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Chapter 4
Role of Rhizospheric Microbes 
in the Management of Phytopathogens 

Mohammad Zuhaib, Shabbir Ashraf, Nasreen Musheer, and Mohd Ali

Abstract  Medicinal plants play very crucial role in the life of people, and they are 
used in official and various traditional systems of medicines throughout the world, 
benefitting people to prevent disease, maintain health, and cure ailments. Nearly all 
modern pharmaceuticals are  considered to be natural products or derived from 
plants. Fungal diseases are the major constraints in the profitable cultivation of 
medicinal plants. Phytopathogenic problem of medicinal plants not only reduces the 
yield, but it is also responsible for the deterioration of biochemical and secondary 
metabolites which are of immense therapeutic value. Imprudent use of insecticides, 
fungicides, agrochemicals, and fertilizers poses serious threat to environment. 
Scientists have reported various mechanisms regarding plant rhizospheric microbes, 
i.e., fungi and bacteria, which colonize the roots of plant and thus help the plants in 
maintaining its health. In the present scenario, rhizospheric microbes (biocontrol 
agents) have gained popularity due to their effectiveness, safety, and eco-friendliness, 
and hence their demand has gradually increased. Rhizospheric microbes not only 
manage plant diseases but at the same time also boost plant growth by different 
mechanisms. Many scientists have already reported the beneficial role of rhizo-
spheric microbes on the health of various medicinal plants. Research on medicinal 
plants and rhizospheric microbes is inadequate as far as biotic stresses are con-
cerned. The mechanisms of plant disease management such as mycoparasitism, 
antibiosis, induced systemic resistance, plant growth promotion, root colonization, 
siderophore production, phosphate solubilization, etc., have been studied well in 
reference to medicinal plants. Still due to the distinct features of medicinal plants, 
future research could be a major breakthrough in the significant increase in the pro-
duction of medicinal plants.
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4.1  �Introduction

About 80% people of the globe rely on herbal medicine for their health problems 
according to the World Health Organization (Goto et al. 1998). Due to severe side 
effects of modern medicines, drugs extracted from medicinal plants are gaining 
popularity in many developed countries. The basics of herbal medicines mainly 
depend on plant diversity and past studies of their use in maintaining human health 
(Table 4.1). Nearly all herbal medicines are natural products or derivatives of plants; 
interestingly it has also been acknowledged that the discovery of artemisinin, which 
is an antimalarial drug extracted from medicinal plant “sweet wormwood,” has 
earned a 2015 Nobel Prize in medicine (George et al. 2016). Fungal diseases pose a 
serious threat to the profitable cultivation of crop as well as the medicinal plant. In 
1845 potato late blight fungus was responsible for Irish famine which led to mil-
lions of people to migrate from Ireland. The Plasmopara viticola causal organism 
of downy mildew of grapes devastated the wine industry in France. In 1943 brown 
spot disease of rice was solely responsible for Bengal famine, and other catastrophic 
examples of phytopathogens also include apple scab; Panama wilt; wheat rust; wilt 
of Cajanus cajanus, chickpea, castor, and guava; rust; and smut of cereals. 
Phytopathogenic problem is not only a threat to commercial crop plants, but they 
are also a threat to our important medicinal plants. Alternaria leaf spot and Fusarium 
cause severe wilting in Ashwagandha which leads to enormous yield losses (Sharma 
et al. 2013; Zuhaib et al. 2016; Ansari and Mahmood 2017; Sharma and Trivedi 
2010). Apart from Ashwagandha other medicinal plants were also reported to be 
infected by Fusarium wilt.

Various options of disease management such as chemical, botanical, and biologi-
cal are available, and among them, chemicals are considered one of the best and 
reliable options, but they pose serious health and environmental risks, which have 
limited their use. About 0.1% of the agrochemicals used in crop protection reach to 
the target pest, rest 99.9% enter into the environment causes greater damage to the 
ecosystem (Ashraf and Zuhaib 2013). The indiscriminate use of chemical fungi-
cides has consequently caused several health issues, such as toxicity in food, water, 
and soil, which ultimately leads to pollution of the ecosystem; hence it was recom-
mended by the scientists to use nonchemical methods for the management of phy-
topathogenic problem of medicinal plants.

Plant rhizospheric microbes including soil fungi and bacteria colonize plant 
roots and, in turn, help in maintaining plant health. In the present scenario, rhizo-
spheric microbes (biocontrol agents) have gained popularity due to their effective-
ness, safety, and eco-friendliness, and hence, their demand has gradually increased. 
Rhizospheric microbes not only manage the plant diseases but also enhance plant 
growth by adhering and multiplying at the root hair surface; increase in seedling 
emergence, functioning of premature nodules, and nodulation; and increase in area 
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Table 4.1  Medicinal plants and their uses in human health

Traditional 
name

Scientific 
name Family

Part in 
use Medicinal use

Amla Emblica 
officinalis

Euphorbiaceae Fruit Rich source of ascorbic acid, 
cough, cold, hyperacidity, 
laxative, prevention of cancer

Ashok Saraca asoca Caesalpiniaceae Bark, 
flower

Diabetes disorder, menstrual 
pain, uterine problems

Ashwagandha Withania 
somnifera

Solanaceae Root Curative tonic and helps in 
nerves disorder

Guggul Commiphora 
wightii

Burseraceae Gum resin Rheumatism, laxative, 
hyperlipidemia

Aloe Aloe vera Liliaceae Leaves Used in cosmetic industry
Bael/bilva Aegle Rutaceae Fruit, 

bark
Diarrhea, dysentery, 
constipation

Tulsi 
(perennial)

Ocimum 
sanctum

Lamiaceae Leaves/
seed

Helps in bronchitis, acts as 
expectorant, anticancerous

Sarpagandha 
(H)

Rauvolfia 
serpentina

Apocynaceae Root Hypertension, insomnia

Bhumiamla 
(H)

Phyllanthus 
amarus

Euphorbiaceae Whole 
plant

Provide strength, lower the 
bilirubin

Shatavari Asparagus 
racemosus

Liliaceae Tuber, 
root

Pregnant women, anti-fatigue, 
lowers blood sugar

Brahmi Bacopa 
monnieri

Scrophulariaceae Whole 
plant

Anxiety, improve the memory 
enhancer,

Makoi/
Kakamachi

Solanum Solanaceae Fruit/
whole

Dropsy, general weakness, 
anticancerous

Isabgol Plantago 
ovata

Plantaginaceae Seed coat Constipation and 
gastrointestinal irritations. Also 
used in food industry

Coleus Coleus 
forskohlii

Lamiaceae Tuberous 
root

Used in glaucoma, heart 
functioning, and various types 
of carcinoma

Henna/mehndi Lawsonia 
inermis

Lythraceae Leaf, seed Burning, steam, 
anti-inflammatory

Pashanbheda Coleus 
barbatus

Lamiaceae Root Stone problems, diabetes

Peppermint Mentha Lamiaceae Leaves, Digestive, painkiller
Sadabahar Vinca rosea Apocynaceae Whole 

plant
Blood cancer, blood pressure 
muscle spasm

Vringraj Eclipta alba Compositae Seed/
whole

Anti-allergic, digestive, hair

Neem Azadirachta Meliaceae Whole 
plant

Sedative, analgesic, epilepsy

Modified from of Shahzad et al. (2015)
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of leaf surface, vigor, biomass, phytohormone, and nutrient, water, and air uptake, 
hence stimulating the accumulation of important nutrients in plants (Shrivastava et al. 
2015). This review will focus on major fungal diseases of medicinal plants and also 
the recent developments in the field of biological control of medicinal plant diseases 
by rhizospheric microbes, which will emphasize on the mechanism. In this chapter 
we will limit our discussion on important rhizospheric microbes, viz., species of 
Trichoderma, Pseudomonas, and Bacillus.

4.2  �Biotic Stresses on Medicinal Plants

Since there is a great demand for herbal medicinal in the international market, many 
biotic factors are responsible for the low productivity of medicinal plants. Biotic 
factors liable for the low productivity of medicinal plants include an attack of 
insects, arthropods, fungi, bacteria, and nematodes. Among them the fungi cause 
major yield losses after insects; in this chapter, we will focus on economic yield 
losses caused by fungi. Black leaf spot diseases of Aloe vera were caused by 
Alternaria alternata; two different isolates A and B of Alternaria alternata were 
isolated from the diseased leaf of Aloe vera (Alam et al. 2007). Similarly Shukla 
et  al. (2008) also reported Pythium leaf spot of Aloe vera which was caused by 
Pythium aphanidermatum. An occurrence of leaf spot of Kalmegh (Andrographis 
paniculata) was also observed which causes severe yield loss of 30–45% (Alam et al. 
2007). Leaf blight of Mentha piperita and Ocimum sanctum was also reported by 
(Alam  et  al. 2007) and (Ashraf and Zuhaib 2009), respectively. Same workers 
(Zuhaib et al. 2016) also reported leaf spot of Withania somnifera by Alternaria 
alternata and also screened the resistant cultivars of Withania somnifera for the 
pathogen. Twig blight of periwinkle (Catharanthus roseus) caused by Sclerotinia 
sclerotiorum was also studied; similarly foliar infection in the form of leaf spot of 
Rauvolfia serpentina was also studied by Alam et al. (2007). Medicinal plants are 
not only attacked by phyllospheric pathogens, but they are also attacked by rhizo-
spheric pathogens. Fusarium causes severe wilting in Ashwagandha which leads to 
enormous yield losses (Bharti et al. 2014; Zuhaib et al. 2016; Sharma and Trivedi 
2010). Apart from Ashwagandha other medicinal plants were also reported to be 
infected by Fusarium wilt. Important medicinal plants reported to be infected with 
Fusarium wilt include Atractylodes lancea, Dioscorea zingiberensis, Euphorbia 
pekinensis, Ophiopogon platyphyllum, Pinellia ternata (Dai et al. 2009), Curcuma 
manga (Khamna et al. 2009), Launaea nudicaulis (Mansoor et al. 2007), Jerusalem 
artichoke (sunchoke) (Jina et  al. 2013), Panax quinquefolius (Song et  al. 2014), 
Coleus forskohlii (Zheng et al. 2012), Papaver somniferum (Kishore et al. 1985; 
Sattar et al. 1995), Calotropis gigantea (Selvanathan et al. 2011), Basilicum (Elmer 
et al. 1994; Katan et al. 1996), and Asparagus (Lamondia and Elmer 1989). Coleus 
forskohlii is an important medicinal plant; wilt of Coleus forskohlii is a disease 
complex caused by Rhizoctonia bataticola, Fusarium chlamydosporum, Sclerotium 
rolfsii, and Ralstonia solanacearum (Bhattacharya and Jha 2012).
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4.3  �Rhizospheric Microbes as Biocontrol Agents

Plant health may be ameliorated by rhizospheric microbes (naturally present 
soil fungi and bacteria) by colonizing the plant roots. In the present scenario, 
rhizospheric microbes (biocontrol agents) have gained popularity due to their 
effectiveness, safety, and eco-friendliness, and hence, their demand has gradu-
ally increased. Vigor, biomass, nutrients and water absorption, yield, root hair 
proliferation, root hair branching, increase in seedling emergence, increase in 
area of leaf surface, nodulation, and promoted accumulation of carbohydrates 
are some of the ways in which rhizospheric microbes supplement plant growth 
besides providing protection to plants from diseases (Shrivastava et al. 2015). 
Usage of fungicides is not recommended as it is neither economical nor environ-
mentally friendly. Moreover, its long-term use can cause the development of 
resistant strains of a pathogen (Ashraf and Zuhaib 2014a, b; Vinale et al. 2008). 
However, research on biological control gained momentum in the last quarter of 
the tenth century, and several books (Baker and Cook 1974; Cook and Baker 
1983) and review articles (Papavizas 1985) have come up stressing the potential 
of microorganisms in disease management. Numerous microorganisms have 
been reported to cause antagonism against plant pathogenic fungi in laboratory 
and in  vivo condition. A perfect biocontrol agent/rhizospheric microbe must 
have the subsequent qualities (Lucy et al. 2004; Mukerji 2000).

	1.	 Prolonged survival, either in active or passive form.
	2.	 Greater probability of contact with the pathogen.
	3.	 Functional under variable environments.
	4.	 Mass multiplication should be easy, feasible, and economical.
	5.	 Proficient and cheap.
	6.	 Eco-friendly.

A number of rhizospheric microbes such as Trichoderma, Bacillus, and Pseudomonas 
have been found successful against a number of important fungal diseases of medic-
inal plants (Scher and Baker 1982; Strashnov et al. 1985; Kaur et al. 2006; Abo-
Elyousr et al. 2014; Dubey et al. 2007). The most common species of Trichoderma 
which have been successfully exploited in biological control of pathogenic fungi are 
T. virens, T. viride, and T. harzianum (Benitez et al. 2004). T. viride has been found 
to significantly reduce mycelial growth, a formation of spores, and germ tube for-
mation of A. solani and A. alternate (Latha et  al. 2009). T. harzianum has been 
found active against F. oxysporum inciting wilt in Ashwagandha (Sharma and 
Trivedi 2010). Moreover, Trichoderma can even stimulate plant growth; reports of 
which have been found in the case of T. virens (Kumar et al. 2011) and the stimula-
tion of plant defense mechanisms (Chet et al. 1997).

Mechanism of disease suppression by rhizospheric microbes Trichoderma spp. 
is reported to suppress plant pathogenic fungi through a combination of different 
mechanisms (Table 4.2) such as mycoparasitism, synthesis of antibiotics (Harman 
2006; Harman et al. 2004), enzymes degrading cell wall (Jayalakshmi et al. 2009), 
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contesting for the availability of important nutrients and increase in plant health 
(Zimand et al. 1996), parasitism of host fungus (Komatsu 1968; Gao et al. 2001), 
inducing plant defense (Jayalakshmi et  al. 2009), and/or induced systemic resis-
tance (Harman et al. 2004; Sriram et al. 2009).

4.3.1  �Mycoparasitism

The most common mechanism used by Trichoderma for the suppression of phyto-
pathogens is mycoparasitism (Howell 2003; Vinale et al. 2008). Mycoparasitism is 
a diverse process involving  recognition of the host by the mycoparasite; hyphal 
attachment and coiling of pathogen hyphae (Whipps 2001; Woo and Lorito 2007). 

Table 4.2  Trichoderma species, their target organism, and mechanisms involved in suppression of 
plant pathogens

Trichoderma species Target organism Factor responsible for biocontrol Disease control

T. harzianum 1051, 
T. harzianum 39.1

Crinipellis 
perniciosa

Chitinase, N-acetylglucosaminidase, 
β-1,3-glucanase,total cellulase, 
endoglucanase, aryl-β-glucosidase, 
β-glucosidase, protease, and amylase

Witches’ 
broom disease 
(Crinipellis 
perniciosa) of 
cocoa

T. lignorum, T. 
virens, T. hamatum, 
T. harzianum, T. 
pseudokoningii 
(Rifai)

Rhizoctonia 
solani

Extracellular, metabolites or 
antibiotics, or lytic enzyme action

Damping-off 
disease of 
bean plants

T. viride, T. 
harzianum

Aspergillus flavus 
and Fusarium 
moniliforme

Lipolytic, proteolytic, pectinolytic, 
and cellulolytic enzymes. Unknown 
(mycotoxins) antibiotic compounds 
(e.g., peptides, cyclic polypeptides)

Fungal 
seed-associated

T. harzianum, BAFC 
742

Sclerotinia 
sclerotiorum, 
BAFC 2232

β-1,3-Glucanase and chitinase Fungal-soybean 
plant

T. harzianum 25, T. 
viride

Serpula 
lacrymans

Antibiotic; anthraquinones Fungal wood 
decay

T. virens “Q” strain Rhizopus oryzae/
Pythium sp.

Plant phytoalexin induction by 
antibiotic compound, gliovirin

Seedling 
disease of 
cotton

T. virens isolates 
GL3 and GL21; T. 
harzianum T-203

Rhizoctonia 
solani, Pythium 
ultimum, 
Meloidogyne 
incognita

Antibiotics gliovirin and gliotoxin 
and other inhibitory metabolites

Damping-
off disease of 
cucumber

Source: Leng et al. (2011)
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The biocontrol of R. solani by T. lignorum through mycoparasitism was very well 
described by Weindling (1932). Enzymes such as chitinases, proteases, and β-1, 
3-glucanases lyse hyphal cell walls of pathogens during mycoparasitic activity (De 
La Cruz et al. 1993; Schirmbock et al. 1994). β-1, 3-Glucanases have properties for 
degrading the cell wall and inhibit the mycelial growth and spore germination of 
phytopathogenic fungi (Benítez et al. 2004; Lin et al. 2007). Degradation of patho-
gen hyphal membranes and cell walls was achieved by proteases produced by T. 
harzianum. Application of T. harzianum may inhibit the synthesis of  hydrolytic 
enzymes such as endo-polygalacturonase and exo-polygalacturonase, produced by 
Botrytis cinerea, a causal agent of gray mold, resulting in reduced disease severity 
(Elad and Kapat 1999). Mustafa et al. (2009) and Kotze et al. (2011) also observed 
the mycoparasitic activity of Trichoderma species against wide range of  plant 
pathogenic fungi.

4.3.2  �Competition and Rhizosphere Competence

Biocontrol agents multiplication and their multiplication depends upon various fac-
tors like rhizosphere competence, successful root colonization, proliferation along 
the growing plant roots (Chet 1990; Irtwange 2006). Rhizospheric competence is 
very crucial which provides appreciable understanding pertaining to mode of action 
of rhizospheric microbes against wide range of plant pathogens (Whipps 2001; Bais 
et al. 2004; Howell 2003). Trichoderma, Pseudomonas, and Bacillus are considered 
as potent biocontrol agents and offer excellent competition in terms of food and 
space to the pathogens  (Wells 1988). Among these three rhizospheric microbes, 
Pseudomonas was reported to be more effective comparatively Trichoderma fol-
lowed by Bacillus (Weller 1988). 

The mass culture of Trichoderma can be prepared by using different media which 
can be thereafter used directly  either by mixing with the soil or indirectly by 
biopriming methods (Zhang et al. 1996; Howell et al. 2000). T. viride have been 
reported to reduce the disease severity of Chondrostereum purpureum, the silver 
leaf pathogen of plum trees (Corke and Hunter 1979).

A race for obtaining carbon in the rhizosphere was also observed in the evalua-
tion of antagonistic activity of Trichoderma spp. against different plant pathogens, 
especially F. oxysporum (Sivan and Chet 1989). Competition for carbon is involved 
in the suppression of F. oxysporum f. sp. vasinfectum and F. oxysporum f. sp. melo-
nis by T. harzianum T-35 in the rhizosphere of cotton and melon, respectively (Sivan 
and Chet 1989). The case of root colonization by bacteria consists of two phases, 
attachment to roots followed by colonization of roots (Howie et al. 1987). It was 
also reported that motile isolates were far more better colonizers than non-motile 
isolates (Toyota and Ikeda 1997). The capability of bioagents to synthesize certain 
antibiotics has a direct relation to being a good colonizer. Mazzola et al. (1992) sug-
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gested that phenazine antibiotic production contributes to the ecological compe-
tence of P. fluorescens in the rhizosphere of wheat. A decrease in disease severity for 
take - all disease of wheat and radish wilt caused by Fusarium has a direct relation 
with the establishment of Pseudomonas strains (Bull et al. 1991; Raaijmakers et al. 
1995). Berger et  al. (1996) after thorough studies have drawn a conclusion that 
decrease in disease severity has a direct relation with the rhizospheric establishment 
by B. subtilis.

4.3.3  �Antibiosis

Suppression or destruction of diseases producing propagules (spores, conidia, 
conidiophore) by the synthesis of antibiotics or other chemicals synthesizing the 
bioagents (fungi or bacteria) is known as antibiosis (Irtwange 2006; Viterbo et al. 
2007; Haggag and Mohamed 2007). Most of the biocontrol agents including 
Trichoderma, Pseudomonas spp., and Bacillus species produce several types of 
antibiotics (Kumar et al. 2011; Handelsman and Stabb 1996). The antibiotics pro-
duced by Trichoderma species include gliotoxin (Anitha and Murugesan 2005), 
harzianic acid (Vinale et al. 2014), trichoviridin (McAlees and Taylor 1995), virid-
ian (Zafari et  al. 2008), viridiol (Phuwapraisirisan et  al. 2006), alamethicins 
(Aidemark et  al. 2010), and others (Goulard et  al. 1995). Gliovirin an antibiotic 
isolated from Trichoderma (Gliocladium) virens shows a strong inhibitory effect 
against Pythium ultimum and Phytophthora species (Howell and Stipanovie 1983). 
Thielaviopsis basicola, Phymatotrichum omnivorum, Rhizopus arrhizus, or 
Verticillium dahliae. B. thuringiensis was not inhibited by gliovirin. Secretion of T. 
harzianum strain against Gaeumannomyces graminis var. tritici exhibited inhibtory 
effects supporting the fact that bioagent synthesizes antibiotics plays a vital role in 
the inhibition of the pathogen.

Bacillus and Pseudomonas species are also effective microbes in managing plant 
diseases by the production of antibiotics (Weller 1988; Kumar et al. 2011). Plant 
disease suppression due to P. fluorescens may be due to synthesis of pyoluteorin, 
phenazine, oomycin A, IAA, siderophores, phenazine, siderophore (Whistler et al. 
2000; Schoonbeek et al. 2002; Suzuki et al. 2003;  Johri et al. 2003; Rachid and 
Ahmed 2005), extracellular hydrolytic enzymes (Siddiqui 2006), alginate, HCN 
(Bagnasco et al. 1998), and pseudomonic acid. The antimicrobial compounds dis-
cussed above are responsible to cause fungistasis, inhibition of spore germination, 
and degradation of a mycelial wall and also induce other fungicidal effect 
(Thomashow and Weller 1990). Production of iturin and surfactin by B. subtilis RB 
14 played important role in the protection of tomato plant against R. solani (Asaka 
and Shoda 1996). B. subtilis synthesize about five antibiotics, namely, subtillin, 
bacitracin, bacillin, subtenolin, and bacillomycin (Young et al. 1974). Pukall et al. 
(2005) isolated four toxin-producing strains of Bacillus spp., such as B. pumilus, B. 
fusiformis, B. subtilis, and B. mojavensis apart from B. cereus.
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4.3.4  �Plant Growth Promotion

PGPR helps in improving the plant health by the producing of different metabolites 
such as siderophore and hydrocyanic acid (HCN) (Bhatia et al. 2008); other metab-
olites also include phytohormones like indole acetic acid, gibberellins, cytokinins, 
and ethylene (Patten and Glick 2002). Another mechanism is the breaking of ethyl-
ene molecules which inhibits the growth of roots by certain rhizobacteria and also 
improves the plant health (Glick et al. 1999). Great number of rhizospheric microbes 
produces the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, 
which breaks down the ACC molecule, the direct originator of the plant hormone 
ethylene (Belimov et al. 2001; Glick 1995). They kindle the root propagation of dif-
ferent crop plants (Belimov et  al. 2001). The abovementioned mode of action 
(breakdown of ACC) is most efficient in plants which undergo stresses like flood-
ing, drought, and phytopathogens (Grichko and Glick 2001; Wang et al. 2000). The 
plant health improvement by rhizospheric microbes lies in the fact of initiation of 
phosphorous plant nutrition (Bertrand et al. 2001). (The increase in yield of ground-
nut by Pseudomonas strains is the best example of initiation of phosphorous plant 
nutrition which leads to easy uptake of soil phosphorus by plants) (Dey et al. 2004). 
Effect of rhizospheric microbes on plant growth is because of synthesis of sidero-
phores; synthesis of phytohormones which leads to increase in plant growth (Garcia 
de Salamone et al. 2001); and initiation of phosphorous plant nutrition leading to 
readily available phosphorous (Richardson 2001). Sen et al. (2012) reported that 
Stevia rebaudiana Bertoni, a natural sweetener, is composed of two main sweetest 
compounds which make it 300 and 450 times sweeter than sucrose. Pseudomonas 
BRL-1 isolated from the rhizosphere showed both in vitro and in vivo antagonistic 
activity against the pathogen Alternaria alternata inciting leaf blight disease in 
Stevia rebaudiana. Siderophore produced by fluorescent Pseudomonas has very 
high affinity for ferric ion and is secreted during growth under low iron conditions 
(Johri et al. 2003) which is then converted to ferrous ions and thus reduces iron 
availability to pathogens. However, the producing strain can utilize this via a very 
specific receptor in its outer cell membrane (Buyer and Leong 1986). In this way the 
bacteria may restrict the growth of deleterious bacteria and fungi at the plant root 
surface (Loper and Buyer 1991). Consequent iron starvation condition prevents the 
germination of fungal spores. Elad and Baker (1985) have demonstrated the direct 
relationship between synthesis of siderophores and their tendency to control the 
germination of chlamydospores of Fusarium oxysporum. Johri et al. (2003) have 
also reported that fluorescent pseudomonas during low iron concentration secrete 
siderophores which reduces ferric into ferrous ions, and thus no more iron is avail-
able to pathogens. However, the synthesizing strain has a tendency to use this with 
the help of specific receptors in its outer cell membrane (Buyer and Leong 1986). In 
this is how the bacteria can check the growth of harmful bacteria and fungi at the 
surface of roots (Loper and Buyer 1991) and hence promote the plant growth.
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4.4  �Conclusions

Now it is very much clear that rhizospheric microbes have a positive trend in 
increasing the growth and yield of medicinal plants under biotic stresses. Although 
understanding the mechanism of rhizospheric microbes as a plant growth promoter 
is still an interesting field of qualitative research, therefore, it is the right time to 
think about the potential candidate of microbes which can improve the plant health 
even under biotic stresses. Application of suitable strain of microorganisms in the 
field infested with the soil borne pathogens may exert some reliable results. 
Consortium of microorganism of different origin can enhance the potentiality of the 
bioagents which may be very useful in the disease management. However, mecha-
nisms behind the control of diseases are still the matter of research as this will 
unravel various important facts related to disease management. Due to the distinct 
features of medicinal plants, future research could also pave a new platform in 
understanding the subject. Adequate research in this thrust area could be a major 
breakthrough in the improvement  of health of various economically impor-
tant medicinal plants.
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