasu et al.

o

iao

ibo

ico

ino

rf , Lf

rf , Lf

rf , Lf

rn, Ln

vdc Cdc

P

N

Rao

Rbo

Rco

abcabc

αβγαβγ Calculation of
Reference Currents

Extrapolation of
Reference Currents

Eq. (32)

Cost Function
Minimization

Eq. (36)

Predictive
Model

Eq. (33)

iao(k), ibo(k), ico(k)

iαo(k)
iβo(k)
iγo(k)

ipαo(k + 1)
ipβo(k + 1)
ipγo(k + 1)

i∗ao(k)
i∗bo(k)
i∗co(k)

i∗αo(k)
i∗βo(k)
i∗γo(k)

i∗αo(k + 1)
i∗βo(k + 1)
i∗γo(k + 1)

Φ, Γ vdc(k)
sx1, x ∈ {a, b, c, n}

Four-Leg
Two-LevelConverter

PV

Fig. 7 Block diagram of the PCC scheme for four-leg two-level converter

⎡
⎣

v
p
αn(k)

v
p
βn(k)

v
p
γ n(k)

⎤
⎦ = vdc(k)

⎡
⎣
spα1(k)
spβ1(k)
spγ 1(k)

⎤
⎦ (35)

The load-neutral voltage vnN causes the fourth-leg to operate at a higher switching
frequency compared with rest of the phases. Considering all these issues, the cost
function is formulated to minimize the tracking error along with the neutral-leg’s
switching frequency, and is given as follows:

gi(k) = [
î∗αo(k + 1) − ipαo(k + 1)

]2 +
[
î∗βo(k + 1) − ipβo(k + 1)

]2

+ [
î∗γ o(k + 1) − ipγ o(k + 1)

]2 + λsw
[
spn1(k) − sopn1(k)

]2 (36)

where λsw is the weighting factor and sopn1(k) is the optimal gating signal at kth
sampling instant. The λsw value is heuristically selected according to the desired
switching frequency minimization.
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Fig. 8 Results for the PCC scheme of a four-leg two-level converter during a step-change in
unbalanced reference currents

The minimum gi value is accomplished by the optimization process. In each
sampling instant, the switching combination which gives the minimum gi value
out of 16 functional values is selected and applied to the converter during the next
sampling interval.

3.2 Results and Analysis

To validate the proposed PCC scheme, simulation and experimental studies are pre-
sented in Fig. 8a and b, respectively. The laboratory prototype is built using the
dSPACE DS1103 controller, Semikron IGBT modules and gate drivers, LEM volt-
age and current sensors, and Xantrex DC power supply. The simulation and exper-
imental parameters are as follows: vdc = 300V, Cdc = 1200µF, rf = rn = 0.07�,
Lf = Ln = 15mH, fs = 60Hz, and Ts = 20µs.

The results are presented with a step-change in unbalanced reference currents (i∗ao
from 0 to 12 A (peak) to 0 A, i∗bo from 0 to 8 A (peak) to 0 A, and i∗co from 0 to 4 A
(peak) to 0 A) and unbalanced loads (Rao = 12�, Rbo = 8�, Rco =6 �). This is the
typical scenario for three-phase four-wire systems, where each phase has different
load demand. Each phase current is controlled independently by the PCC scheme,
therefore the load currents follow their references with the least amount of steady-
state error. The average current tracking error (ei), average total harmonic distortion
(THD) of load currents (THDi), and average switching frequency (fsw) are noted
as 1.47%, 1.44%, and 11,000 Hz, respectively for simulation waveforms (Fig. 8a).
With the experimental results (Fig. 8b), ei, THDi, and fsw are noted as 3.12%, 3.23%,
and 9200 Hz, respectively. The actual currents track their references without any
overshoot, whereas the neutral current flows through the fourth-leg of the converter.
The control scheme compensates the variations in load parameter changes and the
actual currents continue to follow their references effectively.
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4 Predictive Current Control of Four-Leg NPC Converter

The PCC scheme for a four-leg NPC converter with an output L filter and unbalanced
R load is analyzed in this section through experimental results.

4.1 Control Scheme

The structure of PCC scheme for a four-leg NPC is shown in Fig. 9. The con-
trol objectives are reference tracking of load currents, voltage balancing of DC-bus
capacitors, and neutral-leg switching frequency reduction. The PCC scheme predict
the future values of the control variables by using the mathematical model of the
system, load currents at (kth) sampling instant, DC-bus capacitors voltage, and 81
possible switching states. The calculation of reference currents and its extrapolation
is similar to the PCC scheme discussed earlier with the four-leg two-level converter
in Sect. 3. The load configuration is the same for two-level and NPC converters,
therefore the two-level converter predictive model in (33) is used here for the NPC
converter control.

The converter voltages in (33) are obtained by the following model (reproduced
from (7)): ⎡

⎣
v
p
αn(k)

v
p
βn(k)

v
p
γ n(k)

⎤
⎦ = vC1(k)

⎡
⎣
spα1(k)
spβ1(k)
spγ 1(k)

⎤
⎦ + vC2(k)

⎡
⎣
spα2(k)
spβ2(k)
spγ 2(k)

⎤
⎦ (37)

The DC-bus capacitors voltage in discrete-time domain is calculated from (8) as
shown below:

vC1(k + 1) = vC1(k) + Ts
C1

ip
C1

(k)

vC2(k + 1) = vC2(k) + Ts
C2

ip
C2

(k).
(38)

The DC-bus capacitor currents are predicted by using the measured load currents
and coefficients in Table 1 (reproduced from (9)) as:

ip
C1

(k) = Ka1 iao(k) + Kb1 ibo(k) + Kc1 ico(k)

ip
C2

(k) = Ka2 iao(k) + Kb2 ibo(k) + Kc2 ico(k).
(39)

The cost function evaluates the predicted load currents and DC-bus capacitors
voltage for all possible switching states. Finally, the switching state whichminimizes
the cost function is selected and applied to the converter.

The defined cost function has three objectives: reduce the tracking error between
the reference and predicted load currents, voltage balancing of DC-bus capacitors,
and neutral-leg switching frequency minimization, which are expressed as follows:
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Fig. 9 Block diagram of the PCC scheme for a four-leg NPC converter

gi(k) = [
î∗αo(k + 1) − ipαo(k + 1)

]2 +
[
î∗βo(k + 1) − ipβo(k + 1)

]2

+ [
î∗γ o(k + 1) − ipγ o(k + 1)

]2 + λdc
[
vp
C1

(k + 1) − vp
C2

(k + 1)
]2

+ λsw
[
spn1(k) − sopn1(k)

]2 + λsw
[
spn2(k) − sopn2(k)

]2
(40)

where λdc is the weighting factor for balancing the DC-bus capacitors voltage. s
op
n1(k)

and sopn2(k) are the optimal gating signals at kth sampling instant.
Theweighting factorλdc defines the importance ofDC-bus capacitors voltage over

the load current control and helps in accomplishing the desired control performance.
The value of λdc is calculated as follows [14]:

λdc = IR
Vdc

(41)

where IR is the rated rms load current and Vdc is rated DC-bus voltage.
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reference currents to unbalanced reference currents

When λsw > 0, the neutral-leg switching is reduced, however the load current
tracking and neutral-point voltage errors are increased. In each sampling instant, the
switching state combination (among 81) corresponding to theminimumcost function
value is selected and applied to the four-leg NPC converter gating terminals.

4.2 Results and Analysis

To study the performance of the PCC scheme for a four-leg NPC converter, experi-
mental results are presented in Fig. 10 with the following parameters: vdc = 300V,
Cdc =4700µF, rf = rn = 0.045�, Lf = Ln = 10mH, fs = 60Hz, and Ts = 100µs.
The experimental set-up is built similar to the four-leg two-level converter prototype
discussed earlier.

The transient performance of the PCC scheme for a four-leg NPC converter is
analyzed by applying a step-change from balanced reference currents (i∗ao = i∗bo =
i∗co = 10A (rms)) to unbalanced reference currents (i∗ao = 12A (rms), i∗bo = 10A
(rms), i∗co = 8A (rms)). Balanced loads (Rao = Rbo = Rco = 12�) are considered in
this test. As previously mentioned in Sect. 3.2, this test represents a typical case for
a four-leg converter connected to the unbalanced grid. Due to the decoupled control
architecture, the actual and reference currents followeach otherwith a smaller steady-
state error as shown in Fig. 10a. During the step-change in reference currents, the load
currents exhibit fast dynamic response and no overshoots. These changes also effect
the load neutral current accordingly. As depicted in Fig. 10b, the DC-bus capacitors
voltage remain balanced despite the transient change in the reference currents. The
average current tracking error, average THD of load currents, and average switching
frequency are noted as 5%, 3.8%, and 2000 Hz, respectively. This PCC scheme is
observed to be robust and it can handle the load and DC-bus parameter variations as
well.
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5 Predictive Voltage Control of Four-Leg Two-Level
Converter

The PVC scheme for a four-leg two-level converter with an output LC filter and
unbalanced/nonlinear arbitrary loads is discussed with respect to digital implemen-
tation, and simulation and experimental results.

5.1 Control Scheme

The block diagram of the proposed PVC scheme for a four-leg two-level converter
with an output LC filter and arbitrary loads is shown in Fig. 11. The stationary-frame
reference voltages are extrapolated to (k + 1) sampling instant using the extrapola-
tion model in (32). The 16 switching states and the DC-bus voltage vdc(k) are used to
predict the converter output voltages in stationary frame, that is, vp

αn(k), v
p
βn(k), and

v
p
γ n(k) (refer to Eq. (35)). The converter output voltage predictions, along with the
measured load voltages, converter currents, and load currents are used to estimate
the future values of load voltages as shown below (reproduced from (31)):

⎡
⎢⎢⎢⎢⎢⎢⎣

v
p
αo(k + 1)

v
p
βo(k + 1)

v
p
γ o(k + 1)
ipαi(k + 1)
ipβi(k + 1)
ipγ i(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

= �

⎡
⎢⎢⎢⎢⎢⎢⎣

vαo(k)
vβo(k)
vγ o(k)
iαi(k)
iβi(k)
iγ i(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ �

⎡
⎢⎢⎢⎢⎢⎢⎣

v
p
αn(k)

v
p
βn(k)

v
p
γ n(k)
iαo(k)
iβo(k)
iγ o(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

(42)

Thebelowcost function is formulated to regulate the loadvoltages and tominimize
the neutral-leg switching frequency as,

gi(k) = [
v̂∗

αo(k + 1) − vp
αo(k + 1)

]2 +
[
v̂∗

βo(k + 1) − v
p
βo(k + 1)

]2

+ [
v̂∗

γ o(k + 1) − vp
γ o(k + 1)

]2 + λsw
[
spn1(k) − sopn1(k)

]2
.

(43)

The optimal switching state combination is chosen on the basis of minimal cost
function value and applied to the system during next sampling period.

5.2 Results and Analysis

To verify the PVC scheme, the simulation and experimental studies are con-
ducted with the following system parameters: vdc = 350V, Cdc = 2350µF, rf =
rn = 0.022�, Lf = Ln = 2.5mH, Cf = 60µF, fs = 60Hz, and Ts = 50µs.
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Fig. 11 Block diagram of PVC scheme for four-leg two-level converter

Figure12a, b shows the simulation and experimental performance of PVC scheme
with balanced reference voltages v∗

ao = v∗
bo = v∗

co = 120V (rms).A step change from
no load to unbalanced loads (Rao = 24�,Rbo = 12�,Rco = 8�) is applied as shown
in Fig. 12c, d, where a fast transient response without any overshot is observed. From
Fig. 12c, d, it is observed that the fourth-leg carries the neutral current due to the load
unbalance. This case study replicates the standard four-wire DG application, where
the consumers maintain different loads on each phase. The proposed PVC scheme
maintains the load voltages at the given reference value irrespective of the loading
condition. The average voltage tracking error, average THD of load voltages, and
average switching frequency are noted as 3.1%, 2.3%, and 3400 Hz, respectively for
simulation waveforms. With the experimental results, the average voltage tracking
error, average THD of load voltages, and average switching frequency are noted as
5.91%, 3.19%, and 4050 Hz, respectively.
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Fig. 12 Results for the PVC scheme of a four-leg two-level converter during a step-change from
no-load to unbalanced load

6 Predictive Voltage Control of Four-Leg NPC Converter

The PVC scheme for a four-leg NPC converter with an output LC filter and arbitrary
loads is analyzed in this section. The performance of the PVC scheme is validated
via experimental results.

6.1 Control Scheme

Figure 13 shows the PVC scheme for a four-leg NPC converter. The reference volt-
ages are defined and extrapolated similarly as in the PVC scheme of two-level con-
verter discussed in Sect. 5.1. The proposed approach uses mathematical model of
the converter and an LC filter in discrete-time domain to predict the future values of
load voltage and DC-bus capacitors voltage. The discrete-time model in (37) is used
to predict the future values of NPC converter output voltages v

p
αn(k), v

p
βn(k), and

v
p
γ n(k). The present sampling instant converter currents, load voltages, and load cur-
rents, predicted converter output voltages, and discrete-time model in (42) are used
to predict the future values of load voltages for all the switching state combinations.
The discrete-time model in (38) is used to predict the DC-bus capacitors voltage.

The DC-bus capacitors are predicted by using the measured converter currents
and coefficients in Table 1 (reproduced from (9)):
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ip
C1

(k) = Ka1 iai(k) + Kb1 ibi(k) + Kc1 ici(k)

ip
C2

(k) = Ka2 iai(k) + Kb2 ibi(k) + Kc2 ici(k).
(44)

The optimization process of cost function is carried out in each sampling interval
such that all the control objectives are met. A cost function that takes into account
the control objectives is defined as follows:

gi(k) = [
v̂∗

αo(k + 1) − vp
αo(k + 1)

]2 +
[
v̂∗

βo(k + 1) − v
p
βo(k + 1)

]2

+ [
v̂∗

γ o(k + 1) − vp
γ o(k + 1)

]2 + λdc
[
vp
C1

(k + 1) − vp
C2

(k + 1)
]2

+ λsw
[
spn1(k) − sopn1(k)

]2 + λsw
[
spn2(k) − sopn2(k)

]2
.

(45)

The first three terms in the above expression correspond to the tracking of load
voltages. To achieve this objective, the 81 load voltage predictions are compared
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with their references in stationary reference frame. The fourth term is corresponding
to the voltage balancing of DC-bus capacitors voltage. The fifth and sixth terms deal
with the reduction of fourth-leg switching frequency in the NPC converter. At the kth
instant, the algorithm applies the optimal switching state combination that minimizes
the cost function at the (k + 1) instant.

6.2 Results and Analysis

The performance of PVC scheme is verified through the experimental studies con-
ducted on a DS1103 based laboratory prototype. The parameters of the laboratory
prototype converter are as follows: vdc = 350V, Cdc = 4700µF, rf = rn = 0.022�,
Lf = Ln = 2.5mH, Cf = 60µF, fs = 60Hz, and Ts = 100µs. To compensate the
computational delay caused by the digital controller, the cost function is calculated
with the modified one-sample-ahead prediction [23].

In order to demonstrate the dynamic response of the PVC scheme, a transient
analysis has been performed using nonlinear loads and the results are presented in
Fig. 14. As depicted in Fig. 14a, the reference load voltages are defined as balanced
(v∗

ao = v∗
bo = v∗

co = 120V (rms)); therefore, load neutral voltage vno is observed to be
zero. A step change from no-load to nonlinear load is applied, and the load voltages
remain sinusoidal and without any significant transients due to the connection of
nonlinear load as shown in Fig. 14b. The nonlinear current flows through the load
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Fig. 14 Results for the PVC scheme of a four-leg NPC converter during a step-change from no-load
to nonlinear load
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during the positive fundamental cycle of the load voltage. The load neutral current
can be observed circulating through the fourth-leg. Fig. 14c demonstrates perfect
balancing of the DC-bus capacitors voltage, where the difference between capacitors
voltage is negligible.

7 Summary

This book chapter provides a comprehensive analysis on the predictive control strate-
gies for the four-leg two-level and NPC converters with output L and LC filters for
grid-connected and standalone photovoltaic energy systems. To implement the pre-
dictive control schemes, a detailed stationary frame system models including power
converters, output filters, and arbitrary loads are developed in terms of the converter
switching states. The PCC scheme effectively reduces the load current tracking error,
whereas the PVC scheme reduces the load voltage tracking error. Also, these schemes
have an ability to achieve secondary objectives such as DC-bus capacitors voltage
control in neutral-point clamped converter and neutral-leg switching frequency min-
imization. The control algorithm evaluates the cost function for all the possible
switching states, and a switching state which gives the minimum cost function value
is selected and applied to the converter. The PCC and PVC schemes ensure that the
load currents/voltages are tracked to their references with minimal error, and the
balancing of DC-bus capacitors during all the operating conditions. These control
schemes can compensate the variations in load and filter parameters, while the out-
put currents/voltages continue to track their references. This compensation has been
achieved without sacrificing the performance of the converter. The PI controllers and
modulation stage are eliminated in the control loop and as a result, a fast dynamic
response has been achieved for output currents and load voltages. The analysis and
results presented in this chapter demonstrate that predictive control is distinctly sim-
ple yet it is a promising tool to control four-leg converters in modern photovoltaic
energy systems with excellent performance indices.
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A Novel Maximum Power Point Tracking
Method for Photovoltaic Application
Using Secant Incremental Gradient
Based on Newton Raphson
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Almoataz Y. Abdelaziz

Abstract In this chapter, some commonmethods of maximum power point tracking
(MPPT) of the photovoltaic system such as perturb and observe, particle swarm opti-
mization and grey wolf optimizer are described to solve the MPPT problem. Also,
a novel method is proposed for MPPT of PV system titled secant incremental gra-
dient based on Newton Raphson (SIGBNR) method. SIGBNR uses the chord slope
passing through two points of the function instead of using the explicit derivative of
the function, which is equal to tangent line tilt of the function. In addition to high
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convergence speed, the proposed method requires less computation and also has a
higher accuracy in the number of repetitions when it solves MPPT problems. The
results arising from the proposed method are compared and analyzed with the other
methods to evaluate its performance for solving MPPT problem. The proficiency of
the methods is investigated in different scenarios of partial shading condition and
compared in view of various features especially efficiency and convergence velocity.
The results showed that the proposed method has better performance in achieving
to global maximum power point with more tracking efficiency and convergence
speed than the other methods. Also, superior capabilities of the proposed method are
demonstrated.

Nomenclature

AI Artificial intelligence
d Duty cycle
FL Fuzzy logic
GA Genetic algorithm
GMPP Global maximum power point
GWO Grey wolf optimizer
H&C Hill-climbing
IncCond Incremental conductance
LMPP Local maximum power point
MPPT Maximum power point tracking
OCV Open circuit voltage
P&O Perturb and observe
PSC Partial shading condition
PSO Particle swarm optimization
RCC Ripple correlation control
SCC Short circuit current
SIGBNR Secant incremental gradient based on Newton Raphson
URC Uniform radiation conditions
2S2P 2 parallel strings each with 3 PV cells
6S 6 series PV cells

1 Introduction

Photovoltaic (PV) energy is introduced as a clean and free energy source for residen-
tial and industrial applications. The PV cell is an essential part of the PV system. In
this system, solar radiation energy is converted into the electricity by PV effects. PV
cells often connect electrically to each other and are considered as a module. Today,
electricity generation is possible from small to large scales by PV power technology
[1, 2]. On the other hand, in addition to the availability of sunlight throughout the
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year, PV systems can be easily installed. However, PV systems have some problems
such as very low efficiency that need to be considered. Receiving the maximum
power point (MPP) from PV systems has a very important role due to increasing the
efficiency. This can be done by connecting a controller to the MPP due to regulating
thework cycle for the load. On the other hand, due to changing the output characteris-
tic of PV systems under various factors such as radiation and temperature variations,
changing the load size and partial shaded conditions (PSC), these systems work at
theMPP rarely [3, 4]. The effect of the radiation change on the current is greater than
the voltage so that reducing the amount of radiation reduces the current more than
the voltage and ultimately decreases the power. Also, temperature reduction affects
the voltage so that by increasing the temperature, the voltage is decreased more than
the current and this problem reduces the power. Therefore, in the operation of PV
cells, an algorithm that guarantees global MPP should be used when the operating
point changes.

Much work has been done to improve the performance of PV systems through the
development of new algorithms to access tomaximum power point tracking (MPPT).
For example, the perturbation and observation method (P&O) [5] and hill-climbing
method (H&C) [6] are widely used for MPPT .The basis of the H&C algorithm is
the same as the P&O method since it adjusts the PV voltage to follow the maximum
point of the voltage. The main disadvantage of P&O and H&Cmethods are that if the
work point of the system changes rapidly, the algorithmwill encounter tracking errors
and And not capable to accurately track the Maximum PV power. The incremental
conductance (IncCond) algorithm [7] that compares incremental and momentary
conductance of PV arrays can track the MPP of a PV system and deliver a high
PV energy to the load. The basis of the IncCond method is the zero-derivative of
the power per the voltage or the current in the MPP and is found by conducting a
momentary conductance of the MPP. The major disadvantage of IncCond is that it
requires some involved control circuits. Ripple correlation control (RCC) [8] with the
help of the converter due to controllingMPPT causes the ripple in the control strategy.
This method works very well in high sunlight, but tracking efficiency decreases in
some conditions such as the low radiation. By removing the load of the PV array, the
current and voltage in the MPP of the PV system can be determined by short circuit
current (SCC) [9] and open circuit voltage (OCV) methods [10]. Although, the VOC
and SCC methods have low cost and easy implementations, may be they cannot
capable to tracking the PV power point accurately. Therefore, these two categories
cannot be considered as the correct search forMPP due to the periodic removal of the
load. However, the implementation simplicity of these algorithms causes that they
can be used as parts of a new combination technique.

To solve the complex issues such as MPP, artificial intelligence (AI) methods are
used instead of traditional methods [11]. For this purpose, the weight coefficients in
the objective function must be proportional to the PV input and output. Nevertheless,
in order to achieve a suitable input and output pattern of the neural network, testing
of the array PV will be time consuming and requires a lot of information. One of the
advantages of using the artificial neural network is to show a comparatively correct
MPPT without needing to extensive data of PV parameters. The fuzzy logic (FL)



74 S. A. Nowdeh et al.

method has also been successfully used to track the maximum general power in PV
systems under PSC. Although the use of these methods has favorable outcomes, one
of their biggest drawbacks is having difficult and complex calculations [12]. In recent
years, several literature works have been done due to solving the MPPT of the PV
system and the impact of PSC has been evaluated. Due to having the low ability
of traditional algorithms to detect MPP, researchers developed other methods such
as accidental algorithms based on the artificial intelligence that are inspired by the
nature behavior and have ability to increase the efficiency of generated power by PV.
These methods are particle swarm optimization (PSO) [13] and genetic algorithm
(GA) [14]. PSO and GA optimization methods are easy to calculate and can be easily
executed on a low-price digital controller. Also, these methods are very successful
due to obtaining the global peak under PSC. Recently, a meta-heuristic algorithm,
inspired from the hunting behavior of the gray wolves, called the grey wolf optimizer
(GWO) has been developed [15] to solve the MPPT problem. Also, this method
requires less parameters than other the evolutionary methods and has few operators,
which is a clear feature when the design process is quick. The GWO method is used
to solve the MPPT problem under PSC and has a high convergence rate. There are
many literatureworks that discuss and compare the performance of each of theMPPT
methods. However, the reviews of these papers are not yet update and do not cover
all MPPT methods under uniform radiation conditions (URC) and PSC.

In this chapter, some common methods of MPPT problem such as P&O and intel-
ligent optimization methods like PSO and GWO are described. Also, a new method
is proposed for MPPT based on the secant incremental gradient based on Newton
Raphson (SIGBNR) method in the PV systems. Secant gradient method uses the
chord slope passing through two points of the function instead of using the explicit
derivative of the function,which is equal to tangent line tilt of the function. In addition
to high convergence speed of SGNR, the proposed method requires less computation
and also has a higher accuracy in the number of repetitions when it solves MPPT
problems. In this chapter, the results arising from the proposed method are compared
and analyzed with other methods to evaluate its performance for solvingMPPT prob-
lem. The proficiency of cited procedures and proposed method in different scenarios
of partial shading condition is investigated and compared to various features espe-
cially efficiency and convergence speed. In Sect. 2, PV systemmodeling is presented.
PV system in partial shading condition and partial shading patterns are described in
Sect. 3. MPPT application and proposed method are presented in Sect. 4. The results
are presented in Sect. 5, and in Sect. 6 the results are concluded.

2 PV System Modelling

One of the most commonly used models for the photovoltaic modules is the single-
diode model. In this model, a current source with a diode and the resistor are in
parallel. This set, is connected to a second resistance. According to Fig. 1, the value of
energy generated by the PV cell is declared using current Iph [16]. The mathematical
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Fig. 1 The single-diode
model of a PV cell

equation which defines the PV cell is written as Eq. (1);

IPV = IPh − ID − VD

Rsh
(1)

The characteristics equation of the diode is expressed in Eq. (2);

ID = I0
[
e

VD
VVT

A − 1
]

(2)

The voltage of the diode is obtained [16] according to Eq. (3);

VD = (VPV + IPV RS) (3)

The photocurrent (photic current), Iph, is defined as Eq. (4);

IPh = (ISC + k1(T − TRef ))λ (4)

In the above equations, I0 is the saturation current of the cell, VT is the thermal voltage
of PV cells and is equal to kT/q, q is electrical charge (1.6 × 10−19 coulomb), k is
the Boltzmann constant equal to 1.38 × 10−23J/C, T is the temperature of p-n joint
in K , A shows the ideality factors of diode dependent on the PV technology, ISC
represents the short circuit current of the cell under standard conditions (1000W/m2

in 25 ◦C, K1 expresses the coefficient of cells short circuit current, RS and Rsh are
series and shunt resistors in Ω , TRef is the cells reference temperature, and λ is the
solar radiation in W/m2 [16].

Figures2 and 3 depict the P-V and I-V characteristics curves of a PV system. Both
of the curves show that the array output is nonlinear. Under full solar radiation, there
is only one peak in the P-V characteristics curve. However, under partial shading
conditions, the PV characteristics curve is varied, and there are several peak points.

3 PV System in Partial Shading Condition

The PV voltage and current depend on the temperature and solar radiation, respec-
tively, which evaluate the PVmaximumpower point [5]. In other words, when the PV
cell obtains more solar radiation, it gives greater current and vice versa. According to
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Fig. 2 P-V characteristics
curve for a PV system
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Fig. 3 I-V characteristics
curve for a PV system
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the I-V and P-V characteristics curves, there is only one optimal point that delivered
the maximum power to the system.

Large PV systems usually consist of a series-parallel arrangement of PV modules
that each module contains a chain of PV cells with the series connection. Some com-
ponents of thesemodulesmay get poor radiation from the sun due to themovement of
the clouds and the shadow arising from trees, buildings and so on. This phenomenon
is called PSC [13, 15]. The voltage of the two modules in series mode and their cur-
rent in parallel mode is different. This subject generates peak points in the intrinsic
curve of the P-V.Among these courier points, the largest of them is called globalMPP
(GMPP) and another pints are Local MPP (LMPP) that their position and amplitude
depend on the composition of PV modules and shadow pattern variations. Because
of the common MPPT methods are not suitable for the convergence of the GMPP, it
is necessary to develop the smart optimization algorithms that can get GMPP under
PSC.

Technical parameters of the PV cell used in this study are listed in Table 1.
Two partial shading pattern configurations for PV modules have been considered

in this study, i.e., 6S (6 series PV cells) and 2S2P (2 parallel strings each with 3 PV
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Table 1 Parameters of the single PV cell

Parameter Value

Maximum power 20.64 W

Open-circuit rated voltage (Vocn) 21 V

The voltage of maximum power point (Vmp) 17.2 V

Short-circuit rated current (Iscn) 1.28 A

Current of maximum power point (Imp) 1.2 A

cells). For each one of these configurations, two arrangements were assumed from
the standpoint of partial shading with non-uniform radiation. Different arrangements
of 6S and 3S2P along with I-V and P-V characteristics curves are shown in Figs. 4
and 5.

4 MPPT Application and Proposed Method

The employed MPPT system includes PV modules, a DC/DC boost converter, and
a load. The system is shown in Fig. 6. The PV voltage and current are calculated,
and the PV power is obtained via multiplying voltage by current and then is applied
to the MPPT algorithm. Using the MPPT algorithm a duty cycle, d is generated,
and DC/DC converter is activated. The amount of duty cycle (d) is considered as a
decision-making variable in theMPPTalgorithm, and its corresponding output power
is assumed as the fitness value. Accordingly, the objective of the MPPT algorithm
is to determine the optimal duty cycle with the aim of extracting the highest power
from the PV system based on the MPPT method.

In this study, P&O, PSO, GWO and the proposed SIGBNR method are utilized
to solve the MPPT problem. Following describes each of the methods mentioned
above.

4.1 P&O Method

The basis of this algorithm is power comparison and voltage variations, so that the
voltage and current of the module are first sampled and power and voltage changes
are calculated [17, 18]. The flowchart of this method is depicted in Fig. 7, where X
is the reference signal. In this algorithm, if the reference voltage is chosen as voltage
(i.e., X = V ), then the objective will be guiding the reference voltage signal towards
VMPP . The result is that the instantaneous voltage tracks VMPP , and the output power
reaches the maximum power point. For this purpose, a small yet constant disturbance
is applied to the voltage of the PV cell. A series of such disturbances, shown by
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Fig. 4 6S configuration with
different partial shading
arrangements, a pattern 1, b
pattern 2, c I-V
characteristics curve, and d
P-V characteristics curve
under partial shading
conditions
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Fig. 5 3S2P configuration with different partial shading arrangements, a pattern 1, b pattern 2, c
I-V characteristics curve, and d P-V characteristics curve under partial shading conditions
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Fig. 6 A general block diagram of the MPPT algorithm [15]
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Fig. 7 Flowchart of P&O algorithm [17]

C = ΔV , is applied step by step to change the operating point of the system. After
each disturbance, a variation of the output power (ΔP) is measured. IfΔP is positive,
then the power reaches the MPP. Therefore, a voltage disturbance with the positive
sign should be applied. On the other hand, a negativeΔPmeans that the powermoves
away from the MPP and a disturbance with the positive sign should be applied. This
process is continued until it approaches the MPP.

The P&Oalgorithmdoes not has a proper performance for the rapid changes if the
radiation, and cannot follow the MPP. For example, in the case of a fast incensement
of the radiation, the problem arises from the fact that the algorithm cannot detect that
the power incensement is due to the radiation variation or based on the performance
on the radiation curve and therefore, an incorrect command is issued.
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4.2 Particle Swarm Optimization (PSO) Method

The PSO algorithm was first introduced by Kennedy and Eberhart. N, 1995 [19].
The algorithm initiates with a random group of solutions (i.e., particles) and then
searches for anoptimal solution in theproblemspacebyupdating thegenerations.The
population of particles (duty cycle) is initiated by constant positions that Surround
the search space, as such that dmin and dmax refer to the lowest and highest values of
the dc-dc converters duty cycle. Using a controller similar to the situation of each
particle, the dc-dc converter is activated, and its ability amount (power) is calculated
after the acceptable settling time of the converter. In this step, a situation with the
maximum ability amount obtained so far by the ith particle is known as the best
personal value (pbesti). The fitness value of the ith particle is compared with pbesti
each moment. If the current situation has a greater fitness amount, then it replaces
pbesti. The situation of a particle with themaximum ability amount on the population
is called the best global (gbest). There is only one gbest for the whole population,
and the particles move towards it. The fitness value of the ith particle is compared
with gbest. If its ability amount is bigger than gbest, then replaces it. The speed and
situation of the ith particle in the kth iteration are calculated using Eqs. (5) and (6),
respectively [13, 19, 20].

V k+1
i = wiV

k
i + r1c1(pbesti − dk

i ) + r2c2(gbest − dk
i ) (5)

where,

wi = wmax − k

kmax
(wmax − wmin); c1 = c1max − k

kmax
(c1max − c1min);

c2 = c2max − k

kmax
(c2max − c2min).

Equation (5) shows the difference speed of the particle arising from the positions of
pbest and gbest. wi scales the new speed that is increased along pbest and gbest.
The coefficients c1 and c2 display the cognitive and social rates, respectively. In fact,
c1 represents the amount of permeability of the particle arising from pbest and c2
represents themagnitude of the particle impact arising from the rest of the population.
r1 and r2 are randomnumbers in the range of (0, 1). Equation (6) indicates the updated
speed so that the particle moves to a new position [19, 20].

dk+1
i = dk

i + V k+1
i (6)

Flowchart of PSO algorithm for solving MPPT problem is given in Fig. 8.
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4.3 Grey Wolf Optimizer

One of the population-based intelligent and evolutionary algorithms is the GrayWolf
algorithm (GWO) which was first announced by Mir-Jalali in 2014 [15, 21, 22]. In
this algorithm, the performance and behavior of gray wolfs for hunting is simulated.
The parameters such as α, β, δ, and ω represent the leaders of the group so that α

directs the group as leader of the group and has important decisions about hunting,
resting place and so on. The second group of leadership belongs to β. In addition
to being able to help α due to having a good decision, β members are also the best
substitutes for the α wolfs when they are old or dead. ω but is at the bottom of this
group. The other group members that are not α, β and ω are called δ. The principles
of GWO function are as follows:

1. Investigating, pursuing and following the hunt;
2. Pursuing, sieging and harassing the hunt until it stops; and
3. Attacking to the hunt.

In the simulation of the GWO, α is considered as a top answer. After that, the next
two responses after α are considered β and δ. Finally, the rest answers are regarded
ω. Modeling a suitable situation that gray wolves encircle their hunt during hunting
are shown as Eqs. (7) and (8);

−→
D =

∣∣∣−→C · −→
Xp(t) − −→

Xp(t)
∣∣∣ (7)

−→
X (t + 1) = −→

Xp(t) − −→
A · −→

D (8)

where, t represents the repetition,
−→
A ,

−→
C , and

−→
Xp indicate the coefficients vectors,

the position of the bait and the gray wolf respectively.
The coefficients vector is obtained from Eqs. (9) and (10);

−→
A = 2−→a · −→r1 − −→a (9)
−→
C = 2−→r2 (10)

where vectors of random numbers at a distance are shown by −→r1 and −→r2 that are
selected from [0, 1] area and vector −→a decreases from 0 to 2 during repetitions. To
implement the MPPT based on GWO, the duty cycle, D, is defined as a grey wolf.
Hence, Eq. (9) can be modified as [15] according to Eq. (11);

Di(k + 1) = Di(k) − A · D (11)

Consequently, the GWO fitness is calculated according to Eq. (12).

P(dk
i ) > P(dk−1

i ) (12)
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Fig. 8 Flowchart of PSO algorithm [20]
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Fig. 9 Flowchart of GWO algorithm [15]

where P refers to PV power, d refer to duty factor, i is the grey wolves number, and
k is GWO iterations. GWO algorithm flowchart in MPPT solution is illustrated in
Fig. 9.
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4.4 Secant Gradient Based on Newton Raphson

In this section, at first the proposed method is described, and then the solution of the
MPPT problem using the proposed method is presented.

4.4.1 Equation Solution Using Newton Raphson (NR)

To find the roots of a function, i.e., to find a point where the value of function f (x)
is zero, many different methods have been suggested up to date, where they can
be classified as analytic and numerical methods. In analytic methods, the term for
function f (x) is exactly specified, and it is possible to calculate its derivation up
to different higher orders. However, numerical methods deal with only the values
of the function or its zero-order derivatives, yet the solution method for f (x) = 0
is carried out in an iterative and recursive manner [23, 24]. One of the methods is
Newton-Raphson (NR), which demands less amount of calculation in addition to
having a higher convergence speed. This method finds the solution in a low number
of iterations and results in a higher accuracy because it exploits the derivatives of the
functions in addition to the functions values for determination of the future points.
In NR method, Eq. (13) is used for numerical solving of f (x) = 0 [23, 24]:

xn+1 = xn − f (xn)

df (xn)
(13)

where the initial value for x0 is selected based on randomness and guess, and the
numerical value of the initial value not impact the final solution of the problem, and
the recursive algorithm converges to a specified point regardless of the initial value.

4.4.2 Incremental Gradient Method

In Calculus, the gradient of a scalar field is a vector field where its components show
the variation rate of the first field in different directions. The direction of the gradient
vector field is in the same direction of the maximum changes. In other words, for a
vector that its amplitude and direction show the maximum space rate of change of a
scalar vector, the gradient is defined in Eq. (14) as a numerical quantity, as follows
[25, 26]:

∇f = ∂f

∂x
i + ∂f

∂y
j + ∂f

∂z
k (14)

Gradient descent or incremental gradient method is a recursive and iteration-based
first-order optimization algorithm that exploits the gradient of a function to find
its minimum or maximum values. If the function under study is a single-variable
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and scalar function, its gradient is equal to the first-order derivative of the function
concerning the variable itself.

As mentioned earlier, the direction of the functions gradient is aligned with the
direction of the maximum changes. Hence, to find theminimum value of the function
with the help of gradient, it suffices for the variable changes to be proportional to
the minus of the gradient value. This method is called gradient descent. Similarly, if
the objective is to determine the maximum fitness, the direction of changes for the
functions variable should be in the same direction of the function gradient and pro-
portional to the gradient value at each point. This latter method is called incremental
gradient.

The considered objective function for optimization purpose, F(x) is given. Now,
the necessary condition for using the gradient method is that F function should be
defined and differentiable in point x. Then, function F has its maximum increase in x
if we move from point x in the same direction with the gradient of F and proportional
to the gradient value. If this change of variable is written iteratively, then in Eq. (15)
we have [25, 26]:

xn+1 = xn + γ × ∇F(xn) (15)

The above recursive relation is convergent to the maximum value of function F
if only the coefficient γ is chosen small enough. Hence, F(an) ≤ F(an+1) and the
value of objective functions becomes larger as we move forward at each step. In
other words, the value of γ × ∇F(xn) is added to xn so the problem variable could
changes aligned with the function gradient and in proportion with it.
Regarding the above iterative equation and the initial guess a0 for the search variable,
the values of a1, a2, and . . . are obtained where, F(a0) ≤ F(a1) ≤ F(a2) ≤ . . .

and finally, the value of function F will reach it maximum in a desired number
of iterations. Fig. 10 shows the steps for the algorithm where the depicted circles
represent a level set.

4.4.3 Debugging of the Incremental Gradient Method Using Secant
Method

One disadvantage of incremental gradient method is that it needs the first-order
derivative termof the function.However, in solving for theMPP, there is nogiven term
available for derivation or for presenting the gradient term. Therefore, to overcome
this issue, the slope of the line crossing two points of the function is used instead of
using the explicit derivation Of the fitness equal to line slope tangent to the function.
Under such conditions for the iterative solution of the problem, two iterative points
will be used, where the derivative of the function can be approximated in Eq. (16)
according to [27, 28]:
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Fig. 10 the change of
variable x in the direction of
function gradient going
toward the extremum point
of function F(x)

∇F(mpp) = df (xn) = f (xn) − f (xn−1)

xn − xn−1
(16)

Hence, to start the iteration algorithm, at first, two random points should be specified
on the functions curve as the initial guess. Equation (17) shows that the iteration
algorithm of incremental gradient method is generalized to the iteration algorithm
of secant incremental gradient method [27, 28]:

xn+1 = xn + γ × f (xn) − f (xn−1)

xn − xn−1
(17)

Now, if one considers the above iteration algorithm, it can be seen that there is no
need for explicit derivative of the function and only two values of the function in the
given two points are required to guess the new value of x. under these conditions,
this iteration method can be employed for finding the MPP.

4.4.4 MPPT Based on Secant Incremental Gradient Method

Application of secant incremental gradient method to reach the maximum produced
power for the PV cells demands utilization of some complementary approaches. It
should be noted that if the function under study is convex, then any value can be used
as the initial guess for start of the iteration process and it is ensured that the algorithm
finally converges to the extremum of the objective function in sequential iterations.
For instance, when there is only one single PV cell in the circuit, and P-V curve of
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the PV system is completely continuous and differentiable on all over the points,
any value of Vpv can be considered as the initial guess and finally reach the MPP.
Nonetheless, when multiple PV cells under different solar radiation are joined series
in shading condition, it is probable that some initial values for start of the algorithm
converge to the local maximum or one of the adjacent peaks of the power curve and
do not result in extraction of the maximum pure power. Consequently, under partial
shading conditions or in case there are two or more peaks for the P-V curve, the value
of the first guess is very effective, and it might lead to undesired solutions.

For this reason, to determine a suitable initial guess before the start of the algo-
rithm, the range of allowed PV voltage is divided into several sections and the amount
of power generation by the PV system at each of these sections are separately cal-
culated. The point with the maximum generated power is closer to the MPP and is
chosen as the initial value, VPV 0 , to start the iteration algorithm of incremental gra-
dient method. Thereby, it is ensured that the initial point is suitable and independent
before the stathe rt of the algorithm. However, the number of search points should
not be less than a given limit, and experimentally it is suggested that the number of
search points for VPV 0 , should be at least equal to the number of series-connected
cells (the number of peaks in the P-V curve).

The second point to mention is a determination of derivative or gradient of the
power function concerning voltage in different points of the iteration. After setting
the initial voltage value, the start of iteration algorithm requires the calculation of
gradient in the initial point using secant derivative method. Secant method at each
step needs the power values of the current and previous steps. However, since there
are no previous points at the first step, a value of 0.99 × VPV 0 is used as a supporting
point for estimation of gradient or derivative and this means that the voltage value
in the second step is determined through scheduling and without using the gradient
method in order to make it possible to start the iteration method for the third step.
In order to the slope of chord under study present a suitable approximation of the
function derivative in the initial point, the distance between the two points that create
the chord for calculation of the chords slope should be close enough to be as close
and similar to the tangent line on point VPV 0 as possible. For this, the desired voltage
value in the second step deviates only 1% from the initial guess point. Flowchart of
the proposed Approach is illustrated in Fig. 11. The implementation steps of secant
incremental gradient method are defined as: [0.3 × VOC 0.6 × VOC]
Step (1) To determine a suitable initial point for secant incremental gradient algo-
rithm, the range of PV output voltage in [0.3 × VOC 0.6 × VOC] is divided into Ns,
as PV cell numbers with series configuration. These values are named V1, V2, . . . ,
and VNs. Then, the PV output voltages for each of these points are calculated and a,
voltage with the maximum produced power is selected as VPV 0.

Step (2) Specify the supporting point as 0.99 × VPV 0 and calculate the output power
corresponding to this point.

Step (3) The initial value of V1 is called VPV 0 and the value of supporting point V2

is called 0.99 × VPV 0. The corresponding output power of these points are named
PpV1 = f (V1) and PpV2 = f (V2).
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Fig. 11 Flowchart of MPPT algorithm based on secant incremental gradient
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Step (4) the slope of the chord crossing two points V1 and V2 is calculated as:

∇F = df (V2) = f (V2) − f (V1)

V2 − V1
.

Step (5) the desired voltage of the next step is determined by V ∗
pv = V2 + γ × df (V2)

and if V ∗
pv > 0 then V ∗

pv = VOC , and if V ∗
pv < 0 then V ∗

pv = 0.1 × VOC , to prevent the
produced reference voltage from violating the acceptable PV output voltage range.

Step (6) If |V ∗
pv − V2| < ε then go to Step 7, otherwise update the voltages of the

previous Steps and go to Step 2:

{
V1 = V2

V2 = V ∗
pv

.

Step (7) to avoid the power fluctuations around the optimum point, V ∗
pv = (V1 +

V2)/2 is considered and the algorithm is terminated.

5 Simulation Results and Discussion

In this section, the MPPT simulation results of the PV system under different partial
shading conditions using the proposed SIGBNRmethod are proposed. Also, to verify
the proposed method, the MPPT problem was solved using P&O, PSO and GWO
methods and the results were compared and analyzed in terms of convergence speed,
extracted energy, energy efficiency, and GMPP tracking efficiency under various
partial shading patterns. The variable to be optimized is duty cycle, d, of the DC/DC
converter, and parameters of P&O, PSO, and GWO methods are according to Refs.
[16, 22]. The simulations were implemented in such a way that the transient response
of each one of the methods is depicted while the shading pattern was varying from
one type to another. The simulation duration time was assumed 40 s, where each 20
s is associated with the implementation of one specific shading pattern. Moreover,
the simulations were developed in MATLAB/SIMULINK environment to achieve
the GMPP.

5.1 Simulation Results Under Partial Shading Patterns 1
and 2

Figure 12 illustrates theMPPT results of the PV systemunder partial shading patterns
1 and 2 that are associated with the 6S arrangements based on different methods. The
P&O method initiates the MPPT action by estimating the initial duty cycle equal to
0.5. Unfortunately, under all partial shading conditions, the P&O method is not able
to extract the maximum power and is trapped in the LMPP.

The solution results for the MPPT problem according to the PSO algorithm show
that it has found the MPP and converged around the GMPP. However, there is still a
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Fig. 12 Responses of different algorithms in solving the MPPT problem under shading patterns 1
and 2

small amount of error. The maximum power for the first pattern is obtained as 34.887
W, and the PSO algorithm has converged to 34.32W, and in the second pattern it has
converged from 29.89W to 29.79W. Although the convergence has been performed
close to the GMPP, large power, and voltage oscillations during the convergence
process and large settling time are considered as its disadvantages.

Additionally, the obtained results based on the GWO algorithm show that it has
converged to the GMPP in an acceptable speed and desired accuracy. It has reached
the GMPP at t = 5.2 s and 6.7 s for the first and second patterns, respectively.
Compared to the PSO algorithm, the GWO algorithm has reduced the convergence
error form 1.61% to 0.028%. The settling time has also been halved. The solution
results of the MPPT problem based on the proposed SIGBNR method in tracking
process for pattern 1 show that the algorithm reaches the GMPP at only t = 2.2 s. In
partial shading changing to pattern number 2 at t = 20 s, then the MPP tracking has
started once more, and the new GMPP is tracked. To compare the performance of
the proposed method with other methods, the curves for transient responses related
to tracking the maximum point are shown. These curves prove that the PSO-based
algorithm can achieve the GMPP but the convergence times for patterns 1 and 2
are 10.49 s and 10.02 s, respectively. Also, compared to GWO algorithm, the PSO-
based algorithm makes some oscillations in the PV output power for longer time
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duration. Also, the P&O algorithm is not able to reach the GMPP and settles in the
local maximum. On the other hand, the convergence capability of the GWO method
to reach the GMPP is less than the proposed method in this chapter. Therefore, it is
crystal clear that the proposedSIGBNRmethod extractsmore power in a considerable
high convergence speed, i.e., mitigates the power oscillations in a short period and
reaches the global optimum.

5.2 Simulation Results Under Partial Shading Patterns 3
and 4

The MPPT results for the PV system under shading patterns 3 and 4 related to 3S2P
arrangements based on different methods are shown in Fig. 13. The GMPP value for
patterns 3 and 4 is 67.08 W, and 27.52 W, respectively, and the GMPP is placed in
right side of PV power-voltage curve. The optimization approaches are applied for
20 s for patterns 3 and 4. The results of the proposed method prove that it extracts
more power in pattern 3 compared to all other methods. Also, it has less transient
oscillations in comparison to other methods. GWO algorithm finds the GMPP in
pattern 3 at 5.25 s, and when the shading pattern changes to pattern 4 it takes 5.05
s for GWO algorithm to converge to the GMPP. As one can see, the PSO method
takes a longer time to reach the GMPP and the stable oscillations for the PV output
power takes longer time. P&O algorithm does not identify the global optimum for
pattern 3, but it converges to the GMPP in pattern 4 because the GMPP is located on
the P-V curve and the initial value of d = 0.5 has guided the P&O algorithm around
the GMPP. If the initial value of d is changed and simulation is run again, then the
P&O method is no longer able to achieve the GMPP.

5.3 Comparison of Results Using a Different Algorithm

The mentioned methods performance and the proposed SIGBNRmethod in terms of
maximum power, convergence rate, energy efficiency, and GMPP tracking efficiency
are evaluated and listed in Table 2, 3, 4 and 5. According to these tables, the results
show that the proposed algorithm converges to the GMPP very quickly compared
to other methods. Hence, the proposed method has extracted the maximum power
of the PV system in the least possible time. The performance comparison of MPPT
methods in view of method convergence speed that the proposed method has higher
convergence speed with regard to other methods. Also, performances of the MPPT
methods in terms of tracking the GMPP show that the proposed method has once
more a better performance with respect to other methods. Consequently, numerical
results verify the desired capability and superiority of the proposed algorithm.
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Fig. 13 Responses of different algorithms in solving the MPPT under shading patterns 3 and 4

Table 2 Performance comparison of MPPT methods in terms of maximum power

MPPT algorithm Pattern1 Pattern2 Pattern3 Pattern4

Maximum power 34.88 29.89 67.07 27.52

PO 25.59 21.77 44.16 26.57

PSO 34.32 29.79 66.69 26.8

GWO 34.87 29.85 66.96 26.78

SIGBNR 34.85 29.86 67.01 26.86

Table 3 Performance comparison of MPPT methods in terms of convergence speed

MPPT Algorithm Pattern1 Pattern2 Pattern3 Pattern4

PO 10.98 10.37 10.06 6.08

PSO 10.49 10.02 10.15 11.18

GWO 5.32 6.22 5.25 5.46

SIGBNR 5.02 4.9 2.51 2.55
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Table 4 Performance comparison of MPPT methods in terms of energy efficiency

MPPT algorithm Pattern1 Pattern2 Pattern3 Pattern4

PO 73.245 72.751 65.784 69.493

PSO 97.534 98.833 98.592 96.476

GWO 99.528 99.349 99.399 96.868

SIGBNR 99.582 99.592 99.806 98.669

Table 5 Performance comparison of MPPT methods in terms of GMPP tracking efficiency

MPPT algorithm Pattern1 Pattern2 Pattern3 Pattern4

PO 73.366 72.834 65.832 96.547

PSO 98.394 99.665 99.419 97.384

GWO 99.828 99.86 99.732 97.311

SIGBNR 99.91 99.89 99.91 97.601

6 Conclusion

In this chapter a novel method is presented due to solving the MPPT problem in
photovoltaic systems under PSC. According to the Newton-Raphson method and
based on the chord gradient method, the proposed SIGBNR method has advantages
such as high convergence rate and efficiency with fewer computations and high
convergence accuracy in low repetitions. Due to verifying SIGBNR method, its
results are compared with different patterns of partial shading such as P & O, PSO,
and GWO methods. The simulation results show that the proposed algorithm has a
higher convergence rate and less error in the computing rather than other methods. In
SIGBNRmethod, in order to use of function derivative and due to having high power
and accuracy it can converge to a MPP without any voltage or power fluctuations
around the MPP. Thus, energy losses are decreased. The results showed that the
SIGBNR converges to GMPP faster than other methods and its tracking efficiency
is higher than other methods.
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Study on Control of Hybrid
Photovoltaic-Wind Power System Using
Xilinx System Generator

Nadjwa Chettibi and Adel Mellit

Abstract In this chapter, a grid connected hybrid power system consisting of a Pho-
tovoltaic (PV) source and a Wind Turbine (WT) generator is investigated. The main
goal is the study of the design procedure of a digital control circuit of an energy gen-
eration system for future implementation on the Field-Programmable Gate Array
(FPGA) platform. Hence, well-known Maximum Power Point Tracking (MPPT)
techniques are adopted in order to extract the maximum energy from the renewable
energy sources. Further, for the control of Permanent Magnetic Synchronous Gener-
ator (PMSG), the Field Oriented Control (FOC) structure is applied. The Virtual Flux
Oriented Control (VFOC) scheme is adopted for the control of the grid connected
three-phase inverter based on the backstepping approach. The overall control scheme
of the PV-WT power system is established using the Xilinx SystemGenerator (XSG)
design tool. The simulation results are provided in order to prove the effectiveness
of the developed XSG based control circuit.
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MPP: Maximum Power Point.
MPPT: Maximum Power Point Tracking.
OTC: Optimal Torque Control.
P&O: Perturb and Observe.
PI: Proportional Integral.
PMSG: Permanent Magnetic Synchronous Generator.
PV: PhotoVoltaic.
PVG: PhotoVoltaic Generator.
PWM : Pulse Width Modulation.
RES: Renewable Energy Sources.
SPWM: Sinusoidal Pulse Width Modulation.
VF : Virtual Flux.
VFOC: Virtual Flux Oriented Control.
VOC: Voltage Oriented Control.
WT: Wind Turbine.
WTG: Wind Turbine Generators.
XSG: Xilinx System Generator.

1 Introduction

Nowadays, renewable energy sources (RESs) such as photovoltaic panels and Wind
Turbine Generators (WTG) become very promising electric generators due to their
several advantages like cleanness, durability, zero-fuel emissions, etc [1]. However,
the RESs (PV and WTG) exhibit nonlinear electric characteristics, which depend on
the varying climatic conditions. Thus, the tracking of the optimal operating points is
of the main interest in order to enhance the energy generation efficiency of RESs. In
the last decades, severalMPPT techniques [2, 3] have been proposed in the literature
with different degree of complexity.

The PV panels and WTGs are complementary energy sources [1], which can be
combined in a single energy system to increase the efficiency and to optimize the
power quality supply. In grid-connected mode, a hybrid power system has to transfer
with high efficiency, the available renewable energy from the DC-side to the AC grid
side. The DC-AC converter driven by a proper controller plays a primordial role in
the supervision of the power flow from the RESs to the utility grid [4]. The control
strategy of the inverter should be able to improve the operational efficiency and the
quality of power injected to the utility grid.

The Voltage Oriented Control (VOC) scheme [1, 4] is widely used for the control
of grid connected inverters. This technique performs indirect control of the real
and reactive powers through an inner current control loop implemented in the dq
synchronous reference frame. However, the effectiveness of the VOCmethod depend
mainly on the quality of the grid current control [5] particularly, in the presence
of system perturbations and uncertainties. In this case, the use of more advanced
controller instead of PI regulators seems more suitable. Several alternatives [6]
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have been suggested in order to enhance the control performance of traditional VOC
scheme. Recently, the nonlinear control strategies based on the sliding mode control
[7, 8] and the backstepping approach [9–11] have received considerable attention.

The backstepping is a nonlinear control technique appeared in the beginning of
1990 for the control of nonlinear systems with uncertainties [12]. It is based on the
Lyapunov theory that assures the global asymptotic stability of the controlled system.
The backstepping algorithm consists of a design in systematic manner of a nonlinear
control law using virtual control variables and appropriate Lyapunov functions [12,
13]. Recently, several research studies have adopted the backstepping approach for
the command of power drives and static converters: in [9], a backstepping control
scheme is established for the control of an inverter in aWTG tacking into account the
parameter variations and disturbances. The control goals have been to stabilize the
DC-link voltage and to control the active and reactive currents. The Backstepping
is also applied in [13] to a permanent magnetic synchronous machine to design
current and speed regulators. To drive an asynchronous generator based WTG, a
backstepping power controller is adopted in [14] with a FPGA implementation.

Nowadays, the FPGA platforms receive a considerable attention in several appli-
cation fields due to theirs attractive features such us: parallelism, reprogramming
capability, flexibility, etc. In the power electronic filed, the FPGA presents an impor-
tant tool for the implementation of control algorithms of power converters and electric
machines [14–17].

The main goal of this chapter is to give some details on the design methodology of
a digital control circuit for a hybrid PV-WT power system for future implementation
on a FPGA device. The MPPT controllers of the RESs are established based on
classical control methods. Besides, a Virtual Flux Oriented Control (VFOC) scheme
based on a backstepping current controller is adopted for the grid side converter. For
the FPGA implementation purpose, the overall control system is developed in the
Matlab/Simulink environment using theXSG tool. The obtained results are presented
to validate the correctness of the digital control circuit.

2 Modeling of the Grid-Connected Hybrid System

The structure of the grid-connected Hybrid Energy Generation System (HEGS) is
shown in Fig. 1. It is composed of a PV array, a boost converter, a WTG that uses a
PMSG, a rectifier, a three-phase DC-AC converter and RL filter.

2.1 PV Panel Modeling

The PV panel consists of a number of PV cells connected in series and parallel. The
output current of a PV module using the single diode model (see Fig. 2) is calculated
as [18]:
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Fig. 1 Overall structure of the grid connected PV-WT system

Fig. 2 Single diode
equivalent circuit of PV cell

IPV = IL − IS[exp( q

KTA
(VPV + IPV RS)) − 1] (1)

IPV and VPV are the PV output current and voltage respectively, IS is the saturation
current, IL is the photo-current, RS is the series resistance, A is the ideality factor,
K is the Boltzmann constant (K = 1.38 · 10−23J/K), T is the temperature, q is the
electron charge (q = 1.6 · 10−19).

2.2 Modeling of the WTG

In this study, a vertical axis WT of type Darrieus that has a radius R and height H is
adopted.

2.2.1 The Wind Turbine

In general, the aerodynamic power (Pt) captured by the WT is expressed in function
of the power coefficient CP as follows [19]:
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Pt = 1

2
ρSCP(λ)V 3

W (2)

ρ, VW , S are respectively, the air density, the wind speed and the surface belayed by
the turbine, such that S = R.H . The power coefficient is a nonlinear function of the
tip speed ratio (λ) given as [19]:

CP(λ) =
4∑

k=0

Ckλ
k where λ = Rωt

VW
(3)

Such that:C0 = 0.110898,C1 = −0.02493,C2 = 0.057456,C3 = −0.01098,C4 =
0.00054 [19]. Themechanical torque (Tt) of theWT is calculated as the ratio between
Pt and the turbine speed (ωt) as:

Tt = Pt

ωt
= 0.5ρSCP(λ)

V 3
W

ωt
(4)

2.2.2 The PMSG Modeling

The dynamic model of the PMSG established in the dq synchronous reference frame
is given by [19]:

{
vsd = −Rsisd − Lsd

disd
dt + Lsqωeisq

vsq = −Rsisq − Lsq
disq
dt − ωeLsd isd + ωeφm

(5)

where vsd , vsq, isd and isq are the d-axis and q-axis components of the stator voltage
and current, respectively. Lsd and Lsd are the d-axis and q-axis inductances, ωe is
the rotor angular velocity, p is the number of pole pairs. φm is the magnet flux, Rs is
the stator resistance. For non-salient PMSG, the electromagnetic torque (Te) can be
expressed as follows [2, 19]:

Te = 3

2
pisqφm (6)

2.3 Modeling of the Three Phase Inverter

The αβ components of the voltage vector at the inverter output (vα , vβ) can be
expressed in function of the switching signals (Sa ,Sb ,Sc) as follows:

{
vα = VDC

3 (2Sa − Sb − Sc)
vβ = VDC√

3
(Sb − Sc)

(7)
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VDC is the DC-link voltage at the inverter input. The dynamic model of the DC-AC
converter in the dq rotating frame is given as [1]:

{ digd
dt = 1

L (−Rigd − Lωigq − vgd + vd )
digq
dt = 1

L (−Rigq + Lωigd − vgq + vq)
(8)

vd , vq, igd , igq are respectively, the d-axis and q-axis components of the inverter
output voltage and current. vgd and vgq are the d-axis and q-axis components of the
grid voltage vector. R and L present the filter resistance and inductance, respectively.

3 The XSG Based Control of the HEGS

The Xilinx System Generator is a design tool of control algorithms that have to be
implemented on a FPGA board. The XSG assures the automatic generation of HDL
(Hardware Description Language) code, which provides a hardware description of
the algorithm established in Simulink [14–17]. It offers a library of Xilinx blockset
integrated in the Simulink toolbox, which can be used for the controllers design in
theMatlab/Simulink environment. The main advantage of the XSG is the facility and
the rapidity of the design process without the need for HDL programming [14–17].
In this section, we give some details on the designmethodology of the control system
based on the XSG tool. We note that the fixed point format is adopted for system
data representation in order to reduce the FPGA resources consumption.

3.1 P&O Controller of the PV Generator

The Fig. 3 illustrates the control scheme adopted for the boost converter. In order to
reach the MPP of the PV source, the Perturb and Observe (P&O) controller [1, 3]
adjusts the voltage reference (V ∗

PV ) based on the measured values of the PV voltage
and current. The XSG block sets of P&O algorithm, PI voltage controller and PWM
modulator are shown in Figs. 4 and 5:

Fig. 3 Control scheme of the boost converter
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Fig. 4 The XSG implementation of P&O controller

Fig. 5 The XSG implementation of PI regulator with PWM generator for PV voltage control

• As shown in Fig. 4, the digital P&O tracker is established using XSG block sets
of addition, multiplication and comparison.

• TheXSGblock of the PI voltage controller is established by applying the backward
Euler approximation method (see Fig. 5). Replacing 1

s by Ts
(1−z−1)

, we obtain the
following transfer function in the z-domain:

T (s) = D(s)

Epv(s)
= Kp + Ki

s
=⇒ T (z−1) = D(z−1)

Epv(z−1)
= Kp + KiTs

1 − z−1
(9)

D and Epv are, respectively, the duty ratio and the PV voltage error. Kp and Ki

present the proportional and integral gains of the PI regulator. By applying the
inverse z-transform to Eq.9, we get:

d(k) = d(k − 1) + (Kp + KiTs)epv(k) − Kpepv(k − 1) (10)

Ts is the sampling time period. epv(k) = V ∗
PV (k) − VPV (k). Thus, the Eq.10 is

adopted to build the XSG based digital PI controller.
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• The PWM control signal of the boost converter is generated by comparing, at each
iteration k, the duty ratio value d(k) with the value of a triangular signal. So, a 8-
bits up-counter is used to generate an asymmetric triangle waveform at the carrier
frequency of 2 kHz (see Fig. 5). The counting sequence is limited between zero
and 255 such that the sampling period is fixed to 2µs. The count maximal value
is determined according to the following formula [15]:

Counting limit = required triangle period/sampling period = 5.e−4/2.e−6 = 250 (11)

The nearest integer to the value 250 is 256 = 28; so, unsigned 8-bits counter should
be used. Also, the Reinterpret block is used to obtain at the output a normalized
triangular signal.

3.2 Optimal Torque Control of WTG

The principal of the Optimal Torque Control (OTC) [2] (see Fig. 6) consists of the
regulation of the electromagnetic torque (Te) to achieve the optimal value (T ∗

e ) that
correspond to the MPP (i.e. Pt = Pt−max). This MPPT method is adopted here due
to its quite simplicity. The expression of the mechanical power of Darrieus turbine
(of Eq.2) can rewritten as follows:

Pt = 1

2
ρHR4CP(λ)

ω3
t

λ3
(12)

For a givenwind speed, the tip speed ratio is optimal at theMPP (i.e λ = λopt) and the
corresponding value of the power coefficient is maximal ( CP = CP−max). In these
conditions, an optimal aerodynamic torque (Tt−opt) will be obtained, such that:

{
Tt−opt = Pt−max

ωt
= Kopt .ω

2
t

with Kopt = 1
2ρHR

4 CP−max(λ)

λ3
opt

(13)

So, this value of optimal torque (Tt−opt) is defined as the reference of the generator
torque i.e: T ∗

e = Tt−opt = Koptω
2
t . (see Fig. 6). In the steady state, where dωt/dt ≈ 0

under constant wind speed, the OTC ensures that the MPP is reached such that:
T ∗
e = Te = Tt [2].

3.3 The Field Oriented Control Scheme

In this study, the conventional FOC method [1, 19] is applied for the control of
the rectifier that interfaces the PMSG. As shown in Fig. 7, the decoupled control
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Fig. 6 The principal of the OTC technique [2]

Fig. 7 The FOC scheme applied to the rectifier [19]

of the stator flux and the electromagnetic torque is assured by acting separately on
the d and q components of the stator current. The flux is oriented by maintaining
the d-axis stator current close to zero (i∗sd = 0). Besides, the electromagnetic torque
is controlled by regulating the q-axis stator current to track the reference. Hence,
the q-axis current setpoint is calculated in function of the torque reference (T ∗

e ) as
follows:

i∗sq = 2T ∗
e

3pφm
(14)

As depicted in Fig. 7, the signals at the outputs of the d-axis and q-axis current PI
controllers (v′

sd and v′
sq) are calculated as follows:

{
v′
sd = kp(i∗sd − isd ) + ki

∫
(i∗sd − isd )dt

v′
sq = kp(i∗sq − isq) + ki

∫
(i∗sq − isq)dt

(15)

It can be seen from Eq.5 that there is a coupling between the d-axis and q-axis
equations, which affects considerably the control performance. In order to ensure a
decoupled control of d and q components of the stator current, the rectifier voltage
references (v∗

sd and v∗
sq) are calculated as follows:
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Fig. 8 XSG blocks of a the FOC scheme, b the PWM modulator

{
v∗
sd = −v′

sd + Lsωeisq
v∗
sq = −v′

sq − Lsωeisd + ωeφm
(16)

The Fig. 8a shows the XSG module of the FOC scheme. The XSG based digitized
PI controller for q-axis current is designed according to the following expression:

v′
sq(k) = v′

sq(k − 1) + (Kpq + KiqTs)eiq(k) − Kpqeiq(k − 1) (17)

Kpq and Kiq are, respectively, the proportional and integral gains. eiq(k) = i∗sq(k) −
isq(k) such that, i∗sq is the q-axis current set-point.We note that PI controller for d-axis
current component is similar to this of the d-axis.

The Fig. 8b displays the details on the developed XSG based SPWM modulator,
which generates the PWM signals for the rectifier switching devices. This block
performs a comparison between a triangle carrier signal with the converter voltage
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references (v∗
sa, v

∗
sb, v

∗
sc). As presented in [15], five XSG blocks are used to generate

the triangular carrier signal at the frequency of ftri = 5 kHz. At each period Ttri =
(1/ftri) = 0.2 ms, the 7-bits down counter repeats a counting sequence to generate an
asymmetric triangle waveform, which varies between 127 and 0. The 9-bits up/down
counter generates a symmetric triangular signal,where the count value varies between
−32 and 32.

3.4 VFOC Scheme Based on the Backstepping Approach

In this study, the VFOC strategy [20, 21] is adopted for the control of the inverter. As
depicted in Fig. 9, the inner current control loop is established based on the backstep-
ping approach [9, 13]. Further, the control of the DC-link voltage is accomplished
by means of an ADAptive LInear NEuron (ADALINE) regulator. The VF estimator
ensures the synchronization with the utility grid.

3.4.1 Design of Backstepping Current Controller

According to the VFOC strategy, the d-axis and q-axis grid current components (igd
and igq) should be controlled to track their respective references (i∗gd and i∗gq), in
order to ensure a decoupled control of the active and reactive powers injected to
the grid [21]. The ADALINE controller determines the set-point of the q-axis grid
current (see Fig. 9). Hence, the control goal of the backstepping is to eliminate the
static errors of the d-axis and q-axis grid currents, and the Eq.8 can be rewritten in
function of the controlled variables (igq = y1) and (igd = y2) as follows:

{
ẏ1 = 1

L (−Ry1 + Lωy2 − vgq + vq)

ẏ2 = 1
L (−Ry2 − Lωy1 − vgd + vd )

(18)

The backstepping control law can be now designed step by step using Lyapunov
candidate functions, which assure that the control targets will be reached:
Step1: The control error of q-axis grid current is defined as:

egq = i∗gq − igq = y∗
1 − y1 (19)

Taking into account the Eq.18, the error derivative is calculated as:

˙egq = ẏ∗
1 − ẏ1 = −ẏ1 = −vq

L
+ R

L
y1 − ωy2 + vgq

L
(20)

We define the following Lyapunov function as:
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Fig. 9 The backstepping based VFOC scheme

V1 = 1

2
e2gq (21)

Its derivative is so computed as:

V̇1 = egq. ˙egq = egq

(
−vq

L
+ R

L
y1 − ωy2 + vgq

L

)
(22)

According to the Lyapunov stability condition [13], we should have:

− vq
L

+ R

L
y1 − ωy2 + vgq

L
= −g1.egq with g1 > 0 (23)

In order to have V̇1 = −g1e2gq < 0 that guarantees the eliminationof the q-axis current
error. According to the backstepping method [13], we define vq as the virtual control
input:

vq = Ry1 − ωLy2 + vgq + g1Legq (24)

Step 2: The d-axis current error is defined as follows:

egd = i∗gd − igd = y∗
2 − y2 (25)

Its derivative is given by:

˙egd = ẏ∗
2 − ẏ2 = −ẏ2 = −vd

L
+ R

L
y2 + ωy1 + vgd

L
(26)

For this sub-system, we define a second Lyapunov function as:

V2 = V1 + 1

2
e2gd (27)
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The derivative with respect to the time is given as:

V̇2 = −g1e
2
gq + egd . ˙egd = −g1e

2
gq + egd

(
−vd

L
+ R

L
y2 + ωy1 + vgd

L

)
(28)

By defining:

− g2egd = −vd
L

+ R

L
y2 + ωy1 + vgd

L
with g2 > 0. (29)

The derivative V̇2 will be negative:

V̇2 = −g1e
2
gq − g2e

2
gd < 0 (30)

So, the backstepping control law vd is given as:

vd = Ry2 + Lωy1 + vgd + g2Legd (31)

With this backstepping control law, we will have V2 > 0 and V̇2 < 0 that assures the
asymptotic convergence of the current error to zero. Hence, the Eqs. (24) and (31)
are used for the calcul of the inverter voltage references (v∗

d and v∗
q).

On the other hand , the grid VF vector (Ψ̄g) is defined as the integral of the grid
voltage vector (v̄g) such that [22]:

Ψ̄g =
∫

v̄gdt =
∫ (

v̄ − L
d īg
dt

)
dt (32)

v̄ is the inverter voltage vector. The estimation of αβ components of the grid VF
vector can be done in function of the αβ components of the grid current (igα, igβ)
and the DC-link voltage (VDC) as follows:

{
Ψgα = ∫ VDC

3 (2Sa − Sb − Sc)dt − Ligα

Ψgβ = ∫ VDC√
3
(Sb − Sc)dt − Ligβ

(33)

3.4.2 ADALINE Based Control of DC-Link Voltage

As has been mentioned, an adaptive ADALINE regulator is adopted in this study for
the stabilization of the DC-link voltage at the desired setpoint. Hence, the inputs of
the ADALINE controller are defined as the DC voltage reference (V ∗

DC(k)) and the
previous voltage error eDC(k − 1)(such that eDC(k) = VDC(k) − V ∗

DC(k)). The LMS
adaptation law [22] of the ADALINE weights is given by:

W (k + 1) = W (k) + 2αEDC(k)X (k) (34)
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Fig. 10 XSG blocks of: a VFOC scheme, b abc/αβ transformation, c dq/αβ transformation,
d Grid VF estimator, e ADALINE controller
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Such that W (k) = [w1(k),w2(k)]T and X (k) = [V ∗
DC(k), eDC(k − 1)]T are respec-

tively the weights vector and the inputs vector. α is the learning rate. EDC(k) is the
error function defined as:

EDC(k) = 0 − S(k) = 0 − (λ1eDC(k) + deDC(k)) (35)

Such that: λ1 is a positive constant, deDC is the change of error where, deDC(k) =
eDC(k) − eDC(k − 1) and S(k) is the sliding surface of the controlled variable. In the
steady state, the system state (VDC) tracks accurately the setpoint in such way that
S(k) = 0.

The Fig. 10a shows the different components of the XSG based inverter control
unit. The XSG modules for the Clarke and Park transformations are illustrated in
Fig. 10b, c.The Xilinx block of the VF estimator (see Fig. 10d) is established by
applying the Euler approximation method as:

{
Ψgα(k) = Ψgα(k − 1) + Ts

VDC (k)
3 (2Sa − Sb − Sc) − Ligα(k)

Ψgβ(k) = Ψgβ(k − 1) + Ts
VDC (k)√

3
(Sb − Sc) − Ligβ(k)

(36)

It can be seen from Fig. 10d that we have used two CORDIC blocks of XSG in order
to estimate the grid phase angle and to generate both sine and cosine waveforms.
For each block, the phase format is selected to be in Radians and the output width
is fixed to 16. The Fig. 10e illustrates the XSG block of the discretized ADALINE
controller.

4 Simulation Results

The overall PV-WT system is implemented and simulated in the Matlab/Simulink
environment using XSG. The simulation parameters are listed in Table 1. In order to
validate the accuracy of the adopted control scheme, the following simulation tests
are performed:

The first test is accomplished for stabilized climatic conditions (irradiance G =
1000 W/m2, temperature T = 25 ◦C and wind speed of VW = 12 m/s). It can be seen
that the XSG based control blocks work correctly and ensure a correct operation of
the HEGS. As exhibited in Figs. 11 and 12, the MPPT controllers (P&O and OTC)
determine correctly the MPPs of both the PVG and WTG. Also, it can be seen from
Fig. 11, that there is a strong similarity between the results obtainedwith the Simulink
blocks and theXSGblock set of PVGcontroller (P&O tracker+PI controller). The PV
output voltage is well regulated and tracks accurately the setpoint signal. However,
the Fig. 12 shows that the static oscillations of the electromagnetic torque with the
Xilinx module are larger due to the quantization error. The Fig. 12 demonstrates that
the maximum power is extracted from the WTG for nominal wind speed. On the
other hand, the decoupled control of the active and reactive powers is assured with
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Fig. 11 The PVG performance in the first simulation case

Fig. 12 The MPPT performance for the WTG in the first simulation case
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Fig. 13 Variation in the first test of: a Inverter active power b Inverter reactive power, c αβ

components of the grid VF vector

Table 1 Simulation parameters

System parameters Value

PV voltage at the MPP 33.7 V

PV current at the MPP 3.56 A

Number of series cells in the BPMSX120
module

72

Darrieus Rotor radius 1 m

Pole pairs number of the PMSG 8

Stator inductance of the PMSG 8 mH

PMSG Inertia 5 kg.m2

a unity power factor operation as depicted in Fig. 13. The total harmonic distortion
of the grid current is acceptable, which is about 2.71%. Besides, it can be deduced
from Fig. 13c that the grid VF estimation is correctly performed.

In the second test, the irradiation level varies gradually from 900 W/m2 to
600 W/m2 and then, changes to 200 W/m2 at the instant t = 0.9 s. The wind speed
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Fig. 14 The MPPT performance of the PVG in the second simulation test

Table 2 The Virtex-5 FPGA resources used by the PV local controller (P&O tracker with PI
controller)

Device resources Used Utilization (%)

Number of slice registers 196 0

Number of bonded IOBs 54 5

Number of slice LUTs 71 0

Number of BUFG/
BUFGCTRLs

1 3

Number of fully used LUT-FF
pairs

12 4

is maintained constant at the value VW = 10 m/s. As illustrated in Fig. 14, the P&O
controller converges rapidly to the correct MPP that correspond to each irradiation
level. This result validates the fixed point representation and the precision value
adopted for PVG data. Moreover, the Fig. 15 confirms that the static errors of the
d-axis and q-axis grid currents are eliminated thanks to the Backstepping control
action.
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Fig. 15 Performance of the VFOC control scheme in the 2nd test

Table 3 The Virtex-5 FPGA resources used by the PI controller of the q-axis stator current

Device resources Used Utilization (%)

Number of slice Registers 98 0

Number of bonded IOBs 79 8

Number of slice LUTs 72 0

Number of BUFG/
BUFGCTRLs

1 3

Number of fully used LUT-FF
pairs

23 15
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Fig. 16 Performance of the FOC and the VFOC schemes in the 3rd test
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Fig. 17 The MPPT performance of the PVG in the fourth simulation test

Table 4 The Virtex-5 FPGA resources used by the inverter control unit

Device resources Used Utilization (%)

Number of slice registers 1535 0

Number of bonded IOBs 207 21

Number of slice LUTs 2374 1

Number of BUFG/
BUFGCTRLs

1 3

Number of DSP48Es 54 28

Number of fully used LUT-FF
pairs

1050 36
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Fig. 18 The performance of the VFOC scheme in the fourth simulation test

In the third test, the wind speed varies from 12 m/s to 11 m/s (the irradiance
is maintained at the level of G = 1000 W/m2). The Fig. 16a proves the accuracy
of the Xilinx block sets of the FOC scheme, which gives good static and dynamic
performance. The decoupled control of the d-axis and q-axis stator current is achieved
as shown in Fig. 16a. Besides, the Fig. 16b illustrates that the PMSG torque converges
slowly to the optimal value that correspond to theMPPof theWTG.TheVF estimator
ensures the synchronization of the inverter current with the grid voltage as depicted in
Fig. 16c.Besides, the Fig. 16d shows that the ADALINE controller has successfully
stabilized the DC-link voltage to the desired set-point (400 V).

In the fourth test case, the PVG is simulated under varying temperature (see
Fig. 17a) and nominal insolation (G = 1000 W/m2). The wind speed stills constant
the value of 9 m/s. It can be seen from Fig. 17 that the adopted MPPT tracker based
on XSG performs very well. For each temperature, the optimal PV voltage value
is rapidly reached with acceptable steady-state oscillations. The results shown in
Fig. 18 validate the adopted VFOC scheme and the ADALINE regulator.

The Tables 2, 3 and 4 recapitulate the resources of Virtex-5(XC5VLX330T)FPGA
device used by some components of the studied control scheme.
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5 Conclusion

The goal of this chapter is to study the XSG based design method of a digital control
circuit of aHEGS for future FPGA implementation. The local controllers of the RESs
based on classicalMPPT algorithms are developed. Furthermore, the inverter control
tasks are assured using the VFOC scheme based on the Backstepping technique and
adaptive ADALINE regulator. The simplicity and the low consumption of FPGA
resources justify the choice of the adopted control techniques.

The XSG/Simulink simulation is accomplished in order to verify the correctness
and the validity of the developed control circuit. The simulation results show sat-
isfactory static and dynamic performance for different operating conditions. After
this study, we can pass directly to the experimental validation of the studied system
based on a FPGA platform.
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Artificial Intelligence for Photovoltaic
Systems

Rami Ghannam, Paulo Valente Klaine and Muhammad Imran

Abstract Photovoltaic systems have gained an extraordinary popularity in the
energy generation industry. Despite the benefits, photovoltaic systems still suffer
from four main drawbacks, which include low conversion efficiency, intermittent
power supply, high fabrication costs and the nonlinearity of the PV system output
power. To overcome these issues, various optimization and control techniques have
been proposed. However, many authors relied on classical techniques, which were
based on intuitive, numerical or analytical methods. More efficient optimization
strategies would enhance the performance of the PV systems and decrease the cost
of the energy generated. In this chapter, we provide an overview of how Artificial
Intelligence (AI) techniques can provide value to photovoltaic systems. Particular
attention is devoted to three main areas: (1) Forecasting and modelling of meteoro-
logical data, (2) Basicmodelling of solar cells and (3) Sizing of photovoltaic systems.
This chapter will aim to provide a comparison between conventional techniques and
the added benefits of using machine learning methods.

1 Introduction

According to the late Nobel laureate, Prof. Richard Smalley, energy is the most
important challenge facing humanity today [1]. Not only can solar energy help in
the democratization of energy, but it also has the potential to profoundly improve the
lives of communities worldwide. The Sun provides a tremendous source of energy
and has an important role to play in the energy generation mix of many nations. In
particular, photovoltaic (PV) technology is a mature, proven and reliable method for
converting the Sun’s vast energy into electricity.
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The Sun therefore provides a free source of energy, which can be harnessed and
converted into electricity using photovoltaic (PV) technology. PV technology has
the benefit of being modular and scalable. It can therefore be very quickly installed
in a wide range of locations. These locations can vary from conventional ground
installations to domestic and commercial buildings. However, among the challenges
in achieving widespread use of this technology is the price of solar electricity in
comparison to conventional sources of energy. Innovation into the development of
newmaterials and solar cell architectures is therefore important in order to help drive
the cost of solar electricity down and to develop new solar cells that can generatemore
electricity per unit area. However, thanks to advancements in computation capacity
and speed, artificial intelligence is now emerging as another effective technique to
help achieve these targets. We will focus on how AI can be applied to the field of
PV in three main areas, which are (1) Forecasting and modelling of meteorological
data, (2) Basic modelling of solar cells and (3) Sizing of photovoltaic systems.

Machine learning (ML) is an artificial intelligence technique that involves feeding
data to algorithms, which aim to figure out patterns in the data. Examples of AI
algorithms include Neural Networks (NN), Fuzzy Logic (FL), Simulated Annealing
(SA), Genetic Algorithm (GA), Ant Colony (ACO), Particle Swarm Optimization
(PSO) and Hybrid Techniques (HT). Consequently, the aim of this chapter is to
provide an overview of these AI techniques and to demonstrate how some of them
can be used to improve PV system performance in three areas.

2 Brief Introduction to Artificial Intelligence Techniques

Artificial Intelligence (AI) is a computational technique that is concerned with
designing systems, which are able to understand reason and solve problems in a
similar way to humans [2]. Nowadays, intelligent computing technologies are either
replacing conventional techniques or are being integrated into existing systems.

AI is a vast subject containing many topics and subdivisions. One particular topic
that has attracted increased attention is the field ofMachine Learning (ML), whereby
algorithms are designedwith the ability to learnwithout being explicitly programmed
to [3]. By using statistical techniques, these algorithms are capable of analysing an
input dataset in order to make useful predictions about missing or future data.

In general, ML solutions can be divided into the ways in which learning is per-
formed by the algorithms. There are three major branches, which are supervised
learning, unsupervised learning and reinforcement learning. The following sections
will provide a brief introduction to each ML branch, as well as an explanation into
how other AI algorithms have been used for various PV applications.
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2.1 Supervised Learning

With this type of learning, a supervisor or teacher is required to assist the algorithm
in learning its parameters. These algorithms require a dataset that has information
about both the input data as well as the output. During its learning phase, as the
algorithms try to make predictions about the dataset, the teacher corrects and guides
the algorithms in the right direction, making them improve over time.

In addition, supervised learning methods can be divided into two main categories,
depending on the output variable that they are trying to predict. If the output data is
a discrete variable, such as trying to determine if the next day will be sunny, cloudy
or rainy (Class 1, 2 or 3), then these cases are said to be a classification problem. On
the other hand, if the output required is a continuous or real value, such as trying to
predict the irradiation levels of a city during a specific time, or trying to determine
the best size of a PV panel, then the case becomes a regression problem [4].

Some examples of supervised learning algorithms include linear and logistic
regression, k-Nearest Neighbours, Neural Networks, as well as more robust algo-
rithms such as deep neural networks and their variations. Figure1 summarises the
concept of an Artificial Neural Network (ANN), which is inspired by biological
networks in the brain [5–9]. An ANN therefore contains three layers (input, hidden
and output), connections, biases, weights, an activation function and a summation
node. These weights and biases are important parameters that influence the output
function.

2.2 Unsupervised Learning

Unsupervised learning algorithms, on the other hand, do not re-quire a supervisor in
order to learn or make predictions about the input data. In this case, these types of
algorithms require only a dataset with input data and their goal is to correctly learn
a model that best represents the given data [4]. Consequently, since these algorithms
rely on finding patterns in the input data, unsupervised learning methods mainly
consist of clustering algorithms, such as K-means and self-organizing maps.

2.3 Reinforcement Learning

Lastly, the thirdmajor branch ofML is the field of reinforcement learning. In contrast
to the previous two fields, reinforcement learning algorithms rely on a goal seeking
approach, whereby the learner tries different actions in order to discover which ones
are best in achieving a certain goal [10]. Some examples of reinforcement learning
algorithms include Q-Learning and Monte Carlo methods.
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(a) ANN Prediction
Methodology

(b) Generalised ANN Model

Fig. 1 General ANN concept

2.4 Other Techniques

Other intelligent ML approaches include Expert Systems (ES), Fuzzy Logic (FL),
Simulated Annealing (SA), Genetic Algorithms (GA), Ant Colony (ACO) and Par-
ticle Swarm Theory (PSO). In contrast to conventional software programs that
solve specific tasks within a range of boundary conditions, Expert Systems (ES)
are designed to solve problems using the same approach as humans. An ES therefore
consists of two main parts: an inference engine and a knowledge base. The knowl-
edge base contains facts and rules, whereas the inference engine aims to apply these
rules and facts to infer new facts [11, 12].

Similarly, a number of optimisation techniques have been developed that were
inspired by nature. These include Genetic Algorithms (GA), which were first devel-
oped byHolland in 1975 and are based on the principles of genetics and evolution [13,
14]. Furthermore, Ant Colony (ACO) is another computational optimisation problem
that was inspired by the behaviour of ants in finding the shortest path from their nests
to their food. It was first formulated by Marco Dorigo in 1992 [15]. Here, ants lay
down there pheromones as they randomly move towards their food. The stronger the
pheromones, the more likely ants will follow that particular path. This technique is
nowadays used to optimise machine scheduling and telecommunications networks
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[16]. Other nature-inspired techniques include Particle Swarm Optimisation (PSO),
which is influenced by the swarm and flocking of birds [17–20].

Another optimisation technique that was introduced by Zadeh in 1965 includes
Fuzzy Logic (FL), which is a branch of computer logic that is different from Boolean
or classic logic [21]. In contrast to classic logic, which has binary values of 1 (true)
or 0 (false), Fuzzy Logic permits multiple intermediate possibilities within that set.
Fuzzy Logic is often used in combination with Expert Systems and Artificial Neural
Networks [22]. Moreover, Simulated Annealing (SA) is an effective optimisation
technique that was inspired by the process of heating and slow cooling of solids and
can be used for maximizing or minimizing a function [23, 24].

3 AI in PV Systems

We will demonstrate how AI has been successfully applied in three different appli-
cations of photovoltaics. With each of these applications, a comparison between
conventional and AI techniques is presented. The first step in PV system sizing and
modelling isweather forecasting. Consequently, it is only appropriate that this section
starts with the application of AI in weather forecasting.

3.1 Forecasting of Meteorological Data

Predicting the weather is of critical importance for determining the power output
of a PV system. Meteorological data such as solar radiation, ambient temperature,
humidity, wind speed and sunshine duration are among the vital input parameters.
These parameters play an important role in PV systemperformance. Instruments such
as a Pyranometer, Pyrheliometer and two-axis trackermust be used tomeasure global
and direct solar radiation. However, in some cases these parameters are impractical
to obtain due to two main reasons:

1. The PV system is located in a remote or isolated area, where the required input
data is not available.

2. The high cost and complexity of the equipment needed to measure these param-
eters.

A review of the role of AI in weather forecasting will be provided in this section.
The main objective is to review some of the successfully implemented techniques in
the literature and to present some of our own techniques for predicting solar radiation.
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Fig. 2 Different components of solar radiation

3.1.1 Important Concepts

First, it is perhaps important to introduce a few key concepts related to the Sun, which
is often regarded as a giant thermonuclear reactor that runs on hydrogen fuel. The
Sun radiates energy in all directions in the form of electromagnetic radiation [25].
When describing the Sun’s energy, there are four commonly used parameters in the
PV community:

• Solar Irradiance - This is a term that describes the intensity of solar power per unit
area. Its units are therefore in W/m2.

• Solar Irradiation - This is the total amount of solar energy collected per unit area
over time (Wh/m2).

• Insolation - This describes the amount of solar irradiation collected during one
day (kWh/m2/day).

• Solar Constant - This is the average amount of solar irradiance that arrives above
the Earth’s atmosphere, which is approximately (1353W/m2) [25].

Consequently, due to atmospheric effects, there are four main types of solar radi-
ation, which are Direct, Diffuse, Reflected and Global radiation. Figure2 illustrates
the various types of solar radiation. The global solar irradiation (GT ) on the Earth’s
surface is the sum of three main components:

GT = GB + GD + GR (1)

where GR, GD and GB are the components of reflected, diffused and direct solar
radiation. At normal incidence to the Earth’s surface, GR can be neglected, which
means that GT = GB + GD.

On a clear day and when the Sun is directly overhead, almost 70% of the incident
solar radiation reaches the Earth’s surface. The magnitude of solar radiation that is
scattered or absorbed depends on the amount of atmosphere it must travel before
reaching the Earth’s surface [25]. Consequently, Air Mass (AM) depicts the relative
distance that solar radiation must travel to reach the Earth’s surface. Thus, AM =
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Fig. 3 Explanation of AM0, AM1 and AM(secθ)

1/cosθ = secθ , where θ is the zenith angle, as shown in Fig. 3. Similarly, Air Mass
One (AM1) refers to the thickness of the atmosphere a sunbeam passes through at
normal incidence to the Earth’s surface. A list of accepted values of solar flux at
AM1 can be found in [25], where the direct solar radiation at standard sea level is
considered 0.930kW/m2.

Mathematically, we are able to predict the intensity of the Sun’s energy arriving
at a point on Earth using the Meinel and Meinel approximation [26]:

I = 1.353 × 0.7(cosecα)0.678 (2)

where cosecα = 1/sinα. The solar latitude, α, is the angle between the Sun’s rays
and the horizon. Thus, the light intensity is maximum when α = 90◦. Therefore,
from Eq.2, Imax = 0.95kWm−2 [27].

Experimentally, the measurement of solar irradiance requires specialist equip-
ment. For example, to measure global solar radiation, a Pyranometer is needed,
which is usually mounted horizontally away from tall objects that may obstruct its
field of view. Since the Sun contains a spectrum of different wavelengths, the best
instruments are designed to respond equally to all wavelengths. Due to its ease of
use, Pyranometers are widely used for collecting the vast majority of solar insolation
data [25].

Furthermore, a ring-shaped hoop may be added to the Pyranometer in order to
exclude direct sunlight. This process permits the measurement of diffuse sunlight.
When this reading is subtracted from the data collected by a standard Pyranometer,
the result is the direct solar radiation. This instrument is called the Shaded-ring
Pyranometer [25].

Similarly, to measure direct solar radiation, a Pyrheliometer is used. The Pyrhe-
liometer has a small field of view, which is approximately 6◦. It is usually mounted
onto a dual axis Sun tracker in order to continuously measure the Sun’s direct normal
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radiation. Pyrheliometers are often needed to predict the performance of concentrator
photovoltaic systems, which also require the use of dual axis trackers [25].

3.1.2 Machine Learning for Weather Forecasting

This section deals with how ML techniques can be used for predicting the amount
of solar radiation. The authors in [8] compared four different ANN techniques for
predicting the components of diffused and global solar radiation in Kuala Lumpur.
Themain input parameters to these networks included constants such as the longitude
and latitude coordinates of Kuala Lumpur, as well as artificially generated variations
in humidity, temperature and daily sunshine ratio. 80% of this data was used for
training, while the remaining 20% was used for testing. According to their study,
the GRNN technique provided the most accurate prediction results in comparison
to the Feed-Forward back propagation Neural Network (FFNN), the Elman Back
propagation Neural Network (EBNN) and the cascade-forward back propagation
neural network (CFNN).

The literature provides more examples of using neural networks for prediction
purposes. In each case, four parameters were chosen as inputs to a neural network
for predicting a particular aspect of the weather. For example, the authors in [28, 29]
used ANNs for predicting global solar radiation in Saudi Arabia using data collected
from 41weather stations. The input parameters to their network included the latitude,
longitude and altitude, as well as the sunshine duration. Their network also consisted
of 10 hidden layers andwas tested using data from 31 cities. The prediction results for
the remaining 10 cities showed aMean Absolute Percentage Error (MAPE) variation
between 6.5 and 19.1%. Similarly, the authors in [30] trained a neural network with
77% of data from a weather station in La Sirena. Wind speed, air temperature, soil
temperature and humidity were used as inputs and the Average Absolute Relative
Deviation (AARD) was <9%. Similarly, the feed forward multilayer perception
model was used to predict global and diffuse radiation in Malaysia using longitude,
latitude, day number and sunshine ratio [31]. 82% of data from 28 different weather
stationswas used for training,while the remainderwas used for testing. Their network
consisted of one hidden layer and the calculated Root Mean Square Error (RMSE)
was 7.96%. More accurate prediction can be obtained by increasing the number of
inputs and the number of hidden layers in a neural network. This was achieved by
Mellit and Pavan in [32], whereby the correlation coefficient between experimental
and predicted values varied between 95 and 98%. A thorough review of these ML
techniques can be found in in [7, 33].

Similarly, we have applied a supervised learning technique for predicting the solar
irradiation levels for a location in the city of Beijing, China. Beijing Sunda Solar
Energy Technology Company collected the data over the period of two years [34].
Consequently, we were able to design a Support Vector Machine (SVM) regression
model that is able to predict, to a certain extent, the irradiation levels for the next
couple of days. The data collected consisted of solar radiation levels for the months
of January and July of 2007, with measurements taken for the whole 31days of each
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Fig. 4 Predictions of the SVMmodel using data from 3 previous days to predict the solar radiation
levels of the next day

month in intervals of one hour. Based on that, we designed a SVM model that took
as inputs the radiation level of previous days in order to predict the radiation levels
of the next day.

Given this model, different time horizons were tested, in which the algorithm
could consider the solar radiation levels of either one, three, or five previous days
in order to predict the levels of the next day. The approach that yielded the best
results was considering the previous three days. In addition, the dataset was split into
training and test data, in which 51days were utilized to train the network and the
remaining 7days were used to test it (some days were not accounted because of the
time horizon).

Figure4 shows our results of the proposed solution using the best approach for
one week of test data. Both the real and predicted values of solar radiation are
shown. A comparison with other regression techniques was performed, including
the Regression Tree and the Tree Ensemble. It was found that the SVM technique
provided best fit with the actual data, whereby the Root Mean Square Error (RMSE)
was 12.41% and the Mean Absolute Error (MAE) was 6.95%. A summary of the
results is presented in Table1.
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Table 1 Comparison between different regression methods

Model RMSE (%) MAE (%)

SVM 12.41 6.95

Regression tree 21.36 11.72

Tree ensemble 22.46 11.71

3.2 Modelling of Solar Cells

A mathematical model that accurately describes a solar cell is an invaluable tool
for better understanding the characteristics, performance and optimization of a PV
cell system. Consequently, having introduced the conventional and AI techniques
for solar radiation forecasting, it is now important to familiarise the reader with the
concept of a solar cell.

3.2.1 Solar Cell Theory

A solar cell (SC) is a basic device that is used to convert the Sun’s energy into
electricity. Ultimately, semiconductor materials are commonly used for the purpose
of producing currents and voltages as a result of the absorption of sunlight, which is
a phenomenon known as the photovoltaic effect. Most solar cells are fabricated from
eithermonocrystalline or polycrystalline silicon (Si)materials. In itsmost basic form,
a solar cell consists of a pn junction diode. Typical solar cell efficiencies range from
18% for polycrystalline to 24% from highly efficient monocrystalline technologies.
These high end devices typically include special light trapping structures that absorb
as many of the incident photons as possible.

Figure5 shows the basic operation principles of a solar cell, which was adopted
from the literature in [27]. Both drift and diffusion of carriers takes place across
the depletion region of width, W . The built-in electric field E0 in this depletion
layer prevents further diffusion of minority carriers. The finger electrodes on the
surface of the n-type semiconductor material allows light to penetrate into the device.
Furthermore, these electrodes result in a small series resistance. The photogenerated
electron hole pairs in the depletion region become separated by the built-in electric
field, E0. Through the process of drift, electrons reach the neutral n-region and make
it negative by an amount of charge −q. Similarly, holes drift to the p-region, which
effectively turns that regionmore positive. Consequently, an open circuit voltage,Voc,
develops between the terminals of the device, whereby the p-region is positive with
respect to the n-region. The total current flowing through a solar cell can determined
using Kirchhoff’s law, whereby:

I = Iph − Id (3)
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Fig. 5 The basic principle of operation of the solar cell, as depicted by Kasap in [27]

Here, Iph is the photocurrent, Id is the diode current, which is proportional to the
saturation current by the following relationship:

Id = Io × (eV/ηVt − 1) (4)

where Io is the reverse saturation current, V is the voltage imposed on the diode
and Vt is the thermal voltage, Vt = kT/q, where k is the Boltzmann constant, q is
the charge and T is the temperature. Similarly, the diode ideality factor, η, typically
depends on the type of solar cell technology used. For the case of monocrystalline
silicon, this is usually η = 1.2 [35].

In reality, photogenerated electrons need to travel across a semiconductor region
in order to be collected by the nearest electrode. Consequently, an effective series
resistance,Rs, is introduced in the photovoltaic circuit. Similarly, photogenerated car-
riers flow through the crystal surfaces or through grain boundaries in polycrystalline
devices. These effects can be described in terms of a shunt resistance, Rp, which
drives photocurrent away from the load, RL. Consequently, the equivalent electrical
circuit representation of a typical solar cell can be modelled as shown in Fig. 6 [27,
36].

Thus, from Fig. 6, an expression for the total output current of the cell, I , can be
deduced:

I = Iph − I0(e
q(V+IRs)/ηkT − 1) − ((V + IRs)/Rp) (5)

where q is the electric charge, V is the voltage, k is the Boltzmann constant and
T is the cell temperature in Kelvins, K. Consequently, we can determine the I − V
characteristics of a SC as a function of input solar radiation, series resistance and
shunt resistance.
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Fig. 6 Electrical circuit representation of a an ideal solar cell and b practical solar cell with series
and shunt resistances

3.2.2 Machine Learning for Solar Cells

The accurate modelling of a solar cell involves the prediction of five important
parameters, which are η, I0, Rs, Rp and Iph. Numerical and analytical techniques have
been proposed to extract these parameters. However, since the I − V relationship
is highly non-linear, many algorithms suffered from drawbacks. For example, the
non-linear least error squares approximation approach by the authors in [37] was
strongly dependent on the choice of initial values. Other analytical methods suffer
from heavy computation complexity, algebraic manipulation and curve fitting [38].
Consequently, we will examine the machine leaning techniques that can be used for
parameter extraction. We will focus on three techniques, which are the Simulated
Annealing approach, the Harmony Search approach and the use of ANNs.

Among the successful techniques that have been proposed is a neural network
method by the authors in [39]. Their research relied on two different approaches. The
first involves generating I − V curves using the Sandia National Laboratory (SNL)
PV performance model for different operating temperatures and solar irradiation
[40]. Later, five points are chosen from these I − V curves, which are located at
V = 0, Voc/2, Vmp, ((Voc + Vmax)/2), Voc. Here, Voc is the open-circuit voltage and
Vmax is the maximum voltage. According to Sandia, these five points represent an
accurate representation of the I − V curve.

The authors in [39] then trained the neural network with 191 operating conditions
of temperature and radiation. The five solar cell parameter were determined using
Eq.5 and the solar cell equations in SNL. Subsequently, the five extracted parameters
were then fed into the one diode solar cell model to obtain the I − V characteristics
of a PV module, as depicted in Fig. 7.

The second approach involved generating the I − V curves experimentally and
determining the five operating points using the SNL model. This was done using a
solar panel, an electronic load, a computer controlled I − V tracer and a weather
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Fig. 7 PV model approach
that was adopted by [38]

station. Different values of irradiance and temperature were obtained by triggering
the I − V tracing at different times throughout the day.

The neural network was trained to identify the five equivalent circuit parameters
from 41 I − V curves. The network was tested on 8 curves. Despite the ease of
setting up this experimental facility, a drawback of this technique is that it was not
possible to decouple the effects of temperature and radiation. For example, it was not
possible to determine the percentage error at a module temperature of 25 ◦C and an
irradiation level of 850W/m2, since irradiation levels caused an increase in module
temperature. Nevertheless, a percentage error of 1.2% in Vmp at an irradiation level
of 851W/m2 and a temperature of 46.7 ◦C was achieved, which is approximately
three times more precise than the conventional model described by the Townsend
equations in [41, 42].

Othermachine learning techniques include the simulated annealing (SA) approach
by the authors in [43],which is comparedwith theGAandPSOprediction techniques.
An objective function was defined and minimised. Their results were compared with
experiments and a Root Mean Square Error (RMSE) of 0.0017 was achieved for the
single diode solar cell model.

In comparison, the authors in [44] showed that the Harmony Search (HS) opti-
misation process provides better results. Here, HS is an optimization technique that
aims to imitate the improvisation process of musicians. According to their research,
an objective function based on the single diode model was minimised with respect to
a particular range. Consequently, the HS technique was able to extract the five solar
cell parameters with a lower RMSE than the SA technique by a factor of 0.075.

3.3 Sizing of PV Systems

Determining the size of a PV system for a particular application in order to yield the
best return on investment (ROI) is of paramount economic importance. Generally, the
main techniques for sizing a PV system rely on empirical, analytical and numerical
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methods. Most importantly, to ensure that the sizing method is accurate, the weather
data for the particular location in which the system will be installed is essential.
Consequently, all the aforementioned techniques are ineffective for PV system sizing
applications in remote or isolated locations, where the required data is not available.
Thus, to overcome this hindrance, AI techniques may be used.

In addition to the weather data, a system designer must understand the end user
requirements and be aware of any government incentives or policies. Generally, sys-
tem design entails optimising the size of the solar array, the size of the battery bank,
the current rating of the charge controller and the size of the DC to AC inverter.
Furthermore, the system designer must be aware of how PV system will be used. For
example, will the system be used for the electrification of a village, for a telecommu-
nications application, or for water pumping? To avoid economic waste, PV system
sizing is an application oriented optimisation process that aims to meet a certain
load requirement for the expected lifetime of the system [45]. In this section, partic-
ular attention is attributed to determining the Loss of Load Probability (LLP) of a
stand-alone PV system. Comparisons between AI predicted results with other sizing
methods will be made.

3.3.1 Introduction to PV Systems

A photovoltaic array (or string) is a combination of photovoltaic modules that are
connected in series in order to obtain the desired system voltage. Subsequently,
these strings are connected in parallel to increase the system’s output power [46].
A photovoltaic installation mainly consists of an array of photovoltaic modules or
panels, an inverter, batteries (for off grid) and interconnection wires. However, the
balance of system (BOS) components in a PV system include mounting materials for
the modules, wires, distribution panel, junction box, lighting protectors, grounding
connections, battery fuses, battery cables and battery containers. In general, PV
systems can be grouped into grid connected or autonomous (or stand-alone) systems.

A standalone or autonomous PV system is not connected to the national electricity
grid. Such systems were the first application of PV, where there was no electricity
supply fromanational grid.Applications of these systems range frompocket chargers
to large water pumping systems. Figure8 illustrates the main components of this
system, which are:

• PV Module - An interconnected array of solar cells.
• Charge Controller - Also known as a charger regulator, which aims to control the
rate of current flow into and out from storage batteries. This is done to prevent
overcharging anddeepdischargingof the battery,which can severely reducebattery
performance and lifetime.

• Battery Bank - Batteries are the heart of an autonomous solar electric system.
They are the reservoir for storing electrical energy. The size of a battery is mea-
sured in terms of its storage capacity in Ampere-Hours (Ahr). There are different
types of battery technologies, including Lithium Ion, Lead Acid, Nickel Cadmium
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Fig. 8 Stand-alone or autonomous PV System. The illustration shows two possible configurations.
In the DC coupled configuration, DC loads are directly connected to the charge controller. In
contrast, AC loads require an inverter

and many others. The depth of discharge (DOD) is the amount a solar battery is
discharged.

• Inverter - This device is responsible for converting the PV panel’s direct current
(DC) into an alternating current (AC) that can be fed into a commercial electrical
grid, or to be used in a stand-alone system.

• Loads - These can be a combination of either DC or AC appliances that are con-
nected to the system. The vast majority of present day appliances require AC
power. DC coupled systems do not require AC converters, which reduces overall
system cost and increases system efficiency.

3.3.2 Sizing Autonomous PV Systems

In this chapter, particular attention will be devoted to sizing autonomous or off-grid
PV systems. This can be achieved in a number of different ways, as depicted in Fig. 9.
The first is called the Intuitive Method, which relies on the PV designer’s experience
in sizing the PV array and the battery bank. Another is called the Numerical Method,
which is more accurate than the Intuitive Method, but requires a large dataset of
solar radiation values, which makes them complex to use [47]. Similarly, the Ana-
lytical Method involves describing the sizing problem as a function of the Loss of
Load Reliability (LLR). In this section, we shall illustrate the most commonly used
techniques in the literature for PV system sizing.

In brief, the Intuitive Method involves estimating the daily load demand, optimiz-
ing the tilt angle, calculating the size of the PV array and determining the size of the
battery bank. By using simple mathematical equations, the size of the PV generator
and battery bank can be determined [45]. Similarly, the size of the inverter can be
determined by considering its efficiency and the maximum AC power it can deliver.
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Fig. 9 Standalone PV
System sizing techniques

This technique has been used for the optimum sizing of residential PV systems in
Egypt [48] and in Bangladesh [49].

The Intuitive Method first relies on estimating the daily load demand and opti-
mizing the tilt angle before calculating the PV array size and battery capacity. The
equations for calculating these two parameters are similar to those in [45]. Figure10
provides a summary of the main steps involved in sizing a stand-alone PV system
intuitively. From Fig. 10 and assuming that all the modules in the system are iden-
tical, N is the number of modules, ηpv is the efficiency of the PV module, APV is
the effective area of a single PV module and Gt is the global incident irradiation.
Moreover, Naut is the number of days of autonomy and DODmax is the maximum
depth-of-discharge of the batteries. The number of batteries (parallel) is Nbatt and
Spk−hr is the peak Sun hours for the worst calendar month of the year.

Having determined the size the PV generator and the capacity of the battery
bank, the remaining PV system components need to be configured. For example,
the simplest method to calculate the size of an inverter is to take the PV module
peak power and divide this by the nominal AC efficiency of the inverter, Pinv,AC =
Ppv/ηinv [26]. Similarly, charge controllers and cable cross-sections need to be sized
accordingly. In this case, cable cross-sections need to be designed to deliver the least
amount of voltage drop. Article 690 in the National Electric Code (NEC) describes
the recommendations for PV wire gauge sizing the current protection mechanisms
necessary in a PV system [50].

Nevertheless, the Intuitive Method is best used as a quick technique for approx-
imating or validating the size of a PV system. It needs to be combined with other
techniques to avoid over (or under) sizing of an autonomous system. Consequently,
it can be combined with analytical and experimental methods, as demonstrated by
the authors in [51] for a system in India. Their work relied on developing an itera-
tive algorithm that takes into consideration the number of days of autonomy, system
efficiencies, DODmax, battery cut-off voltages, cable losses, PV mismatch losses
and the dust factor. Depending on the load profile, it was possible to reduce system
investment requirements by 14%.

Advanced simulation software can also be used for PV system sizing. Currently,
there are software tools that help engineers design PV systems. Examples of these
tools include RETScreen, Homer, PVSyst, PV*Sol and Polysun. The majority of
these tools rely on a combination of mathematical and analytical methods for PV
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Fig. 10 Flow chart for the intuitive method of PV sizing
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Systems sizing. A system designer may also use these tools in combination with one
another in order to meet a particular design requirement.

3.3.3 AI and PV Sizing

Among the first efforts into using neural networks for PV system design was per-
formed by the authors in [19, 52] in 2005. A comparison between conventional sizing
methods and ANN is provided in [53]. Furthermore, a parameter known as the loss
of load probability, LLP, was simulated for different cities in Spain and the aim of
their research was to be able to generate any LLP curve for any city in Spain. The
LLP is a term that defines the ratio between energy deficit and energy demand. In
fact, the LLP represents how often the PV and/or storage system will not be able to
satisfy the load. Thus,

LLP =
∫ t
0 Energy Deficit∫ t

0 Energy Demand
(6)

For the research presented in [52, 53], the LLP was simulated for different cities
in Spain. Naturally, each city has a different clearness index throughout the year.
Consequently, these two parameters in addition to the battery capacity were fed into
a multilayer perceptron (MCP) neural network. Different tests were carried out by
the authors to investigate the best number of neurons in the hidden layer. The network
was trained on the data of seven Spanish cities and were validated with the data from
3 other cities. Their test showed that 9 hidden nodes were needed in order to obtain
the value of the generator capacity ratio, CA.

The use of neural networks for SAPV system sizing has also been investigated
extensively by the authors in [54–56]. Their technique involved feeding a number
of numerically calculated parameters into the neural network in order to predict
the number of solar PV modules and storage capacity needed to satisfy a given
consumption. A block diagram of their system is shown in Fig. 11.

The input parameters to theirmodel are the latitude and longitude,while the output
parameters are the optimum sizing coefficients of the PV panels, fp, and the battery

Fig. 11 Method of obtaining the sizing parameters of an autonomous PV system, as defined by
Mellit in [54]
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capacity, up. Furthermore, The LLP is the Loss of Load Parameter, whereas CA is
the ratio of average PV generator production during the worst calendar month to the
average load energy demand. Similarly, the storage capacity of the battery bank, Cs,
is defined as the ratio of maximum storage energy to the average load energy demand
[47].

Consequently, both CA and Cs can be determined from:

CA = ηpvpApvGav

L
(7)

CS = C

L
(8)

where Apvp is the total area of the PV generators, ηpv is the PV module efficiency,
Gav is the average daily global irradiation, L is the average daily energy consumption
and C is the battery bank capacity. The output parameters of the system are the PV
array area (Apvp) as well as the useful battery capacity (CUP).

Additional AI methods include an investigation that involves the use of fuzzy
logic (FL) for optimizing the PV generator area and the size of the battery bank
for an autonomous PV system located in Sfax, Tunisia [57]. Furthermore, hybrid
optimisation techniques involving the merge of genetic algorithms (GA) and neural
networks were also investigated by Mellit [58, 59]. A complete review of AI tech-
niques for PV system sizing is provided by the same author in [56], as well as by the
authors in [60].

4 Summary

VariousAI techniques havebeen applied to threemainPVapplications,which include
(1) Forecasting and modelling of meteorological data, (2) Basic modelling of solar
cells and (3) Sizing of photovoltaic systems. In the case of solar radiation fore-
casting, it has been shown that AI can be used for the accurate prediction of solar
radiation in the city of Beijing. Other scholars in the literature have successfully used
various AI techniques for predicting the weather conditions of any geographic loca-
tion. Consequently, AI techniques can then be extended to any geographic location.
Furthermore, the estimation of energy production for a PV system has been shown
using both conventional and AI techniques. Again, the results show the accuracy of
AI techniques in comparison to analytical methods. Consequently, the chapter has
illustrated howAI can be used to not only predict, but to accurately fill in the missing
gaps of important information.
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Applications of Improved Versions of
Fuzzy Logic Based Maximum Power
Point Tracking for Controlling
Photovoltaic Systems

R. Boukenoui and A. Mellit

Abstract Many local and global fuzzy logic based MPPT methods have been pro-
posed to seek the solar Photovoltaic (PV) system’s MPP. In this chapter, various
improved FL-MPPTs which have been proposed over the years are introduced, their
advantages and disadvantages are also clarified. Local MPPTs (LMPPTs) based on
improved versions of FL are presented in detail, including Modified Hill Climbing–
FL Controller (HC–FLC) and Adaptive P&O–FLC. Then, based on simulation and
experimental results, a comparative study is done by employing the main assessment
criteria to figure out the relative merits and limitations of those MPPTs in tracking
the maximum power . The last part of the chapter introduces advanced Global MPPT
techniques based on FL to track the GMPP of complicated shading patterns. A per-
formance comparison of those GMPPTs is done and useful information on how to
choose a suitable MPPT depending on the application intended, are outlined.
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COG : Center Of Gravity
ECOA : Extended Center Of Area
FL : Fuzzy Logic
FLC : Fuzzy Logic Controller
GA : Genetic Algorithm
HC-FLC : Hill-Climbing Fuzzy Logic Controller
HC : Hill-Climbing
InCond : Incremental Conductance
LMPP : Local Maximum Power Point
LMPPT: Local Maximum Power Point Tracking
MPPT : Maximum Power Point Tracking
PSCs : Partial Shading Conditions
P&O : Perturb and Observe
PV : Photovoltaic
P–V : Power-Voltage characteristic curve
PWM : Pulse Width Modulation
SA : Simulated Annealing

1 Introduction

Electricity extracted from green sources has received a great attention thanks to its
sustainability and environmentally friendliness [1]. Photovoltaic (PV) systems have
recently witnessed a big growth and concern as they are noiseless and almost no
maintenance is required [2].

Considering Uniform Conditions (UCs), there exists on the Power–Voltage (P–V)
characteristic curve of the PV Generator (PVG) only one maximum power point [3]
Fig. 1a.

As confirmed by many studies [4], the non–uniformity of irradiance can reduce
significantly the output power of a PV generator . Hence, bypass diodes should be
connected in parallel within PV modules to avoid thermal destruction [5]. However,
inserting bypass diodes will result in multimodal P–V curve that exhibits a single
Global MPP (GMPP) and one or many Local MPPs (LMPPs), as shown in Fig. 1b.

Various solutions have been adopted in the literature, which can be classified
mainly into two groups, hardware and software solutions. Hardware solutions com-
prise (1) Array connections [4–6], (2) PV system architectures [7] and (3) circuit
topologies [8, 9]. Software solutions are related to MPPT methods that properly
ensure tracking the real MPP and hence improving the overall efficiency of PV sys-
tems [10, 11]. This can be achieved by associating a MPPT controller to a DC–DC
converter in order to adjust the duty cycle to much the load. The choice of one of
the existing converters (type: Buck, Boost or Buck–Boost) depends on the voltage
required by the load and the MPPT technique to be used with it. The control parame-
ter provided by aMPPT controller is the duty cycle, it is used as an input of the Pulse
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Fig. 1 P–V characteristics curve of a PVG a under UICs b under PSCs

Width Modulation (PWM) generator. The latter generates a PWM signal to control
the switch of the DC–DC converter for maximum power extraction.

Conventional MPPTs such as Perturb and Observe (P&O), Incremental Conduc-
tance (InCond) and Hill Climbing (HC) are fundamentally based on the fact that the
derivative of power with respect to either voltage or duty cycle is null at the MPP of
PVG.

The new trend of research works is the integration of Artificial Intelligence (AI)
techniques for modelling, optimization, prediction and control of renewable systems
to harvest their maximum energy [12], especially, in the field of PV energy applica-
tions [13]. The fast convergence time and the high tracking accuracy are the principal
advantages of MPPT controllers based on AI techniques. Conventional MPPTs and
FL-MPPTs are both belong to LMPPTs. In this context, Many researchers have
addressed the problem of Partial Shading by developing GMPPT techniques such
as: soft computing and hybrid MPPTs. Some FL-MPPTs have been hybridized with
other methods to escape LMPPs and hence properly identified the global peak under
partial shading conditions (PSCs).

In this chapter, an attempt is made to present some local and global MPPTs based
on improved versions of FL for enhancing the PV system performances. Clarifying
their effectiveness in tracking the right MPP was the main focuses of this work. It is
hoped that this chapter will help PV professionals and system designers.

2 LMPPTs Based on Improved FL

Fuzzy Logic has no need for an accurate mathematical model. Moreover, it can
provide a high performance in controlling non–linear systems of arbitrary complexity
by integrating the human experience into the control design process [13] see Fig. 2.
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Fig. 2 Block diagram of FLC algorithm

Fig. 3 A stand–alone PV system controlled by modified HC–FLC MPPT

2.1 Modified HC–FLC [14]

Modified HC–FLC MPPT shown in the Block diagram of Fig. 3 has been designed
by Alajmi et al. [14] for standalone PV systems to address the main limitations of
conventional HC.

The inputs of Modified HC–FLC are:

ΔPpv(n) = Ppv(n) − Ppv(n − 1) (1)

ΔIpv(n) = Ipv(n) − Ipv(n − 1) (2)

Equation3 represents the FLC output which is the boost DC–DC converter

ΔD(n) = D(n) − D(n − 1) (3)

The inputs (ΔPpv, ΔIpv) and the output (ΔD) are divided into 4 fuzzy logic
subsets, which results in 16 fuzzy rules Fig. 4. The fuzzy logic inference employs
Mamdani’s Min–Max inference system which is shown in Table1.
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Fig. 4 Membership functions: inputs a ΔPpv, b ΔIpv and c the output ΔD [14]

Table 1 Fuzzy rules of modified HC–FLC [14]

ΔPpvΔIpv NB NS PS PB

NB PB PB NB NB

NS PS PS NS NS

PS NS NS PS PS

PB NB NB PB PB

2.2 Adaptive P&O–FLC [15]

Zainuri et al. [15] designed an Adaptive P&O–FLC with 25 fuzzy rules that can
operate only with a boost converter, to eliminate oscillations around the MPP and
increase the PV system efficiency. As cab be seen from Fig. 5, the FLC inputs are
the differential power and differential voltage, Eqs. 4 and 5, respectively;

ΔPpv(n) = Ppv(n) − Ppv(n − 1) (4)

ΔVpv(n) = Vpv(n) − Vpv(n − 1) (5)

ΔD(n) = D(n) − D(n − 1) (6)

Figure6 shows the membership functions (Table2).
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Fig. 5 Diagram of a SAPV controlled by Adaptive P&O–FLC MPPT

Fig. 6 MFs: a inputs ΔPpv, and ΔVpv b the output ΔD [15]

Table 2 Fuzzy rules of adaptive P&O–FLC [15]

ΔPpvΔVpv N ZE PS P PB

N ZE PS P PB PB

ZE ZE ZE PS P PB

PS N ZE ZE PS P

P N N ZE ZE PS

PB N N N ZE ZE

2.3 Simulation Results and Comparison

To evaluate the MPPT algorithms, one PV module type KYOCERA KD210 of 210
W maximum power is used. Table3 reports the electrical specifications.

Figure7a shows waveforms of the extracted power by the three investigated
MPPTs at G = 1000W/m2, and T = 25 oC .

Figure7b shows waveforms of the extracted power by the three investigated
MPPTs when the PVG undertakes variation of irradiance.

According to Fig. 7 and Table4, it can be noticed that Modified HC–FLC per-
forms better control than conventional P&O. The FL used by the Modified HC–FLC
contributes in the complexity reduction (16 rules) compared to that of Adaptive
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Table 3 Electrical characteristics of KYOCERA KD210

Designation KYOCERA KD210

(Pmax) 210W

(VMPP) 26.6V

(IMPP) 7.9A

(Voc) 33.2V

(Isc) 8.58A

NC 54 cells

Technology of cells Multi–Crystalline silicon

Fig. 7 ThePVoutput power of the investigatedMPPTsa at STCbunder fast variations of irradiation
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Table 4 Comparison of the modified HC–FLC, adaptive P&O–FLC and Conventional P&O

Evaluated indices Conventional P&O Modified
HC–FLC [14]

Adaptive P&O–FLC
[15]

Response time Slow Medium Fast

Static error 1.1 W 0.3W Negligible

Tracking technique P&O FLC–16 rules FLC–25 rules

Tracking efficiency 99.47% 99.85% 99.99%

Complexity level Low Low to medium Medium

Control variable Voltage Duty cycle Duty cycle

Dependence on the
PVG parameters

No No No

Initial parameter
settings

1 parameter (The
perturbation step size
ΔVref)

3 parameters (3 scaling
factors of the FLC
inputs and output)

3 parameters (3 scaling
factors of the FLC
inputs and output)

Fig. 8 Test facilities

P&O–FLC (25 rules). It can be observed that the improved P&O–FLC better to
other MPPTs in terms of tracking efficiency and convergence time . It can be seen
that three initial parameters need to be tuned by Adaptive P&O–FLC and Modified
HC–FLC, whereas P&O needs the tuning of a single parameter.

2.4 Experimental Results and Comparison

Figure8 shows the used test facility. A PVmodule of 10W receives light from a lamp
as shown in Fig. 9. Its electrical specifications at STC are reported in Table5.
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Fig. 9 The investigated PV module

Table 5 Electrical characteristics of P.A.Hilton Ltd 10M

Designation P.A.Hilton Ltd 10M

(Pmax) 10W

(VMPP) 17.9V

(IMPP) 0.56A

(Voc) 22.1V

(Isc) 0.58A

NC 36 cells

As shown in Fig. 9, the investigated PV module is facing towards the lamp to
get the maximum of light (G = 858W/m2, getting from solar irradiance meter mea-
surement). The output Ipv, Vpv and Ppv are swept and the measured waveforms are
shown in Fig. 10a. With reference to the last figure, the exact MPP is around 8.4W.

Measured Ipv, Vpv and Pv extracted by P&O, modified HC–FLC and adaptive
P&O–FLC are illustrated in Fig. 10b, c and d, respectively. form the above figure, it
can be observed that the investigated MPPTs achieve an operating point around the
MPP (8.4W). The improved P&O–FLC and Modified HC–FLC present negligible
power ripples in steady–state condition. Therefore, the tracking efficiency is high.
The power extracted by P&O is so affected by ripples, which in turn affects the
accuracy in tracking the MPP.
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Fig. 10 Experimental waveforms of Ipv (cyan), Vpv (orange) and Ppv (red), a the swept charac-
teristics b P&O c Modified HC–FLC MPPT d Adaptive P&O–FLC MPPT, under G = 858W/m2

2.5 Other LMPPTs Based on Improved Versions of FL

In recent years, many MPPTs based on FL have been proposed to improve the PV
system performance. Table6 shows a summary of FL related research for MPPT
applications.

3 GMPPTs Based on FL

A PVG may be constituted some PV modules connected together to form an array.
when the PVG receives a uniform irradiance, the resulting P–V curve exhibits one
MPP. However, the case in which different parts of it are partially shaded, so the P–V
curve exhibits some power peaks. It is very likely that conventional MPPTs will be
trapped on LMPP, resulting in extra power losses.

Due to the advantages of FL in the field of control, it has gained attention from
researchers to be employed in the study of GMPPTs for partially shaded PVGs.
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Table 6 Summary of MPPT techniques based on FLC

Reference Inputs Control
variable

Number of
rules

Power
condition-
ing
type

Remarks

Simoes et al. [16] Two ΔD(k)
(the duty
cycle
change)

15 fuzzy
rules

Boost
converter

The convergence time has
been improved. However,
the system performs poorly
in steady–state conditions

Won et al. [17] Two ΔD(k)
(the duty
cycle
change)

25 fuzzy
rules

Boost
converter

The main limitations of this
FLC are: poor performance
in steady–state condition
and divergence

Masoum et al. [18] Three ΔD(k)
(the duty
cycle
change)

75 fuzzy
rules

Buck
converter

This FLC is designed by
combining the FLC
presented in [16] to that of
[17]. The main limitation of
this FLC lies in the huge
number of rules

Kottas et al. [19] Two ΔD(k)
(the duty
cycle
change)

25 fuzzy
rules

Boost
converter

This FLC aims to deal with
the poor dynamic
performance resulted in
[17]. To this end, fuzzy
cognitive network has been
designed in order to be
combined with the FLC of
[17]. numerical simulations
reveal that the convergence
time is enhanced compared
to [17]. However, This
solution is not cost effective
since its needs an additional
current sensor and switch to
be parallel connected with
the PV system

Wu et al. [20] Two ΔD(k)
(the duty
cycle
change)

25 fuzzy
rules

Inverter This FLC is designed to
control inverters in both
modes, standalone or
grid–connection. A
self–tuning algorithm has
been proposed with this
FLC to automatically tune
the scaling factors of inputs
and output. Based on
experimental findings

Larbes et al. [21] Two D(k) (the
instanta-
neous duty
cycle)

25 fuzzy
rules
optimized
by GA

Boost
converter

By testing this FLC under
varying weather conditions,
GA–FLC outperforms P&O
and conventional FLC in
terms of convergence time
and tracking efficiency

(continued)
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Table 6 (continued)

Reference Inputs Control
variable

Number of
rules

Power
condition-
ing
type

Remarks

Messai et al. [22] Two D(k) (the
instanta-
neous duty
cycle)

25 fuzzy
rules
optimized
by GA

Boost
converter

GA has been used to
optimize the membership
functions and fuzzy rules of
the FLC proposed in [23].
Simulation results reveal
that both the dynamic
response and the steady
state performance of
GA–FLC have been
considerably enhanced
compared to the original
FLC [23] as well as
conventional P&O

Al Nabulsi
et al. [24]

Two ΔVref (k)
(the per-
turbation
step size
of P&O)

9 fuzzy
rules

Buck
converter

9 fuzzy rules FLC has been
incorporated with P&O to
get rid of oscillations
around the MPP. Simulation
findings demonstrate that
this MPPT operates
effectively. However, the
oscillating behavior is not
completely eliminated.
Moreover, a PI controller is
needed to provide the
control signal to the Buck
converter

Rajesh et al. [25] Three The
reference
current
(Iref)

Unknown Boost
converter

This FLC intended to
harvest maximum energy
from PVGs. According to
experimental results, it can
be noticed that low
fluctuations and fast
transient response, are the
main advantages of this
FLC

Chao et al. [26] Two ΔD(k)
(the duty
cycle
change)

25 fuzzy
rules

Two–stage
DC–DC
converter

Experimental findings
indicate that this FLC has a
slow convergence to the
MPP. Moreover, The
tracking efficiency obtained
by this FLC (90% to 96%)
is much lower compared to
that obtained by [24]
(around 99%)

(continued)
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Table 6 (continued)

Reference Inputs Control
variable

Number of
rules

Power
condition-
ing
type

Remarks

ElKhateb et al. [27] Four D(n) (the
instanta-
neous duty
cycle)

50 fuzzy
rules

SEPIC
converter

This MPPT relies on two
FLCs running
simultaneously to control
SEPI–Converter. However,
sophisticated hardware
equipment are necessary for
implementing and
processing two FLCs
simultaneously

Guenounou et al.
[28]

Two ΔD(n)
(the duty
cycle
change)

25 fuzzy
rules

Boost
converter

Test results reveal that this
FLC operates very
effectively compared to
conventional FLC

Chen et al. [29] Three ΔD(n)
(the duty
cycle
change)

77 fuzzy
rules

Boost
converter

This MPPT has been
designed by combining
conventional FLC and
Auto–Scaling Variable
Step–Size (ASVSS)
algorithm. Simulation
findings show that a high
tracking accuracy is
obtained under rapidly
changing irradiance
conditions. However, the
high complexity level and
the difficulty of
implementation are the
main drawbacks of this
MPPT

3.1 GMPPT Proposed by Alajmi et al. [30]

Scanning, storing, perturbing and observing are the main procedures used by Alajmi
et al. [30] MPPT to track the GMPP of partially shaded PVGs. Figure11 shows the
flowchart of the above method.

The inputs to the FLC are the power change ΔPpv, the current change ΔIpv and
ΔPm which represents the difference between the stored GMPP (PM ) and Ppv,

ΔPpv(n) = Ppv(n) − Ppv(n − 1) (7)

ΔIpv(n) = Ipv(n) − Ipv(n − 1) (8)
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Fig. 11 Flowchart of the GMPPT proposed by Alajmi et al. [30]

Table 7 FLC rules proposed by Alajmi et al. [30]

ΔPpvΔIpv NB NS PS PB ΔPm

NB PM PM NM NM

NS PS PS NS NS PS

PS NS NS PS PS

PB NM NM PM PM

NB PB PB PB PB

NS PB PB PB PB PB

PS PB PB PB PB

PB PB PB PB PB

ΔPm(n) = PM(n) − Ppv(n) (9)

The FLC output is the duty cycle change ΔD for controlling the boost converter

ΔD(n) = D(n) − D(n − 1) (10)

Four fuzzy subsets (NB, NS, PS, PB) are chosen for the variable inputs ΔPpv and
ΔIpv, as well two subsets (PS and PB) for the variable inputΔPm . The control output
ΔD is obtained by processing six fuzzy subsets (NB, Negative Medium (NM), NS,
Positive Medium (PM), PS, PB) Fig. 12.

As shown in Table7, this FLC tracks the identified the GMPP by performing 32
FL rules.
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Fig. 12 Membership functions: inputs a ΔPpv, b ΔIpv, c ΔPm, and d the output ΔD [30]

3.2 GMPPT Proposed by Boukenoui et al. [31]

The GMPPT proposed by Boukenoui et al. [31] has been developed to identify
and achieve the GMPP of PV systems operating under uniform and non–uniform
irradiance conditions. It combines a scanning–storing loop with a tracking loop
based on FLC–MPPT. The block diagram of a standalone PV system controlled by
Boukenoui et al. [31] MPPT is depicted in Fig. 13.

The flowchart of the proposed GMPPP is given in Fig. 14. The pseudo algorithm
reported below is applied to find theGMPP andDGMPP. Subsequently, a tracking loop
comprising FLC–MPPT takes over for accurately achieving the GMPP, regardless
of irradiance variations, characteristics of the PVG and the shading pattern applied
on it.

To identify theGMPP: the stored Pmax(n–1) should be compared to the instan-
taneous measured power PPV(n) and the GMPP is defined as the Pmax(n)

Pmax(n) = max (PPV(n), Pmax(n–1))
GMPP = max(Pmax(n))

To identify the DGMPP: ΔPPV(n) and the variation between the Pmax(n) and
PPV(n) should be calculated,

ΔPpv(n) = PPV(n) - PPV(n - 1).
ΔPmax(n) = Pmax(n) - PPV(n).

The following conditions should be verified, knowing that D(n) is the instan-
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Fig. 13 Block diagram of a standalone PV system controlled by Boukenoui et al. [31] GMPPT

Table 8 Fuzzy rules proposed by Boukenoui et al. [31]

EΔE NB NS ZE PS PB

NB PB PB PS PB PB

NS PB PS PS PS PB

ZE NS NS ZE PS PS

PS NB NS NS NS NB

PB NB NB NS NB NB

taneous duty cycle.
If ΔPmax(n) ≤ 0 and ΔPPV(n) ≥ 0 Then dGMPP(n)= D(n)

Else dGMPP(n) = dGMPP(n-1)
End DGMPP= dGMPP(n)

The FLC proposed by Boukenoui et al. [31] uses as inputs, Eqs. 11 and 12

E(n) = Ppv(n) − Ppv(n − 1)

Vpv(n) − Vpv(n − 1)
(11)

ΔE(n) = E(n) − E(n − 1) (12)

The fuzzy inference employs Mamdani’s Min–Max inference system and 25 fuzzy
rules shown in Table8. Moreover, a Defuzzifier based on the COG technique is
employed to generate the control signal (duty cycle).
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Fig. 14 Flowchart of the GMPPT proposed by Boukenoui et al. [31]

3.3 Comparative Study

To assess the robustness of Alajmi et al. [30] and Boukenoui et al. [31] in tracking the
GMPP under PSCs, they have been compared to Ishaque et al. [32] and Ji et al. [33].
Each GMPPT has been associated to a stand–alone PV system to digitally simulate
its performance using Matlab/Simulink software.

The GMPPT proposed by Ishaque et al. [32] used the PSO technique (it takes
inspiration from flocking behavior of birds and fishes). In this work, PSO has been
used as a direct duty cycle control MPPT in order to eliminate the PI control loop.

The GMPP proposed by Ji et al. [33] uses a LF that requires both Voc and Isc
of the PVG to reveal the occurrence of PSCs as well as moving the operating point
close to the GMPP. Then, a variable step size InCond is performed to achieve that
GMPP.

The electrical characteristics of the employed PV module Shell SP150–PC are
reported in Table9. Each PV module has 72 PV cells connected in series, in addition
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Table 9 Electrical characteristics of Shell SP150–PC

Designation Shell SP150–PC

(Pmax) 150W

(VMPP) 34V

(IMPP) 4.40A

(Voc) 43.40V

(Isc) 4.80A

NC 72 cells

Table 10 Performance comparison of the four investigated GMPPTs under PSCs

Evaluated indices Alajmi et al. [30] Ji et al. [33] Ishaque et al. [32] Boukenoui et
al. [31]

Time Around 113ms Around 106ms Around 138ms Around 94ms

Error 2.3W 10.6W 4W 1W

Efficiency 99,22% 96,41% 98,64% 99,66%

Tracking
technique

FLC–32 rules InCond PSO FLC–25 rules

Algorithm’s
complexity

Medium to high Low High High

Probability of
successfully
finding
the GMPP for
100 shading
patterns

High 91/100 Low 69/100 Medium to High
83/100

High 100/100

Sensors (voltage, current) (voltage, current) (voltage, current) (voltage, current)

Practical
implementation

Yes Yes Yes Yes

Dependence on
the PVG
parameters

No Yes No No

to 3 bypass diodes. The PVG has been subjected to PSCs from the beginning. Two
PVmodules are fully illuminated (1KW/m2) and the other one receives an irradiance
of 525W/m2.

Under the aforementioned shading pattern, the P–V curve exhibits two peaks
with a global one of 295W (see Fig. 15a). Under the same shading pattern, the four
investigated GMPPT are tested, waveforms of the extracted power are depicted in
Fig. 15b.

With reference to Fig. 15b and of Fig. 15a, it is clearly observed that all the inves-
tigated MPPTs have achieved the GMPP but with different performance indices,
reported in Table10.
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Fig. 15 a the P–V characteristic curve under PSCs (the shading pattern was 1, 1KW/m2 and
525W/m2)bwaveformsof the power extractedby the investigatedMPPTsunder the aforementioned
shading pattern

According to Table10, it can be observed that Ishaque et al. [32] GMPPT takes
a long time (138ms) to converge to the GMPP. Moreover, it uses trial–error method
to tune the four initial parameters of PSO (including the initial number of parti-
cles, population size, the inertia and learning factors). Therefore, determining their
appropriate values is a demanding task.

Ji et al. [33] GMPPT has a low complexity. However, it exhibits the highest static
error (10.6W) and high power ripples when the GMPP is achieved. In addition to
the aforementioned drawbacks, Ji et al. [33] GMPPT suffers from dependence on
the PVG parameters which are Voc and Isc. Therefore, their values should to be
readjusted when changing the PVG.
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The FLC employed by Alajmi et al. [30] has 32 fuzzy rules and the one proposed
byBoukenoui et al. [31] has only 25 rules. This leads to the highmemory requirement
during implementation. The FLC employed by Alajmi et al. [30] can fail to achieve
the global power peak. Consequently, lower probability of successfully finding the
GMPP (91/100) compared to the GMPPT proposed by Boukenoui et al. [31].

It should be noted that the choice of one of the existingMPPTs depends mainly on
the application of the PVS. Therefore, there are some applications such as: powering
household appliances or lighting for billboards, where the high accuracy of controller
is not an important factor. Therefore, the PV system can operate by only a conven-
tional MPPT. Other applications such as powering solar vehicles, satellites, indus-
trial equipment, public–use facilities, lighting highway information signs, necessitate
robust sensors to achieve a high accuracy of tracking and ensuring continuous supply
of maximum electricity irrespective of the weather conditions.

Boukenoui et al. [31] appealing for PV energy conversion systems (grid connected
or standalone PV systems applications) as a good candidate to be integrated in the
existing PV applications. Firstly, to replace conventional MPPTs (P&O, InCond or
conventional FLC, etc) where the high accuracy is necessary. Secondly, to effectively
control PV systems installed in places where the non–uniformity of irradiance can
be often found and difficult to be avoided, such as: building integrated PV systems.

4 Conclusions

Various improved FL–MPPTs applied either as LMPPT or GMPPT have been pre-
sented in this chapter. Those techniques show varying degrees of effectiveness. The
number of Fuzzy rules varies from oneMPPT to another (ranged from 9 to 77 rules),
which leads to variations in the implementation complexity. Moreover, membership
functions of some FLC–MPPT have been optimized by soft computing techniques
(such as, GA) to achieve best results.

Adaptive P&O–FLC, Modified HC–FLC and P&O have been compared under
variable insolation conditions. Simulation and experimental results demonstrated
that the designed Adaptive P&O–FLC outperforms Modified HC–FLC and P&O.
MPPTs based only on FLC are not able to track the GMPP under PSCs. To this
end, researchers have developed novel mechanisms of GMPP identifying loop to be
added to FLC–MPPTs, which enhance their effectiveness under PSCs.

Two GMPPTs based on FL for both UICs and PSCs have been presented, com-
parative study has been done and the obtained results reveal their relative merits and
limitations in tracking the GMPP [31].
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Abstract In recent times, solar PV power plants have been used worldwide due
to their high solar energy potential. Although the PV power plants are highly pre-
ferred, the main disadvantage of the system is that the output power characteristics
of the system are unstable. As PV power plant system is connected to the grid side,
unbalanced power flow effects all systems controls. In addition, the load capacitys
is not exactly known. For this reason, it has become an important issue to be known
correctly in PV output power and their time-dependent changes. Themain aim of this
work is to eliminate power plant instability due to the output power imbalance. For
the short-term, power prediction is estimated by real-time data of 1MW PV power
plant in use. Estimation power data are compared with real-time data and precision
of the proposed method is demonstrated. In the first phase, traditional artificial intel-
ligence algorithms are used. Then, these algorithms are trained with swarm based
optimization methods and the performance analyses are presented in detail. Among
all the algorithms used, the algorithm with the lowest error is determined. Thus,
this study provides useful information and techniques to help researchers who are
interested in planning and modeling PV power plants.

T. Demirdelen (B) · B. Esenboga
Electrical and Electronics Engineering Department, Adana Science
and Technology University, Adana, Turkey
e-mail: tdemirdelen@adanabtu.edu.tr

I. Ozge Aksu
Computer Engineering Department, Adana Science and Technology University,
Adana, Turkey

K. Aygul
Electrical and Electronics Engineering Department, Cukurova University,
Adana, Turkey

F. Ekinci
Energy Systems Engineering Department, Adana Science and Technology University,
Adana, Turkey

M. Bilgili
Mechanical Engineering Department, Cukurova University, Adana, Turkey

© Springer Nature Singapore Pte Ltd. 2019
R.-E. Precup et al. (eds.), Solar Photovoltaic Power Plants, Power Systems,
https://doi.org/10.1007/978-981-13-6151-7_8

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6151-7_8&domain=pdf
mailto:tdemirdelen@adanabtu.edu.tr
https://doi.org/10.1007/978-981-13-6151-7_8


166 T. Demirdelen et al.

Keywords Neural networks · Optimization methods · Short-term · Power
prediction · Photovoltaic plants · Firefly algorithm

1 Introduction

Energy is a crucial factor for a countrys economy and the ability of all living beings
to survive. It is a primary source of sustainable economic growth and essential for the
development of a country. Recently, energy demand has been increasing with indus-
trialization and technological developments, rapid population growth, and competi-
tion among countries to reduce their external dependence. In order to meet energy
demand, fossil fuels have been widely used all over the world for decades. However,
they have lost their popularity due to global warming and a critical depletion of fossil
fuels. Renewable energy presents effective solutions to the above issues of energy
demand. These sources can be presented as an important alternative energy because
they are natural such as sun, wind, and wave energy that time will not change in the
foreseeable future. Hence, the use of alternative energy sources, as well as existing
energy sources, is of great importance for countries and people in order to obtain
energy with maximum efficiency. Solar energy has the greatest importance among
renewable energy resources in terms of its available energy potential in most parts of
the world. It is one of the most effective and easy ways to produce clean, sustainable,
cheap and safe energy. PV panels are commonly known as a device or method for
generating electric power from solar energy by using solar cells that catch sunlight
and turn it directly into electricity. PV panels provide clean, cheap energy and there
are no harmful greenhouse gas emissions during the generation of the electricity.
The increasing popularity of this source leads to new studies in the solar energy
area. It is used together in grid-connected systems or stand-alone in the meeting
energy demands of the building, industries, and agriculture. One of the main areas
of study is how to provide increased reliability and regular output power in PV pan-
els, efficiently. This is because solar PV panels require direct access to solar energy
but clouds and some environmental factors, such as dust, humidity, snow, and rain,
prevent the constant production of power and maximizing the output power of PV
panels.APVpanel output power strongly depends on solar radiation and but this solar
radiation is not constant over time. Solar cells are used to produce electrical energy,
but while they absorb 80% of solar radiation, they convert only a small portion to
electricity. The remaining portion causes overheating of the photovoltaic cells. This
causes decreasing the electrical efficiency of the panel. Each one degree increase in
temperature results in a reduction of 0.4–0.5% in electrical efficiency [1]. Therefore,
there is a necessity for exact modeling, estimation of solar radiation and temperature
to increase control and decrease the negative impacts of PV power plants. In order
to develop more reliable algorithms, modeling, optimization and the forecasting of
hourly solar radiance and ambient temperature are required. Power forecasting from
PV power plant generated, based on its forecasting time scale, is classified into four
groups in Fig. 1.
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Fig. 1 Classification of solar PV generated power forecasting types based on forecasting time
scale [2]

PV power forecasting is used to predict and balance energy generation and con-
sumption for grid operators, thus it is notably important with respect to reduced
penalties, grid stability, the reliability, the security of supply and lower maintenance.
Forecasting time interval is classified into four groups.

Long-term forecasting ranges between one month and one year. In this type, it is
generally used to operate operation security and energy planning.

Medium-term forecasting ranges from oneweek to onemonth. It regulates monthly
maintenance of PV power by forecasting the availability of the generated electrical
power.

Short-term forecasting timescales refer to one hour, one day or seven days. It is
notably helpful for accurate planning of electrical transmission, distribution, and
generation. Moreover, it has a critical issue in enhancing system stability, reliability
and operation.

Very short-term forecasting timescales refer to a few seconds, one minute or sev-
eral minutes (less than1hour). It uses small-scale data to obtain optimum forecasting,
but it is not preferred because it is not necessary and is challenging for the estimation
process in PVpower plant. Accurate power forecasting fromPVpower plant prevents
the effect of PV panel output power uncertainty and improves the system reliability. It
also becomesmore important and interesting because of the increasing penetration of
PV power in many areas. Instantaneous fluctuating in temperature and solar radiance
take place, mainly arising from the existence of clouds. Consequently, short-term,
real solar parameters, such as solar radiation and temperature make it possible to
obtain more accurate results so that stability, reliability and security of the PV sys-
tem are increased by using real short-term data. In this study, the real-data of 1MW
PV power plant in Turkey is used for forecasting and the short-term generated power
for PV power plant is estimated by Artificial Neural Network (ANN). The primary
contribution of this paper is to provide useful information for academics and profes-
sionals who are interested in modeling and planning of PV power plants. Following
a literature survey, Table1 presents the forecasting and optimization methods used
for solar parameters such as PV generated power, solar radiation, and temperature
that benefit directly from solar energy. Different methods are used to forecast solar
energy parameters over different time-scales. These methods are classified in Table1



168 T. Demirdelen et al.

Fig. 2 Classification of solar forecasting methods and models based on historical data [54]

and discussed in detail. Finally, ANN, ANN-PSO and ANN-FA are selected for per-
formance analysis does these methods are discussed in detail. Also, in particular, this
method will present simulation results.

2 Solar Forecasting Methods

Researchers have work on solar power forecasting with different methods in order
to obtain more accuracy. These methods shown in Fig. 2 will be presented in detail.
Forecasting methods used to forecast PV parameters or meteorological data pre-
sented in Fig. 2 can be categorized into three groups based on historical data and
meteorological variables.
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Table 1 Various solar forecasting methods

References Forecast horizon Input variable Forecast variable Forecast method

[3] 24h ahead Solar radiance air
temperature

Solar radiance Artificial neural
network multilayer
perceptron
architecture

[4] 72h Solar radiance
cloud cover air
temperature

Solar power Artificial neural
network

[5] 24h ahead Meteorological
data

Solar radiance Nonlinear
autoregressive
recurrent neural
networks with
exogenous inputs
(NARX)

[6] 60min ahead Meteorological
data

Solar radiance Auto-regressive
moving average
model (ARMA)
generalized auto
regressive
conditional
heteroscedasticity
(GARCH)

[7] 60min ahead Solar power air
temperature solar
radiation

Solar power Artificial neural
network back
propagation
algorithm

[8] Intra-day and days
ahead

Solar radiation Solar PV power Artificial neural
network
autoregressive
integrated moving
average

[9] 6h ahead Meteorological
data

Solar power Machine learning
algorithm

[10] A month ahead Solar radiation
solar PV power

Solar radiation Auto-regressive
models with
exogenous inputs
(ARX)

[11] Hourly Solar radiation Air
temperature Sky
condition (rainy,
cloudy, sunny)

Solar radiation Fuzzy and neural
network methods

[12] 24h ahead Climatic conditions
(humidity,
temperature) Solar
radiation Air
temperature

Solar PV power Artificial neural
network back
propagation
algorithm

(continued)
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Table 1 (continued)

References Forecast horizon Input variable Forecast variable Forecast method

[13] 6h ahead Meteorological
data

Solar radiation Wavelet neural
network
Levenberg–
Marquardt (LM)
training

[14] Seasonal Meteorological
data (Air
temperature, solar
radiation)

Solar PV power Forward neural
network particle
swarm
optimization
architecture (PSO)

[15] One-hour
measurement
intervals for one
year

Energy percentage
of total Energy

Residential
demand

FeedForward
artificial neural
network (FFANN)

[16] Hourly,ranging
from 07:00 to
16:00

Solar radiance
ambient
temperature

Solar radiation Deep recurrent
neural networks

[17] Monthly Meteorological
data

Solar radiation Artificial neural
network back
propagation
algorithm

[18] 24h ahead Climatic condition Solar radiation Artificial neural
network back
propagation
algorithm

[19] A day ahead Solar radiation air
temperature
humidity

Solar radiation Artificial neural
network

[20] Hourly Solar radiation
weather data

Solar power Artificial neural
network Back
propagation
algorithm

[21] 30min ahead Weather condition
air temperature
solar radiance
humidity

Solar power Extreme learning
machine

[22] 24h ahead Meteorological
data

Solar PV power Fuzzy logic system

[23] 30min ahead Meteorological
data

Solar radiation Fuzzy time series

[24] 24h ahead Solar radiation air
temperature

Solar radiation Artificial neural
networks
autoregressive
models

(continued)
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Table 1 (continued)

References Forecast horizon Input variable Forecast variable Forecast method

[25] Intra-day and days
ahead

Meteorological
data (Air
temperature, solar
radiation,
humidity)

Solar PV power Stationary wavelet
transform (SWT)
artificial neural
networks

[26] One day ahead Historical-past
meteorological
data

Solar radiation Artificial neural
networks

[27] One day ahead Meteorological
data

Solar power Deep learning
artificial neural
networks

[28] 24h ahead Clearness index Solar radiation Artificial neural
networks support
vector regression
(SVR)

[29] 24h ahead Historical-past
meteorological
data

Solar power Gaussian process
regression (GPR)

[30] Minutes ahead Cloud movement
ambient
temperature
Humidity wind
speed

Solar radiation Artificial neural
networks fuzzy
logic preprocessing

[31] 7days ahead Meteorological
data

Solar radiation Artificial neural
networks back
propagation
algorithm

[32] Hourly Climatic conditions Solar power Extreme learning
machine

[33] 24h ahead Air temperature
cloud cover wind
speed humidity

Solar power Artificial neural
networks

[34] 24h ahead Meteorological
data

Solar radiation Nonlinear
autoregressive
neural networks
(NAR)

[35] One day ahead Meteorological
data

Solar radiation Hybrid neural
fuzzy inference
system (ANFIS)

[36] One hour ahead Clearness index
Sky conditions

Solar PV power Machine learning
support vector
regression

[37] 15days ahead Air temperature
cloud cover wind
speed

Solar PV power Artificial neural
networks

[38] Hourly, ranging
from 08:00 to
17:00h

Meteorological
data

Solar radiation Support vector
regression

(continued)
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Table 1 (continued)

References Forecast horizon Input variable Forecast variable Forecast method

[39] 24h ahead Meteorological
data

Solar radiation Self-organization
map (SOM)

[40] Hourly Solar radiation Air
temperature

Solar PV power Artificial neural
networks
multilayer
perceptron
architecture

[41] 10min ahead Zenith angle Solar
radiation

Solar radiation Artificial neural
networks
multilayer
perceptron
architecture

[42] 24h ahead Weather condition
(humidity,
temperature,
radiance)

Solar PV power Fuzzy theory radial
basis neural
network

[43] One day ahead Solar radiation
Ambient
temperature

Solar radiation Artificial neural
networks
multilayer
perceptron
architecture

[44] One hour ahead Solar PV power
ambient
temperature

Solar PV power Artificial neural
networks nonlinear
autoregressive
neural network

[45] (5min step data) Zenith angle
Horizon angle solar
radiation

Solar radiation Artificial neural
networks
multilayer
Perceptron
Architecture

[46] Hourly Meteorological
data

Solar radiation Artificial neural
networks

[47] Last 50h Solar radiation
Ambient
temperature

Solar radiation Neural network
Levenberg–
Marquardt (LM)
training

[48] Not specified Solar radiation
Ambient
temperature

Solar PV power Artificial neural
networks ELM
algorithm

[49] Hourly Cloud cover Solar
radiation

Solar radiation Satellite image
analysis artificial
neural networks

[50] One day ahead Meteorological
data

Solar PV power Artificial neural
networks

[51] Hourly Solar radiation air
temperature

Solar PV power ARIMA SVR

[52] Hourly Weather conditions Solar PV power Artificial neural
networks
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2.1 Physical Methods

Numerical Weather Prediction (NWP) is a method of weather forecasting. It is the
process of determining a future state by making mathematical solutions of the equa-
tions that express changes of the variables indicating the state of the atmosphere
(temperature, wind, humidity, and pressure) [53].

Sky Imaginary Forecasting Method (SIFM) is used for the detection of clouds,
estimating the behavior and attitude cloud. Thismethod generates superior resolution
image of the sky from horizon to horizon. The sky imaginary method is generally
used as a short-term power estimation for the power output of the PV plant. Satellite
imaging is a method relatively similar to the sky imaginary method [53].

Satellite Image Methods (SIM) allow cloud motion to be traced in order to fore-
cast future cloud movement. This forecasting method presents an effective way to
forecast very short-term radiance. However, it delivers less effective performance
when clouds are rapidly forming or dissipating [53].

2.2 Statistical Methods

Statistical methods are time series analyses that deal with time series and historical
data. Time series data is in a series of particular time periods or intervals. Statis-
tical methods are a useful data-driven approach that is able to forecast the future
behavior of a power plant. This section will give brief information on widely used
methods [7].

Support Vector Machine (SVM)method is used as a classification, regression and
anomaly detection. It is found in a statistical and mathematical theory to achieve
accurate forecasting. It also deals with nonlinear problems and solves complex com-
putational problems. This method is generally used in forecasting, regression anal-
ysis, and classification.

Wavelet Analysis (WA) method is a useful way to satisfy noise in real-time input
datasets before the forecasting method is applied. Thus, it provides improvements to
the reliability of estimation. It is relatively effective for the analyzing of frequency
and time-dependent data because of its capability of eliminating non-periodic and
transient signals.

Fuzzy logic is a data-driven algorithmmethod based on a human-likeway of think-
ing. This method can be relatively useful compared to other methods if there are a
large number of input variables. It is used for forecasting solar radiation and temper-
ature, or as an optimal clustering process. It categorizes several sets of temperature,
cloud conditions and meteorological data.

ANN method is one of the major tools used in machine learning. It is a brain-
inspired system based on a learning/training method. An ANN consists of the input
layer, hidden layer(s), output layers, neurons and connections. Every layer includes
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neurons as part of the network structure and each neuron links to another neuron
located in the next layer. ANN is widely used in solving various classifications and
forecasting problems because of non-linearity in meteorological data. It is particu-
larly suitable when compared to other statistical methods when the data is non-linear.

ARIMA can be thought of as an improved model of traditional linear regression. It
is a popular forecastingmodel that utilizes historical information tomake predictions.
This type of model is a basic forecasting technique that can be used as a foundation
for more complex models.

Kalman Filtering is actually an estimator. It is a method of estimating the state of
many different field systems. It mathematically estimates the states of linear systems
(linear equation first order equations in computational equations). This method uses
real-time statistical data and provides real-time forecasting of power generation.

Support Vector Regression (SVR) is quite different than SVM. Because the SVR
method uses real-time outputs, it becomes very difficult to predict the information.
The main idea is to minimize error and provide accurate forecasting.

Grey forecastingmethod is the others forecastingmethod to predict for the behav-
ior of non-linear time series. This method is especially effective as the data is insuffi-
cient. Its prediction results may be inaccurate sometimes, so other statistical methods
can be more useful than this method.

Hidden-Markov models (HMMs) are a common tool for modeling time series
data. This model seeks to recover the sequence of states from the observed data. It
has been used for forecasting applications in recent years because of its flexibility
and computational efficiency.

2.3 Hybrid Methods

These methods are the combination of two or more forecasting methods such as
Fuzzy-ANN, ANFIS, ARIMA and SVR, ARIMA and GARCH, NARX, and SVM
and GA. The main aim is to improve forecasting accuracy and reduce the forecasting
error. These hybrid methods can provide better forecasting performance compared
with each forecasting method [55].

3 Methodology for Solar Power Forecasting

In this study, aMulti-Layer Feed Forward (MLFF) neural network structure, which is
a type of Artificial Neural Network (ANN), was used. The MLFF network structure
consists of the input layer, the hidden layer, and the output layer. Numbers of the
neuron for the input and output layer depend on problem structure. The neuron
number at the hidden layer is defined with a trial and error method. Network training
is the process of identifying weight values for the nerve element connections in
ANN. Initially, these values are determined randomly. Then, network parameters are
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updated in order to get the best yield from the network. In this study, the Firefly
Algorithm (FA) and Particle Swarm Optimization (PSO) are applied to train the
network coefficients.

3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm is a swarm-based heuristic algorithm
widely used all over the world. First studies on the PSO algorithm were done by
Kennedy and Eberhart in 1995. This method is a simulation of the food search
behaviors of flocks of birds and shoals of fish [56]. Each possible solution in the
PSO algorithm is called a particle. The algorithm begins to work with randomly
distributed particles in the solution space. In this algorithm, particles have speed
and location. The distance of each particle to the solution (food) is expressed by
a function determined by the current position and speed of the particle. After each
iteration, the particles update their speeds for themselves and the swarm, and they
move accordingly.When the best solution for i th particle up to that point is expressed
bypibest , and the best solution of all particles up to that point is expressed bygbest ,
the expression used to update the speed values (vi ) of the particles at each iteration
is:

vi (t + 1) = vi (t) + c1 × r1 × (pibest − xi (t)) + c2 × r2 × (gbest − xi (t)) (1)

where t is the iteration number, i is the index of the corresponding particle, xi is
the location of the particle r1 and r2 values are random numbers generated in the
interval [0, 1], c1 and c2 are acceleration coefficients, which in general are chosen in
the interval [0, 2].

Where the c1 coefficient takes the particles to the local best, the c2 coefficient
takes the particles to the global best. The term w is the inertia weight and provides
the balance between the local and global best. The term w is calculated as follows:

wk = (wmin − wmax)
(K − k)

K
+ wmax (2)

where wmax and wmin are the maximum and minimum values initially determined for
the inertia value, k is the number of the iteration, and K is the maximum number of
iterations. Each iteration step, the position update of the particles is done:

xi (t + 1) = xi (t) + vi (t + 1) (3)

The flowchart for the PSO algorithm is presented in Fig. 3. In addition, pseudo-
code for PSO algorithm with ANN expressed as 5 steps are seen in Fig. 4.
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Fig. 3 Flowchart of the conventional PSO algorithm [57]

Fig. 4 Pseudo-code for the
particle swarm optimization
algorithm with ANN
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3.2 Firefly Algorithm

Firefly Algorithm (FA) is based on the swarm method that is inspired by the natural
life behavior of fireflies and their communication through brightness. Fireflies use
their brightness to protect themselves from predators and to attract their prey. FA
algorithm is selected to optimize ANN parameters for this study because of few
parameters, it is easily adaptable to the problem being worked on and it does not
have a complex structure. In the FA method, there are two important criteria: the
change of light intensity and the attractiveness of the firefly (β). The attractiveness
value of a firefly (β) is changed according to the distance to other fireflies. Let us
assume that xi and x j values are the positions of the i th and j th fireflies. The distance
between these two fireflies (ri j ) is calculated as follows:

ri j = ∥
∥xi − x j

∥
∥ (4)

The attractiveness of the firefly is proportional to the light it emits and it decreases
accordingly as the intensity of light decreases. The attractiveness of the firefly (β) is
calculated as follows:

β(r) = β0e
−γ r2 (5)

where the value β0 is the maximum attractiveness parameter at r = 0 and γ is the
light emitting coefficient. The i th firefly will move to the j th firefly, which is more
attractive than itself. This position change is as follows:

xi = xi + β0e
−γ ri j 2(x j − xi ) + α

(

rand − 1/
2

)

(6)

where the rand value is a random real number in the interval [0, 1] and α is a random
selection parameter, respectively. This equation consists of three components: thefirst
component represents the current position of the firefly, the second component shows
the brightness of Firefly, and the third component represents the random movement
of the Firefly when there is no brighter firefly around itself. The convergence speed
of the algorithm and its ability to find the local/global best solution depends on the
α, β and γ parameters used in the working steps of the algorithm. When the study
investigated this, β0 = 1 and α ∈ [0, 1] values were used. The γ parameter, which
has a big impact on the working speed of the algorithm, has a value [0.1, 10] for
practical applications [58]. The flowchart is presented in Fig. 5. In addition, pseudo-
code for FA algorithm with ANN expressed as 5 steps are shown in Fig. 6.

4 Data Representation and Pre-processing

The behavior of solar radiation can be easily interpreted for daily and seasonal, where
in the range of [0, 1000] indicates stronger radiation. In winter, dawn to dusk period
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Fig. 5 Flowchart of FA algorithm

Fig. 6 Pseudo-code for the
Firefly algorithm with ANN
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Fig. 7 Series of PV panels in a solar power plant

is shorter than that of summer, while in summer, radiation at noon is the strongest of
the whole year for Turkey. Such a 1D representation shows a significant insight into
the solar radiation pattern as a function of time, which is represented in Fig. 7.

4.1 Correlation Analysis

The embedded dimension of the input for the prediction model, i.e., the number
of previous data samples used as the input, is determined by the auto-correlation
coefficients of the samples:

rk = 1

(N − k)s2

N
∑

i=k

(xi − μ)(xi−k − μ) (7)

whereμ and s are themean and variance of the samples, respectively, rk is the sample
autocorrelation coefficient, k is a delay, x is data set and N is the number of samples
of the series. Figure8 shows a 1D view of the autocorrelation coefficients of the solar
radiation in 2016 and 2017.

An important observation in Figs. 8 and 9 is that there are strong correlations
between the solar radiation, not only in consecutive hours but also during some
hours of consecutive days.

The correlation between two consecutive days for the same hour is stronger than
that between the current hour and two hours ahead in the same day. Therefore,
when constructing a prediction model, the data from the previous day at the time of
prediction must be used with a higher priority than the data from the previous two
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Fig. 8 Correlation between ambient temperature and time (Daily hours)

Fig. 9 Correlation between PV panel temperature and time

hours. In this study, the former two days’ solar radiation data at the time of prediction,
and the data at the current time, are used as the input to the prediction model.

5 Simulation Results

A PV plant consists of one on-grid inverter and 38 series PV panels that have the
same characteristics in order to meet the energy demands of an industry. Table2
shows the parameters of PV panels and inverter. Selected PV panels are shown in
Fig. 10. In this study, real-time data were obtained from one of the inverters set in PV
power plant, thus, simulation studies are done effectively by processing data with
three different methods: ANN, ANN-FA, and ANN-PSO. The mean absolute error
(MAE), mean absolute percentage error (MAPE), the coefficient of determination
(R2), and correlation coefficient (ρ) are used to evaluate the performance of the



A New Method for Generating Short-Term Power Forecasting Based … 181

Table 2 Inverter and PV panel datasheet

PV panel Parameter On-grid inverter Parameter

Power rating 265Wp Output power 10kW

Open circuit voltage
(Voc)

38V MPPT range 260–850V

Voltage at power point 31.8V Max. input voltage 1000V

Short circuit current
(Isc)

8.7A Max. input DC current 22A

Current at the power
point

8.1A Operating temperature −40 ◦C…..85 ◦C

Cell efficiency 17.8% Max. efficiency 98%

Power tolerance ±2.7% Protection class IP65

Fig. 10 Series of PV panels in a solar power plant

Solar Power Prediction (SPP) models. MAPE and regression criteria are analyzed
in particular using ANN, ANN-PSO and ANN-FA methods in the simulation results
section below.

In the study, two different swarm-based methods were used for network training.
Swarm-basedmethods firstworkwith a randomly distributed population in the search
space. The success of that particle is then calculated using anobjective functionwhose
fitness value is determined for each particle in the search space. In the next step, the
information of the particles is updated according to the structure of the algorithm
(according to the relevant equations in the algorithm) and a new generation is created.
These steps are continued until the termination criterion is reached. Once the training
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Table 3 Results of the test phase

Method MAPE Regression

ANN 22.2098 0.97669

ANN-PSO 19.5525 0.97671

ANN-FA 19.4149 0.97993

is complete, ANN is generated using the optimum values from the best particle and
passed to the test phase.The data that were used for training and testing stages of
the artificial neural network is recorded at 2015 and 2016 in Turkey. By using ANN
the data for 2017 is estimated, and the results were compared with the real data. The
output layer of the neural network structure is an instantaneous PV plant power. The
input layer of the network is fed with as follows:

• Ambient temperature [◦C]
• Solar radiation [W/m2]
• PV Panel temperature [◦C]

For each method used, 8 neurons are used for hidden layer in the network structure.
In addition, 1 neuron is used in the input layer and 3 neurons are used in the output
layers. The training coefficients during network training are as follows:

• Weights for the 24 interconnections between the input and the hidden layer
• The bias value for the 8 neurons in hidden layers
• Weights for the 8 interconnections between the hidden and the output layer
• The bias value for the single output layer

During network training, 41 parameters are trained. The algorithms are run for
300 iterations, and during the training, 20 individuals are used for each optimization
method. A total of 100479 data sets are sent to the network. After the training phase
is finished, the test phase is complete.

Each method was used in the neural network test phase, which is created with the
best network parameters obtained from 25 iterations. Estimation results obtained at
the end of the optimization studies are analyzed according to MAPE criteria. The
results obtained from the three different methods are given in Table3 according to
the MAPE criterion.

The best result is obtained in ANN-FA, as shown in Table3. Real-time results and
test results obtained with ANN-FA are shown graphically in Figs. 11, 12, 13 and 14
over a 3-month period:

• January–February–March results are shown in Fig. 11
• April–May–June results are shown in Fig. 12
• July–August–September results are shown in Fig. 13
• October–November–December results are shown in Fig. 14.
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Fig. 11 Solar-generated PV power forecasting result (January–February–March)

Fig. 12 Solar-generated PV power forecasting result (April–May–June)
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Fig. 13 Solar-generated PV power forecasting result (July–August–September)

Fig. 14 Solar-generated PV power forecasting result (October–November–December)
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Fig. 15 The prediction error values for the proposed methods

Figure15 shows the error graphs obtained from the results of the three methods.
As clearly shown in this figure, the least error is obtained with the ANN-FA method.

The regression graphs obtained at the end of the test phase are shown in Fig. 16. It
can be seen that the best data distribution is shown in Fig. 16 shows that the least error
obtained at the end of the test phase was achieved with ANN-FA. When examined
against the numerical results given in Table3, it is seen that the best method for PV
power forecasting is obtained by using ANN-FA method.

6 Conclusion

The use of solar energy has increased significantly in recent years in meeting energy
demand. Many studies have been carried out in order to make maximum use of these
resources. Solar energy is one of the renewable energy sources in meeting the energy
supply.Although solar energy is abundant in nature, this energy is not benefited at cer-
tain times of the day. There are many factors such as cloudiness, dust, solar radiation
and average sunrise time changes during the day for solar power prediction. There-
fore, it has no stable behavior structure. Power estimation is important for energy
planning so that this study is carried out. The data of 1MWPV power plant in Turkey
is used to estimate output power by real-time data mining for short time prediction.
The data of solar radiation, ambient temperature, and panel temperature were used
for input parameters. Firstly, estimation was performed by traditional ANN. How-
ever, the expected performance has not been reached. It was seen that three input
parameters obtained are insufficient to estimate in traditional ANN. It was decided
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Fig. 16 Regression graph a ANN-FA, b ANN-PSO, c ANN

that ANN should be used with optimization method to increase performance. Then,
input data was optimized using different optimizationmethods. Optimized input data
was processed in conventional ANN and the short-term prediction was performed.
ANN, ANN-PSO and ANN-FA results used for estimation were compared in detail.
In the performance analysis, it was seen that the artificial neural network algorithm
was not able to predict short time output power by using a few input data alone. In
the literature, it has been tried to obtain the optimum prediction by Particle Swarm
Optimization (PSO) method which is one of the most used optimization manage-
ment. The desired performance could not be reached due to continuous insertion of
the local minimum values in the PSO method. Firefly Algorithm (FA), a new opti-
mization method, has been shown to be the most efficient algorithm for short-term
solar estimates by removing the problem of sticking to local minimum values.
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Evaluation on Training Algorithms of
Back Propagation Neural Network for a
Solar Photovoltaic Based DSTATCOM
System

Nor Hanisah Baharudin, Tunku Muhammad Nizar Tunku Mansur,
Rosnazri Ali and Muhammad Irwanto Misrun

Abstract This chapter discusses evaluation on the Back Propagation Neural Net-
work (BPNN) control algorithm based on Fast Fourier Transform (FFT) control
algorithm with different BPNN training algorithms for Distribution Static Compen-
sator (DSTATCOM) with integrated solar photovoltaic system. Furthermore, the
comparison is performed with different weight or bias training functions such as
supervised and unsupervised. Each training algorithms have been utilized to investi-
gate its performance in generating the target pattern for harmonic elimination in term
of accuracy, learning epochs and training time. The performance of the BPNN train-
ing algorithms is determined by calculating the error between the target and output
pattern using Mean Squared Error (MSE). The lower value of the MSE shows the
higher accuracy of the output pattern according to the target pattern given. Number of
iterations (epochs) and training time are evaluated to investigate the performance of
different BPNN training algorithms on DSTATCOM for harmonic reduction under
nonlinear load condition.

1 Introduction

Due to the fossil fuel depletion and threats of current global warming issues, the
renewable energy resources are gaining momentum rapidly in recent energy devel-
opment industry. The development of micro-grid from interconnected Distributed
Generations (DGs) with renewable energies are beneficial for both sides between
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consumers and power utilities since the electricity can be produced locally [1]. How-
ever, the tremendous growth of individual grid-connected solar photovoltaic systems
at the distribution systems have introduced the disturbances of power quality such as
harmonics, voltage profile and power losses due to its uncontrollable natural char-
acteristic of electricity generation based on meteorological conditions to the Point
of Common Coupling (PCC) [2–7]. There are available technical assessments and
international standards on grid-connected Photovoltaic (PV) systems such as IEC
61727 (1995-06) and IEEE 929-2000 to provide proper guidance on compatible
operation of grid connected renewable energy resources in terms of power system
and power quality issues [8, 9]. In addition, numerous usages of nonlinear loads
at the distribution system have deteriorated the power quality due to the harmonic
distortion. Thus, more researchers are concentrating on power quality improvement
features of PV system to improve power quality distortion issues as well as gen-
erating power to ensure the availability of electricity supply [10–13]. The works
that have proposed by using different control algorithms such as Leaky Least Mean
Fourth (LLMF) [13], Synchronous Reference Frame Theory (SRF) [12, 14, 15],
SRF with optimized controller using Differential Evolution (DL) [16], Fuzzy Logic
Controller (FLC), Improved Linear Sinusoidal Tracer (ILST) [17], offset reduction
Second Order Generalized Integrator (SOGI) [18], Predictive Direct Power Control
(P-DPC) [19], direct current control method with PV/Wind based DSTATCOM [20],
sliding mode control with PV/micro turbine based DSTATCOM [21], adaptive neu-
ral learning algorithm [22], fuzzy PI controller with Constant Switching Frequency
Sub-Harmonic PulseWidthModulation (CSFSHPWM) [23], adaptive FLC [24, 25],
decoupled current controller [26], Least Mean Eight (LME) adaptive algorithm [27],
Adaptive Modified Least Mean Fourth (MLMF) [28], dual-sign error control algo-
rithm [29] with PV based DSTATCOM to provide electricity supply to the connected
loads, put the excessive PV energy onto the utility grid and solve power quality issues
such as harmonic elimination, reactive power compensation, load balancing as well
as controlling the system to maintain its stability even in rapid change [30].

This research proposes different training algorithms of BPNN since BPNN have
been reported widely in certain areas such as pattern identifications and function
approximations, however a limited literature is available related to the usage ofBPNN
control algorithm with different training algorithms for PV based DSTATCOM in
detecting harmonic current [31–33].

2 Power Quality Issues

Fast industrialization has increased the numbers of power electronic loads tremen-
dously in electric power distribution system. These nonlinear loads inject harmonic
distortions which cause non-sinusoidal current in the distribution network. These
nonlinear loads associated with transformers, High-Voltage DC (HVDC) systems,
renewable energy sources, Switch Mode Power Supplies (SMPSs), Uninterruptible
Power Supplies (UPSs), arc furnaces, welding systems, telecommunication equip-
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Fig. 1 Impact of harmonics in the power system [42–45]

ment and many others create power quality issues at the PCC in the distribution
network which led to waveform distortion. Poor power quality will affect both util-
ities and consumers such as malfunction of sensitive equipment in industries, loss
of revenue, increase power losses and resonance with source impedance [33–38].
Figure1 illustrates the impact of harmonics in the power system. There are strin-
gent international standards had been established to curb the power quality issues at
the PCC, for instance, IEEE Standard 1531-2003, IEEE Standard 519-2014 and IEC
61000-3-2:2018 [39–41]. In this chapter, the compliance to IEEE Standard 519-2014
has been emphasized to improve harmonic current distortions.

3 Active Power Line Conditioners

Active Power Line Conditioners (APLCs) are capable to provide remedial measures
with amore cost effective solution tomitigate power quality problems in the distribu-
tion network [10]. These compensating devices are capable to compensate necessary
reactive power and harmonic component from connected nonlinear loads [46]. The
APLCs can be classified into three different topologies of active power filters such
as DSTATCOM, Dynamic Voltage Restorer (DVR) and Unified Power Quality Con-
ditioner (UPQC) as shown in Figs. 2, 3 and 4. These compensating devices are used
to solve different problems of power quality in the distribution network which the
DSTATCOM is capable to solve current based power quality problems, the DVR is
proposed to suppress the voltage based power quality problems while the UPQC is
used to solve both types of power quality problems [47]. These active power filters
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Fig. 2 The equivalent circuit diagram Dynamic Voltage Restorers (DVRs)

Fig. 3 The equivalent circuit diagram Distribution Static Compensator (DSTATCOM)

Fig. 4 The equivalent circuit diagram Unified Power Quality Conditioner (UPQC)
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are realized based on Voltage Source Inverter (VSI) since it has better performance
than Current Source Inverter (CSI) due to its light weight, cheaper, expandable to
multi-step andmulti-level versions as well as its capability to deal with lower switch-
ing frequency [48]. Among these, DSTATCOM has been considered as one of the
most effective compensating devicewith a very fast response for reactive power com-
pensation [49–51]. The DSTATCOM’s compensation current injection through the
interface inductor at the Point of Common Coupling (PCC) can eliminate harmonic
currents due to the distorted nonlinear load and provide reactive power compensation
[10]. In recent years, the increasing concern of power quality issues has led to the
tremendous applications of DSTATCOM and it has become the most widely used
filter in the industrial processes [43, 52–54]. Owing to the advancement in power
electronics control of DSTATCOM, its primary benefit is the voltage at the PCC can
be effectively regulated. In addition, the DSTATCOM can also provide power factor
correction, harmonics current elimination, voltage regulation during sag, swell and
others with exceptional features of fast response as well as enhancement of transient
overload capability under lower voltage level [55].

4 Design of Back Propagation Neural Network Control
Algorithm

This research is suggested solar PVbasedDSTATCOMwithBPNNcontrol algorithm
since limited application of neural network in Renewable Energy Sources (RES)with
DSTATCOM in the previous literatures for power quality improvement features [56,
57]. In the available literature, BPNN has become the most popular controller in
various applications with advanced theoretical development. However, its imple-
mentation are still lacking in electrical power engineering for three-phase system
in hardware implementation for industrial applications [33, 58]. The investigation
on the BPNN control algorithm is done based on Voltage Reference Configuration
(VRC) based FFT control algorithm for different training algorithms of BPNN such
as Levenverg–Marquadt, Bayesian regulation, Broyden–Fletcher–Goldfarb–Shanno
(BFGS) Quasi-Newton, conjugate-Gradient (Powell–Beale restart, Fletcher–Reeves
and Polak–Ribiere updates), Gradient descent (adaptive learning rate BPNN), one
step secant BPNN, scaled conjugate Gradient BPNN and resilient BPNN (RPROP).
Further, comparisons are also done with different weight/bias training functions such
as supervised and unsupervised. The training algorithms that have been used for this
investigation are summarized in Fig. 5. Through the training process of the BPNN,
the steady state line current from 0.3 to 0.4 s peak amplitude of 5 cycles with 10,000
samples has been set as target data whereas the input pattern of nonlinear load current
has been used with similar time frame and number of samples. The 10,000 samples
are divided into three sets of sample which 7001 samples are used for training set,
1500 samples for validation set and another 1500 for testing set. The training set
samples are used to calculate the Gradient for the network weights and biases com-



196 N. H. Baharudin et al.

Fig. 5 Summary of the proposed BPNN learning algorithms

putation to follow the target pattern. The validation set samples are used to validate
the training set samples and its validation error is observed throughout the train-
ing process to prevent over fitting of the training set samples. Then, the testing set
samples will be used for independent test for network generalization. Each training
algorithms as stated in Fig. 5 have been utilized to investigate its performance in
generating the target pattern for harmonic elimination in term of accuracy, learning
epochs and training time. Training algorithm accuracy is determined by calculating
the error between the target and output pattern using MSE. The lower value of the
MSE shows the higher accuracy of the output pattern according to the target pat-
tern given. Number of iterations (epochs) and their training time are compared to
investigate the performance of different BPNN training algorithms on DSTATCOM.

5 Results and Discussions

The preliminary model of DSTATCOM system are simulated based on VRC control
algorithm and the simulation results are presented in Figs. 6, 7, 8 and 9 [59]. The
distorted nonlinear load current is observed in Fig. 6 which can be compensated
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Fig. 6 Phase A load currents waveform (iLa)

Fig. 7 Phase A compensating currents waveform (iCa)

Fig. 8 Phase A line currents waveform after compensation (iSa)

Fig. 9 Phase A line voltage waveform after compensation (vSa)

by DSTATCOM through compensating current injection at the PCC as shown in
Fig. 7. The DSTATCOM is capable to improve the harmonic currents distortion at
the PCC as the line current and voltage are sinusoidal and in phase by referring to
Figs. 8 and 9. Then, the steady state line current from 0.3 to 0.4 s peak amplitude of
5 cycles with 10,000 samples has been set as target data for the BPNN training. This
offline training use load current of the same time frame and number of samples as
the input data samples.
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Fig. 10 Total Harmonic Distortion (THD) of the load current

Fig. 11 Total Harmonic Distortion (THD) of the line current after compensation

After DSTATCOM compensation, the voltage at PCC is regulated and the load
current can be compensated accordingly. The Total Harmonic Distortion (THD) of
the nonlinear load current is 53.31% which can be reduced to 9.53% as represented
in Figs. 10 and 11. The odd harmonics of 3rd, 5th, 7th and 9th are also dampened
after the compensation. Thus, the DSTATCOM is capable to regulate the line voltage
at PCC and reduce the power quality problem in term of harmonic current reduction.
Thus, these simulation results can be used as the base data for BPNN input training
for the preliminary analysis by using different training algorithms as summarized in
Fig. 5.

The purpose of this study is to compare the training time as well as its accuracy
for different type of BPNN training algorithms and RBF. Since previous work on
power quality improvement by using DSTATCOM with BPNN control algorithm
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Fig. 12 Comparison performance of different learning algorithms based on its accuracy, training
time and no. of epochs

have stated the disadvantages of its large training time in the application of the
complex system and the selection of the number of the hidden layers [33] which
is based on Levenberq-Marquadt BP [60] and exclusive connecting network [61]
whereas, RBF based DSTATCOM has been proven suitable to reduce THD less than
5% with reduced computation time of the DSP [31].

There are lots of other BP training algorithms that are available that can be used
for DSTATCOMcontrol which yet to be confirmed its performance on DSTATCOM.
As can be seen in Fig. 12, different training algorithms of Back Propagation (BP)
have shown that training time is proportional to number of iterations (epochs). How-
ever, there is a trade-off between performance in terms of degree of accuracy and
training time. The most accurate training algorithms of BP are Levenverg–Marquadt
(trainlm), Bayesian regulation (trainbr) and BFGS Quasi-Newton (trainbfg) with
accuracy higher than 7.7× 10−9 as illustrated in Figs. 13 and 14. However, the train-
ing time is between 16s and 1min 38s which is quite a long time and unsuitable for
dynamic system such as DSTATCOM.

Then, the specified accuracy for DSTATCOM performance limits to 0.01 which
lots of training algorithms can perform better with better training time which is less
than 4s such as conjugate-Gradient with Powell–Beale restart (traincgb), conjugate-
Gradient with Fletcher–Reeves updates (traincgf), conjugate-Gradient with Polak–
Ribiere updates (traincgp), scaled conjugate Gradient BP (trainscg), RPROP resilient
BP (trainrp) and one step secant BP (trainoss) which are demonstrated in Fig. 15. Sev-
eral BPNN training algorithms that diverged during the experiment such as Gradient
descent (traingd), Gradient descent with momentum (traingdm), Gradient descent
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Fig. 13 Performance of BPNN training algorithm with Jacobian derivatives a Levenberg-
Marquardt (trainlm) b Bayesian Regulation (trainbr)

Fig. 14 Performance of BPNN training algorithm with Gradient derivatives using Broyden,
Fletcher, Goldfarb and Shanno (BFGS) Quasi-Newton method (train-bfg)

with adaptive learning rate (LR), Gradient descent with momentum and adaptive
learning rate, supervised weight/bias training functions with batch training(trainb),
cyclical order (trainc), random order (trainr) and sequential order (trains). These per-
formances are presented in Figs. 16 and 17. This divergence may occur due to the
lagging of training process which increases the possibility of falling at undesirable
local minima caused by multiple layers of neural network structure and the BPNN
algorithm’s greedy nature [62].

These BPNN training algorithms such as conjugate-Gradient with Powell–Beale
restart (traincgb), conjugate-Gradient with Fletcher–Reeves updates (traincgf), con-
jugate Gradient with Polak–Ribiere updates (traincgp), scaled conjugate gradient BP
(trainscg) and resilient BP (trainrp) and one step secant BP (trainoss) are amongst the
fastest response with accurate performance. The disadvantages of BPNN is arbitrar-
ily long training time for complex system applications as well as tedious selection
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Fig. 15 Performance of BPNN training algorithm with Gradient derivatives using conjugate gradi-
ent a Powell–Beale restart (traincgb) b Fletcher–Reeves up-dates (traincgf) c Polak–Ribiere updates
(traincgp) d scaled conjugate gradient (trainscg) e RPROP resilient back propagation (trainrp) f one
step secant (trainoss)

of hidden layers for neural networks [33]. As compared with Levenverg–Marquadt
(trainlm), Bayesian regulation (trainbr) and BFGS Quasi-Newton (trainbfg), it has
poor performance on dynamic system because of large computation time but it has
proven to be the most accurate learning algorithm. Levenverg–Marquadt learning
algorithm is typically used for BP control algorithm in the previous literatures. On
the other hand, RBF is also proven to be the fastest response with the most accurate
performance. As mentioned earlier, the architecture of RBF is simple, accurate and
its dynamic response is improved since its process to update algorithm parameters
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Fig. 16 Performance of BPNN training algorithm with Gradient derivatives using a Gradient
descent (GD) (traingd) b GD with momentum (traingdm) c GD with adaptive learning rate (LR) d
GD with momentum and adaptive learning rate (LR)

can occur concurrently while avoiding time delay to complete computation of the
previous values. Thus, the computation time of RBF is much reduced than other
NN algorithms [32, 33]. As the conclusion, the preference of RBF for DSTATCOM
control algorithm is justified by this preliminary study which concludes that RBF
is the best neural network algorithm which is suitable for DSTATCOM. However,
the output of the DSTATCOM as presented previously by using control algorithm
based on VRC control algorithm can reduce supply current harmonics from 53.31 to
9.53%which is still higher than the specified THD limit by IEEE Standard 519-2014.
Thus, this research based on previous works based on DSTATCOM based RBF can
further decrease the THD of the line current up to 4.7% which is implemented with
self-supporting dc-link compensation [31]. Moreover, this analysis is also based on
previous works based on BPNNDSTATCOMwhich the THD of the line current can
be improved up to 2.9%which is implemented with self-supporting dc-link compen-
sation [33]. Thus, these learning algorithms can further reduce the THD according
to the IEEE Standard 519-2014 guidelines with less training time. In summary, the
application of neural network control algorithm can be further developed in the area
of power electronics and electrical machine drives especially on distribution system
[56, 57]. Its implementation for electrical power engineering in three-phase system
throughhardware implementation and industrial applications canbe further improved
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Fig. 17 Performance of BPNN training algorithm with supervised weight/bias training functions
a Batch training with weight abd bias learning rules (trainb) b Cyclical order (trainc) c Random
order (trainr) d Sequential order (trains)

with the advancement of theoretical neural network research works [33, 58]. Thus, it
can be concluded that neural network is the recent research area in power engineering
especially DSTATCOMwith lots of improvement that have been done by researchers
theoretically in order to enhance its performance. The most widely used NN control
algorithms in the previous literatures for DSTATCOM are Adaptive Linear Neuron
(Adaline) and BPNN. However, the drawback of BPNN is the large computation
time which is not suitable for dynamic and complex system such as DSTATCOM.
Thus, this work has proposed other learning algorithms of back propagation that can
reduce its large training time such as conjugate-gradient with Powell–Beale restart,
conjugate-Gradient with Fletcher–Reeves updates, conjugate-Gradient with Polak–
Ribiere updates, scaled conjugate-Gradient BP and resilient BP and one step secant
BP with accurate performance as well as RBFNN for faster response.

6 Conclusions

The investigation on BPNN control algorithm for DSTATCOM in order to improve
the harmonic distortions demonstrates successful performance in harmonic com-
pensation under nonlinear loads which has improved from 53.31 to 9.53% with
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82.1% of THD improvement. This work has investigated 18 training algorithms
of BPNN for the DSTATCOM control algorithm such as Levenverg–Marquadt,
Bayesian regulation, BFGS Quasi-Newton, conjugate-Gradient with Powell–Beale
restart, conjugate-Gradient with Fletcher–Reeves updates, conjugate-gradient with
Polak–Ribiere updates, scaled conjugate gradient BP, RPROP resilient BP and one
step secantBP. It is concluded thatBPNNbasedDSTATCOMis suitable for harmonic
current elimination under nonlinear loads and improve its training time for accu-
rate DSTATCOM performance. Previous work shows that BPNN with Levenverg–
Marquadt training algorithm has large training time for complex system and tedious
selection for number of hidden layers become the disadvantages for this control
algorithm. Thus, the contribution of this work has demonstrated less training time
with high accuracy in the complex application of PV based DSTATCOM by using
other training algorithms of BPNN for generating compensating currents was intro-
duced and suitable training algorithms such as conjugate-gradient with Powell–
Beale restart (traincgb), conjugate-Gradient with Fletcher–Reeves updates (traincgf),
conjugate-Gradient with Polak–Ribiere updates (train-cgp), scaled conjugate Gradi-
ent BP (trainscg), RPROP resilient BP (trainrp) and one step secant BP (trainoss) are
demonstrated.
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Power Extraction from PV Module Using
Hybrid ANFIS Controller

Tata Venkat Dixit, Anamika Yadav, S. Gupta and Almoataz Y. Abdelaziz

Abstract The characteristic of PV module is nonlinear, complex in nature and its
performance depends on different environmental factors. In order to enhance the effi-
ciency of photovoltaic power system, selection of a suitable power converters and
control strategies are essential. In this chapter, the performance of soft-computing
techniques ofMPPT such as ANN andHybrid-ANFIS are compared with well estab-
lished Modified Incremental Conductance method under load and solar irradiance
change. The ANFIS is able to exploit both data and knowledge to formulate more
efficient hybrid intelligent system. It learns the information from experimental data
and automatically determines the best membership parameters and rule bases associ-
ated to Fuzzy Inference System (FIS) to map given input output data. In this chapter,
the parameters of FIS are tuned by Back-Propagation (BP) or hybrid (combination
of Least Square Estimation and BP) method. Also, the effect of load impedance and
converter topologies on ANFIS controller design has been investigated. Further, the
detailed description of hardware implementation of ANFIS controller onDSP/FPGA
platform has been presented.
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List of Abbreviations/Nomenclature

IPV : Solar cell load current
ISC : Short-circuit current
Iph : Photocurrent (Ipv ≈ Isc)
VPV : Terminal voltage of solar panel
VOC : Open circuit voltage of panel
IO : Reverse saturation current
q : Electron charge (1.602E-19 C)
STC/stc : Standard Test Condition
k : Boltzmann’s Constant (1.381E-23 J/K)
Tstc : Junction temperature (in Kelvin) at STC
βv : Temperature coefficient of open circuit voltage
AM : Air-Mass
G : Solar irradiance (W/m2)
RO : Load impedance
d : Duty ratio of converter
Rin : Input resistance of converter
Vmp : Voltage of panel at MPP
Imp : Current at MPP
A : Thermal voltage timing completion factor
Pmp : Power at maximum power point
dmp : Duty ratio at MPP
αI (mA/◦C) : Temperature coefficient of short-circuit current

1 Introduction

The Solar power plants are playing a vital role in the energy market due to its eco-
friendly nature and low operational and maintenance cost [1]. In fact, the energy
supplied from the solar power is increasing by 20–25% per annum over past three
decades [2, 3]. Noteworthy, the efficiency of Photovoltaic module/system is poor
due to its non-linear characteristic, cell temperature, and solar irradiation depen-
dent nature [4]. Hence, extracting the maximum power from PV system for a given
load is an indispensable task. The efficiency of these systems depends mainly on
load impedance, converter topology, and control strategies. In order to enhance the
power extraction efficiency of PV system, efficient algorithms are integrated with
PV module. Presently, several MPPT algorithms have been proposed by researchers
to extract the maximum power from PV module. These algorithms differ in many
aspects, such as cost and complexity, sensor requirement, converter speed, topol-
ogy and complexity, robustness, tracking efficiency under environment variation and
hardware requirement. The objective of these algorithms is to track and extract the
maximum power for photovoltaic module. This is achieved by matching the load
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Table 1 Comparison of Expert System (ES), Fuzzy Set (FS), Neural Network (NN) and swarm
intelligence [8]

Features Expert system Fuzzy set Neural network Evolutionary
computation

Knowledge
representation

Good Moderate Poor Modest

Uncertainty
tolerance

Good Moderate Moderate Moderate

Imprecision
tolerance

Poor Moderate Moderate Moderate

Adaptability Poor Moderate Moderate Moderate

Learning ability Poor Poor Moderate Moderate

Explanation
ability

Moderate Moderate Poor Modest

Knowledge
discovery and
data mining

Poor Modest Moderate Good

Maintainability Poor Modest Moderate Good

impedance of the circuit with the source impedance of the photovoltaic panel at
MPP by varying the duty ratio of the converter.

Nowadays, popular artificial intelligence technique such as fuzzy logic and ANN
are widely adopted for solving complex nonlinear uncertain problems [5]. The Fuzzy
Inference System (FIS) can model qualitative aspect of several uncertain problems
without employing precise quantitative analysis. Although, the FIS has many practi-
cal limitations such as, lack of standardmethods for: (a) transformation into rule-base
(b) effective tuning of membership functions for better performance index. Further,
ANN model is a block-box approach of controller design and it needs huge experi-
mental data for effective design [6, 7]. Thus, ANFIS acts as a tool for constructing the
fuzzy rules based on IF-THEN rules with proper membership functions to produce
stipulated relationship between input-output. In general, hybrid learning system are
preferred due to the problems associated with basic learning rules (gradient descent
and chain rule) such as, slowness and convergence at local minima. The hybrid-
ANFIS has two modes of adaptive learning such as Batch Learning and On-line
learning are adopted. The comparative analysis of various intelligence systems on
the basis of uncertainty and imprecision tolerance, adaptability and learning abil-
ity etc. are reported in Table1. In this chapter, the performance of soft-computing
based Maximum Power Extraction (MPE) technique such as Hybrid-ANFIS is com-
pared with well-established Incremental Conductance method under load and solar
irradiance variation while effect of temperature variation are ignored during this
study. Noteworthy, the effect of load impedance and converter topology on ANFIS
controller design has been investigated. Also, the detailed description of hardware
implementation of ANFIS controller on DSP/FPGA platform has been presented.
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2 Empirical Model of PV Module

In literature, several mathematical models are reported that illustrates the operation
and behavior of photovoltaic panel. These models differ in computational burden,
accuracy and numbers of parameters needed to estimate the voltage-current char-
acteristics [9–11]. In this section, an empirical model of photovoltaic module for
RTDS (OPAL-RT) platform has been discussed. In fact, approximate equivalent cir-
cuit modeling of PV cell is mandatory for real time simulation. The five parameter
model reported in the literature involves iterative solutions due to an algebraic loop.
Noteworthy, the successful results of these models on SIMULINK/RTDS platform
could be achieved provided the algebraic loop solver converges to a definite answer.
Therefore, the implementation of these models on Real Time Digital Simulator or
HIL simulation platform (OPAL-RT) results compilation error. This limitation can
be overcome by empirical model of solar cell presented in the next subsection.

2.1 Improved Model of PV for RTDS Implementation

Although, this model has no physical interpretation but it can be characterized by
simple resolution which requires only four parameters Voc, Isc, Imp and Vmp [12].
Afore-mentioned, the form of thismodel is essentially based on five parameter model
of solar cell.

Ipv = Isc

{
1 − C1

(
e

Vpv
C2Voc − 1

)}
(1)

where, the above equation exactly fits to short circuit point. Further, the open circuit
and maximum power point can be approximated as

C2 =
(
Vmp

Voc
− 1

)

ln
(
1 − Imp

Isc

) (2)

C1 =
(
1 − Imp

Isc
exp

(
− Vmp

C2Voc

))
(3)

2.2 Effect of Solar Irradiance and Temperature Variation

In this section, the effect of temperature and solar irradiance variation on the char-
acteristics of solar panel has been investigated. Usually, the solar panel specifica-
tions such as Voc, Isc, Imp and Vmp are always reported at STC (at cell tempera-
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ture 25 ◦C,AM 1.5 and 1kW/m2 solar irradiance) by manufacturer. Therefore, the
Eqs. (1)–(3) are valid characteristics equation at STC. In order to include the influ-
ence of solar irradiance and temperature variation on cell parameter Voc, Isc, Imp and
Vmp several methods are discussed in the literature.

The Ref. [13] has considered normalized parameters of Voc, Isc, Imp and Vmp per
unit change in the temperature. The influence of solar irradiance on temperature
coefficient of Voc and Vmp is assumed to be insignificant. Whereas the temperature
coefficient of short-circuit and maximum power point current are scaled by the ratio
of the actual irradiance level to irradiance level at STC. The set of equation to estimate
the performance of panel is given by Eq. (4). References [12, 14–16] have proposed
a model that shows modest variation in open circuit voltage due to its logarithmic
relationship with solar irradiance variation while the short circuit current is directly
proportional to per unit solar irradiance.

ISC = ISCstc [1 − αIsc(Tstc − T )]
Imp = Impstc [1 − αImp (Tstc − T )]
VOC = VOCstc − βVOCVOCstc (Tstc − T )

Vmp = Vmpstc − βVmpVmpstc (Tstc − T )

⎫⎪⎪⎬
⎪⎪⎭

Where, βVOC and βVmp < 0; and αIsc > 0 (4)

It is noteworthy that the simultaneous effect of solar irradiance and temperature
variation on can be included in equation by using superposition principle as given
by Eqs. (5) and (6). In Eq. (5) αI (mA/◦C) shows positive temperature coefficient of
short-circuit or maximum power point current. Similarly, in Eq. (6) βV (V/◦C) is the
negative temperature coefficient of voltage corresponding to Voc and Vmp

I(G,T )x = Ixstc
G

Gstc
+ [αI (T − Tstc)] ;Where, αI > 0 (5)

V (G,T )x = Vystc +
(
AKT

q

)
G

Gstc
+ [βV (T − Tstc)] ;Where, βV < 0 (6)

In the presentwork, Eqs. (1)–(6) are considered to implement the solarmodule inHIL
platform (RT-LAB) and the limitation of algebraic loop has been overcome by adding
memory block in load voltage sensing path. The current-voltage and power-voltage
characteristics of solar panel during change in solar irradiance and temperature are
shown in Figs. 1 and 2 respectively.

3 Maximum Power Extraction Constraints of PV Module

As the efficiency of solar system is low, it requires an efficient converter and algo-
rithm to extract the maximum power from the solar module at given solar irradiance
and temperature. Noteworthy, the solar module has a single operating point at which
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Fig. 1 Current-voltage and power -voltage characteristics during change in solar irradiance

Fig. 2 Current-voltage and power -voltage characteristics during change in temperature

maximum available power can be extracted at particular solar irradiance and tem-
perature as shown in Fig. 1. Hence, the purpose of maximum power point tracking
technique is to track the MPP under given environmental condition [17, 18]. As
per impedance matching principle, in order to transfer maximum power, the load
impedance should match with the source impedance of the solar module. This can be
achieved byDC–DCconverter that acts as agent tomatch the load impedancewith the
source impedance. In [19, 20], several non-isolatedDC–DCconverters such as, buck,
boost, buck-boost, Cuk, [21] and SEPIC are reviewed for photovoltaic applications.
The comparative study of these converter based on number of component required,
load constraint on MPPT, output voltage polarity, input and output current ripple,
cost, control effort, performance under temperature and irradiance variation are sum-
marized in [19, 20, 22]. The selection of right configuration of DC–DC converter
and effect of load line on the performance has not been investigated widely [23].
In this work, basic boost topologies such as conventional Boost Converter (CBC)
and SEPIC converters with resistive load have been considered. In this context the
performance of advanced MPPT algorithms such as ANN and ANFIS are compared
with well-established methods such as P&O [24] and Incremental Conductance [25]
for all above configurations.
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Table 2 Comparison of proposed and existing MPPT methods [26–28]

Performance
parameters

Modified P&O Modified IC Fuzzy ANN ANFIS

Type Direct Direct Direct Hybrid Hybrid

Performance
under irradiance
change

Good Good Good Depends on
training data

Good

Complexity Low Low High High High

PV array depen-
dent

No No Yes Yes Yes

Speed Slow Medium Fast Fast Fast

Reliability Medium Medium Medium Medium Medium

Implementation Digital/Analog Digital Digital Digital Digital

Memory
requirement

No No Yes Yes Yes

Parameter tun-
ing

Not required Not required Required Required Required

Sensor used Voltage, current Voltage,
current

Voltage,
current

Voltage,
current

Voltage,
current

% Overshoot No No No No Moderate

Power extrac-
tion efficiency
% for CBC

9̃4.96–97.72 9̃7.57–99.81 8̃7–90.5* 9̃7.61–98.93 9̃8.63–99.63

Cost Inexpensive Inexpensive Expensive Expensive Expensive

3.1 Maximum Power Extraction Techniques

Aforementioned, to extract themaximumpower from thePVmodule, load impedance
must match with the source impedance. Therefore, several algorithms are proposed
in the literature for achieving MPPT by varying the duty ratio of the converter. In the
present work, the performance of soft-computing MPPT techniques such as ANN,
ANFIS [26] are compared with well-established incremental conductance methods.
A comparison among these MPPT methods based on type, efficiency, transient per-
formance, complexity, speed, reliability, implementation constraint, memory and
sensor requirement, necessity of tuning, percentage overshoot and cost are tabulated
in Table2.

3.2 Modified Incremental Conductance method

ThisMPPTalgorithm is basedonhill climbingphilosophyof power curve. If the slope

of power curve of photovoltaic module is positive
(

dPpv

dVpv
> 0

)
then with increase in
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terminal voltage Vpv(n+1)−Vpv(n) of the module, the duty ratio will increase [29]. Simi-
larly, if slope of power curve is negative, the increase in terminal voltage will be the
cause of reduction of duty ratio. The complete operation of incremental conductance
method is briefed as follows:

1. If slope of power curve is positive
(

dPpv

dVpv
> 0

)
and change in the terminal voltage

of panel is also positive (�V > 0) then the Operating Point (OP) lies left side of
the MPP.In order to achieve MPP the control variable Vpv should increase as a
result �V > 0 becomes more positive.

2. If
(

dPpv

dVpv
> 0

)
but �V < 0 , i.e. the OP lies on the left side of MPP. Hence, to

reach MPP the control variable Vpv should increase for ensuring positive change
in the terminal voltage of panel (�V > 0).

3. If
(

dPpv

dVpv
< 0

)
and �V > 0 i.e. the OP lies on the right side of MPP. Therefore,

for reaching MPP the control variable Vpv should decrease that results positive
change in terminal voltage of solar panel (�V < 0).

4. Similarly, if
(

dPpv

dVpv
< 0

)
and �V < 0 i.e. the OP lies on the right side of MPP.

Thus, for achieving MPP, the control variable Vpv should decrease which results
more negative (�V < 0).

5. For �P = 0 the OP lies on MPP and control variable should remain same.
6. If �V = 0;�P �= 0 and irradiance level has changed then

a. Control variable Vpv should increase if �P > 0 and irradiance increased
hence �V will be positive.

b. Control variableVpv shoulddecrease if�P < 0 and irradiance level decreased
results positive.

Where, �V = Vpv(n+1) − Vpv(n) and �P = Ppv(n+1) − Ppv(n); and ‘n’ is the sampled
instant.

The advantage of this method is that it does not oscillate around MPP unlike
classic P&O method as well as it can track the MPP under sudden solar isolation
change. The flowchart of modified incremental conductance method is shown in
Fig. 3.

3.3 ANN Based MPPT Controller

Basically, ANN is a black box data driven modeling approach to track the MPP. This
model does not require any information about the solar panel. The block diagram for
implementing ANN-basedMPPT scheme is depicted in Fig. 4.The input to proposed
controller is voltage and current of PV panel and output is the duty ratio. Where, this
duty ratio is used to operate the DC–DC converters (CBC and SEPIC). The selection
of transfer function and neuron in each layer are obtained by trial and error. The
most popular Levenberg–Marquardt algorithm has been adopted to train the neural
network for all three converter topologies. To train the ANN model data is obtained
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Fig. 3 Flow chart of modified IC MPPT algorithm

Fig. 4 Implementation of ANN-based MPPT control scheme on dSPACE DS1103 controller

by P&OMPPT algorithm for different converter topologies under load variation and
isolation level change. In order to train, test and validate the neural network for CBC
and SEPIC converter 69904 patterns are fed to neural networks. The details of MLP
network for each NN (for CBC and SEPIC) are tabulated in Table3. Further, the
training and testing results of ANN for CBC and SEPIC converters are depicted in
Figs. 5 and 6 respectively.
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Table 3 Details of MLP structure for different converter topologies

Parameters of MLP structure CBC SEPIC

No of nodes in input layer 2 2

In first hidden layer Neurons 20 36

Type TANSIG LOGSIG

In second hidden layer Neurons 10 20

Type LOGSIG TANSIG

In third hidden layer Neurons . . . 10

Type . . . TANSIG

In output layer Neurons 1 1

Type PURLINE PURLINE

Training goal (MSE) 8.71E-6 @200 epochs 2.7E-4@200 epochs

% error in output prediction <0.27 <9

3.4 ANFIS Based Controller

The popular artificial intelligence technique such as fuzzy logic and ANN are found
effective for solving engineering problems such economic load dispatch, load fore-
casting, security assessment of power system while the conventional techniques
failed to provide accurate solution. The advancement in digital signal processors
and control strategies made artificial intelligence an attractive solution to industrial
applications such as automobile, missile technology, robotics and energy harvesting
etc. Moreover, the fuzzy logic has ability to convert the linguistic variables into sin-
gle valued number using Fuzzy Inference System (FIS) [16]. Another advantage of
FIS is that it allows setting the rule quit close to real time process and they can be
easily interpretable [30]. The limitation of FIS is that it requires vast expert knowl-
edge to define fuzzy rules base and computational time for tuning the membership
parameters. Although, ANN is a block-box approach of artificial intelligence that
acquires the knowledge by training process but it requires huge data-set and the anal-
ysis of trained network is difficult to understand. An ANFIS is the hybridized form
of ANN ad FIS earlier proposed by Jang in 1990s [31]. This intelligent controller do
not require exact mathematical model of the system. The ANFIS can be applicable
for all the applications where intelligent controllers such as FIS and neural network
are applicable for modeling and control of complex system [32]. The ANFIS is
able to exploit both data and knowledge to formulate more efficient hybrid intelli-
gent system. The ANFIS controller automatically determines the best membership
parameters and rule bases associated to FIS for mapping given input output data-set.
The parameters of FIS are tuned by Back-Propagation (BP) or hybrid (combination
of Least Square Estimation and BP) method.
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Fig. 5 a Convergence curve of MSE error of ANN-based MPPT controller for CBC b training
error in duty cycle estimation for CBC

Fig. 6 a Convergence curve of MSE error of ANN-based MPPT controller for SEPIC converter b
training error in duty cycle estimation for SEPIC converter

Fig. 7 ANFIS architecture of two-input Sugeno fuzzy model with two rules for MPPT
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3.4.1 Architecture of ANFIS Controller

The ANFIS basedMPPT algorithm has a better ability to track theMPP then conven-
tional MPPT algorithms [33, 34]. Presently, photovoltaic panel voltage and current
are considered as an input to ANFIS controller and one output is the duty cycle of
the converter. These two inputs generate the control variable to control the conduc-
tion period of the semiconductor switch in the DC–DC converter, so that maximum
power extraction from the solar panel can be achieved. Owing to its computational
efficiency and interpretability, the Sugeno fuzzy inference model is highly preferred
[35]. A first order Sugeno fuzzy model with two inputs can be expressed as

Rule1: If Vpv is A1 and Ipv is B1 THEN d1 = p1Vpv + q1Ipv + r1
Rule2: If Vpv is A2 and Ipv is B2 THEN d2 = p2Vpv + q2Ipv + r2

where, Vpv and Ipv are the input vector, d is the output function. TheA1,A2,B1 andB2

are the fuzzy sets in antecedent and p1, p2, q1, q2, r1 and r2 are designed parameters
that are estimated during the training process. The typical architecture of ANFIS
based MPPT controller is shown in Fig. 7

Layer1 : Fuzzification Layer

Every nod in this layer is square/adaptive nodes that represents fuzzy clustering
between input Vpv and Ipv. The output of this layer is expressed in Eq. (7).

O1
i = μAi (Vpv); i = 1, 2 (7)

O1
i = μBi=2(Vpv); i = 3, 4

where, μAi and μBi=2 can adopt any fuzzy membership function and O1
i is the

membership value for the crisp inputs Vpv and Ipv. The subscripted ‘1’ and ‘i’
represent the layer number and node number, respectively. Membership functions
“μ” can be any shaped function like trapezoidal, triangle, and Gaussian. In this
chapter triangular member ship function is considered and it is expressed as Eq. (8)

µA(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < ai
(x − ai)/(bi − ai) ai ≤ x ≤ bi
(ci − x)/(ci − bi) bi ≤ x ≤ ci

0 x > ci

(8)

Layer2 : Rule interface Layer

Every node in this layer is fixed node (circles) and it transmit the input signal by
applying t-norm operator these values are given in Eq. (9):

O2
i = wi = μAi (Vpv) × μBi (Ipv); i = 1, 2 . . . 5 (9)
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The inference process is performed in this layer and output of each node shows
the firing strength of the rules. In this study total number of rule bases is 25.

Layer3 : Normalization Layer

Every node in this layer denoted by circle tagged with N as shown in Fig. 7. The
ith node in this layer estimated the ratio of rule ‘i’ firing level to the total firing
level/strength as shown in (10). Where wi is referred as the normalized firing
strength:

O3
i = wi = wi

w1 + w2
; i = 1, 2 (10)

Layer4 : Consequent Layer

In this layer, the node function can be acknowledged with following function:

O4
i = widi = wi

(
piVpv + qiIpv + ri

) ; i = 1, 2 (11)

where, wi is the output normalization layer-3 and pi, qi, ri are the parameter set
called as the result parameters and required to be optimized during training process.
The purpose of this layer is to establish an adaptive correlation between normalized
firing value and result function.

Layer5 : Output Layer

It has a single fixed node that computes the overall sum of the input signals to
acquire final output and expressed as Eq. (12):

O5
i =

∑
widi =

∑
i widi∑
i wi

; i = 1, 2 (12)

The hybrid learning algorithm for controller design is used in [36]. An adap-
tive FIS typically consists of two different adjustable parts: (a) antecedent part (b)
consequent part. These parts can be optimized by hybrid learning procedure such
as combination of GD (gradient descent) and LSE (least-squares estimator). It has
two passes, forward pass and backward pass. In the forward pass of hybrid learning
algorithm, node output goes forward until layer-4 and the consequent parameters are
identified by the sequential least square method. In backward pass, the error signal
propagates backward and premise parameters are updated by gradient descent that
is back propagation learning method.
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3.4.2 Steps to ANFIS Based MPPT Implementation

The steps to realize ANFIS controller for maximum power extraction from the pho-
tovoltaic panel are as follows:

1. Collect the experimental data such as panel voltage, current and duty ratio of any
conventional MPPT algorithm.

2. Load data in Workspace in MATLAB.
3. Use the ‘anfisedit’ command in command window to start the ANFIS GUI editor.
4. Load data from work space to ANFIS editor GUI.
5. Initialize and generate the FIS by choosing suitable fuzzy model.
6. Select the ‘Train’, FIS optimization methods (hybrid or back-propagation), error

tolerance limit and number of epochs.
7. Check the structure and membership function.
8. Test the data against the trained FIS.

3.4.3 Design of ANFIS Controller Based MPP Controller

In the present work, an ANFIS controller has been proposed to predict the duty
cycle for particular DC–DC converter based on solar module terminal voltage and
current. Here, the fuzzy rules of controller are generated on the basis of Takagi-
Sugeno inference model. The results of P&O algorithm such as solar panel voltage,
current and corresponding duty ratio of the converter topology are captured through
control desk next generation software of dSPACE DS1103. In this study, the effect
of solar illumination and load variation is also taken into account. Figure8 depicts
the Simulink model of ANFIS controller for implementing on dSPACE DS1103.
The ANFIS optimized parameters such as surface, rule base, membership of panel
voltage current for CBC and SEPIC are shown in Figs. 9 and 10, respectively. The
parameters and features of trained ANFIS controller are listed in Tables4 and 5 for
various converters under different load condition as well as during change in solar
irradiance.

3.4.4 Experimental Setup Details and Procedure

In order to validate the real time effect of load line on the performance of MPPT,
different algorithms such as ANN, ANFIS, and modified IC have been implemented
on CBC and SEPIC converter topologies. The experimental setup for implementing
these algorithms on different converter topologies is shown in Fig. 11.The Ecosense
PV emulator (IGE-PV4C400-001 model) is used to emulate user defined solar panel
of ’K-Trom series 150W. The PV emulator is used for repeating the same environ-
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Fig. 8 Implementation of ANFIS-based MPPT control scheme on dSPACE DS1103 controller

Fig. 9 ANFIS controller results for CBC a Surface b Rule Base c Membership functions of solar
panel voltage d Membership function of solar panel current



224 T. V. Dixit et al.

Fig. 10 ANFIS controller results for SEPIC converter a Surface b Rule Base c Membership
functions of solar panel voltage d Membership function of solar panel current

mental test condition for comparing the performance of different MPPT algorithms.
Also, it is used to experimentally determine the maximum extracted power from the
panel. From the previous discussion it can be observed that, the maximum power
from the solar panel can be extracted provided that the input impedance seen by
the converter Ri ≈ Rmp. This condition of maximum power point depends upon the
converter configuration. The specification detail of 150W solar panel and different
converter topologies are listed in Table6. The voltage and current of PV emulator
and load are sensed by LEM technology Hall Effect sensors LV25-P and LA55-P
respectively. The proposed MPPT controllers are implemented using dSPACE-1103
that helps to quickly build and test the proposed algorithms before converting into
custom designed instrument. The dSPACE-1103 controller takes the sensed voltage
and current signal through its Analog I/O port and it gene-rates the PWM pulse for
controlling the duty cycle of DC–DC converter.
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Table 4 Parameters of proposed ANFIS controller

Topology Panel voltage
range

Panel current
range

Duty ratio
range

No of rules MF type

CBC 31.81–31.29 4.107–4.172 0.0–0.2 25 Triangular

SEPIC 5.77–37.05 1.742–3.649 0.1–0.6 25 Triangular

Table 5 The features of proposed ANFIS-based MPPT controller for CBC and SEPIC converter
power conditioning units
Feature of ANFIS controller

Type Sugeno AggMethod
(aggregation
method)

Sum No. of output MF 25

And Method Product No. of input 2 Output MF type Linear

Or method probor
(probabilistic or)

No. of input MF 5 No. of rules 25

DefuzzMethod wtaver (weighted
average)

Input MF type Triangular No of samples 69904

ImpMethod
(implication
method)

Product No. of output 1 No of epochs 27

Fig. 11 Experimental setup for extracting maximum power from PV emulator

Table 6 Specifications of photovoltaic panel and converter

K-Trom150W solar panel parameters Voc=43.2V; Vmp=34.5V; Isc=4.8A;
Imp=4.37A; Pmp=150W;
αI=0.00288mA/oC; βv= −0.14256mV/oC

CBC L=5mH; ILSAT = 10A; CO=1200uF;
f=10kHz; Diode=UF5402; SW= IRFP360

SEPIC converter L1=5mH; ILSAT = 10A; Co=1200uF;
f=10kHz; L2=5mH; C1=220uF;
Diode=UF5402; SW= IRFP360

Note: ILSAT is the saturation current of the inductor
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Fig. 12 Voltage, current of solar panel and load of CBC for different MPPT algorithm during solar
irradiance change from 383W/m2 to 827W/m2 to 383W/m2

4 Result Analysis

The results obtained from the simulation study of various MPPT techniques are
analyzed and validated from the experimental results taking into consideration the
effect of solar isolation and load.

4.1 Effect of Solar Isolation Change

In order to emulate the solar isolation change, Nagpur city with latitude 21.145 ◦N
and longitude 79.0882 ◦E on 15th April 2017 has been considered. In order to emu-
late the real environmental condition at particular day, the channel-1 of Ecosense
PV emulator has been set to emulate the 150W solar panel at 827W/m2 solar irra-
diance for 12.00Noon to 1.00PM and channel-2 is set to 383W/m2 for 9.00AM
to 10.00AM. The step load change has been introduced at t=3s from 827W/m2
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Fig. 13 Voltage, current of solar panel and load of SEPIC for different MPPT algorithm during
solar irradiance change from 383W/m2 to 827W/m2 to 383W/m2

to 383W/m2. During this experiment, intelligence controller extracts more power
than conventional methods. The results of CBC and SEPIC converter are depicted in
Figs. 12 and 13 respectively. The CBC converter has highest efficiency due to lesser
circuit components and current density for same power requirement. It is noteworthy
that the CBC has limited operating region unlike SEPIC converter. Also the SEPIC
converter has more current ripples during the isolation change as depicted in Fig. 13.
The performance of MPPT algorithms during solar isolation change is reported in
Table7.

4.2 Power Extraction from PV Panel During of Load
Variation

The performance of intelligent power extraction methods (ANN and ANFIS) and
modified incremental conductance algorithm are investigated during load variation.
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Table 7 Performance of MPPT algorithms during change in solar irradiance
MPPT → CBC SEPIC

Modified IC ANFIS ANN Modified IC ANFIS ANN

G (W/m2) G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

VPV 22.2 31.8 22 31.7 22 31.8 22.5 31.7 22.2 31.7 22.5 31.7

IPV 2.5 3.74 2.52 3.77 2.52 3.75 2.5 3.88 2.77 3.83 2.5 3.83

PPV 55.5 118.93 55.44 119.51 55.44 119.25 56.25 122.99 61.49 121.41 56.25 121.41

Vo 24.84 36.3 24.62 36.3 24.71 36.3 16.85 24.12 17.13 24.13 17 24.13

Io 2.18 3.27 2.21 3.28 2.19 3.25 2.65 3.88 2.69 3.87 2.66 3.86

Po 54.15 118.7 54.41 119.06 54.12 117.97 44.65 94.75 46.08 93.38 45.2 93.15

%η 97.57 99.81 98.14 99.63 97.61 98.93 79.38 77.04 74.94 76.91 80.36 76.72

Where, G1:383W/m2; G2:827W/m2

Fig. 14 Voltage, current and power CBC with modified IC-based MPPT algorithm during change
in load

The “Ecosense” PV emulator IGEPV4C400- 01 [36] is used to synthesize the 150W
solar panel and it is operated in simulated mode that uses stored current-voltage table
of particular solar panel at STC. The details of emulated solar panel are Voc = 35V,
Isc = 5.75V, Vmp = 28.4V and Imp = 5.28A at STC. The converters are considered
as inefficient that has parasitic resistance of 2�, inductance approximately of 0.8�

for connectingwires of semiconductor switches.During this study, the PVemulator is
operated in constant current region nearMPP. The experimental results of a CBC and
SEPIC converter during change in load for differentMPPT algorithms are depicted in
Figs, 14, 15, 16, 17, 18 and 19. The extracted power from various MPPT algorithms
is reported in the Table8. In CBC, for all considered MPPT algorithms, overall
efficiency of system was found more than 90%. In ANN-based MPPT algorithm
power extraction efficiency is also high compared to other method. Further, it could
be observed that the ANFIS performance is better in term of efficiency compared to
other techniques.
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Fig. 15 Voltage, current and power of CBC with ANFIS-based MPPT algorithm during change in
load

Fig. 16 Voltage, current and power of CBC with ANN-based MPPT algorithm during change in
load

Fig. 17 Voltage, current and power of SEPIC converter with modified IC-based MPPT algorithm
during change in load



230 T. V. Dixit et al.

Fig. 18 Voltage, current and power of SEPIC converter with ANFIS-basedMPPT algorithm during
change in load

Fig. 19 Voltage, current and power of SEPIC converter with ANN-based MPPT algorithm during
change in load

Table 8 Maximum extracted extraction by various MPPT algorithms

MPPT→ CBC SEPIC

Modified IC ANFIS ANN Modified IC ANFIS ANN

G (W/m2) 8� 8� 8� 6� 6� 6�

VPV 27.50 27.50 27.70 28.00 29.30 28.60

IPV 5.17 5.17 5.20 5.07 4.92 5.03

PPV 142.17 142.17 144.04 141.96 144.15 143.35

Vo 30.20 30.43 30.70 18.10 18.44 18.99

Io 4.60 4.62 4.54 5.00 4.98 4.93

Po 138.90 140.60 139.38 90.50 91.83 93.62

%η 97.70 98.90 96.76 63.75 63.70 65.47
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5 Conclusion

For improving the performance of photovoltaic system, several conventional and soft-
computing-basedMPPTmethods have been used. This study presents the implemen-
tation of hybrid ANFIS controller for maximum power extraction from PV module.
Further, the results are compared with well-liked Incremental Conductance method
and ANN-based MPPT scheme. The hardware results are very promising and con-
clude that the ANFIS controller performance is better than other conventional meth-
ods in terms of efficiency, stability and precision. Also, ANFIS is suitable for the
problems where prior knowledge of consequent parameters of the rules is unknown.
Further, it learns the parameters and tunes the membership function according to it.
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An Online Self Recurrent Direct
Adaptive Neuro-Fuzzy Wavelet Based
Control of Photovoltaic Systems

Syed Zulqadar Hassan, Tariq Kamal, Sidra Mumtaz and Laiq Khan

Abstract Solar through photovoltaic is an inexhaustible energy source which con-
tributes to enhance the sustainability of the society. Though, photovoltaic systems
experience some fundamental problems such as low conversion efficiency particu-
larly during high weather variations and the high nonlinearity between the photo-
voltaic output power and current. These problems involve in photovoltaic systems
need the use of advanced intelligent control methods. This book chapter develops
a new direct adaptive maximum power point tracking control for photovoltaic sys-
tems. The new proposed technique integrates a Chebyshev wavelet in the consequent
part of existing neuro-fuzzy structure. The parameters of the proposed controller are
tuned adaptively online using backpropagation algorithm. The performance of the
proposed method is tested under high uncertainties appearing from solar irradiance,
temperature and fluctuations in load. Finally, simulation results are provided to show
that the proposed control method is better than other existing methods in terms of
efficiency, load tracking and output power.
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1 Introduction

The continuous increase in energy demand, adversarial environmental impact, and
high cost of fossil fuels used in conventional power stations have strengthen the uti-
lization of sustainable energy resources, particularly solar energy which has exposed
its importance as a sustainable energy source to the world energy consumption.
Solar through photovoltaic provides unlimited amount of energy that can be pro-
cessed directly to electrical power via Photovoltaic (PV) system. Nonetheless, the
performance of PV system relies on weather forecasts which creates a high non-
linearity between the PV output power and current as illustrated in Fig. 1. To get
maximum benefits from solar PV, different conventional and intelligent techniques
and approaches have been developed by many researchers in the literature. The most
adapted conventional Maximum Power Point Tracking (MPPT) techniques are two,
namely an Incremental Conductance (InC) [1, 2], and Perturb and Observe (PO) [3,
4]. Both these algorithms and their modification [5, 6] are highly populated in the
academia. The drawback of PO is that the tracking is quicker for large perturb step,
whereas slower for small perturb step. As a result, oscillations are present around
Maximum Power Point (MPP). The oscillations problems in PO technique during
rapidly varying environmental conditions were eliminated in InC. Nevertheless, the
cost of InC method is high due to the requirements of high sampling compliance [7].

Fig. 1 P-V and I-V characteristics curves of PV system
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Some authors have reported sliding mode [8], feedback linearization [9], and rip-
ple correlation control [10] of PV. When properly designed sliding mode provides
a robust solution to a nonlinear system, but chattering an undesirable phenomenon
is associated with this method and if the switching is not appropriately selected, it
may lead to limit cycle [11]. Similarly, feedback linearization transforms a nonlinear
system to a linear system, but its big disadvantage is the lack of enough robustness in
presence of system parameter’s uncertainties such as different weather situations or
rapid load variations. In ripple correlation technique, the optimum point is traced at a
fast-tracking speed by changing the operating current according to its location. How-
ever, since the differentiators are highly sensitive to disturbance, the MPP accuracy
is below than other MPPT methods [12]. Some authors have designed evolutionary
algorithms for the control of PV such as Genetic Algorithm (GA) [13], cuckoo search
[14], ant colony optimization [15], and particle swarm optimization [16].

PV equations can be treated as the fitness function for the GA algorithm, the
algorithm provides solutions in a very less time, but it fails to find the most opti-
mal solution in all cases. Similarly, cuckoo search responds fast and track Global
Maximum Power Point (GMPP) even under certain partial shading states. Despite
the partial shading problem can be solved effectively using bio-inspired techniques,
however, the average efficiency of these methods entirely depends on initial con-
ditions and the number and type of chosen parameters. In ant colony optimization
method, the goal is to converge the ants to follow the shortest path possible. In case
of solar PV, the control parameter is the current of the PV array. Increasing the num-
ber of ants increases the accuracy but slow down the process as many iterations are
required to reach the MPP. Likewise, particle swarm optimization can find the MPP
under varying environmental conditions, however, it is a complex algorithm and the
selection of its parameter has an impact on the optimization process, i.e., it will take
a long time if the wrong parameters are chosen.

Over the last few decades, artificial Intelligence based approaches such as fuzzy
control, neural networks and their hybrid (neuro-fuzzy) have tremendously con-
tributed to predict accurate generation of renewable energy sources and their impacts
on the electric network such as maintaining system reliability, stability integrating
hybrid solar, wind and energy storage systems, net load forecasting, and line loss
predictions. For instance, in [17, 18], the authors have control PV via fuzzy in a grid
integrated hybrid system. Similarly, the application of neural networks and neuro-
fuzzy at different aspects such as power quality improvement, maximum power
transfer, and solar radiation forecast are found in [19–22]. However, the accurate
application of fuzzy needs a-priori-knowledge, while neural networks are compu-
tationally intensive to train, hence, their limitations are versatility [23]. Similarly,
neuro-fuzzy controllers fail to find local minima of the search space [24].

In the literature, many authors have stated that the integration of wavelets in
neuro-fuzzy structure can solve the concern of local minima [24]. The introduction
of wavelets in neuro-fuzzy structure substantially enhances its computational speed
[25]. Wavelet transform provides a time-frequency localization of the non-stationary
signals. In wavelet transform, the basis functions are used to preserve the maximum
energy of the signal [26]. All the above discussed control methods are modelled
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and developed considering certain operating and load conditions. In case of high
nonlinearity in weather climate/load conditions where there are several MPPs in the
P-V curve, the above techniques are failed in finding the global maximum power
points MPPs among the local MPPs, therefore it is difficult to achieve maximum
benefits from PV system at all time. An adaptive control paradigm is highly effective
to handle non-linearity and uncertain fluctuations.

This chapter contributes to the work on an uncertain PV system to provide max-
imum power through an online full recurrent direct adaptive wavelet based neuro-
fuzzy MPPT control. The modeling of the proposed control method starts from a set
of fuzzy IF-THEN rules. Then a neural network is designed to provide the gradient
information in the proposed algorithm. Then a Chebyshev wavelet is integrated in the
exiting neuro-fuzzy structure to enhance the performance of proposed controller in
terms of output power, and efficiency. MATLAB simulations are presented to show
the superiority over other maximum power point tracking control methods.

The rest of the work is ordered as follows: Section2 discusses the background
regarding PV system. Section3 is related to the development of the proposed con-
troller. Comparison through results is covered in Sect. 4. Finally, conclusions are
provided in Sect. 5.

2 Solar Photovoltaic Energy Conversion System (SPECS)

The entire layout of the SPECS is shown in Fig. 2. It consists of a PV array, a DC–
DC boost converter and a load. The PV array contains solar cells, which generate
electrical energy from the sunlight associated with solar radiations. The function
of DC–DC converter is to increase the available output voltage level of PV at the
desired current and/or voltage to achieve maximum benefits from the PV module.
The dynamic model of PV system is characterized in (1)–(3).

dVpv

dt
= 1

Cx
(Ipv − i1) (1)

diL1
dt

= 1

L1
(Vpv − vCz (1 − d)) (2)

dvCz

dt
= 1

Cz

(
iL1(1 − d) − vCz

RL

)
(3)

where Ipv is the current across PV array; i1 is the current in inductor, L1; Vpv is the
voltage across PV array; vx is the voltage across input capacitor, Cx; vz is the voltage
across output capacitor, Cz; RL is the resistance of load; and d is the duty cycle.
Inherently, the P-V power output and I-V curves are highly non-linear as given in
(4).



An Online Self Recurrent Direct Adaptive Neuro-Fuzzy Wavelet … 237

ipv = npIph − npId

[
exp

(
Vpv + RsIpv

nsvt

)
− 1

]
(4)

where vt calculates the terminal voltage of PV array; ns gives the number of solar
cells connected in series; np represents the number of solar cells in parallel; Id is the
current passing through diode, d ; and Rs is the series resistance of the PV array.

2.1 DC–DC Boost Converter

DC–DC boost converter plays an important role in PV system. It acts as a switching-
mode regulator and generates the required voltage levels. The impedance that seen at
the input of the boost converter from PV side depends upon the d variations between
0 and 1. The converter uses Pulse Width Modulation (PWM) generator. The appear
equivalent resistance of boost converter is given as:

R = Ri(1 − d)2 (5)

Using the maximum power transfer theory, maximum power is provided to the exter-
nal loadwhen the value of the equivalent resistance,R is equal to the output resistance
of the PV system [27].

2.2 Smoothing Filter

The smoothing filter is an important part of any renewable energy system which
serves to remove voltage ripples and consists of a series inductor attached in parallel
with capacitor as illustrated in Fig. 3. The current through the inductor is written as:

i1 = 1

L1

∫
(vi − v0) (6)

vL = L1
di1
dt

(7)

where vL stands for inductor voltage. The output voltage vo can be calculated as:

v0 = 1

Cz

∫
(icdt) (8)
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Fig. 2 SPECS system and proposed adaptive control model

3 Proposed Direct Adaptive Control Paradigm Design

In this section, a Direct Adaptive ChebyshevWavelet based Neuro-Fuzzy Controller
(DACWNFC) is designed to extract maximumpower fromPV system. The condition
to obtainmaximumbenefits fromPV system is defined in the following cost function.

↓ Υpv = 1

2
s2pv(n) + ξpv

2
u2pv(n) (9)

s.t.

Ppv ≤ Ppeak

Vpv ≤ Voc

Ipv ≤ Isc
Tpv ≤ Tmax
φpv ≤ φmax



An Online Self Recurrent Direct Adaptive Neuro-Fuzzy Wavelet … 239

Fig. 3 Smoothing filter

where Ppeak , Voc and Isc are the peak power, open circuit voltage and short circuit
current, respectively. Similarly, the Tmax and φmax are the maximum temperature and
solar irradiance, respectively. When the change of PV power with respect to the
operating voltage is zero, then the MPP is achieved as follows (Fig. 2):

s|mpp = ∂Ppv

∂Vpv
|mpp =

[
Ipv
Vpv

+ ∂Ipv
∂Vpv

]
mpp

= 0 (10)

where s is the slope of PV power with respect to the operating voltage. The change
in d alters the value of impedance at the input of a DC/DC converter. For a boost
converter, the load impedance (output impedance) is always high than the input
impedance.

There are seven layers in the proposed structure as shown in the Fig. 4. IF-THEN
rules are defined as follows:

Ri : if x1 is μi
1, x2 is μi

2 and xip is μi
p, then y = Ppq

These seven layers are discussed as follows:

Layer 1: The input from the plant (PV) are collected in this layer. These inputs are
directly sent to the fuzzification layer (i.e., layer 2) using nodes.

Layer 2: Here the linguistic terms and their degree of membership are allocated to
each input. The linguistic terms using Gaussian membership function for each input
as follows:

μi
j = e

−1
2

[
xj−Wi

j

ς ij

]2

(11)

Layer 3: The firing intensity of each rule is determined using product T-norm in this
layer.

μ̄i
j =

q∏
i=1

μi
j (12)
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Fig. 4 Neurofuzzy structure of the proposed controller

Layer 4: Here Chebyshev wavelet functions are integrated in this layer. The weighted
consequent value after applying Chebyshev wavelet of each rule is determined as
follows:

Ξ i =
2n−1∑
j=1

β i
jPpq(x) (13)

where, Ξ i is the output of this layer and β represents weighting factor.

Layer 5: The output of layer 3 which is the last layer of antecedent part and layer 4
which is first layer of consequent part are multiplied for each input and then they are
sum.

Layer 6: This layer provides the sum of output of layer 3.

Layer 7: The final output of neurofuzzy structure is calculated and given as:

u(n) =
∑p

j=1 μ̄i
jΞ

i

∑p
j=1 μ̄i

j

(14)
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The above derived wavelet based neurofuzzy structure is proven as a universal
approximator for continuous functions over compact sets. The Chebyshev wavelet
which is taken from the interval, [0 1] as follows:

Ppq(xj) =
{
2

l
2Cq(2lxj − 2z + 1), z−1

2l−1 ≤ xj ≤ z
2l−1

0 Otherwise
(15)

where z = 1, 2, . . . , 2l−1 which is the translation parameter and f = 0, 1, . . . ,F − 1
is the order of the polynomial.

Cf =
{

1/
√

π, f = 0√
2/πC̃f f > 0

(16)

where C̃f are Chebyshev polynomials which can be calculated as:

C̃0 = 1, C̃1 = xj and C̃f +1 = 2xjC̃z − C̃z−1 (17)

The cost function using (10) is given as:

↓ Υpv = 1

2
s2pv(n) + ξpv

2
u2pv(n) (18)

The control law u(n) = upv(n) for PV system is:

upv(n) =
∑p

j=1 μi
jΞ

i

∑p
j=1 μi

j

=
∑p

j=1

([ ∏p
j=1 exp

(
−1
2

[
xj−Wi

j

ς i
j

]2)]
× [βi

j × Ppq(xj)]
)

∑p
j=1

[ ∏p
j=1 exp

(
−1
2

[
xj−Wi

j

ς i
j

]2)]

(19)
In general the update equations for control law upv(n) are written as:

Ti
j(n + 1) = Ti

j(n) + ξpv
∂Υpv(n)

∂Ti
j(n)

(20)

Ti
j(n + 1) = Ti

j(n) + ξpv
∂

∂Ti
j(n)

[
1

2
s2pv(n) + ξpv

2
u2pv(n)

]
(21)

Ti
j(n + 1) = Ti

j(n) + ξpv

[
spv

∂spv(n)

∂upv(n)
+ ξpvupv(n)

]
∂upv(n)

∂Ti
j(n)

(22)

Now for simplification ∂spv(n)
∂upv(n)

= 1 and J = spv + ξpvupv(n).

Ti
j(n + 1) = Ti

j(n) + ξpvJ
∂upv(n)

∂Ti
j(n)

(23)
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The spv is used to tune the parameters Ti
j ∈ {

Wi
j, ς

i
j , β

i
j

}
of the controller. ξpv is the

learning rate, Wi
j is the mean of the Gaussian fuzzy function for jth input, ith rule,

ς i
j is the variance of the Gaussian fuzzy function for jth input, ith rule and β i

j is
the weight of the Gaussian membership function for jth input, ith rule. The update
equations for individual parameters are given as:

Wi
j(n + 1) = Wi

j(n) + ξpvJ
∂upv(n)

∂Wi
j(n)

(24)

ς i
j (n + 1) = ς i

j (n) + ξpvJ
∂upv(n)

∂ς i
j (n)

(25)

β i
j (n + 1) = β i

j (n) + ξpvJ
∂upv(n)

∂β i
j (n)

(26)

The gradient ∂upv(n)
∂Wi

j(n)
can be derived as:

∂upv(n)

∂Wi
j(n)

= ∂upv(n)

∂μ̄i
j

∂μ̄i
j

∂Wi
j(n)

=
[
Ξj − upv(n)∑p

j=1 μj

]
∂μ̄i

j

∂Wi
j(n)

(27)

∂upv(n)

∂Wi
j(n)

=
[
Ξj − upv(n)∑p

j=1 μj

]
μi

(
xj − Wi

j

)
ς i
j
2 (28)

Similarly, the gradient ∂upv(n)
∂ς i

j (n)
can be derived as:

∂upv(n)

∂ς i
j (n)

= ∂upv(n)

∂μ̄i
j

∂μ̄i
j

∂ς i
j (n)

=
[
Ξj − upv(n)∑p

j=1 μj

]
∂μ̄i

j

∂ς i
j (n)

(29)

∂upv(n)

∂ς i
j (n)

=
[
Ξj − upv(n)∑p

j=1 μj

]
μi

(
xj − Wi

j

)2
ς i
j
3 (30)

The gradient ∂upv(n)
∂β i

j (n)
can be derived as:

∂upv(n)

∂β i
j (n)

= ∂upv(n)

∂Ppq(x)

∂Ppq(x)

∂β i
j (n)

=
[

μj∑p
j=1 μj

Ppq(xj)

]
(31)

By putting the values from (28), (30) and (31) into (24)–(26), we get:

Wi
j(n + 1) = Wi

j(n) + ξpvJ

[
Ξj − upv(n)∑p

j=1 μj

]
μi

(
xj − Wi

j

)
ς i
j
2 (32)
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ς i
j (n + 1) = ς i

j (n) + ξpvJ

[
Ξj − upv(n)∑p

j=1 μj

]
μi

(
xj − Wi

j

)2
ς i
j
3 (33)

β i
j (n + 1) = β i

j (n) + ξpvJ

[
μj∑p
j=1 μj

Ppq(xj)

]
(34)

4 Simulation Results

The proposedDACWNFC, PV systemwith rated output power of 261kWweremod-
eled and designed in MATLAB. The initial parameters in the updating laws were
taken as:

j = 5, ξ = 0.224, [ς1,0(0), ς1,1(0), . . . , ς1,5(0), ς2,0(0), ς2,1(0), . . . , ς2,5(0)] =
[0.01, 0.014, 0.017, 0.019, 0.025, 0.035, 0.04, 0.045, 0.055, 0.062]
[W1,0(0),W1,1(0), . . . ,W1,5(0),W2,0(0),W2,1(0), . . . ,W2,5(0)] =
[0.024, 0.028, 0.033, 0.36, 0.41, 0.46, 0.5, 0.56, 0.61, 0.7]
[β1,0(0), β1,1(0), . . . , β1,5(0), β2,0(0), β2,1(0), . . . , β2,5(0)] =
[0.12, 0.16, 0.20, 0.25, 0.27, 0.30, 0.39, 0.45, 0.57, 0.62]

To demonstrate the excellent behavior of the proposed DACWNFC, three other
controllers, i.e., fuzzy based MPPT, and InC Proportional Integral Derivative (PID)
based MPPT are designed in MATLAB/SIMULINK and simulations were per-
formed for all controllers under same uncertainties coming from load fluctuations
and weather situations. In this chapter, the weather data which were used during sim-
ulation was taken from [28]. Solar irradiance W/m2 and ambient temperature (◦C)
levels were measured after every minute for three summer days and as illustrated
in Figs. 5 and 6. The irradiance level shown high variations during day time due to
the rise and set of sun. For instance, at 6:13h (433min) the sun starts to appear and
sets at at 19:18h (1158min) as given in Fig. 5. The average irradiance level goes to
1000W/m2 during day 1. Due to high level of cloud cover, the solar irradiance level
is quite less with respect to other days. The irradiance level is considered as partial
shading. The average temperature during day 2 rises to 44.28 ◦C and at night it falls
to 15 ◦C as shown in Fig. 6.

The PV system output power comparison for day 1 is shown in Fig. 7. The ref-
erence power is represented with red dashed line. It is clearly observed, that the
proposed DACWNFC output power is very close to the reference power followed by
Fuzzy Logic Controller (FLC) and PID. The peak power obtained from PV system
is 365kW (at 820min). Similarly, the PV system output power comparison for day
2 is shown in Fig. 8. In this case, due the sudden variation in irradiance level, the
PV output power also suddenly changes and performance of different controller is
observed. From Fig. 8, the PID controller performance is very poor as compared
to FLC and DACWNFC. The maximum power obtained on this day is 218kW
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Fig. 7 PV system output power on day 1

(at 2236min). Similarly, due to partial shading condition, the maximum PV output
power obtained is only 166kW (at 3703min) as shown in Fig. 9. Throughout, the
proposed DACWNFC is superior than both fuzzy based MPPT and InC PID MPPT.
The obvious reason for it is the integration of wavelets in the neuro-fuzzy controller.
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The proposed controller tries to keep the slope zero while tracking the MPP of
solar PV. The scatter plot of different controllers, including DACWNFC is shown
in Fig. 10. Due to sudden irradiance variations, the MPP goes to a another new
point which in turn changes the value of s (an input error for the controller). For
any new operating point, the controller minimizes the input error through changing
the d . From Fig. 10, the InC PID based approach, the maximum slope observed is
above 1000, while majority of the point lies between ±500. Likewise, the maxi-
mum slope for a fuzzy based MPPT method ranges to ±500, whereas the proposed
DACWNFC accomplishes theMPP very quickly and themaximum slope points does
not excess ±30.

The PV overall efficiency (ηpv) and PV average efficiency (ηpv−av) are also deter-
mined in case of all controllers and are given as follows:

ηpv =
∫ t
0 Ppv(t)dt∫ t
0 Pref (t)dt

× 100% (35)
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Fig. 11 PV MPP tracking efficiency comparison: a ηpv , b ηpv−av

ηpv−av = 1

T
ηpv (36)

From Fig. 11, the PV efficiency for DACWNFC is observed as 97.07%, while
other controllers efficiencies varies with time. Correspondingly, the mean efficiency
forDACWNFC linearly riseswith a certain slope as compare to others. Similarly, var-
ious performance indexes, i.e., Integral Squared Error (ISE), Integral Time-weighted
Absolute Error (ITAE), Integral Absolute Error (IAE), and Integral Time-weighted
Squared Error (ITSE) are calculated in (37)–(40) and are shown in Fig. 12.

IAE =
∫ t

0
|e(t)|dt (37)

ITAE =
∫ t

0
t|e(t)|dt (38)
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Fig. 12 Dynamic performance indexes: a IAE b ITAE c ISE d ITSE

ISE =
∫ t

0
e2(t)dt (39)

ITSE =
∫ t

0
te2(t)dt (40)

where e(t) = Pref (t) − Ppv(t). It is clear from the Fig. 12 that all index values are
quite small and better with DACWNFC as compared to other two control methods.
Table1 presents the values of calculated indexes and efficiencies based on a 4320min
simulation with a sampling time of 10−6 s. The efficiency of PV is seen as high as
compared to other controllers. Likewise, the error indexes are also observed below
than those of FLC based MPPT and InC based PID MPPT. From the results, the
proposed DACWNFC shows a better tracking and efficiency with respect to other
controllers.
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Table 1 PV efficiencies and performance parameters. DACWNFC, FLC and InC PID

Controllers ηpv (%age) ηpv-av
(%age)

IAE (103) ITAE (103) ISE (103) ITSE (103)

DACWNFC 97.07 96.36 0.082 2.644 0.338 10.06

FLC 90.43 88.64 0.270 8.59 3.56 113.94

PID 84.92 80.33 0.425 13.29 6.80 187.12

5 Conclusions

In this chapter, a PV system was controlled under real load and long weather param-
eters through four different controllers, i.e., a new improved direct self-recurrent
direct adaptive neuro-fuzzy wavelet embedded MPPT controller, fuzzy based MPPT
controller, and InC PID based MPPT controller. The improvement in the new pro-
posed controller was performed by an integrating a Chebyshev wavelet in the exiting
neuro-fuzzy architecture. The proposed controller was better under real disturbances
appearing from load change and long weather pattern fluctuations. Unlike many
existing MPPT methods, the proposed technique has high self-adaptation ability for
a new operating condition at any time. Many simulation results and comparison have
shown that the new direct adaptive controller is better than fuzzy MPPT, and InC
PID based MPPT in terms of efficiency, power transfer and dynamic response. This
chapter will be of high interest for those who are looking for research in renewable
energy using wavelets.
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