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Chapter 1
Organic Soil Amendments: Potential Tool 
for Soil and Plant Health Management

Rizwan Ali Ansari, Aisha Sumbul, Rose Rizvi, and Irshad Mahmood

Abstract  Utilization of organic matter as a chief substrate for agricultural crops and 
beneficial microorganisms is gaining interest of plant pathologists, agronomists, man-
ufacturing and processing industries, regulators, growers, tycoons and consumers. 
These organic inputs provide energy and nutrients to soil leading to a considerable 
change in the environment which becomes appropriate for survival of crops and pro-
liferation of microorganisms. More likely, this exercise is further reinforced by the 
consumers’ demand as they are more conscious towards their health. Moreover, use of 
organic matter rather than disposal is preferred because it imparts in the market value 
and recycles back to the land leading towards the enhanced sustainable agricultural 
system. Various types of organic materials are now available and growers have been 
familiar with these wastes. However, efficacious nature of each organic matter is dif-
ferent maybe partly due to their chemical constituents, types, origin and duration of 
decomposition. Henceforth, the results of these natural products are inconsistent from 
site to site as well as from field to field. Similarly, there is no single mechanism which 
can advocate the queries prudently pertaining to disease management caused by vari-
ous soilborne plant pathogens. Some common instances have, however, been exem-
plified like secretion of pathogen toxic compounds, alteration in soil physico-chemical 
properties, enhanced microbial activities and induction of host resistance against wide 
spectrum of soilborne pathogens. Moreover, soil is indistinct part of the ecosystem 
which may regulate the plants response. Application of low rate of organics is sug-
gested as this will be affordable to the growers. In our opinion, this may be possible 
through appropriate site selection, formulation, storage and handling as well as con-
sortia of organic matter with other compatible modules. Major problem in the adop-
tion of this technology is insufficient supply of ready-made organics which needs a 
prudent optimization in order to attain sustainable agriculture.
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1.1  �Introduction

Organic soil amendments such as animal manures composts, green manures, cover 
crops, crop residues, straws, etc. are used to augment soil and plant health that leads 
to sustainable agriculture (Ansari et al. 2017a; Akram et al. 2016; Rizvi et al. 2015; 
Hadar et al. 1992; Muchovej and Pacovsky 1997; Trankner 1992). There were no 
synthetic pesticides, insecticides, inorganic fertilizers for application to the field dur-
ing the beginning of the agriculture. The agriculture practices were totally dependent 
on cultural practices such as organic inputs, crop rotation, soil solarisation, deep 
ploughing, etc. Besides, agriculture as an occupation provided very important basic 
necessities of human being – food, shelter and clothes. However, in the nineteenth 
century, pesticides, inorganic fertilizer and pest-resistant varieties had replaced the 
classical practices almost in toto which results in a considerable breakage of the link 
between organic fertilizers and soil fertility (Hoitink and Boehm 1999; van 
Diepeningen et al. 2006; Willer et al. 2010). Consequently, organic matters like ani-
mal manure, green manure, industrial wastes (after treatments), households waste, 
etc. transformed into solid wastes. Long-term storage of such wastes started to cause 
soil, air and water pollution. Various plant diseases caused by soilborne pathogens 
become more aggressive to the crop plants. Henceforth, public concern and adverse 
effects of inorganic fertilizers on human health have received attention in organic 
fertilizers (Lazarovits 2001). In addition, new emerging technologies are being added 
in order to fulfil the ever-growing demand for food due to significant increase in 
population. Organic inputs grant the energy and become the ample source of nutri-
ents to soil which creates suitable environment for the proliferation of microorgan-
isms (Drinkwater et al. 1995). A wide range of biofertilizers has been used to control 
the different soilborne diseases including plant parasitic nematodes (Ansari et  al. 
2017b; Khan et  al. 2014; Akhtar and Malik 2000; Rodríguez-Kábana 1986). 
Moreover, composts derived from various sources are also being used in the manage-
ment of various plant pathogens (Hadar and Mandelbaum. 1992; Hoitink et al. 1993). 
Organic matter is used as soil amendments in order to maintain good health of soil 
which create conducive environment to the plant. Also, incorporation of organic 
inputs into soil with or without any beneficial microorganisms offers pollution-free 
environments (Jindo et al. 2016).

Soil is an intimate part of ecosystem but its conservation in the present scenario 
has been a big challenge. Moreover, it has the capability to interact with a wide 
spectrum of organisms in order to maintain better quality and conducive environ-
ment for microflora and rhizospheric organisms. Generally, soil quality is quickly 
deteriorated due to improper intensification of agricultural systems. However, 
proper management strategies, if applied, improve soil quality in terms of physical, 
chemical and biological characteristics. Interestingly, organic matter application in 
the soil plays a very important role in the maintenance of soil ecosystem. Organic 
matter becomes the substrate for the decomposers which in turn provides nutrients 
to the soil and plant (Abiven et  al. 2009). More likely, proper incorporation of 
organic matter also increases the soil suppressiveness against wide range of phyto-
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pathogenic propagules (Bonanomi et al. 2010) and minimizes toxicity level of heavy 
metals (Park et al. 2011). Moreover, a number of organic matters, viz. compost, keep 
much importance in the ameliorations of soil structure (Scotti et al. 2013), biological 
activity (Ross et al. 2003; Ansari and Mahmood 2017; Franco-Andreu et al. 2016) 
and reductions in soilborne pathogens (Pane et al. 2016). Besides, depletion of soil 
organic carbon is directly correlated between the organic inputs and amount of 
organic matter present in the soil. These are mainly regulated by some environmental 
factors such as temperature and available water content. Generally, it has been 
noticed that plant debris amendments to soil contain high amount of organic. This 
type of organics when amended into the soil decomposes very rapidly and almost 
disappears within a few months (Bonanomi et  al. 2013). Moreover, such organic 
input provides marginal contributions for the sustenance of soil organic C sink. In 
addition, transport of such organic C with high biochemical quality may be stimu-
lated through microbial activities (Steiner et al. 2007; Fontaine et al. 2007).

Moreover, it is known worldwide that phytopathogens are responsible for many 
diseases of crop plants that exert physical as well as mental stress on farmers 
(Anonymous 2017). Around 50% of plant diseases of main crops in the United 
States were caused by soilborne phytopathogens (Lewis and Papavizas 1991). 
Awareness towards the maintenance of harmonious environment pertaining to agri-
culture has given an impetus to search out alternative to conventional agriculture. 
Now farmers and researchers have began to use organic matter as fertilizers in order 
to meet out the goal of sustainable agriculture. There is a wide range of organic mat-
ter which is being used in the sustainable agriculture, where compost is considered 
to be one of the best organic fertilizers. Moreover, composting has been the chief 
tactics in order to minimize the nutrient loss and rapid decomposition. Subsequently, 
microbial activities are enhanced providing a balanced nutrients to the soil and ulti-
mately to the crop plants. This way, organic matters are transformed into valuable 
assets that remain embedded in the soil. Therefore, present collection of literature 
has been designed in order to explore the recent development in organic soil 
amendments.

1.2  �Possible Sources of Organics

Integration of organic matter to ameliorate soil physical, chemical and biological 
properties dates back since beginning of the agriculture. It has been extracted from 
literature that Greeks and Roman had applied animal manures to soil for better yield 
of crop plants (Goss et al. 2013). A wide range of organic matters such as seashells, 
vegetable waste, farmyard manure and other waste products are used to enhance 
plant growth and productivity. There are various types of organic materials and dif-
ficult to mention in a short passage. Applications of such organic input vary and 
controlled by various significant factors. Some important organic materials have 
been used more commonly such as animal manure, compost, different types of 
shells, saw dusts, straws, green manures, crop residue, phytoextracts, etc. They are 
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used first hand as plant growth enhancer while on the other hand, considerable 
amount of disease suppression (Tiyagi et  al. 2015). However, the same time an 
appropriate treatment (such as municipal solid waste) prior to application is given to 
rescue the environment from pollution. Nowadays, compost is the most common 
organic matter used as plant growth enhancer (Jouquet et al. 2011). Soil application 
of compost derived from various sources not only strengthens the plants but also 
induces resistance in host against wide range of phytopathogens. Besides, animal 
manures, peat moss, wood chips, straw and municipal wastes are also used to 
strengthen the plants against various soilborne pathogens leading to enhanced crop 
productivity (Misra et al. 2016; Smith et al. 2016).

1.3  �Types of Organic Amendments Applied to Soils

Various forms of organic matter as soil amendments have been noticed to promote 
crop productivity and maintain the soil health. They have been categorized in six 
major categories (Goss et al. 2013).

1.3.1  �Animal Manure

Most of the manure produced is applied in land to enhance the soil fertility, plant 
growth and yield attributes. In the 1950s removal of manure along with water was 
started to reduce labour cost and improve hygiene. Later on, these liquid manures 
were applied in the field for the enhancement of crop yield. Generally, beef and 
dairy systems generate the highest amount of manures followed by pork industry, 
while poultry farm contributes very small amount as compared to cattle or pig. Later 
on, these manures are applied in land in different manners such as 84% in croplands 
and 16% grassland (Beusen et al. 2008). Nature of manures, however, is inconsis-
tent and varies from time to time and depends upon the storage duration prior to its 
application to the land. Moreover, liquid or slurry manures may have number of 
layers, and property of each layers vary considerably with each other in terms of 
space and time (Patni and Jui 1987). More broadly, organic manures aerobic decom-
position results in the generation of CO2 and wide spectrum of organic compounds, 
while anaerobic decompositions begin in the stored manures. In the absentia of free 
oxygen, the organic inputs are converted to C compound having low molecular 
weight chiefly volatile organic substances and eventually CH4 is released (Lazarovits 
2001). In addition to these organic C and volatile substances, breaking down of the 
proteins may lead to the generation of H2S. Likewise, generation of volatile fatty 
acids due to organic matter breakdown leads to reduced pH of the manure which is 
readily available to microbes as C sources (Lazarovits 2001). Moreover, the rate of 
breaking down process in aerobic conditions is faster than the anaerobic one. 
Likewise, disintegration of organic matter under aerobic conditions is much faster 
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than the anaerobic conditions. Besides, liquid swine manure incorporations in the 
dried soil was more effective than the moist soil, apparently, because active chemi-
cal constituents were diluted in the moist (Lazarovits 2001) (Fig. 1.1).

1.3.2  �Municipal Biosolids and Septage

Municipal wastes after proper treatment are applied in agricultural land in order to 
promote crop productivity. But, prior to application of municipal waste (solid or 
liquid), are subjected to pass through regulatory norms (Kumar 2016). Generally 
organic inputs are separated through sedimentation (primary treatment) following 
to digestion of easily metabolized fractions by microorganisms (secondary treat-
ments) and, lastly, removal of N and P (tertiary treatments) (Goss et al. 2013). In 
addition, stabilization of the materials by heating and drying process is carried out. 
The stabilization is performed to eliminate the propagules of wide range of phyto-
pathogens. However, not all European countries are applying the municipal wastes 
into the agricultural land. But, recently a figure has come out such as during 1996–
1998 France used 60%, Spain and the United Kingdom 46%, Germany 40% and 
Italy 16% (Epstein 2003). It has also been observed that around 50–70% of sewage 
solids are applied into agricultural lands. Many rural areas of the world do not have 
proper sewage systems, however, they have established a holding tank which is 
essential to be pumped out periodically. There are many jurisdictions in the applica-
tion of municipal biosolids; nevertheless, many people have started to use these 
untreated materials directly to the fields. Such application of municipal waste may 
create an environmental perturbation. Henceforth prior to application to the agricul-
tural land, certain confirmatory test as per prescription made by the Pollution 
Control Board is needed to carry out to avoid ambiguity amongst the researchers or 
growers of the crop plants.

Municipal
Wastes

ORGANIC 
SOIL 

AMENDMENTS
Industrial

Discharges

Food
Discharges

Animal 
Manures

Green 
ManuresComposts

Fig. 1.1  Types of organics 
used in organic agriculture
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1.3.3  �Green Manures and Crop Residues

Green manures are grown to augment the nutrient status of the soil leading to 
improved plant health. Generally, legumes are grown in the agricultural land because 
they fix atmospheric N and leave some amount of it for the succeeding crop (Reddy 
2008). A wide spectrum of green manures has been identified throughout the world. 
Green manuring have exerted a beneficial impact on soil health through various 
improved ways like chemical (Ebelhar et al. 1984) and biological properties (Fageria 
et al. 2005). Incorporation of green manure has enhanced plant growth in terms of 
higher biomass production. Application of green manures into soil provides good 
habitat for beneficial microorganisms. In addition, some properties of soil such as 
water holding capacity, infiltration of water and percolation of water were consider-
ably increased (Raimbault and Vyn 1991).

Green manure crops grown in summer remain on the field for a short period of 
time, whereas warm seasons cover crops may be utilized to replenish the niche in 
crop rotation, to keep fragile soil from weathering, to prepare land for a perineal 
crop or to supply extra animal feeds. Some examples of summer green crops may 
be seen which are being grown in our surroundings such as Vigna unguiculata 
(Singh et al. 2010), Glycine max (Creamer and Baldwin 2000), Melilotus indicus 
(Sarrantonio and Gallandt 2003), Sesbania spp. (Sugumaran et al. 2016), Crotalaria 
spp. (Wortmann et al. 2009) and Mucuna pruriens (Whitbread et al. 2004). These 
crops add N along with organic matter to soil. Most of the beneficial impacts 
expected from the green manuring come from the aerial parts of the plant (Goss 
et al. 2013).

1.3.4  �Food Residues and Wastes

The foods which are discarded or lost uneaten is called as food wastes or food dis-
charges. Fresh produce from the supermarket or other sources of materials from 
urban centres that have not been sold timely or unusable – food discharges. Later on 
they are eventually applied to agricultural land after composting (Muchovej and 
Obreza 2001; Obreza and O’Connor 2003). There are numerous reasons of food 
wastes and found at the stage of food production, processing, retaining and also on 
consumption (Galanakis 2015). Total food wastes world widely have been esti-
mated to be around 1.3 billion tonnes (F.A.O. 2011). In developing countries 400–
500 calories per day per person are wasted, while in developed countries this figure 
has significantly enhanced and been found to be 1500 calories per day per person 
(Kim 2014). Likewise, around 30–50% (1.2–2  billion tonnes or 1.8  ×  109 long 
tonnes or 1.32 × 109–2.20 × 109 short tonnes) of all produced food remain uncon-
sumed (Fox and Fimeche 2013). Country wise, Singapore wasted 788,600 tonnes of 
food wastes in 2014 (http://www.straitstimes.com/print-edition), the United 
Kingdom 6,700,000 tonnes (Jowit 2007, https://www.theguardian.com/
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environment/2007/oct/28/food.foodanddrink), the United States 30% of food valu-
ing 162 billion US dollar (Elizabeth 2014) and Denmark 700,000 tonnes per year of 
food wastes (Juul 2016). To tackle with food wastes problems, there are some ways 
through which these food wastes can be recycled such as use of fertilizers after 
decomposition (https://en.wikipedia.org/wiki/Food_waste). Moreover, food wastes 
can be biodegraded after composting and recycled the nutrients into soil (https://
www.usda.gov/oce/foodwaste/resources/recycle.htm).

1.3.5  �Wastes from Manufacturing Processes

Organic matter may also include the residual organic matter obtained from various 
manufacturing industries as discharge (Dotaniya et  al. 2016). Biosolids are pro-
duced in large amounts annually as residues in paper making industries, but only a 
small amount of these wastes products are used in agricultural system (Thacker 
2007). Some examples of manufacturing waste are very common which are used to 
support the crop production such as sugar extracts from sugar beet (Beta vulgaris 
L.) and distillery waste (Douglas et al. 2003; Hachicha et al. 2012; Kumar et al. 
2009). In addition, use of wastes of sugarcane processing industries has been found 
to be beneficial in agricultural system as this has improved the soil physico-chemical 
properties leading to enhanced plant biomass (Dotaniya et al. 2016). Several other 
industries are discharging its wastes in significant amount and started to use in crop 
production (Arvanitoyannis et  al. 2006). Exclusively, waste collected from wine 
industries can be potentially used as soil conditioners as well as fertilizers (Ferrer 
et al. 2001). Moreover, different types of wastes have been determined such as grape 
pomace characterized by abundant phenolics due to poor extraction during the wine 
preparations. Henceforth, their utilization in cultivable land supports crop produc-
tion leading to improved sustainable agriculture (Kammerer et al. 2004). Likewise, 
different types of wastes from sugarcane industries are characterized by soft, 
spongy, amorphous and brown to black in colour containing higher amount of nutri-
ents of wide spectrum (Ghulam et al. 2012; Dotaniya et al. 2016). Moreover, press 
mud is generated during sugar purification through various processes like sulphita-
tion and carbonation (Dotaniya et al. 2016). Press mud is a good source of organic 
matter and provides sufficient nutrient to plant and also improves soil health 
(Bokhtiar et al. 2001; Razzaq 2001). Similarly, bagasse is another discharge gener-
ated by the sugarcane industries which can be used to support agricultural system. 
Constituent wise, bagasse contains cellulose (47–52%), hemicelluloses (25–28%), 
lignin (20–21%) and other compounds (0.8–3%) (Rocha et al. 2011). Henceforth, it 
can be concluded that bagasse may be used to support crop production. As far as 
molasses are concerned, it is generated when raw juice is used to produce sugar. 
They are viscous liquid in nature and may separate through massecuite. Molasses 
are having various types of nutrients which contain enhanced microbial activities 
being utilized for alcohol production (Dotaniya et  al. 2016; Sardar et  al. 2013). 
More broadly, raw spent wash are acidic in nature and produced after fermentation 
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and distillation and leaving unpleasant smell especially just after its generation. 
Later on, these raw spent wash are treated for its further use in various sectors of 
agriculture. Biomethanation is considered to be most reliable process which can 
purify such organically rich wastes. Biomethanated spent wash are rich in various 
nutrients and enhance the microbial activity when applied in the field as liquid 
manure (Dotaniya et al. 2016).

1.3.6  �Compost

Composts derived from wide range of sources have been top ranked amongst the 
organic inputs being used in the various agricultural sectors (Goldstein et al. 2000; 
Martínez-Blanco et al. 2013; Cesaro et al. 2015; Alsanius et al. 2016; Oliveira et al. 
2017). It has generally been observed a significant loss of C during the decomposi-
tion maybe because of significant displacement of fungal microbes to bacterial-rich 
microflora (Hu et  al. 2017). Generally, organic wastes having highest amount of 
C:N ratio are allowed to mix with wastes which are rich in N; however, final prod-
ucts of the compost have comparatively lower C:N ratio. Normally, fast activities of 
microbes in the mixture of composts trigger a significant rise in temperature. Mixing 
of such materials maintain the temperature which are appropriate for composting 
for long time. It is assumed that all materials are needed to pass through increased 
temperature in order to eliminate harmful microbes and propagules of weeds 
(Al-Turki 2010; Sanmanee 2011). Such significant rise in temperature may some-
time hamper the activity of beneficial microbes if water is not properly added 
(Allison et al. 2010). Moreover, there is a significant loss of N during composting 
which is a matter of considerable deliberations (Handa et  al. 2014; Chan et  al. 
2011; Chan et  al. 2016). In this regard, Kirchmann and Lundvall (1993) recom-
mended not using aerobic process for decomposition of organic matter containing 
high amount of NH4

+–N because there is a significant loss of N.  Similarly, 
Ramaswamy et al. (2010) also reported a figure of 60% loss of N and 2% C from 
loose piled poultry manure. Furthermore, significant loss of N as N2O from the 
households organics during composting along with a considerable loss of CH4 has 
been observed (Beck-Friis et al. 2000). Another interesting fact has come out from 
the research that if composting is done in open, a significant loss through leaching 
may be recorded. Likewise, if windrowing of manure is done without covering, a 
considerable loss in N and K content may be obtained (Lampkin 1990). In addition, 
considerable amounts of reduction in antibiotic concentration have been observed 
in the soil due to composting process (Dolliver et al. 2008).
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1.4  �Role of Organic Amendments in Soil Health 
Improvement

There is huge burden on soil in terms of biotic as well as abiotic stress. Also, heavy 
load of pesticides, insecticides, weedicides, inorganic fertilizers, etc. has acceler-
ated the rate of extinction of a wide range of flora and fauna. Henceforth, to obviate 
the soil from these stresses, it is essential to frame a module which is conducive to 
the soil ecosystem. Organic soil amendments are considered to be the chief option 
for the soil management (Zhang et al. 2015a, b; Shahbaz et al. 2017). Generally, all 
kind of organic matter helps to impoverish the soil health (Tejada et al. 2001; Jindo 
et al. 2016). A wide range of organic matters are integrated into soil and different 
methods for their processing are being used. Compost are mostly used to enhance 
the soil C stock providing essential nutrients like N and P and also help in the aug-
mentation of microbial activities. It is presumed that quality and quantity of organic 
inputs directly affects the soil physical, chemical, biological features (Albiach et al. 
2000; Saison et al. 2006; Bonilla et al. 2012a, b). Impact of organic soil amend-
ments in microbiota of soil has been correlated to the suppressiveness of the soil for 
many plant diseases (Weller et al. 2002; Mazzola 2004; Steinberg et al. 2007; Van 
Bruggen and Finckh 2016).

1.4.1  �Physical Properties

Incorporation of organic inputs into soil not only increases organic matter content 
but also improves soil physical property (Thangarajan et  al. 2013; Khaliq and 
Abbasi 2015; Williams et al. 2017). For instance, some physical properties such as 
soil aggregate stability, water holding capacity and soil porosity are considerably 
enhanced (Celik et al. 2004; Leroy et al. 2008). Consortium of compost and wood 
scraps under intensive farming system enhanced pore size by formation of organo-
mineral aggregates which have beneficial impacts on soil structure and soil aeration 
(Scotti et  al. 2013). Moreover, soil integration with cow manure, sheep manure, 
reeds, wheat straw and rice husk enhanced soil aggregation stability and reduced 
bulk density (Karami et  al. 2012). In another study, farmyard manure and straw 
application exerted decreased soil bulk density and increased soil organic C and 
porosity (Zhao et  al. 2009). Henceforth, it is concluded that soil organic C is 
inversely proportional to soil bulk density after application of soil organic matter 
(Bauer and Black 1994). Organics generated from various types of by-products, like 
biochar, affect directly the particle size distribution and aggregate stability. 
Application of biochar improves the soil structure by increasing the soil aggregation 
significantly (Liu et al. 2014). However, it has also come to notice that organic soil 
amendments having higher contents of bioavailable C encroached from cellulose 
help in the proliferation of fungal colonies harbouring in the soil. It also helps in the 
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soil aggregation and promotion of soil microbial activities which ultimately main-
tain good health of soil (Lucas et al. 2014).

Similarly, as far as C sequestration is concerned, organic soil amendments 
improve C sequestration process considerably (Müller-Lindenlauf 2009). Organic 
amendments promote agroforestry systems and augment C sequestration leading to 
enhanced plant growth and biomass production (Geier 2007; Twarog 2008; Johnson 
et al. 2007; Berthrong et al. 2013; Bowles et al. 2015; Bhowmik et al. 2016, 2017). 
In addition, organic agriculture also minimizes the biomass burning contributing a 
huge amount of CO2 which impart in global warming (Müller-Lindenlauf 2009). In 
grassland ecosystem C sequestration was enhanced when organic inputs are 
amended in a considerable amount (Liebig et  al. 2005;  Acharya et  al. 2012). 
Moreover, crop rotations and less deep ploughing ameliorate soil organic matter and 
accelerate C sequestration (Niggli et al. 2009).

1.4.2  �Chemical Properties

Without appropriate organic input in the agricultural land, restoration of soil health 
will remain just a dream of the researchers. It is because use of chemical fertilizers 
not only changes the physico-chemical properties of the soil but also produces del-
eterious effects on soil enzymes and microbial diversity and increases soil salinity 
(Bonanomi et al. 2011a; Wang et al. 2017). Research under different agroclimatic 
conditions has revealed that organic matter is a potential tool for the replenishment 
of soil organic C stock (Hargreaves et al. 2008; Zhang et al. 2015a, b). Interestingly, 
only few studies have revealed the importance of organic amendments under plastic 
tunnel system so far. For instance, there were no significant differences in organic C 
recovery stock after 3 consecutive years of application of composts which may be 
due to rapid mineralization (Morra et al. 2010; Iovieno et al. 2009). Plants require a 
limited amount of minerals to satisfy their demands. Generally, microbial popula-
tion rely on substrate derived from organic matter relatively in a fixed manner; how-
ever, the microbial activity is hampered when C/N ratio is above threshold, and the 
threshold values are ~25–30. The rate of organic matter decomposition is signifi-
cantly decreased when the C/N ratio reaches above the thresholds which allow long-
term C storage. Besides, incorporation of organic inputs containing high C/N ratio 
into soil and mobilization of nutrients are temporarily suspended leading to ener-
vated plant growth and yield attributes (Hodge et al. 2000). No doubt, suspension of 
N mobilization is unacceptable under intensive agriculture where plant nutrition is 
regulated to meet the crops demand. To satisfy the demand of a healthy soil, it is 
needed to identify organic amendments which can balance the trade-off between 
organic C recovery and mineralization of nutrients. Eventually, after reaching into 
soil, the organic C retainability not only depends upon biochemical quality but also 
certain features of soil minerals such as sand, silt, clay, carbonate and organic C 
contents (Piccolo 1996; Clough and Skjemstad 2000; Scotti et al. 2015). Moreover, 
soil having low organic content and high clay fraction absorbs exogenously applied 
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organic inputs faster and easier and makes them not easily available to microbial 
attack (Bonanomi et al. 2014a, b). In addition, sandy soil having high C content is 
adverse to microbial population because most of the mineral particles are unable to 
make proper and appropriate interaction. This improper reaction gives much more 
compounds which are enough to devastate beneficial microbial colonies.

Likewise, rampant use of chemical pesticides accelerates mineral N release; 
however, in contrast, organic incorporation triggers lower mineral N release for a 
long time (Claassen and Carey 2006; Weber et al. 2007). It is apparent that mineral-
ization of N in slow mode under organically derived compost ameliorates soil biol-
ogy (Weber et al. 2007). Generally, there is a significant increase in humic/fulvic 
acids in soil amended with composts which may be partly due to presence of humic 
acids in composts that dominate over fulvic acids. In such soil, humic acids are 
always significantly greater than fulvic acids (Weber et al. 2007). Besides, use of 
composts as soil amendments promotes the nitrification process leading to reduc-
tion in contamination of groundwater (Montemurro et al. 2007). Broadly, applica-
tion of organic inputs increases some important variables pertaining to soil health 
such as organic C stock and soil cation exchange capacity. Maximum values of 
cation exchange capacity permit to retain essential nutrients cation and make pos-
sible for them to be available for crop productions (Bulluck lii et al. 2002). Similarly, 
anions are found to increase subsequent to organic inputs application (Zaccardelli 
et al. 2013b; Scotti et al. 2015). But, a significant challenge has come out in the use 
of organic matter especially compost derived from municipal solid waste. Municipal 
solid waste-derived compost increases the electrical conductivity into soil and sub-
sequently salinity, and solidity increases which impacts negatively on crop yield 
(Mass and Hoffman 1977; Bonanomi et al. 2014b) and also on soil biological activ-
ity (Rietz and Haynes 2003). Such MSW-derived compost increases the soil salinity 
especially in the soil cultivated under plastic film due to limitation in soil leaching 
(Bonanomi et al. 2011a, b).

1.4.3  �Biological Properties

Organic matter decomposition is the result of considerable work performed by 
microbes (Thangarajan et al. 2013; De Baets et al. 2016). They play a very crucial 
role in making soil fertile and help in the organic C mineralization (Burauel and 
BaBmann 2005; Whitman et al. 2016; Zheng et al. 2017). Amended organic matter 
into soil favours in proliferation of microbial population; hence, there is a strong 
correlation between organic C, soil biological activity and enzymatic activities 
(Chakraborty et al. 2011; Tejada et al. 2001). However, biological properties of soil 
are considered to be a good indicator of soil health due to their rapid responses to 
environmental perturbations (Nannipieri et al. 1990; Paz-Ferreiro et al. 2009). Soil 
with no input of organic matter exhibited a significant reduction in the soil micro-
bial biomass, enzymatic activity and beneficial fungal colonies under intensive 
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agricultural system (Bonanomi et al. 2011a). Use of compost as soil amendments 
surprisingly enhanced soil fertility such as soil enzymes and microbial activities 
(Thangarajan et al. 2013). A quick response in enzymatic activities such as dehydro-
genase, phosphomonoesterase and β-glucosidase has been obtained after organic 
amendments. This specific quality of organic inputs has accelerated the repeated use 
of organic amendments which has subsequently enhanced the microbial population 
and leading to improved soil fertility (Scotti et al. 2015; Zaccardelli et al. 2013a). 
Use of seed meals derived from Brassica carinata and Helianthus annuus as an 
organic amendment enhanced the soil enzymatic activity like phosphomonoester-
ase, dehydrogenase, fluorescein diacetate hydrolase, arylsulphatase and 
β-glucosidase, thereby improving soil biology (Zaccardelli et  al. 2013b). 
Incorporation of composts obviates the stress caused by high saline content and 
improves the biological fertility of soil (Lakhdar et al. 2009). Likewise, application 
of compost derived from municipal solid waste and palms waste at different doses 
such as 0, 50, 100 and 150 T/ha registered a significant improvement in the micro-
bial activities. But, hindrances were observed at the dose level of 150 T/ha; it may 
be due to the presence of the heavy trace elements in municipal solid wastes (Ouni 
et al. 2013; Garcia-Gill et al. 2000; Crecchio et al. 2004).

Acceleration in microbial activities and biomass has been the chief aim of some 
cultural practices like integration of organic matter in the soil ecosystem (Janvier 
et al. 2007). Various types of organic amendments into agricultural land have been 
helpful in the enhancement of the microbial biomass than non-amended soil or inor-
ganic fertilizers (Bonilla et al. 2012a, b; Tiquia et al. 2002; Peacock et al. 2001). 
Many earlier studies have revealed that compost, composted almond shells and com-
posted yard wastes have enhanced the heterotrophic bacterial population (Saison 
et al. 2006; Perez-Piqueres et al. 2006; Boniall et al. 2012a, b). Soil amendments 
with manures, yard wastes and compost influence the microbial diversity (Yang et al. 
2003; Bonilla et al. 2012a, b). It is pertinent that microbial diversity is a very com-
plex component. Henceforth, measurement of microbial diversity quantitatively and 
qualitatively is needed to ventilate the unexplored reasons. Measurement through 
diversity index may give haphazard information; therefore, qualitative community 
structure analysis is more reliable than other sampling procedures. Moreover, many 
reports have revealed the impact of organic soil amendments which involved a sig-
nificant influence on some enzymes such as urease, β-galactosidase, protease, phos-
phatase or dehydrogenase. In other words enzymatic activities of soil are directly 
correlated with level of soil organic matter incorporated, which is why soil amend-
ments are considered as an appropriate soil indicator (Garcia et al. 1994; Ros et al. 
2003; Tejada et al. 2006; Pascaud et al. 2017). Besides, single enzymes activity can-
not reveal complete structure of information pertaining to nutrients status. However, 
organically rich soils are more complex and depend on soil physico-chemical 
nature (Albiach et  al. 2000; Goyal et  al. 1999). Such soil is characterized by 
abundant heterogeneous populations of microbes. Also, they are difficult to iden-
tify up to the last hierarchy level. Therefore, some advanced approaches pertaining 
to identification of various species are needed. In this context, terminal restriction 
fragment length polymorphisms (T-RFLP) have now been proven to be a milestone 
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in the characterization of bacterial and fungal communities isolated from various 
localities (Pérez-Piqueres et al. 2006). Similarly, many researchers have shown that 
organic amendments may influence the bacterial and fungal communities; however, 
further verifications are needed by using advanced techniques like direct extraction 
of lipids (PLFA) and nucleic acids (T-RFLP, ARISA, ARDRA, DGGE) (Bonilla 
et al. 2012a, b; Tiquia et al. 2002; Peacock et al. 2001; Edel-Hermann et al. 2004; 
Dimitrov et  al. 2017). These novel approaches have been adopted by various 
researchers globally so far (Van Elsas and Costa 2007).

1.5  �Significance of Organic Amendments in Plant Health 
Amelioration 

1.5.1  �Plant Biomass Promotion

Researchers have focussed their study on environment protection prompting the 
research on nutrient management strategies and lowering down the use of chemical 
pesticides (Ghimire et al. 2017). Moreover, utilization of resistant varieties and pes-
ticides is unable to eliminate the soilborne fungal propagules from the agricultural 
system. Therefore, proper management modules having high efficacious nature and 
low costs are needed for contemporary agriculture (Martin 2003). Effect of wide 
spectrum of organic amendments on different crop yield in various studies has been 
investigated (Sumbul et al. 2015; Horrocks et al. 2016). For instance, single applica-
tion of olive pomace at 10 or 20 Mg per hectare enhanced wheat yield by 50%, by 
increasing of kernel weight and their number (Brunetti et  al. 2005). Long-term 
application of soil organic amendments has increased the growth and yield attri-
butes (Johnston et al. 2009; Xie et al. 2016). Organic integration into soil not only 
improves physico-chemical feature but also plays beneficial role on crop productiv-
ity. Broadly, organic soil amendments are the best option available in many develop-
ing countries for compensation of soil nutrients (Lal 2005; Kaur and Verma 2016). 
Moreover, application of certain easily available organic inputs such as buckwheat 
(F. esculentum L.), millet (Echinochloa crus-galli L.), colza (Brassica campestris 
cv. oleifera L.), clover (Trifolium pratense L.) and mustard (Brassica hirta Moench) 
has successfully improved the yield (N’Davyegamiya and Tran 2001). Besides, dif-
ferent industrial wastes have been applied in order to predict their response on crop 
yield. Wastes generated from sugarcane industries have been applied in the land and 
increased crop biomass recorded (Dotaniya et al. 2016). Consortium of N fertilizers 
and sugar press mud (derived from sugarcane industrial wastes) increased plant 
growth attributes such as dry matter, cane, sugar yield, etc. (Bangar et al. 2000). 
Likewise, in another experiment, 25 t ha−1 sugar press mud significantly improved 
the sugarcane yield (Venkatakrishnan and Ravichandran 2013). In addition, applica-
tion of press mud enhanced the sugarcane quality and biomass-related attributes 
providing sufficient nutrients by ameliorating soil health (Sarwar et  al. 2010). 
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Bagasse (another generated by-product) is being judiciously used in agricultural 
crop production system to reduce the application of inorganic fertilizers (Dotaniya 
et  al. 2016). Properly chopped bagasse, applied 1  month before sowing is very 
sound for the proper decomposition that leads to production of organic acids and 
mobilization of insoluble phosphorus from soil to soil solution in labile form (Rocha 
et al. 2011; Dotaniya et al. 2016; Hofsetz and Silva 2012). Moreover, incorporation 
of 3000 kg ha−1 enhanced the crop growth attributes significantly and that may be 
due to enough P supplementation (Ferrer et al. 2001). Some wastes, derived from 
tomato, cork residue, olive husk and tannery sludge, improved the crop growth and 
yield variables (Vallini et al. 1983).

1.5.2  �Plant Disease Management

Application of organic amendments like composts derived from various sources, 
manures, etc. is well studied in context of suppression of pest pathogens and plant 
diseases (Bailey and Lazarovits 2003; Bonilla et al. 2012a, b; Noble 2011; Noble 
and Coventry 2005; Van Elsas and Postma 2007; Faye 2017). Organic incorporation 
has frequently been found to reduce wide range of soilborne diseases infesting dif-
ferent agricultural plants (Aviles et  al. 2011; Bonilla et  al. 2012a, b; Hadar and 
Papadopoulou 2012; Noble 2011; Yogev et al. 2006). Generally, compost amend-
ments are found to be associated with soilborne diseases reduction; however, there 
are certain dependent factors (Bonanomi et al. 2010; Noble and Coventry 2005). 
Wide ranges of compost were evaluated against various plant pathogens and plant 
diseases and resulting in significant diseases management (Termorshuizen et  al. 
2006; Mishra et al. 2017). Generally, it has been seen in various studies that com-
post has the ability to reduce the disease with a figure of 55% of disease. Some 
important factors such as compost material, age and quality keep prime importance 
determining whether compost will be suppressive or not (Bonanomi et  al. 2010; 
Hoitink and Boehm 1999; Noble and Coventry 2005; Termorshuizen et al. 2006).

In a trial, composted dairy manure as a soil amendment along with other com-
posts significantly enhanced microbial populations (Bernard et  al. 2014; Zhang 
et al. 2015a, b). Some reports have suggested that crop yields are increased, but 
there is no considerable reduction in pathogen population (Bernard et  al. 2014). 
Henceforth, any compost before applying in a large scale should be tested under a 
small level of field to avoid environmental perturbation (Ansari et  al. 2017a, b). 
Some organic manure in non-composted form has shown inhibitory effects against 
many phytopathogens; however, results showed inconsistency (Bononomi et  al. 
2007). For instance, more than 50% of the trials have shown inhibitory effects by 
un-composted manure and industrial by-products against soilborne diseases, while 
less than 12% attributed to increase the disease incidence (Bononomi et al. 2011b). 
The reason behind such inconsistency may be the nature of organic inputs such as 
quantity, quality, origin, etc. affecting soil physico-chemical properties leading to 
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changed microbial diversity. There are some abiotic factors that have been found 
associated with disease management practice. Many eminent researchers have 
stressed their studies to dig out the actual mechanisms pertaining to disease sup-
pression (Bonanomi et al. 2010; Noble 2011). But ample studies have revealed that 
disease suppression is related to overall enhancement in microbial population and 
activity developing deleterious environment to the plant pathogens (Bonilla et al. 
2012a, b; Bonanomi et al. 2010). This is further advocated that diseases suppression 
is of biological origin, because suppression nature of organic matter is lost when it 
is sterilized (Bonilla et al. 2012a, b). For example, incorporation of a wide array of 
organic manure and organic wastes were highly suppressive to Verticillium sp., but 
this result was inconsistent for site to site (Lazarovits 2001; Lazarovits and Subbarao 
2010). Similarly, organic soil amendments reduced soilborne pathogens by forming 
ammonia or nitrous acid which is lethal to pathogens (Lazarovits 2001). Likewise, 
liquid swine manure minimized the disease incidence by forming volatile fatty 
acids in acidic soil (Lazarovits 2001; Lazarovits and Subbarao 2010). In addition, 
composted teas, water-based compost, contain diverse types of constituents found 
to be having disease-suppressive nature (Schuerell and Mahaffee 2002; Lazarovits 
2010; St. Martin and Brathwaite 2012).

Ample studies have revealed that organic amendments can combat plant diseases 
caused by various plant pathogens such as bacteria, fungi and phytonematodes 
(Hoitink and Boehm 1999; Bailey and Lazarovits 2003; Ansari et  al. 2017a, b). 
Composted materials are found showing pernicious effects on root rots as compared 
to non-composted materials (Hoitink and Boehm 1999). Yogev et al. (2006) found 
that compost derived from plant waste residue reduces disease caused by different 
formae speciales of Fusarium oxysporum. In another such incident, Phytophthora 
cinnamomi causing avocado root rots was suppressed by application of vegetable 
produced compost (Downer et al. 2001). Generally, composted materials have con-
stantly been shown to be suppressive on various soilborne diseases including damp-
ing off and root rots (Pythium ultimum, Rhizoctonia solani, Rosellinia necatrix, 
Phytophthora spp.) and wilts (Fusarium oxysporum and Verticillium dahlia) infect-
ing wide range of crop plants (Lazarovits 2001; Yogev et  al. 2006; Yogev et  al. 
2010; Malandraki et al. 2008; Erhart et al. 1999; Pane et al. 2011; Tamm et al. 2010; 
Bender et al. 1992). Some other pathogens have been significantly controlled by 
organic matter application that are Gaeumannomyces graminis f. sp. tritici (Tilston 
et al. 2002), Fusarium spp. (Borrero et al. 2004), Pythium spp. (Erhart et al. 1999), 
Rhizoctonia solani (Pérez-Piqueres et al. 2006), Phytophthora spp. (Szczech and 
Smolińska 2001), Verticillium dahliae (Paplomatas et  al. 2005) and Sclerotinia 
minor (Pane et  al. 2011). Nevertheless, the suppressing quality varies greatly 
depending on organic matter type, plant hosts and pathogens spp. involved, etc. Few 
reports related to negative impacts of organic amendments have also been docu-
mented such as enhanced phytotoxicity and disease severity (Smolinska 2000; 
Tilson et al. 2002; Scheurell et al. 2005; Delgado et al. 2010). Termorshuizen et al. 
(2007) showed that organic amendments caused disease suppression in 54%, no 
considerable suppression in 42.7% and enhancement of disease in 3.3%. Similarly, 
Bonanomi et al. (2010) found suppressiveness of organic amendments in 45% of the 
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cases, no significant suppressiveness in 35% cases but enhancement of the disease 
in 20% of the cases studied. Due to such inconsistent results, practical application 
of composts for disease suppression is still a matter of debate. Moreover, facts to be 
analysed regarding organic soil amendments derived from wide spectrum of animal 
and plant residue, composting methods, feedstock origin (municipal wastes, plant 
pruning, crop residues, animal manures, etc.), rate of application (Serra-Whittling 
et al. 1996) and level of maturity (Tuitert et al. 1998).

1.6  �Mechanisms Implicated in Action of Organic 
Amendments on Soil and Plant

Amendment of soil with organic matter boosts up soil physical, chemical, biologi-
cal properties leading to improved plant health (Bonanomi et al. 2010; Lazarovits 
2010). No single mechanism can be implicated in such a concerted effort of amelio-
rating soil health with nutrients and enhancement of plant growth attributes. The 
quantity and quality of organic matter amended in the soil impose its impact on soil 
physico-chemical as well as on biological activities (Mazolla 2004; Abbasi et al. 
2002; Bulluck and Ristaino 2002; Stark et al. 2008; Saison et al. 2006; Bonilla et al. 
2012a, b; Gomez et al. 2006; Ceja-Navarro et al. 2010). Physico-chemical and bio-
logical properties of soil collectively make a soil suppressive which may result 
inhibitory to soilborne plant pathogens and stimulatory to multiplication of benefi-
cial microorganism (Huang et al. 2015). Baker and Cook (1974) described suppres-
siveness of soil where in suppressive soil disease, severity or incidence remains low 
in spite of the presence of a virulent pathogen, a susceptible host plant and climatic 
conditions favourable for disease development (Hiddink et al. 2005; Janvier et al. 
2007). Various mechanisms of disease suppression by organic soil amendments 
have been proposed that include biological control (Abbasi et al. 2007; Fu et al. 
2017), stimulation of systemic resistance in plants (Hoitink and Boehm 1999; 
Alkooranee et  al. 2017) and production of compounds lethal to plant pathogens 
such as ammonia, nitrous acid and volatile fatty acids (VFAs) (Mazzola 2002, 2004; 
El-Abbassi et al. 2017).

A number of physico-chemical parameters like soil pH, N, C and organic C con-
tent, various cations and oligoelements have been found to be associated with plant 
disease suppression (Bonilla et al. 2012a, b). Emphasis has been given to find out 
the role of physico-chemical properties in the soil and plant health improvement. 
Moreover, conservation of C reservoir in agricultural soil system is much helpful in 
nutrient delivery (Tian et  al. 1992), amelioration of soil structure (Abiven et  al. 
2009), enhancing microbial activities (Mäder et al. 2002) and sustaining the soil 
suppressiveness for soilborne pathogens (Bonanomi et al. 2010; Scotti et al. 2013). 
Besides, enhanced soil organic matter content, soil pH alteration, type of clay and 
improved soil texture on microbial populations maintain soil suppressiveness 
(Alabouvette 1999; Fang et al, 2005; Mazzola 2002). Soil amended with high nitro-
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gen containing organic inputs such as chicken manure, meat and bone meal, chitin 
and chitosan, neem and soy meals resulted in N compounds such as ammonia and 
nitrous acid (Lazarovits et al. 2005). Plethora of the mechanisms is involved through 
which organic amendments suppress the plant diseases leading to enhanced soil and 
plant health. To understand the web of mechanisms, a high level of instrumentation 
and expertise is needed. However, current assay has helped us to elucidate the pos-
sible mechanisms involved in the plant biomass enhancement as well as the plant 
disease suppression (Fig.  1.2). In addition, various complementary mechanisms 
have been proposed so far to illustrate the suppression capacity of an organic matter, 
for instance, (i) enhanced rhizospheric microbial activities (Hoitink and Boehm 
1999; Li et al. 2017), (ii) food competition amongst the microbes (Lockwood 1990), 
(iii) secretion of pathotoxic compounds from decomposed organic matter (Tenuta 
and Lazarovits 2002) and (iv) systemic resistance induction in host plants (Zhang 
et al. 1996; Pharand et al. 2002; Keswani et al. 2017). Lazarovits (2001) reported 
that decomposition of organic matter leads to the production of nitrogenous 
compounds.

Generally, soil microorganisms rapidly start degrading high nitrogenous organic 
input leading to production of N in its different forms and more than sufficient for 
microorganism proliferations. The excess amount of N is localized to soil solution 
as ammonia (NH3) (Lazarovits 2001). Eventually, this is swiftly converted to ammo-
nia (NH4

+), and pH of soil significantly enhanced. Likewise, as soon as pH rises, 
some amount of NH4

+ converted back to NH3. Interestingly, ammonia is very toxic 
even at very low levels, while no such pernicious effect of ammonium has been 
observed (Warren 1962). However, NH3 is generated when the soil pH is signifi-
cantly increased and reaches above 8.5, but this occurs in some special soil 
(Lazarovits 2001). Similarly parallel mechanism to former is proposed look to be 
more considerable. Ammonium conversion leads to formation of nitrite (NO2

−) and 
subsequently nitrate (NO3

−) by the bacterial nitrification. Such mechanisms lead to 
drastic reduction in the pH attaining 5.5. As soon as pH drops to 5.5, NO2

− converts 
to HNO2. NO2

− is non-toxic, while HNO2 is highly toxic to a wide range of soil-
borne pathogens (Lazarovits 2001). In addition, soil pH is the driving factor that 
reduces the quantity of toxic (NH3 or HNO2) and non-toxic (NH4

+ or NO2
−) com-

pounds (Lazarovits 2001). In addition, liquid swine manure is rich in various nutri-
ents essential for the growth of crop plans. Various fractions are found in the liquid 
swine manure, but specifically, acetic acid is the chief organic compounds playing 
crucial role in disease suppression (Lazarovits 2001). The existence of effective 
biocidal products depends highly on composition of the organic amendment added 
to the soil, pH of the soil and soil buffering capacity (Tenuta and Lazarovits 2002). 
It is a well-established fact that adding fresh organic amendments to soil transiently 
enhances ammonium concentration and pH, followed by increased nitrification and 
a fall in ammonium and pH (Zelenev et al. 2005).

Moreover, volatile fatty acids (VFAs) that can be injurious to some pathogens in 
low pH soils are produced by the decomposition of certain organic amendments such 
as liquid swine manure (Conn et al. 2005). Besides, VFAs can also be achieved by 
adding fresh organic matter like broccoli (Brassica oleracea L. Convar. Botrytis (L.) 
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Alef var. Cymosa Duch.) or perennial ryegrass (Lolium perenne L.) (Blok et  al. 
2000). Besides, concentration of calcium in the soil has also been implicated show-
ing negative effect on wide spectrum of soilborne pathogens. Heyman et al. (2007) 
reported that Aphanomyces root rot of pea was affected to varying extent by various 
calcium-containing compounds, and this was directly correlated with water-soluble 
Ca in soil. Similarly, Bonanomi et al. (2010) revealed that pH of amendment was not 
correlated to disease suppression except in the case of Fusarium species. Borrero 
et al. (2004) showed that high soil pH was effective in reducing Fusarium wilt of 
tomato. Also, there is inconsistence report related to physiological parameters per-
taining to plant disease control (Janvier et al. 2007). Thus physiological issues have 
been found less informative in terms of plant disease suppression as compared to 
enzymatic and microbiological variables (Bonanomi et al. 2010; Castano et al. 2011). 

Moreover, amendments of soil with organic matter generate soil suppressiveness 
against wide range of soilborne pathogens (Klein 2011; Sumbul et al. 2015). The 
impact of organic amendments on soil suppressiveness has commonly been associ-
ated with a general suppression mechanism. Incorporation of organic matter is 
responsible for enhancement of total microbial biomass and activity in soil, leading 
to impediment of the pathogen through competition for resources or by other direct 
forms of antagonism (Mazolla 2002). Alabouvette (1999) propounded that suppres-
siveness of soil for F. oxysporum f. sp. lini depends on partially competition for 
carbon amongst the pathogen and the microorganisms present in soil. Moreover, 
dissolved organic carbon is the readily available carbon sources which are consis-
tently used, discharged upon cell death. Thereafter, eventually this organic C is 
reused by rapidly multiplying microorganisms creating competitive environment 
for plant pathogens thriving in the rhizosphere, and eventually root disease develop-
ment gets hampered (Zelenev et  al. 2005; Raaijmakers et  al. 2009). Besides, 
microbes are united tightly generating an environment unfavourable to plant patho-
gens and later on disease development (Hoitink and Boehm 1999; Weller et  al. 
2002; Penton et al. 2014). Moreover, in order to ascertain the amendment suitable 
for specific disease suppression, it is necessary to determine a particular amendment 
instigating the microbial population leading to suppressed disease (Steinberg et al. 
2007; Bonilla 2012a, b; Penton et  al. 2014). Appropriate alteration in microbial 
community structure is shown to be widely associated with suppression of plant 
diseases. Thus, enhanced diversity of microbes provoked by organic soil amend-
ment is responsible for successful suppression of pathogen (Cohen et  al. 2005; 
Pérez-Piqueres et al. 2006). Moreover, Gaeumannomyces graminis var. tritici caus-
ing wheat take-all disease was found to be reduced by various strains of Pseudomonas 
spp. both in greenhouse and field experiments (Weller and Cook 1983). Besides, in 
Western Australia, Trichoderma spp. that form a major proportion of total microbial 
community have been implicated in the control of the wheat take-all disease (Simon 
and Sivasithamparam 1989). However, the recognition of a particular microbe 
surely involved in disease suppression does not indicate the sole responsibility of 
that microbe in the process, but a number of other factors both biotic and abiotic 
may also play partial role in disease suppression. In addition, different types of 
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organic amendments instigate a different array of microbial community, found to be 
responsible for their specific efficacy against different pathogens. Such impact of 
organic amendment on soil suppressiveness may also vary with time, level of 
decomposition and environment change leading to newly evolved microbial com-
munities (Alabouvette et al. 2004; Bonanomi et al. 2010). Besides, the concept of 
disease suppression may also be associated with particular activities or functions 
performed by microorganisms rather than only the presence or abundance of a spe-
cific population in soil.

Another aspect related to the suppressiveness of organic amendment may be 
attributed to the alterations efficiency of microbes in the metabolic and enzymatic 
activities. Multivariate analysis of this facet has been successfully carried out, but 
only a few cases proved to be the actual reason behind the soil suppressiveness 
(Gomez et al. 2006), allowing discrimination between suppressive and conductive 
soils (Pérez-Piqueres et al. 2006; Pane et al. 2011). For instance, take-all decline of 
wheat was recorded where fluorescent Pseudomonas spp. were found to be related 
to the production of phenazine (Thomashow et  al. 1990) and particularly to 
2,4-diacetylphloroglucinol (Raaijmakers and Weller 1998). Thus, the presence and 
abundance of fluorescent Pseudomonas in a soil are considered to be suppressive 
to take-all disease of wheat (Raaijmakers et al. 1997). Besides, Trichoderma spp. 
reduce take-all disease of wheat by antibiotic production, particularly pyrone com-
pounds, however, non pyrone producing strains of Trichoderma are also shown to 
suppress disease, suggesting other mechanisms being run simultaneously. 
Moreover, certain other pathways of disease suppression include competition for 
resources and niches, incitement of plant defences, parasitism and predation, and 
also hydrolytic activities like chitinases and glucanases have also been reported 
(Mukhopadhyay 2016). Chitinase and glucanase activities have invariably been 
associated with soil suppressiveness and biocontrol of soilborne pathogens. Chitin, 
the main component of fungal cell walls, plays a pivotal role in such kind of dis-
ease suppression. Chitinolytic microorganisms instigated by specific organic 
amendment effectively control fungal pathogens in the soil (Bouizgarne 2013). For 
instance, chitin compost consisting of crab shell at 30% was used against 
Phytophthora capsici and found reduced pathogen population (Chae et al. 2006). 
Also, the number of chitinase-producing bacteria in the rhizosphere and the enzy-
matic activities like chitinase and β-1,3-glucanase were greater in plants amended 
with the chitin compost than unamended. Overall, no single mechanism is involved 
in disease suppression, plant and soil health improvement in organic rich soil. It is 
generally hypothesized that biological activities instigated by organic input are 
mainly responsible for plant and soil health amelioration. Physico-chemical vari-
ables can have an impact on growth and activities of soil microbes leading to 
improved soil and plant health.
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1.7  �Conclusions and Future Prospects

The inference can be drawn from above literatures that applications of soil organic 
amendments have been beneficial to the growers not only in the developed countries 
but also in underdeveloped one. Moreover, incorporation of wide range of organic 
matters into soil has culminated the cost burden especially on small landholders. 
Organic inputs into soil have augmented the soil biology and health. Some impor-
tant variables pertaining to soil health like microbial activity, microbial diversity, 
pH, soil respiration, electrical conductivity, etc. have significantly influenced the 
soil environment. Moreover, it is assumed that as decomposition starts secretion of 
some organic compounds such as humic/fulvic acids, VFAs and N in its various 
forms begin simultaneously. These nutrients and volatile substances become ulti-
mately a source providing sufficient nitrogen to microbes and crops. Some organic 
compounds are secreted by organic matter upon decomposition which are lethal to 
wide spectrum of soilborne pathogens. On the other hand, microbial activity espe-
cially rhizobacterial activity is considerably increased leading to enhanced systemic 
resistance against various phytopathogens. Moreover, responses of host plants are 
inconsistent due to diverse nature of organic inputs. Each organic matter differs in 
terms of their chemical constituents, contents, period of retention, origin, etc. 
Henceforth, prior to recommendation of any organic matter, a long-term application 
of targeted organic matter should be screened under various agroclimatic condi-
tions. Besides, physico-chemical properties of the soil like electrical conductivity, 
porosity, pH, C, C:N ratio, etc. may influence the plant growth. Overall, organic soil 
amendments may have a lot of beneficial role in microbial activities. A genuine 
question arises, why farmers are refraining to adopt organic amendments? Prudently, 
the answer may be unawareness of inorganic fertilizers pertaining to its negative 
impacts on human health. Also long-term processing of organic matters before its 
application into the field which charges a heavy labour cost and less appropriate in 
perspective of cost-benefit ratio. To address these issues, a considerable number of 
research at various station houses are needed under various agroclimatic conditions. 
Scientific interaction with landholders, farmers and growers pertaining to use of 
organic matter into land may indeed support the use of organic inputs into agricul-
tural system. A focus should also be on the identification of different agroclimatic 
circumstances where it can be best applied. Finally it may be added that organic 
farming is preferable than that of using chemicals in agriculture.
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